WorldWideScience

Sample records for radiation tolerant laser

  1. A 5 Gb/s Radiation Tolerant Laser Driver

    CERN Document Server

    Amaral, L; Da Silva, S; Mazza, G; Meroli, S; Moreira, P; Rivetti, A; Troska, J; Wyllie, K

    2009-01-01

    A laser driver for data transmission at 5 Gb/s has been developed as a part of the Giga Bit Transceiver (GBT) project. The Giga Bit Laser Driver (GBLD) targets High Energy Physics (HEP) applications for which radiation tolerance is mandatory. The GBLD ASIC can drive both VCSELs and some types of edge emitting lasers. It is essentially composed of two drivers capable of sinking up to 12 mA each from the load at a maximum data rate of 5 Gb/s, and of a current sink for the laser bias current. The laser driver include also pre-emphasis and duty cycle control capabilities.

  2. Effect of CO2 laser radiation on physiological tolerance of wheat seedlings exposed to chilling stress.

    Science.gov (United States)

    Chen, Yi-Ping; Jia, Jing-Fen; Yue, Ming

    2010-01-01

    To determine the effect of CO(2) laser pretreatment of wheat seeds on the physiological tolerance of seedlings to chilling stress, wheat seeds were exposed to CO(2) laser radiation for 300 s. After being cultivated for 48 h at 25 degrees C, the wheat seedlings were subjected to chilling stress for 24 h. Selected physiological and biochemical parameters were measured in 6-day-old seedlings. We observed that chilling stress enhanced the concentrations of malondialdehyde and oxidized glutathione while decreasing the activities of nitric oxide synthase, catalase, peroxidase, superoxide dismutase and the concentrations of nitric oxide and glutathione in the wheat leaves compared with controls. When the chilling stress was preceded by CO(2) laser irradiation, the concentrations of malondialdehyde and oxidized glutathione were decreased while the activities of nitric oxide synthase, catalase, peroxidase, superoxide dismutase and the concentrations of nitric oxide and glutathione increased. Furthermore, chilling stress decreased the biomass, biophoton intensity and GHS/GSSG ratios of seedlings while these parameters increased when the seedlings were treated with CO(2) laser irradiation prior to the chilling stress. The results suggest that a suitable dose of CO(2) laser stimulation can enhance the physiological tolerance of wheat seedlings to chilling stress.

  3. Creation of an ethanol-tolerant Saccharomyces cerevisiae strain by 266 nm laser radiation and repetitive cultivation.

    Science.gov (United States)

    Zhang, Min; Zhu, Rongrong; Zhang, Minfeng; Wang, Shilong

    2014-11-01

    Laser radiation is an efficient approach for rapid improvement of industrial microbial phenotypes. To improve ethanol tolerance in Saccharomyces cerevisiae strains, a 266 nm laser radiation with the use of repetitive cultivation was explored in this work. After irradiated by 266 nm laser radiation and repetitive cultivation, a genetically stable SM4 strain was obtained. The SM4 strain could grow on YPD plate with extra 15% (v/v) ethanol. Moreover, the ethanol production performance of SM4 strain was 29.25% more than that of the wild type strain when they were cultivated in 5% (v/v) ethanol fermentation medium for 72 h. The DNA mutation was the possible characters for the phenotype of SM4 strain. Overall, the 266 nm laser radiation and repetitive cultivation approach might be a novel and useful for breeding fermentation microorganisms. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. High-Speed, Radiation-Tolerant Laser Drivers in 0.13 $\\mu$m CMOS Technology for HEP Applications

    CERN Document Server

    AUTHOR|(CDS)2073369; Moreira, Paulo; Calvo, Daniela; De Remigis, Paolo; Olantera, Lauri; Soos, Csaba; Troska, Jan; Wyllie, Ken

    2014-01-01

    The gigabit laser driver (GBLD) and low-power GBLD (LpGBLD) are two radiation-tolerant laser drivers designed to drive laser diodes at data rates up to 4.8 Gb/s. They have been designed in the framework of the gigabit-transceiver (GBT) and versatile-link projects to provide fast optical links capable of operation in the radiation environment of future high-luminosity high-energy physics experiments. The GBLD provides laser bias and modulation currents up to 43 mA and 24 mA, respectively. It can thus be used to drive vertical cavity surface emitting laser (VCSEL) and edge-emitting laser diodes. A pre-emphasis circuit, which can provide up to 12 mA in 70 ps pulses, has also been implemented to compensate for high external capacitive loads. The current driving capabilities of the LpGBLD are 2 times smaller that those of the GBLD as it has been optimized to drive VCSELs in order to minimize the power consumption. Both application-specific integrated circuits are designed in 0.13 m commercial complementary metal-o...

  5. High-Speed, Radiation-Tolerant Laser Drivers in 0.13 μm CMOS Technology for HEP Applications

    Science.gov (United States)

    Mazza, Giovanni; Tavernier, Filip; Moreira, Paulo; Calvo, Daniela; De Remigis, Paolo; Olantera, Lauri; Soos, Csaba; Troska, Jan; Wyllie, Ken

    2014-12-01

    The gigabit laser driver (GBLD) and low-power GBLD (LpGBLD) are two radiation-tolerant laser drivers designed to drive laser diodes at data rates up to 4.8 Gb/s. They have been designed in the framework of the gigabit-transceiver (GBT) and versatile-link projects to provide fast optical links capable of operation in the radiation environment of future high-luminosity high-energy physics experiments. The GBLD provides laser bias and modulation currents up to 43 mA and 24 mA, respectively. It can thus be used to drive vertical cavity surface emitting laser (VCSEL) and edge-emitting laser diodes. A pre-emphasis circuit, which can provide up to 12 mA in 70 ps pulses, has also been implemented to compensate for high external capacitive loads. The current driving capabilities of the LpGBLD are 2 times smaller that those of the GBLD as it has been optimized to drive VCSELs in order to minimize the power consumption. Both application-specific integrated circuits are designed in 0.13 μm commercial complementary metal-oxide semiconductor technology and are powered by a single 2.5 V supply. The power consumption of the core circuit is 89 mW for the GBLD and 55 mW for the LpGBLD.

  6. Radiation-Tolerant Vertical-Cavity Amplifying Detectors for Time-of-Flight Laser Rangefinders Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The harsh radiation environment anticipated during the Europa Jupiter System Mission (EJSM) presents a significant challenge to develop radiation-hardened notional...

  7. [Mucosal tolerance and low level laser therapy: Is the delegation to radiation technicians possible?].

    Science.gov (United States)

    Duchosal, S

    2015-10-01

    Mucositis remains a frequent complication of radiotherapy. Low level laser applications are used to accelerate the healing process. This technique is used routinely in our centre. It is performed by delegation by radiotherapists. The conditions of this delegation of tasks are addressed here. Copyright © 2015. Published by Elsevier SAS.

  8. Commercialization of radiation tolerant camera

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Choi, Young Soo; Kim, Sun Ku; Lee, Jong Min; Cha, Bung Hun; Lee, Nam Ho; Byun, Eiy Gyo; Yoo, Seun Wook; Choi, Bum Ki; Yoon, Sung Up; Kim, Hyun Gun; Sin, Jeong Hun; So, Suk Il

    1999-12-01

    In this project, radiation tolerant camera which tolerates 10{sup 6} - 10{sup 8} rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  9. Laser Additive Manufacturing of F/M Steels for Radiation Tolerant Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Lienert, Thomas J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    According to the Nuclear Energy R&D Roadmap Report submitted to Congress in 2010, one the key challenges facing the nuclear energy industry involves development of new reactor designs with reduced capital costs. Two related R&D objectives outlined in the report include: 1) Making improvements in the affordability of new reactors; and 2) Development of structural materials to withstand irradiation for longer periods. Laser additive manufacturing (LAM) is particularly well suited for more rapid and economical fabrication of reactor components relative to current fabrication methods. The proposed work involving LAM directly addresses the two R&D objectives outlined above relevant to the pertinent mission problems. The classical Materials Science approach involving development of Process/Structure/Property/Performance (P/S/P/P) relations was employed in this project. Processing included LAM and heat-treating. Thermal cycling during LAM is discussed here, and phase diagrams and continuous cooling transformation (CCT) diagrams are used to rationalize microstructural evolution. Structures were characterized including grain size & morphology, volume fraction, morphology, composition and location of carbides in as-deposited and heat-treated conditions. In the simplest sense, the goal was to control microstructures through process manipulation with a view toward optimizing properties and performance in service.

  10. Laser undulator radiation

    CERN Document Server

    Kawamura, Y; Ruschin, S; Tanabé, T; Toyoda, K

    2000-01-01

    Various characteristics such as the number of photons, the wavelength, and the solid angle of the laser undulator radiation have been measured quantitatively. It was performed in the visible wavelength region using the interaction between a high-power pulsed CO sub 2 laser and a high-quality electron beam having an energy of 0.65-0.85 MeV. The experimental results were in good agreement with the theoretical calculations. A criterion to determine the limitation to the number of periods of the laser undulator was also proposed.

  11. Laser radiation bracket debonding

    Science.gov (United States)

    Dostálová, Tat'jana; Jelínková, Helena; Šulc, Jan; Koranda, Petr; Nemec, Michal; Racek, Jaroslav; Miyagi, Mitsunobu

    2008-02-01

    Ceramic brackets are an aesthetic substitute for conventional stainless steel brackets in orthodontic patients. However, ceramic brackets are more brittle and have higher bond strengths, which can lead to bracket breakage and enamel damage during classical type of debonding. This study examined the possibility of laser radiation ceramic brackets removing as well as the possible damage of a surface structure of hard dental tissue after this procedure. Two types of lasers were used for the experiments - a laser diode LIMO HLU20F400 generating a wavelength of 808 nm with the maximum output power 20W at the end of the fiber (core diameter 400 μm, numerical aperture 0.22). As a second source, a diode-pumped Tm:YAP laser system generating a wavelength of 1.9 μm, with up to 3.8 W maximum output power was chosen. For the investigation, extracted incisors with ceramic brackets were used. In both cases, laser radiation was applied for 0.5 minute at a maximum power of 1 W. Temperature changes of the irradiated tissue was registered by camera Electrophysics PV320. After the interaction experiment, the photo-documentation was prepared by the stereomicroscope Nikon SMZ 2T, Japan. The surface tissue analysis was processed in "low vacuum" (30 Pa) regime without desiccation. This technique was used to record back-scattered electron images. Selecting the appropriate laser, resin, and bracket combination can minimize risks of enamel degradation and make debonding more safe.

  12. Radiation tolerant power converter controls

    Science.gov (United States)

    Todd, B.; Dinius, A.; King, Q.; Uznanski, S.

    2012-11-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to significantly increased radiation induced effects in materials close to the accelerator, including the FGC. Recent radiation tests indicate that the current FGC would not be sufficiently reliable. A so-called FGClite is being designed to work reliably in the radiation environment in the post-LS1 era. This paper outlines the concepts of power converter controls for machines such as the LHC, introduces the risks related to radiation and a radiation tolerant project flow. The FGClite is then described, with its key concepts and challenges: aiming for high reliability in a radiation field.

  13. Generation of ultraviolet radiation with wide angular tolerance in ...

    Indian Academy of Sciences (India)

    CLBO) crystal for the first time for the generation of fourth harmonic (266 nm) of Nd:YAG and third harmonic. (226.7 nm) of a dye laser radiation by second harmonic generation and sum-frequency mixing with the angular tolerance as large as ...

  14. Generation of ultraviolet radiation with wide angular tolerance in ...

    Indian Academy of Sciences (India)

    Tangential phase-matching has been realised in cesium lithium borate (CLBO) crystal for the first time for the generation of fourth harmonic (266 nm) of Nd:YAG and third harmonic (226.7 nm) of a dye laser radiation by second harmonic generation and sum-frequency mixing with the angular tolerance as large as 22 mrad ...

  15. Radiation-Tolerant High-Speed Camera

    Science.gov (United States)

    2017-03-01

    Radiation -Tolerant High-Speed Camera Esko Mikkola, Andrew Levy, Matt Engelman Alphacore, Inc. Tempe, AZ 85281 Abstract: As part of an... radiation -hardened CMOS image sensor and camera system. Radiation -hardened cameras with frame rates as high as 10 kfps and resolution of 1Mpixel are not...camera solution that is under development with a similar architecture. It also includes a brief description of the radiation -hardened camera that

  16. Radiation Tolerant Software Defined Video Processor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MaXentric's is proposing a radiation tolerant Software Define Video Processor, codenamed SDVP, for the problem of advanced motion imaging in the space environment....

  17. Fault Tolerant, Radiation Hard DSP Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a radiation tolerant/hardened signal processing node, which effectively utilizes state-of-the-art commercial semiconductors plus our innovative...

  18. Radiation tolerant power converter controls

    CERN Document Server

    Todd, B; King, Q; Uznanski, S

    2012-01-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to signifi...

  19. Radiation tolerant semiconductor sensors for tracking detectors

    CERN Document Server

    Moll, M

    2006-01-01

    The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” is developing radiation tolerant tracking detectors for the upgrade of the Large Hadron Collider at CERN (Super-LHC). One of the main challenges arising from the target luminosity of 1035 cm−2 s−1 are the unprecedented high radiation levels. Over the anticipated 5 years lifetime of the experiment a cumulated fast hadron fluence of about 1016 cm−2 will be reached for the innermost tracking layers. Further challenges are the expected reduced bunch crossing time of about 10 ns and the high track density calling for fast and high granularity detectors which also fulfill the boundary conditions of low radiation length and low costs. After a short description of the expected radiation damage after a fast hadron fluence of 1016 cm−2, several R&D approaches aiming for radiation tolerant sensor materials (defect and material engineering) and sensor designs (device engineering) are review...

  20. Radiation-Tolerant Intelligent Memory Stack - RTIMS

    Science.gov (United States)

    Ng, Tak-kwong; Herath, Jeffrey A.

    2011-01-01

    This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware

  1. Orchid flowers tolerance to gamma-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Olivia Kimiko E-mail: okikuchi@net.ipen.br

    2000-03-01

    Cut flowers are fresh goods that may be treated with fumigants such as methyl bromide to meet the needs of the quarantine requirements of importing countries. Irradiation is a non-chemical alternative to substitute the methyl bromide treatment of fresh products. In this research, different cut orchids were irradiated to examine their tolerance to gamma-rays. A 200 Gy dose did inhibit the Dendrobium palenopsis buds from opening, but did not cause visible damage to opened flowers. Doses of 800 and 1000 Gy were damaging because they provoked the flowers to drop from the stem. Cattleya irradiated with 750 Gy did not show any damage, and were therefore eligible for the radiation treatment. Cymbidium tolerated up to 300 Gy and above this dose dropped prematurely. On the other hand, Oncydium did not tolerate doses above 150 Gy.(author)

  2. Orchid flowers tolerance to gamma-radiation

    Science.gov (United States)

    Kikuchi, Olivia Kimiko

    2000-03-01

    Cut flowers are fresh goods that may be treated with fumigants such as methyl bromide to meet the needs of the quarantine requirements of importing countries. Irradiation is a non-chemical alternative to substitute the methyl bromide treatment of fresh products. In this research, different cut orchids were irradiated to examine their tolerance to gamma-rays. A 200 Gy dose did inhibit the Dendrobium palenopsis buds from opening, but did not cause visible damage to opened flowers. Doses of 800 and 1000 Gy were damaging because they provoked the flowers to drop from the stem. Cattleya irradiated with 750 Gy did not show any damage, and were therefore eligible for the radiation treatment. Cymbidium tolerated up to 300 Gy and above this dose dropped prematurely. On the other hand, Oncydium did not tolerate doses above 150 Gy.

  3. High-Speed Radiation Tolerant Avalanche Photodiodes Based on InGaN for Space Altimeter Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance, radiation-tolerant detectors are required for the time-of-flight laser based rangefinders. Avalanche photodiodes (APDs) are conventionally chosen...

  4. Radiation tolerant ASIC for controlling switched-capacitor arrays

    CERN Document Server

    Gingrich, Douglas M; Buchanan, Norm J; Liu Shang Li; Parsons, John A; Sippach, Bill W

    2004-01-01

    We describe a radiation-tolerant controller used to control switched- capacitor arrays. The controller has been developed for the liquid argon calorimeter of the ATLAS detector. Radiation tolerance has been achieved by applying layout, circuit, and system mitigation techniques to a commercial 0.25 mum complementary metal-oxide semiconductor technology. 22 Refs.

  5. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi.

    Directory of Open Access Journals (Sweden)

    K Ingemar Jönsson

    Full Text Available Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100-1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance.

  6. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi.

    Science.gov (United States)

    Jönsson, K Ingemar; Hygum, Thomas L; Andersen, Kasper N; Clausen, Lykke K B; Møbjerg, Nadja

    2016-01-01

    Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100-1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance.

  7. Electromagnetic radiation from a laser wakefield accelerator

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2008-01-01

    Coherent and incoherent electromagnetic radiation emitted from a laser wakefield accelerator is calculated based on Lienard-Wiechert potentials. It is found that at wavelengths longer than the bunch length, the radiation is coherent. The coherent radiation, which typically lies in the infrared

  8. Radiation Tolerant, FPGA-Based SmallSat Computer System

    Science.gov (United States)

    LaMeres, Brock J.; Crum, Gary A.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Radiation Tolerant, FPGA-based SmallSat Computer System (RadSat) computing platform exploits a commercial off-the-shelf (COTS) Field Programmable Gate Array (FPGA) with real-time partial reconfiguration to provide increased performance, power efficiency and radiation tolerance at a fraction of the cost of existing radiation hardened computing solutions. This technology is ideal for small spacecraft that require state-of-the-art on-board processing in harsh radiation environments but where using radiation hardened processors is cost prohibitive.

  9. Radiation Tolerant, High Capacity Non-Volatile Memory Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for reliable, high capacity, radiation tolerant nonvolatile memory exists in many Human space flight applications. Most projects rely on COTS hardware for a...

  10. [Laser radiations in medical therapy].

    Science.gov (United States)

    Richand, P; Boulnois, J L

    1983-06-30

    The therapeutic effects of various types of laser beams and the various techniques employed are studied. Clinical and experimental research has shown that Helio-Neon laser beams are most effective as biological stimulants and in reducing inflammation. For this reasons they are best used in dermatological surgery cases (varicose ulcers, decubital and surgical wounds, keloid scars, etc.). Infrared diode laser beams have been shown to be highly effective painkillers especially in painful pathologies like postherpetic neuritis. The various applications of laser therapy in acupuncture, the treatment of reflex dermatologia and optic fibre endocavital therapy are presented. The neurophysiological bases of this therapy are also briefly described.

  11. Laser synchrotron radiation and beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Esarey, E.; Sprangle, P.; Ting, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  12. Fault Tolerant, Radiation hard DSP Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Commercial digital signal processors (DSP) are problematic for satellite computers due to damaging space radiation effects, particularly single event upsets (SEU)...

  13. Effect of laser radiation on rat radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Laprun, I.B.

    1979-03-01

    Quite a few experimental data have been obtained to date indicating that radioresistance of the organism is enhanced under the influence of electromagnetic emissions in the radiofrequency and optical ranges. But no studies were made of the possible radioprotective properties of coherent laser radiation. At the same time, it was demonstrated that the low-energy emission of optical quantum generators (lasers) in the red band stimulates the protective forces of the organism and accelerates regenerative processes; i.e., it induces effects that are the opposite of that of ionizing radiation. Moreover, it was recently demonstrated that there is activation of catalase, a radiosensitive enzyme that plays an important role in the metabolism of peroxide compounds, under the influence of lasers. For this reason, the effect of pre-exposure to laser beams on radiosensitivity of rats was tested.

  14. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  15. Freeze Tolerant Radiator for an Advanced EMU

    Science.gov (United States)

    Copeland, Robert J.; Elliott, Jeannine; Weislogel, Mark

    2004-01-01

    During an Extravehicular Activity (EVA), the astronaut s metabolic heat and the heat produced by the Portable Life Support Unit (PLSS) must be rejected. This heat load is currently rejected by a sublimator, which vents up to eight pounds of water each EVA. However, for advanced space missions of the future, water venting to space needs to be minimized because resupply impacts from earth will be prohibitive. If this heat load could be radiated to space from the PLSS, which has enough surface area to radiate most of the heat, the amount of water now vented could be greatly reduced. Unfortunately, a radiator rejects heat at a relatively constant rate, but the astronauts generate a variable heat load depending on how hard they are working. Without a way to vary the heat removal rate, the astronaut would experience cold discomfort or even frostbite. A proven method allowing a radiator to be turned-down is to sequentially allow tubes that carry the heat transfer fluid to the radiator to freeze. A drawback of current freezable radiators using this method is that they are far to heavy for use on a PLSS, because they use heavy construction to prevent the tubes from bursting as they freeze and thaw. This creates the need for a large radiator to reject most of the heat but with a lightweight tube that doesn t burst as it freezes and thaws. The new freezable radiator for the Extravehicular Mobility Unit (EMU) has features to accommodate the expansion of the radiator fluid when it freezes, and still have the high tube to fin conductance needed to minimize the number and weight of the tubes. Radiator fluid candidates are water and a propylene glycol-water mixture. This design maintains all materials within their elastic limits so that large volume changes can be achieved without breaking the tube. This concept couples this elastic expansion with an extremely lightweight, extremely high conductivity carbon fiber fin that can carry the heat needed to thaw a frozen tube. By using

  16. Damage-tolerant nanotwinned metals with nanovoids under radiation environments

    Science.gov (United States)

    Chen, Y.; Yu, K. Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M. A.; Wang, J.; Zhang, X.

    2015-04-01

    Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from high density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.

  17. Interaction of laser radiation with urinary calculi

    OpenAIRE

    Mayo, M E

    2009-01-01

    Urolithias, calculus formation in the urinary system, affects 5 – 10% of the population and is a painful and recurrent medical condition. A common approach in the treatment of calculi is the use of laser radiation, a procedure known as laser lithotripsy, however, the technique has not yet been fully optimised. This research examines the experimental parameters relevant to the interactions of the variable microsecond pulsed holmium laser (λ = 2.12 μm, τp = 120 – 800 μs, I ~ 3 MW...

  18. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Microwave generation in an optical breakdown plasma created by modulated laser radiation

    Science.gov (United States)

    Antipov, A. A.; Grasyuk, Arkadii Z.; Losev, Leonid L.; Soskov, V. I.

    1990-06-01

    It was established that when laser radiation, intensity modulated at a frequency of 2.2 GHz, interacted with an optical breakdown plasma which it had created, a microwave component appeared in the thermal emf of the plasma. The amplitude of the microwave thermal emf reached 0.7 V for a laser radiation intensity of 6 GW/cm2. Laser radiation with λL = 1.06 μm was converted to the microwave range with λmω = 13 cm in the optical breakdown plasma. A microwave signal power of ~ 0.5 W was obtained from a laser power of ~ 5 MW.

  19. Tolerance of an albino fish to ultraviolet-B radiation

    Science.gov (United States)

    Fabacher, David L.; Little, Edward E.; Ostrander, Gary K.

    1999-01-01

    We exposed albino and pigmented medakaOryzias latipes to simulated solar ultraviolet-B (UVB) radiation to determine if albino medaka were less tolerant of UVB radiation than medaka pigmented with melanin. There was no difference in the number of albino and pigmented medaka that died during the exposure period. Spectrophotometric analyses of the outer dorsal skin layers from albino and pigmented medaka indicated that, prior to exposure, both groups of fish had similar amounts of an apparent colorless non-melanin photoprotective substance that appears to protect other fish species from UVB radiation. Our results indicate that albino medaka were as tolerant of UVB radiation as pigmented medaka because they had similar amounts of this photoprotective substance in the outer layers of the skin.

  20. Enabling Radiation Tolerant Systems for Space

    Science.gov (United States)

    Kauffman, Billy; Hardage, Donna

    1999-01-01

    A hazard to all spacecraft orbiting the Earth is the existence of a harsh environment with its subsequent effects. The effects can provide damaging or even disabling effects on spacecraft and its instruments. One of the most recognized and serious of the different space environments is ionizing radiation and its effects on spacecraft and spacecraft systems. This is increasingly becoming more of an issue for all missions due to the use of lighter composite materials, smaller satellites, and smaller electronics. NASA's Space Environments and Effects (SEE) Program was established to develop new plateaus of technical capability to reduce the cost of NASA's missions and provide leading-edge exploratory and focused technology to promote continued U.S. preeminence in space. The SEE Program has an "Implementation Plan" to develop roadmaps and fund technical tasks to enable radiation systems for space.

  1. Studying Radiation Tolerant ICs for LHC

    CERN Multimedia

    Faccio, F; Snoeys, W; Campbell, M; Casas-cubillos, J; Gomes, P

    2002-01-01

    %title\\\\ \\\\In the recent years, intensive work has been carried out on the development of custom ICs for the readout electronics for LHC experiments. As far as radiation hardness is concerned, attention has been focussed on high total dose applications, mainly for the tracker systems. The dose foreseen in this inner region is estimated to be higher than 1~Mrad/year. In the framework of R&D projects (RD-9 and RD-20) and in the ATLAS and CMS experiments, the study of different radiation hard processes has been pursued and good contacts with the manufacturers have been established. The results of these studies have been discussed during the Microelectronics User Group (MUG) rad-hard meetings, and now some HEP groups are working to develop radiation hard ICs for the LHC experiments on some of the available rad-hard processes.\\\\ \\\\In addition, a lot of the standard commercial electronic components and ASICs which are planned to be installed near the LHC machine and in the detectors will receive total doses in ...

  2. Radiative trapping in intense laser beams

    CERN Document Server

    Kirk, J G

    2016-01-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron-positron pairs can be optimized by a suitable choice of the intensity ratio.

  3. Large scale radiation tolerance assurance for LHC machine electronics

    CERN Document Server

    Wijnands, Thijs; Presland, A; Rausch, R; Tsoulou, A

    2004-01-01

    The LHC (Large Hadron Collider) is a high intensity, high-energy proton collider presently under construction at CERN. Electronic equipment will be placed in the machine tunnel and underground areas close to the beam. This equipment will have to operate reliable in a complex radiation field with high energetic neutrons in the GeV energy range. In this paper we present an efficient and original radiation tolerance assurance approach. It consists of exposing candidate components and entire systems to a complex radiation field, similar to the application radiation field. The method allows making a pre-selection of commercial off the shelf electronics. Irradiation in the complex field is also used to test the functionality of final prototypes and series produced devices.

  4. Discharge modulation noise in He---Ne laser radiation

    NARCIS (Netherlands)

    Bolwijn, P.T.

    1967-01-01

    Discharge modulation noise in He---Ne laser radiation is considered theoretically, including explicitly the laser oscillator properties. Experiments reported previously by us and other authors are in agreement with our analysis.

  5. Reliability and radiation tolerance of robots for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab. (Denmark); Decreton, M. [SCK.CEN (Belgium); Seifert, C.C. [Siemens AG (Germany); Sharp, R. [AEA Technology (United Kingdom)

    1996-10-01

    The reliability of a robot for nuclear applications will be affected by environmental factors such as dust, water, vibrations, heat, and, in particular, ionising radiation. The present report describes the work carried out in a project addressing the reliability and radiation tolerance of such robots. A widely representative range of components and materials has been radiation tested and the test results have been collated in a database along with data provided by the participants from earlier work and data acquired from other sources. A radiation effects guide has been written for the use by designers of electronic equipment for robots. A generic reliability model has been set up together with generic failure strategies, forming the basis for specific reliability modelling carried out in other projects. Modelling tools have been examined and developed for the prediction of the performance of electronic circuits subjected to radiation. Reports have been produced dealing with the prediction and detection of upcoming failures in electronic systems. Operational experience from the use of robots in radiation work in various contexts has been compiled in a report, and another report has been written on cost/benefit considerations about the use of robots. Also the possible impact of robots on the safety of the surrounding plant has been considered and reported. (au) 16 ills., 236 refs.

  6. Radiation-Tolerant, SpaceWire-Compatible Switching Fabric

    Science.gov (United States)

    Katzman, Vladimir

    2011-01-01

    Current and future near-Earth and deep space exploration programs and space defense programs require the development of robust intra-spacecraft serial data transfer electronics that must be reconfigurable, fault-tolerant, and have the ability to operate effectively for long periods of time in harsh environmental conditions. Existing data transfer systems based on state-of-the-art serial data transfer protocols or passive backplanes are slow, power-hungry, and poorly reconfigurable. They provide limited expandability and poor tolerance to radiation effects and total ionizing dose (TID) in particular, which presents harmful threats to modern submicron electronics. This novel approach is based on a standard library of differential cells tolerant to TID, and patented, multi-level serial interface architecture that ensures the reliable operation of serial interconnects without application of a data-strobe or other encoding techniques. This proprietary, high-speed differential interface presents a lowpower solution fully compatible with the SpaceWire (SW) protocol. It replaces a dual data-strobe link with two identical independent data channels, thus improving the system s tolerance to harsh environments through additional double redundancy. Each channel incorporates an automatic line integrity control circuitry that delivers error signals in case of broken or shorted lines.

  7. VCSEL-based radiation tolerant optical data links

    CERN Document Server

    Gregor, I M; Dowell, J; Jovanovic, P; Kootz, A; Mahout, G; Mandic, I; Weidberg, T

    2000-01-01

    The Large Hadron Collider (LHC) will become operational in 2005 at The European Laboratory for Particle Physics (CERN). The LHC will be the highest energy proton-proton collider in the world. One of the electronic particle detectors which will operate at the LHC is called ATLAS. The environment for electronics placed within ATLAS is extremely hostile due to the high levels of radiation and the general lack of access to components during the expected 10 year lifetime of the experiment. It is planned to use custom radiation tolerant VCSEL- based optical links to transfer data from the ATLAS inner detector to remote data acquisition electronics. A low mass, non-magnetic and radiation tolerant VCSEL packaging has been developed for the most hostile region in the center of ATLAS where the inner detector is located. The performance of the package is reported on. Qualification tests of commercial VCSELs are also described. The VCSELs were irradiated with neutrons (up to 8.10/sup 14/ n(1 MeV)/cm/sup 2/) and annealing...

  8. Effects of sunscreen on human skin's ultraviolet radiation tolerance.

    Science.gov (United States)

    Yuan, Chao; Wang, Xue-min; Tan, Yi-mei; Yang, Li-jie; Lin, Yin-fen; Wu, Pei-lan

    2010-12-01

    To observe the alteration ultraviolet radiation (UVR) of skin's tolerance after its exposure to the small dose of UVR under the protection of sunscreen. Eleven subjects who applied sunscreen were exposed to 0.75 dose minimal persistent pigment darkening (MPPD) and minimal erythema dose (MED) by the Phototherapy Unit for 4 weeks. Each week their MPPDs and MEDs were measured by solar simulator. Meanwhile, SPECTCOLOMETER® and VISIOSCAN VC98® were used to detect the test areas and control areas. The values of MPPD and MED increased significantly after the exposure to UVR. But there were no visible changes on the surface of skin's texture. With the protection of sunscreen, the UVR tolerance of skin was greatly increased after the skin's exposure to the small dose UV. © 2010 Wiley Periodicals, Inc.

  9. Laser method for simulating the transient radiation effects of semiconductor

    Science.gov (United States)

    Li, Mo; Sun, Peng; Tang, Ge; Wang, Xiaofeng; Wang, Jianwei; Zhang, Jian

    2017-05-01

    In this paper, we demonstrate the laser simulation adequacy both by theoretical analysis and experiments. We first explain the basic theory and physical mechanisms of laser simulation of transient radiation effect of semiconductor. Based on a simplified semiconductor structure, we describe the reflection, optical absorption and transmission of laser beam. Considering two cases of single-photon absorption when laser intensity is relatively low and two-photon absorption with higher laser intensity, we derive the laser simulation equivalent dose rate model. Then with 2 types of BJT transistors, laser simulation experiments and gamma ray radiation experiments are conducted. We found good linear relationship between laser simulation and gammy ray which depict the reliability of laser simulation.

  10. Laser-plasma-based Space Radiation Reproduction in the Laboratory.

    Science.gov (United States)

    Hidding, B; Karger, O; Königstein, T; Pretzler, G; Manahan, G G; McKenna, P; Gray, R; Wilson, R; Wiggins, S M; Welsh, G H; Beaton, A; Delinikolas, P; Jaroszynski, D A; Rosenzweig, J B; Karmakar, A; Ferlet-Cavrois, V; Costantino, A; Muschitiello, M; Daly, E

    2017-02-08

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  11. Radiation Tolerant Design with 0.18-micron CMOS Technology

    CERN Document Server

    Chen, Li; Durdle , Nelson G.

    This thesis discusse s th e issues r elated to the us e of enclosed-gate layou t trans isto rs and guard rings in a 0.18 μ m CMOS technology in order to im prove the radiation tolerance of ASICs. The thin gate oxides of subm icron technologies ar e inherently m ore radiation tole rant tha n the thick er oxides present in less advanced technologies. Using a commercial deep subm icron technology to bu ild up radiation-ha rdened circuits introduces several advantages com pared to a dedicated radiation-ha rd technology, such as speed, power, area, stability, and expense. Som e novel aspects related to the use of encl osed-gate layout transist ors are presented in this th esis. A m odel to calculate the aspect ratio is introduced and verified. Some im portant electrica l par ameters of the tran sistors such as threshold voltage, leakage current, subthreshold slope, and transconducta nce are studied before and afte...

  12. Radiation tolerance of nanocrystalline ceramics: insights from Yttria Stabilized Zirconia.

    Science.gov (United States)

    Dey, Sanchita; Drazin, John W; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Castro, Ricardo H R

    2015-01-13

    Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr(+), 400 keV) is inversely proportional to the grain size. HAADF images suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces.

  13. Synchrotron radiation photoionization mass spectrometry of laser ablated species

    OpenAIRE

    Alvarez Ruiz, Jesus; Casu, A.; Coreno, M.; De Simone, M.; Hoyos Campos, L.M.; Juarez-Reyes, A.M.; Kivimäki, A.; Orlando, S.; Sanz, M.; Spezzani, C.; Stankiewicz, M; Trucchi, D. M.

    2010-01-01

    The present paper describes an experimental apparatus suitable to create and study free clusters by combining laser ablation and synchrotron radiation. First tests on sulfur samples, S, showed the production, through laser ablation, of neutral Sn clusters (n = 1–8). These clusters were ionized using synchrotron radiation at photon energies from 160 eV to 175 eV, across the S 2p core edge. The feasibility of such combined ablation–synchrotron radiation experiments is demonstrated, opening new ...

  14. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  15. Studying laser radiation effect on steel structure and properties

    Directory of Open Access Journals (Sweden)

    А. М. Gazaliyev

    2016-07-01

    Full Text Available There was studied the effect of laser radiation on the structure and properties of annealed and tempered steel with different content of carbon. For surface hardening there was used a laser complex equipped with Nd: YAG pulse laser with power density up to 30 kW/сm2. As a result of the carried-out studies there were calculated characteristics of laser, steel microstructure and properties.

  16. Interaction of CO2 laser radiation with dense plasma

    OpenAIRE

    Abdel-Raoof, Wasfi Sharkawy

    1980-01-01

    The instabilities which occur in the interaction of CO2 laser radiation with a dense plasma have been studied. A TEA CO2 laser provided pulses of up to 30 joules of energy with a duration of 50 nanoseconds. By focussing the radiation on to a plane target a focal spot of about 180 micrometers diameter was formed with a irradiance of 10 to 10 W cm. The scattered radiation was collected by a laser focussing lens and analysed with a grating spectrometer. Linear relationships have been found betwe...

  17. Plasma lasers (a strong source of coherent radiation in astrophysics)

    Science.gov (United States)

    Papadopoulos, K.

    1981-01-01

    The generation of electromagnetic radiation from the free energy available in electron streams is discussed. The fundamental principles involved in a particular class of coherent plasma radiation sources, i.e., plasma lasers, are reviewed, focusing on three wave coupling, nonlinear parametric instabilities, and negative energy waves. The simplest case of plasma lasers, that of an unmagnetized plasma containing a finite level of density fluctuations and electrons streaming with respect to the ions, is dealt with. A much more complicated application of plasma lasers to the case of auroral kilometric radiation is then examined. The concept of free electron lasers, including the role of relativistic scattering, is elucidated. Important problems involving the escape of the excited radiation from its generation region, effects due to plasma shielding and nonlinear limits, are brought out.

  18. Coherent Cherenkov radiation and laser oscillation in a photonic crystal

    CERN Document Server

    Denis, T; Lee, J H H; van der Meer, R; Strooisma, A; van der Slot, P J M; Vos, W L; Boller, K J

    2016-01-01

    We demonstrate that photonic crystals can be used to generate powerful and highly coherent laser radiation when injecting a beam of free electrons. Using theoretical investigations we present the startup dynamics and coherence properties of such laser, in which gain is provided by matching the optical phase velocity in the photonic crystal to the velocity of the electron beam.

  19. Studies of new media radiation induced laser

    Science.gov (United States)

    Han, K. S.; Shiu, Y. J.; Raju, S. R.; Hwang, I. H.; Tabibi, B.

    1984-01-01

    Various lasants were investigated especially, 2-iodohepafluoropropane (i-C3F7I) for the direct solar pumped lasers. Optical pumping of iodine laser was achieved using a small flashlamp. Using i-C3F7I as a laser gain medium, threshold inversion density, small signal gain, and laser performance at the elevated temperature were measured. The experimental results and analysis are presented. The iodine laser kinetics of the C3F7I and IBr system were numerically simulated. The concept of a direct solar-pumped laser amplifier using (i-C3F7I) as the laser material was evaluated and several kinetic coefficients for i-C3F7I laser system were reexamined. The results are discussed.

  20. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher

  1. Laser interferometry of radiation driven gas jets

    Science.gov (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

    2017-06-01

    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  2. INTERACTION OF FEMTOSECOND LASER RADIATION WITH SKIN: MATHEMATICAL MODEL

    Directory of Open Access Journals (Sweden)

    Pavel Yu. Rogov

    2017-03-01

    Full Text Available The features of human skin response to the impact of femtosecond laser radiation were researched. The Monte–Carlo method was used for estimation of the radiation penetration depth into the skin cover. We used prevalent wavelength equal to 800 nm (for Ti: sapphire laser femtosecond systems. A mathematical model of heat transfer process was introduced based on the analytical solution of the system of equations describing the dynamics of the electron and phonon subsystems. An experiment was carried out to determine the threshold energy of biological tissue injury (chicken skin was used as a test object. The value of electronic subsystem relaxation time was determined from the experiment and is in keeping with literature data. The results of this work can be used to assess the maximum permissible exposure of laser radiation of different lengths that cause the damage of biological tissues, as well as for the formation of safe operation standards for femtosecond laser systems.

  3. Radiative shocks in gas on the Omega laser

    Science.gov (United States)

    Reighard, A.; Drake, R. P.; Keiter, P.; Korreck, K. E.; Perry, T. S.; Robey, H. A.; Remington, B. A.; Wallace, R. J.; Ryutov, D. D.; Knauer, J.; Calder, A.; Rosner, R.; Fryxell, B.; Arnett, D.; Turner, N.; Stone, J.; Koenig, M.; Bouquet, Serge

    2002-11-01

    A number of astrophysical systems involve radiative shocks that collapse spatially in response to the energy lost through radiation. This is believed to produce thin, dense, unstable shells. We have begun experiments on the Omega laser intended to produce such collapsing shocks and to study their evolution. The experiments use the laser to accelerate a thin slab of Be, which becomes a piston that drives a shock through 1.1 atm of Ar gas at 100 km/s. The shock is predicted to collapse. Experiments are in preparation that will detect the dense layer and also the radiative precursor in front of the shock. We will report their results.

  4. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.

    Science.gov (United States)

    Vetterick, Gregory A; Gruber, Jacob; Suri, Pranav K; Baldwin, Jon K; Kirk, Marquis A; Baldo, Pete; Wang, Yong Q; Misra, Amit; Tucker, Garritt J; Taheri, Mitra L

    2017-09-25

    Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.

  5. [Influence of microwave and laser radiation on survivability of organisms].

    Science.gov (United States)

    Ismailov, E Sh; Zakharov, S D; Aminova, E M; Ismailova, G E; Khachirov, D G

    2001-01-01

    Depending on energy, spatial-temporal, modulation and other characteristics of an electromagnetic field, properties of a subject, exposure settings and possible interaction of other attendant factors microwaves may have either stabilizing, wholesome and even therapeutic or negative (damaging) effects on biological and ecological objects and systems. Therefore, there are two interrelated problems to be addressed. One is electromagnetic safety of and health provisions for humans exposed to EMF and EMR and the other, effective utilization of microwave EMF and EMR for biomedical and other purposes associated with enhancement of viability of organisms. The light-oxygen effect of laser radiation is gaining footing in therapy where it is used to activate or destroy biological systems by optical radiation at a specified light dose. Thus, low-intensity laser radiation can be used to improve viability and high-intensity laser radiation, to treat cancers.

  6. Counterpropagating Radiative Shock Experiments on the Orion Laser

    Science.gov (United States)

    Suzuki-Vidal, F.; Clayson, T.; Stehlé, C.; Swadling, G. F.; Foster, J. M.; Skidmore, J.; Graham, P.; Burdiak, G. C.; Lebedev, S. V.; Chaulagain, U.; Singh, R. L.; Gumbrell, E. T.; Patankar, S.; Spindloe, C.; Larour, J.; Kozlova, M.; Rodriguez, R.; Gil, J. M.; Espinosa, G.; Velarde, P.; Danson, C.

    2017-08-01

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.

  7. Counterpropagating Radiative Shock Experiments on the Orion Laser.

    Science.gov (United States)

    Suzuki-Vidal, F; Clayson, T; Stehlé, C; Swadling, G F; Foster, J M; Skidmore, J; Graham, P; Burdiak, G C; Lebedev, S V; Chaulagain, U; Singh, R L; Gumbrell, E T; Patankar, S; Spindloe, C; Larour, J; Kozlova, M; Rodriguez, R; Gil, J M; Espinosa, G; Velarde, P; Danson, C

    2017-08-04

    We present new experiments to study the formation of radiative shocks and the interaction between two counterpropagating radiative shocks. The experiments are performed at the Orion laser facility, which is used to drive shocks in xenon inside large aspect ratio gas cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently three-dimensional shocks, provides a novel platform particularly suited for the benchmarking of numerical codes. The dynamics of the shocks before and after the collision are investigated using point-projection x-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modeling of the experiments using the 2D radiation hydrodynamic codes nym and petra shows very good agreement with the experimental results.

  8. DNA Protection Protein, a Novel Mechanism of Radiation Tolerance: Lessons from Tardigrades

    Directory of Open Access Journals (Sweden)

    Takuma Hashimoto

    2017-06-01

    Full Text Available Genomic DNA stores all genetic information and is indispensable for maintenance of normal cellular activity and propagation. Radiation causes severe DNA lesions, including double-strand breaks, and leads to genome instability and even lethality. Regardless of the toxicity of radiation, some organisms exhibit extraordinary tolerance against radiation. These organisms are supposed to possess special mechanisms to mitigate radiation-induced DNA damages. Extensive study using radiotolerant bacteria suggested that effective protection of proteins and enhanced DNA repair system play important roles in tolerability against high-dose radiation. Recent studies using an extremotolerant animal, the tardigrade, provides new evidence that a tardigrade-unique DNA-associating protein, termed Dsup, suppresses the occurrence of DNA breaks by radiation in human-cultured cells. In this review, we provide a brief summary of the current knowledge on extremely radiotolerant animals, and present novel insights from the tardigrade research, which expand our understanding on molecular mechanism of exceptional radio-tolerability.

  9. Surface treatment of CFRP composites using femtosecond laser radiation

    Science.gov (United States)

    Oliveira, V.; Sharma, S. P.; de Moura, M. F. S. F.; Moreira, R. D. F.; Vilar, R.

    2017-07-01

    In the present work, we investigate the surface treatment of carbon fiber-reinforced polymer (CFRP) composites by laser ablation with femtosecond laser radiation. For this purpose, unidirectional carbon fiber-reinforced epoxy matrix composites were treated with femtosecond laser pulses of 1024 nm wavelength and 550 fs duration. Laser tracks were inscribed on the material surface using pulse energies and scanning speeds in the range 0.1-0.5 mJ and 0.1-5 mm/s, respectively. The morphology of the laser treated surfaces was investigated by field emission scanning electron microscopy. We show that, by using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed. In addition, sub-micron laser induced periodic surface structures (LIPSS) are created on the carbon fibers surface, which may be potentially beneficial for the improvement of the fiber to matrix adhesion in adhesive bonds between CFRP parts.

  10. Tolerance of canine anastomoses to intraoperative radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tepper, J.E.; Sindelar, W.; Travis, E.L.; Terrill, R.; Padikal, T.

    1983-07-01

    Radiation has been given intraoperatively to various abdominal structures in dogs, using a fixed horizontal 11 MeV electron beam at the Armed Forces Radiobiologic Research Institute. Animals were irradiated with single doses of 2000, 3000 and 4500 rad to a field which extended from the bifurcation of the aorta to the rib cage. All animals were irradiated during laparotomy under general anesthesia. Because the clinical use of intraoperative radiotherapy in cancer treatment will occasionally require irradiation of anastomosed large vessels and blind loops of bowel, the tolerance of aortic anastomoses and the suture lines of blind loops of jejunum to irradiation were studied. Responses in these experiments were scored at times up to one year after irradiation. In separate experiments both aortic and intestinal anastomoses were performed on each animal for evaluation of short term response. The dogs with aortic anastomoses showed adequate healing at all doses with no evidence of suture line weakening. On long-term follow-up one animal (2000 rad) had stenosis at the anastomosis and one animal (4500 rad) developed an arteriovenous fistula. Three of the animals that had an intestinal blind loop irradiated subsequently developed intussusception, with the irradiated loop acting as the lead point. One week after irradiation, bursting pressure of an intestinal blind loop was normal at 3000 rad, but markedly decreased at 4500 rad. No late complications were noted after the irradiation of the intestinal anastomosis. No late complicatons were observed after irradiation of intestinal anastomoses, but one needs to be cautious with regards to possible late stenosis at the site of an irradiated vascular anastomosis.

  11. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  12. [Effects of laser shot frequency on plasma radiation characteristics].

    Science.gov (United States)

    Chen, Jin-Zhong; Bai, Jin-Ning; Song, Guang-Ju; Sun, Jiang; Deng, Ze-Chao; Wang, Ying-Long

    2012-11-01

    To improve the quality of laser-induced breakdown spectroscopy, nanosecond pulse laser generated by Nd:YAG laser was used to excite soil sample. The intensity and signal-to-background ratio of A1 I 394.401 nm, Ba I 455.403 nm, Fe I 430.791 nm and Ti I 498.173 nm were observed using a grating spectrometer and a photoelectric detection system. The effects of laser shot frequency (5, 10 and 15 Hz)on the radiation characteristics of laser-induced plasma was studied. The experimental results show that as compared with the laser shot frequency of 5 Hz, the spectral line intensity of A1, Ba, Fe and Ti increased by about 50.94%, 112.7%, 107.46%, and 99.38% at 15 Hz respectively under the same laser energy, while the spectral signal-to-background ratio increased by about 15.16%, 24.08%, 40.26% and 72.06% respectively. The effects mechanism of the laser shot frequency on radiation characteristics of plasma is explained by measuring plasma parameters.

  13. Interaction of laser radiation with metal island films

    Science.gov (United States)

    Benditskii, A. A.; Viduta, L. V.; Ostranitsa, A. P.; Tomchuk, P. M.; Iakovlev, V. A.

    1986-08-01

    The emission phenomena arising during the interaction of pulsed laser emission with island films are examined with reference to experimental results obtained for island films of gold irradiated by a CO2 laser at a wavelength of 10.6 microns. Well reproducible emission pulses that are also accompanied by light pulses are produced at intensities less than 10 to the 5th W/sq cm, with the film structure remaining unchanged. The maximum energy of the electrons emitted under the effect of laser radiation is estimated at 3 eV; the work function is 2.1 eV.

  14. Base-Level Management of Laser Radiation Protection Program

    Science.gov (United States)

    1992-02-01

    gallium-aluminum-arsenide (GaAlAs), or alexandrite. Liquid materials that are used as active mediums include: rhodamine dye and coumarin . Section D...a source of radiation and the dye emits radiation at a longer wavelength. Coumarin dyes are useful as active media for emissions inthe blue to green...plastic, or quartz. Optical fibers have found uses in many areas including: industrial laser welding; medical surgery; dental work; product-code

  15. Laser annealing heals radiation damage in avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jin Gyu [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)

    2017-12-15

    Avalanche photodiodes (APDs) are a practical option for space-based quantum communications requiring single-photon detection. However, radiation damage to APDs significantly increases their dark count rates and thus reduces their useful lifetimes in orbit. We show that high-power laser annealing of irradiated APDs of three different models (Excelitas C30902SH, Excelitas SLiK, and Laser Components SAP500S2) heals the radiation damage and several APDs are restored to typical pre-radiation dark count rates. Of nine samples we test, six APDs were thermally annealed in a previous experiment as another solution to mitigate the radiation damage. Laser annealing reduces the dark count rates further in all samples with the maximum dark count rate reduction factor varying between 5.3 and 758 when operating at -80 C. This indicates that laser annealing is a more effective method than thermal annealing. The illumination power to reach these reduction factors ranges from 0.8 to 1.6 W. Other photon detection characteristics, such as photon detection efficiency, timing jitter, and afterpulsing probability, fluctuate but the overall performance of quantum communications should be largely unaffected by these variations. These results herald a promising method to extend the lifetime of a quantum satellite equipped with APDs. (orig.)

  16. Effect of Infrared Laser Radiation on Biological Systems.

    Science.gov (United States)

    1973-06-01

    Streptococcus faecium . The deactivation obtained in 60 seconds in the CO2 beam was the equivalent to that produced by a radiation dose of 2.5 M rad...laser pulse of the order of 10-2 seconds duration if all the energy absorbed were taken up by specific vibrational modes of the irradiated molecules

  17. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    Science.gov (United States)

    Li, Jin; Fan, C.; Ding, J.; Xue, S.; Chen, Y.; Li, Q.; Wang, H.; Zhang, X.

    2017-01-01

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. Here we show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studies show dose-rate-dependent diffusivity of defect clusters. This study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.

  18. Laser sources in dentistry and radiation safety regulations

    Science.gov (United States)

    De Luca, D.; Gaeta, G. M.; Lepore, M.

    2007-02-01

    Nowadays laser sources are largely adopted in dentistry due to their unique properties making them good candidates to substitute traditional scalpel and conventional diamond bur in the surgery of the soft and hard oral tissue, respectively. The large use of laser sources outside the research laboratories without the need of highly specialized personnel can ask for a widespread knowledge of safety issues related to this kind of equipment. The main hazard of accidental exposures regards eyes injury but increasing the power of the laser beam also skin can be involved. Safety legislations in Europe and U.S.A. take into account non ionizing radiations and laser radiation for the hazards for the health deriving from physical agents. Laser safety standards introduce 3 useful parameters for hazard characterization: "Accessible Emission Limit" (AEL), "Maximum Permissible Exposure" (MPE) and "Nominal Ocular Hazard Distance" (NOHD). We measured the MPE and NOHD for Er:YAG and other laser sources currently adopted in dentistry and we compared our results with data elaborated from standards in order to single out safe and comfortable working conditions. In fact an experimental assessment of the hazard parameters and the comparison with those of reference from safety standards turns out to be useful in order to estimate the residual hazard that can be still present after applying all the engineering protection and administrative rules.

  19. Ovarian response to laser puncture in conditions of ionizing radiation

    Science.gov (United States)

    Vylegzhanina, T. A.; Ryzhkovskaya, E. L.

    1998-01-01

    Experimental results on long-term consequences of laser puncture applied to active points of the projection zones for the reproductive organs in guinea pigs after preliminary exposure to (gamma) -radiation are given. In female guinea pigs, it was shown that combination of external radiation (12.9 mCoul/kg) and incorporated 131I (6.5 mCi/kg) induced morphohistochemical and electron microscopic changes in the ovaries long (6 months) after, which indicated functional tension in the ovarian functioning. Laser biostimulation 3 months after the exposure to (gamma) - radiation induced severe injuries of the ovary, i.e. formation of thin-walled cysts, destruction of interstitial cells of the thecal sheath, by 6 months of the experiment. Functional incompetence of the organ was observed.

  20. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  1. Radiation tolerance assurance of technical equipment in the LHC radiation monitoring for technical equipment at the LHC

    CERN Document Server

    Wijnands, Thijs; CERN. Geneva. TS Department

    2005-01-01

    In contrast with other accelerators at CERN, a large amount of technical equipment will be located in the LHC tunnel, the underground areas and in the experimental caverns where they will be exposed to radiation. Nearly all this equipment makes, to a certain extent, use of commercial microelectronics which is extremely sensitive to radiation damage, both instantaneous damage and cumulative damage. Examples in the TS Department are the electronics for the position sensors of the low beta quadrupoles, the access system, the cooling and ventilation units, the electronics for the electrical distribution, the oxygen deficiency monitors and fire detection systems. The basic effects of radiation on electronic systems and components are well understood because similar problems with radiation are encountered in the aerospace and aviation industry. Since 1998, an efficient and original Radiation Tolerance Assurance approach for the LHC machine has been established. Its aim is to minimise the effects of radiation damage...

  2. Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors

    Science.gov (United States)

    Clayson, T.; Suzuki-Vidal, F.; Lebedev, S. V.; Swadling, G. F.; Stehlé, C.; Burdiak, G. C.; Foster, J. M.; Skidmore, J.; Graham, P.; Gumbrell, E.; Patankar, S.; Spindloe, C.; Chaulagain, U.; Kozlová, M.; Larour, J.; Singh, R. L.; Rodriguez, R.; Gil, J. M.; Espinosa, G.; Velarde, P.; Danson, C.

    2017-06-01

    We present results from new experiments to study the dynamics of radiative shocks, reverse shocks and radiative precursors. Laser ablation of a solid piston by the Orion high-power laser at AWE Aldermaston UK was used to drive radiative shocks into a gas cell initially pressurised between 0.1 and 1.0 bar with different noble gases. Shocks propagated at 80 ± 10 km/s and experienced strong radiative cooling resulting in post-shock compressions of ×25 ± 2. A combination of X-ray backlighting, optical self-emission streak imaging and interferometry (multi-frame and streak imaging) were used to simultaneously study both the shock front and the radiative precursor. These experiments present a new configuration to produce counter-propagating radiative shocks, allowing for the study of reverse shocks and providing a unique platform for numerical validation. In addition, the radiative shocks were able to expand freely into a large gas volume without being confined by the walls of the gas cell. This allows for 3-D effects of the shocks to be studied which, in principle, could lead to a more direct comparison to astrophysical phenomena. By maintaining a constant mass density between different gas fills the shocks evolved with similar hydrodynamics but the radiative precursor was found to extend significantly further in higher atomic number gases (∼4 times further in xenon than neon). Finally, 1-D and 2-D radiative-hydrodynamic simulations are presented showing good agreement with the experimental data.

  3. Radiation tolerant D/A converters for the LHC cryogenic system

    CERN Document Server

    Franco, F J; De Agapito, J A; Marques, J G; Fernandes, A C; Casas-Cubillos, J; Rodriguez-Ruiz, A

    2005-01-01

    The electronic instrumentation of the Large Hadron Collider (LHC) cryogenic system is expected to receive a large radiation dose (>1013 n cm−2 and 1–2 kGy (Si)) within 10 years of activity so all the electronic devices should tolerate this radiation level without a significant degradation. This paper focuses on the selection of a radiation tolerant 12-bit parallel input D/A converter suitable for the signal conditioners for cryogenic thermometry in the LHC. During an initial campaign, some candidate converters were irradiated to determine the most tolerant device. Once this was determined, a massive test was carried out. Some weak points of the selected device were addressed through the use of an external voltage source and a radiation tolerant operational amplifier. The tests show that a system consisting of an AD565 D/A converter, coupled to an external voltage reference and an OPA627 operational amplifier can tolerate a total radiation dose up to 5×1013 n cm−2 and 2100 Gy (Si), thus satisfying the r...

  4. Interaction of Er:YAG laser radiation with ureter tissue

    Science.gov (United States)

    Jelínkova, Helena; Koranda, Petr; Němec, Michal; Šulc, Jan; Köhler, Oto; Drlík, Pavel; Miyagi, Mitsunobu; Shi, Yi-Wei; Matsuura, Yuji

    2005-11-01

    The aim of the work was to investigate the possibility of the ureter wall perforation by Er:YAG laser radiation and to explore the basic interaction characteristics for ureter surface and its deep structures. For these experiments Er:YAG laser system (wavelength 2.94 μm) working in free-running and Q-switched regime was utilized. Laser radiation was delivered to the investigated tissue by a special waveguide system. The basic part was a cyclic olefin polymer-coated silver hollow glass waveguide (inner/outer diameter 700/850 μm or 320/450 μm). Sealed cap of the waveguide was used for contact treatment. Maximum interaction pulse energy and length for free-running Er:YAG I laser with the 700μm waveguide were 100mJ and 200μs, respectively (corresponding intensity was 130 kW/cm2). Similarly the maximum interaction pulse energy and length for free-running Er:YAG II laser with the 320 μm waveguide were 80 mJ and 200 μs , respectively (corresponding intensity was 500 kW/cm2). Maximum interaction pulse energy and length in Q-switched regime were 17 mJ and 70 ns, respectively (corresponding intensity 63 MW/cm2). The number of pulses needed to perforate the ureter wall tissue (thickness ~1 mm) for using long 200 μs Er:YAG pulses (thermal ablation) and short 70 ns Er:YAG pulses (photoablation) was found. From the histological evaluation it follows that the application of Q-switched Er:YAG laser radiation on ureteral tissue resulted in minimum adjacent tissue alteration (up to 50μm from the surface) without any influence on the deeper layers.

  5. TEA HF laser with a high specific radiation energy

    Science.gov (United States)

    Puchikin, A. V.; Andreev, M. V.; Losev, V. F.; Panchenko, Yu. N.

    2017-01-01

    Results of experimental studies of the chemical HF laser with a non-chain reaction are presented. The possibility of the total laser efficiency of 5 % is shown when a traditional C-to-C pumping circuit with the charging voltage of 20-24 kV is used. It is experimentally shown that the specific radiation output energy of 21 J/l is reached at the specific pump energy of 350 J/l in SF6/H2 = 14/1 mixture at the total pressure of 0.27 bar.

  6. Radiation tolerance and mitigation strategies for FPGA:s in the ATLAS TileCal Demonstrator

    CERN Document Server

    Akerstedt, H; The ATLAS collaboration

    2013-01-01

    During 2014, demonstrator electronics will be installed in a Tile calorimeter "drawer" to get long term experience with the inherently redundant electronics proposed for a full upgrade scheduled for 2022. The new system, being FPGA-based, uses dense programmable logic which must be proven to be sufficently radiation tolerant. It must be protected against radiation induced single event upsets that corrupt memory and logic functions. Radiation induced errors need to be found and compensated for in time, to minimize data loss but also to avoid permanent damage. Strategies for detecting and correcting radiation induced errors in the Kintex-7 FPGA:s of the demonstrator are evaluated and discussed.

  7. Radiation tolerance and mitigation strategies for FPGA:s in the ATLAS TileCal Demonstrator

    CERN Document Server

    Akerstedt, H; The ATLAS collaboration; Drake, G; Muschter, S; Oreglia, M; Tang, F; Anderson, K; Paramonov, A

    2013-01-01

    During 2014, upgrade-demonstrator electronics will be installed in a Tile calorimeter drawer to obtain long term experience with the inherently redundant electronics proposed for a full upgrade scheduled for 2022. The new, FPGA-based system uses dense programmable logic, which must be proven to be sufficiently radiation tolerant. It must also be protected against radiation induced single event upsets that can corrupt memory and logic Radiation induced errors need to be found and compensated for in time to minimize data loss, and also to avoid permanent damage. Strategies for detecting and correcting radiation induced errors in the Kintex-7 FPGAs on the demonstrator electronics are evaluated and discussed.

  8. Ideal radiation source for plasma spectroscopy generated by laser ablation

    Science.gov (United States)

    Hermann, Jörg; Grojo, David; Axente, Emanuel; Gerhard, Christoph; Burger, Miloš; Craciun, Valentin

    2017-11-01

    Laboratory plasmas inherently exhibit temperature and density gradients leading to complex investigations. We show that plasmas generated by laser ablation can constitute a robust exception to this. Supported by emission features not observed with other sources, we achieve plasmas of various compositions which are both uniform and in local thermodynamic equilibrium. These properties characterize an ideal radiation source opening multiple perspectives in plasma spectroscopy. The finding also constitutes a breakthrough in the analytical field as fast analyses of complex materials become possible.

  9. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Science.gov (United States)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  10. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  11. High resolution laser micro sintering / melting using q-switched and high brilliant laser radiation

    Science.gov (United States)

    Exner, H.; Streek, A.

    2015-03-01

    Since the discovery of selective laser sintering/melting, numerous modifications have been made to upgrade or customize this technology for industrial purposes. Laser micro sintering (LMS) is one of those modifications: Powders with particles in the range of a few micrometers are used to obtain products with highly resolved structures. Pulses of a q-switched laser had been considered necessary in order to generate sinter layers from the micrometer scaled metal powders. LMS has been applied with powders from metals as well as from ceramic and cermet feedstock's to generate micro parts. Recent technological progress and the application of high brilliant continuous laser radiation have now allowed an efficient laser sintering/melting of micrometer scaled metal powders. Thereby it is remarkable that thin sinter layers are generated using high continuous laser power. The principles of the process, the state of the art in LMS concerning its advantages and limitations and furthermore the latest results of the recent development of this technology will be presented. Laser Micro Sintering / Laser Micro Melting (LMM) offer a vision for a new dimension of additive fabrication of miniature and precise parts also with application potential in all engineering fields.

  12. Nozzle flow of laser-heated radiating hydrogen with application to a laser-heated rocket

    Science.gov (United States)

    Kemp, N. H.; Root, R. G.

    1977-01-01

    This paper presents a model for the steady heating of flowing hydrogen by a CW 10.6 micron laser, to consider the feasibility of a laser-heated rocket. The hydrogen flow and the laser beam are parallel, and move into a converging-diverging nozzle. The absorption of laser energy is initiated by a laser-supported combustion wave. The hydrogen is in chemical equilibrium, absorbs laser energy by inverse Bremsstrahlung, and loses energy by radiation. The hydrogen flow was calculated from the rear of the LSC wave to the throat. Estimates of convective heat losses were made using a hydrogen boundary layer analysis. Specific impulse, obtained by expanding isentropically from the throat to 1 atm or a vacuum, varies from 1400 to 3000 s. Radiation losses are 5 to 20%, though the energy fluxes to the walls are quite high. Convective loss estimates are high enough to indicate that coupling to the hot gas flow is required for a 10 kW engine, but not for a 5 MW engine.

  13. Measurements of Ionizing Radiation Doses Induced by High Irradiance Laser on Targets in LCLS MEC Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Liu, J. C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Prinz, A. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Rokni, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tran, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Woods, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Xia, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Galter, e. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lee, H. -J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Milathianaki, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nagler, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-01-21

    Comprehensive measurements for photon and neutron radiation doses generated from laser-plasma interaction at SLAC’s MEC laser facility have been conducted. The goals of the measurements were to; determine the radiation dose per laser shot as a function of laser, optic and target parameters that are relevant to the MEC laser operations; validate the RPD-developed analytic model for photon dose calculations; and evaluate the performance of various types of passive and active detectors in the laser-induced radiation fields.

  14. Radiation-tolerant delta-sigma time-to-digital converters

    CERN Document Server

    Cao, Ying; Steyaert, Michiel

    2015-01-01

    This book focuses on the design of a Mega-Gray (a standard unit of total ionizing radiation) radiation-tolerant ps-resolution time-to-digital converter (TDC) for a light detection and ranging (LIDAR) system used in a gamma-radiation environment. Several radiation-hardened-by-design (RHBD) techniques are demonstrated throughout the design of the TDC and other circuit techniques to improve the TDC's resolution in a harsh environment are also investigated. Readers can learn from scratch how to design a radiation-tolerant IC. Information regarding radiation effects, radiation-hardened design techniques and  measurements are organized in such a way that readers can easily gain a thorough understanding of the topic. Readers will also learn the design theory behind the newly proposed delta-sigma TDC. Readers can quickly acquire knowledge about the design of radiation-hardened bandgap voltage references and low-jitter relaxation oscillators, which are introduced in the content from a designer's perspective.   · �...

  15. [Normal tissue tolerance to external beam radiation therapy: the vagina].

    Science.gov (United States)

    Magné, N; Chargari, C; Pointreau, Y; Haie-Meder, C

    2010-07-01

    The vagina is a virtual cavity involved in sexual reproduction field. Due to its anatomical location, it may be exposed in whole or in part to ionizing radiation in external radiotherapy and/or brachytherapy of the pelvic region. This review aims to describe the vaginal acute and late side effects due to radiation, probably inadequately reported in the literature. Medline and PubMed literature searches were performed using the keywords "vaginal--radiotherapy--toxicity". The acute and late functional changes after external beam radiation consist mainly of drought. Their incidences are poorly described in the literature and the delivered doses even less. Recommendations are non-existent as the normal tissue complication probability (NTCP). Brachytherapy delivers high and heterogeneous doses, making it difficult to estimate the dose. The concomitant administration of chemotherapy appears to be a factor increasing the risk of toxicity. Modern techniques of conformal radiotherapy with modulated intensity appear to have little impact on this body. Only a maximum dose on each third of the vagina appears to be currently proposed to avoid the risk of side effects. Copyright (c) 2010 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  16. Endoscopic diode laser therapy for chronic radiation proctitis.

    Science.gov (United States)

    Polese, Lino; Marini, Lucia; Rizzato, Roberto; Picardi, Edgardo; Merigliano, Stefano

    2018-01-01

    The purpose of this study is to determine the effectiveness of endoscopic diode laser therapy in patients presenting rectal bleeding due to chronic radiation proctitis (CRP). A retrospective analysis of CRP patients who underwent diode laser therapy in a single institution between 2010 and 2016 was carried out. The patients were treated by non-contact fibers without sedation in an outpatient setting. Fourteen patients (median age 77, range 73-87 years) diagnosed with CRP who had undergone high-dose radiotherapy for prostatic cancer and who presented with rectal bleeding were included. Six required blood transfusions. Antiplatelet (three patients) and anticoagulant (two patients) therapy was not suspended during the treatments. The patients underwent a median of two sessions; overall, a mean of 1684 J of laser energy per session was used. Bleeding was resolved in 10/14 (71%) patients, and other two patients showed improvement (93%). Only one patient, who did not complete the treatment, required blood transfusions after laser therapy; no complications were noted during or after the procedures. Study findings demonstrated that endoscopic non-contact diode laser treatment is safe and effective in CRP patients, even in those receiving antiplatelet and/or anticoagulant therapy.

  17. Use of 3-um laser radiation in middle ear surgery

    Science.gov (United States)

    Pratisto, Hans S.; Frenz, Martin; Ith, Michael; Altermatt, Hans J.; Weber, Heinz P.

    1995-01-01

    An inner ear model was used to demonstrate thermal and mechanical effects occurring during Erbium laser stapedotomy. Results of inverse schlieren optical flash photography and time resolved pressure amplitude measurements indicate the existence of safe laser parameters for stapes foot plate perforation. Due to the high absorption of 3 micrometers radiation in water, efficient bone ablation and precise fenestration with small thermally damaged zones is achieved. Pressure transients caused by the explosive ablation process correlate with the spiking of the laser intensity. The energy of a laser pulse, directly applied into the perilymph through an already existing perforation, creates a vapor channel which afterwards collapses, sending out a strong pressure transient. The maximal amplitude of this pressure transient depends on the geometry and dynamics of the vapor channel and is several times stronger than the pressure amplitudes generated by the bone ablation process. This study shows that no permanent hearing loss or damage of inner ear structures is expected using an Erbium laser fluence of 10 J/cm2.

  18. Counter-streaming radiative shock experiments on the Orion laser

    Science.gov (United States)

    Suzuki-Vidal, F.; Clayson, T.; Swadling, G. F.; Patankar, S.; Burdiak, G. C.; Lebedev, S. V.; Smith, R. A.; Stehle, C.; Chaulagain, U.; Singh, R. L.; Larour, J.; Kozlova, M.; Spindloe, C.; Foster, J.; Skidmore, J.; Gumbrell, E.; Graham, P.; Danson, C.

    2016-10-01

    The formation of radiative shocks, shocks in which the structure of density and temperature is affected by radiation from the shock-heated matter, is ubiquitous in many astrophysical scenarios. Experiments were performed at the Orion laser using a new target configuration that allows studying the formation of single and counter-streaming radiative shocks in gas-filled targets (Ne, Ar, Kr, Xe), with initial pressures 0.1-1 bar and a driver intensity of 6x1014 W/cm2 . The shocks propagate at velocities >60 km/s and were diagnosed with optical interferometry (streaked and time-resolved) and point-projection X-ray backlighting allowing to probe simultaneously the pre-shock radiative precursor and the shock front itself. Besides varying the extent of the radiative precursor the results show that different gases seem to have an effect on the shock front as evidenced by a number of spatial features. The results are compared with radiative hydrodynamics simulations in 1-D (HELIOS) and 2-D (NYM/PETRA). Supported by Orion Academic Access, the Royal Society, EPSRC, Labex PLAS@PAR. Currently at (2) LLNL, USA, (3) ELI, CZ, (4) First Light Fusion, UK.

  19. Variability in tolerance to UV-B radiation among Beauveria spp. isolates.

    Science.gov (United States)

    Fernandes, Everton K K; Rangel, Drauzio E N; Moraes, Aurea M L; Bittencourt, Vânia R E P; Roberts, Donald W

    2007-11-01

    Solar radiation, particularly the UV-B component, negatively affects survival of entomopathogenic fungi in the field. In an effort to identify Beauveria spp. isolates with promise for use in biological control settings with high insolation, we examined 53 Beauveria bassiana isolates, 7 isolates of 4 other Beauveria spp. and Engyodontium albus (=Beauveria alba). The origins of these fungi varied widely as to host/substrate and country, but approximately 30% of these isolates were B. bassiana from ticks in Brazil. A preliminary trial with three B. bassiana isolates (Bb 19, CG 310 and CG 481) at several UV-B dosages indicated that 2h of weighted UV-B irradiance at 978mWm(-2) (providing a total dose of 7.04kJm(-2)) allowed separation of isolates into low, medium or high UV-B tolerance. This dose, therefore, was selected as a single dose to compare UV-B tolerances of all 60 Beauveria spp. isolates. There was high variability in tolerance to UV-B radiation among the B. bassiana isolates, ranging from virtually zero tolerance (e.g., Bb 03) to almost 80% tolerance (e.g., CG 228). In addition, surviving B. bassiana conidia demonstrated delayed germination; and this is likely to reduce virulence. Conidia of the other species were markedly more sensitive to UV-B, with E. albus (UFPE 3138) being the least UV-B tolerant. Among B. bassiana isolates originating from 0 degrees to 22 degrees latitudes, those from lower latitudes demonstrated statistically significant greater UV-B tolerances than those isolates from higher latitudes. Isolates from above 22 degrees , however, were unaffected by latitude of origin. A similar analysis based on host type did not indicate a correlation between original host and UV-B tolerance. The identification in this study of several B. bassiana isolates with relatively high UV-B tolerance will guide the selection of isolates for future arthropod microbial control experiments.

  20. Disinfestation of agricultural products with electron beams and their radiation tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toru [National Food Research Inst., Tsukuba, Ibaraki (Japan)

    1996-12-31

    Some agricultural products contaminated with insect pests are fumigated with methyl bromide for quarantine purposes. However, the use of methyl bromide is preferably restricted because of its ozone depleting effect. Therefore, establishing alternative quarantine techniques is highly desirable; one such technique is exposure to ionizing radiation. Few data are available on the effects of radiation on insect pests other than fruit flies and stored-product insects and on the radiation tolerance of host commodities. Radiation technology as an alternative to methyl bromide fumigation will be used to inactivate not only insects but also mites, spider mites, thrips, nematodes, scales, mealybugs and thrips contaminating fruits, grains, cut flowers, vegetables, timbers, seedlings and seeds. In order to collect data on the effects of irradiation on pests and host commodities, IAEA and FAO have conducted an international project, `FAO/IAEA Coordinated Research Programme on Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Fly` since 1992. The project determines the minimum doses necessary to inactivate pests and the maximum doses host commodities tolerate. All pests except nematodes can be inactivated at doses 400Gy or lower. Various varieties of cut flowers and herbs are tolerant to 400Gy of radiation, although some flowers and herbs such as chrysanthemum, rose, lily, calla, anthurium, sweet pea, iris, dill, basil and arugula are intolerant to 200Gy of radiation. Japanese research project on treatment of cut flowers with electron beams carried out mainly by Yokohama Plant Protection Station greatly contributes to these conclusions. Aqueous solution (2%) of sucrose, glucose, fructose or maltose prevents radiation-induced detrimental effects of radiation on chrysanthemums. Sugars reduce radiation-induced physiological deterioration of chrysanthemums. (author)

  1. Radiation use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance

    Science.gov (United States)

    Drought tolerant (DT) maize (Zea mays L.) hybrids have potential to increase yield under drought conditions. However, little information is known about the physiological determinations of yield in DT hybrids. Our objective was to assess radiation use efficiency (RUE), biomass production, and yield ...

  2. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    Science.gov (United States)

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  3. Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter

    Science.gov (United States)

    Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai; Kierstead, James; Lanni, Francesco; Takai, Helio; Jin, Ge

    2017-02-01

    ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. To evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clock distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well. Supported by the U. S. Department of Energy (DE-SC001270)

  4. On the development of radiation tolerant surveillance camera from consumer-grade components

    Directory of Open Access Journals (Sweden)

    Klemen Ambrožič

    2017-01-01

    Full Text Available In this paper an overview on the process of designing a radiation tolerant surveillance camera from consumer grade components and commercially available particle shielding materials is given. This involves utilization of Monte-Carlo particle transport code MCNP6 and ENDF/B-VII.0 nuclear data libraries, as well as testing the physical electrical systems against γ radiation, utilizing JSI TRIGA mk. II fuel elements as a γ-ray sources. A new, aluminum, 20 cm × 20 cm × 30 cm irradiation facility with electrical power and signal wire guide-tube to the reactor platform, was designed and constructed and used for irradiation of large electronic and optical components assemblies with activated fuel elements. Electronic components to be used in the camera were tested against γ-radiation in an independent manner, to determine their radiation tolerance. Several camera designs were proposed and simulated using MCNP, to determine incident particle and dose attenuation factors. Data obtained from the measurements and MCNP simulations will be used to finalize the design of 3 surveillance camera models, with different radiation tolerances.

  5. On the development of radiation tolerant surveillance camera from consumer-grade components

    Science.gov (United States)

    Klemen, Ambrožič; Luka, Snoj; Lars, Öhlin; Jan, Gunnarsson; Niklas, Barringer

    2017-09-01

    In this paper an overview on the process of designing a radiation tolerant surveillance camera from consumer grade components and commercially available particle shielding materials is given. This involves utilization of Monte-Carlo particle transport code MCNP6 and ENDF/B-VII.0 nuclear data libraries, as well as testing the physical electrical systems against γ radiation, utilizing JSI TRIGA mk. II fuel elements as a γ-ray sources. A new, aluminum, 20 cm × 20 cm × 30 cm irradiation facility with electrical power and signal wire guide-tube to the reactor platform, was designed and constructed and used for irradiation of large electronic and optical components assemblies with activated fuel elements. Electronic components to be used in the camera were tested against γ-radiation in an independent manner, to determine their radiation tolerance. Several camera designs were proposed and simulated using MCNP, to determine incident particle and dose attenuation factors. Data obtained from the measurements and MCNP simulations will be used to finalize the design of 3 surveillance camera models, with different radiation tolerances.

  6. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    Science.gov (United States)

    Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.

    2013-08-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.

  7. LASERS: Atomic xenon recombination laser excited by thermal ionizing radiation from a magnetoplasma compressor and discharge

    Science.gov (United States)

    Kamrukov, A. S.; Kozlov, N. P.; Opekan, A. G.; Protasov, Yu S.; Rudoĭ, I. G.; Soroka, A. M.

    1989-07-01

    A description is given and the results are reported of the first photoionization-recombination laser using atomic xenon excited by thermal ionizing radiation from a plasma. The pump source was a multichannel plasmadynamic discharge in magnetoplasma compressors, which was ignited in the active medium of the laser. When the composition of the working mixture was optimal (Xe:Ar = 1:250) and the total pressure was 1 atm, the output energy was ~ 0.5 J in the form of pulses of ~ 10 μs duration and the maximum specific output energy represented by laser radiation was 1-2 J/liter. The unsaturated gain was 27 m - 1. A kinetic laser scheme was proposed and analyzed. It allowed for the processes of photoionization, ion conversion, dissociative recombination, interaction of excited states with electron and buffer gases, etc. An important role played by heating of the active medium during pumping was demonstrated and it explained the observed characteristics of the spatial and temporal structure of the lasing process, particularly bleaching of large volumes of the active medium. The potential output energy of the laser was considered and specific constructions were proposed to attain a lasing efficiency amounting to a few percent.

  8. Radiation Tolerance Qualification Tests of the Final Source Interface Unit for the ALICE Experiment

    CERN Document Server

    Dénes, E; Futó, E; Kerék, A; Kiss, T; Molnár, J; Novák, D; Soós, C; Tölyhi, T; Van de Vyvre, P

    2007-01-01

    The ALICE Detector Data Link (DDL) is a high-speed optical link designed to interface the readout electronics of ALICE sub-detectors to the DAQ computers. The Source Interface Unit (SIU) of the DDL will operate in radiation environment. Previous tests showed that a configuration loss of SRAM-based FPGA devices may happen and the frequency of undetected data errors in the FPGA user memory area is also not acceptable. Therefore, we redesigned the SIU card using another FPGA based on flash technology. In order to detect bit errors in the user memory we added parity check logic to the design. The new SIU has been extensively tested using neutron and proton irradiation to verify its radiation tolerance. In this paper we summarize the design changes, introduce the final design, and the results of the radiation tolerance measurements on the final card.

  9. High fidelity, radiation tolerant analog-to-digital converters

    Science.gov (United States)

    Wang, Charles Chang-I (Inventor); Linscott, Ivan Richard (Inventor); Inan, Umran S. (Inventor)

    2012-01-01

    Techniques for an analog-to-digital converter (ADC) using pipeline architecture includes a linearization technique for a spurious-free dynamic range (SFDR) over 80 deciBels. In some embodiments, sampling rates exceed a megahertz. According to a second approach, a switched-capacitor circuit is configured for correct operation in a high radiation environment. In one embodiment, the combination yields high fidelity ADC (>88 deciBel SFDR) while sampling at 5 megahertz sampling rates and consuming ADC displays no latchup up to a highest tested linear energy transfer of 63 million electron Volts square centimeters per milligram at elevated temperature (131 degrees C.) and supply (2.7 Volts, versus 2.5 Volts nominal).

  10. Superior radiation tolerance of thin epitaxial silicon detectors

    CERN Document Server

    Kramberger, G; Fretwurst, E; Honniger, F; Lindström, G; Pintilie, I; Röder, R; Schramm, A; Stahl, J

    2003-01-01

    For the LHC upgrade (fluences up to 10**1**6 p/cm**2) epi-Si devices are shown to be a viable solution. No type inversion was measured up to 1.3 multiplied by 10**1**524 GeV/c protons/cm**2 and the charge collection efficiency (CCE) remained close to 100%. For reactor neutrons CCE was measured to be 60% at 8 multiplied by 10**1**5 n/cm **2. Annealing measurements have shown that only moderate cooling during beam off periods would be necessary. As a tentative explanation for the superior quality of these devices, we assume that radiation-induced donor generation leads to compensation effects of deep acceptors. In the future, we will extend the experiments to fluences up to 10**1**6 p/cm**2 and use also different variants of the epi-Si material and device geometry.

  11. Photolysis of tryptophan with 337. 1 nm laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Borkman, R.F.; Hibbard, L.B.; Dillon, J.

    1986-01-01

    Aqueous solutions of L-tryptophan were photolyzed by exposure to 337.1 nm radiation from a pulsed nitrogen laser. These data were compared with results for the 290 nm conventional-source photolysis of tryptophan. The loss of Trp was observed to be first order for 290 nm photolysis but of mixed order for 337.1 nm photolysis. Five photolysis products including N-formylkynurenine, kynurenine, tryptamine and two unknown products were detected. The tryptophan-containing peptides N-acetyl-tryptophanamide (NATA) and tryptophylglycine (Trp-Gly) were also observed to photolyze upon 337.1 nm laser radiation demonstrating that this phenomenon is not restricted to free tryptophan monomer. A number of experiments were performed in an effort to determine the mechanism of photolysis at this wavelength. It is concluded that this photolysis results either from a very weak absorption tail extending to 337.1 nm in tryptophan itself or from a reaction involving an impurity sensitizer which absorbs the 337.1 nm radiation.

  12. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...... the current models of restraint and benevolence, other ways of understanding the politics of democratic pluralism might be developed, which will enable us to conceive of tolerance's future in terms different than those currently on offer. Tolerance: A Sensorial Orientation to Politics develops...

  13. Experimental comparison of laser energy losses in high-quality laser-oxygen cutting of low-carbon steel using radiation from fibre and CO2 lasers

    Science.gov (United States)

    Golyshev, A. A.; Malikov, A. G.; Orishich, A. M.; Shulyat'ev, V. B.

    2015-09-01

    We report a comparative experimental study of laseroxygen cutting of low-carbon steel using a fibre laser with a wavelength of 1.07 μm and a CO2 laser with a wavelength of 10.6 μm at the sheet thickness of 3 - 16 mm. For the two lasers we have measured the dependence of the cutting speed on the radiation power and determined the cutting speed at which the surface roughness is minimal. The coefficient of laser radiation absorption in the laser cutting process is measured for these lasers at different values of the cutting speed and radiation power. It is found that the minimal roughness of the cut surface is reached at the absorbed laser energy per unit volume of the removed material, equal to 11 - 13 J mm-3; this value is the same for the two lasers and does not depend on the sheet thickness.

  14. Determination of the radiation axis position of an unstable-cavity laser

    Science.gov (United States)

    Agroskin, V. Ya; Bravyi, B. G.; Vasil'ev, G. K.; Gur'ev, V. I.; Karel'skii, V. G.; Kashtanov, S. A.; Makarov, E. F.; Sotnichenko, S. A.; Chernyshev, Yu A.

    2017-08-01

    Propagation of an alignment laser beam through an unstable cavity laser is numerically simulated. It is shown that the axis of the expanded beam coincides with that of the fundamental laser radiation within an accuracy of no less than 1'' even under cavity misalignment of up to 30''. Experiments on determining the position of the radiation axis of a high-power pulsed unstable cavity chemical laser and various cavity misalignments confirm the calculation results.

  15. Xenon plasma sustained by pulse-periodic laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu., E-mail: yakimov@lantanlaser.ru [Russian Academy of Sciences, A. Ishlinsky Institute for Problems in Mechanics (Russian Federation)

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  16. Investigation of temperature feedback signal parameters during neoplasms treatment by diode laser radiation

    Science.gov (United States)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Semyashkina, Yulia V.

    2016-04-01

    Dynamics of temperature signal in operation area and laser power at nevus, papilloma, and keratoma in vivo removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and with temperature feedback (APC) mode are presented. Feedback allows maintaining temperature in the area of laser treatment at a preset level by regulating power of diode laser radiation (automatic power control). Temperature in the area of laser treatment was controlled by measuring the amplitude of thermal radiation, which occurs when tissue is heated by laser radiation. Removal of neoplasm was carried out in CW mode with laser radiation average power of 12.5+/-0.5 W; mean temperature in the area of laser treatment was 900+/-10°C for nevus, 800+/-15°C for papilloma, and 850+/-20°C for keratoma. The same laser radiation maximal power (12.5 W) and targeted temperature (900°C) were set for nevus removal in APC mode. The results of investigation are real time oscillograms of the laser power and temperature in the area of laser treatment at neoplasms removal in two described above modes. Simultaneously with the measurement of laser power and the temperature in the area of laser treatment video recording of surgeon manipulations was carried out. We discuss the correlation between the power of the laser radiation, the temperature in the area of laser treatment and consistency of surgeon manipulation. It is shown that the method of removal (excision with or without traction, scanning) influences the temperature in the area of laser treatment. It was found, that at removal of nevus with temperature feedback (APC) mode to achieve comparable with CW mode temperature in the area of laser treatment (900+/-10°C) 20-50% less laser power is required. Consequently, removing these neoplasms in temperature feedback mode can be less traumatic than the removal in CW mode.

  17. Study of defects in radiation tolerant semiconductor SiC

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hisayoshi; Kawasuso, Atsuo; Ohshima, Takeshi; Yoshikawa, Masahito; Nashiyama, Isamu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Okumura, Hajime; Yoshida, Sadafumi

    1997-03-01

    Electron spin resonance (ESR) was used to study defects introduced in n-type 6H-SiC by 3 MeV electron irradiation. Two ESR signals labeled A and B related to radiation induced defects were observed. An ESR signal B can be explained by a fine interaction with an effective spin S=1. The g and D tensors of the signal B were found to be axially symmetric along the c-axis. The principal values of the g were obtained to be g parallel = 2.003 and g perpendicular = 2.008, and the absolute value of the D was 3.96x10{sup -2} cm{sup -1} at 100 K for this signal. It was also found that the value |D| decreased with increasing temperature. Isochronal annealing showed that the A and B centers have annealing stages of {approx_equal}200degC and {approx_equal}800degC, respectively. Tentative structural models are discussed for these ESR centers. (author)

  18. Design Specifications for a Radiation Tolerant Beam Loss Measurement ASIC

    CERN Document Server

    Venturini, G G; Effinger, E; Zamantzas, C

    2009-01-01

    A novel radiation-hardened current digitizer ASIC is in planning stage, aimed at the acquisition of the current signals from the ionization chambers employed in the Beam Loss Monitoring system at CERN. The purpose is to match and exceed the performance of the existing discrete component design, currently in operation in the Large Hadron Collider (LHC). The specifications include: a dynamic range of nine decades, defaulting to the 1 pA-1mA range but adjustable by the user, ability to withstand a total integrated dose of 10 kGy at least in 20 years of operation and user selectable integrating windows, as low as 500 ns. Moreover, the integrated circuit should be able to digitize currents of both polarity with a minimum number of external components and without needing any configuration. The target technology is the IBM 130nm CMOS process. The specifications, the architecture choices and the reasons on which they are based upon are discussed in this paper.

  19. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE...MM-YYYY)   14-03-2017 2. REPORT TYPE  Final 3. DATES COVERED (From - To)  01 May 2013 to 31 Dec 2016 4. TITLE AND SUBTITLE High energy ion acceleration...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 3/15/2017https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll 1 HIGH ENERGY ION ACCELERATION BY

  20. The essential role of the Deinococcus radiodurans ssb gene in cell survival and radiation tolerance.

    Science.gov (United States)

    Lockhart, J Scott; DeVeaux, Linda C

    2013-01-01

    Recent evidence has implicated single-stranded DNA-binding protein (SSB) expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans.

  1. The essential role of the Deinococcus radiodurans ssb gene in cell survival and radiation tolerance.

    Directory of Open Access Journals (Sweden)

    J Scott Lockhart

    Full Text Available Recent evidence has implicated single-stranded DNA-binding protein (SSB expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans.

  2. Design of two digital radiation tolerant integrated circuits for high energy physics experiments data readout

    CERN Document Server

    Bonacini, Sandro

    2003-01-01

    High Energy Physics research (HEP) involves the design of readout electron- ics for its experiments, which generate a high radiation ¯eld in the detectors. The several integrated circuits placed in the future Large Hadron Collider (LHC) experiments' environment have to resist the radiation and carry out their normal operation. In this thesis I will describe in detail what, during my 10-months partic- ipation in the digital section of the Microelectronics group at CERN, I had the possibility to work on: - The design of a radiation-tolerant data readout digital integrated cir- cuit in a 0.25 ¹m CMOS technology, called \\the Kchip", for the CMS preshower front-end system. This will be described in Chapter 3. - The design of a radiation-tolerant SRAM integrated circuit in a 0.13 ¹m CMOS technology, for technology radiation testing purposes and fu- ture applications in the HEP ¯eld. The SRAM will be described in Chapter 4. All the work has carried out under the supervision and with the help of Dr. Kostas Klouki...

  3. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... these alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech....

  4. Status Report on Irradiation Capsules Containing Welded FeCrAl Specimens for Radiation Tolerance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-26

    This status report provides the background and current status of a series of irradiation capsules, or “rabbits”, that were designed and built to test the contributions of microstructure, composition, damage dose, and irradiation temperature on the radiation tolerance of candidate FeCrAl alloys being developed to have enhanced weldability and radiation tolerance. These rabbits will also test the validity of using an ultra-miniature tensile specimen to assess the mechanical properties of irradiated FeCrAl base metal and weldments. All rabbits are to be irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) to damage doses up to ≥15 dpa at temperatures between 200-550°C.

  5. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... these alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech.......Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...

  6. Radiation Tolerant Interfaces: Influence of Local Stoichiometry at the Misfit Dislocation on Radiation Damage Resistance of Metal/Oxide Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Shutthanandan, Vaithiyalingam [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Choudhury, Samrat [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Manandhar, Sandeep [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Kaspar, Tiffany C. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Devaraj, Arun [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville TN 37996 USA; Thevuthasan, Suntharampilli [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Hoagland, Richard G. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Dholabhai, Pratik P. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Uberuaga, Blas P. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Kurtz, Richard J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-04-24

    To understand how variations in interface properties such as misfit-dislocation density and local chemistry affect radiation-induced defect absorption and recombination, we have explored a model system of CrxV1-x alloy epitaxial films deposited on MgO single crystals. By controlling film composition, the lattice mismatch with MgO was adjusted so that the misfit-dislocation density varies at the interface. These interfaces were exposed to irradiation and in situ results show that the film with a semi-coherent interface (Cr) withstands irradiation while V film, which has similar semi-coherent interface like Cr, showed the largest damage. Theoretical calculations indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry, and the precise location of the misfit-dislocation density relative to the interface, drives defect behavior. Together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials.

  7. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation.

    Science.gov (United States)

    Fernandes, Éverton K K; Rangel, Drauzio E N; Braga, Gilberto U L; Roberts, Donald W

    2015-08-01

    Ultraviolet radiation from sunlight is probably the most detrimental environmental factor affecting the viability of entomopathogenic fungi applied to solar-exposed sites (e.g., leaves) for pest control. Most entomopathogenic fungi are sensitive to UV radiation, but there is great inter- and intraspecies variability in susceptibility to UV. This variability may reflect natural adaptations of isolates to their different environmental conditions. Selecting strains with outstanding natural tolerance to UV is considered as an important step to identify promising biological control agents. However, reports on tolerance among the isolates used to date must be analyzed carefully due to considerable variations in the methods used to garner the data. The current review presents tables listing many studies in which different methods were applied to check natural and enhanced tolerance to UV stress of numerous entomopathogenic fungi, including several well-known isolates of these fungi. The assessment of UV tolerance is usually conducted with conidia using dose-response methods, wherein the UV dose is calculated simply by multiplying the total irradiance by the period (time) of exposure. Although irradiation from lamps seldom presents an environmentally realistic spectral distribution, laboratory tests circumvent the uncontrollable circumstances associated with field assays. Most attempts to increase field persistence of microbial agents have included formulating conidia with UV protectants; however, in many cases, field efficacy of formulated fungi is still not fully adequate for dependable pest control.

  8. Development of an ADC Radiation Tolerance Characterization System for the Upgrade of the ATLAS LAr Calorimeter

    CERN Document Server

    INSPIRE-00445642; Chen, Kai; Kierstead, James; Lanni, Francesco; Takai, Helio; Jin, Ge

    2016-01-01

    ATLAS LAr calorimeter will perform its Phase-I upgrade during the long shut down (LS2) in 2018, a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multichannel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for LTDB. In order to evaluate the radiation tolerance of these back up commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, which has ADC driver and clock distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as DAQ board. The data from ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed wit...

  9. Comparison of tissue damage caused by various laser systems with tissue tolerable plasma by light and laser scan microscopy

    Science.gov (United States)

    Vandersee, Staffan; Lademann, Jürgen; Richter, Heike; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard

    2013-10-01

    Tissue tolerable plasma (TTP) represents a novel therapeutic method with promising capabilities in the field of dermatological interventions, in particular disinfection but also wound antisepsis and regeneration. The energy transfer by plasma into living tissue is not easily educible, as a variety of features such as the medium’s actual molecule-stream, the ions, electrons and free radicals involved, as well as the emission of ultraviolet, visible and infrared light contribute to its increasingly well characterized effects. Thus, relating possible adversary effects, especially of prolonged exposure to a single component of the plasma’s mode of action, is difficult. Until now, severe adverse events connected to plasma exposure have not been reported when conducted according to existing therapeutic protocols. In this study, we have compared the tissue damage-potential of CO2 and dye lasers with TTP in a porcine model. After exposure of pig ear skin to the three treatment modalities, all specimens were examined histologically and by means of laser scan microscopy (LSM). Light microscopical tissue damage could only be shown in the case of the CO2 laser, whereas dye laser and plasma treatment resulted in no detectable impairment of the specimens. In the case of TTP, LSM examination revealed only an impairment of the uppermost corneal layers of the skin, thus stressing its safety when used in vivo.

  10. INTERACTION OF LASER RADIATION WITH MATTER: Investigation of the interaction of laser radiation with composite materials by infrared spectroscopy methods

    Science.gov (United States)

    Eremin, V. I.; Kovalenko, I. P.; Levashenko, G. I.; Mazaev, N. V.; Sokol'nikov, A. S.; Shuralev, S. L.

    1990-10-01

    A description is given of the method and apparatus for determination of the effective temperature and composition of a jet of products of the interaction of laser radiation with a glass-fiber-reinforced plastic and an organic plastic. Measurements are also possible of the temperature and emissivity of a target when it is exposed in atmospheric air to cw CO2 laser radiation with a flux density of 3 × 102 — 103 W/cm2. The products of damage to the glass-fiber-reinforced plastic consisted of particles of metal oxides with a diameter d32 = 2.3-3.5 μm and a volume concentration Cv = (0.06-0.25) × 10 - 4, and of molecular gases CO2, H2O, and HCl; the damage products of the organic plastic were conglomerates of soot particles with the diameter d32 = 1-1.8 μm and a volume concentration Cv = (0.4-0.9) × 10 - 4, and the same molecular gases. The target emissivity increased with time and reached 0.8-0.9.

  11. Temporal structure of X-ray radiation pulses of picosecond laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, V S; Kovkov, D V; Matafonov, A P; Karabadzhak, G F; Raikunov, G G [Central Research Institute of Machine Building, Korolev, Moscow region (Russian Federation); Faenov, A Ya; Pikuz, S A; Skobelev, I Yu; Pikuz, T A; Fokin, D A; Fortov, V E [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Ignat' ev, G N; Kapitanov, S V; Krapiva, P S; Korotkov, K E [All-Russian Institute of Automatics, Moscow (Russian Federation)

    2013-09-30

    The shape of the X-ray pulse generated by picosecond laser plasma is experimentally studied. The unusual phenomenon was experimentally observed for the first time for targets made of moderate-heavy chemical elements, namely, the pulse of hard X-ray radiation generated by laser plasma at the laser radiation flux of ∼10{sup 18} W cm{sup -2} had a longer duration than the pulse of softer X-ray radiation. A simple kinetic model is suggested for explaining this fact. We have suggested a method for controlling the temporal shape of X-ray pulse emitted by laser plasma by varying the contrast of laser pulse. (interaction of laser radiation with matter)

  12. The influence of resonance IR laser radiation on magnetoabsorption in quantum wires

    Science.gov (United States)

    Sinyavskii, E. P.; Karapetyan, S. A.; Kostyukevich, N. S.

    2017-04-01

    The coefficient of interband absorption of a weak electromagnetic wave by quantum wires in a transverse magnetic field and an intense laser radiation field is calculated. It is shown that, if the laser radiation frequency is equal either to the size quantization frequency (dimensional infrared resonance) or to a hybrid frequency (magnetoinfrared resonance), laser illumination can determine the shape of absorption oscillations. In particular, it is shown that the second magnetoabsorption peak is split into two peaks, the half-widths of which and the distance between which depend on the intensity of resonance laser radiation. The influence of the polarization of IR radiation on the interband absorption in quantum wires is discussed. The dynamics of the frequency dependence of the optical absorption coefficient with increasing intensity of resonance laser radiation is studied.

  13. Interaction of laser radiation with a low-density structured absorber

    Czech Academy of Sciences Publication Activity Database

    Rozanov, V. B.; Barishpol’tsev, D.V.; Vergunova, G.A.; Demchenko, N. N.; Ivanov, E.M.; Aristova, E.N.; Zmitrenko, N.V.; Limpouch, I.; Ullschmied, Jiří

    2016-01-01

    Roč. 122, č. 2 (2016), s. 256-276 ISSN 1063-7761 Institutional support: RVO:61389021 Keywords : laser radiation interaction * laser with low-density Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.196, year: 2016

  14. Radiation tolerant fiber optic humidity sensors for High Energy Physics applications

    CERN Document Server

    Berruti, Gaia Maria; Cusano, Andrea

    This work is devoted to the development of fiber optic humidity sensors to be applied in high-energy physics applications and in particular in experiments currently running at CERN. The high radiation level resulting from the operation of the accelerator at full luminosity can cause serious performance deterioration of the silicon sensors which are responsible for the particle tracking. To increase their lifetime, the sensors must be kept cold at temperatures below 0 C. At such low temperatures, any condensation risk has to be prevented and a precise thermal and hygrometric control of the air filling and surrounding the tracker detector cold volumes is mandatory. The technologies proposed at CERN for relative humidity monitoring are mainly based on capacitive sensing elements which are not designed with radiation resistance characteristic. In this scenario, fiber optic sensors seem to be perfectly suitable. Indeed, the fiber itself, if properly selected, can tolerate a very high level of radiation, optical fi...

  15. The Radiation Tolerant Electronics for the LHC Cryogenic Controls: Basic Design and First Operational Experience

    CERN Document Server

    Casas-Cubillos, J; Rodríguez-Ruiz, M A

    2008-01-01

    The LHC optics is based in the extensive use of superconducting magnets covering 23 km inside the tunnel. The associated cryogenic system for keeping the magnets in nominal conditions is hence distributed all around the 27 km LHC tunnel and the cryogenic instrumentation submitted to the LHC radiation environment is composed of about 18’000 sensors and actuators. Radiation Tolerant (RadTol) electronics was designed and procured in order to keep the signals integrity against electromagnetic interference and to reduce cabling costs required in case of sending the analog signals into the 30 radiation protected areas. This paper presents the basic design, the qualification of the main RadTol components and the first operational results.

  16. INTERACTION OF LASER RADIATION WITH MATTER: Influence of surface breakdown on the process of drilling metals with pulsed CO2 laser radiation

    Science.gov (United States)

    Arutyunyan, R. V.; Baranov, V. Yu; Bobkov, I. V.; Bol'shov, Leonid A.; Dolgov, V. A.; Kanevskiĭ, M. F.; Malyuta, D. D.; Mezhevov, V. S.

    1988-03-01

    A report is given of the influence of low-threshold surface optical breakdown, occurring under the action of short (~ 5-μs) radiation pulses from a CO2 laser, on the process of the laser drilling of metals. Data are given on the difference between the interaction of radiation pulses having the same duration but differing in shape. A study was made of the influence of the pressure of the atmosphere surrounding a target on the results of laser drilling of metals. A theoretical explanation is given of the experimental results.

  17. Mobility of Electron in DNA Crystals by Laser Radiation

    Science.gov (United States)

    Zhang, Kaixi; Zhao, Qingxun; Cui, Zhiyun; Zhang, Ping; Dong, Lifang

    1996-01-01

    The mobility of electrons in laser radiated DNA is closed to the energy transfer and energy migration of a biological molecule. Arrhenius has studied the conductivity of the electrons in a biological molecule. But his result is far from the experimental result and meanwhile the relation between some parameters in his theory and the micro-quantities in DNA is not very clear. In this paper, we propose a new phonon model of electron mobility in DNA and use Lippman-Schwinger equation and S-matrix theory to study the mobility of electrons in DNA crystal. The result is relatively close to the experiment result and some parameters in Arrhenius theory are explained in our work.

  18. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Plasma heating near a metal target by nanosecond pulses of the first, second, and fourth Nd-laser harmonics

    Science.gov (United States)

    Bufetov, Igor'A.; Bufetova, G. A.; Kravtsov, S. B.; Fyodorov, V. B.; Fomin, V. K.

    1995-08-01

    Measurements were made of the electron temperature Te of a laser plasma formed on the surface of a metal target by the action of nanosecond pulses of wavelengths λ = 1060, 530, and 265 nm. The laser radiation intensity was I approx 109—1013 W cm-2. The electron temperature was determined from the emf of a double charge layer at the plasma boundary. Within the limits of the scatter of the experimental results, the plasma temperature was independent of the laser radiation wavelength (in the range 1060-265 nm). The dependence of this temperature on the radiation intensity obeyed approximately Te propto I1/3 throughout the investigated range.

  19. Influence of He-Ne laser radiation of pacemaker on the frog's heart function

    Science.gov (United States)

    Porozov, Yury B.; Brill, Gregory E.; Kiritchuk, Vyacheslav F.

    1997-02-01

    In experiments on isolated amphibian hearts changes in photoreactivity of pacemaker cells under the influence of He-Ne laser radiation in different phases of the heart cycle were studied. The specificity of heart photoreaction, peculiarities of relaxation period after laser light action and laser modification of hypodynamic depression development were revealed. Adaptation of pacemaker cells to the He-Ne laser exposure was observed.

  20. Multidisciplinary approaches to radiation-balanced lasers (MARBLE): a MURI program by AFOSR (Conference Presentation)

    Science.gov (United States)

    Sheik-Bahae, Mansoor

    2017-02-01

    An overview of the diverse research activities under the newly funded MURI project by AFOSR will be presented. The main goal is to advance the science of radiation-balanced lasers, also known as athermal lasers, in order to mitigate the thermal degradation of the high-power laser beams. The MARBLE project involves researchers from four universities and spans research activities in rare-earth doped crystals and fibers to semiconductor disc lasers.

  1. Coherent and incoherent radiation from a channel-guided laser wakefield accelerator

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2008-01-01

    Coherent and incoherent electromagnetic radiation emitted from a channel-guided laser wakefield accelerator (LWFA) is calculated based on the Lienard–Wiechert potentials. It is found that at wavelengths longer than the bunch length, the radiation is coherent. The coherent radiation, which typically

  2. Transurethral coagulation for radiation-induced hemorrhagic cystitis using Greenlight™ potassium-titanyl-phosphate laser.

    Science.gov (United States)

    Zhu, Jin; Xue, Boxin; Shan, Yuxi; Yang, Dongrong; Zang, Yachen

    2013-02-01

    The aim of this study was to to demonstrate the initial treatment outcomes of Greenlight™ potassium-titanyl-phosphate (KTP) laser on radiation-induced hemorrhagic cystitis. Hemorrhagic cystitis is a common complication of radiation therapy for pelvic tumors. From September 2004 to February 2011, 10 patients with radiation-induced intractable hemorrhagic cystitis underwent transurethral Greenlight KTP laser coagulation of the bladder. The power setting was limited to 20-30 W. Bleeding stopped in all cases after one session of laser treatment. Mean follow-up time was 17 months (6-36 months). All patients underwent cystoscopy 3 months postoperatively, and no bleeding or significant scar was found. Recurrence of significant bleeding was seen in one case 7 months post-operation, and was again cured by KTP laser. There were no complications from the procedures. Our experience suggests that transurethral coagulation using KTP laser is a safe and effective strategy for the treatment of hemorrhagic radiation cystitis.

  3. Modelling of micromachining of human tooth enamel by erbium laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belikov, A V; Skrypnik, A V; Shatilova, K V [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)

    2014-08-31

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  4. Recycling of laser and plasma radiation energy for enhancement of extreme ultraviolet sources for nanolithography

    Science.gov (United States)

    Sizyuk, V.; Sizyuk, T.; Hassanein, A.; Johnson, K.

    2018-01-01

    We have developed comprehensive integrated models for detailed simulation of laser-produced plasma (LPP) and laser/target interaction, with potential recycling of the escaping laser and out-of-band plasma radiation. Recycling, i.e., returning the escaping laser and plasma radiation to the extreme ultraviolet (EUV) generation region using retroreflective mirrors, has the potential of increasing the EUV conversion efficiency (CE) by up to 60% according to our simulations. This would result in significantly reduced power consumption and/or increased EUV output. Based on our recently developed models, our High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS) computer simulation package was upgraded for LPP devices to include various radiation recycling regimes and to estimate the potential CE enhancement. The upgraded HEIGHTS was used to study recycling of both laser and plasma-generated radiation and to predict possible gains in conversion efficiency compared to no-recycling LPP devices when using droplets of tin target. We considered three versions of the LPP system including a single CO2 laser, a single Nd:YAG laser, and a dual-pulse device combining both laser systems. The gains in generating EUV energy were predicted and compared for these systems. Overall, laser and radiation energy recycling showed the potential for significant enhancement in source efficiency of up to 60% for the dual-pulse system. Significantly higher CE gains might be possible with optimization of the pre-pulse and main pulse parameters and source size.

  5. Influence of modified atmosphere packaging on radiation tolerance in the phytosanitary pest melon fly (Diptera: Tephritidae).

    Science.gov (United States)

    Follett, Peter A; Wall, Marisa; Bailey, Woodward

    2013-10-01

    Modified atmosphere packaging (MAP) produces a low-oxygen (O2) environment that can increase produce shelf life by decreasing product respiration and growth of pathogens. However, low O2 is known to increase insect tolerance to irradiation, and the use of MAP with products treated by irradiation before export to control quarantine pests may inadvertently compromise treatment efficacy. Melon fly, Bactrocera cucurbitae Coquillet (Diptera: Tephritidae), is an important economic and quarantine pest of tropical fruits and vegetables, and one of the most radiation-tolerant tephritid fruit flies known. The effect of low O2 generated by MAP on the radiation tolerance of B. cucurbitae was examined. Third-instar larval B. cucurbitae were inoculated into ripe papayas and treated by 1) MAP + irradiation, 2) irradiation alone, 3) MAP alone, or (4) no MAP and no irradiation, and held for adult emergence. Three types of commercially available MAP products were tested that produced O2 concentrations between 1 and 15%, and a sublethal radiation dose (50 Gy) was used to allow comparisons between treatments. Ziploc storage bags (1-4% O2) increased survivorship to adult from 14 to 25%, whereas Xtend PP61 bags (3-8% O2) and Xtend PP53 bags (11-15% O2) did not enhance survivorship to the adult stage in B. cucurbitae irradiated at 50 Gy. Radiation doses approved by the United States Department of Agriculture and the International Plant Protection Commission for B. cucurbitae and Ceratitis capitata (Wiedemann) (Mediterranean fruit fly) are 150 and 100 Gy, respectively. In large-scale tests, 9,000 B. cucurbitae and 3,800 C. capitata larvae infesting papayas in Ziploc bags were irradiated at 150 and 100 Gy, respectively, with no survivors to the adult stage. MAP can increase insect survivorship during irradiation treatment at certain doses and O2 concentrations, but should not compromise the efficacy of the 150-Gy generic radiation treatment for tephritid fruit flies or the 100-Gy radiation

  6. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser ablation plume dynamics in nanoparticle synthesis

    Science.gov (United States)

    Osipov, V. V.; Platonov, V. V.; Lisenkov, V. V.

    2009-06-01

    The dynamics of the plume ejected from the surface of solid targets (YSZ, Nd:YAG and graphite) by a CO2 laser pulse with a duration of ~500 μs (at the 0.03 level), energy of 1.0-1.3 J and peak power of 6-7 kW have been studied using high-speed photography of the plume luminescence and shadow. The targets were used to produce nanopowders by laser evaporation. About 200 μs after termination of the pulse, shadowgraph images of the plumes above the YSZ and Nd:YAG targets showed dark straight tracks produced by large particles. The formation of large (~10 μm) particles is tentatively attributed to cracking of the solidified melt at the bottom of the ablation crater. This is supported by the fact that no large particles are ejected from graphite, which sublimes without melting. Further support to this hypothesis is provided by numerical 3D modelling of melt cooling in craters produced by laser pulses of different shapes.

  7. Comparison of the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation.

    Science.gov (United States)

    Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi

    2015-07-01

    To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P laser showed better ablation ability than 1,064 nm Nd:YAG laser.

  8. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Allen, T.R.; Was, G.S.; Bruemmer, S.M.; Gan, J.; Ukai, S.

    2005-12-28

    The objective of this program is to improve the radiation tolerance of both austenitic and ferritic-martensitic (F-M) alloys projected for use in Generation IV systems. The expected materials limitations of Generation IV components include: creep strength, dimensional stability, and corrosion/stress corrosion compatibility. The material design strategies to be tested fall into three main categories: (1) engineering grain boundaries; (2) alloying, by adding oversized elements to the matrix; and (3) microstructural/nanostructural design, such as adding matrix precipitates. These three design strategies were tested across both austenitic and ferritic-martensitic alloy classes

  9. Radiation-Tolerant Custom Made Low Voltage Power Supply System for ATLAS/TileCal Detector

    CERN Document Server

    Hruska, I; Calheiros, F; Némécek, S; Kotek, Z; Palacky, J; Price, J; Lokajícek, M; Tikhonov, A; Solin, A

    2007-01-01

    This paper describes custom made Low Voltage Power Supply (LVPS) system developed for the ATLAS – TileCal detector of the LHC (The Large Hadron Collider) particle accelerator at CERN, Geneva. The system is based on the use of only COTS (Commercial of The Shelf) components, is qualified to be radiation tolerant up to 40krad, and can operate in external DC magnetic field above 0.02 Tesla. The LVPS design described in this paper has been developed and produced for the ATLAS TileCal detector during the years 2001 – 2007.

  10. Mechanisms of graphene exfoliation under the action of femtosecond laser radiation in liquid nitrogen

    Science.gov (United States)

    Khorkov, K. S.; Kochuev, D. A.; Ilin, V. A.; Chkalov, R. V.; Prokoshev, V. G.; Arakelian, S. M.

    2018-01-01

    The processes of graphene structures formation under the action of the femtosecond laser radiation on carbon samples in liquid nitrogen are discussed. Mechanisms of graphene sheets exfoliation are proposed depending on the power density of the laser radiation: in the first case, the separation occurs due to the volumetric expansion during heating the region occupied by nitrogen molecules; at a laser radiation energy exceeding the ablation threshold, the surface of graphite begins to breakdown in the region of the action, followed by separation into graphene layers.

  11. Normal tissue tolerance to external beam radiation therapy: Brain and hypophysis; Dose de tolerance a l'irradiation des tissus sains: encephale et hypophyse

    Energy Technology Data Exchange (ETDEWEB)

    Haberer, S.; Assouline, A.; Mazeron, J.J. [Service d' oncologie radiotherapique, AP-HP, groupe hospitalier Pitie-Salpetriere, 75 - Paris (France)

    2010-07-15

    Anticancer treatments-induced central nervous system neurotoxicity has become a major problem in recent years. Real advances in therapeutic results for cancer treatments have improved patients survival. Nowadays, central nervous system radiation therapy is widely prescribed, both for palliative and curative treatments in the management of malignant or benign tumors. Recent data on tolerance of normal central nervous system to radiation therapy are reviewed here, early and delayed radiation-induced effects are described and dose recommendations are suggested for clinical practice. (authors)

  12. Analytical modeling of polarization transformation of laser radiation of various spectral ranges by birefringent structures

    Science.gov (United States)

    Motrich, A. V.; Ushenko, O. G.

    2018-01-01

    The results of statistical dependence and correlation structures of two-dimensional Mueller matrix elements in various spectral regions of laser radiation by changes in the distribution of orientations of optical axes and birefringence of protein crystals. Namely, a two-wave ("red-blue") approach - layer of biological tissues irradiated by He-Ne laser (λ1 = 0,63μm ) and He-Cd laser (λ1 = 0,41μm )was used Conducted analysis of polarimetric sensitivity was made, a state of polarization points that contain volumetric structures of biological objects to spectral region of laser radiation was detected.

  13. Role of laser radiation in activating anodic dissolution under electrochemical machining of metals and alloys

    Directory of Open Access Journals (Sweden)

    Rakhimyanov Kharis

    2017-01-01

    Full Text Available The specific features of electrochemical dissolution of the 12X18H9T stainless steel, the OT-4 titanium alloy and the BK8 hard alloy in the sodium nitrate water solution exposed to 1.06 micrometer wavelength laser radiation were considered. It is found that depassivation of the anode surface is the main mechanism of laser activation in electrochemical dissolving of materials. It is established that the maximum efficiency of laser electrochemical machining is achieved at a pulse repetition frequency of 10 kHz laser radiation. It is connected with the photoactivation mechanism of electrolyte solution molecules, which increases their reaction capacity.

  14. ARTICLES: Physical laws governing the interaction of pulse-periodic CO2 laser radiation with metals

    Science.gov (United States)

    Vedenov, A. A.; Gladush, G. G.; Drobyazko, S. V.; Pavlovich, Yu V.; Senatorov, Yu M.

    1985-01-01

    It is shown theoretically and experimentally that the efficiency of welding metals with a pulse-periodic CO2 laser beam of low duty ratio, at low velocities, can exceed that of welding with cw lasers and with electron beams. For the first time an investigation was made of the influence of the laser radiation parameters (energy and frequency) and of the welding velocity on the characteristics of the weld and on the shape of the weldpool. The influence of the laser radiation polarization on the efficiency of deep penetration was analyzed.

  15. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Leemans, W.P.; Esarey, E.; van Tilborg, J.; Michel, P.A.; Schroeder, C.B.; Toth, Cs.; Geddes, C.G.R.; Shadwick, B.A.

    2004-10-01

    Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultra-short electron bunches (femtosecond duration) with relativistic energies reaching towards a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offers a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: Coherent terahertz emission and x-ray emission based on betatron oscillations and Thomson scattering.

  16. Gamma radiation tolerance in different life stages of the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    Paithankar, Jagdish Gopal; Deeksha, K; Patil, Rajashekhar K

    2017-04-01

    Insects are known to have higher levels of radiation tolerance than mammals. The fruit fly Drosophila provides opportunities for genetic analysis of radiation tolerance in insects. A knowledge of stage-specific sensitivity is required to understand the mechanisms and test the existing hypothesis of insect radiation tolerance. Drosophila melanogaster were irradiated using gamma rays at different life stages. Irradiation doses were chosen to start from 100-2200 Gy with increments of 100 Gy, with a dose rate of 12.5 and 25 Gy/min. The threshold of mortality, LD50 and LD100 1 h post-irradiation was recorded for larvae and adults and 24 h post-irradiation for eggs and after 2-3 days for early and late pupae. Total antioxidant capacity for all the life stages was measured using the phosphomolybdenum method. Twenty-four hours post-irradiation, 100% mortality was recorded for eggs at 1000 Gy. One hour post irradiation 100% mortality was recorded at 1300 Gy for first instar larvae, 1700 Gy for second instar larvae, 1900 Gy for feeding third instar larvae and 2200 Gy for non-feeding third instar larvae. Post-irradiation complete failure of emergence (100% mortality) was observed at 130 Gy for early pupae and 1500 Gy for late pupae; 100% mortality was observed at 1500 Gy for adults. The values of LD50 were recorded as 452 Gy for eggs, 1049 Gy for first instar larvae, 1350 Gy for second instar larvae, 1265 Gy for feeding third instar larvae, 1590 Gy for non-feeding third instar larvae, 50 Gy for early pupae, 969 Gy for late pupae, 1228 Gy for adult males and 1250 Gy for adult females. Early pupae were found to be prone to radiation, whereas the non-feeding third instar larvae were most resistant among all stages. The chromosome number being constant and total antioxidant capacity being nearly constant in all stages, we suggest that high rate of cell division during early pupae makes this stage sensitive to radiation.

  17. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: The mechanism of the drilling of holes in vertical metallic plates by cw CO2 laser radiation

    Science.gov (United States)

    Likhanskii, V. V.; Loboiko, A. I.; Antonova, G. F.; Krasyukov, A. G.; Sayapin, V. P.

    1999-02-01

    The possibility of making a hole in a vertical plate with the aid of laser radiation at a surface temperature not exceeding the boiling point is analysed neglecting the vapour pressure. The mechanism of the degradation of the liquid layer involving a reduction of its thickness, as a result of the redistribution of the molten mass owing to the operation of the force of gravity and of thermocapillary convection, is examined. The theoretical dependence of the critical size of the molten zone on the plate thickness is obtained and a comparison is made with experimental data.

  18. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander

    2012-09-06

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  19. Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans

    Science.gov (United States)

    Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.

    2017-05-01

    Despite the beneficial effects of low-level lasers on wound healing, their application for treatment of infected injuries is controversial because low-level lasers could stimulate bacterial growth exacerbating the infectious process. Thus, the aim of this work was to evaluate in vitro effects of low-level lasers on survival, morphology and cell aggregation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the survival, cell aggregation, filamentation and morphology of bacterial cells in exponential and stationary growth phases. Fluence, wavelength and emission mode were those used in therapeutic protocols for wound healing. Data show no changes in morphology and cell aggregation, but dichromatic laser radiation decreased bacterial survival in exponential growth phase and monochromatic red and infrared lasers increased bacterial survival at the same fluence. Simultaneous dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation and simultaneous dichromatic laser could be the option for treatment of infected pressure injuries by Pantoea agglomerans.

  20. INTERACTION OF LASER RADIATION WITH MATTER: Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses

    Science.gov (United States)

    Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.

  1. Spectroscopic investigation of ionizing-radiation tolerance of a Chlorophyceae green micro-alga

    Science.gov (United States)

    Farhi, E.; Rivasseau, C.; Gromova, M.; Compagnon, E.; Marzloff, V.; Ollivier, J.; Boisson, A. M.; Bligny, R.; Natali, F.; Russo, D.; Couté, A.

    2008-03-01

    Micro-organisms living in extreme environments are captivating in the peculiar survival processes they have developed. Deinococcus radiodurans is probably the most famous radio-resistant bacteria. Similarly, a specific ecosystem has grown in a research reactor storage pool, and has selected organisms which may sustain radiative stress. An original green micro-alga which was never studied for its high tolerance to radiations has been isolated. It is the only autotrophic eukaryote that develops in this pool, although contamination possibilities coming from outside are not unusual. Studying what could explain this irradiation tolerance is consequently very interesting. An integrative study of the effects of irradiation on the micro-algae physiology, metabolism, internal dynamics, and genomics was initiated. In the work presented here, micro-algae were stressed with irradiation doses up to 20 kGy (2 Mrad), and studied by means of nuclear magnetic resonance, looking for modifications in the metabolism, and on the IN13 neutron backscattering instrument at the ILL, looking for both dynamics and structural macromolecular changes in the cells.

  2. Spectroscopic investigation of ionizing-radiation tolerance of a Chlorophyceae green micro-alga

    Energy Technology Data Exchange (ETDEWEB)

    Farhi, E; Compagnon, E; Marzloff, V; Ollivier, J; Boisson, A M; Natali, F; Russo, D [Institut Laue-Langevin, BP 156, 38042 Grenoble cedex 9 (France); Rivasseau, C; Gromova, M; Bligny, R [CEA, Laboratoire de Physiologie Cellulaire Vegetale, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Coute, A [Museum National d' Histoire Naturelle, Laboratoire de Cryptogamie, 2 rue Buffon, 75005 Paris (France)

    2008-03-12

    Micro-organisms living in extreme environments are captivating in the peculiar survival processes they have developed. Deinococcus radiodurans is probably the most famous radio-resistant bacteria. Similarly, a specific ecosystem has grown in a research reactor storage pool, and has selected organisms which may sustain radiative stress. An original green micro-alga which was never studied for its high tolerance to radiations has been isolated. It is the only autotrophic eukaryote that develops in this pool, although contamination possibilities coming from outside are not unusual. Studying what could explain this irradiation tolerance is consequently very interesting. An integrative study of the effects of irradiation on the micro-algae physiology, metabolism, internal dynamics, and genomics was initiated. In the work presented here, micro-algae were stressed with irradiation doses up to 20 kGy (2 Mrad), and studied by means of nuclear magnetic resonance, looking for modifications in the metabolism, and on the IN13 neutron backscattering instrument at the ILL, looking for both dynamics and structural macromolecular changes in the cells.

  3. A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator

    Science.gov (United States)

    Chen, Weibo; Fogg, David; Mancini, Nick; Steele, John; Quinn, Gregory; Bue, Grant; Littibridge, Sean

    2013-01-01

    Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to effectively control cabin and equipment temperatures under widely varying heat loads and ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-based working fluid that is compatible with existing lightweight aluminum heat exchangers. The TCS is lightweight, compact, and requires very little pumping power. The critical characteristics of the core enabling technologies were demonstrated. Functional testing with condenser tubes demonstrated the key operating characteristics required for a reliable, freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on aluminum by an order of magnitude. Performance comparison with state-of-the-art designs shows significant mass and power saving benefits of this technology.

  4. Modelling of micromachining of human tooth enamel by erbium laser radiation

    Science.gov (United States)

    Belikov, A. V.; Skrypnik, A. V.; Shatilova, K. V.

    2014-08-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained.

  5. Solar radiation pumped solid state of lasers for Solar Power Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruiyi [New Jersey (United States)

    2000-07-01

    The Laser Solar Power Satellites (L-SPS) is the most promising way to overcome global energy and environmental and economical problems. The purpose was to use the favorable combination of solar radiation, modern lasers and the extremely promising phenomenon Optical Phase Conjugation (OPC). Direct conversion of solar energy to energy of a high-power laser beam has the advantage of high efficiency and precise energy transportation. In this paper, direct solar radiation pumping of the laser is compared with the pumping using the intermediate stage of the conversion of the solar radiation in electrical energy. Possible solid-state lasers that can be used in L-SPS are also discussed (including optical system and cooling system). [Spanish] Los Satelites de Energia Solar Laser (L-SPS) son la forma mas prometedora para contrarrestar los problemas globales de energia, ambientales y problemas economicos. El proposito fue el de usar la combinacion favorable de radiacion solar, laseres modernos y el fenomeno extremadamente prometedor de conjugacion de fase optica (OPC). La conversion directa de energia solar a energia de un rayo laser de alta potencia tiene la ventaja de la alta eficiencia y precision de la transportacion de la energia. En este documento la radiacion solar directa impulsada por el laser se compara con la impulsion usando el estado intermedio de conversion de la radiacion solar en energia electrica. Tambien se analizan los posibles laseres de estado solido que pueden usarse en L-SPS (incluyendo el sistema optico y el sistema de enfriamiento).

  6. Propagation of the radiation of laser instruments in road telematics systems

    Science.gov (United States)

    Palys, Marek

    2003-10-01

    In this paper I would like to present the necessity of taking into account a deformation of laser radiation in the real atmosphere while conducting measurements providing data for Intelligent Transport Systems.

  7. [Effects of laser radiation on the periodontium. An animal model approach. Effects of usual radiation dosage].

    Science.gov (United States)

    Noguerol Rodriguez, B; Alandez Chamorro, J; Cañizares Garcia, J; Campos Muñoz, A; Sicilia Felechosa, A

    1989-05-01

    Twenty four albino mice of forty days old were selected. Twelve forty days old albino mice were irradiated with a Helium-Neon laser source, dose of 10.50566 Jul/cm2. They were divided in two groups according to time of animal sacrifice (immediately after irradiation and ten days after). As control were used twelve mice using the same time as the experimental groups, but without radiation. T.E.M. ultrathin sections showed alteration only in the conjunctiva and in the bone tissues, but not in the epithelial tissue. The bone showed two osteocyte population according to their response to irradiation. The first population showed characteristic comparable with the controls, and the second showed alterations suggestive of a degenerative process. The connective tissue also showed two fibroblasts populations, the first showed signs of a big synthesizing activity, and the second, degenerative signs. The first fibroblast population appeared in the animals sacrificed immediately after irradiation.

  8. Tolerance to Gamma Radiation in the Tardigrade Hypsibius dujardini from Embryo to Adult Correlate Inversely with Cellular Proliferation.

    Directory of Open Access Journals (Sweden)

    Eliana Beltrán-Pardo

    Full Text Available Tardigrades are highly tolerant to desiccation and ionizing radiation but the mechanisms of this tolerance are not well understood. In this paper, we report studies on dose responses of adults and eggs of the tardigrade Hypsibius dujardini exposed to gamma radiation. In adults the LD50/48h for survival was estimated at ~ 4200 Gy, and doses higher than 100 Gy reduced both fertility and hatchability of laid eggs drastically. We also evaluated the effect of radiation (doses 50 Gy, 200 Gy, 500 Gy on eggs in the early and late embryonic stage of development, and observed a reduced hatchability in the early stage, while no effect was found in the late stage of development. Survival of juveniles from irradiated eggs was highly affected by a 500 Gy dose, both in the early and the late stage. Juveniles hatched from eggs irradiated at 50 Gy and 200 Gy developed into adults and produced offspring, but their fertility was reduced compared to the controls. Finally we measured the effect of low temperature during irradiation at 4000 Gy and 4500 Gy on survival in adult tardigrades, and observed a slight delay in the expressed mortality when tardigrades were irradiated on ice. Since H. dujardini is a freshwater tardigrade with lower tolerance to desiccation compared to limno-terrestrial tardigrades, the high radiation tolerance in adults, similar to limno-terrestrial tardigrades, is unexpected and seems to challenge the idea that desiccation and radiation tolerance rely on the same molecular mechanisms. We suggest that the higher radiation tolerance in adults and late stage embryos of H. dujardini (and in other studied tardigrades compared to early stage embryos may partly be due to limited mitotic activity, since tardigrades have a low degree of somatic cell division (eutely, and dividing cells are known to be more sensitive to radiation.

  9. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime

    Science.gov (United States)

    Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki

    2016-06-01

    Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.

  10. Therapy of patients with osteoarthritis with low energy laser radiation

    Directory of Open Access Journals (Sweden)

    L. V. Vasiljeva

    2008-01-01

    Full Text Available Objective. To assess influence oflow energy laser radiation (LELR on glycosaminoglycan (GAG and vitamin С level in pts with osteoarthritis (OA. Material and methods. 82 pts with primary OA and 25 healthy volunteers signed informed consent were included in an open randomized prospective 12-month study. Inclusion criteria: unsatisfactory effect of previous drug therapy (DT, stable NSAID dose 3-5 days before and during LELR course, absence of comorbid hepatic and kidney diseases in stage of functional decompensation, malignant diseases, exclusion therapy influencing microcirculation, exercise therapy, physical therapy. Intra-articular injections were not done during 3 months before the study. Pts were divided into 2 groups. Group 1 received complex DT and LELR, group 2 - DT. clinical and laboratory parameters were used as efficacy measures. Statistical analysis was performed on personal computer IBM PC (OS — Windows EP Home Edition with Microsoft office and STATISTICA 6.0 programs. Results. Analysis of the results showed significant improvement of most measures in comparison with traditional DT. LELR administration allowed to decrease chondroprotector and NSAID doses. Vitamin С decrease in serum of OA pts may be a risk factor of development and progression of this disease.

  11. Intracavity scanning of the radiation of an electric-discharge nonchain DF laser

    Science.gov (United States)

    Alekseev, V. N.; Liber, V. I.; Kotylev, V. N.; Fonin, V. M.

    2005-04-01

    This paper presents the results of a study of the possibility of using an electrically controlled space-time light modulator based on the transparent electrooptic ceramic PLZT for intracavity scanning of the radiation of a chemical nonchain DF laser (lasing-wavelength range 3.5-4.0 μm). The radiation pulses are scanned in space in the pulsed and pulse-frequency operating modes of the laser.

  12. Study on the electromagnetic radiation characteristics of discharging excimer laser system

    Science.gov (United States)

    Zhao, Duliang; Liang, Xu; Fang, Xiaodong; Wang, Qingsheng

    2016-10-01

    Excimer laser in condition of high voltage, large current and fast discharge will produce strong electromagnetic pulse radiation and electromagnetic interference on the around electrical equipment. The research on characteristics and distribution of excimer laser electromagnetic radiation could provide important basis for electromagnetic shielding and suppressing electromagnetic interference, and further improving the electromagnetic compatibility of system. Firstly, electromagnetic radiation source is analyzed according to the working principle of excimer laser. The key test points of the electromagnetic radiation, hydrogen thyratron, main discharge circuit and laser outlet, are determined by the mechanical structure and the theory of electromagnetic radiation. Secondly, characteristics of electromagnetic field were tested using a near field probe on the key positions of the vertical direction at 20, 50, and 80 cm, respectively. The main radiation frequencies and the radiation field characteristics in the near field are obtained. The experimental results show that the main radiation frequencies distribute in 47, 65, and 130 MHz for electric field and the main radiation frequencies distribute in 34, 100, and 165 MHz for magnetic field. The intensity of electromagnetic field decreases rapidly with the increase of test distance. The higher the frequency increases, the faster the amplitude attenuate. Finally, several electromagnetic interference suppression measurement methods are proposed from the perspective of electromagnetic compatibility according to the test results.

  13. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model.

    Science.gov (United States)

    Su, M G; Min, Q; Cao, S Q; Sun, D X; Hayden, P; O'Sullivan, G; Dong, C Z

    2017-03-23

    One of fundamental aims of extreme ultraviolet (EUV) lithography is to maximize brightness or conversion efficiency of laser energy to radiation at specific wavelengths from laser produced plasmas (LPPs) of specific elements for matching to available multilayer optical systems. Tin LPPs have been chosen for operation at a wavelength of 13.5 nm. For an investigation of EUV radiation of laser-produced tin plasmas, it is crucial to study the related atomic processes and their evolution so as to reliably predict the optimum plasma and experimental conditions. Here, we present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation to rapidly investigate the evolution of radiation properties and dynamics in laser-produced tin plasmas. The self-absorption features of EUV spectra measured at an angle of 45° to the direction of plasma expansion have been successfully simulated and explained, and the evolution of some parameters, such as the plasma temperature, ion distribution and density, expansion size and velocity, have also been evaluated. Our results should be useful for further understanding of current research on extreme ultraviolet and soft X-ray source development for applications such as lithography, metrology and biological imaging.

  14. Reflection of Carbon Dioxide (CO 2 ) laser radiation from the theatre ...

    African Journals Online (AJOL)

    This work has investigated the power of both specular and diffusely reflected beams of CO2 laser radiation from metallic and non-metallic surfaces of an operating theatre including surgical instruments (specula) and different samples of wall paints in theatre 6 of the Aberdeen Royal Infirmary, U.K. where the CO2 laser ...

  15. Third harmonic generation of CO2 laser radiation in AgGaSe2 crystal

    Indian Academy of Sciences (India)

    September 2000 physics pp. 405–412. Third harmonic generation of CO2 laser radiation in. AgGaSe2 crystal. GOPAL C BHAR, PATHIK KUMBHAKAR. ½. , D V SATYANARAYANA. ¾. ,. N S N BANERJEE. ¾. , U NUNDY. ¾ and C G CHAO. ¿. Laser Laboratory, Physics Department, Burdwan University, Burdwan 713 104, ...

  16. Pulse-periodic iodine photodissociation laser pumped with radiation from magnetoplasma compressors

    Science.gov (United States)

    Kashnikov, G. N.; Orlov, V. K.; Panin, A. N.; Piskunov, A. K.; Reznikov, V. A.

    1980-09-01

    The design and operation of an iodine photodissociation laser, pumped by radiation from magnetoplasma compressors, are described. The laser uses a closed-circulation system with C3F7I as the working gas. Repetitive-pulse operation has been achieved with an interval between pulses of 1 minute, a lasing energy of 110 J, and a pulse duration of 30 microseconds.

  17. Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion

    Science.gov (United States)

    Craven, Paul D.; SanSoucie, Michael P.

    2015-01-01

    NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power

  18. Combined Impact of Gamma and Laser Radiation on Peripheral Blood of Rats in vivo

    Science.gov (United States)

    Zalesskaya, G. A.; Batay, L. E.; Koshlan, I. V.; Nasek, V. M.; Zilberman, R. D.; Milevich, T. I.; Govorun, R. D.; Koshlan, N. A.; Blaga, P.

    2017-11-01

    The impact of γ radiation of 137Cs (doses of 1 and 3 Gy), low-intensity laser radiation (λ = 670 nm, 5.3 or 10.6 J/cm2) as well as the influence of consecutive laser and γ radiation on peripheral blood and blood cells (erythrocytes, leukocytes, lymphocytes, granulocytes) were studied by analyzing the number of blood cells, blood absorption spectra, and activity of antioxidant defense enzymes. Two series of experiments were performed on four groups of rats. The rats of the control group (group 1) were not exposed to γ or laser radiation. In the experimental groups, single irradiation of the whole body of rats with γ radiation (group 2), three- or four-day over-vein irradiation of blood in the tail vein by low-intensity laser radiation (group 3), and successive three- or four-day irradiation of blood by laser and then a single irradiation of the whole body with γ radiation (group 4) were performed. It was shown that changes of the blood cell content in the experimental groups are accompanied by changes in the spectral characteristics of the blood and the activity of antioxidant defense enzymes. The radioprotective effect of low-intensity laser radiation is manifested as an increase in the average number of leukocytes and lymphocytes in the group as compared with the postradiation, as well as an increase in the activity of antioxidant protection enzymes. The possibility of using low-intensity optical radiation for correction of hematological disorders caused by ionizing radiation is discussed.

  19. 40 CFR Table E-2 to Subpart E of... - Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests

    Science.gov (United States)

    2010-07-01

    ... Permitted Tolerance for Conducting Radiative Tests E Table E-2 to Subpart E of Part 53 Protection of... Reference Methods and Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53, Subpt. E, Table E-2 Table E-2 to Subpart E of Part 53—Spectral Energy Distribution and Permitted Tolerance for...

  20. Ablation of oral mucosa by erbium:YAG and holmium:YAG laser radiation

    Science.gov (United States)

    Nuebler-Moritz, Michael; Gutknecht, Norbert; Sailer, Hermann F.; Hering, Peter; Prettl, Wilhelm

    1997-05-01

    The in vitro tissue ablation characteristics of two pulsed mid-infrared lasers were studied, especially, with the intent to evaluate photomechanical and photothermal side effects. The Erbium:YAG laser emitted radiation at 2.94 micrometers in a spiking mode. The free-running beam from the laser was focused onto freshly-excised porcine samples via a 108-mm sapphire lens. The spot size was determined by a photosensitive metallic foil. The Holmium:YAG laser emitted radiation at 2.10 micrometers . The radiation was coupled to a 400- micrometers core quartz fiber. Both lasers were operated at 5 Hz, and 6 pulses were delivered to each porcine specimen using 'dry' and 'wet' ablation mode, respectively. After irradiation, the samples were investigated by means of light and scanning electron microscopy. The results of this survey indicate that both laser types ablate porcine oral mucosa efficiently. The Er:YAG laser produces less surrounding mechanical and thermal damage. In contrast to safe and suitable optical fibers available for the Ho:YAG laser, fiber optical delivery systems for the Er:YAG laser are still in the development phase. Nevertheless, current research work in this field seems promising and the near future may hold an adequate optical transmission systems for the delivery of both wavelengths, 2.10 micrometers and 2.94 micrometers , in order to provide on the one hand atraumatic ablation and on the other hand sufficient hemostasis.

  1. Radiation-Reaction Trapping of Electrons in Extreme Laser Fields

    CERN Document Server

    Ji, L L; Kostyukov, I Yu; Shen, B F; Akli, K

    2014-01-01

    proposed analysis shows that the threshold of laser field amplitude for RRT is approximately the cubic root of laser wavelength over classical electron radius. Because of the pinching effect of the trapped electron bunch, the required laser intensity for RRT can be further reduced.

  2. Development of radiation tolerant semiconductor detectors for the Super-LHC

    CERN Document Server

    Moll, M; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Betta, G F D; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Fretwurst, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Sevilla, S G; Gorelov, I; Goss, J; Bates, A G; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, Roland Paul; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V; Kierstead, J A; Klaiber Lodewigs, J; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, S; Lazanu, I; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li Z; Lindström, G; Linhart, V; Litovchenko, A P; Litovchenko, P G; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, P; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Garcia, S Mi; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; OShea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Popule, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The envisaged upgrade of the Large Hadron Collider (LHC) at CERN towards the Super-LHC (SLHC) with a 10 times increased luminosity of 10challenges for the tracking detectors of the SLHC experiments. Unprecedented high radiation levels and track densities and a reduced bunch crossing time in the order of 10ns as well as the need for cost effective detectors have called for an intensive R&D program. The CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" is working on the development of semiconductor sensors matching the requirements of the SLHC. Sensors based on defect engineered silicon like Czochralski, epitaxial and oxygen enriched silicon have been developed. With 3D, Semi-3D and thin detectors new detector concepts have been evaluated and a study on the use of standard and oxygen enriched p-type silicon detectors revealed a promising approach for radiation tolerant cost effective devices. These and other most recent advancements of the RD50 ...

  3. Evaluation of testing strategies for the radiation tolerant ATLAS n **+-in-n pixel sensor

    CERN Document Server

    Klaiber Lodewigs, Jonas M

    2003-01-01

    The development of particle tracker systems for high fluence environments in new high-energy physics experiments raises new challenges for the development, manufacturing and reliable testing of radiation tolerant components. The ATLAS pixel detector for use at the LHC, CERN, is designed to cover an active sensor area of 1.8 m**2 with 1.1 multiplied by 10 **8 read-out channels usable for a particle fluence up to 10 **1**5 cm**-**2 (1 MeV neutron equivalent) and an ionization dose up to 500 kGy of mainly charged hadron radiation. To cope with such a harsh environment the ATLAS Pixel Collaboration has developed a radiation hard n **+-in-n silicon pixel cell design with a standard cell size of 50 multiplied by 400 mum**2. Using this design on an oxygenated silicon substrate, sensor production has started in 2001. This contribution describes results gained during the development of testing procedures of the ATLAS pixel sensor and evaluates quality assurance procedures regarding their relevance for detector operati...

  4. Particularities of interaction of CO sub 2 -laser radiation with oxide materials

    CERN Document Server

    Salikhov, T P

    2002-01-01

    The results of experimental investigation of vapor phase influence on the interaction parameters of the infrared laser radiation with oxide materials (Al sub 2 O sub 3 , ZrO sub 2 , CeO sub 2) have been presented. A phenomenon of laser radiation by the samples investigated under laser heating has been experimentally discovered for the first time. This phenomenon connected with forming of the stable vapor shell above the irradiated samples was expressed as a sharp drop in temperature on the heating curve and called as an absorption flash. (author)

  5. Investigation of damage to metals by pulsed CO2 laser radiation

    Science.gov (United States)

    Vedenov, A. A.; Gladush, G. G.; Drobyazko, S. V.; Senatorov, Yu M.

    1981-10-01

    A study was made of the physical mechanism involved in piercing holes in metallic plates, using CO2 laser radiation. It was established experimentally that the energy consumed in removing a unit volume of a metal has a minimum, depending on the duration and energy of the laser pulse. An explanation is proposed for the laws governing this behavior, based on ideas of the ejection of liquid from a crater by the vapor pressure of the material. The effect on the interaction efficiency of the absorption of laser radiation in the plasma jet is taken into account.

  6. Formation of luminescent emitters by intense laser radiation in transparent media

    Science.gov (United States)

    Martynovich, E. F.; Kuznetsov, A. V.; Kirpichnikov, A. V.; Pestryakov, Efim V.; Bagayev, Sergei N.

    2013-05-01

    The formation of luminescent colour centres in the LiF crystal under the action of femtosecond pulses of the first harmonic of a Ti : sapphire laser is experimentally studied. The experiments were carried out at low- and high-aperture focusing of radiation. The effect of both single pulses and multi-pulse trains on the crystals was studied. Channelling of laser radiation in the waveguides, induced by the filaments of the first pulses, is found. The multiphoton mechanism of interband absorption is confirmed. The optimal conditions of laser impact for designing luminescent emitters in the LiF crystal are determined.

  7. Normal tissue tolerance to external beam radiation therapy: The stomach; Dose de tolerance a l'irradiation des tissus sains: l'estomac

    Energy Technology Data Exchange (ETDEWEB)

    Oberdiac, P. [Service de radiotherapie, hopital de Bellevue, CHU de Saint-Etienne, 42 - Saint-Etienne (France); Mineur, L. [Unite d' oncologie digestive et radiotherapie, institut Sainte-Catherine, 84 - Avignon (France)

    2010-07-15

    In the following article, we will discuss general issues relating to acute and late gastric's radiation toxicities. The tolerance of the stomach to complete or partial organ irradiation is more un-appreciated than for most other organs. We consulted the Medline database via PubMed and used the key words gastric - radiotherapy - toxicity. Currently, 60 Gy or less is prescribed in gastric radiation therapy. Acute clinical toxicity symptoms are predominantly nausea and vomiting. Although there is a general agreement that the whole stomach tolerance is for doses of 40 to 45 Gy without unacceptable complication, it is well established that a stomach dose of 35 Gy increases the risk of ulcer complications. (authors)

  8. Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells

    Directory of Open Access Journals (Sweden)

    K.S. Canuto

    2015-01-01

    Full Text Available Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia coli cells that were exposed to ultraviolet C (UVC radiation. Exponential and stationary wild-type and uvrA-deficient E. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC. Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out.

  9. Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Canuto, K.S.; Guimaraes, O.R.; Geller, M. [Centro Universitario Serra dos Orgaos, Teresopolis, RJ (Brazil). Centro de Ciencias da Saude; Sergio, L.P.S. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia coli cells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficient E. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out. (author)

  10. Applications of Light Amplification by Stimulated Emission of Radiation (Lasers) for Restorative Dentistry

    Science.gov (United States)

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Ajlal, Syed

    2016-01-01

    Light amplification by stimulated emission of radiation (laser) has been used widely in a range of biomedical and dental applications in recent years. In the field of restorative dentistry, various kinds of lasers have been developed for diagnostic (e.g. caries detection) and operative applications (e.g. tooth ablation, cavity preparation, restorations, bleaching). The main benefits for laser applications are patient comfort, pain relief and better results for specific applications. Major concerns for using dental lasers frequently are high cost, need for specialized training and sensitivity of the technique, thereby compromising its usefulness particularly in developing countries. The main aim of this paper is to evaluate and summarize the applications of lasers in restorative dentistry, including a comparison of the applications of lasers for major restorative dental procedures and conventional clinical approaches. A remarkable increase in the use of lasers for dental application is expected in the near future. PMID:26642047

  11. Applications of Light Amplification by Stimulated Emission of Radiation (Lasers) for Restorative Dentistry.

    Science.gov (United States)

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Ajlal, Syed

    2016-01-01

    Light amplification by stimulated emission of radiation (laser) has been used widely in a range of biomedical and dental applications in recent years. In the field of restorative dentistry, various kinds of lasers have been developed for diagnostic (e.g. caries detection) and operative applications (e.g. tooth ablation, cavity preparation, restorations, bleaching). The main benefits for laser applications are patient comfort, pain relief and better results for specific applications. Major concerns for using dental lasers frequently are high cost, need for specialized training and sensitivity of the technique, thereby compromising its usefulness particularly in developing countries. The main aim of this paper is to evaluate and summarize the applications of lasers in restorative dentistry, including a comparison of the applications of lasers for major restorative dental procedures and conventional clinical approaches. A remarkable increase in the use of lasers for dental application is expected in the near future. © 2015 S. Karger AG, Basel.

  12. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Taiee [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  13. Two-frequency picosecond laser based on composite vanadate crystals with {sigma}-polarised radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sirotkin, A A; Sadovskiy, S P; Garnov, Sergei V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2013-07-31

    A two-frequency picosecond laser based on {alpha}-cut Nd:YVO{sub 4}-YVO{sub 4} composite vanadate crystals is experimentally studied for the s-polarised radiation at the {sup 4}F{sub 3/2} - {sup 4}I{sub 11/2} transition with frequency tuning using Fabry-Perot etalons of different thickness. The difference between the radiation wavelengths was tuned within the range of 1.2-4.4 nm. In the mode-locking regime, the two-frequency radiation power was 280 mW at an absorbed pump power of 12 W. (lasers)

  14. Laser pumped light emitting diodes as broad area sources of coherent radiation

    Science.gov (United States)

    Rahman, Faiz; Sorel, Marc

    2006-08-01

    This paper describes the use of large area light emitting diodes, pumped with various laser sources, as extended area emitters of coherent radiation. The photon recycling takes place through the intermediary of electron hole pair formation and subsequent stimulated recombination. It is possible to generate both spontaneous and stimulated emission together and the two channels are then independent of each other. This allows the generation of a mixture of coherent and non-coherent radiation in any desired proportion. The technique described is a broad-band resonant process with diffusive feedback and can be used for generating non-collimated laser radiation for a variety of applications.

  15. Radiation Hardening and Heavy-ion to Laser Correlation in SiGe Devices and Circuits

    Science.gov (United States)

    2017-03-01

    Radiation Hardening and Heavy-ion to Laser Correlation in SiGe Devices and Circuits Zachary E. Fleetwood and John D. Cressler School of...platforms intended for radiation - intense applications and spaceflight hardware considerations. A number of new radio frequency (RF) studies have...extended the knowledge base of applying radiation -hardening-by- design (RHBD) to SiGe Heterojunction Bipolar Transistor (HBT) circuits. Other research

  16. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout.

    Science.gov (United States)

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results.

  17. Normal tissue tolerance to external beam radiation therapy: Bladder; Dose de tolerance a l'irradiation des tissus sains: la vessie

    Energy Technology Data Exchange (ETDEWEB)

    Pointreau, Y.; Atean, I. [Service de radiotherapie Corad, centre regional universitaire de cancerologie Henry-S.-Kaplan, hopital Bretonneau-2, CHU de Tours, 37 - Tours (France); Durdux, C. [Universite Paris-Descartes, 75 - Paris (France); Service d' oncologie radiotherapie, hopital europeen Georges-Pompidou, 75 - Paris (France)

    2010-07-15

    The bladder is a hollow visco-elastic organ involved in urinary continence. In relation to its anatomical location, bladder is exposed in whole or in part to ionizing radiation in external radiotherapy or in brachytherapy of the pelvic region. The acute and late functional changes after external beam radiation consist in urinary frequency, compliance defaults and hematuria. Incidence of urinary side-effects, as well as related modalities of radiotherapy, is poorly described in the literature. Medline literature searches were performed via PubMed using the keywords -bladder - radiotherapy - toxicity - radiation cystitis - tolerability - organ at risk- to describe urinary side-effects due to radiation. Some recommendations exist on the dose constraints applied to bladder. These were mainly established from prostate radiation therapy studies but without definitive consensus. In clinical practice, dose constraints take into account clinical settings: bladder cancer which requires total bladder irradiation or others pelvic tumours (prostate, uterus) in which the bladder is considered as an organ at risk. Risks of radiation cystitis increase with total dose (above 60 Gy), bladder irradiated volume and concomitant chemo radiation. Modern techniques using conformal radiotherapy with modulated intensity will probably have beneficial impact on bladder toxicity. (authors)

  18. A cesium plasma TELEC device for conversion of laser radiation to electric power

    Science.gov (United States)

    Britt, E. J.; Rasor, N. S.; Lee, G.; Billman, K. W.

    1978-01-01

    Tests of the thermoelectronic laser energy converter (TELEC) concept are reported. This device has been devised as a means to convert high-average-power laser radiation into electrical energy, a crucial element in any space laser power transmission scheme using the available high-power/efficiency infrared lasers. Theoretical calculations, based upon inverse bremsstrahlung absorption in a cesium plasma, indicate internal conversion efficiency up to 50% with an overall system efficiency of 42%. The experiments reported were made with a test cell designed to confirm the theoretical model rather than demonstrate efficiency; 10.6-micron laser-beam absorption was limited to about 0.001 of the incident beam by the short absorption region. Nevertheless, confirmatory results were obtained, and the conversion of absorbed radiation to electric power is estimated to be near 10%.

  19. Theoretical investigation on radiation tolerance of {{\\boldsymbol{M}}}_{{\\boldsymbol{n}}+1}{{\\boldsymbol{AX}}}_{{\\boldsymbol{n}}} phases

    Science.gov (United States)

    Yin, Ke-Di; Zhang, Xi-Tong; Huang, Qing; Xue, Jian-Ming

    2017-06-01

    Ternary {M}n+1{{AX}}n phases with layered hexagonal structures, as candidate materials used for next-generation nuclear reactors, have shown great potential in tolerating radiation damage due to their unique combination of ceramic and metallic properties. However, {M}n+1{{AX}}n materials behave differently in amorphization when exposed to energetic neutron and ion irradiations in experiment. We first analyze the irradiation tolerances of different {M}n+1{{AX}}n (MAX) phases in terms of electronic structure, including the density of states (DOS) and charge density map. Then a new method based on the Bader analysis with the first-principle calculation is used to estimate the stabilities of MAX phases under irradiation. Our calculations show that the substitution of Cr/V/Ta/Nb by Ti and Si/Ge/Ga by Al can increase the ionicities of the bonds, thus strengthening the radiation tolerance. It is also shown that there is no obvious difference in radiation tolerance between {M}n+1A{{{C}}}n and {M}n+1A{{{N}}}n due to the similar charge transfer values of C and N atoms. In addition, the improved radiation tolerance from Ti3AlC2 to Ti2AlC (Ti3AlC2 and Ti2AlC have the same chemical elements), can be understood in terms of the increased Al/TiC layer ratio. Criteria based on the quantified charge transfer can be further used to explore other {M}n+1{{AX}}n phases with respect to their radiation tolerance, playing a critical role in choosing appropriate MAX phases before they are subjected to irradiation in experimental test for future nuclear reactors. Project supported by the National Natural Science Foundation of China (Grant Nos. 91226202 and 91426304).

  20. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  1. Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water.

    Science.gov (United States)

    Pratisto, H; Frenz, M; Ith, M; Altermatt, H J; Jansen, E D; Weber, H P

    1996-07-01

    Because of the high absorption of near-infrared laser radiation in biological tissue, erbium lasers and holmium lasers emitting at 3 and 2 µm, respectively, have been proven to have optimal qualities for cutting or welding and coagulating tissue. To combine the advantages of both wavelengths, we realized a multiwavelength laser system by simultaneously guiding erbium and holmium laser radiation by means of a single zirconium fluoride (ZrF(4)) fiber. Laser-induced channel formation in water and poly(acrylamide) gel was investigated by the use of a time-resolved flash-photography setup, while pressure transients were recorded simultaneously with a needle hydrophone. The shapes and depths of vapor channels produced in water and in a submerged gel after single erbium and after combination erbium-holmium radiation delivered by means of a 400-µm ZrF(4) fiber were measured. Transmission measurements were performed to determine the amount of pulse energy available for tissue ablation. The effects of laser wavelength and the delay time between pulses of different wavelengths on the photomechanical and photothermal responses of meniscal tissue were evaluated in vitro by the use of histology. It was observed that the use of a short (200-µs, 100-mJ) holmium laser pulse as a prepulse to generate a vapor bubble through which the ablating erbium laser pulse can be transmitted (delay time, 100 µs) increases the cutting depth in meniscus from 450 to 1120 µm as compared with the depth following a single erbium pulse. The results indicate that a combination of erbium and holmium laser radiation precisely and efficiently cuts tissue under water with 20-50-µm collateral tissue damage.

  2. Stress relaxation and cartilage shaping under laser radiation

    Science.gov (United States)

    Sobol, Emil N.; Sviridov, Alexander P.; Bagratashvili, Victor N.; Omelchenko, Alexander I.; Ovchinnikov, Yuriy M.; Shekhter, Anatoliy B.; Downes, S.; Howdle, Steven; Jones, Nicholas; Lowe, J.

    1996-05-01

    The problem of a purposeful change of the shape of cartilage is of great importance for otolaryngology, orthopaedics, and plastic surgery. In 1992 we have found a possibility of controlled shaping of cartilage under moderate laser heating. This paper presents new results in studies of that phenomenon. We have measured temperature and stress in a tissue undergoing to irradiation with a Holmium laser. Study of cartilage structure allowed us to find conditions for laser shaping without pronounced alterations in the structure of matrix.

  3. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Li, E-mail: ligan0001@gmail.com; Mousen, Cheng; Xiaokang, Li [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China)

    2014-03-15

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction, the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.

  4. Evaluation of radiation tolerance of TMR designs in SRAM-based FPGA.

    CERN Document Server

    Shibin, Konstantin

    2016-01-01

    During the Summer Student program in CERN I was working in the CMS Muon Drift Tube group, building a setup for evaluating the radiation tolerance of the drift tube signal encoding hardware (Time-to-Digital Converter, TDC) implemented in SRAM-based FPGA using Triple Modular Redundancy (TMR). While commercially available SRAM-based FPGAs have more computational power, are more advanced in general than flash-based FPGAs and are the most suitable technology for implementing the TDC logic (also taking into account the performance requirements), in the context of operation inside an environment with high levels of ionizing radiation (such as inside CMS DT detector) they are more susceptible to configuration memory bit flips – Single Event Upsets (SEUs) - due to lower required energy for a memory bit being flipped. The effect of a SEU inside the configuration memory might change the functionality of the underlying building blocks of FPGA and if the respective blocks were involved in implementing the desired custom...

  5. Regeneration of spine disc and joint cartilages under temporal and space modulated laser radiation

    Science.gov (United States)

    Sobol, E.; Shekhter, A.; Baskov, A.; Baskov, V.; Baum, O.; Borchshenko, I.; Golubev, V.; Guller, A.; Kolyshev, I.; Omeltchenko, A.; Sviridov, A.; Zakharkina, O.

    2009-02-01

    The effect of laser radiation on the generation of hyaline cartilage in spine disc and joints has been demonstrated. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces nonhomogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 45-50 oC) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Nondestructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in orthopedics for the treatment cartilages of spine and joints. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed for 340 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care. Substantial relief of back pain was obtained in 90% of patients treated who returned to their daily activities. The experiments on reparation of the defects in articular cartilage of the porcine joints under temporal and spase modulated laser radiation have shown promising results.

  6. A new method and device of aligning patient setup lasers in radiation therapy.

    Science.gov (United States)

    Hwang, Ui-Jung; Jo, Kwanghyun; Lim, Young Kyung; Kwak, Jung Won; Choi, Sang Hyuon; Jeong, Chiyoung; Kim, Mi Young; Jeong, Jong Hwi; Shin, Dongho; Lee, Se Byeong; Park, Jeong-Hoon; Park, Sung Yong; Kim, Siyong

    2016-01-08

    The aim of this study is to develop a new method to align the patient setup lasers in a radiation therapy treatment room and examine its validity and efficiency. The new laser alignment method is realized by a device composed of both a metallic base plate and a few acrylic transparent plates. Except one, every plate has either a crosshair line (CHL) or a single vertical line that is used for alignment. Two holders for radiochromic film insertion are prepared in the device to find a radiation isocenter. The right laser positions can be found optically by matching the shadows of all the CHLs in the gantry head and the device. The reproducibility, accuracy, and efficiency of laser alignment and the dependency on the position error of the light source were evaluated by comparing the means and the standard deviations of the measured laser positions. After the optical alignment of the lasers, the radiation isocenter was found by the gantry and collimator star shots, and then the lasers were translated parallel to the isocenter. In the laser position reproducibility test, the mean and standard deviation on the wall of treatment room were 32.3 ± 0.93 mm for the new method whereas they were 33.4 ± 1.49 mm for the conventional method. The mean alignment accuracy was 1.4 mm for the new method, and 2.1 mm for the conventional method on the walls. In the test of the dependency on the light source position error, the mean laser position was shifted just by a similar amount of the shift of the light source in the new method, but it was greatly magnified in the conventional method. In this study, a new laser alignment method was devised and evaluated successfully. The new method provided more accurate, more reproducible, and faster alignment of the lasers than the conventional method.

  7. An iterative method applied to optimize the design of PIN photodiodes for enhanced radiation tolerance and maximum light response

    Energy Technology Data Exchange (ETDEWEB)

    Cedola, A.P., E-mail: ariel.cedola@ing.unlp.edu.a [Grupo de Estudio de Materiales y Dispositivos Electronicos (GEMyDE), Dpto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional de La Plata, 48 y 116, C.C. 91, La Plata 1900, Buenos Aires (Argentina); Cappelletti, M.A. [Grupo de Estudio de Materiales y Dispositivos Electronicos (GEMyDE), Dpto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional de La Plata, 48 y 116, C.C. 91, La Plata 1900, Buenos Aires (Argentina); Casas, G. [Grupo de Estudio de Materiales y Dispositivos Electronicos (GEMyDE), Dpto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional de La Plata, 48 y 116, C.C. 91, La Plata 1900, Buenos Aires (Argentina); Universidad Nacional de Quilmes, Roque Saenz Pena 352, Bernal 1876, Buenos Aires (Argentina); Peltzer y Blanca, E.L. [Grupo de Estudio de Materiales y Dispositivos Electronicos (GEMyDE), Dpto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional de La Plata, 48 y 116, C.C. 91, La Plata 1900, Buenos Aires (Argentina); Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), CONICET - UNLP - CIC, La Plata 1900, Buenos Aires (Argentina)

    2011-02-11

    An iterative method based on numerical simulations was developed to enhance the proton radiation tolerance and the responsivity of Si PIN photodiodes. The method allows to calculate the optimal values of the intrinsic layer thickness and the incident light wavelength, in function of the light intensity and the maximum proton fluence to be supported by the device. These results minimize the effects of radiation on the total reverse current of the photodiode and maximize its response to light. The implementation of the method is useful in the design of devices whose operation point should not suffer variations due to radiation.

  8. Normal tissue tolerance to external beam radiation therapy: Esophagus; Dose de tolerance a l'irradiation des tissus sains: l'oesophage

    Energy Technology Data Exchange (ETDEWEB)

    Bera, G.; Pointreau, Y. [Clinique d' oncologie-radiotherapie, centre Henry-S.-Kaplan, hopital Bretonneau, CHU de Tours, 37 - Tours (France); Denis, F.; Dupuis, O. [Centre Jean-Bernard, clinique Victor-Hugo, 72 - Le-Mans (France); Orain, I. [Service d' anatomie et cytologie pathologiques, hopital Trousseau, CHU de Tours, 37 - Tours (France); Crehange, G. [Departement de radiotherapie, centre Georges-Francois-Leclerc, 21 - Dijon (France)

    2010-07-15

    The esophagus is a musculo-membranous tube through which food passes from the pharynx to the stomach. Due to its anatomical location, it can be exposed to ionizing radiation in many external radiotherapy indications. Radiation-induced esophageal mucositis is clinically revealed by dysphagia and odynophagia, and usually begins 3 to 4 weeks after the start of radiation treatment. With the rise of multimodality treatments (e.g., concurrent chemoradiotherapy, dose escalation and accelerated fractionation schemes), esophageal toxicity has become a significant dose-limiting issue. Understanding the predictive factors of esophageal injury may improve the optimal delivery of treatment plans. It may help to minimize the risks, hence increasing the therapeutic ratio. Based on a large literature review, our study describes both early and late radiation-induced esophageal injuries and highlights some of the predictive factors for cervical and thoracic esophagus toxicity. These clinical and dosimetric parameters are numerous but none is consensual. The large number of dosimetric parameters strengthens the need of an overall analysis of the dose/volume histograms. The data provided is insufficient to recommend their routine use to prevent radiation-induced esophagitis. Defining guidelines for the tolerance of the esophagus to ionizing radiation remains essential for a safe and efficient treatment. (authors)

  9. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    Science.gov (United States)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  10. Changes in gene expression by 193- and 248-nm excimer laser radiation in cultured human fibroblasts.

    Science.gov (United States)

    Rimoldi, D; Flessate, D M; Samid, D

    1992-09-01

    Tissue ablation by ultraviolet excimer lasers results in exposure of viable cells to subablative doses of radiation. To understand the potential biological consequences better, we have studied changes in gene expression in cultured human skin fibroblasts exposed to either 193- or 248-nm laser light. Northern blot analyses revealed that both treatments up-regulate a common set of genes, including interstitial collagenase, tissue inhibitor of metalloprotease, metallothionein, and the proto-oncogene c-fos. Dose-response and kinetic studies of collagenase induction by 193-nm radiation showed a maximal effect with 60 J/m2 and at approximately 24 h. The induction was still persistent 96 h later. In addition to the commonly affected genes, known to be activated also by conventional UV light (254 nm) and tumor-promoting phorbol esters, other genes were found to be selectively induced by the 193-nm radiation. The heat-shock hsp70 mRNA, undetectable in controls and in cultures irradiated at 248 nm, was transiently induced 8 h after exposure to 193-nm radiation. Furthermore, a selective up-regulation of collagen type I expression was observed. The results indicate that the 193- and 248-nm radiations by excimer lasers elicit specific and different cellular responses, in addition to an overlapping pathway of gene activation common also to UV radiation by germicidal lamps. The laser-induced genes could serve as molecular markers in evaluating cell injury in situ.

  11. LASERS: Characteristics of the radiation of an Nd:YAG laser with an intracavity spatiotemporal modulator based on a PLZT electro-optical ceramic

    Science.gov (United States)

    Alekseev, V. N.; Kotylev, V. N.; Liber, V. I.

    1999-06-01

    The characteristics of the radiation of a laser with intracavity scanning with the aid of electrically controlled spatiotemporal modulators based on a transparent electro-optical PLZT ceramic were investigated. The possibility of the generation of packets of single pulses of scanning laser radiation with a repetition frequency up to 100 kHz, and up to 10 kHz under the conditions of continuous flashlamp pumping with an intracavity spatiotemporal modulator is demonstrated. Possible applications of the laser are discussed.

  12. Laser-plasma SXR/EUV sources: adjustment of radiation parameters for specific applications

    Science.gov (United States)

    Bartnik, A.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Kostecki, J.; Szczurek, A.; Szczurek, M.; Wachulak, P.; Wegrzyński, Ł.

    2014-12-01

    In this work soft X-ray (SXR) and extreme ultraviolet (EUV) laser-produced plasma (LPP) sources employing Nd:YAG laser systems of different parameters are presented. First of them is a 10-Hz EUV source, based on a double-stream gaspuff target, irradiated with the 3-ns/0.8J laser pulse. In the second one a 10 ns/10 J/10 Hz laser system is employed and the third one utilizes the laser system with the pulse shorten to approximately 1 ns. Using various gases in the gas puff targets it is possible to obtain intense radiation in different wavelength ranges. This way intense continuous radiation in a wide spectral range as well as quasi-monochromatic radiation was produced. To obtain high EUV or SXR fluence the radiation was focused using three types of grazing incidence collectors and a multilayer Mo/Si collector. First of them is a multfoil gold plated collector consisted of two orthogonal stacks of ellipsoidal mirrors forming a double-focusing device. The second one is the ellipsoidal collector being part of the axisymmetrical ellipsoidal surface. Third of the collectors is composed of two aligned axisymmetrical paraboloidal mirrors optimized for focusing of SXR radiation. The last collector is an off-axis ellipsoidal multilayer Mo/Si mirror allowing for efficient focusing of the radiation in the spectral region centered at λ = 13.5 ± 0.5 nm. In this paper spectra of unaltered EUV or SXR radiation produced in different LPP source configurations together with spectra and fluence values of focused radiation are presented. Specific configurations of the sources were assigned to various applications.

  13. Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method

    CERN Document Server

    Nechayev, Sergey; Baldo, Marc A; Rotschild, Carmel

    2016-01-01

    High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump ...

  14. New frontier of laser particle acceleration: driving protons to 80 MeV by radiation pressure

    CERN Document Server

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Lee, Chang-Lyoul; Choi, Il Woo; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V; Jeong, Tae Moon; Nam, Chang Hee

    2014-01-01

    The radiation pressure acceleration (RPA) of charged particles has been considered a challenging task in laser particle acceleration. Laser-driven proton/ion acceleration has attracted considerable interests due to its underlying physics and potential for applications such as high-energy density physics, ultrafast radiography, and cancer therapy. Among critical issues to overcome the biggest challenge is to produce energetic protons using an efficient acceleration mechanism. The proton acceleration by radiation pressure is considerably more efficient than the conventional target normal sheath acceleration driven by expanding hot electrons. Here we report the generation of 80-MeV proton beams achieved by applying 30-fs circularly polarized laser pulses with an intensity of 6.1 x 1020 W/cm2 to ultrathin targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and 3D-PIC simulations. We expect this fast energy scalin...

  15. Quantum mechanical theory of collisional ionization in the presence of intense laser radiation

    Science.gov (United States)

    Bellum, J. C.; George, T. F.

    1978-01-01

    The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.

  16. Reduction of collisional-radiative models for laser-produced argon plasmas

    Science.gov (United States)

    Abrantes, Richard June; Karagozian, Ann; Le, Hai

    2016-10-01

    The formation of a laser-induced plasma involves a variety of physical phenomena stemming from the laser-plasma interaction. A thorough understanding of these processes encourages improvement and innovation for many applications. In this work, we aim to computationally reduce a previously-developed collisional-radiative (CR) model constructed from the LANL database, which includes all of the relevant collisional and radiative processes for all the ionic stages of argon. The laser is coupled to the plasma via multiphoton ionization and inverse Bremsstrahlung, processes important for electron production and heating. The use of the CR model allows us to identify dominant mechanisms responsible for initial breakdown of the gas and thermal equilibriation processes. The results are compared with experimental data from laser-induced breakdown experiments. Research supported by the AFOSR.

  17. Electromagnetic radiations from laser interaction with gas-filled Hohlraum

    Science.gov (United States)

    Yang, Ming; Yang, Yongmei; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2018-01-01

    The emission of intensive electromagnetic pulse (EMP) due to laser-target interactions at the ShenGuang-III laser facility has been evaluated by probes. EMP signals measured using the small discone antennas demonstrated two variation trends including a bilateral oscillation wave and a unilateral oscillation wave. The new trend of unilateral oscillation could be attributed to the hohlraum structure and low-Z gas in the hohlraum. The EMP waveform showed multiple peaks when the gas-filled hohlraum was shot by the high-power laser. Comparing the EMP signals with the verification of stimulated Raman scattering energy and hard x-ray energy spectrum, we found that the intensity of EMP signals decreased with the increase of the hohlraum size. The current results are expected to offer preliminary information to study physical processes on laser injecting gas-filled hohlraums in the National Ignition Facility implementation.

  18. Oxygen assisted interconnection of silver nanoparticles with femtosecond laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Zhou, Y., E-mail: nzhou@uwaterloo.ca [Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Duley, W. W. [Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2015-12-14

    Ablation of silver (Ag) nanoparticles in the direction of laser polarization is achieved by utilizing femtosecond laser irradiation in air at laser fluence ranging from ∼2 mJ/cm{sup 2} to ∼14 mJ/cm{sup 2}. This directional ablation is attributed to localized surface plasmon induced localized electric field enhancement. Scanning electron microscopy observations of the irradiated particles in different gases and at different pressures indicate that the ablation is further enhanced by oxygen in the air. This may be due to the external heating via the reactions of its dissociation product, atomic oxygen, with the surface of Ag particles, while the ablated Ag is not oxidized. Further experimental observations show that the ablated material re-deposits near the irradiated particles and results in the extension of the particles in laser polarization direction, facilitating the interconnection of two well-separated nanoparticles.

  19. Laser linewidth and fiber nonlinearity tolerance study of C-16QAM compared to square 16QAM in coherent OFDM system

    Science.gov (United States)

    Xu, Fei; Qiao, Yaojun; Zhou, Ji; Guo, Mengqi; Tian, Huiping

    2017-03-01

    We introduced an effective modulation format circle 16 quadrature amplitude modulation (C-16QAM) to improve the laser linewidth induced phase noise and fiber nonlinear effects tolerance in coherent orthogonal frequency division multiplexing (OFDM) system without other losses compared to square 16QAM. Although C-16QAM has improved the performance of single channel system with Viterbi-Viterbi carrier phase estimation, C-16QAM using in coherent OFDM system has not been performed and such configuration of system may solve many problems in the next generation access networks. Here we numerically studied two separate manifestations of phase noise generated by laser linewidth and fiber nonlinear effects. We take these two kinds of phase noise into consideration separately by investigating the influence of laser linewidth with fixed launch power into transmission fiber and the influence of fiber nonlinear effects with fixed laser linewidth. We find that the C-16QAM improves the laser linewidth induced phase noise significantly and improves fiber nonlinear effects tolerance to a certain degree compared to square 16QAM. This coherent C-16QAM OFDM system may have great prospects for the next generation access networks for these significantly improvements.

  20. The role of laser radiation therapy in maxillary sinusitis

    OpenAIRE

    Isser, D. K.; Sett, S.; Saha, B.P.

    2002-01-01

    Efficacy of prescribed noninvasive & invasive types of treatment of maxillary sinusitis has been compared with low-dose LASER therapy (LLT). After going through the observations of different authors on the therapeutic role of LLT (GaA1AS-LASER) in non-ENT infective diseases, its use in ‘sinusitis’ has been adjudged. Such type of study-report has not been found by us in the literatures, available to us.

  1. Influence of laser radiation on acceleration of postextraction wound healing

    Science.gov (United States)

    Grzesiak-Janas, Grazyna; Kobos, Jozef

    1997-10-01

    The investigations included 50 patients who were subjected to extraction of two adjacent teeth because of chronic periodontal ligament inflammation using 2 percent lignocaine as an anaesthetic agent. One postextraction wound was irradiated with laser light, whereas the second one was left to be healed in a natural way. The use of laser beam accelerates postextraction wound healing on the basis of clinical and cytologic evaluation.

  2. Atmospheric propagation of high power laser radiation at different weather conditions

    OpenAIRE

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-01-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  3. Third harmonic generation of CO2 laser radiation in AgGaSe2 crystal

    Indian Academy of Sciences (India)

    ... for second harmonic and third harmonic generations are 6.3% and 2.4% respectively with the input fundamental pump power density of 5.9 MW/cm2 only. The wavelength of the fundamental CO2 laser radiation used for the generation of harmonics is 10.6 m, (20) line. A compact TEA CO2 laser source has been built in ...

  4. BRIEF COMMUNICATIONS: Pulse-periodic iodine photodissociation laser pumped with radiation from magnetoplasma compressors

    Science.gov (United States)

    Kashnikov, G. N.; Orlov, V. K.; Panin, A. N.; Piskunov, A. K.; Reznikov, Vladimir A.

    1980-09-01

    A study was made of the characteristics of an iodine photodissociation laser pumped by radiation emitted from magnetoplasma compressors. A closed system for circulating the working gas C3F7I was employed in this laser. Pulse-periodic operation with an interval of 1 min between the pulses was achieved; the output energy was 110 J and the pulse duration was 30 μ sec.

  5. The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation.

    Science.gov (United States)

    Kujawa, Jolanta; Pasternak, Kamila; Zavodnik, Ilya; Irzmański, Robert; Wróbel, Dominika; Bryszewska, Maria

    2014-09-01

    The therapeutic effects of low-power laser radiation of different wavelengths and light doses are well known, but the biochemical mechanism of the interaction of laser light with living cells is not fully understood. We have investigated the effect of MLS (Multiwave Locked System) laser near-infrared irradiation on cell membrane structure, functional properties, and free radical generation using human red blood cells and breast cancer MCF-4 cells. The cells were irradiated with low-intensity MLS near-infrared (simultaneously 808 nm, continuous emission and 905 nm, pulse emission, pulse-wave frequency, 1,000 or 2,000 Hz) laser light at light doses from 0 to 15 J (average power density 212.5 mW/cm(2), spot size was 3.18 cm(2)) at 22 °C, the activity membrane bound acetylcholinesterase, cell stability, anti-oxidative activity, and free radical generation were the parameters used in characterizing the structural and functional changes of the cell. Near-infrared low-intensity laser radiation changed the acetylcholinesterase activity of the red blood cell membrane in a dose-dependent manner: There was a considerable increase of maximal enzymatic rate and Michaelis constant due to changes in the membrane structure. Integral parameters such as erythrocyte stability, membrane lipid peroxidation, or methemoglobin levels remained unchanged. Anti-oxidative capacity of the red blood cells increased after MLS laser irradiation. This irradiation induced a time-dependent increase in free radical generation in MCF-4 cells. Low-intensity near-infrared MLS laser radiation induces free radical generation and changes enzymatic and anti-oxidative activities of cellular components. Free radical generation may be the mechanism of the biomodulative effect of laser radiation.

  6. Collisionless dissociation and isotopic enrichment of SF6 using high-powered CO2 laser radiation

    Science.gov (United States)

    Gower, M. C.; Billman, K. W.

    1977-01-01

    Dissociation of S-32F6 and the resultant isotopic enrichment of S-34F6 using high-powered CO2 laser radiation has been studied with higher experimental sensitivity than previously reported. Enrichment factors have been measured as a function of laser pulse number, wavelength, energy and time duration. A geometry independent dissociation cross section is introduced and measured values are presented. Threshold energy densities, below which no dissociation was observed, were also determined.

  7. He-Ne laser radiation in combined therapy of children's bronchial asthma

    Science.gov (United States)

    Zhilnikov, Dmitriy V.; Varavva, Andrey S.; Tarasova, Olga N.; Plaksina, Galina V.; Barybin, Vitaliy F.; Khlutkova, Svetlana N.

    2004-02-01

    In this paper the medical application of He-Ne lasers for the treatment of bronchial asthma is described. Research objective of this work was the development of a treatment method for children with bronchial asthman of heavy and medium-heavy forms, resistant to the base therapy, with the help of low-intensive laser radiation with wave length λ=0,63 μm.

  8. An FMEA evaluation of intensity modulated radiation therapy dose delivery failures at tolerance criteria levels.

    Science.gov (United States)

    Faught, Jacqueline Tonigan; Balter, Peter A; Johnson, Jennifer L; Kry, Stephen F; Court, Laurence E; Stingo, Francesco C; Followill, David S

    2017-11-01

    The objective of this work was to assess both the perception of failure modes in Intensity Modulated Radiation Therapy (IMRT) when the linac is operated at the edge of tolerances given in AAPM TG-40 (Kutcher et al.) and TG-142 (Klein et al.) as well as the application of FMEA to this specific section of the IMRT process. An online survey was distributed to approximately 2000 physicists worldwide that participate in quality services provided by the Imaging and Radiation Oncology Core - Houston (IROC-H). The survey briefly described eleven different failure modes covered by basic quality assurance in step-and-shoot IMRT at or near TG-40 (Kutcher et al.) and TG-142 (Klein et al.) tolerance criteria levels. Respondents were asked to estimate the worst case scenario percent dose error that could be caused by each of these failure modes in a head and neck patient as well as the FMEA scores: Occurrence, Detectability, and Severity. Risk probability number (RPN) scores were calculated as the product of these scores. Demographic data were also collected. A total of 181 individual and three group responses were submitted. 84% were from North America. Most (76%) individual respondents performed at least 80% clinical work and 92% were nationally certified. Respondent medical physics experience ranged from 2.5 to 45 yr (average 18 yr). A total of 52% of individual respondents were at least somewhat familiar with FMEA, while 17% were not familiar. Several IMRT techniques, treatment planning systems, and linear accelerator manufacturers were represented. All failure modes received widely varying scores ranging from 1 to 10 for occurrence, at least 1-9 for detectability, and at least 1-7 for severity. Ranking failure modes by RPN scores also resulted in large variability, with each failure mode being ranked both most risky (1st) and least risky (11th) by different respondents. On average MLC modeling had the highest RPN scores. Individual estimated percent dose errors and severity

  9. Exposure to laser radiation for creation of metal materials nanoporous structures

    Science.gov (United States)

    Murzin, Serguei P.

    2013-06-01

    Exposure to laser radiation for creation of nanoporous structures in the Cu-Zn alloy was investigated. It was established that exposure to laser pulse-periodic radiation with pulse repetition rate up to 5000 Hz makes it possible to form a nanoporous structure in the near-surface layer. The conditions of increase of area depth of such structures formation up to 40-45 μm were ascertained. The temperature and speed conditions which provide predominant channel-type nanopores formation with width of about 100 nm forming a nanoporous net were determined. This patented technology is a perspective for production of catalysts and microfiltration membranes.

  10. Research on a laser ultrasound method for testing the quality of a nuclear radiation protection structure

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Ma, Liyin

    2017-02-01

    Laser ultrasonics has been investigated for inspecting the quality of a nuclear radiation protection structure. A possibility is proposed to improve the signal to noise ratio (SNR) of a laser ultrasonic inspection system. Then, a nuclear radiation protection structure composed of an AISI 1045 steel sheet connected with a lead alloy sheet by using an epoxy resin adhesive was manufactured with simulated defects. A non-contact laser ultrasonic inspection system, where the measured signals were filtered using a wavelet threshold de-noising method, was established to conduct a series of experiments. The proposed signal processing method can significantly improve the SNR of measured laser ultrasound signals on a rough solid surface. Compared with the SNR of original ultrasonic signals measured in transmission and reflection, the SNR of processed transmitted and reflected signals is improved by 13.8 and 16.6 dB, respectively. Moreover, laser ultrasonic C-scans based on the transmission and pulse-echo method can detect the simulated de-bonding defects, and the relative deviation between the measured sizes and design values is below 9%. Therefore, the laser ultrasonic method combined with effective signal processing can achieve the quantitative characterization of de-bonding defects in nuclear radiation protection structures.

  11. UV and IR laser radiation's interaction with metal film and teflon surfaces

    Science.gov (United States)

    Fedenev, A. V.; Alekseev, S. B.; Goncharenko, I. M.; Koval', N. N.; Lipatov, E. I.; Orlovskii, V. M.; Shulepov, M. A.; Tarasenko, V. F.

    2003-04-01

    The interaction of Xe ([lambda] [similar] 1.73 [mu]m) and XeCl (0.308 [mu]m) laser radiation with surfaces of metal and TiN-ceramic coatings on glass and steel substrates has been studied. Correlation between parameters of surface erosion versus laser-specific energy was investigated. Monitoring of laser-induced erosion on smooth polished surfaces was performed using optical microscopy. The correlation has been revealed between characteristic zones of thin coatings damaged by irradiation and energy distribution over the laser beam cross section allowing evaluation of defects and adhesion of coatings. The interaction of pulsed periodical CO2 ([lambda] [similar] 10.6 [mu]m), and Xe ([lambda] [similar] 1.73 [mu]m) laser radiation with surfaces of teflon (polytetrafluoroethylene—PTFE) has been studied. Monitoring of erosion track on surfaces was performed through optical microscopy. It has been shown that at pulsed periodical CO2-radiation interaction with teflon the sputtering of polymer with formation of submicron-size particles occurs. Dependencies of particle sizes, form, and sputtering velocity on laser pulse duration and target temperature have been obtained.

  12. Design of a radiation tolerant system for total ionizing dose monitoring using floating gate and RadFET dosimeters

    Science.gov (United States)

    Ferraro, R.; Danzeca, S.; Brucoli, M.; Masi, A.; Brugger, M.; Dilillo, L.

    2017-04-01

    The need for upgrading the Total Ionizing Dose (TID) measurement resolution of the current version of the Radiation Monitoring system for the LHC complex has driven the research of new TID sensors. The sensors being developed nowadays can be defined as Systems On Chip (SOC) with both analog and digital circuitries embedded in the same silicon. A radiation tolerant TID Monitoring System (TIDMon) has been designed to allow the placement of the entire dosimeter readout electronics in very harsh environments such as calibration rooms and even in the mixed radiation field such as the one of the LHC complex. The objective of the TIDMon is to measure the effect of the TID on the new prototype of Floating Gate Dosimeter (FGDOS) without using long cables and with a reliable measurement system. This work introduces the architecture of the TIDMon, the radiation tolerance techniques applied on the controlling electronics as well as the design choices adopted for the system. Finally, results of several tests of TIDMon under different radiation environments such as gamma rays or mixed radiation field at CHARM are presented.

  13. Quantized form factor shift in the presence of free electron laser radiation

    CERN Document Server

    Fratini, F; Hayrapetyan, A G; Jänkälä, K; Amaro, P; Santos, J P

    2015-01-01

    In electron scattering, the target form factors contribute significantly to the diffraction pattern and carry information on the target electromagnetic charge distribution. Here we show that the presence of electromagnetic radiation, as intense as currently available in Free Electron Lasers, shifts the dependence of the target form factors by a quantity that depends on the number of photons absorbed or emitted by the electron as well as on the parameters of the electromagnetic radiation. As example, we show the impact of intense ultraviolet and soft X-ray radiation on elastic electron scattering by Ne-like Argon ion and by Xenon atom. We find that the shift brought by the radiation to the form factor is in the order of some percent. Our results may open up a new avenue to explore matter with the assistance of laser.

  14. Shear bond strength after Er:YAG laser radiation conditioning of enamel and dentin

    Science.gov (United States)

    Dostalova, Tatjana; Jelinkova, Helena; Dolezalova, Libuse; Kubelka, Jiri; Prochazka, Stanislav; Hamal, Karel; Krejsa, Otakar

    1997-12-01

    This study compares bond shear strength between hard dental tissues and composite resin filling material after a classical acid etching treatment procedure and Er:YAG laser surface conditioning. The retention of composite resin was evaluated for three cases: (1) the flat dental substrate without any conditioning, (2) the classical drilling machine prepared surface with acid etching and (3) the Er:YAG laser conditioning of enamel and dentin. None significant differences between bond shear strength of the classical drilling machine prepared surface with acid etching in comparison with the laser radiation conditioning were found.

  15. Influence of laser radiation on the growth and development of seeds of agricultural plants

    Science.gov (United States)

    Grishkanich, Alexander; Zhevlakov, Alexander; Polyakov, Vadim; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-04-01

    The experimental results presented in this study focused on the study of biological processes caused by exposure to the coating layers of the laser green light seed (λ = 532 nm) range for the larch, violet (λ = 405 nm) and red (λ = 640 nm) for spruce. Spend a series of experiments to study the dependence of crop seed quality (spruce and larch from the pine family) from exposure to laser radiation under different conditions. In all the analyzed groups studied seed germination and growth of seedlings exposed to laser exposure, compared with the control group. The results showed that the higher percentage of germination than seeds of the control group.

  16. Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation

    Science.gov (United States)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2015-03-01

    A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2laser microprocessing). Proposed method was used for preparation of hard tooth tissues surface before filling for improvement of bond strength between tissues surface and restorative materials, microleakage reduction between tissues surface and restorative materials, and for caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.

  17. [Photomodification of blood by laser and ultraviolet radiation: a comparative study].

    Science.gov (United States)

    Zalesskaia, G A; Kalosha, I I

    2014-01-01

    The efficiency of in vivo blood irradiation by a laser light source (λ = 632.8 and 670 nm) and a mercury lamp (UV light, λ = 254 nm) was compared. Absorption spectra, gas content, oxyhemoglobin content, hemoglobin oxygen saturation, concentrations of lactate and glucose were studied for both irradiated and control samples. Hemoglobin was assumed to be the primary photoacceptor of light radiation for the indicated wavelengths. No substantial differences have been found between the effects of laser and non-laser irradiation. We conclude that the biological impact of the procedure is related to photoinduced changes in hemoglobin oxygen saturation.

  18. Acoustic-wave generation in the process of CO2-TEA-laser-radiation interaction with metal targets in air

    Science.gov (United States)

    Apostol, Ileana; Teodorescu, G.; Serbanescu-Oasa, Anca; Dragulinescu, Dumitru; Chis, Ioan; Stoian, Razvan

    1995-03-01

    Laser radiation interaction with materials is a complex process in which creation of acoustic waves or stress waves is a part of it. As a function of the laser radiation energy and intensity incident on steel target surface ultrasound signals were registered and studied. Thermoelastic, ablation and breakdown mechanisms of generation of acoustic waves were analyzed.

  19. Experimental observation of strong radiation reaction in the field of an ultra-intense laser

    Science.gov (United States)

    Sarri, G.; Poder, K.; Tamburini, M.; di Piazza, A.; Keitel, C. H.; Zepf, M.

    2017-10-01

    Describing radiation reaction in an electromagnetic field is one of the most fundamental outstanding problems in electrodynamics. It consists of determining the dynamics of a charged particle fully taking into account self-forces (loosely referred to as radiation reaction) resulting from the radiation fields generated by the particle whilst it is accelerated. Radiation reaction has only been invoked to explain the radiative properties of powerful astrophysical objects, such as pulsars and quasars. From a theoretical standpoint, this phenomenon is subject of fervent debate and this impasse is worsened by the lack of experimental data, due to extremely high fields required to trigger these effects. Here, we report on the first experimental evidence of strong radiation reaction during the interaction of an ultra-relativistic electron beam with an intense laser field, beyond a purely classical description.

  20. Influence of the dentin surface properties on the laser radiation absorption

    Science.gov (United States)

    Chmelickova, Hana; Sebestova, Hana; Hiklova, Helena; Rihakova, Lenka

    2012-01-01

    Research of the optical radiation interaction with human tooth tissues has started early after the first laser construction. Absorptivity of the particular tissue is dependent on the wavelength, thus CO2, Er:YAG and Nd:YAG lasers were used in many experimental works all over the world. Near infrared radiation of the pulsed Nd:YAG laser was found to be suitable for dentine hypersensitivity treatment by sealing of the open tubules with melted and re-solidified dentin. Series of experiments were performed to find suitable process parameters in the laser laboratory equipped with the industrial pulsed Nd:YAG laser system. Tooth samples were prepared and classified into five groups according to their different degree of the surface grinding and polishing. Two types of antireflective agents, erythrosine and black ink, were applied on the samples surfaces. Coated samples and reference ones without any agents were treated with a set of increasing pulse energy values. Pulse frequency, pulse length, laser beam diameter on the sample surface and relative speed remained constant. Lines of the melted spots were displayed by confocal microscope; surface profiles were scanned by contact profilometer. Dimensions of the dentine melted spots were extracted from the measured data and their dependence on the laser pulse energy, degree of the surface grinding and type of antireflective agent were evaluated.

  1. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Influence of atmospheric fluctuations of the induced temperature on the characteristics of laser radiation

    Science.gov (United States)

    Banakh, Viktor A.; Smalikho, I. N.

    1987-10-01

    The expression for the function representing the second-order mutual coherence of a laser beam propagating in a turbulent atmosphere under thermal self-interaction conditions is derived in the aberration-free approximation. An analysis is made of the width of a beam, its wind refraction, and the radius of coherence as a function of the initial coherence of the radiation, of conditions of diffraction on the transmitting aperture, and of fluctuations of the wind velocity. It is shown that on increase in the power the coherence radius of cw laser radiation first increases because of thermal defocusing and then decreases due to the appearance (because of fluctuations of the wind velocity) of induced temperature inhomogeneities in air in the beam localization region. The conditions under which fluctuations of the induced temperature have a significant influence on the coherence of the radiation are determined.

  2. Plastic hollow waveguides: properties and possibilities as a flexible radiation delivery system for CO2-laser radiation.

    Science.gov (United States)

    Cossmann, P H; Romano, V; Spörri, S; Altermatt, H J; Croitoru, N; Frenz, M; Weber, H P

    1995-01-01

    One significant inconvenience of the CO2 laser is the lack of flexible fibers essential for endoscopic applications. The goal of this study is to test the feasibility of hollow waveguides in view of a practical use in medicine. Various types of plastic hollow waveguides for flexible delivery of CO2 laser radiation were examined. The transmission losses, divergence angle, damage threshold, and input and output beam profiles were determined. The interaction process between radiation transmitted through these guides with soft as well as hard tissues was studied. Plastic hollow waveguides can transmit high power (up to 50 W) with low losses (straight guide 1 dB/m) even through bendings. The divergence angle is laser beam. The results of this study show good cutting quality and durability of these flexible plastic hollow waveguides, which render possible to deliver CO2 radiation in the power range needed for most surgical applications with affordable transmission losses. Plastic hollow waveguides are, therefore, a real alternative to replace the mirror arms.

  3. Level-1 Data Driver Card - A high bandwidth radiation tolerant aggregator board for detectors

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2017-01-01

    The Level-1 Data Driver Card (L1DDC) was designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The L1DDC is a high speed aggregator board capable of communicating with multiple front-end electronic boards. It collects the Level-1 data along with monitoring data and transmits them to a network interface through bidirectional and/or unidirectional fiber links at 4.8 Gbps each. In addition, the L1DDC board distributes trigger, time and configuration data coming from the network interface to the front-end boards. The L1DDC is fully compatible with the Phase II upgrade where the trigger rate is expected to reach the 1 MHz. Three different types of L1DDC boards will be fabricated handling up to 10.080 Gbps of user data. It consist of custom made radiation tolerant ASICs: the GigaBit Transceiver (GBTx), the FEAST DC-DC converter, the Slow Control Adapter (SCA), and the Versatile Tranceivers (VTRX) and transmitters (VTTX). The overall scheme of the data acquis...

  4. A large dynamic range radiation tolerant analog memory in a quarter micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2000-01-01

    A 8*128 cell analog memory prototype has been designed in a commercial 0.25 jam CMOS process. The aim of this work was to investigate the possibility of designing large dynamic range mixed- mode switched capacitor circuits for High-Energy Physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant left bracket 1 right bracket . The memory cells employ gate-oxide capacitors for storage, allowing for a very high density. A voltage write - voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (V//D//D = 2.5 V), with a linearity of at least 7.5 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is plus or minus 0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after lOMrd (...

  5. A large dynamic range radiation-tolerant analog memory in a quarter- micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2001-01-01

    An analog memory prototype containing 8*128 cells has been designed in a commercial quarter-micron CMOS process. The aim of this work is to investigate the possibility of designing large dynamic range mixed-mode switched capacitor circuits for high-energy physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant. The memory cells employ gate-oxide capacitors for storage, permitting a very high density. A voltage write-voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (the power supply voltage V/sub DD/ is equal to 2.5 V), with a linearity of almost 8 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is +or-0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after 1...

  6. Effects of femtosecond laser radiation on blood cell suspensions

    Science.gov (United States)

    Gening, Tatyana; Sysolyatin, Aleksey; Abakumova, Tatyana; Arslanova, Dinara; Voronova, Olga; Zolotovsky, Igor; Ostatochnikov, Vladimir; Yavtushenko, Marina

    2011-03-01

    In the present work the effects of high-power femtosecond laser irradiation on a functional condition of red blood cells and neutrophils in vitro have been investigated. The data on parameters of the lipid peroxidation - antioxidants system, hemoglobin level and rigidity of red blood cell membranes testify destabilization of the membranes under the influence of the given laser. The study of phagocytic activity, anaerobic and aerobic metabolism of neutrophils, and rigidity of their membranes allows to suppose the dose-dependent effect to be stimulating.

  7. Formation of pores in Ge single crystal by laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Medvid' , A. [Laboratory of Semiconductor Physics, Riga Technical University, LV-1048, 14 Azenes Street, Riga (Latvia)]. E-mail: medvids@latnet.lv; Mychko, A. [Laboratory of Semiconductor Physics, Riga Technical University, LV-1048, 14 Azenes Street, Riga (Latvia); Krivich, A. [Laboratory of Semiconductor Physics, Riga Technical University, LV-1048, 14 Azenes Street, Riga (Latvia); Onufrijevs, P. [Laboratory of Semiconductor Physics, Riga Technical University, LV-1048, 14 Azenes Street, Riga (Latvia)

    2005-05-15

    Formation of a porous structure on the surface of Ge single crystals by pulsed YAG:Nd laser irradiation at the intensity of {approx}25 MW/cm{sup 2} is reported. An increase of surface recombination velocity on the irradiated surface by a factor of 100 is observed and explained by increase of the geometric area of the surface due to formation of pores. The latter is attributed to inhomogeneous pressure of a pulsed laser beam on the melting irradiated surface of the crystal.

  8. Normal tissue tolerance to external beam radiation therapy: Thyroid; Dose de tolerance des tissus sains: la thyroide

    Energy Technology Data Exchange (ETDEWEB)

    Berges, O.; Giraud, P. [Service d' oncologie-radiotherapie, hopital europeen Georges-Pompidou, universite Paris Descartes, 75 - Paris (France); Belkacemi, Y. [Service d' oncologie-radiotherapie, CHU Henri-Mondor, universite Paris 12, 94 - Creteil (France)

    2010-07-15

    The thyroid is the most developed endocrine gland of the body. Due to its anatomical location, it may be exposed to ionizing radiation in external radiotherapy involving head and neck. This review aims to describe the thyroid radiation disorders, probably under-reported in the literature, their risk factors and follow-up procedures. The functional changes after external beam radiation consists mainly of late effects occurring beyond 6 months, and are represented by the clinical and subclinical hypothyroidism. Its incidence is approximately 20 to 30% and it can occur after more than 25 years after radiation exposure. Hyperthyroidism and auto-immune manifestations have been described in a lesser proportion. The morphological changes consist of benign lesions, primarily adenomas, and malignant lesions, the most feared and which incidence is 0.35%. The onset of hypothyroidism depends of the total dose delivered to the gland, and the irradiated. Modern techniques of conformal radiotherapy with modulated intensity could improve the preservation of the thyroid, at the expense of the increase in low doses and the theoretical risk of secondary cancers. (authors)

  9. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Characteristics of the evolution of a plasma formed by cw and pulse-periodic CO2 laser radiation in various gases

    Science.gov (United States)

    Kanevskiĭ, M. F.; Stepanova, M. A.

    1990-06-01

    An investigation was made of the interaction between high-power cw and pulse-periodic CO2 laser radiation and a low-threshold optical breakdown plasma near a metal surface. Characteristics of the breakdown plasma were studied as a function of the experimental conditions. A qualitative analysis was made of the results using a simple one-dimensional model for laser combustion waves.

  10. Risks induced by laser radiation; Risques induits par le rayonnement laser

    Energy Technology Data Exchange (ETDEWEB)

    Courant, D. [CEA Fontenay-aux-Roses, 92 (France). Dept. de Radiobiologie et de Radiopathologie

    2001-07-01

    The use of lasers is often dangerous because of the emitted power, the wave length, the conduction system(optical fiber, wave guide, mirrors) and the use conditions. The safety notion involves the precise knowledge of materials, the biological effects in function of laser emission parameters, the knowledge of protection standards, the observance of use rules and the personnel training. This chapter treats the risks induced by the beam. It gives the different biological effects induced by the laser beam, at the eye and skin levels that are at the origin of exposure limits and the lasers classification recommended by the protection standards. (N.C.)

  11. Testing relativity again, laser, laser, laser, laser

    NARCIS (Netherlands)

    Einstein, A.

    2015-01-01

    laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser,

  12. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Jeffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shestakov, Aleksei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stolken, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vignes, Ryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-03-09

    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  13. Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation

    CERN Document Server

    Fourmaux, S; Phuoc, K Ta; Leguay, P M; Payeur, S; Lassonde, P; Gnedyuk, S; Lebrun, G; Fourment, C; Malka, V; Sebban, S; Rousse, A; Kieffer, J C

    2011-01-01

    Betatron X-ray radiation in laser-plasma accelerators is produced when electrons are accelerated and wiggled in the laser-wakefield cavity. This femtosecond source, producing intense X-ray beams in the multi kiloelectronvolt range has been observed at different interaction regime using high power laser from 10 to 100 TW. However, none of the spectral measurement performed were at sufficient resolution, bandwidth and signal to noise ratio to precisely determine the shape of spectra with a single laser shot in order to avoid shot to shot fluctuations. In this letter, the Betatron radiation produced using a 80 TW laser is characterized by using a single photon counting method. We measure in single shot spectra from 8 to 21 keV with a resolution better than 350 eV. The results obtained are in excellent agreement with theoretical predictions and demonstrate the synchrotron type nature of this radiation mechanism. The critical energy is found to be Ec = 5.6 \\pm 1 keV for our experimental conditions. In addition, th...

  14. NONLINEAR OPTICAL FREQUENCY CONVERTER OF LASER RADIATION ON THE LBO TYPE I CRYSTALS

    Directory of Open Access Journals (Sweden)

    N. V. Kondratyuk

    2014-01-01

    Full Text Available Describes nonlinear optical frequency converter of laser radiation based on the two LBO type I crystals allowing to receive pulses of radiation at three wavelengths of 1064 nm, 532 nm and 355 nm with an adjustable pulse energy. For fine adjustment of the output pulse energy used two dual phase plates that change the orientation of the plane of polarization of the two waves in cascade third harmonic generation. Measured the efficiency of the generation of harmonics of the intensity of radiation at 1064 nm.

  15. Second harmonic generation of spectrally broadened femtosecond ytterbium laser radiation in a gas-filled capillary

    Energy Technology Data Exchange (ETDEWEB)

    Didenko, N V; Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu

    2011-09-30

    A 300-fs radiation pulse of an ytterbium laser with a wavelength of 1030 nm and energy of 150 {mu}J were converted to a 15-fs pulse with a wavelength of 515 nm by broadening the emission spectrum in a capillary filled with xenon and by generating the second harmonic in a KDP crystal. The energy efficiency of the conversion was 30 %.

  16. Coherent phase control of excitation of atoms by bichromatic laser radiation in an electric field

    NARCIS (Netherlands)

    Astapenko, VA

    A new method for coherent phase control of excitation of atoms in a discrete spectrum under the action of bichromatic laser radiation with the frequency ratio 1 : 2 is analysed. An important feature of this control method is the presence of a electrostatic field, which removes the parity selection

  17. Caries inhibition potential of Er:YAG and Er:YSGG laser radiation

    Science.gov (United States)

    Fried, Daniel; Featherstone, John D. B.; Visuri, Steven R.; Seka, Wolf D.; Walsh, Joseph T., Jr.

    1996-04-01

    Dental hard tissues can be ablated efficiency by (lambda) equals 3 micrometers laser irradiation with minimal subsurface thermal damage. However, the potential of lasers operating in the region of the infrared for caries preventive treatments has not been investigated. In this study, the caries inhibition potential of Er:YAG ((lambda) equals 2.94 micrometers ) and Er:YSGG ((lambda) equals 2.79 micrometers ) laser radiation on dental enamel was evaluated at various irradiation intensities. Pulsed IR radiometry and scanning electron microscopy (SEM) were used to measure the time-resolved surface temperatures during laser irradiation and to detect changes in the surface morphology. The magnitude and temporal evolution of the surface temperature during multiple pulse irradiation of the tissue was dependent on the wavelength, irradiation intensity, and the number of laser pulses. Radiometry and SEM micrographs indicated that ablation was initiated at temperatures of approximately 300 degree(s)C for Er:YAG and 800 degree(s)C for Er:YSGG laser irradiation, well below the melting and vaporization temperatures of the carbonated hydroxyapatite mineral component (m.p. equals 1200 degree(s)C). Nevertheless, there was marked caries inhibition for irradiation intensities below those temperature thresholds, notably 60% and 40% inhibition was achieved after Er:YSGG and Er:YAG laser irradiation, respectively. These results indicate that the Er:YSGG laser can be used effectively for both preventive dental treatments and for hard tissue removal.

  18. Normal tissue tolerance to external beam radiation therapy: Skin; Dose de tolerance des tissus sains: la peau et les phaneres

    Energy Technology Data Exchange (ETDEWEB)

    Ginot, A.; Doyen, J.; Hannoun-Levi, J.M.; Courdi, A. [Service d' oncologie-radiotherapie, centre Antoine-Lacassagne, 06 - Nice (France)

    2010-07-15

    Acute skin toxicity is frequent during radiation therapy and can lead to temporary arrest of the treatment. Chronic toxicity can occur and conduct to cosmetic problems. Alopecia is the most frequent toxicity concerning hair and is most of the time reversible. Several factors linked to patients influence skin toxicity, such as under-nutrition, old age, obesity, smoking, skin diseases, autoimmune diseases, failure of DNA reparation. Skin, hair and nail toxicities depend also on radiation schedule. Acute toxicity is greater when dose per fraction increases. Chronic and acute toxicities are more often when total dose increases. Under 45 Gy, the risk of severe skin toxicity is low, and begins above 50 Gy. Skin toxicity depends also on the duration of radiotherapy and split course schedules are associated with less toxicities. Irradiation surface seems to influence skin toxicity but interaction is more complex. Reirradiation is often feasible in case of cancer recurrence but with a risk of grade 3-4 toxicity above all in head and neck cancer. The benefit/risk ratio has to be always precisely evaluated. Permanent alopecia is correlated with the follicle dose. Modern techniques of radiation therapy allow to spare skin. (authors)

  19. Normal tissue tolerance to external beam radiation therapy: Cardiac structures; Dose de tolerance des tissus sains: le coeur

    Energy Technology Data Exchange (ETDEWEB)

    Doyen, J. [Service d' oncologie-radiotherapie, centre Antoine-Lacassagne, 06 - Nice (France); Giraud, P. [Universite Rene-Descartes Paris 5, 75 - Paris (France); Service d' oncologie-radiotherapie, hopital europeen Georges-Pompidou, 75 - Paris (France); Belkacemi, Y. [Faculte de medecine de Creteil, universite Paris 12, 94 - Creteil (France); Service d' oncologie-radiotherapie, CHU Henri-Mondor, 94 - Creteil (France)

    2010-07-15

    Radiation thoracic tumors may be associated with cardiac toxicity because of the central position of the heart in the thorax. The present review aims to describe the cardiotoxicity during radiotherapy of different tumor sites most associated with this complication and the risk factors of cardiotoxicity during radiation therapy. Medline literature searches were performed using the following cardiac - heart - radiotherapy - toxicity - cardiotoxicity - breast cancer - lymphoma. Cardiac toxicity after breast cancer and mediastinal lymphoma is the most reported radiation-induced complication. The most frequent clinical complications are pericarditis, congestive heart failure, and heart infarction. These events are mostly asymptomatic. Thus clinicians have to give particular attention to these complications. Anthracycline treatment is a major risk factor for additional cardiotoxicity during radiotherapy with a synergistic effect. Correction of cardiovascular risk is an important point of the prevention of heart complications. Total dose delivered to the planned target volume (PTV), the dose per fraction and the irradiated volume were correlated to the risk of cardiotoxicity. Volume of heart receiving 35 Gy must be inferior to 30% and dose per fraction should not exceed 2 Gy when dose of prescription exceeds 30 Gy. Maximum heart distance (maximal thickness of heart irradiated) must be less than 1 cm during irradiation of breast cancer. Modern irradiation techniques seem to be associated with a limited risk of heart complication. The use of anthracycline, other cardio-toxic chemotherapies and targeted therapies should incite for great caution by performing a careful treatment planning and optimisation. (authors)

  20. Characterization of Tin/Ethylene Glycol Solar Nanofluids Synthesized by Femtosecond Laser Radiation.

    Science.gov (United States)

    Torres-Mendieta, Rafael; Mondragón, Rosa; Puerto-Belda, Verónica; Mendoza-Yero, Omel; Lancis, Jesús; Juliá, J Enrique; Mínguez-Vega, Gladys

    2017-05-05

    Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Propagation of intense laser radiation through a diffusion flame of burning oil

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Pleshkov, V M [State Research Center of Russian Federation ' Troitsk Institute for Innovation and Fusion Research' , Troitsk, Moscow Region (Russian Federation)

    2015-06-30

    We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 10{sup 3} to 1.2 × 10{sup 6} W cm{sup -2}) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented. (laser applications and other topics in quantum electronics)

  2. Effective extreme ultraviolet radiation source based on laser-produced plasma in supersonic xenon jet

    Science.gov (United States)

    Bobashev, S. V.; Domracheva, I. V.; Petrenko, M. V.; Tumakaev, G. K.; Stepanova, Z. A.

    2007-04-01

    Development of highly effective debris free EUV (extreme ultraviolet) radiation source is an actual problem today. Experimental results on EUV output from the source based on laser-produced plasma in supersonic Xe jet have been obtained. The conversion efficiency is 0.08% at a wavelength of 13.5 nm (Δλ = 0.35 nm, 2π sterrad). The methods of optimization of gas-jet converter have been determined. Measurements of EUV radiation energy dependence on the laser energy and the target material (solid-state Cu, Mo, W, Ta and supersonic Xe jet) have been made. The conversion efficiency of laser-produced plasma (CELPP) has been determined and the experimental values have been obtained for different materials of the target.

  3. Maculopathy following exposure to visible and infrared radiation from a laser pointer: a clinical case study.

    Science.gov (United States)

    Hanson, James V M; Sromicki, Julian; Mangold, Mario; Golling, Matthias; Gerth-Kahlert, Christina

    2016-04-01

    Laser pointer devices have become increasingly available in recent years, and their misuse has caused a number of ocular injuries. Online distribution channels permit trade in devices which may not conform to international standards in terms of their output power and spectral content. We present a case study of ocular injury caused by one such device. The patient was examined approximately 9 months following laser exposure using full-field and multifocal electroretinography (ERG and MF-ERG), electrooculography (EOG), and optical coherence tomography (OCT), in addition to a full ophthalmological examination. MF-ERG, OCT, and the ophthalmological examination were repeated 7 months after the first examination. The output of the laser pointer was measured. Despite severe focal damage to the central retina visible fundoscopically and with OCT, all electrophysiological examinations were quantitatively normal; however, qualitatively the central responses of the MF-ERG appeared slightly reduced. When the MF-ERG was repeated 7 months later, all findings were normal. The laser pointer was found to emit both visible and infrared radiation in dangerous amounts. Loss of retinal function following laser pointer injury may not always be detectable using standard electrophysiological tests. Exposure to non-visible radiation should be considered as a possible aggravating factor when assessing cases of alleged laser pointer injury.

  4. In vitro effects of Nd:YAG laser radiation on blood: a quantitative and morphologic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Borrero, E.; Rosenthal, D.; Otis, J.B.

    1988-01-01

    Use of the Neodymium: yttrium -aluminum -garnet (Nd:YAG) laser to recanalize stenosed arteries may require delivery of the beam through blood. To assess the degree of hemolysis and debris formation, 54 samples of citrated whole blood were exposed to Nd:YAG laser radiation of varying powers (10, 20 and 30 watts) and duration (1, 2.5 and 5 seconds). Compared to control samples which were not subjected to laser light, there was no significant decrease in hematocrit (41 to 40.5 +/- 5%), hemoglobin concentration (13.8 to 13.8 +/- .06 g/1OO ml), or increase in free hemoglobin concentration. Debris weight (from .45 +/- .002 to .45 +/- .002 mg), as well as the white blood cell count, was also not significantly changed (from 5,400 to 5,200 +/- 240 WBC/cm). Light microscopy examination of debris from samples of whole blood, washed erythrocytes, and platelet-rich plasma subjected to the laser at 30 watts for five seconds failed to demonstrate the presence of membrane denaturation of blood elements, as compared with the morphologic changes observed in whole blood samples exposed to a hot tip rather than Nd:YAG laser radiation. Nd:YAG laser can be used intravascularly without fear of hemolysis or debris micro-embolization up to a power of 30 watts for five seconds.

  5. Application of laser radiation and magnetostimulation in therapy of patients with multiple sclerosis.

    Science.gov (United States)

    Kubsik, Anna; Klimkiewicz, Robert; Janczewska, Katarzyna; Klimkiewicz, Paulina; Jankowska, Agnieszka; Woldańska-Okońska, Marta

    2016-01-01

    Multiple sclerosis is one of the most common neurological disorders. It is a chronic inflammatory demyelinating disease of the CNS, whose etiology is not fully understood. Application of new rehabilitation methods are essential to improve functional status. The material studied consisted of 120 patients of both sexes (82 women and 38 men) aged 21-81 years. The study involved patients with a diagnosis of multiple sclerosis. The aim of the study was to evaluate the effect of laser radiation and other therapies on the functional status of patients with multiple sclerosis. Patients were randomly divided into four treatment groups. The evaluation was performed three times - before the start of rehabilitation, immediately after rehabilitation (21 days of treatment) and subsequent control - 30 days after the patients leave the clinic. The following tests were performed for all patients to assess functional status: Expanded Disability Status Scale (EDSS) of Kurtzke and Barthel Index. Results of all testing procedures show that the treatment methods are improving the functional status of patients with multiple sclerosis, with the significant advantage of the synergistic action of laser and magneto stimulation. The combination of laser and magneto stimulation significantly confirmed beneficial effect on quality of life. The results of these studies present new scientific value and are improved compared to program of rehabilitation of patients with multiple sclerosis by laser radiation which was previously used. This study showed that synergic action of laser radiation and magneto stimulation has a beneficial effect on improving functional status, and thus improves the quality of life of patients with multiple sclerosis. The effects of all methods of rehabilitation are persisted after cessation of treatment applications, with a particular advantage of the synergistic action of laser radiation and magneto stimulation, which indicates the possibility to elicitation in these

  6. Effects of radiational heating at low air temperature on water balance, cold tolerance, and visible injury of red spruce foliage.

    Science.gov (United States)

    Hadley, J L; Amundson, R G

    1992-07-01

    Recent studies have shown that winter needle mortality in red spruce (Picea rubens Sarg.) is increased by exposure to direct solar radiation, possibly as a result of photo-oxidative damage, accelerated winter desiccation, or reduced cold tolerance due to heating of sun-exposed needles. In an experiment at controlled subfreezing air temperatures of -10 to -20 degrees C, visible radiation was less effective than infrared radiation in producing needle desiccation and visible injury during freeze-thaw cycles. However, visible radiation produced a red-brown color in injured needles, similar to natural winter injury, whereas injured needles exposed to infrared radiation were yellow and injured needles kept in darkness were dark brown. Thus, visible radiation was necessary to produce the red-brown color of damaged needles, but not the injury itself. Needle desiccation was not strongly correlated with visible injury, but the pattern of variation in visible injury among trees and the positive correlation between electrolyte leakage and visible injury suggested that freezing damage following freeze-thaw cycles might cause the visible injury. This was confirmed by a second experiment that showed loss of cold hardiness in needles thawed by radiational heating for six consecutive days. Even with a constant nighttime temperature of -10 degrees C, six days of radiational heating of needles to above freezing caused a small (2.8 degrees C) mean decrease in needle cold tolerance, as measured by electrolyte leakage. Continuous darkness at -10 degrees C for six days resulted in an estimated 5.6 degrees C mean increase in needle cold tolerance. Freezing injury stimulated desiccation: cooling at 4 degrees C h(-1) to -43 or -48 degrees C increased the dehydration rate of isolated shoots by a factor of two to three during the first day after thawing. Within three days at 15 to 22 degrees C and 50% relative humidity, the mean water content of these shoots fell to 60% or lower, compared to

  7. Rotatory power of sodium vapour oriented by laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bicchi, P. (Siena Univ. (Italy). Ist. di Fisica); Moi, L.; Zambon, B. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Lab. di Fisica Atomica e Moleculare)

    1979-01-11

    In this paper the rotatory power of sodium vapour is studied when laser light is used as pumping as well as analysis light. The possibility of having an analysis light whose frequency may be varied in a range larger than the interval between the D/sub 1/ and D/sub 2/ atomic lines allows us to get for the first time the complete shape of the rotation curve and to measure a rotation different from zero even for frequencies very far from the resonance ones. The complete orientation in the vapour caused by the laser pumping-light power permits to obtain very high rotation values. In a cell containing Na and 200 Torr of Ne, we measured, at 185/sup 0/C, 10/sup 0//cm of specific rotation. The dependence of the optical activity on the buffer gas pressure and on the frequency of the pumping light is also studied.

  8. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting.

    Science.gov (United States)

    Qian, B; Saeidi, K; Kvetková, L; Lofaj, F; Xiao, C; Shen, Z

    2015-12-01

    CrCoMo alloy specimens were successfully fabricated using selective laser melting (SLM). The aim of this study was to carefully investigate microstructure of the SLM specimens in order to understand the influence of their structural features inter-grown on different length scales ranging from nano- to macro-levels on their mechanical properties. Two different sets of processing parameters developed for building the inner part (core) and the surface (skin) of dental prostheses were tested. Microstructures were characterized by SEM, EBSD and XRD analysis. The elemental distribution was assessed by EDS line profile analysis under TEM. The mechanical properties of the specimens were measured. The microstructures of both specimens were characterized showing formation of grains comprised of columnar sub-grains with Mo-enrichment at the sub-grain boundaries. Clusters of columnar sub-grains grew coherently along one common crystallographic direction forming much larger single crystal grains which are intercrossing in different directions forming an overall dendrite-like microstructure. Three types of microstructural defects were occasionally observed; small voids (10 μm). Despite the presence of these defects, the yield and the ultimate tensile strength (UTS) were 870 and 430MPa and 1300MPa and 1160MPa, respectively, for the skin and core specimens which are higher than casted dental alloy. Although the formation of microstructural defects is hard to be avoided during the SLM process, the SLM CoCrMo alloys can achieve improved mechanical properties than their casted counterparts, implying they are "defect-tolerant". Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Dynamics of Radiation and Atoms in Ultrahigh Intensity Laser Fields

    Science.gov (United States)

    2013-12-31

    excitation in strong and ultrastrong optical frequency fields. Advances in laser technology continue to push the boundaries of this interaction in...possible ultrastrong magnetic fields and the electron cyclotron frequency in the bound state can create dynamics, such as is the case for `cycloatoms...promise of increasing the returning rescattering electron energy led to advances in the production of HHG. In addition to (e,2e) and HHG rescattering

  10. Two-dimensional modeling of multiply scattered laser radiation in optically dense aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Zardecki, A.; Gerstl, S.A.W.; Embury, J.F.

    1982-01-01

    The discrete ordinates finite element radiation transport code TWOTRAN is applied to describe the multiple scattering of a laser beam from a reflecting target. For a model scenario involving a 99% relative humidity rural aerosol, we compute the average intensity of the scattered radiation and correction factors to the Lambert-Beer law arising from multiple scattering. As our results indicate, two-dimensional x-y and r-z geometry modeling can reliably describe a realistic three-dimensional scenario. Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show that for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 km) the target signature in a distant detector becomes dominated by multiply scattered radiation from interactions of the laser light with the aerosol environment.

  11. Biophotonics of the interaction of low-intensity laser radiation with blood erythrocytes

    Science.gov (United States)

    Asimov, M. M.; Asimov, R. M.; Batyan, A. N.; Trusevich, M. O.; Rubinov, A. N.

    2013-06-01

    We have studied experimentally how optical radiation affects the neutralization of the toxic action of heavy metals and harmful chemical compounds (ecotoxicants) on the oxygen-transport function of blood erythrocytes. It has been found that the optical radiation has a stabilizing effect and prevents lowering the erythrocyte concentration in the presence of phenol and heavy metals in blood. We have studied the neutralization efficiency of the toxic action of ecotoxicants in relation to the laser irradiation time. The obtained data on the effect of the laser radiation on the thermal denaturation of hemoglobin and erythrocytes yield the scientific substantiation to the development of the optical method for the use in medicine upon drawing and conserving donor blood. We have shown that the obtained data can be used in medicine for improving the reliability of conditions of conservation and storage of donor blood, as well as for preventing the toxic action of harmful chemical compounds in the environment.

  12. Systems and methods for imaging using radiation from laser produced plasmas

    Science.gov (United States)

    Renard-Le Galloudec, Nathalie; Cowan, Thomas E.; Sentoku, Yasuhiko; Rassuchine, Jennifer

    2009-06-30

    In particular embodiments, the present disclosure provides systems and methods for imaging a subject using radiation emitted from a laser produced plasma generating by irradiating a target with a laser. In particular examples, the target includes at least one radiation enhancing component, such as a fluor, cap, or wire. In further examples, the target has a metal layer and an internal surface defining an internal apex, the internal apex of less than about 15 .mu.m, such as less than about 1 .mu.m. The targets may take a variety of shapes, including cones, pyramids, and hemispheres. Certain aspects of the present disclosure provide improved imaging of a subject, such as improved medical images of a radiation dose than typical conventional methods and systems.

  13. Radiation reaction induced spiral attractors in ultra-intense colliding laser beams

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2016-11-01

    Full Text Available The radiation reaction effects on electron dynamics in counter-propagating circularly polarized laser beams are investigated through the linearization theorem and the results are in great agreement with numeric solutions. For the first time, the properties of fixed points in electron phase-space were analyzed with linear stability theory, showing that center nodes will become attractors if the classical radiation reaction is considered. Electron dynamics are significantly affected by the properties of the fixed points and the electron phase-space densities are found to be increasing exponentially near the attractors. The density growth rates are derived theoretically and further verified by particle-in-cell simulations, which can be detected in experiments to explore the effects of radiation reaction qualitatively. The attractor can also facilitate realizing a series of nanometer-scaled flying electron slices via adjusting the colliding laser frequencies.

  14. Controlled joining of Ag nanoparticles with femtosecond laser radiation

    Science.gov (United States)

    Huang, H.; Liu, L.; Peng, P.; Hu, A.; Duley, W. W.; Zhou, Y.

    2012-12-01

    We show that it is possible to tailor the gap separation and interface geometry between adjacent Ag nanoparticles (NPs) by controlling fluence when irradiating with pulses from a fs laser. Unirradiated samples extracted from aqueous solution consist of networks of Ag NPs coated with polyvinylpyrrolidone (PVP). At low laser fluence, bonding between NPs occurs via the formation of an intervening hydrogenated amorphous carbon (α-C:H) layer resulting from the laser-induced decomposition of PVP. This occurs when electrons are emitted at hot-spots created by the trapping of plasmons. The thickness of the α-C:H layer determines the minimum separation between NPs. Ag NPs with different contact geometries can be produced by irradiation of the networks in solution at fluences exceeding the threshold for the formation of α-C:H. At fluences between 200 and 380 μJ/cm2, the α-C:H interface layer is replaced with a metallic neck. Surface enhanced Raman scattering (SERS) has been used to quantify the electromagnetic field enhancement in joined NP samples. We find that Ag NPs bonded by α-C:H and exhibiting a narrow gap possess the highest SERS enhancement.

  15. Recommendations concerning the prevention of radiation-induced health hazards through the application of soft and MID lasers

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The Federal Health Office (BGA) recommends observation of the following practical hints: The application of soft lasers or MID lasers for cosmetic treatment or acupuncture represents a danger to the eye. Instructions for use of laser equipment have to indicate this danger. Appropriate use of the equipment will prevent damage. Any person applying soft lasers or MID lasers for treatment of customers or patients near the eye are required to give proof of a special training assuring appropriate handling, and of instructions in laser radiation protection.

  16. Beam characteristics of a large-bore copper laser with a radiatively cooled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.J.; Boley, C.D.; Molander, W.A.; Warner, B.E. [Lawrence Livermore National Lab., CA (United States); Martinez, M.W. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1994-01-18

    In a large-bore copper vapor laser (CVL), excessive gas heating at the axial region of the discharge lowers its efficiency by thermally populating the metastable lower laser levels. The associated lower gas density also lengthens the discharge field-diffusion time, leading to weaker axial pumping and undesired beam characteristics. The authors` laboratory has developed a novel approach to circumvent this obstacle by cooling the plasma radiatively via a series of segmented metal plates (septa) placed vertically along the length of the tube. This improved tube design significantly lowers the average gas temperature and shortens the radial delay. A 27% increase in laser power was observed with the addition of septa. The authors have characterized the beam intensity profile, spatial and temporal pulse variation, and beam polarization through extensive laboratory measurements. A detailed computational model of the laser has been used to characterize and interpret the laboratory results.

  17. Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios

    Science.gov (United States)

    Zhang, Liang-Liang; Wang, Wei-Min; Wu, Tong; Zhang, Rui; Zhang, Shi-Jing; Zhang, Cun-Lin; Zhang, Yan; Sheng, Zheng-Ming; Zhang, Xi-Cheng

    2017-12-01

    In the widely studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω2/ω1=1 :2 . We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω2/ω1=1 :4 and 2 ∶3 . We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multiwave mixing theory, but support the gas-ionization or plasma-current model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.

  18. Laser-induced narrowband coherent synchrotron radiation: Efficiency versus frequency and laser power

    Directory of Open Access Journals (Sweden)

    C. Evain

    2010-09-01

    Full Text Available We analyze the narrowband terahertz emission process occurring from electron bunches passing in a bending magnet, after a laser-induced sinusoidal modulation has been performed. In particular, we focus on experimental tunability curves, and power scalings with current and laser power. Theoretically, we simplify the problem formulation using the slowly varying envelope approximation. At low powers, the scaling with laser power appears to be quadratic, and analytical expressions for the tuning curves are obtained. Emission at first passage in the bending magnet, and after one full turn in the storage ring, are considered both experimentally and theoretically. The experiments are performed on the UVSOR-II storage ring.

  19. Normal tissue tolerance to external beam radiation therapy: The mandible; Dose de tolerance des tissus sains: la mandibule

    Energy Technology Data Exchange (ETDEWEB)

    Berger, A.; Bensadoun, R.J. [Service d' oncologie radiotherapie, PRC, CHU de la Miletrie, 86 - Poitiers (France)

    2010-07-15

    Describing dose constraints for organs at risk in external beam radiotherapy is a key-point in order to maximize the therapeutic ratio. In head and neck irradiation, mandible is frequently exposed to ionising radiation-related complications. Those complications will be exposed after a short description of anatomical and physiopathological aspects. A literature search was performed using the Pubmed-Medline database, with following keywords (Osteoradionecrosis, Radiotherapy, Mandible, Toxicity, Organ at risk, Trismus). Incidence and dose constraints will be reported. The incidence of osteoradionecrosis decreased since the 1990, but it remains a dreaded late complication of head and neck cancer radiotherapy. It essentially occurs with cumulative doses of 66 Gy on the mandible (standard fractionation) applied to a significant volume. Respecting oral care is crucial to avoid this kind of complication. The respect of the dose-constraint described should not lead to under treat tumor bed in a curative intent. Trismus related to ionising radiation is poorly described. Literature data cannot lead to describe precise dose constraints. (authors)

  20. Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4

    Science.gov (United States)

    Telle, John M.

    1986-01-01

    Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4. Laser radiation at 16 .mu.m has been observed in a cooled static cell containing low pressure CF.sub.4 optically pumped by an approximately 3 W output power cw CO.sub.2 laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF.sub.4 laser output power at 615 cm.sup.-1 exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 .mu.m might be obtained.

  1. Apparatus and method for generating continuous wave 16. mu. m laser radiation using gaseous CF/sub 4/

    Science.gov (United States)

    Telle, J.M.

    1984-05-01

    Apparatus and method for generating continuous wave 16 ..mu..m laser radiation using gaseous CF/sub 4/. Laser radiation at 16 ..mu..m has been observed in a cooled static cell containing low pressure CF/sub 4/ optically pumped by an approximately 3 W output power c-w CO/sub 2/ laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF/sub 4/ laser output power at 615 cm/sup -1/ exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 ..mu..m might be obtained.

  2. 3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation

    Directory of Open Access Journals (Sweden)

    José Rebordão

    2013-08-01

    Full Text Available In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber’s material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented.

  3. 3D finite element model for writing long-period fiber gratings by CO2 laser radiation.

    Science.gov (United States)

    Coelho, João M P; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-08-12

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented.

  4. An assessment of techniques for dehydrating root canals using infrared laser radiation.

    Science.gov (United States)

    Amyra, T; Walsh, L T; Walsh, L J

    2000-08-01

    Infrared lasers have been used for debridement and sterilisation of both soft and hard tissues, but there have been few studies of such laser applications in endodontics. The present laboratory study was undertaken to examine the feasibility of using pulsed infrared laser radiation to remove moisture from root canals (with an adjunctive sterilising effect). Canals were prepared in extracted teeth and a standardised technique used to fill the apical half of the root canal with saline. Pulses of CO2 or Nd:YAG laser energy were delivered into the root canal system via miniature applicators and residual fluid determined, as well as temperature changes on the root surface. With the CO2 laser, long pulse durations were effective at dehydrating the canals, but elicited deleterious thermal changes both locally within the canal as well as on the root surface. With Nd:YAG laser treatment, large temperature increases on the root surface occurred even with low powers and low pulse frequencies, and extended times were necessary for dehydration. With higher powers and pulse frequencies, complete dehydration could be achieved in less than 60 seconds, however root surface temperatures increased approximately 25 degrees, and the radicular dentine was damaged by the production of plasma. Dehydration of root canals could not be achieved safely with these two infrared lasers, and damage to both radicular dentine and the periodontal ligament would occur if these techniques were to be applied clinically. Alternative methods which do not exert significant thermal effects should be investigated.

  5. [Research on radiation intensity of nanosecond pulse laser-induced soil plasma].

    Science.gov (United States)

    Chen, Jin-zhong; Song, Guang-ju; Sun, Jiang; Li, Xu; Wei, Yan-hong

    2012-01-01

    To improve the quality of laser-induced breakdown spectroscopy, nanosecond pulse laser generated by Nd : YAG laser was used to excite soil sample. The laser-induced plasma spectrum was observed using a grating spectrometer and a photoelectric detection system. The influence of laser output energy ranging from 100 to 500 mJ on the radiation intensity of plasma was studied. The results show that both the line intensity and signal-to-background ratio can be enhanced under the optimized condition that the laser energy is 200 mJ. The quality of spectrum was further improved after the laser beam used to excite the sample was defocused properly. When the defocusing position is + 6 mm, the spectral lines intensity of element Mg, Al, K and Fe increased about 46%, 63%, 59% and 45% compared to that without defocusing respectively. The spectral signal-to-background ratio increased about 11%, 31%, 35% and 38% respectively. This lays a foundation for detection of trace impurity element in soil.

  6. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Kareem, Omar [Conservation Department, Faculty of Archaeology, Cairo University, El-Gamaa Street, El-Giza (Egypt)], E-mail: Omaa67@yahoo.com; Harith, M.A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)], E-mail: mharithm@niles.edu.eg

    2008-07-15

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  7. High-fidelity modelling of an exciplex pumped alkali laser with radiative transport

    Energy Technology Data Exchange (ETDEWEB)

    Palla, Andrew D; Carroll, David L; Verdeyen, Joseph T [CU Aerospace, Champaign, IL 61820 (United States); Heaven, Michael C, E-mail: apalla@cuaerospace.com [Department of Chemistry, Emory University, Atlanta, GA 30322 (United States)

    2011-07-14

    The exciplex-pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, and ethane by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). Because of the addition of atomic collision pairs and exciplex states, modelling of the XPAL system is far more complicated than the modelling of the classic diode-pumped alkali laser (DPAL). In this paper, we discuss BLAZE-V time-dependent multi-dimensional modelling of this new laser system including radiative transport and parasitic loss effects. A two-dimensional, time-dependent baseline simulation of a pulsed XPAL is presented and compared to data. Good agreement is achieved on a laser pulse full width at half-maximum and laser pulse rise time. Parametric simulations of pulsed XPAL system configurations similar to that of the baseline case, given both four- and five-level laser operation, are presented in which good agreement is obtained with outcoupled laser energy as a function of absorbed pump energy data. The potential impact of parasitic losses on modelled system configurations is discussed.

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Generation of magnetic fields as a result of interaction of pairs of radiation pulses with solid barriers

    Science.gov (United States)

    Zakharov, N. S.; Shaĭnoga, I. S.; Shentsev, N. I.

    1989-02-01

    An analysis is made of the problem of generation of magnetic fields in a laser plasma jet formed as a result of the interaction of two consecutive radiation pulses of moderate intensity with a dielectric barrier. It is assumed that the source of an emf is the thermo-emf of the inhomogeneous plasma. The structure of gasdynamic streams and the parameters of magnetic fields in the plasma jet are found by numerical solution of a known system of equations considered in a two-dimensional cylindrical configuration. The profiles of the plasma parameters and the temporal and spatial distributions of the magnetic fields are presented. It is shown that the results of numerical calculations can be useful, for example, in the diagnostics of laser jets.

  9. Effect of low level helium-neon (He-Ne) laser therapy in the prevention & treatment of radiation induced mucositis in head & neck cancer patients.

    Science.gov (United States)

    Arun Maiya, G; Sagar, M S; Fernandes, Donald

    2006-10-01

    Oral mucositis is a common debilitating complication of radiotherapy occurring in about 60 per cent of cancer patients. Considerable buccal toxicity of radiotherapy or chemotherapy in cancer patients to become discouraged and can affect their quality of life. In addition, such toxicity can alter the treatment plan. At present, there is no clinically appropriate prophylaxis efficacious antidote for mucositis. The low level laser (LEL) appears to be a simple, non-traumatic technique for the prevention and treatment of radiation induced mucositis. Therefore the present study was carried out to find out the effect of low-level helium-neon (He-Ne) laser in the prevention and treatment of radiation induced mucositis in head and neck cancer patients. The patients with carcinoma of oral cavity with stages II-IV a being uniformly treated with curative total tumour dose of 66 Gy in 33 fractions over 6 wk were selected for the study. The patients were divided based on computer generated randamosization into laser (study group) and control groups with 25 patients in each group. Both study and control groups were comparable in terms of site of the lesion, stage of the cancer and histology. The study group patients were treated with He-Ne laser (wavelength 632.8 nm and output of 10mW) and control group patients were given oral analgesics, local application of anaesthetics, 0.9 per cent saline and povidine wash during the course of radiotherapy. All patients tolerated the laser treatment without any adverse effect or reactions. The result showed a significant difference in pain and mucositis (Pmucositis grade were significantly lower (Plow-level He-Ne laser therapy during the radiotherapy treatment was found to be effective in preventing and treating the mucositis in head and neck cancer patients. Further studies need to be done on a larger sample to find the mechanism.

  10. Effect of uv laser radiation on copper-proteins

    Science.gov (United States)

    Bacci, M.; Fabeni, P.; Linari, R.; Pazzi, G. P.

    The results of irradiation studies of human ceruloplasmin, mushroom tyrosinase and Limuluspolyphemus hemocyanin with a nitrogen laser (Λ = 337.1 nm) are presented. In all the proteins we have considered the absorption band at 330 nm, characteristic of dimer Type 3 copper centres, decreases, while an increase of the absorbance at 280 nm is observed. Moreover a new band at about 400 nm appears in irradiated ceruloplasmin. Finally sharp oscillations of the absorbance at 610 and 794 nm are recorded in ceruloplasmin, when the irradiation is switched off.

  11. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    Science.gov (United States)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold

  12. Biological Effects of Laser Radiation. Volume II. Review of Our Studies on Biological Effects of Laser Radiation-1965-1971.

    Science.gov (United States)

    1978-10-17

    produces dermal and nasal irritation.5 Boron systems. Bromine, chlorine and ucine are irntants to the trifluoride (TLV I ppm) in air, can cause pneumonitis...bromine, chlorine , iodine. General. Dept. of the Army. VASA Grant .VGR 011-07.I7 hydrolluoric acid. -141- from LASER OC~US/CC7t0SER !;68 The rare tarths...the system may crack and release the enclosed vapors. Examples of these gases are chlorine , bromine, lead, mercury, carbon monoxide, and hydro- gen

  13. Generation of nano-voids inside polylactide using femtosecond laser radiation

    Science.gov (United States)

    Viertel, Tina; Pabst, Linda; Olbrich, Markus; Ebert, Robby; Horn, Alexander; Exner, Horst

    2017-12-01

    The arrangement of nanometer-sized voids, induced by focusing intense laser radiation within transparent material can allow the generation of transparent components with dimensions in the micrometer to nanometre range due to internal contour cut and thus satisfy the progressive miniaturization of products in micro-optics and medical technologies. For further improvements in the precision of those components, a deep understanding of the involved processes during the interaction of laser radiation within the material is necessary. In this work, voids inside bulk polylactide (PLA), a bioabsorbable polymer, were generated using a femtosecond laser ( λ = 1030 nm, τH = 180 fs) with single and multiple pulse irradiation. The dependence of the spot size was examined by the use of four microscope objectives with focus radii of 4.9, 3.3, 2 and 1.2 µm. For the experiments, the pulse energy and focusing depth into the material were varied. The dimensions of the voids were experimentally determined as function of the intensity. Differences in the lateral and axial extents of the voids were obtained for different focus radii and focusing depths at same intensities. Furthermore, the intensity distribution of the laser radiation inside the material for the different focus radii and focusing depths, and their dependence on the lateral and axial sizes of the voids was simulated and compared with the experimental results.

  14. [Enhancing effect of sample additive on laser-induced plasma radiation].

    Science.gov (United States)

    Zhang, Lin-Jing; Chen, Jin-Zhong; Yang, Shao-Peng; Wei, Yan-Hong; Guo, Qing-Lin

    2010-05-01

    In order to improve the radiation characteristic of laser-induced plasma, with the national standard soil taken as the target sample, a laser spectrum analytical system which composed of a high-energy neodymium glass laser, a multifunctional and compact integrated spectrometer, and a CCD detector was used to detect the influence of the NaCl sample additive on the laser plasma radiation intensity. The electron temperature and the electron density of the plasmas were also calculated from the lines intensity and stark broadening of emission spectral line respectively. The experimental results indicated that with the increase in the NaCl additive, the spectral intensity, signal-to-background ratio, the electron temperature, and the electron density all went up firstly and then down. When 15% NaCl was added, the radiation intensity of the plasma reached the maximum value, the spectral lines intensity of element Mn, K, Fe, and Ti increased by 39.2%, 42.5%, 53.9% and 33.8% compared to that without additive respectively, the spectral signal-to-background ratio increased by 64.4%, 84.39, 44.55% and 58.2% respectively, while the electron temperature and the electron density of the plasmas were heightened by 0.17 times and 0.36 times respectively.

  15. Eczematous Dermatitis Occurring on a Café-au-Lait Spot Long after Laser Radiation.

    Science.gov (United States)

    Mihara, Motoyuki

    2013-05-01

    A 40-year-old woman presented with an itchy erythematosquamous change of a café-au-lait spot in her face. The onset of this change occurred just after her relocation. The café-au-lait spot had been irradiated by laser approximately 20 years ago. Clinically, there was a coin-sized erythema with a slight scale on the pigmented lesion in the left lateral orbital region. Histopathologically, the lesion demonstrated both spongiotic dermatitis and interface dermatitis together with lymphohistiocytic cell infiltration, in addition to moderate acanthosis and elongation of rete ridges with slight basal hyperpigmentation. From these clinical and histopathological findings, the lesion was diagnosed as eczematous dermatitis occurring on the café-au-lait spot after laser radiation. Another interesting histopathological finding was that some parts of a lobule of the sebaceous gland were occupied exclusively by degenerative atrophic sebocytes. From the viewpoint of pathogenesis, the eczematous dermatitis of this patient could have been an accompanying feature of a neurogenic inflammation occurring on the café-au-lait spot after laser radiation, and the atrophic change of a part of the sebaceous lobule might have been induced by a morphogenetic alteration of certain germinative cells of the sebaceous lobule due to laser radiation.

  16. Coatings of metal substrates assisted by laser radiation

    Directory of Open Access Journals (Sweden)

    Caudevilla, H.

    1998-04-01

    Full Text Available In this contribution, a new way of obtaining ceramic coatings is presented. This method uses precursor suspensions, settled on substrates and in-situ pyrolised with a laser. Different deposition techniques of the ceramic precursors have been tested in order to obtain a homogeneous distribution on the metal substrate before the laser treatment.

    La combinación de recubrimientos utilizando disoluciones de precursores metálicos con la pirólisis asistida por láser, permite obtener una gran diversidad de recubrimientos sobre sustratos de muy distinta naturaleza. Se han realizado estudios, tanto con disoluciones poliméricas, como con disoluciones de tipo sol-gel y pastas obtenidas con técnicas similares, depositadas utilizando métodos convencionales de inmersión y atomización previa a la pirólisis asistida por láser, así como simultánea. En este trabajo se presenta un resumen de los resultados más significativos obtenidos en la realización de recubrimientos sobre sustratos metálicos y cerámicos.

  17. Measurement of heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  18. Antibacterial effects of pulsed Nd:YAG laser radiation at different energy settings in root canals.

    Science.gov (United States)

    Folwaczny, Matthias; Mehl, Albert; Jordan, Christian; Hickel, Reinhard

    2002-01-01

    The in vitro study aimed at the determination of the bacterial reduction in root canals used pulsed Nd:YAG laser radiation without a photosensitizing dye. In addition the temperature change in the root canals was determined during laser irradiation. The study sample was 114 root canals of extracted single-rooted human teeth that have been enlarged mechanically, sterilized, and randomly assigned to two experimental units. The source of radiation was a Nd:YAG laser device emitting pulsed infrared radiation at a wavelength of 1.064 microm, a pulse duration of 100 micros, and a pulse repetition rate of 20 pps. Samples of each experimental unit were inoculated with Escherichia coli (ATCC 25922) or Staphylococcus aureus (ATCC 25923), respectively, and divided into subgroups of 13 teeth each for irradiation for 20 s at 100 mJ or 200 mJ. One subgroup was left untreated as positive control and one subgroup was rinsed with 0.5 ml of sodium hypochloride. After laser treatment or rinsing with sodium hypochloride the number of bacteria in each root canal was determined using the surface spread plate technique. Statistical analysis of the results was performed with ANOVA and Scheffé test at a level of significance of 5% (p temperature increase at 100 mJ was 24.3 degrees C (+/-3.9) and that at 200 mJ was 61.8 degrees C (+/-4.2). The Nd:YAG laser radiation has antimicrobial effects in root canals even in the absence of photosensitizing dyes but also causes considerable temperature increase.

  19. Two-stage model of nanocone formation on a surface of elementary semiconductors by laser radiation

    Science.gov (United States)

    2012-01-01

    In this work, we study the mechanism of nanocone formation on a surface of elementary semiconductors by Nd:YAG laser radiation. Our previous investigations of SiGe and CdZnTe solid solutions have shown that nanocone formation mechanism is characterized by two stages. The first stage is characterized by formation of heterostructure, for example, Ge/Si heterostructure from SiGe solid solutions, and the second stage is characterized by formation of nanocones by mechanical plastic deformation of the compressed Ge layer on Si due to mismatch of Si and Ge crystalline lattices. The mechanism of nanocone formation for elementary semiconductors is not clear until now. Therefore, the main goal of our investigations is to study the stages of nanocone formation in elementary semiconductors. A new mechanism of p-n junction formation by laser radiation in the elementary semiconductor as a first stage of nanocone formation is proposed. We explain this effect by the following way: p-n junction is formed by generation and redistribution of intrinsic point defects in temperature gradient field – the thermogradient effect, which is caused by strongly absorbed laser radiation. According to the thermogradient effect, interstitial atoms drift towards the irradiated surface, but vacancies drift to the opposite direction – in the bulk of semiconductor. Since interstitials in Ge crystal are of n-type and vacancies are known to be of p-type, a n-p junction is formed. The mechanism is confirmed by the appearance of diode-like current–voltage characteristics after i-Ge irradiation crystal by laser radiation. The mechanism in Si is confirmed by conductivity type inversion and increased microhardness of Si crystal. The second stage of nanocone formation is laser heating up of top layer enriched by interstitial atoms with its further plastic deformation due to compressive stress caused by interstitials in the top layer and vacancies in the buried layer. PMID:22849869

  20. In vitro effects of argon laser radiation on blood: quantitative and morphologic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Abela, G.S.; Crea, F.; Smith, W.; Pepine, C.J.; Conti, C.R.

    1985-02-01

    Use of the argon laser to recanalize stenosed arteries may require delivery of the beam through blood. To assess the degree of hemolysis and debris formation, 84 samples of citrated whole blood were exposed to argon laser radiation with varying power (1, 2 and 3 watts) and duration (5, 10, 20 and 40 seconds). Compared with control samples, only blood samples exposed to a power of 3 watts for 40 seconds showed a marked decrease in hematocrit (from 37 +/- 1.3 to 33 +/- 1.4%, p less than 0.01) and a marked increase in both free hemoglobin concentration (from 0.2 +/- 0.2 to 1.3 +/- 0.5 g/100 ml, p less than 0.01) and debris weight (from 0.9 +/- 0.3 to 2.8 +/- 0.5 mg, p less than 0.01). Scanning electron microscopy of debris from samples of whole blood, washed erythrocytes and platelet-rich plasma lased at 3 watts for 40 seconds documented the presence of membrane denaturation of blood elements, resulting in their fusion to form complex mesh-like conglomerates. Similar morphologic changes were observed in whole blood samples exposed to a ''hot tip'' rather than laser radiation. These data indicate that: 1) argon laser radiation with a power of 3 watts does not produce apparent hemolysis or debris formation for exposure periods up to 20 seconds, and 2) the effects of laser radiation on blood are probably mediated by thermal denaturation of cell membranes, as suggested by the same morphologic changes produced by thermal injury from a ''hot tip.''

  1. Influence of Welding Current and Focal Position on the Resonant Absorption of Laser Radiation in a TIG Welding Arc

    Science.gov (United States)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.

    The work presents the influence of welding current and focal position on the resonant absorption of diode laser radiation in a TIG welding arc. The laser beam is guided perpendicular to the electrical arc to avoid an interaction with the electrodes. Laser power measurements have shown a reduction of the measured laser power up to 18% after passing the electrical arc. This reduction results from the interaction of argon shielding gas atoms and laser radiation at 810.4 nm and 811.5 nm. The interaction is strongly affected by the adjusted welding current and the adjustment of the laser beam and the electrical arc. Lowering the welding current or shifting the laser beam out of the centerline of the electrical arc reduces the ionization probability. An increased ionization is necessary to decrease the resistance of the electrical arc.

  2. Development of short pulse laser driven micro-hohlraums as a source of EUV radiation

    Science.gov (United States)

    Krushelnick, Karl; Batson, Thomas; McKelvey, Andrew; Raymond, Anthony; Thomas, Alec; Yanovsky, Victor; Nees, John; Maksimchuk, Anatoly

    2015-11-01

    Experiments at large scale laser facilities such as NIF allow the radiativ properties of dens, high-temperature matter to be studied at previously unreachable regime, but are limited by cost and system availability. A scaled system using a short laser pulses and delivering energy to much smaller hohlraum could be capable of reaching comparable energy densities by depositing the energy in a much smaller volume before ablation of the wall material closes the cavit. The laser is tightl focused through the cavity and then expands to illuminate the wall. Experiments were performe using the Hercules Ti:Sapphire laser system at Michiga. Targets include cavities machined in bulk material using low laser power, and then shot in situ with a single full power pulse as well as micron scale pre-fabricate target. Spectral characteristics were measured using a soft X-ray spectromete, K-alpha x-ray imaging system and a filtered photo cathode array. Scalings of the radiation temperature were made for variations in the hohlraum cavit, the pulse duration as well as the focusing conditions. Proof of principle time resolved absorption spectroscopy experiments were also performe. These sources may allow opacity and atomic physics measurements with plasma an radiation temperatures comparable to much larger hohlraums, but with much higher repetition rate and in a university scale laboratory. We acknowledge funding from DTRA grant HDTRA1-11-1-0066.

  3. Atomic xenon recombination laser excited by thermal ionizing radiation from a magnetoplasma compressor and discharge

    Science.gov (United States)

    Kamrukov, A. S.; Kozlov, Nicolay P.; Opekan, A. G.; Protasov, Yuri S.; Rudoi, I. G.; Soroka, A. M.

    1991-09-01

    A description is given and the results are reported of the first photoionization-recombination laser using atomic xenon excited by thermal ionizing radiation from a plasma. The pump source was a multichannel plasmadynamic in magnetoplasma compressors, which was ignited in the active medium of the laser. When the composition of the working mixture was optimal (Xe:Ar equals 1:250) and the total pressure was 1 atm, the output energy was approximately 0.5 in the form of pulses of approximately 10 microsecond(s) duration, and maximum specific output energy represented by laser radiation was 1-2 J/l. The unsaturated gain was 27 m. A kinetic laser scheme was proposed and analyzed. It allowed for the processes of photoionization, ion conversion, dissociative recombination, interaction of excited states with electron and buffer gases, etc. An important role played by heating of the active medium during pumping was demonstrated; it explained the observed characteristics of the spatial and temporal structure of the lasing process, particularly bleaching of large volumes of the active medium. The potential output energy of the laser was considered, and specific constructions were proposed to attain a lasing efficiency amounting to a few percent.

  4. Scattering effect in radiative heat transfer during selective laser sintering of polymers

    Science.gov (United States)

    Liu, Xin; Boutaous, M'hamed; Xin, Shihe

    2016-10-01

    The aim of this work is to develop an accurate model to simulate the selective laser sintering (SLS) process, in order to understand the multiple phenomena occurring in the material and to study the influence of each parameter on the quality of the sintered parts. A numerical model, coupling radiative and conductive heat transfers in a polymer powder bed providing a local temperature field, is proposed. To simulate the polymer sintering by laser heating as in additive manufacturing, a double-lines scanning of a laser beam over a thin layer of polymer powder is studied. An effective volumetric heat source, using a modified Monte Carlo method, is estimated from laser radiation scattering and absorption in a semi-transparent polymer powder bed. In order to quantify the laser-polymer interaction, the heating and cooling of the material is modeled and simulated with different types heat sources by both finite elements method (FEM) and discrete elements method (DEM). To highlight the importance of introducing a semi-transparent behavior of such materials and in order to validate our model, the results are compared with works taken from the literature.

  5. Echo-enabled tunable terahertz radiation generation with a laser-modulated relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-09-01

    Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.

  6. Effects of Soft-Core Potentials and Coulombic Potentials on Bremsstrahlung Radiation during Laser Matter Interaction

    Science.gov (United States)

    Pandit, Rishi; Sentoku, Yasuhiko; Sawada, Hiroshi; Ramunno, Lora; Ackad, Edward

    2017-10-01

    An intense, short laser pulse incident on rare-gas clusters can produce nano-plasmas containing energetic electrons. As these electrons undergo scattering, both from phonons and ions, they emit bremsstrahlung radiation. Here we compare a theory of Bremsstrahlung emission appropriate for the interaction of intense lasers with matter using soft-core potentials and coulombic potential. A new scaling for the radiation cross-section and Emissivity via bremsstrahlung are derived for soft-core potential which depends on the potential depth, used to avoid coulomb singularity and for coulombic potential and implemented in a particle in cell code (PICLS). The radiation cross-section and emissivity via bremsstrahlung is found to increase rapidly with increases in potential depth up to 100 eV and then becomes mostly saturated for larger depths of a soft-core potential. For both cases, the radiation cross-section and emissivity of Bremsstrahlung increases with increases in laser wavelength. The bremsstrahlung emission may provide a broadband light source for diagnostics. This work was supported by Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0247.

  7. Modification in oxidative processes in muscle tissues exposed to laser- and light-emitting diode radiation.

    Science.gov (United States)

    Monich, Victor A; Bavrina, Anna P; Malinovskaya, Svetlana L

    2018-01-01

    Exposure of living tissues to high-intensity red or near-infrared light can produce the oxidative stress effects both in the target zone and adjacent ones. The protein oxidative modification (POM) products can be used as reliable and early markers of oxidative stress. The contents of modified proteins in the investigated specimens can be evaluated by the 2,4-dinitrophenylhydrazine assay (the DNPH assay). Low-intensity red light is able to decrease the activity of oxidative processes and the DNPH assay data about the POM products in the biological tissues could show both an oxidative stress level and an efficiency of physical agent protection against the oxidative processes. Two control groups of white rats were irradiated by laser light, the first control group by red light and the second one by near-infrared radiation (NIR).Two experimental groups were consequently treated with laser and red low-level light-emitting diode radiation (LED). One of them was exposed to red laser light + LED and the other to NIR + LED. The fifth group was intact. Each group included ten animals. The effect of laser light was studied by methods of protein oxidative modifications. We measured levels of both induced and spontaneous POM products by the DNPH assay. The dramatic increase in levels of POM products in the control group samples when compared with the intact group data as well as the sharp decrease in the POM products in the experimental groups treated with LED low-level light were statistically significant (p ≤ 0.05). Exposure of skeletal muscles to high-intensity red and near-infrared laser light causes oxidative stress that continues not less than 3 days. The method of measurement of POM product contents by the DNPH assay is a reliable test of an oxidative process rate. Red low-intensity LED radiation can provide rehabilitation of skeletal muscle tissues treated with high-intensity laser light.

  8. The study of the extreme radiation tolerance mechanisms of the bacterium Deinococcus deserti by a functional genomics approach; Etude des mecanismes de l'extreme tolerance aux radiations de la bacterie Deinococcus deserti par une approche de genomique fonctionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Dulermo, R.

    2009-12-15

    The genome of Deinococcus deserti, a highly radiation-tolerant bacterium, was analyzed and compared to those of D. radiodurans and D. geothermalis. About 230 proteins are specifically conserved in these 3 species, including IrrE, a regulator protein essential for radio tolerance. D.deserti has several supplementary DNA repair genes, like imuY and dnaE2 (trans-lesion DNA polymerases). Moreover, D. deserti has 3 recA that code for 2 different RecA proteins (RecAC et RecAP). To study these genes, genetic tools were developed for D. deserti. Different results suggest that IrrE, required for the induction of several genes after irradiation, has peptidase activity. The 2 RecA proteins are functional for DNA repair. D. deserti is mutable by UV, which requires ImuY, DnaE2 and RecAC, but not RecAP. (author)

  9. Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test

    Science.gov (United States)

    Kozlov, I. O.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dremin, V. V.; Dunaev, A. V.

    2017-11-01

    Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent’s spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes.

  10. Radiative processes in air excited by an ArF laser

    Science.gov (United States)

    Laufer, Gabriel; Mckenzie, Robert L.; Huo, Winifred M.

    1988-01-01

    The emission spectrum of air that is excited by an ArF laser has been investigated experimentally and theoretically to determine the conditions under which fluorescence from O2 can be used for the measurement of temperature in aerodynamic flows. In addition to the expected fluorescence from O2, the spectrum from excitation with an intense laser beam is shown to contain significant contributions from the near-resonant Raman fundamental and overtone bands, the four-photon fluorescence excitation of C produced from ambient CO2, and possibly the three-photon excitation of O(2+). The nature of the radiative interactions contributing to these additional features is described.

  11. Thermoelastic Property of a Semi-Infinite Medium Induced by a Homogeneously Illuminating Laser Radiation

    Directory of Open Access Journals (Sweden)

    Tayel I. M.

    2008-10-01

    Full Text Available The problem of thermoelasticity, based on the theory of Lord and Shulman with one relaxation time, is used to solve a boundary value problem of one dimensional semi-infinite medium heated by a laser beam having a temporal Dirac distribution. The surface of the medium is taken as traction free. The general solution is obtained using the Laplace transformation. Small time approximation analysis for the stresses, displacement and temperature are performed. The convolution theorem is applied to get the response of the system on temporally Gaussian distributed laser radiation. Results are presented graphically. Concluding that the small time approximation has not affected the finite velocity of the heat conductivity.

  12. Ultraviolet out-of-band radiation studies in laser tin plasma sources

    Science.gov (United States)

    Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin

    2017-11-01

    Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.

  13. Normal tissue tolerance to external beam radiation therapy: Peripheral nerves; Dose de tolerance a l'irradiation des tissus sains: les nerfs peripheriques

    Energy Technology Data Exchange (ETDEWEB)

    Henriques de Figueiredo, B.; Dejean, C.; Sargos, P.; Kantor, G. [Departement de radiotherapie, institut Bergonie, centre regional de lutte contre le cancer, 33 - Bordeaux (France); Huchet, A.; Mamou, N. [Service d' oncologie medicale et de radiotherapie, CHU Saint-Andre, 33 - Bordeaux (France); Loiseau, H. [Service de neurochirurgie, CHU Pellegrin, 33 - Bordeaux (France)

    2010-07-15

    Plexopathies and peripheral neuropathies appear progressively and with several years delay after radiotherapy. These lesions are observed principally after three clinical situations: supraclavicular and axillar irradiations for breast cancer, pelvic irradiations for various pathologies and limb irradiations for soft tissue sarcomas. Peripheral nerves and plexus (brachial and lumbosacral) are described as serial structures and are supposed to receive less than a given maximum dose linked to the occurrence of late injury. Literature data, mostly ancient, define the maximum tolerable dose to a threshold of 60 Gy and highlight also a great influence of fractionation and high fraction doses. For peripheral nerves, most frequent late effects are pain with significant differences of occurrence between 50 and 60 Gy. At last, associated pathologies (diabetes, vascular pathology, neuropathy) and associated treatments have probably to be taken into account as additional factors, which may increase the risk of these late radiation complications. (authors)

  14. Tolerance to solar ultraviolet-B radiation in the citrus red mite, an upper surface user of host plant leaves.

    Science.gov (United States)

    Fukaya, Midori; Uesugi, Ryuji; Ohashi, Hirokazu; Sakai, Yuta; Sudo, Masaaki; Kasai, Atsushi; Kishimoto, Hidenari; Osakabe, Masahiro

    2013-01-01

    Plant-dwelling mites are potentially exposed to solar ultraviolet-B (UVB) radiation that causes deleterious and often lethal effects, leading most mites to inhabit the lower (underside) leaf surfaces. However, in species of spider mite belonging to the Genus Panonychus, a substantial portion of individuals occur on upper leaf surfaces. We investigated whether the upper leaf surfaces of citrus trees are favorable for P. citri, and to what extent they are tolerant to UVB radiation. If eggs are not adequately protected from UVB damage, females may avoid ovipositing on the upper surfaces of sunny leaves. To test this, we conducted laboratory experiments using a UVB lamp, and semioutdoor manipulative experiments. As a result, P. citri eggs are tolerant to UVB. Field studies revealed that the ratio of eggs and adult females on upper leaf surfaces were larger for shaded than for sunny leaves. However, 64-89% of eggs hatched successfully even on sunny upper leaf surfaces. Nutritional evaluation revealed that whether on sunny or shaded leaves, in fecundity and juvenile development P. citri reaped the fitness benefits of upper leaf surfaces. Consequently, P. citri is tolerant to UVB damage, and inhabiting the upper surfaces of shaded leaves is advantageous to this mite. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  15. Neutron Radiation Tolerance of Two Benchmark Thiophene-Based Conjugated Polymers: the Importance of Crystallinity for Organic Avionics

    Science.gov (United States)

    Paternò, G. M.; Robbiano, V.; Fraser, K. J.; Frost, C.; García Sakai, V.; Cacialli, F.

    2017-01-01

    Aviation and space applications can benefit significantly from lightweight organic electronics, now spanning from displays to logics, because of the vital importance of minimising payload (size and mass). It is thus crucial to assess the damage caused to such materials by cosmic rays and neutrons, which pose a variety of hazards through atomic displacements following neutron-nucleus collisions. Here we report the first study of the neutron radiation tolerance of two poly(thiophene)s-based organic semiconductors: poly(3-hexylthiophene-2,5-diyl), P3HT, and the liquid-crystalline poly(2,5-bis (3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT. We combine spectroscopic investigations with characterisation of intrinsic charge mobility to show that PBTTT exhibits significantly higher tolerance than P3HT. We explain this in terms of a superior chemical, structural and conformational stability of PBTTT, which can be ascribed to its higher crystallinity, in turn induced by a combination of molecular design features. Our approach can be used to develop design strategies for better neutron radiation-tolerant materials, thus paving the way for organic semiconductors to enter avionics and space applications. PMID:28112195

  16. Statistical and coherence properties of radiation from X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2009-12-15

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  17. Laser Radiation Induces Growth and Lipid Accumulation in the Seawater Microalga Chlorella pacifica

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    2017-10-01

    Full Text Available The impacts of laser radiation (Nd: YAG laser, 1064 nm at 800 mW, He–Ne laser 808 nm at 6 W, semiconductor laser 632.8 nm at 40 mW on growth and lipid accumulation of Chlorella pacifica were investigated in this study. The results showed growth rates increased 1.23, 1.41, and 1.40-fold over controls by 4 min Nd: YAG, 4 min He–Ne, and 8 min semiconductor laser treatments, respectively, whereas the corresponding nitrate reductase observed increased 1.25, 1.63, and 2.08-fold over controls. Moreover, total chlorophyll concentration was increased to 1.09, 1.29, and 1.33-fold over controls, respectively. After 20 days cultivation, the highest lipid content was 35.99%, 18.46%, and 31.00% after 2 min Nd: YAG, 4 min He–Ne, and 4 min semiconductor laser treatments, corresponding to 2.86, 1.50, and 2.46-fold increase over controls, respectively. Furthermore, the lipid productivity of the above 3 treatments were 15.25 ± 2.56, 16.25 ± 2.45, and 14.75 ± 2.11 mg L−1 d−1. However, the highest lipid productivity was 22.00 ± 3.28, 16.25 ± 2.45, and 19.25 ± 1.78 mg L−1 d−1, in response to treatment for 2 min Nd: YAG, 1 min He–Ne, and 4 min semiconductor laser treatments, with 2.67, 1.97, and 2.33-fold increase over controls, respectively. These results indicated that lipid accumulation efficiency of C. pacifica could be significantly improved by laser irradiation using Nd: YAG, He–Ne, and semiconductor laser treatments.

  18. Biological Effects of Laser Radiation. Volume I. Review of the Literature on Biological Effects of Laser Radiation-to 1965.

    Science.gov (United States)

    1978-10-17

    to coaz-%eta brea -ccoia of the Vessel wall. ’oc’e - d Baez corclae fro-u: their- studies that the vessel wallI -rinoled in ti’zo:-.borenesds, but tic...embryo in early pregnancy is probably not feasible. Other mammalian species may provide a better basis fdr production of localized superficial lesions in...of laser irradiation on e rp-ariz-ntal ti-ors, presented at the Amrican Association for Cancer Research, April 1964, Chicago, Illinois. 20. Klein, 1

  19. X-ray spectra of plasma radiation from laser induced low-power vacuum discharge

    Science.gov (United States)

    Romanov, I. V.; Kologrivov, A. A.; Paperny, V. L.; Rupasov, A. A.; Starodub, A. N.

    2018-02-01

    The x-ray spectra of plasma radiation in the wavelength range 30–300 Å are studied. The radiation is emitted from plasma of a vacuum discharge with storage energy less than 30 J that is initiated on an Al or Fe cathode by beam from neodymium laser with a power density up to 1012 W cm‑2. It is shown that both the spectral composition and intensity of radiation of hot micropinch plasma that is formed in the cathodic jet are determined by the set of the discharge and the laser pulse characteristics. By optimizing these characteristics, a mode of the discharge operation is attainable, in which a significant portion of the radiation energy is located in the long-wave band of the quasi-continuum (230–270 Å and 160–200 Å for Al and Fe cathodes, respectively). That makes it possible to treat such a discharge as an intense source of narrow-band soft x-ray radiation.

  20. Interaction of mid-infrared laser radiation with soft ureter tissue

    Science.gov (United States)

    Jelinkova, Helena; Kohler, Oto; Nemec, Michal; Koranda, Petr; Sulc, Jan; Drlik, Pavel; Miyagi, Mitsunobu; Shi, Yi-Wei; Matsuura, Yuji; Kokta, Milan R.; Hrabal, Petr

    2004-09-01

    Aim of the work was an investigation of ureter wall perforation possibility by various types of mid-infrared radiations (from 2.01 μm (Tm:YAG) up to 2.94 μm (Er:YAG)) and exploration of the interaction basic characteristic for ureter surface (epithelium) and its deep structures (mesenchym). From results follow that CTH:YAG, Er:YAG, and CTE:YAG laser radiations accomplish a good wall ureter perforation. A distinguished difference appeared in modifications of the ureter tissue - epithelium and mesenchym.

  1. Laser-plasma accelerator and femtosecond photon sources-based ultrafast radiation chemistry and biophysics

    Science.gov (United States)

    Gauduel, Y. A.

    2017-02-01

    The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm-2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5-150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10-14-10-11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011-1013 Gy s-1) can be used to investigate early radiation processes in native ionization tracks, down to 10-12 s and 10-9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of ultrashort particle

  2. Treatment of compounds and alloys in radiation hydrodynamics simulations of ablative laser loading.

    Science.gov (United States)

    Swift, Damian C; Gammel, J Tinka; Clegg, Samuel M

    2004-05-01

    Different methods were compared for constructing models of the behavior of a prototype intermetallic compound, nickel aluminide, for use in radiation hydrodynamics simulations of shock wave generation by ablation induced by laser energy. The models included the equation of state, ionization, and radiation opacity. The methods of construction were evaluated by comparing the results of simulations of an ablatively generated shock wave in a sample of the alloy. The most accurate simulations were obtained using the "constant number density" mixture model to calculate the equation of state and opacity, and Thomas-Fermi ionization. This model is consistent with that found to be most accurate for simulations of ablatively shocked elements.

  3. Localized dispersing of ceramic particles in tool steel surfaces by pulsed laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hilgenberg, K., E-mail: hilgenberg@uni-kassel.de [Metal Forming Technology, University of Kassel (Germany); Behler, K. [Laser Technology, THM University of Applied Sciences (Germany); Steinhoff, K. [Metal Forming Technology, University of Kassel (Germany)

    2014-06-01

    In this paper the capability of a localized laser dispersing technique for changing the material microstructure and the surface topology of steels is discussed. The laser implantation named technique bases on a discontinuous dispersing of ceramic particles into the surface of steels by using pulsed laser radiation. As ceramic particles TiC, WC and TiB{sub 2} are used, substrate material is high-alloyed cold working steel (X153CrMoV12). The influence of the laser parameters pulse length and pulse intensity was investigated in a comprehensive parameter study. The gained surface topology and microstructure were evaluated by optical microscopy, energy dispersive X-ray spectroscopy (EDX) and white light interferometry; mechanical properties were analyzed by micro hardness measurement. The experiments reveal that the alignment of separated, elevated, dome-shaped spots on the steel surface is feasible. The geometrical properties as well as the mechanical properties are highly controllable by the laser parameters. The laser implanted spots show a mostly crack-free and pore-free bonding to the substrate material as well as a significant increase of micro hardness.

  4. Localized dispersing of ceramic particles in tool steel surfaces by pulsed laser radiation

    Science.gov (United States)

    Hilgenberg, K.; Behler, K.; Steinhoff, K.

    2014-06-01

    In this paper the capability of a localized laser dispersing technique for changing the material microstructure and the surface topology of steels is discussed. The laser implantation named technique bases on a discontinuous dispersing of ceramic particles into the surface of steels by using pulsed laser radiation. As ceramic particles TiC, WC and TiB2 are used, substrate material is high-alloyed cold working steel (X153CrMoV12). The influence of the laser parameters pulse length and pulse intensity was investigated in a comprehensive parameter study. The gained surface topology and microstructure were evaluated by optical microscopy, energy dispersive X-ray spectroscopy (EDX) and white light interferometry; mechanical properties were analyzed by micro hardness measurement. The experiments reveal that the alignment of separated, elevated, dome-shaped spots on the steel surface is feasible. The geometrical properties as well as the mechanical properties are highly controllable by the laser parameters. The laser implanted spots show a mostly crack-free and pore-free bonding to the substrate material as well as a significant increase of micro hardness.

  5. The influence of laser radiation on human osteoblasts cultured on nanostructured composite substrates.

    Science.gov (United States)

    Crisan, Liana; Soritau, Olga; Baciut, Mihaela; Baciut, Grigore; Crisan, Bogdan Vasile

    2015-01-01

    Carbon-based nanomaterials such as carbon nanotubes, graphene oxide and graphene have been explored by researchers as well as the industry. Graphene is a new nanomaterial which has commercial and scientific advantages. Laser therapy has proven highly useful in biomedicine, with the use of different laser types and energies for distinct purposes. The low level laser therapy (LLLT) can have anti-inflammatory, analgesic and biostimulant effects. Recent research has shown that laser radiation has different effects on osteoblasts. The aim of this study was to identify the influence of laser radiation on human osteoblastic cells cultured on nanostructured composite substrates. Four types of substrates were created using colloidal suspensions of nanostructured composites in PBS at a concentration of 30 μg/ml. We used human osteoblasts isolated from patella bone pieces harvested during arthroplasty. Irradiation of osteoblasts cultured on nanostructured composite substrates was made with a semiconductor laser model BTL-10 having a wavelength of 830 nm. The proliferation activity of osteoblast cells was assessed using the MTT assay. After laser irradiation procedure the viability and proliferation of osteoblast cells were analyzed using fluorescein diacetate (FDA) staining. The osteoblast cells viability and proliferation were evaluated with MTT assay at 30 minutes, 24 hours, 5 days and 10 days after laser irradiation. In the first 30 minutes there were no significant differences between the irradiated and non-irradiated cells. At 24 hours after laser irradiation procedure a significant increase of MTT values in case of irradiated osteoblasts cultivated on nanostructured hydroxyapatite, nanostructured hydroxyapatite with gold nanoparticles and 1.6% and 3.15% graphenes composites substrates was observed. A more marked proliferation rate was observed after 10 days of irradiation for irradiated osteoblasts seeded on nanostructured hydroxyapatite with gold nanoparticles and

  6. Effects of IR laser radiation in thyroid follicular cells: fine structural and stereological study

    Science.gov (United States)

    Vidal, Lourdes; Perez de Vargas, I.; Ruiz, C.; Parrado, C.; Pelaez, A.

    1993-06-01

    We have examined the results obtained from the stereological ultraestructural study of follicular cells in thyroid glands treated with IR laser (904 nm). We studied 40 wistar rats exposed to radiation with doses of 46,80 J/cm2. They were sacrificed 1 and 180 days after the treatment. A stereological study of the volume and surface density was made in mitochondria, rER. Gogi complex and cytoplasmic granules. In the rats sacrificed 1 day after exposure to laser radiation, the thyrocited showed minimal morphological changes. In the rats sacrificed after a long period (180 days) the thyrocites showed a significant increase of volume and surface densities of rER, that may mean decreased capacity of the cells to synthesize thyroglobulin. Volume and surface densities of the citoplasmic granules experienced a significant increase.

  7. Modeling of terahertz radiation emission from a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suresh C.; Panwar, Jyotsna; Sharma, Rinku [Department of Applied Physics, Delhi Technological University, Delhi (India)

    2017-05-15

    In this article, we report the generation of terahertz (THz) radiation using the interaction of a laser-modulated relativistic electron beam (REB) with a surface plasma wave. Two laser beams propagating through the modulator interact with the REB, leading to velocity modulation of the beam. This results in pre-bunching of the REB. The pre-bunched beam travels through the drift space, where the velocity modulation translates into density modulation. The density-modulated beam, on interacting with the surface plasma pump wave, acquires an oscillatory velocity that couples with the modulated beam density to give rise to a nonlinear current density which acts as an antenna to give THz radiation. By optimizing the parameters of the beam and the wiggler, we obtain power of the order of 10{sup -4} using the current scheme. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Design and fabrication of radiation shielded laser ablation ICP-MS system

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Yeong Keong; Han, Sun Ho; Park, Soon Dal; Park, Yang Soon; Jee, Kwang Yong; Kim, Won Ho

    2006-09-15

    In relation to high burn up and extended fuel cycle for the fuel cycle efficiency, we need to take chemical analysis of spent nuclear fuel for the integrity of nuclear fuel at high burn up. to measure the isotopic distribution of fission product in a high burn up nuclear fuel, radiation shielded laser ablation system was designed and fabricated. By probing the sample with a laser beam, micro sampling system for the mass analyzer was successfully developed. This report describes the structural design and the function of developed radiation shielded LA system. This system will be used for the analysis of isotopic distribution from core to rim of a spent nuclear fuel prepared from the hot-cell in PIE facility and/or an irradiated fuel from research reactor.

  9. Ultraintense laser absorption and γ-ray synchrotron radiation in near critical density plasmas

    Science.gov (United States)

    Chang, H. X.; Qiao, B.; Zhang, Y. X.; Xu, Z.; Yao, W. P.; Zhou, C. T.; He, X. T.

    2017-04-01

    Ultraintense laser absorption and γ-ray synchrotron radiation in near-critical-density (NCD) plasmas are investigated. Besides the known skin-depth emission and reinjected electron synchrotron emission in NCD plasmas, we find a new γ-ray emission mechanism, where γ-rays are dominantly produced by the Transversely Oscillating Electron synchrotron Emission (TOEE). In this new TOEE mechanism, electrons mainly oscillate in the transverse direction under the balance between the longitudinal laser ponderomotive force and the restoring electrostatic force. A great amount of γ photons are emitted in the transverse direction, where the peak radiation power is enhanced by twice and the photon divergence angle is relatively decreased. The features of γ-rays produced from this new TOEE mechanism have been identified and compared with the other two mechanisms by two-dimensional particle-in-cell simulations.

  10. Interaction of cw CO2 laser radiation with plasma near-metallic substrate surface

    Science.gov (United States)

    Azharonok, V. V.; Astapchik, S. A.; Zabelin, Alexandre M.; Golubev, Vladimir S.; Golubev, V. S.; Grezev, A. N.; Filatov, Igor V.; Chubrik, N. I.; Shimanovich, V. D.

    2000-07-01

    Optical and spectroscopic methods were used in studying near-surface plasma that is formed under the effect CW CO2 laser of (2- 5)x106W/cm2 power density upon stainless steel in He and Ar shielding gases. The variation of plume spatial structure with time has been studied, the outflow of gas-vapor jets from the interaction area has been characterized. The spectra of plasma plume pulsations have been obtained for the frequency range Δf = 0-1 MHz. The temperature and electron concentration of plasma plume have been found under radiation effect upon the target of stainless steel. Consideration has been given to the most probable mechanisms of CW laser radiation-metal non-stationary interaction.

  11. Influence of nuclear radiation and laser beams on optical fibers and components

    Directory of Open Access Journals (Sweden)

    Pantelić Slađana N.

    2011-01-01

    Full Text Available The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc..

  12. Research on the shooting accuracy of ICF laser device based on radiation fluid

    Science.gov (United States)

    Zhang, Xiaolu; Zeng, Fa; Wang, Shenzhen; Zhao, Junpu; Xue, Qiao; Dai, Wanjun

    2017-10-01

    The shooting accuracy of cluster laser is an important indicator to evaluate the performance of ICF laser devices. By measuring the distribution of the X-ray generated from interaction between the third-harmonic beam and the target, the position information of the third-harmonic beam to the target can be obtained, along with the shooting accuracy. In the beam transmission process, the fundamental, second-harmonic beams and the third-harmonic beams approach to the target at the same time generating spurious X-ray. Based on the radiation fluid, the present paper is to assess the effect of the stray light on the performance of the shooting accuracy. The intensity distribution and power density of the fundamental, second-harmonic and third-harmonic beams at the target position were calculated for the SG-III laser device using SG-99 software. The characteristics of X-ray generated by the different beams radiation are simulated by one-dimensional radiation fluid program MULTI 1D. The results show that the power density of the fundamental, the second-harmonic and third-harmonic beams at the target position are, under the condition of typical shooting precision test (infused fundamental energy of 50J and pulse width is 200ps) 0.28GW / s / cm2 , 0.14GW / s / cm2 , 99GW / s / cm2 , respectively. The X-ray energy intensity radiated from the interaction between the third-harmonic beam and target is 104 times of that from the fundamental, second-harmonic beam. In the current optical system configuration conditions of SG-III laser device, the effects of the fundamental and second-harmonic beams on the target accuracy test can be ignored.

  13. A path to practical Solar Pumped Lasers via Radiative Energy Transfer.

    Science.gov (United States)

    Reusswig, Philip D; Nechayev, Sergey; Scherer, Jennifer M; Hwang, Gyu Weon; Bawendi, Moungi G; Baldo, Marc A; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd(3+)-doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm(-2), or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  14. BRIEF COMMUNICATIONS: Bleaching-wave laser excited by radiation from magnetoplasma compressors

    Science.gov (United States)

    Kamrukov, A. S.; Logunov, O. A.; Ovchinnikov, P. A.; Protasov, Yu S.; Startsev, Aleksandr V.; Stoĭlov, Yu Yu

    1989-04-01

    A bleaching-wave laser (utilizing an ether solution of coumarin 6 and 1,4-diphenylbutadiene) was pumped by a flashlamp-type source utilizing magnetoplasma compressors. When the bleaching wave propagated in the solution at a velocity of ~ 1 km/s, cw lasing was obtained for 30-40 μs with an output energy of 1.2 J in the 517 ± 5 nm range. Estimates were made of the threshold pump intensity and of the internal losses in the bleaching-wave laser. It was found that, compared with a laser without a bleaching wave (utilizing an ethyl solution of coumarin 6), a bleaching wave improved greatly (under the same excitation conditions) the output energy and the directionality of the radiation.

  15. Synthesis of Glass Nanofibers Using Femtosecond Laser Radiation Under Ambient Condition

    Directory of Open Access Journals (Sweden)

    Venkatakrishnan K

    2009-01-01

    Full Text Available Abstract We report the unique growth of nanofibers in silica and borosilicate glass using femtosecond laser radiation at 8 MHz repetition rate and a pulse width of 214 fs in air at atmospheric pressure. The nanofibers are grown perpendicular to the substrate surface from the molten material in laser-drilled microvias where they intertwine and bundle up above the surface. The fibers are few tens of nanometers in thickness and up to several millimeters in length. Further, it is found that at some places nanoparticles are attached to the fiber surface along its length. Nanofiber growth is explained by the process of nanojets formed in the molten liquid due to pressure gradient induced from the laser pulses and subsequently drawn into fibers by the intense plasma pressure. The attachment of nanoparticles is due to the condensation of vapor in the plasma.

  16. A proposed GaAs-based superlattice solar cell structure with high efficiency and high radiation tolerance

    Science.gov (United States)

    Goradia, Chandra; Clark, Ralph; Brinker, David

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their being across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  17. Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments practical design aspects

    CERN Document Server

    Anelli, G; Delmastro, M; Faccio, F; Floria, S; Giraldo, A; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Snoeys, W

    1999-01-01

    We discuss design issues related to the extensive use of Enclosed Layout Transistors (ELT's) and guard rings in deep submicron CMOS technologies in order to improve radiation tolerance of ASIC's designed for the LHC experiments (the Large Hadron Collider at present under construction at CERN). We present novel aspects related to the use of ELT's: noise measured before and after irradiation up to 100 Mrad (SiO/sub 2/), a model to calculate the W/L ratio and matching properties of these devices. Some conclusions concerning the density and the speed of IC's conceived with this design approach are finally drawn. (16 refs).

  18. Intra-operative radiation therapy with laser-accelerated carbon ions

    Science.gov (United States)

    Mur, P.; Bellido, P.; Seimetz, M.; Lera, R.; Ruiz-de la Cruz, A.; Galán, M.; Roso, L.; Sánchez, F.; Benlloch, J. M.

    2017-03-01

    Laser accelerators have long been proposed as beam source for hadron therapy. However, the high energies necessary for the treatment of deep-lying tumours, combined with stringent requirements on the beam quality, are still a severe challenge. In the present work, we discuss the applicability of laser-accelerated carbon ions at moderate energies (100-480 MeV) to the irradiation of superficial lesions. We propose a new therapeutic modality which combines the versatility of Intra-Operative Radiation Therapy with the advantages of carbon ions as compared to photon and electron radiation. To justify this idea a feasibility study has been carried out, focused on the uniformity of dose deposition inside the treatment volume. Physical and biological aspects characteristic to laser-accelerated carbon ion beams are considered. A GATE simulation has been performed, showing an approximately uniform depth-dose profile up to a maximum penetration depth of 5 mm for a single radiation boost of 10 GyE.

  19. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Gerald L; Takahashi, Lynelle K; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  20. Preparation and Characterization of Bragg Fibers for Delivery of Laser Radiation at 1064 nm

    Directory of Open Access Journals (Sweden)

    V. Matejec

    2013-04-01

    Full Text Available Bragg fibers offer new performance for transmission of high laser energies over long distances. In this paper theoretical modeling, preparation and characterization of Bragg fibers for delivery laser radiation at 1064 nm are presented. Investigated Bragg fibers consist of the fiber core with a refractive index equal to that of silica which is surrounded by three pairs of circular layers. Each pair is composed of one layer with a high and one layer with a low refractive index and characterized by a refractive-index difference around 0.03. Propagation constants and radiation losses of the fundamental mode in such a structure were calculated on the basis of waveguide optics. Preforms of the Bragg fibers were prepared by the MCVD method using germanium dioxide, phosphorous pentoxide and fluorine as silica dopants. The fibers with a diameter of 170 m were drawn from the preforms. Refractive-index profiles, angular distributions of the output power and optical losses of the prepared fibers were measured. Results of testing the fibers for delivery radiation of a pulse Nd:YAG laser at 1064 nm are also shown.

  1. Accelerated aging tests of radiation damaged lasers and photodiodes for the CMS tracker optical links

    CERN Document Server

    Gill, K; Batten, J; Cervelli, G; Grabit, R; Jensen, F; Troska, Jan K; Vasey, F

    1999-01-01

    The combined effects of radiation damage and accelerated ageing in COTS lasers and p-i-n photodiodes are presented. Large numbers of these devices are employed in future High Energy Physics experiments and it is vital that these devices are confirmed to be sufficiently robust in terms of both radiation resistance and reliability. Forty 1310 nm InGaAsP edge-emitting lasers (20 irradiated) and 30 InGaAs p- i-n photodiodes (19 irradiated) were aged for 4000 hours at 80 degrees C with periodic measurements made of laser threshold and efficiency, in addition to p-i-n leakage current and photocurrent. There were no sudden failures and there was very little wearout- related degradation in either unirradiated or irradiated sample groups. The results suggest that the tested devices have a sufficiently long lifetime to operate for at least 10 years inside the Compact Muon Solenoid experiment despite being exposed to a harsh radiation environment. (13 refs).

  2. New approaches in clinical application of laser-driven ionizing radiation

    Science.gov (United States)

    Hideghéty, Katalin; Szabó, Rita Emilia; Polanek, Róbert; Szabó, Zoltán.; Brunner, Szilvia; Tőkés, Tünde

    2017-05-01

    The planned laser-driven ionizing beams (photon, very high energy electron, proton, carbon ion) at laser facilities have the unique property of ultra-high dose rate (>Gy/s-10), short pulses, and at ELI-ALPS high repetition rate, carry the potential to develop novel laser-driven methods towards compact hospital-based clinical application. The enhanced flexibility in particle and energy selection, the high spatial and time resolution and extreme dose rate could be highly beneficial in radiotherapy. These approaches may increase significantly the therapeutic index over the currently available advanced radiation oncology methods. We highlight two nuclear reactionbased binary modalities and the planned radiobiology research. Boron Neutron Capture Therapy is an advanced cell targeted modality requiring 10B enriched boron carrier and appropriate neutron beam. The development of laser-based thermal and epithermal neutron source with as high as 1010 fluence rate could enhance the research activity in this promising field. Boron-Proton Fusion reaction is as well as a binary approach, where 11B containing compounds are accumulated into the cells, and the tumour selectively irradiated with protons. Due to additional high linear energy transfer alpha particle release of the BPFR and the maximum point of the Bragg-peak is increased, which result in significant biological effect enhancement. Research at ELI-ALPS on detection of biological effect differences of modified or different quality radiation will be presented using recently developed zebrafish embryo and rodent models.

  3. Effect of femtosecond laser radiation on morphofunctional state of neoplasm in vitro

    Science.gov (United States)

    Gening, Tatyana; Sysoliatin, Alexey; Arslanova, Dinara; Abakumova, Tatyana; Svetukhin, Vyacheslav; Antoneeva, Inna

    2012-03-01

    The effect of femtosecond laser radiation provided by the Erbium fiber laser with the pulse duration of 10-13 s, peak and average power of 6,0+/-0,3 kW and 1,26+/-0,15 mW, respectively, wavelength λ of 1,55 μm has been studied in the experiments on rat ascitic ovarian tumor cell in vitro. Irradiation has been performed at the average intensity of 0,033+/-0.002 mW/cm2 at two expositions under femtosecond laser radiation of 600 and 900 s. The membrane topology and rigidity of the cancer cells have been estimated with the Scanning probe microscopy (SolverPro, NT-MDT, Russia). Besides, the viability and apoptosis of the cancer cells have been estimated. Free-radical processes and antioxidant enzyme activity have been studied in cancer cell lysate. Femtosecond laser irradiation was established to increases the activity of the "Lipoperoxidation - antioxidants" system in neoplasm, enhance the apoptosis, decrease the viability, and change cancer cell membrane topology and rigidity in vitro depending on the energy density of the irradiation.

  4. Response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings exposed to UV-B.

    Science.gov (United States)

    Chen, Yi-Ping

    2009-07-01

    To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m(-2)) for 8 h day(-1) for 8 days (PAR, 220 micromol m(-2) s(-1)) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm(-2); beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings.

  5. EVALUATION OF THE THERAPEUTIC EFFICACY OF HIGH-INTENSITY PULSED-PERIODIC LASER RADIATION (CLINICAL AND EXPERIMENTAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Sokolov

    2016-01-01

    Full Text Available From the experience of clinical observations, we have shown a high therapeutic effectiveness of the medical laser KULON-MED in: cosmetics, non-cancer inflammatory diseases of the gastrointestinal tract and cancer (cancer of the stomach and colon as at different wavelengths, and with different types of photosensitizers. In the area of anti-tumor photodynamic therapy (PDT, based on experimental studies, we have showed the high antitumor (sarcoma S‑37 effectiveness of the laser (with the inhibition of tumor growth of up to 100% for repetitively pulsed irradiation mode, and for mode fractionation doses laser radiation. In addition, significant differences are shown in the effectiveness of anticancer PDT methods in the application of high-intensity lasers, continuous and pulsed caused fundamental properties of laser radiation characteristics – time structure of the radiation pulses. Thus, for the first time we have shown that the time of high-intensity laser pulses structure significantly affects therapeutic efficacy laser system, and hence on the mechanisms of interaction of laser radiation with biological tissue.

  6. Layout techniques to enhance the radiation tolerance of standard CMOS technologies demonstrated on a pixel detector readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Snoeys, W. E-mail: walter.snoeys@cern.ch; Faccio, F.; Burns, M.; Campbell, M.; Cantatore, E.; Carrer, N.; Casagrande, L.; Cavagnoli, A.; Dachs, C.; Di Liberto, S.; Formenti, F.; Giraldo, A.; Heijne, E.H.M.; Jarron, P.; Letheren, M.; Marchioro, A.; Martinengo, P.; Meddi, F.; Mikulec, B.; Morando, M.; Morel, M.; Noah, E.; Paccagnella, A.; Ropotar, I.; Saladino, S.; Sansen, W.; Santopietro, F.; Scarlassara, F.; Segato, G.F.; Signe, P.M.; Soramel, F.; Vannucci, L.; Vleugels, K

    2000-01-11

    A new pixel readout prototype has been developed at CERN for high-energy physics applications. This full mixed mode circuit has been implemented in a commercial 0.5 {mu}m CMOS technology. Its radiation tolerance has been enhanced by designing all NMOS transistors in enclosed geometry and introducing guardrings wherever necessary. The technique is explained and its effectiveness demonstrated on various irradiation measurements on individual transistors and on the prototype. Circuit performance started to degrade only after a total dose of 600 krad-1.7 Mrad depending on the type of radiation. 10 keV X-rays, {sup 60}Co gamma-rays, 6.5 MeV protons, and minimum ionizing particles were used. Implications of this layout approach on the circuit design and perspectives for even deeper submicron technologies are discussed.charged-.

  7. A statistical method for determining the dimensions, tolerances and specification of optics for the Laser Megajoule facility (LMJ)

    Science.gov (United States)

    Denis, Vincent

    2008-09-01

    This paper presents a statistical method for determining the dimensions, tolerance and specifications of components for the Laser MegaJoule (LMJ). Numerous constraints inherent to a large facility require specific tolerances: the huge number of optical components; the interdependence of these components between the beams of same bundle; angular multiplexing for the amplifier section; distinct operating modes between the alignment and firing phases; the definition and use of alignment software in the place of classic optimization. This method provides greater flexibility to determine the positioning and manufacturing specifications of the optical components. Given the enormous power of the Laser MegaJoule (over 18 kJ in the infrared and 9 kJ in the ultraviolet), one of the major risks is damage the optical mounts and pollution of the installation by mechanical ablation. This method enables estimation of the beam occultation probabilities and quantification of the risks for the facility. All the simulations were run using the ZEMAX-EE optical design software.

  8. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Peking Univ., Beijing (China)

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  9. CONTROL OF LASER RADIATION PARAMETERS: Two-coordinate control of the radiation pattern of a chemical non-chain electric-discharge DF laser by using space—time light modulators

    Science.gov (United States)

    Alekseev, V. N.; Kotylev, V. N.; Liber, V. I.

    2008-07-01

    The results of studies of radiation parameters of a chemical non-chain DF laser (emitting in the range from 3.5 to 4.1 μm) with an intracavity control of the radiation pattern with the help of spatiotemporal modulators based on PLZT electrooptic ceramics are presented.

  10. A novel-type tunable and narrowband extreme ultraviolet radiation source based on high-harmonic conversion of picosecond laser pulses

    NARCIS (Netherlands)

    Barkauskas, M.; Brandi, F.; Giammanco, F.; Neshev, D.; Pirri, A.; Ubachs, W.M.G.

    2005-01-01

    At the Laser Centre Vrije Universiteit a table-top size, tunable and narrowband laser-based source of extreme ultraviolet radiation was developed using high-harmonic generation of powerful laser pulses of 300 ps duration and Fourier-transform limited bandwidth. The generated radiation has

  11. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    Science.gov (United States)

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  12. [Mitigation of mice radiation damage after acute and prolonged γ-irradiation by a laser device].

    Science.gov (United States)

    Voskanyan, K Sh; Vorozhtsova, S V; Abrosimova, A N; Mitsyn, G V; Gaevskiy, V N; Molokanov, A G

    2014-01-01

    Effects of 7 Gy 60Co γ-radiation (acute and prolonged exposure), and combined exposure to 650 nm laser and γ-radiation on survival, peripheral blood, karyocyte count and mitotic index of bone marrow cells were studied in young C57BL/6 mice. All mice died following acute γ-irradiation at the dose rate of 1.14 Gy/min for 5 days or combined exposure for 11 days. Thirty percent survival from prolonged exposure to the dose rate of 0.027 Gy/min was observed after 19-day γ- and 38-day combined irradiation. Peripheral blood parameters did not differ significantly after acute and prolonged exposure; however, hyperchromemia was observed in mice after 24 hours of acute γ-irradiation. The count of mitoses per 1000 nucleus-containing BM cells evidenced that BM was virtually collapsed after 72 hours since the acute γ-exposure. It was demonstrated that laser can manage protection from a broad range of ionizing radiation doses and mitigate the adverse effects of equally acute and prolonged radiation exposure.

  13. Tolerance to gamma radiation in the marine heterotardigrade, Echiniscoides sigismundi

    DEFF Research Database (Denmark)

    Jönsson, K. Ingemar; Hygum, Thomas Lunde; Andersen, Kasper Nørgaard

    2016-01-01

    active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation...

  14. Modeling of ionizing radiation effect on static and dynamic behavior of vertical cavity surface emitting lasers

    Directory of Open Access Journals (Sweden)

    Sh.M. Eladl

    2017-12-01

    Full Text Available In this work, the effect of ionizing radiation on static and dynamic behavior of Vertical Cavity Surface Emitting Laser (VCSEL was investigated numerically. First, the model of dynamic behavior before irradiation has been analyzed based on Convolution Theorem. Second, all interesting ionizing radiation sensitive factors are compared with their corresponding post irradiation factors. The convolution theorem is applied to get features of dynamic behavior. All interesting parameters have been outlined. The effect of resonance frequency and damping parameters have been studied. The results show that static and dynamic response of these devices are dramatically deteriorated due to irradiation flux. The device gradually changes its mode of operation from lasing mode to LED mode by exhibiting weak oscillation of the output and fast damping with the increase of ionizing radiation. This type of model can be used for high data bit rate in multimode optical fiber network.

  15. Laser radiation induced thermal effects on the interactions between the tangential airflow and aluminum alloy

    Science.gov (United States)

    Lai, Shengying; Han, Bing; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2017-05-01

    The laser radiation induced thermal effects on the interactions between the tangential airflow and aluminum alloy are investigated numerically in this paper. A two dimensional model is developed for analysis of the evolutions of the temperature, stress and displacement of the flow and the aluminum alloy sheet at different flow speed through finite element method (FEM). It is found that in order to reach the same temperature in the aluminum alloy sheet, the input laser fluence needs to increase 4W/cm2 approximately, while the airflow speed increases one meter per second. Furthermore, in the situation of a thin aluminum alloy sheet irradiated by a large laser spot, the laser-induced thermal stress plays a leading role in the rupture of the sheet below the melting temperature. The airflow-induced shear stress and the pressure difference between the front and the rear surfaces of the sheet are minor effects compared to the thermal stress mentioned above. In addition, the bulge of the sheet induced by the laser heating would interact with the tangential airflow and lead to the formation of the downwind vortices, which may lead to a stronger shear stress. A vortex-induced oscillation appears when the Reynolds number of the airflow changes caused by the increase of the bulge height. And this vortex-induced oscillation would contribute to the damage of the aluminum sheet.

  16. Radiation properties of Ni-like molybdenum x-ray laser at PALS

    Science.gov (United States)

    Albrecht, M.; Kozlova, M.; Nejdl, J.

    2017-05-01

    We present lasing in Ni-like molybdenum x-ray laser (18.9 nm) demonstrated with grazing incidence pumping and complete diagnostics of the generated EUV beam. This source of EUV radiation was the first experimental realization of transient x-ray laser at the PALS laboratory. The experiment was performed on a 10 Hz Ti:Sapphire laser system with highly efficient grazing incidence pumping by single beam with profiled laser pulse which included a long prepulse followed by a short main pump pulse. The plasma column was created by focusing of the pumping laser beam on a slab target by a spherical mirror in two different off-axis configurations. Lasing close to saturation with EUV pulses of energy around 100 nJ was demonstrated with less than 500 mJ pumping energy on target. Experimental data from far-field images were analyzed by applying the generalized Van Cittert-Zernike theorem which in general relates field correlation function at the source with intensity in the far-field and can give information about the source size.

  17. Radiation-induced low-temperature tolerant cultivars of Chrysanthemum morifolium RAM

    Energy Technology Data Exchange (ETDEWEB)

    Broertjes, C.; Koene, P.; Pronk, T. (Landbouwhogeschool Wageningen (Netherlands). Inst. for Horticultural Plant Breeding)

    1983-03-01

    Irradiation of rooted cuttings of several chrysanthemum cultivars resulted in a relatively high frequency of mutants tolerant to lower growing temperatures (15-16/sup 0/C instead of 17-20/sup 0/C as is normally applied). Some of these mutants have already replaced the original parent cultivars completely within three years after the beginning of the experiment. The significance of these results for practical mutation breeding of low-temperature tolerance is discussed in relation to the expected chimerism of the mutants and also to the phenomenon that some mutants represent as much as the 4th or 5th mutation generation.

  18. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Calculation of mass transfer in the remote cutting of metals by radiation of a high-power repetitively pulsed CO2 laser

    Science.gov (United States)

    Gladush, G. G.; Rodionov, N. B.

    2002-01-01

    The mechanism of remote cutting of steel plates by radiation of a high-power repetitively pulsed CO2 laser is theoretically studied. The models of melt removal by the gravity force and the recoil pressure of material vapour are proposed and the sufficient conditions for the initiation of cutting are determined. A numerical model of a thermally thin plate was employed to describe the cutting for large focal spots.

  19. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Spectroscopic investigation of thermodynamic parameters of a plasma plume formed by the action of cw CO2 laser radiation on a metal substrate

    Science.gov (United States)

    Vasil'chenko, Zh V.; Azharonok, V. V.; Filatova, I. I.; Shimanovich, V. D.; Golubev, V. S.; Zabelin, A. M.

    1996-09-01

    Emission spectroscopy methods were used in an investigation of thermodynamic parameters of a surface plasma formed by the action of cw CO2 laser radiation of (2-5)×106 W cm-2 intensity on stainless steel in a protective He or Ar atmosphere. The spatiotemporal structure and pulsation characteristics of the plasma plume were used to determine the fields of the plasma electron density and temperature.

  20. RZLINE code modelling of distributed tin targets for laser-produced plasma sources of extreme ultraviolet radiation

    NARCIS (Netherlands)

    Koshelev, K.; Noivkov, V.G.; Medvedev, Viacheslav; Grushin, A.S.; Krivtsun, V.M.

    2012-01-01

    Abstract. An integrated model is developed to describe the hydrodynamics, atomic, and radiation processes that take place in extreme ultraviolet (EUV) radiation sources based on a laser-produced plasma with a distributed tin target. The modeling was performed using the RZLINE code—a numerical code

  1. Small-angle Thomson scattering of ultrafast laser pulses for bright, sub-100-fs x-ray radiation

    Directory of Open Access Journals (Sweden)

    Yuelin Li

    2002-04-01

    Full Text Available We propose a scheme for bright sub-100-fs x-ray radiation generation using small-angle Thomson scattering. Coupling high-brightness electron bunches with high-power ultrafast laser pulses, radiation with photon energies between 8 and 40 keV can be generated with pulse duration comparable to that of the incoming laser pulse and with peak spectral brightness close to that of the third-generation synchrotron light sources of ∼10^{20} photons s^{-1} mm^{-2} mrad^{-2} per 10^{-3} bandwidth. A preliminary dynamic calculation is performed to understand the property of this novel scattering scheme with relativistic laser intensities.

  2. Radiation-Tolerant Reprogrammable FPGA for Digital Signal Processing Circuits Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Field Programmable Gate Arrays are a widely used technology; however, they are generally limited in reprogrammability. Radiation hard, low power and high density...

  3. High Resolution, Radiation Tolerant Focal Plane Array for Lunar And Deep Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerius Photonics and its partners propose the development of a high resolution, radiation hardened 3-D FLASH Focal Plane Array (FPA), with performance expected to be...

  4. Directed high-power THz radiation from transverse laser wakefield excited in an electron density filament

    Science.gov (United States)

    Kalmykov, Serge; Englesbe, Alexander; Elle, Jennifer; Domonkos, Matthew; Schmitt-Sody, Andreas

    2017-10-01

    A tightly focused femtosecond, weakly relativistic laser pulse partially ionizes the ambient gas, creating a string (a ``filament'') of electron density, locally reducing the nonlinear index and compensating for the self-focusing effect caused by bound electrons. While maintaining the filament over many Rayleigh lengths, the pulse drives inside it a three-dimensional (3D) wave of charge separation - the plasma wake. If the pulse waist size is much smaller than the Langmuir wavelength, electron current in the wake is mostly transverse. Electrons, driven by the wake across the sharp radial boundary of the filament, lose coherence within 2-3 periods of wakefield oscillations, and the wake decays. The laser pulse is thus accompanied by a short-lived, almost aperiodic electron current coupled to the sharp index gradient. The comprehensive 3D hydrodynamic model shows that this structure emits a broad-band THz radiation, with the highest power emitted in the near-forward direction. The THz radiation pattern contains information on wake currents surrounding the laser pulse, thus serving as an all-optical diagnostic tool. The results are tested in cylindrical and full 3D PIC simulations using codes WAKE and EPOCH.

  5. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  6. Signatures of quantum effects on radiation reaction in laser-electron-beam collisions

    Science.gov (United States)

    Ridgers, C. P.; Blackburn, T. G.; Del Sorbo, D.; Bradley, L. E.; Slade-Lowther, C.; Baird, C. D.; Mangles, S. P. D.; McKenna, P.; Marklund, M.; Murphy, C. D.; Thomas, A. G. R.

    2017-10-01

    Two signatures of quantum effects on radiation reaction in the collision of a GeV electron beam with a high intensity ( }3\\times 1020~\\text{W}~\\text{cm}-2$ ) laser pulse have been considered. We show that the decrease in the average energy of the electron beam may be used to measure the Gaunt factor for synchrotron emission. We derive an equation for the evolution of the variance in the energy of the electron beam in the quantum regime, i.e. quantum efficiency parameter . We show that the evolution of the variance may be used as a direct measure of the quantum stochasticity of the radiation reaction and determine the parameter regime where this is observable. For example, stochastic emission results in a 25 % increase in the standard deviation of the energy spectrum of a GeV electron beam, 1 fs after it collides with a laser pulse of intensity 21~\\text{W}~\\text{cm}-2$ . This effect should therefore be measurable using current high-intensity laser systems.

  7. Concepts in dosimetry related to laser safety and optical-radiation hazard evaluation

    Science.gov (United States)

    Schulmeister, Karl

    2001-05-01

    Concepts in dosimetry pertinent to hazard evaluation of optical radiation and specifically laser radiation are discussed. The basic units of power, energy, irradiance, exposure and radiance will be reviewed, as well as the relation of retinal exposures and experimental data given as intra-ocular energy to exposure limits specified in exposure at the cornea or time integrated radiance. Averaging apertures and field of views are specified with the exposure limits to be used when exposure values are measured or calculated which in turn are compared to exposure limits. The size of the averaging aperture or the size of the averaging field of view is closely linked to biophysical effects and dimensions such as the diameter of the pupil of the eye or the angular extent of eye movements. In some cases, the specified size of the averaging aperture and FOV result in measured values, which are much smaller than the real physical values. In the latest revision of the international laser safety standard, IEC 60825-1, and in the revised ICNIRP laser limits, blue light limits are split from the thermal limits, specifying corresponding measurement criteria for the measurement FOV. The derivation of the irradiance limit from the basic radiance limit can be understood on the basis of the measurement FOV.

  8. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    Science.gov (United States)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  9. LASER MEDICINE: Effect of laser radiation absorption in water and blood on the optimal wavelength for endovenous obliteration of varicose veins

    Science.gov (United States)

    Zhilin, K. M.; Minaev, V. P.; Sokolov, Aleksandr L.

    2009-08-01

    This work examines laser radiation absorption in water and blood at the wavelengths that are used in endovenous laser treatment (EVLT): 0.81-1.06, 1.32, 1.47, 1.5 and 1.56 μm. It is shown that the best EVLT conditions are ensured by 1.56-μm radiation. Analysis of published data suggests that even higher EVLT efficacy may be achieved at wavelengths of 1.68 and 1.7 μm.

  10. Optical properties modification of gold doped glass induced by nanosecond laser radiation and annealing

    Science.gov (United States)

    Nedyalkov, N.; Stankova, N. E.; Koleva, M. E.; Nikov, R.; Grozeva, M.; Iordanova, E.; Yankov, G.; Aleksandrov, L.; Iordanova, R.; Karashanova, D.

    2018-01-01

    In this work the effects of laser radiation and annealing process on the change of the optical properties of gold doped borosilicate glass are presented. The glass is fabricated by conventional melt quenching method as samples with three different concentrations of gold are produced. The laser irradiation is performed by a Nd:YAG system that generates nanosecond pulses at wavelengths of 1064, 532, 355, and 266 nm. The optical properties of the glass samples are studied on the basis of their transmission spectra in the UV- near IR spectral range. The results indicate that irradiation at wavelength of 266 nm induces color changes assigned to formation of defects (color centers). Annealing of the samples results in formation of red colored zones which positions correspond to the irradiated ones. The optical properties and TEM observation indicate that this effect is related to formation of gold nanoparticles. The optical spectra of the areas irradiated by laser pulses and annealed are studied for different processing parameters - pulse number, laser fluence, annealing temperature, annealing time, and the gold concentration in the glass. Processing parameters that ensure efficient tuning of the optical spectra are defined. The presented study can be a basis for a method for surface modification of glass samples that can lead to formation of nanoparticle composed layer with tunable optical properties for applications as novel optical elements.

  11. Effect of combination laser hyperthermia and radiation therapy for malignant tumor of the eyelid

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Tomoko [Chukyo Hospital, Nagoya, Aichi (Japan); Ando, Fumitaka; Watanabe, Michiko

    1997-10-01

    Malignant tumors of the eyelid have been treated successfully by excision of a margin of normal tissue, but cosmesis may be a problem postoperatively. To avoid the problems of surgery, we used a combination therapy of laser hyperthermia followed by radiation in 4 eyes of 4 patients (2 eyes with sebaceous gland carcinoma, 1 with squamous cell carcinoma, and 1 with basal cell carcinoma). An interstitial contact laser probe of artificial sapphire connected to a continuous wave neodymium yttrium-aluminum-garnet (Nd:YAG) laser was used to effect hyperthermia in the tumor for 15 to 20 minutes at each treatment. The laser energy was applied directly to the surface of the conjunctiva, which was anesthetized before each treatment by topical application of anesthetic drops and injection of lidocaine. The temperature around the tumor was maintained between 42 and 43 degrees C by intermittent low-power irradiation of 2 watts. Radiotherapy was administered 3 to 5 times a week using a linear accelerator set at 4 to 6 MeV to deliver 2.5 to 3.5 Gy at each session for a total of 50 to 65 Gy. None of the 4 patients experienced recurrence of eyelid tumor, and the only complications observed were madarosis (2 eyes) and cataract (1 eye). This protocol seems to be a promising method to treat malignant tumor of the eyelid. (author)

  12. [The influence of extracorporeal laser radiation on structural indices of erythrocytes].

    Science.gov (United States)

    Khetsuriani, R G; Aladashvili, L M; Arabuli, M B; Tophuria, D Z; Tchlikadze, N G

    2015-01-01

    Object of the research was to study the diffractometric indices of erythrocytes, while 1 ml of the blood of the experimental animals was irradiated extracorporally by helium-neon laser. For this purpose 1 ml blood was taken from normal weight, (1200 gr) grown up shinshila rabbits, that we divided into 7 groups and irradiated with 10 vat helium-neon laser during 0.5-1 minutes. After irradiation blood was injected back to the organism of rabbits. After 2-6 hours from irradiation blood was taken from veins, to study by electronic microscope and later to be processed by diffractometric analysis method. The examinations testify that after extracorporeal irradiation diffractometric characteristics of erythrocytes' membranes are lower than after general irradiation, which indicates to the different energetic possibilities of laser. The extracorporeal irradiation, performed by laser and input of radiated blood back to organism is considered to be a shock therapy from the side of erythrocytes, which promote the defense function of the organism itself. The base for the shock therapy should be important factors such as homeostasis, compensative-adaptive mechanisms and so on. Exactly this above mentioned should be manifested after the sensitized cells are led back to the body (1 ml of blood) and with their existence they should promote display of the defense mechanisms.

  13. Analysis of laser-generated plasma ionizing radiation by synthetic single crystal diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, M.; Milani, E.; Prestopino, G. [Dip. di Ing. Meccanica, Università di Roma “Tor Vergata,” Roma 00133 (Italy); Verona, C., E-mail: claudio.verona@uniroma2.it [Dip. di Ing. Meccanica, Università di Roma “Tor Vergata,” Roma 00133 (Italy); Verona-Rinati, G. [Dip. di Ing. Meccanica, Università di Roma “Tor Vergata,” Roma 00133 (Italy); Cutroneo, M.; Torrisi, L. [Dip. di Fisica, Università di Messina, S. Agata 98166 (Italy); Margarone, D.; Velyhan, A.; Krasa, J.; Krousky, E. [Institute of Physics of ASCR, Prague (Czech Republic)

    2013-05-01

    Diamond based detectors have been used in order to analyze the ionizing radiation emitted from the laser-generated plasma. High energy proton/ion beams were generated at Prague Asterix Laser System (PALS) Centre by the sub-nanosecond kJ-class laser at intensities above 10{sup 16} W/cm{sup 2}. The tested detectors consisted of a photoconductive device based on high quality chemical vapor deposition (CVD) single crystal diamond, produced at Rome “Tor Vergata” University. They have been operated in planar configuration, having inter-digitized electrodes. The proposed diamond detectors were able to measure UV, X-rays, electrons and ions. They have been employed in time-of-flight (TOF) configuration and their reliability was checked by comparison with standard ion collectors (mostly used at PALS). Both the forward and backward expanding plasma was characterized in the experiment. The results indicate that diamond detectors are very promising for the characterization of fast proton and ion beams produced by high power laser systems.

  14. Analysis of laser-generated plasma ionizing radiation by synthetic single crystal diamond detectors

    Science.gov (United States)

    Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Cutroneo, M.; Torrisi, L.; Margarone, D.; Velyhan, A.; Krasa, J.; Krousky, E.

    2013-05-01

    Diamond based detectors have been used in order to analyze the ionizing radiation emitted from the laser-generated plasma. High energy proton/ion beams were generated at Prague Asterix Laser System (PALS) Centre by the sub-nanosecond kJ-class laser at intensities above 1016 W/cm2. The tested detectors consisted of a photoconductive device based on high quality chemical vapor deposition (CVD) single crystal diamond, produced at Rome "Tor Vergata" University. They have been operated in planar configuration, having inter-digitized electrodes. The proposed diamond detectors were able to measure UV, X-rays, electrons and ions. They have been employed in time-of-flight (TOF) configuration and their reliability was checked by comparison with standard ion collectors (mostly used at PALS). Both the forward and backward expanding plasma was characterized in the experiment. The results indicate that diamond detectors are very promising for the characterization of fast proton and ion beams produced by high power laser systems.

  15. In vivo and in vitro evaluation of corneal damage induced by 1573 nm laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Courant, D.; Chapel, C. [CEA Fontenay-aux-Roses (DSV/DRR/SRBF), 92 (France). Dept. de Radiobiologie et de Radiopathologie; Pothier, C. [DGA-DCE/CTA/LOT, 94 - Arcueil (France); Sales, N. [CEA Fontenay-aux-Roses (DSV/DRM/SNV), 92 (France)

    2006-07-01

    Recent developments in laser technology have originated a variety of infrared laser sources between 1500-1700 nm called as 'eye-safe' which are gaining widespread use in industry, medicine and military applications. This spectral region has been called 'eye safe' because the cornea and aqueous humor absorb sufficient radiation to prevent nearly all potentially damaging radiation from reaching the retina whereas the lens does not absorb this spectral range and remains undamaged. However, in providing protection for the deeper layers of the eye, the cornea itself is susceptible to thermal damage. Previous studies, performed at 1540 nm with exposures less than 1 s, are inconsistent in the quantity of energy required to cause corneal damage. The purpose of this study was first, to determine the threshold damage exposure (E.D.{sub 50}) on rabbit cornea induced by a 3 ns single pulse emitted at 1573 nm, using clinical observations and histology and to compare the results to the limit values recommended by I.C.N.I.R.P. guidelines or international standards. Secondly, it was suggested to investigate the cellular effects of infrared radiation with biochemical techniques on cell cultures in order to specify a cellular damage threshold and a better understanding of the laser - tissue interaction and the corneal injury. The minimal damage criterion was defined by a shallow, very small depression of the epithelial surface with a mild fluorescein staining. The E.D.{sub 50} obtained with corneal beam diameter of 400 mm is 26.6 J.cm{sup -2}. The corresponding radiant exposure, calculated with the 1 mm aperture diameter recommended by I.C.N.I.R.P. guidelines or standards, is 4.3 J.cm{sup -2}. In vitro experiments have been carried out on primary keratocytes and H.T. 1080 epithelial cell line, using an expanded beam of 3.5 mm diameter on plates or Lab Tek holders. Cells were irradiated with 10 Hz pulse ratio frequency during 1, 2 or 3 s. The S A

  16. Er:YAG and alexandrite laser radiation propagation in the root canal and its effect on bacteria

    Science.gov (United States)

    Jelinkova, Helena; Dostalova, Tatjana; Duskova, Jana; Miyagi, Mitsunobu; Shoji, Shigeru; Sulc, Jan; Nemec, Michal

    1999-05-01

    The goal of the study was to verify differences between the alexandrite and Er:YAG laser energy distribution in the root canal and in the surrounding dentin and bone tissues. For the experiment, two lasers were prepared: the Er:YAG laser (λ=2.94 μm) with a delivery system fluorocarbon polymer-coated silver hollow glass waveguide ended by a special sapphire tip and the alexandrite laser (λ=0.75 μm) with a silicon fiber. The Er:YAG laser was operated in a free-running mode, the length of the generated pulses was 250 μsec and the output energy ranged from 100 to 350 mJ. The pulse length of the free- running alexandrite laser was 70 μsec and the output energy was ranged from 80 up to 200 mJ. For the experiment prepared root canals of molars were used. It was ascertained that the radiation of the alexandrite laser passes through the root canal and hits the surrounding tissue. Nocardia asteroids, Filaments, Micrococcus albus, Lactobacillus sp and Streptococcus sanguis colonies were treated by the Er:YAG or alexandrite laser radiation. The surface was checked by scanning electron microscopy. From the result it follows that the Er:YAG laser destroyed microbial colonies but the differences is in the depth of the affected area.

  17. Synchrotron radiation and free-electron lasers principles of coherent X-ray generation

    CERN Document Server

    Kim, Kwang-Je; Lindberg, Ryan

    2017-01-01

    Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comp...

  18. Interaction of power pulses of laser radiation with glasses containing implanted metal nanoparticles

    CERN Document Server

    Stepanov, A L; Hole, D E; Bukharaev, A A

    2001-01-01

    The sodium-calcium silicate glasses, implanted by the Ag sup + ions with the energy of 60 keV and the dose of 7 x 10 sup 1 sup 6 cm sup - sup 2 by the ion current flux density of 10 mu A/cm sup 2 , are studied. The ion implantation makes it possible to synthesize in the near-the-surface glass area the composite layer, including the silver nanoparticles. The effect of the powerful pulse excimer laser on the obtained composite layer is investigated. It is established that the laser radiation leads to decrease in the silver nanoparticles size in the implanted layer. However nonuniform distribution of particles by size remains though not so wide as before the irradiation. The experimental results are explained by the effect of glass and metallic particles melting in the nanosecond period of time

  19. Visualization of transient phenomena during the interaction of pulsed CO2 laser radiation with matter

    Science.gov (United States)

    Schmitt, R.; Hugenschmidt, Manfred

    1996-05-01

    Carbon-dioxide-lasers operating in the pulsed mode with energy densities up to several tens of J/cm2 and peak power densities in the multi-MW/cm2-range may cause fast heating and melting. Eventually quasi-explosive ejection, decomposition or vaporization of material can be observed. Surface plasmas are strongly influencing the energy transfer from the laser radiation field to any target. For optically transparent plastics, such as PMMA for example, only slowly expanding plasmas (LSC-waves) are ignited at fluences around 20 J/cm2, with a low level of self-luminosity. High brightness, supersonically expanding plasma jets (LSD-waves) are generated at the same fluences on glasses. Similar conditions were found for metals as well. From recordings with a high speed CCD-camera, interesting features concerning the initial plasma phases and temporal evolution were deduced. Additionally, information was obtained concerning the quasi explosive ejection of material for PMMA.

  20. A radiation tolerant Data link board for the ATLAS Tile Cal upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367674; The ATLAS collaboration; Bohm, Christian; Muschter, Steffen Lothar; Silverstein, Samuel; Valdes Santurio, Eduardo

    2016-01-01

    This paper describes the latest, full-functionality revision of the high-speed data link board developed for the Phase-2 upgrade of ATLAS hadronic Tile Calorimeter. The link board design is highly redundant, with digital functionality implemented in two Xilinx Kintex-7 FPGAs, and two Molex QSFP+ electro-optic modules with uplinks run at 10 Gbps. The FPGAs are remotely configured through two radiation-hard CERN GBTx deserialisers (GBTx), which also provide the LHC-synchronous system clock. The redundant design eliminates virtually all single-point error modes, and a combination of triple-mode redundancy (TMR), internal and external scrubbing will provide adequate protection against radiation-induced errors. The small portion of the FPGA design that cannot be protected by TMR will be the dominant source of radiation-induced errors, even if that area is small.

  1. Preliminary Results on FeCrAl Alloys in the As-received and Welded State Designed to Have Enhanced Weldability and Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    The present report summarizes and discusses the recent results on developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability. The alloys used for these investigations are modern FeCrAl alloys based on a Fe-13Cr-5Al-2Mo-0.2Si-0.05Y alloy (in wt.%, designated C35M). Development efforts have focused on assessing the influence of chemistry and microstructure on the fabricability and performance of these newly developed alloys. Specific focus was made to assess the weldability, thermal stability, and radiation tolerance.

  2. Numerical research of influence of laser radiation parameters on the formation of intermetallic phases from metal powders in selective laser melting technology

    Science.gov (United States)

    Agapovichev, A. V.; Knyazeva, A. G.; Smelov, V. G.

    2017-10-01

    A large number of factors influence the quality of the material obtained with selective laser melting. Through correct understanding and managing these factors, it is possible to achieve the necessary quality of the materials, which is highly competitive to the traditional production methods. The technique of selective laser melting is a complex process in which a large number of parameters affect the quality of the final product. The complexity of the process of selective laser melting consists of many thermal, physical and chemical interactions, which are influenced by a large number of parameters. The main parameters of SLM are scanning rate, laser radiation power and layer thickness. In the framework of this paper, there was made an attempt to take into account real physical and chemical processes taking place during the selective laser melting of an Ni-Al alloy.

  3. High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities.

    Science.gov (United States)

    Singh, Harinder; Anurag, Kirti; Apte, Shree Kumar

    2013-10-12

    The filamentous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120 was found to tolerate very high doses of 60Co-gamma radiation or prolonged desiccation. Post-stress, cells remained intact and revived all the vital functions. A remarkable capacity to repair highly disintegrated genome and recycle the damaged proteome appeared to underlie such high radioresistance and desiccation tolerance. The close similarity observed between the cellular response to irradiation or desiccation stress lends strong support to the notion that tolerance to these stresses may involve similar mechanisms.

  4. A radiation tolerant Data link board for the ATLAS TileCal upgrade

    CERN Document Server

    Bohm, Christian; The ATLAS collaboration; Muschter, Steffen Lothar; Silverstein, Samuel; Valdes Santurio, Eduardo

    2015-01-01

    We describe the latest (last?) full functionality revision of the high-speed data link board for the ATLAS TileCal phase 2 upgrade. It is highly redundant, using two Kintex-7 FPGAs and two Molex QSFP+ electro-optic modules. The FPGAs are remotely configured through two radiation-hard CERN GBTx deserialisers (GBTx), which also provide the LHC-synchronous system clock. The four QSFP+ uplinks transmit data at 10 Gbps. Virtually all single-point error modes are removed, and a combination of triple-mode redundancy, internal and external scrubbing will adequately protect against radiation-induced errors.

  5. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  6. Antimicrobial photodynamic therapy: The impact of laser radiation on mucous tissue stained with photosensitizer methylene blue

    Science.gov (United States)

    Astafyeva, L. G.; Zalesskaya, G. A.; Plavskii, V. Yu.

    2012-04-01

    We have calculated the spatial distribution of absorbed light energy within layers of a mucous tissue that contains photosensitizer methylene blue. Under irradiation regimes that are typical of antimicrobial photodynamic therapy (laser radiation wavelength, 670 nm; power density, 150-300 mW/cm2; dose, 9-18 J/cm2), we have analyzed conditions that are necessary for the light penetration and delivery of methylene blue to a nidus of infection on a mucosal surface. We have performed a computer simulation of thermal fields, estimated maximal heating temperatures, and considered the degree at which the heating affects the trans-mission of light through a stained tissue.

  7. A compact laparoscope type radiation source for the pin-point cancer treatment using a femtosecond laser

    Science.gov (United States)

    Kawashima, N.; Muramatsu, H.; Ueda, M.; Yanagimoto, C.; Miyazawa, M.; Kajiwara, E.

    2012-02-01

    Focusing a femto-second laser (1 mJ/pulse repetition 1 kHz) on a special tape, a strong radiation consisting of the electron beam of ~ 200 keV and X-rays of ~ 6.4 keV (5 %) has been generated. It has been verified that the radiation source is sufficient to kill the tumor cells and the DNA laddering structure in the in-vivo test is obtained. More test implanting the tumor under the skin of mouse and irradiating the laser-generated radiation, we have shown the radiation has a clear powerful therapeutic capability. For about 80 % of mice irradiated, their tumor disappeared. For further clinical test use, a compact laparoscope-type unit mounted on an articulated arm has been constructed and it can generate the necessary amount of the radiation dose.

  8. Assessment of the radiation tolerance of LaBr3 : Ce scintillators to solar proton events

    NARCIS (Netherlands)

    Owens, A.; Bos, A.J.J.; Brandenburg, S.; Buis, E.-J.; Dathy, C.; Dorenbos, P.; van Eijk, C.W.E.; Kraft, S.; Ostendorf, R.W.; Ouspenski, V.; Quarati, F.

    2007-01-01

    Radiation effects caused by solar proton events will be a common problem for many types of sensors on missions to the inner solar system because of the long cruise phases coupled with the inverse square scaling of solar particle events. In support of the BepiColombo and Solar Orbiter missions we

  9. LHCb: Radiation tolerance tests of SRAM-based FPGAs for the possible usage in the readout electronics for the LHCb experiment

    CERN Multimedia

    Faerber, C; Wiedner, D; Leveringzon, B; Ekelhof, R

    2013-01-01

    This paper describes radiation studies of SRAM-based FPGAs as a central component of the electronics for a possible upgrade of the LHCb Outer Tracker readout electronics to a frequency of 40 MHz. Two Arria GX FPGAs were irradiated with 20 MeV protons to radiation doses of up to 7 Mrad. During and between the irradiation periods the different FPGA currents, the package temperature, the firmware error rate, the PLL stability, and the stability of a 32 channel TDC implemented on the FPGA were monitored. Results on the radiation tolerance of the FPGA and the measured firmware error rates will be presented. The Arria GX FPGA fulfils the radiation tolerance required for the LHCb upgrade (30 krad) and an expected firmware error rate of 10$^{-6}$ Hz makes the chip viable for the LHCb Upgrade.

  10. Laser-assisted in situ keratomileusis for correction of astigmatism and increasing contact lens tolerance after penetrating keratoplasty.

    Science.gov (United States)

    Park, Chang-Hyun; Kim, Su-Young; Kim, Man-Soo

    2014-10-01

    To determine effectiveness of laser-assisted in situ keratomileusis (LASIK) in the treatment of astigmatism following penetrating keratoplasty (PK). We performed a retrospective review of medical records of patients who underwent LASIK following PK and had over 1 year of follow-up data. Twenty-six patients (26 pairs of eyes) underwent LASIK following PK. Mean age of the patients at the time of LASIK was 40.7 years (range, 26 to 72 years). Following LASIK, the mean cylinder was reduced by 2.4 diopters and mean reduction of cylinder after LASIK was 65.4% from the preoperative values at the last follow-up visit. Uncorrected visual acuity became 20 / 50 or better in 69.2% of the eyes after LASIK. Best-corrected visual acuity became 20 / 50 or better in 73.1% of the eyes after LASIK. All of them were intolerable to contact lenses before LASIK. After LASIK, 6 pairs (23.1%) did not need to use contact lenses and 18 pairs (69.2%) were tolerable to using contact lenses or spectacles. There were no significant endothelial cell density changes 12 months after LASIK (p = 0.239). LASIK is effective in the treatment of astigmatism following PK and increases contact lens and spectacle tolerance.

  11. Generation of acoustic waves by focused infrared neodymium-laser radiation

    Science.gov (United States)

    Ward, Barry

    1991-02-01

    When the radiation from a sufficiently powerful pulsed laser is focused into the transparent gaseous, liquid or solid media, dielectric breakdown may occur around the beam waist giving rise to a short-lived high-temperature plasma which quickly heats the surrounding material. As a consequence of various energy-coupling mechanisms, this phenomenon causes the emission of one or more high-frequency ultrasonic acoustic waves whose speeds of propagation are dependent upon the physical properties of the host medium. In the high-speed photographic studies described, the 1.06 micron near-infrared radiation from an 8-ns, 10-mJ Q-switched Nd:YAG laser is focused in or onto a variety of fluid and solid materials. The rapid variations in density around the resulting plasma events are visualized using a Mach-Zehnder interferometer with a sub-nanosecond dye-laser light source and a video-imaging system. Calculations of the corresponding transient pressure distributions are then enacted from the digitally-recorded interferograms using a semi-automatic procedure under the control of a personal computer. Measurements of position, displacement, and velocity are also carried out using the same optical apparatus in schlieren and focused shadowgraph high-speed photographic measurements. The experimental work outlined in the following chapters is divided into three broad fields of interest. In the first of these, a study of the laser-generation of spherical shock waves in atmospheric air is carried out. In the second, the neodymium-laser beam is focused onto different solid-fluid interfaces resulting in the formation of bulk longitudinal and shear waves and surface acoustic waves. The interactions of these waves with various obstacles and defects are investigated with reference to their application to non-destructive testing. In the third and most important field, a detailed study of the dynamics of laser-induced cavitation bubbles in water is carried out. With regard to the associated

  12. Long-term tolerance and outcomes for dose escalation in early salvage post-prostatectomy radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Safdieh, Joseph; Schwartz, David; Weiner, Joseph; Weiss, Jeffrey P.; Madeb, Isaac; Rotman, Marvin; Schreiber, David [Dept.of Veteran Affairs, New York Harbor Healthcare System, Brooklyn (United States); Rineer, Justin [University of Florida Health Cancer Center, Orlando (United States)

    2014-09-15

    To study the long-term outcomes and tolerance in our patients who received dose escalated radiotherapy in the early salvage post-prostatectomy setting. The medical records of 54 consecutive patients who underwent radical prostatectomy subsequently followed by salvage radiation therapy (SRT) to the prostate bed between 2003-2010 were analyzed. Patients included were required to have a pre-radiation prostate specific antigen level (PSA) of 2 ng/mL or less. The median SRT dose was 70.2 Gy. Biochemical failure after salvage radiation was defined as a PSA level >0.2 ng/mL. Biochemical control and survival endpoints were analyzed using the Kaplan-Meier method. Univariate and multivariate Cox regression analysis were used to identify the potential impact of confounding factors on outcomes. The median pre-SRT PSA was 0.45 ng/mL and the median follow-up time was 71 months. The 4- and 7-year actuarial biochemical control rates were 75.7% and 63.2%, respectively. The actuarial 4- and 7-year distant metastasis-free survival was 93.7% and 87.0%, respectively, and the actuarial 7-year prostate cancer specific survival was 94.9%. Grade 3 late genitourinary toxicity developed in 14 patients (25.9%), while grade 4 late genitourinary toxicity developed in 2 patients (3.7%). Grade 3 late gastrointestinal toxicity developed in 1 patient (1.9%), and grade 4 late gastrointestinal toxicity developed in 1 patient (1.9%). In this series with long-term follow-up, early SRT provided outcomes and toxicity profiles similar to those reported from the three major randomized trials studying adjuvant radiation therapy.

  13. Lead tolerance and cellular distribution in Elsholtzia splendens using synchrotron radiation micro-X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Tian, Shengke [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); University of Florida, Institute of Food and Agricultural Science, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States); Lu, Lingli; Shohag, M.J.I.; Liao, Haibing [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Xiaoe, E-mail: xyang@zju.edu.cn [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Elsholtzia splendens had a good ability of lead tolerance and accumulation. Black-Right-Pointing-Pointer Pb was mostly restricted to the vascular bundles and epidermis tissues. Black-Right-Pointing-Pointer Pb and Ca shared most similar distribution patterns in E. splendens. - Abstract: Hydroponic experiments were conducted to investigate the tolerance and spatial distribution of lead (Pb) in Elsholtzia splendens-a copper (Cu) accumulator plant using synchrotron-based micro-X-ray fluorescence. According to chlorophyll concentration and chlorophyll fluorescence parameters, E. splendens displayed certain tolerance at 100 {mu}M Pb treatment. Lead concentration in roots, stems and leaves of E. splendens reached 45,183.6, 1657.6, and 380.9 mg kg{sup -1}, respectively. Pb was mostly accumulated in the roots, and there were also high concentrations of Pb been transported into stems and leaves. Micro-XRF analysis of the stem and leaf cross section revealed that Pb was mostly restricted in the vascular bundles and epidermis tissues of both stem and leaf of E. splendens. The correlation between distribution of K, Ca, Zn and Pb were analyzed. There were significant positive correlations (P < 0.01) among Pb and Ca, K, Zn distribution both in stem and leaf of E. splendens. However, among the three elements, Ca shared the most similar distribution pattern and the highest correlation coefficients with Pb in both stem and leaf cross section of E. splendens. This suggests that Ca may play an important role in Pb accumulation in stem and leaf of E. splendens.

  14. AN IN VIVO STUDY OF THE EFFECTS OF IONIZING RADIATION ON TISSUES BY LASER FLUORESCENCE SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    I. A. Guseva

    2016-01-01

    Full Text Available Background: Laser fluorescence spectroscopy (LFS is widely used in various medical areas, oncology being the most known of them. In general, the LFS is used for in vivo diagnostics of tumors. Recent studies have shown that this method could be used for diagnostics of local inflammation, induced by thermal or mechanical injury. It is of interest if LFS could be used for assessment of soft biological tissue injury caused by radiation exposure. Aim: To study fluorescence of an exogenous photosensitizer and its changes over time in the radiation injury area by LFS method in vivo. Materials and methods: The experiment was done in 12 outbred SHK mice whose right hind limbs were irradiated using a gamma-therapy device ROKUS-AM (source, 60Co, at dose of 15 Gy. Before irradiation, the photosensitizer Photosens was administered to all animals intraperitoneally at dose of 2.5 mg/kg. For 21 days fluorescence was assessed in vivo with a laser diagnostic system LAKK-M in the “fluorescence” operation mode, with an excitation wavelength of 635 nm. At days 7 and 21, tissue samples from the irradiated areas of the model animals were studied histologically and differential blood cell counts were assessed simultaneously. Results: The LFS method showed an increase in the accumulation of the photosensitizer in the affected area, compared to an intact contralateral area, with higher signal intensity from the irradiated limb. The changes in the fluorescence signal from the affected over time had two characteristic peaks at days 3 and 14, probably reflecting the stage of local radiation injury. Conclusion: The use of LFS with an exogenous photosensitizer has a potential for a personalized assessment of radiation reactions in radiology.

  15. Analysis of the Failures and Corrective Actions for the LHC Cryogenics Radiation Tolerant Electronics and its Field Instruments

    CERN Document Server

    Balle, Ch; Vauthier, N

    2014-01-01

    The LHC cryogenic system radiation tolerant electronics and their associated field instruments have been in nominal conditions since before the commissioning of the first LHC beams in September 2008. This system is made of about 15’000 field instruments (thermometers, pressure sensors, liquid helium level gauges, electrical heaters and position switches), 7’500 electronic cards and 853 electronic crates. Since mid-2008 a software tool has been deployed, this allows an operator to report a problem and then lists the corrective actions. The tool is a great help in detecting recurrent problems that may be tackled by a hardware or software consolidation. The corrective actions range from simple resets, exchange of defective equipment, repair of electrical connectors, etc. However a recurrent problem that heals by itself is present on some channels. This type of fault is extremely difficult to diagnose and it appears as a temporary opening of an electrical circuit; its duration can range from a few minutes to ...

  16. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System

    Science.gov (United States)

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven

    2010-01-01

    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  17. Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains.

    Science.gov (United States)

    Sridhar, M; Sree, N Kiran; Rao, L Venkateswar

    2002-07-01

    After a previous mass screening and enrichment programme for the isolation of thermotolerant yeasts, VS1, VS2, VS3 and VS4 strains isolated from soil samples, collected within the hot regions of Kothagudem Thermal Power Plant, AP, India, had a better thermotolerance, osmotolerance and ethanol tolerance than the other isolates. Among these isolates VS1 and VS3 were best performers. Efforts were made to further improve their osmotolerance, thermotolerance and ethanol tolerance by treating them with UV radiation. Mutants of VS1 and VS3 produced more biomass and ethanol than the parent strains at high temperature and glucose concentrations. The amount of biomass produced by VS1 and VS3 mutants was 0.25 and 0.20 g l(-1) more than the parent strains at 42 degrees C using 2% glucose. At high glucose concentrations VS1 and VS3 mutants produced biomass which was 0.70 and 0.30 g l(-1) at 30 degrees C and 0.10 and 0.20 g l(-1) at 40 degrees C more than the parent strains. The amount of ethanol produced by the mutants (VS1 and VS3) was 8.20 and 1.20 g l(-1) more than the parent strains at 42 degrees C using 150 g l(-1) glucose. More ethanol was produced by mutants (VS1 and VS3) than the parents at high glucose concentrations of 5.0 and 6.0 g l(-1) at 30 degrees C and 13.0 and 3.0 g l(-1) at 42 degrees C, respectively. These results indicated that UV mutagenesis can be used for improving thermotolerance, ethanol tolerance and osmotolerance in VS1 and VS3 yeast strains.

  18. Full-trajectory diagnosis of laser-driven radiative blast waves in search of thermal plasma instabilities.

    Science.gov (United States)

    Moore, A S; Gumbrell, E T; Lazarus, J; Hohenberger, M; Robinson, J S; Smith, R A; Plant, T J A; Symes, D R; Dunne, M

    2008-02-08

    Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, epsilon, as a function of time for comparison with radiation-hydrodynamics simulations.

  19. Variability in tolerance to UV-B radiation among Beauveria spp. isolates

    OpenAIRE

    Fernandes, Éverton K. K.; Rangel, Drauzio E. N.; Moraes, Âurea M. L.; Bittencourt, Vânia R. E. P.; Roberts, Donald W.

    2007-01-01

    Solar radiation, particularly the UV-B component, negatively affects survival of entomopathogenic fungi in the field. In an effort to identify Beauveria spp. isolates with promise for use in biological control settings with high insolation, we examined 53 Beauveria bassiana isolates, 7 isolates of 4 other Beauveria spp. and Engyodontium albus (=Beauveria alba). The origins of these fungi varied widely as to host/substrate and country, but approximately 30% of these isolates were B. bassiana f...

  20. Antiradiation Vaccine: Technology Development- Radiation Tolerance,Prophylaxis, Prevention And Treatment Of Clinical Presentation After Heavy Ion Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Research in the field of biological effects of heavy charged particles is necessary for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions.[Durante M. 2004] In future crew of long-term manned missions could operate in exremely high hadronic radiation areas of space and will not survive without effective radiation protection. An Antiradiation Vaccine (AV) must be an important part of a countermeasures regimen for efficient radiation protection purposes of austronauts-cosmonauts-taukonauts: immune-prophylaxis and immune-therapy of acute radiation toxic syndromes developed after heavy ion irradiation. New technology developed (AV) for the purposes of radiological protection and improvement of radiation tolerance and it is quite important to create protective immune active status which prevent toxic reactions inside a human body irradiated by high energy hadrons.[Maliev V. et al. 2006, Popov D. et al.2008]. High energy hadrons produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities [Sato T. et al. 2003] Antiradiation Vaccine with specific immune-prophylaxis by an anti-radiation vaccine should be an important part of medical management for long term space missions. Methods and experiments: 1. Antiradiation vaccine preparation standard, mixture of toxoid form of Radiation Toxins [SRD-group] which include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins of Radiation Determinant Group isolated from the central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastro-intestinal, Hematopoietic forms of ARS. Devices for radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions

  1. Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion

    Science.gov (United States)

    Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.

  2. Study of electron kinetics in nitrogen plasma induced by CO2 laser radiation

    Science.gov (United States)

    Nassef, O. Aied; Gamal, Yosr E. E.-D.

    2017-12-01

    In the present work, a numerical modeling is performed to study the electron kinetics in nitrogen plasma induced by CO2 laser radiation operating at wavelength 9.621 μm, and pulse duration of 60 ns corresponding to the measurements carried out by Camacho et al. (J Phys B At Mol Opt Phys 40:4573, 2007). In this experiment, the breakdown threshold intensity is determined for molecular nitrogen over a pressure range 301-760 torr. A previously developed electron cascade model (Evans and Gamal in J Phys D Appl Phys 13:1447, 1980) is modified and applied. This model is based on numerical solution of a time-dependent energy equation and a set of rate equations that describe the time variation of the formed excited states population. The effect of breakdown mechanism is decided through the calculations of the threshold intensity as a function of gas pressure considering the various physical processes that might take place during the interaction. The individual effect of each loss process on the electron energy distribution function and its parameters is studied. This study is performed at the lowest and highest values of the experimentally tested gas pressure range namely; 301 and 760 torr. The obtained results clarified the exact contribution of each loss process to the breakdown of nitrogen induced by CO2 laser radiation.

  3. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    Science.gov (United States)

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  4. EFFECT OF LASER RADIATION WITH 662 NM WAVE ON THE GROWTH OF MYCOBACTERIUM TUBERCULOSIS IN VITRO

    Directory of Open Access Journals (Sweden)

    D. A. Bredikhin

    2017-01-01

    Full Text Available Goal of the study: to define the effect of various doses of laser radiation with 662 nm wave on the growth of M. tuberculosis in vitro.Materials and methods. Samples of mycobacterial suspension of M. tuberculosis H37Rv were processed by monopositional light radiation (λ = 662 nm in six dosing regimens varying in power and duration of the exposure to the light. All samples of mycobacterial suspension of M. tuberculosis were inoculated on the solid nutritional media of Lowenstein-Jensen in triplets for each dose of the exposure to light. Cultures were incubated under 37°С for 90 days with weekly inspection of samples.Results. Continuous irradiation by diffused laser with 662 nm wave provides the most expressed bacteriostatic and bactericidal effects against M. tuberculosis H37Rv under the density of the energy dose of 234.5 and 703.5 of J/sq.cm. Such a dose was obtained through 5 and 15-minute exposure respectively. 

  5. Study of electron kinetics in nitrogen plasma induced by CO2 laser radiation

    Science.gov (United States)

    Nassef, O. Aied; Gamal, Yosr E. E.-D.

    2017-06-01

    In the present work, a numerical modeling is performed to study the electron kinetics in nitrogen plasma induced by CO2 laser radiation operating at wavelength 9.621 μm, and pulse duration of 60 ns corresponding to the measurements carried out by Camacho et al. (J Phys B At Mol Opt Phys 40:4573, 2007). In this experiment, the breakdown threshold intensity is determined for molecular nitrogen over a pressure range 301-760 torr. A previously developed electron cascade model (Evans and Gamal in J Phys D Appl Phys 13:1447, 1980) is modified and applied. This model is based on numerical solution of a time-dependent energy equation and a set of rate equations that describe the time variation of the formed excited states population. The effect of breakdown mechanism is decided through the calculations of the threshold intensity as a function of gas pressure considering the various physical processes that might take place during the interaction. The individual effect of each loss process on the electron energy distribution function and its parameters is studied. This study is performed at the lowest and highest values of the experimentally tested gas pressure range namely; 301 and 760 torr. The obtained results clarified the exact contribution of each loss process to the breakdown of nitrogen induced by CO2 laser radiation.

  6. Photoacoustic study of curing time by UV laser radiation of a photoresin with different thickness

    Energy Technology Data Exchange (ETDEWEB)

    Pincel, P. Vieyra [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico); Jiménez-Pérez, J.L., E-mail: jimenezp@fis.cinvestav.mx [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico); Cruz-Orea, A. [Departamento de Física, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México, D.F. (Mexico); Correa-Pacheco, Z.N. [Instituto Politécnico Nacional-Centro de Desarrollo de Productos Bióticos (CEPROBI). Carr. Yautepec–Jojutla, km 6. San Isidro, C.P. 62730 Yautepec, Morelos (Mexico); Rosas, J. Hernández [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico)

    2015-04-20

    Highlights: • The curing of a resin in the presence of a UV laser radiation was studied. • Open photoacoustic cell technique was used to characterize the curing of the resin. • The curing of the resin as a function of time was studied. • A parabolic behavior of the resin thickness, as a function of time was observed. • UV–vis and FTIR spectroscopy were employed to characterize the resin. - Abstract: This paper deals with the study of the cure of a resin in the presence of a UV laser radiation used as the excitation source, operated at λ = 405 nm, with an output power of 20 mW. The open photoacoustic cell (OPC) technique was used to study the curing of the resins as a function of time. The curing characteristic time values were τ = 10.43, 20.99, 30.18, 45.84, 67.59 and 89.55 s for the resin thicknesses of 1000, 2000, 3000, 4000, 5000 and 6000 μm, respectively. A parabolic behavior of the resin thickness, as a function of the curing characteristic time, was obtained. UV–vis spectroscopy and infrared Fourier transform spectroscopy (FTIR) techniques were employed to characterize the resin in order to study the optical absorption and the chemical bonds, respectively. Our work has applications in the manufacture of 3D printing parts for applications, among others, in medicine.

  7. Visible laser and UV-A radiation impact on a PNP degrading Moraxella strain and its rpoS mutant.

    Science.gov (United States)

    Nandakumar, Kanavillil; Keeler, Werden; Schraft, Heidi; Leung, Kam T

    2006-07-05

    The role of stationary phase sigma factor gene (rpoS) in the stress response of Moraxella strain when exposed to radiation was determined by comparing the stress responses of the wild-type (WT) and its rpoS knockout (KO) mutant. The rpoS was turned on by starving the WT cultures for 24 h in minimal salt medium. Under non-starved condition, both WT and KO planktonic Moraxella cells showed an increase in mortality with the increase in duration of irradiation. In the planktonic non-starved Moraxella, for the power intensity tested, UV radiation caused a substantially higher mortality rate than did by the visible laser light (the mortality rate observed for 15-min laser radiation was 53.4 +/- 10.5 and 48.7 +/- 8.9 for WT and KO, respectively, and 97.6 +/- 0 and 98.5 +/- 0 for 25 s of UV irradiation in WT and KO, respectively). However, the mortality rate decreased significantly in the starved WT when exposed to these two radiations. In comparison, rpoS protected the WT against the visible laser light more effectively than it did for the UV radiation. The WT and KO strains of Moraxella formed distinctly different types of biofilms on stainless steel coupons. The KO strain formed a denser biofilm than did the WT. Visible laser light removed biofilms from the surfaces more effectively than did the UV. This was true when comparing the mortality of bacteria in the biofilms as well. The inability of UV radiation to penetrate biofilms due to greater rates of surface absorption is considered to be the major reason for the weaker removal of biofilms in comparison to that of the visible laser light. This result suggests that high power visible laser light might be an effective tool for the removal of biofilms. (c) 2006 Wiley Periodicals, Inc.

  8. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    Science.gov (United States)

    Bykovskiy, D. P.; Petrovskii, V. N.; Uspenskiy, S. A.

    2015-03-01

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study.

  9. [Effect of KCI additive on laser-induced soil plasma radiation].

    Science.gov (United States)

    Chen, Jin-zhong; Zhang, Lin-jing; Yang, Shao-peng; Wei, Yan-hong; Li, Xu; Guo, Qing-lin

    2010-10-01

    In order to improve laser-induced breakdown spectroscopy for low-level elements testing capability, the enhancement effects of KCl additive on the emission spectra of soil samples were studied. The laser spectrum analytical system is composed of a high-energy neodymium glass laser ablating samples, a multifunctional and automatic scanning spectrometer, and a CCD data acquisition system recording plasma spectra. The electron temperature and electron density of plasmas were calculated by measuring spectral line intensity and stark broadening respectively. The experimental results showed that with the increase in the KCl additive, the spectral intensity, signal-to-background ratio, the electron temperature and the electron density all went up firstly and then down. When 15% KCl was added, the radiation intensity of plasma reached the maximum value, the spectral lines intensity of element Mn, Fe, and Ti increased by 2.23, 1.13 and 2.04 than that without additive respectively, the spectral signal-to-background ratio increased by 1.33, 0.89 and 0.94 times respectively; while the electron temperature and electron density of plasmas were heightened by 14% and 38% respectively.

  10. Exotic dense matter states pumped by relativistic laser plasma in the radiation dominant regime

    CERN Document Server

    Colgan, J; Jr.,; Faenov, A Ya; Pikuz, S A; Wagenaars, E; Booth, N; Brown, C R D; Culfa, O; Dance, R J; Evans, R G; Gray, R J; Hoarty, D J; Kaempfer, T; Lancaster, K L; McKenna, P; Rossall, A L; Skobelev, I Yu; Schulze, K S; Uschmann, I; Zhidkov, A G; Woolsey, N C

    2012-01-01

    The properties of high energy density plasma are under increasing scrutiny in recent years due to their importance to our understanding of stellar interiors, the cores of giant planets$^{1}$, and the properties of hot plasma in inertial confinement fusion devices$^2$. When matter is heated by X-rays, electrons in the inner shells are ionized before the valence electrons. Ionization from the inside out creates atoms or ions with empty internal electron shells, which are known as hollow atoms (or ions)$^{3,4,5}$. Recent advances in free-electron laser (FEL) technology$^{6,7,8,9}$ have made possible the creation of condensed matter consisting predominantly of hollow atoms. In this Letter, we demonstrate that such exotic states of matter, which are very far from equilibrium, can also be formed by more conventional optical laser technology when the laser intensity approaches the radiation dominant regime$^{10}$. Such photon-dominated systems are relevant to studies of photoionized plasmas found in active galactic ...

  11. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuan S. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics; Shao, Xi [Univ. of Maryland, College Park, MD (United States)

    2016-06-14

    The main objective of our work is to provide theoretical basis and modeling support for the design and experimental setup of compact laser proton accelerator to produce high quality proton beams tunable with energy from 50 to 250 MeV using short pulse sub-petawatt laser. We performed theoretical and computational studies of energy scaling and Raleigh--Taylor instability development in laser radiation pressure acceleration (RPA) and developed novel RPA-based schemes to remedy/suppress instabilities for high-quality quasimonoenergetic proton beam generation as we proposed. During the project period, we published nine peer-reviewed journal papers and made twenty conference presentations including six invited talks on our work. The project supported one graduate student who received his PhD degree in physics in 2013 and supported two post-doctoral associates. We also mentored three high school students and one undergraduate student of physics major by inspiring their interests and having them involved in the project.

  12. Second Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-30

    The present report summarizes and discusses the current results and on-going activity towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program.

  13. Report on the Study of Radiation Damage in Calcium Fluoride and Magnesium Fluoride Crystals for use in Excimer Laser Applications

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-10-04

    A study was performed to investigate the effects of radiation damage in calcium fluoride and magnesium fluoride crystals caused by gamma rays and UV photons from excimer lasers. The purpose was to study and correlate the damage caused by these two different mechanisms in various types of material used for fabricating optical elements in high power excimer lasers and lens systems of lithography tools. These optical systems are easily damaged by the laser itself, and it is necessary to use only the most radiation resistant materials for certain key elements. It was found that a clear correlation exists between the, radiation induced damage caused by high energy gamma rays and that produced by UV photons from the excimer laser. This correlation allows a simple procedure to be developed to select the most radiation resistant material at the ingot level, which would be later used to fabricate various components of the optical system. This avoids incurring the additional cost of fabricating actual optical elements with material that would later be damaged under prolonged use. The result of this screening procedure can result in a considerable savings in the overall cost of the lens and laser system.

  14. Responses of organic and inorganic materials to intense EUV radiation from laser-produced plasmas

    Science.gov (United States)

    Makimura, Tetsuya; Torii, Shuichi; Nakamura, Daisuke; Takahashi, Akihiko; Okada, Tatsuo; Niino, Hiroyuki; Murakami, Kouichi

    2013-05-01

    We have investigated responses of polymers to EUV radiation from laser-produced plasmas beyond ablation thresholds and micromachining. We concentrated on fabricate precise 3D micro-structures of PDMS, PMMA, acrylic block copolymers (BCP), and silica. The micromachining technique can be applied to three-dimensional micro-fluidic and bio-medical devices. The EUV processing is a promising to realize a practical micromachining technique. In the present work, we used two EUV radiation sources; (a) Wide band EUV light in a range of 10{300 eV was generated by irradiation of Ta targets with Nd:YAG laser light at 500 mJ/pulse. (b) Narrow band EUV light at 11 and 13 nm was generated by irradiation of solid Xe and Sn targets, respectively, with pulsed TEA CO2 laser light. The generated EUV light was condensed onto the materials at high power density beyond the ablation thresholds, using ellipsoidal mirrors. We found that through-holes with a diameter of one micrometer an be fabricated in PMMA and PDMS sheets with thicknesses of 4-10 micrometers, at 250 and 230 nm/shot, respectively. The effective ablation of PMMA sheets can be applied to a LIGA-like process for fabricating micro-structures of metals for micro- and nano-molds. PDMS sheets are ablated if it is irradiated with EUV light beyond a distinct threshold power density, while PDMS surfaces were modified at lower power densities. Furthermore, BCP sheets were ablated to have 1-micrometer structures. Thus, we have developed a practical technique for micromachining of PMMA, PDMS and BCP sheets in a micrometer scale.

  15. Simulation study of enhancing laser-driven multi-keV line-radiation through application of external magnetic fields

    Science.gov (United States)

    Kemp, G. Elijah; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Koning, J. M.; Scott, H. A.; Marinak, M. M.

    2015-11-01

    Laser-driven, spectrally tailored, high-flux x-ray sources have been developed over the past decade for testing the radiation hardness of materials used in various civilian, space and military applications. The optimal electron temperatures for these x-ray sources occur around twice the desired photon energy. At the National Ignition Facility (NIF) laser, the available energy can produce plasmas with ~ 10keV electron temperatures which result in highly-efficient ~ 5keV radiation but less than optimal emission from the > 10keV sources. In this work, we present a possible venue for enhancing multi-keV x-ray emission on existing laser platforms through the application of an external magnetic field. Preliminary radiation-hydrodynamics calculations with Hydra suggest as much as 2 - 14 × increases in laser-to-x-ray conversion efficiency for 22 - 68keV K-shell sources are possible on the NIF laser - without any changes in laser-drive conditions - through the application of an external axial 50 T field. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  16. He-Ne laser treatment improves the photosynthetic efficiency of wheat exposed to enhanced UV-B radiation

    Science.gov (United States)

    Chen, Huize; Han, Rong

    2014-10-01

    The level of ultraviolet-B (UV-B) radiation on the Earth’s surface has increased due to depletion of the ozone layer. Here, we explored the effects of continuous wave He-Ne laser irradiation (632 nm, 5 mW mm-2, 2 min d-1) on the physiological indexes of wheat seedlings exposed to enhanced UV-B radiation (10 KJ m-2 d-1) at the early growth stages. Wheat seedlings were irradiated with enhanced UV-B, He-Ne laser treatment or a combination of the two. Enhanced UV-B radiation had deleterious effects on wheat photosynthesis parameters including photosystem II (chlorophyll content, Hill reaction, chlorophyll fluorescence parameters, electron transport rate (ETR), and yield), the thylakoid (optical absorption ability, cyclic photophosphorylation, Mg2+-ATPase, and Ca2+-ATPase) and some enzymes in the dark reaction (phosphoenolpyruvate carboxylase (PEPC), carbonic anhydrase (CA), malic dehydrogenase (MDH), and chlorophyllase). These parameters were improved in UV-B-exposed wheat treated with He-Ne laser irradiation; the parameters were near control levels and the enzyme activities increased, suggesting that He-Ne laser treatment partially alleviates the injury caused by enhanced UV-B irradiation. Furthermore, the use of He-Ne laser alone had a favourable effect on seedling photosynthesis compared with the control. Therefore, He-Ne laser irradiation can enhance the adaptation capacity of crops.

  17. Spatio-temporal radiation biology with conventionally or laser-accelerated particles for ELIMED

    Energy Technology Data Exchange (ETDEWEB)

    Ristić-Fira, A.; Bulat, T.; Keta, O.; Petrović, I. [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Romano, F.; Cirrone, P.; Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, Catania (Italy)

    2013-07-26

    The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumor cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (γ-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (γ-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of γ-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between γ-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the data base that might promote pulsed sources for medical treatments of malignant growths.

  18. Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-layer structure

    CERN Document Server

    Dubinov, Alexander A; Aleshkin, Vladimir Ya; Ryzhii, Victor; Otsuji, Taiichi; Svintsov, Dmitry

    2016-01-01

    The optimization of laser resonators represents a crucial issue for the design of terahertz semiconductor lasers with high gain and low absorption loss. In this paper, we put forward and optimize the surface plasmonic metal waveguide geometry for the recently proposed terahertz injection laser based on resonant radiative transitions between tunnel-coupled grapheme layers. We find an optimal number of active graphene layer pairs corresponding to the maximum net modal gain. The maximum gain increases with frequency and can be as large as ~ 500 cm-1 at 8 THz, while the threshold length of laser resonator can be as small as ~ 50 mkm. Our findings substantiate the possibility of ultra-compact voltage-tunable graphene-based lasers operating at room temperature.

  19. Research of seal materials adhesion to walls of cavity in enamel and dentin formation by Er laser radiation

    Science.gov (United States)

    Altshuler, Gregory B.; Belikov, Andrei V.; Vlasova, Svetlana N.; Erofeev, Andrew V.

    1994-12-01

    The present work represents the results of research of mechanical strength formed by submillisecond pulses of Er-laser at the border of enamel-seal and dentine-seal in a cavity. Comparative research of an adhesion of three of the most widespread types of modern seal materials (cement, amalgam, polymer) to walls of the laser cavity are conducted. The comparison of `laser adhesion' with adhesion of these materials to the walls of the cavity has been made by the usual mechanical tools. The dependence of free adhesion energy from the geometry of the cavity and energy density of laser radiation is considered. This work informs the reader about the results of research removal efficiency of some modern seal materials. The influence of water-spray on the efficiency of seal materials laser treatment process is considered.

  20. A physics informed emulator for laser-driven radiating shock simulations

    KAUST Repository

    McClarren, Ryan G.

    2011-09-01

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. © 2011 Elsevier Ltd. All rights reserved.

  1. Contact versus non-contact ablation of the artificial enamel caries by Er:YAG and CTH:YAG laser radiation

    Science.gov (United States)

    Dostálová, Tat'jana; Jelínková, Helena; Å ulc, Jan; Němec, Michal; Bučková, Michaela; Kašparová, Magdalena; Miyagi, Mitsunobu

    The aim of study is to compare the ablation effect of contact and non-contact interaction of Er:YAG and CTH:YAG laser radiation with artificial enamel caries lesion. The artificial caries was prepared in intact teeth to simulate demineralized surface and the laser radiation was applied. Contact and non-contact ablation was compared. Two laser systems Er:YAG 2.94 μm and CTH:YAG 2.1 μm were used. The enamel artificial caries were gently removed by laser radiation and flow Sonic fill composite resin was inserted. Scanning electron microscope was use to evaluate the enamel surface.

  2. Enhanced radiation tolerance in nanocrystalline MgGa2O4

    Science.gov (United States)

    Shen, Tong D.; Feng, Shihai; Tang, Ming; Valdez, James A.; Wang, Yongqiang; Sickafus, Kurt E.

    2007-06-01

    The authors demonstrate a substantial enhancement in radiation-induced amorphization resistance for single-phased nanocrystalline (NC) versus large-grained polycrystalline MgGa2O4. NC and large-grained MgGa2O4 were irradiated at ˜100K with 300keV Kr++ ions to fluences ranging between 5×1019 and 4×1020Kr /m2. Large-grained MgGa2O4 samples began to amorphize by a fluence of 5×1019Kr /m2, while NC MgGa2O4 remained crystalline with no evidence for structural changes (other than moderate grain growth in the lowermost implanted region), to a fluence of 4×1020Kr /m2. To our knowledge, this is the first experimental study to reveal enhanced amorphization resistance in an irradiated, single-phase, NC material.

  3. EVALUATION OF SKIN-CANCER RISK RESULTING FROM LONG-TERM OCCUPATIONAL EXPOSURE TO RADIATION FROM ULTRAVIOLET-LASERS IN THE RANGE FROM 190 TO 400 NM

    NARCIS (Netherlands)

    Sterenborg, H. J.; de Gruijl, F. R.; Kelfkens, G.; van der Leun, J. C.

    1991-01-01

    The relative risk of occupational exposure to radiation from UV lasers was estimated using a mathematical model based on both epidemiological data and animal experiments. Calculations were performed for the 193 nm ArF excimer laser cornea shaping, the 308 nm XeCl excimer laser for coronary

  4. Theoretical study of the generation of terahertz radiation by the interaction of two laser beams with graphite nanoparticles

    Science.gov (United States)

    Sepehri Javan, N.; Rouhi Erdi, F.

    2017-12-01

    In this theoretical study, we investigate the generation of terahertz radiation by considering the beating of two similar Gaussian laser beams with different frequencies of ω1 and ω2 in a spatially modulated medium of graphite nanoparticles. The medium is assumed to contain spherical graphite nanoparticles of two different configurations: in the first configuration, the electric fields of the laser beams are parallel to the normal vector of the basal plane of the graphite structure, whereas in the second configuration, the electric fields are perpendicular to the normal vector of the basal plane. The interaction of the electric fields of lasers with the electronic clouds of the nanoparticles generates a ponderomotive force that in turn leads to the creation of a macroscopic electron current in the direction of laser polarizations and at the beat frequency ω1-ω2 , which can generate terahertz radiation. We show that, when the beat frequency lies near the effective plasmon frequency of the nanoparticles and the electric fields are parallel to the basal-plane normal, a resonant interaction of the laser beams causes intense terahertz radiation.

  5. Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2017-01-01

    Micrometer-sized vapor-gas bubbles are formed due to local heating of a water suspension containing absorptive pigment particles of 100 nm diameter. The heating is performed by CW near-infrared (980 nm) laser radiation with controllable power, focused into a 100 mu m spot within a 2 mm suspension...

  6. Immunohistochemical characterization of periodontal wound healing following nonsurgical treatment with fluorescence controlled Er:YAG laser radiation in dogs.

    NARCIS (Netherlands)

    Schwarz, F.; Jepsen, S.; Herten, M. van; Aoki, A.; Sculean, A.; Becker, J.

    2007-01-01

    BACKGROUND AND OBJECTIVE: The aim of the present study was to immunohistochemically characterize periodontal wound healing following nonsurgical treatment with fluorescence controlled Er:YAG laser radiation in dogs. STUDY DESIGN/MATERIALS AND METHODS: Five beagle dogs suffering from naturally

  7. HRTEM Study of Oxide Nanoparticles in K3-ODS Ferritic Steel Developed for Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Tumey, S; Kuntz, J; El-Dasher, B; Wall, M; Choi, W; Kimura, A; Willaime, F; Serruys, Y

    2009-11-02

    Crystal and interfacial structures of oxide nanoparticles and radiation damage in 16Cr-4.5Al-0.3Ti-2W-0.37 Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and the matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles and multiple crystalline domains formed within a nanoparticle lead us to propose a three-stage mechanism to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels. Effects of nanoparticle size and density on cavity formation induced by (Fe{sup 8+} + He{sup +}) dual-beam irradiation are briefly addressed.

  8. Two-frequency vanadate lasers with mutually parallel and orthogonal polarisations of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sirotkin, A A; Garnov, Sergei V; Vlasov, V I; Zagumennyi, A I; Zavartsev, Yu D; Kutovoi, S A; Shcherbakov, Ivan A [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2012-05-31

    Luminescent and lasing properties of {alpha}-cut Nd : YVO{sub 4}, Nd : GdVO{sub 4}, Nd:Gd{sub 1-x}Y{sub x}VO{sub 4}, and Nd:Sc{sub 1-x}Y{sub x}VO{sub 4} vanadate crystals are experimentally studied for the p- and s-polarisations of the emission at the {sup 4}F{sub 3/2} - {sup 4}F{sub 11/2} transition. Two-frequency lasing was obtained with mutually orthogonal and parallel polarisations of radiation in the cw, Q-switching, and mode-locking regimes. A scheme of a laser - amplifier of two-frequency pulses is realised.

  9. The effect of 193 nm excimer laser radiation on the human corneal endothelial cell density

    Energy Technology Data Exchange (ETDEWEB)

    Isager, P.; Hjortdal, J.Oe.; Ehlers, N. [Aarhus Univ. Hospital, Dept. of Ophthalmology, Aarhus (Denmark)

    1996-06-01

    The effect of 193 nm excimer laser radiation on human corneal endothelial cell density was examined. Fifty-five eyes from 35 patients underwent photorefractive keratectomy for myopia. Photomicrographs of the endothelium were taken a short time before the operation and on an average of 7 months postoperatively with a specular microscope. The average endothelial cell densities were preoperatively 3375 {+-} 266 cells/mm{sup 2} (means {+-} SD) and postoperatively 3348 {+-} 287 cells/mm{sup 2}, corresponding to a fall of 27 cells/mm{sup 2} (N = 55). This fall in endothelial cell density was not statistically significant. A significant correlation between the change in cell density and age of the patient was found, with older patients losing more cells (N = 35, 2p < 0.05). The magnification of the specular microscope was found to change with corneal thickness. The importance of correcting the endothelial cell densities for corneal thickness is discussed. (au) 14 refs.

  10. Optical transition radiation measurements for the Los Alamos and Boeing Free-Electron Laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Feldman, D.W.; Apgar, S.A.; Calsten, B.E.; Fiorito, R.B.; Rule, D.W.

    1988-01-01

    Optical transition radiation (OTR) measurements of the electron-beam emittance have been performed at a location just before the wiggler in the Los Alamos Free-Electron Laser (FEL) experiment. Beam profiles and beam divergence patterns from a single macropulse were recorded simultaneously using two intensified charge-injection device (CID) television cameras and an optical beamsplitter. Both single-foil OTR and two-foil OTR interference experiments were performed. Preliminary results are compared to a reference variable quadrupole, single screen technique. New aspects of using OTR properties for pointing the e-beam on the FEL oscillator axis, as well as measuring e-beam emittance are addressed. 7 refs., 9 figs.

  11. Particle formation and plasma radiative losses during laser ablation suitability of the Sedov-Taylor scaling.

    Science.gov (United States)

    Palanco, Santiago; Marino, Salvatore; Gabás, Mercedes; Bijani, Shanti; Ayala, Luis; Ramos-Barrado, José R

    2014-06-30

    Deviations of the Sedov-Taylor scaling at three different laser ablation regimes (500 mJ in a 0.8 mm spot, 50 mJ in a 0.8 mm spot and 500 mJ in a 2.5 mm spot) were investigated using Schlieren photography in combination with optical scattering and optical emission spectrometry, among others. For each case, the time evolution of the shock front was related to the formation, expansion and properties of the plasma. Both, the time scale of the different radiative processes and that observed for vapor condensation into nanoparticles and sub-micron particles are compatible with the divergences found between the model and experimental data.

  12. Emittance Measurements of the Jefferson Lab Free Electron Laser using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Michael Andrew [Univ. of Maryland, College Park, MD (United States)

    2007-05-01

    Charged particle accelerators, such as the ones that power Free Electron Lasers (FEL), require high quality (low emittance) beams for efficient operation. Accurate and reliable beam diagnostics are essential to monitoring beam parameters in order to maintain a high quality beam. Optical Transition Radiation Interferometry (OTRI) has shown potential to be a quality diagnostic that is especially useful for high brightness electron beams such as Jefferson Labs FEL energy recovery linac. The purpose of this project is to further develop OTRI beam diagnostic techniques. An optical system was designed to make beam size and divergence measurements as well as to prepare for experiments in optical phase space mapping. Beam size and beam divergence measurements were taken to calculate the emittance of the Jefferson Lab FEL. OTRI is also used to separate core and halo beam divergences in order to estimate core and halo emittance separately.

  13. The Measurement of Radiative Lifetimes Using Laser-Induced Fluorescence: Experimental Review and Astrophysical Application

    Energy Technology Data Exchange (ETDEWEB)

    Hartog, E.A. den; Lawler, J.E. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Sneden, C. [Univ. of Texas, Austin, TX (United States). Dept. of Astronomy and McDonald Observatory

    2005-10-01

    One of the standard methods for determining atomic transition probabilities is to combine branching fractions measured using Fourier-transform spectrometry with radiative lifetimes measurements using laser-induced fluorescence (LIF). This combination of techniques provides an efficient method for measuring large sets of accurate, absolute transition probabilities. The radiative lifetimes, which provide the overall scaling for the transition probabilities, can be measured routinely to {+-}5% accuracy using time-resolved LIF. Although the time-resolved LIF technique we use does not achieve the accuracy of fast-beam LIF, the time-resolved technique does enable us to make measurements at a far greater rate (hundreds of level lifetimes per year). Care must be taken, however, to understand and control the systematic effects in time-resolved LIF measurements to maintain {+-}5% accuracy over a wide dynamic range and hundreds of lifetime measurements. Over the last 25 years, we have measured lifetimes for 47 spectra using time resolved LIF. Our atomic beam source can produce a slow beam of neutral and singly ionized atoms of nearly any element. Lifetimes from 2 ns to {approx}2{mu}s can be measured for energy levels ranging from 15,000 to {approx}60,000/cm. In this review we will describe our method of measuring radiative lifetimes with an emphasis on possible errors and techniques used for controlling them. The electronic bandwidth, linearity, and overall fidelity of the fast photomultiplier, cable connections, and transient waveform digitizer are concerns. Possible errors from atomic collisions, radiation trapping, Zeeman quantum beats, hyperfine quantum beats, atoms/ions escaping from the observation region before radiating, and from radiative cascade through lower levels must be understood and controlled. We will then present a recent example of the application of our transition probability data to abundance determinations in the sun and in metal-poor halo stars. Our

  14. Laser fiber-optic sensors for investigation of influences ultra weak cosmic radiation on the people.

    Science.gov (United States)

    Rzhavin, Yu.; Ignatiev, A.

    The present work describes investigation of influences ultra weak cosmic radiation on the people, using laser fiber-optic bio sensors. Potential of the people measurements is made on the basis of two Mach-Zender interferometers. The measuring and reference channels of the device are made in the form of signal-mode light guides with w-profile, which retain the polarization of light [1].The effect of measurements leads to axial compression of the w-fiber guides in the measuring channel. The measured signal is recorded by the relative displasement of the structure of the interference pattern, which is caused by phase modulation of a coherent light wave [2] propagating in the measuring channel. The light guides in the measuring channel reeled up on a flat surface on a cirle by a diameter 1.8 meter. Length light guides made 100 meters. The people approached on distance of 0.3 meters to flat surfased. It has been demonstrated that the method based on calculation of the mutual correlation function of the output signals of the interferometers makes it possible to raise the signal/noise ratio of the device by eliminating irregular noise waves and reproducing an accurate shape of the measured signal.As the light source, we have used single-frequency semiconductor injection laser which external resonator was used and one of a resonator mirrors was the w-lightguide end with reflection structure deposited on it .The w-lightguidess had the cup-off wave length 1,1 um, the degree of retention of polarization 99 %. It has been demonstrated experimentally that the of the developed sensor, under constant level of the cosmic radiation measured bio potential of the people was defined from age, weight, and psychological of the condition. REFERENCES 1.Yu.I .Rzhavin et.al. Proceeding SPIE , vol. 2349 , pp.154-157 2. Yu.I.Rzhavin Proceeding SPIE , vol. 4827 , pp.253-257

  15. Dosimetric effects of energy spectrum uncertainties in radiation therapy with laser-driven particle beams.

    Science.gov (United States)

    Schell, S; Wilkens, J J

    2012-03-07

    Laser-driven particle acceleration is a potentially cost-efficient and compact new technology that might replace synchrotrons or cyclotrons for future proton or heavy-ion radiation therapy. Since the energy spectrum of laser-accelerated particles is rather wide, compared to the monoenergetic beams of conventional machines, studies have proposed the usage of broader spectra for the treatment of at least certain parts of the target volume to make the process more efficient. The thereby introduced additional uncertainty in the applied energy spectrum is analysed in this note. It is shown that the uncertainty can be categorized into a change of the total number of particles, and a change in the energy distribution of the particles. The former one can be monitored by a simple fluence detector and cancels for a high number of statistically fluctuating shots. The latter one, the redistribution of a fixed number of particles to different energy bins in the window of transmitted energies of the energy selection system, only introduces smaller changes to the resulting depth dose curve. Therefore, it might not be necessary to monitor this uncertainty for all applied shots. These findings might enable an easier uncertainty management for particle therapy with broad energy spectra.

  16. Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime

    CERN Document Server

    Yi, Longqing; Shen, Baifei

    2016-01-01

    When a high-contrast ultra-relativistic laser beam enters a micro-sized plasma waveguide, the pulse energy is coupled into waveguide modes, which remarkably modifies the interaction of electrons and electromagnetic wave. The electrons that pulled out of walls form a dense helical bunch inside the channel are efficiently accelerated by the transverse magnetic modes to hundreds of MeVs. In the mean time, the asymmetry in the transverse electric and magnetic fields provides significant wiggling that leads to a bright, well-collimated emission of hard X-rays. In this paper, we present our study on the underlying physics in the aforementioned process using 3D particle-in-cell simulations. The mechanism of electron acceleration and the dependence of radiation properties on different laser plasma parameters are addressed. A theoretical analysis model and basic scalings for X-ray emission are also presented by considering the lowest optical modes in the waveguide, which is adequate to describe the basic observed phen...

  17. Influence of an external axial magnetic field on betatron radiation from the interaction of a circularly polarized laser with plasma

    Science.gov (United States)

    Du, Bao; Wang, Xiao-Fang

    2017-09-01

    In this paper, theoretical analyses and numerical calculations are carried out to investigate the influence of an externally applied axial constant magnetic field on electrons' betatron radiation when an ultra-short, circularly polarized laser pulse of a peak intensity I0 = 5 × 1019 W/cm2 propagates in plasma of an electron density n0 = 1020/cm3. Ring-like x-ray radiation is emitted from the electrons' betatron oscillations. The applied magnetic field can modulate the resonance process between an electron's betatron oscillation and the laser electric field, and the electron energy gain from the direct laser acceleration is thus changed. When a magnetic field of strength B0=3 × 103 T is applied, which is in anti-parallel to the self-generated axial magnetic field, both the trapping efficiency of electrons by the wakefield and the maximum accelerated energy are increased. The maximum electron energy, the peak of angular radiation, and the total radiation energy are increased by 11.0%, 45.6%, and 41.1%, respectively, and the radiation spectra are blue-shifted significantly.

  18. Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    Ashok A. Nikam

    2015-02-01

    Full Text Available Gamma ray-induced in vitro mutagenesis and selection for salt (NaCl tolerance were investigated in sugarcane (Saccharum officinarum L.. Embryogenic callus cultures were irradiated (10 to 80 Gy and subjected to in vitro selection by exposure of irradiated callus to NaCl (0, 50, 100, 150, 200, and 250 mmol L− 1. Increasing NaCl concentrations resulted in growth reduction and increased membrane damage. Salt-selected callus lines were characterized by the accumulation of proline, glycine betaine, and Na+ and K+ concentration. Higher accumulation of proline and glycine betaine was observed in NaCl stressed callus irradiated at 20 Gy. Na+ concentration increased and K+ concentration decreased with increasing salt level. Irradiated callus showed 50–60% regeneration under NaCl stress, and in vitro-regenerated plants were acclimatized in the greenhouse, with 80–85% survival. A total of 138 irradiated and salt-selected selections were grown to maturity and their agronomic performance was evaluated under normal and saline conditions. Of these, 18 mutant clones were characterized for different agro-morphological characters and some of the mutant clones exhibited improved sugar yield with increased Brix%, number of millable canes, and yield. The result suggest that radiation-induced mutagenesis offers an effective way to enhance genetic variation in sugarcane.

  19. Voice Quality After Treatment of Early Vocal Cord Cancer: A Randomized Trial Comparing Laser Surgery With Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, Leena-Maija, E-mail: leena-maija.aaltonen@hus.fi [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Central Hospital, and University of Helsinki, Helsinki (Finland); Rautiainen, Noora; Sellman, Jaana [Institute of Behavioural Sciences, University of Helsinki, Helsinki (Finland); Saarilahti, Kauko [Department of Oncology, Helsinki University Central Hospital, and University of Helsinki, Helsinki (Finland); Mäkitie, Antti; Rihkanen, Heikki [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Central Hospital, and University of Helsinki, Helsinki (Finland); Laranne, Jussi; Kleemola, Leenamaija [Department of Otorhinolaryngology–Head and Neck Surgery, Tampere University Hospital, and University of Tampere, Tampere (Finland); Wigren, Tuija [Department of Oncology, Tampere University Hospital, and University of Tampere, Tampere (Finland); Sala, Eeva [Department of Otorhinolaryngology–Head and Neck Surgery, Turku University Hospital, and University of Turku, Turku (Finland); Lindholm, Paula [Department of Oncology, Turku University Hospital, and University of Turku, Turku (Finland); Grenman, Reidar [Department of Otorhinolaryngology–Head and Neck Surgery, Turku University Hospital, and University of Turku, Turku (Finland); Joensuu, Heikki [Department of Oncology, Helsinki University Central Hospital, and University of Helsinki, Helsinki (Finland)

    2014-10-01

    Objective: Early laryngeal cancer is usually treated with either transoral laser surgery or radiation therapy. The quality of voice achieved with these treatments has not been compared in a randomized trial. Methods and Materials: Male patients with carcinoma limited to 1 mobile vocal cord (T1aN0M0) were randomly assigned to receive either laser surgery (n=32) or external beam radiation therapy (n=28). Surgery consisted of tumor excision with a CO{sub 2} laser with the patient under general anaesthesia. External beam radiation therapy to the larynx was delivered to a cumulative dose of 66 Gy in 2-Gy daily fractions over 6.5 weeks. Voice quality was assessed at baseline and 6 and 24 months after treatment. The main outcome measures were expert-rated voice quality on a grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, videolaryngostroboscopic findings, and the patients' self-rated voice quality and its impact on activities of daily living. Results: Overall voice quality between the groups was rated similar, but voice was more breathy and the glottal gap was wider in patients treated with laser surgery than in those who received radiation therapy. Patients treated with radiation therapy reported less hoarseness-related inconvenience in daily living 2 years after treatment. Three patients in each group had local cancer recurrence within 2 years from randomization. Conclusions: Radiation therapy may be the treatment of choice for patients whose requirements for voice quality are demanding. Overall voice quality was similar in both treatment groups, however, indicating a need for careful consideration of patient-related factors in the choice of a treatment option.

  20. Efficient Detection of 3 THz Radiation from Quantum Cascade Laser Using Silicon CMOS Detectors

    Science.gov (United States)

    Ikamas, Kęstutis; Lisauskas, Alvydas; Boppel, Sebastian; Hu, Qing; Roskos, Hartmut G.

    2017-10-01

    In this paper, we report on efficient detection of the radiation emitted by a THz quantum cascade laser (QCL) using an antenna-coupled field effect transistor (TeraFET). In the limiting case when all radiated power would be collected, the investigated TeraFET can show up to 230 V/W responsivity with the noise equivalent power being as low as 85 pW/√ { {Hz}} at 3.1 THz, which is several times lower than that of the typical Golay cell. A combination of the QCL and a set of off-axis parabolic mirrors with 3-inch and 2-inch focal lengths was used to measure the signal-to-noise ratio (SNR) of the TeraFET. The practically achieved SNR was five times lower than that of the Golay cell and two orders of magnitude lower than a bolometer's. However, TeraFETs are much faster and do not need a signal modulation, thus can be used both in a continuous mode for power monitoring or for investigation of transient processes on a sub-microsecond time scale.

  1. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  2. Measure the spatial distribution of corneal elasticity by combining femtosecond laser induced breakdown spectroscopy and acoustic radiation force elasticity microscope

    Science.gov (United States)

    Sun, Hui; Li, Xin; Hu, Mingyong

    2017-08-01

    The unique spatial distribution of corneal elasticity is shown by the nonhomogeneous structure of the cornea. It is critical to understanding how biomechanics control corneal stability and refraction and one way to do this job is non-invasive measurement of this distribution. Femtosecond laser pulses have the ability to induce optical breakdown and produced cavitation in the anterior and posterior cornea. A confocal ultrasonic transducer applied 6.5 ms acoustic radiation forcechirp bursts to the bubble at 1.5 MHz while monitoring bubble position using pulse-echoes at 20 MHz. The laser induced breakdown spectroscopy (LIBS) were measured in the anterior and posterior cornea with the plasmas that induced by the same femtosecond laser to see whether the laser induced plasmas signals will show relationship to Young's modulus.

  3. Copper Vapor Laser with One-Beam Radiation of Diffraction Quality and Its Capabilities for Microprocessing of Materials for Electronic Engineering Products

    Directory of Open Access Journals (Sweden)

    N. A. Lyabin

    2014-01-01

    Full Text Available The structure, spatial, time and energy characteristics of copper vapor laser radiation (CVL with optical resonators possessing high spatial selectivity have been investigated: with an unstable resonator (UR with two convex mirrors and telescopic UR, and the conditions to form one-beam radiation with diffraction divergence and high stability of directivity pattern axis have been defined.The most weighty and prospective application of CVL with UR with two convex mirrors is to use it as a driving oscillator (DO in a copper vapor laser system (CVLS of the type: driving oscillator – power amplifier (DO – PA when diffraction beam radiating power and power density in a focused spot of 10-20 µm in diameter increases by 1-2 orders. Using industrial sealed-off active elements (AE of “Kulon” series with an average radiation power of 15-25 W as PAs the peak power density increases up to 1011 W/cm 2 while an application of AE “Crystal” with 30- 50 W power gives up to 1012 W/cm 2 , which is sufficient for efficient and qualitative microprocessing of materials up to 1…2 mm thick. Such a CVLS has become the basis for creating up-to-date automated laser technological installations (ALTI of “Karavella-1” and “Karavella-1M” types to manufacture precision parts of electronic engineering products (EEP of metal up to 0.5 mm thick and of non-metal up to 1.5…1.8 mm thick.CVL with a telescopic UR with an average power of 5-6 W diffraction radiation beam has become the basis for creating industrial ALTI “Karavella-2” and “Karavella-2M” to manufacture precision parts of electronic engineering products (EEP of metal up to 0.3 mm thick and of non-metal up to 0.5 – 0.7 mm thick.Practical work on all types of ALTI “Karavella” has shown a set of significant advantages of a laser way of pulsed microprocessing over the traditional ones, including electro-erosion machining: a wide range of structural metal and non-metal materials to be

  4. A physics informed emulator for laser-driven radiating shock simulations

    Energy Technology Data Exchange (ETDEWEB)

    McClarren, Ryan G., E-mail: rgm@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843-3133 (United States); Ryu, D. [Department of Statistics, Texas A and M University, College Station, TX 77843-3143 (United States); Paul Drake, R.; Grosskopf, Michael [Atmospheric Oceanic and Space Sciences, Space Physics Research Laboratory, University of Michigan, Ann Arbor, MI 48109 (United States); Bingham, Derek [Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC (Canada); Chou, Chuan-Chih; Fryxell, Bruce; Holst, Bart van der [Atmospheric Oceanic and Space Sciences, Space Physics Research Laboratory, University of Michigan, Ann Arbor, MI 48109 (United States); Paul Holloway, James [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Kuranz, Carolyn C. [Atmospheric Oceanic and Space Sciences, Space Physics Research Laboratory, University of Michigan, Ann Arbor, MI 48109 (United States); Mallick, Bani [Department of Statistics, Texas A and M University, College Station, TX 77843-3143 (United States); Rutter, Erica [Atmospheric Oceanic and Space Sciences, Space Physics Research Laboratory, University of Michigan, Ann Arbor, MI 48109 (United States); Torralva, Ben R. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2011-09-15

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. - Highlights: > Uncertainty quantification for two linked computer codes is investigated. > We perform physics-based dimension reduction on the code output. > This reduces the uncertain degrees of freedom from hundreds to tens.

  5. Contact and noncontact laser preparation of hard dental tissues by Er:YAG laser radiation delivered by hollow glass waveguide or articulated arm

    Science.gov (United States)

    Dostalova, Tatjana; Jelinkova, Helena; Miyagi, Mitsunobu; Nemec, Michal; Hamal, Karel; Krejsa, Otakar

    1999-05-01

    The differences between a contact and non-contact Er:YAG laser hard dental tissue preparation were verified. The influence of laser energy and number of pulses on a profile and depth of a drilled cavity was investigated. The delivery systems used were an articulated arm and a cyclic olefin polymer-coated silver hollow glass waveguide with or without a special sapphire tip. In the case of the non-contact preparation, the laser radiation was directed onto the dental tissue by focusing optics (CaF2 lens) together with the cooling water spray in order to ensure that the tissues will not be burned. The water spray was also used during the preparation when the waveguide with a sapphire tip was used to deliver the radiation. For the evaluation of shapes, depth and profiles of the prepared cavities the metallographic microscope, photographs from the light microscope and scanning electron microsec were used. From the result it follows that great differences exist in the laser speed, value of energy, the profile, and depth of the cavities prepared by the contact and non-contact preparation. In the case of contact ablation the procedure is quicker, the energy fluence needed is lower and more precise cavities with larger diameters are produced.

  6. Normal tissue tolerance to external beam radiation therapy: Rectum; Dose de tolerance a l'irradiation des tissus sains: le rectum

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P. [Departement de radiotherapie, institut Gustave-Roussy, 94 - Villejuif (France); Chapet, O. [Service d' oncologie-radiotherapie, centre hospitalier Lyon-Sud, 69 - Pierre-Benite (France)

    2010-07-15

    Radiation proctitis is among the most frequent radiation-induced toxicities. This is related to the high frequency of pelvic tumours and the key role of radiotherapy in the treatment of these tumours. Late rectal toxicity usually occurs within the first two years after the completion of a radiotherapy course. Rectal bleeding and a rectal syndrome are the main symptoms, and can be associated to fistulas or rectal ulcers. Clinical factors, such as diabetes mellitus, a severe acute radiation toxicity, small rectal volume or radiation hypersensitivity, are associated with late rectal toxicity. Dosimetric factors derived from the analysis of dose-volume histograms can also predict the occurrence of radiation proctitis, and help to adapt the prescribed dose and the ballistic of irradiation. (authors)

  7. Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayse, E-mail: senayse@istanbul.edu.tr [Istanbul University, Faculty of Science, Department of Biology, 34459 Vezneciler, Istanbul (Turkey); Alikamanoglu, Sema [Istanbul University, Faculty of Science, Department of Biology, 34459 Vezneciler, Istanbul (Turkey)

    2012-10-15

    Drought is one of the major environmental stresses which greatly affect the plant growth and productivity. In the present study, various doses (0-75 Gy) of gamma rays were applied to investigate the effect of radiation on shoot tip explants. It was observed that the regeneration rates and plant fresh weights decreased significantly with an increase in radiation dose. The optimal irradiation doses for mutation induction were determined at 15 and 20 Gy. Afterwards, the induction of somatic mutation in sugar beet (Beta vulgaris L.) was investigated by irradiation of shoot tips with 15 and 20 Gy gamma rays. Irradiated shoot tips were sub-cultured and M{sub 1}V{sub 1}-M{sub 1}V{sub 3} generations were obtained. Mutants tolerant to drought stress were selected on MS medium, supplemented with 10 and 20 gl{sup -1} PEG6000. Of the M{sub 1}V{sub 3} plantlets, drought-tolerant mutants were selected. Leaf soluble proteins obtained from the control and drought-tolerant mutants were analyzed by SDS-PAGE. A total of 22 protein bands were determined and 2 of them were observed to be drought-tolerant mutants except the control. Polymorphism was also detected among the control and drought-tolerant mutants by DNA fingerprinting using ISSR markers. A total of 106 PCR fragments were amplified with 19 ISSR primers and 91 of them were polymorphic. The dendrograms were separated into two main clusters. First cluster included M8 mutant plant, which was applied 20 Gy gamma radiation and regenerated on selective culture media containing 10 g l{sup -1} PEG6000 concentration, and the second cluster was further divided into five sub-clusters.

  8. Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers.

    Science.gov (United States)

    Sen, Ayse; Alikamanoglu, Sema

    2012-01-01

    Drought is one of the major environmental stresses which greatly affect the plant growth and productivity. In the present study, various doses (0-75Gy) of gamma rays were applied to investigate the effect of radiation on shoot tip explants. It was observed that the regeneration rates and plant fresh weights decreased significantly with an increase in radiation dose. The optimal irradiation doses for mutation induction were determined at 15 and 20Gy. Afterwards, the induction of somatic mutation in sugar beet (Beta vulgaris L.) was investigated by irradiation of shoot tips with 15 and 20Gy gamma rays. Irradiated shoot tips were sub-cultured and M(1)V(1)-M(1)V(3) generations were obtained. Mutants tolerant to drought stress were selected on MS medium, supplemented with 10 and 20gl(-1) PEG6000. Of the M(1)V(3) plantlets, drought-tolerant mutants were selected. Leaf soluble proteins obtained from the control and drought-tolerant mutants were analyzed by SDS-PAGE. A total of 22 protein bands were determined and 2 of them were observed to be drought-tolerant mutants except the control. Polymorphism was also detected among the control and drought-tolerant mutants by DNA fingerprinting using ISSR markers. A total of 106 PCR fragments were amplified with 19 ISSR primers and 91 of them were polymorphic. The dendrograms were separated into two main clusters. First cluster included M8 mutant plant, which was applied 20Gy gamma radiation and regenerated on selective culture media containing 10gl(-1) PEG6000 concentration, and the second cluster was further divided into five sub-clusters. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Interaction of solutions containing phenothiazines exposed to laser radiation with materials surfaces, in view of biomedical applications.

    Science.gov (United States)

    Simon, Agota; Alexandru, Tatiana; Boni, Mihai; Damian, Victor; Stoicu, Alexandru; Dutschk, Victoria; Pascu, Mihail Lucian

    2014-11-20

    Phenothiazine drugs - chlorpromazine (CPZ), promazine (PZ) and promethazine (PMZ) - were exposed to 266 nm (fourth harmonic of the Nd:YAG pulsed laser radiation) in order to be modified at molecular level and to produce an enhancement of their antibacterial activity. The irradiated samples were analysed by several methods: pH and surface tension measurements, UV-vis-NIR absorption spectroscopy, laser induced fluorescence and thin layer chromatography. The purpose of these investigations was to study and describe the modified properties of the medicines to further investigate their specific interactions with materials such as cotton, polyester and Parafilm M as a model smooth surface. The textile materials may be impregnated with phenothiazines drug solutions exposed to laser radiation in order to be used in treatments applied on the surface of the organism. Some of the phenothiazines solutions exposed prolonged time intervals to laser radiation have much better activity against several bacteria. Therefore, in the paper, it is reported the wetting behaviour of CPZ, PZ and PMZ solutions, irradiated for time intervals between 1 and 240 min, on the surfaces of the three textures in order to draw a conclusion about their wettability as a function of time. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. RESEARCH OF LINEAR AND NONLINEAR PROCESSES AT FEMTOSECOND LASER RADIATION PROPAGATION IN THE MEDIUM SIMULATING THE HUMAN EYE VITREOUS

    Directory of Open Access Journals (Sweden)

    P. Y. Rogov

    2015-09-01

    Full Text Available The paper deals with mathematical model of linear and nonlinear processes occurring at the propagation of femtosecond laser pulses in the vitreous of the human eye. Methods of computing modeling are applied for the nonlinear spectral equation solution describing the dynamics of a two-dimensional TE-polarized radiation in a homogeneous isotropic medium with cubic fast-response nonlinearity without the usage of slowly varying envelope approximation. Environments close to the optical media parameters of the eye were used for the simulation. The model of femtosecond radiation propagation takes into account the process dynamics for dispersion broadening of pulses in time and the occurence of the self-focusing near the retina when passing through the vitreous body of the eye. Dependence between the pulse duration on the retina has been revealed and the duration of the input pulse and the values of power density at which there is self-focusing have been found. It is shown that the main mechanism of radiation damage with the use of titanium-sapphire laser is photoionization. The results coincide with those obtained by the other scientists, and are usable for creation Russian laser safety standards for femtosecond laser systems.

  11. An evaluation on shear strength of composite resin bonded to primary teeth dentin after Nd: YAG laser radiation

    Directory of Open Access Journals (Sweden)

    Kowsari A

    2002-06-01

    Full Text Available Due to the differences in the composite and morphology of dentin in primary and permanent teeth, it is necessary to make improvements in bonding techniques to promote the strength of composite resins bonded to the dentinal surface, in primary teeth. The use of lower radiation, to make structural and chemical changes in dentinal surfaces has been investigated. This research was conducted to evaluate the shear strength of the composite bonded to primary teeth dentin after Nd: YAG laser radiation and acid etching for conditioning. Peripheral dentin of the buccal and lingua! surfaces of 60 extracted posterior primary teeth were exposed and polished with 600 grit with Sic paper. The teeth were divided randomly in 3 groups of 20 teeth. In group 1 etching gel, primer and adhesive of scotch bond multipurpose system (SMP, in group 2 laser at 1.6 w and 80 mj/pulse, and in group 3 laser at 2 s and 700 mj/pulse were used. Moreover, in groups 2 and 3, after laser radiation, acid etching, primer and adhesive of SMP system were applied. After necessary laboratory tests, the mean shear bond strength in MPa were 20.99±5.3 (group 1, 23.82±6.31 (group 2 and 26.58±5.59 (group 3. ANOVA, scheffe, tukey statistical tests showed that the bond strengths of group 3 were statistically higher than group 1. The frequency of dentin cohesive failures were significantly higher in groups 2 and 3, compared to group 1 that indicates a higher bond strength in these groups. Scanning electron mirographs of laser radiated surfaces, show a porous and rough surface morphology that enhances the mechanical bond of the composite.

  12. A Novel Approach for the Treatment of Radiation-Induced Hemorrhagic Cystitis with the GreenLightTM XPS Laser.

    Science.gov (United States)

    Martinez, Daniel Roberto; Ercole, Cesar E; Lopez, Juan Gabriel; Parker, Justin; Hall, Mary K

    2015-01-01

    The treatment of pelvic malignancies with radiotherapy can develop severe sequelae, especially radiation-induced hemorrhagic cystitis. It is a progressive disease that can lead to the need for blood transfusion, hospitalizations, and surgical interventions. This tends to affect the quality of life of these patients, and management can at times be difficult. We have evaluated the GreenLight Xcelerated Performance System (XPS) with TruCoag, although primarily used for management of benign prostatic hypertrophy (BPH), for the treatment of radiation-induced hemorrhagic cystitis. After International Review Board (IRB) approval, a retrospectivechart review was performed in addition to a literature search. A series of four male patients, mean age of 81 years, with radiation-induced hemorrhagic cystitis secondary to radiotherapy for pelvic malignancies (3 prostate cancer, 1 rectal cancer) were successfully treated with the GreenLight laser after unsuccessful treatment with current therapies described in the literature. All four patients treated with the GreenLight laser had resolution of their hematuria after one treatment and were discharge from the hospital with clear urine. The GreenLight XPS laser shows promising results for the treatment of patients with radiation-induced hemorrhagic cystitis, and deserves further evaluation and validation, especially since there is limited data available in the literature regarding the use of this technology for the treatment of this devastating condition.

  13. A Novel Approach for the Treatment of Radiation-Induced Hemorrhagic Cystitis with the GreenLight™ XPS Laser

    Science.gov (United States)

    Martinez, Daniel Roberto; Ercole, Cesar E; Lopez, Juan Gabriel; Parker, Justin; Hall, Mary K

    2015-01-01

    ABSTRACT Introduction: The treatment of pelvic malignancies with radiotherapy can develop severe sequelae, especially radiation-induced hemorrhagic cystitis. It is a progressive disease that can lead to the need for blood transfusion, hospitalizations, and surgical interventions. This tends to affect the quality of life of these patients, and management can at times be difficult. We have evaluated the GreenLight Xcelerated Performance System (XPS) with TruCoag, although primarily used for management of benign prostatic hypertrophy (BPH), for the treatment of radiation-induced hemorrhagic cystitis. Materials and Methods: After International Review Board (IRB) approval, a retrospective chart review was performed in addition to a literature search. A series of four male patients, mean age of 81 years, with radiation-induced hemorrhagic cystitis secondary to radiotherapy for pelvic malignancies (3 prostate cancer, 1 rectal cancer) were successfully treated with the GreenLight laser after unsuccessful treatment with current therapies described in the literature. Results: All four patients treated with the GreenLight laser had resolution of their hematuria after one treatment and were discharge from the hospital with clear urine. Conclusion: The GreenLight XPS laser shows promising results for the treatment of patients with radiation-induced hemorrhagic cystitis, and deserves further evaluation and validation, especially since there is limited data available in the literature regarding the use of this technology for the treatment of this devastating condition. PMID:26200555

  14. A Novel Approach for the Treatment of Radiation-Induced Hemorrhagic Cystitis with the GreenLight™ XPS Laser

    Directory of Open Access Journals (Sweden)

    Daniel Roberto Martinez

    2015-06-01

    Full Text Available ABSTRACTIntroduction:The treatment of pelvic malignancies with radiotherapy can develop severe sequelae, especially radiation-induced hemorrhagic cystitis. It is a progressive disease that can lead to the need for blood transfusion, hospitalizations, and surgical interventions. This tends to affect the quality of life of these patients, and management can at times be difficult. We have evaluated the GreenLight Xcelerated Performance System (XPS with TruCoag, although primarily used for management of benign prostatic hypertrophy (BPH, for the treatment of radiation-induced hemorrhagic cystitis.Materials and Methods:After International Review Board (IRB approval, a retrospective chart review was performed in addition to a literature search. A series of four male patients, mean age of 81 years, with radiation-induced hemorrhagic cystitis secondary to radiotherapy for pelvic malignancies (3 prostate cancer, 1 rectal cancer were successfully treated with the GreenLight laser after unsuccessful treatment with current therapies described in the literature.Results:All four patients treated with the GreenLight laser had resolution of their hematuria after one treatment and were discharge from the hospital with clear urine.Conclusion:The GreenLight XPS laser shows promising results for the treatment of patients with radiation-induced hemorrhagic cystitis, and deserves further evaluation and validation, especially since there is limited data available in the literature regarding the use of this technology for the treatment of this devastating condition.

  15. Comparing vacuum and extreme ultraviolet radiation for postionization of laser desorbed neutrals from bacterial biofilms and organic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Gerald L. [Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street (m/c 111), Chicago, IL 60607 (United States); Takahashi, Lynelle K. [Department of Chemistry, University of California, Berkeley, Room 419 Latimer Hall, Berkeley, CA 94720-1460 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Zhou Jia; Ahmed, Musahid [Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Moore, Jerry F. [MassThink LLC, 500 East Ogden Avenue Suite 200, Naperville, IL 60563 (United States); Hanley, Luke, E-mail: lhanley@uic.edu [Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street (m/c 111), Chicago, IL 60607 (United States)

    2011-09-01

    Vacuum and extreme ultraviolet radiation from 8 to 24 eV generated at a synchrotron was used to postionize laser desorbed neutrals of antibiotic-treated biofilms and a modified fullerene using laser desorption postionization mass spectrometry (LDPI-MS). Results show detection of the parent ion, various fragments, and extracellular material from biofilms using LDPI-MS with both vacuum and extreme ultraviolet photons. Parent ions were observed for both cases, but extreme ultraviolet photons (16-24 eV) induced more fragmentation than vacuum ultraviolet (8-14 eV) photons.

  16. Comparing Vacuum and Extreme Ultraviolet Radiation for Postionization of Laser Desorbed Neutrals from Bacterial Biofilms and Organic Fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Gaspera, Gerald L.; Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid; Moored, Jerry F.; Hanley, Luke

    2010-12-08

    Vacuum and extreme ultraviolet radiation from 8 - 24 eV generated at a synchrotron was used to postionize laser desorbed neutrals of antibiotic-treated biofilms and a modified fullerene using laser desorption postionization mass spectrometry (LDPI-MS). Results show detection of the parent ion, various fragments, and extracellular material from biofilms using LDPI-MS with both vacuum and extreme ultraviolet photons. Parent ions were observed for both cases, but extreme ultraviolet photons (16-24 eV) induced more fragmentation than vacuum ultraviolet (8-14 eV) photons.

  17. Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Tuchina, E S; Petrov, P O; Kozina, K V; Tuchin, V V [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation); Ratto, F; Pini, R [Institute of Applied Physics ' Nello Carrara' , National Research Council, via Madonna del Piano 10 50019 Sesto Fiorentino (Italy); Centi, S [University of Florence, Dept. Experimental and Clinical Biomedical Sciences, viale Morgagni 50, 50134 Firenze (Italy)

    2014-07-31

    The effect of NIR laser radiation (808 nm) and gold nanorods on the cells of two strains of Staphylococcus aureus, one of them being methicillin-sensitive and the other being methicillinresistant, is studied. Nanorods having the dimensions 10 × 44 nm with the absorption maximum in the NIR spectral region, functionalised with human immunoglobulins IgA and IgG, are synthesised. It is shown that the use of nanoparticles in combination with NIR irradiation leads to killing up to 97% of the population of microorganisms. (laser biophotonics)

  18. Analysis of induced stress on materials exposed to laser-plasma radiation during high-intensity laser experiments

    Science.gov (United States)

    Scisciò, M.; Barberio, M.; Liberatore, C.; Veltri, S.; Laramée, A.; Palumbo, L.; Legaré, F.; Antici, P.

    2017-11-01

    In this work, we investigate the damage produced in materials when exposed to a laser-generated plasma. The plasma was generated by interaction of a high-intensity laser with Oxygen. We demonstrate that the stress induced on the target surface of a Tantalum target (typical materials used as Plasma Facing Material) after 10 h of plasma exposure is equivalent to the stress induced during 1 h of conventional laser ablation using a pulsed 0.5 J laser. In both cases we obtain a surface erosion in the tens of μm, and a change in the surface roughness in the tens of nm for the stressed materials. The erosion rate of 1 nm/s, explained in terms of surface fragmentation at thermodynamic equilibrium, generates a slow damage to the materials exposed to the plasma. Our method allows indicating safety parameters for the maintenance of materials used in high-intensity laser experiments.

  19. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakajima

    2014-12-01

    Full Text Available We present a new external-beam radiation therapy system using very-high-energy (VHE electron/photon beams generated by a centimeter-scale laser plasma accelerator built in a robotic system. Most types of external-beam radiation therapy are delivered using a machine called a medical linear accelerator driven by radio frequency (RF power amplifiers, producing electron beams with an energy range of 6–20 MeV, in conjunction with modern radiation therapy technologies for effective shaping of three-dimensional dose distributions and spatially accurate dose delivery with imaging verification. However, the limited penetration depth and low quality of the transverse penumbra at such electron beams delivered from the present RF linear accelerators prevent the implementation of advanced modalities in current cancer treatments. These drawbacks can be overcome if the electron energy is increased to above 50 MeV. To overcome the disadvantages of the present RF-based medical accelerators, harnessing recent advancement of laser-driven plasma accelerators capable of producing 1-GeV electron beams in a 1-cm gas cell, we propose a new embodiment of the external-beam radiation therapy robotic system delivering very high-energy electron/photon beams with an energy of 50–250 MeV; it is more compact, less expensive, and has a simpler operation and higher performance in comparison with the current radiation therapy system.

  20. The effects of electron thermal radiation on laser ablative shock waves from aluminum plasma into ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Sai Shiva, S.; Leela, Ch.; Prem Kiran, P., E-mail: premkiranuoh@gmail.com, E-mail: prem@uohyd.ac.in [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046 (India); Sijoy, C. D., E-mail: cjoycd@gmail.com, E-mail: sijoy@barc.gov.in; Chaturvedi, S. [Computational Analysis Division, Bhabha Atomic Research Centre (BARC), Visakhapatnam (India)

    2016-05-15

    The effect of electron thermal radiation on 7 ns laser ablative shock waves from aluminum (Al) plasma into an ambient atmospheric air has been numerically investigated using a one-dimensional, three-temperature (electron, ion, and radiation) radiation hydrodynamic code MULTI. The governing equations in Lagrangian form are solved using an implicit scheme for planar, cylindrical, and spherical geometries. The shockwave velocities (V{sub sw}) obtained numerically are compared with our experimental values obtained over the intensity range of 2.0 × 10{sup 10} to 1.4 × 10{sup 11 }W/cm{sup 2}. It is observed that the numerically obtained V{sub sw} is significantly influenced by the thermal radiation effects which are found to be dominant in the initial stage up to 2 μs depending on the input laser energy. Also, the results are found to be sensitive to the co-ordinate geometry used in the simulation (planar, cylindrical, and spherical). Moreover, it is revealed that shock wave undergoes geometrical transitions from planar to cylindrical nature and from cylindrical to spherical nature with time during its propagation into an ambient atmospheric air. It is also observed that the spatio-temporal evolution of plasma electron and ion parameters such as temperature, specific energy, pressure, electron number density, and mass density were found to be modified significantly due to the effects of electron thermal radiation.

  1. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  2. THE INVESTIGATION OF INFLUENCE OF LASER RADIATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF COMPOSITE ELECTROLYTIC NICKEL COATING

    Directory of Open Access Journals (Sweden)

    V. A. Zabludovsky

    2013-09-01

    Full Text Available Purpose. Investigation of laser radiation effect on the structure and mechanical properties of electrodeposited nickel composite coatings containing ultrafine diamonds. Methodology. Electrodeposition of nickel films was carried out with the addition of a standard solution of ultrafine diamonds (UFD on laser-electrolytic installation, built on the basis of the gas-discharge CO2 laser. Mechanical testing the durability of coatings were performed on a machine with reciprocating samples in conditions of dry friction against steel. The spectral microanalysis of the elemental composition of the film - substrate was performed on REMMA-102-02. Findings. Research of nickel coatings and modified ultrafine diamond electrodeposited under external stimulation laser demonstrated the dependence of the structure and mechanical properties of composite electrolytic coating (CEC, and the qualitative and quantitative distribution of nanodiamond coprecipitated from an electrodeposition method. Originality. The effect of laser light on the process of co-precipitation of the UFD, which increases the micro-hardness and wear resistance of electrolytic nickel coatings was determined. Practical value. The test method of laser-stimulated composite electrolytic nickel electrodeposition coating is an effective method of local increase in wear resistance of metal coatings, which provides durability save performance (functional properties of the surface.

  3. Using laser induced breakdown spectroscopy and acoustic radiation force elasticity microscope to measure the spatial distribution of corneal elasticity

    Science.gov (United States)

    Sun, Hui; Li, Xin; Fan, Zhongwei; Kurtz, Ron; Juhasz, Tibor

    2017-02-01

    Corneal biomechanics plays an important role in determining the eye's structural integrity, optical power and the overall quality of vision. It also plays an increasingly recognized role in corneal transplant and refractive surgery, affecting the predictability, quality and stability of final visual outcome [1]. A critical limitation to increasing our understanding of how corneal biomechanics controls corneal stability and refraction is the lack of non-invasive technologies that microscopically measure local biomechanical properties, such as corneal elasticity within the 3D space. Bubble based acoustic radiation force elastic microscopy (ARFEM) introduce the opportunity to measure the inhomogeneous elastic properties of the cornea by the movement of a micron size cavitation bubble generated by a low energy femtosecond laser pulse [2, 3]. Laser induced breakdown spectroscopy (LIBS) also known as laser induced plasma spectroscopy (LIPS) or laser spark spectrometry (LSS) is an atomic emission spectroscopy [4]. The LIBS principle of operation is quite simple, although the physical processes involved in the laser matter interaction are complex and still not completely understood. In one sentence for description, the laser pulses are focused down to a target so as to generate plasma that vaporizes a small amount of material which the emitted spectrum is measured to analysis the elements of the target.

  4. Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields

    Science.gov (United States)

    Kemp, G. E.; Colvin, J. D.; Blue, B. E.; Fournier, K. B.

    2016-10-01

    We present a path forward for enhancing laser driven, multi-keV line-radiation from mid- to high-Z, sub-quarter-critical density, non-equilibrium plasmas through inhibited thermal transport in the presence of an externally generated magnetic field. Preliminary simulations with Kr and Ag suggest that as much as 50%-100% increases in peak electron temperatures are possible—without any changes in laser drive conditions—with magnetized interactions. The increase in temperature results in ˜2 -3 × enhancements in laser-to-x-ray conversion efficiency for K-shell emission with simultaneous ≲ 4 × reduction in L-shell emission using current field generation capabilities on the Omega laser and near-term capabilities on the National Ignition Facility laser. Increased plasma temperatures and enhanced K-shell emission are observed to come at the cost of degraded volumetric heating. Such enhancements in high-photon-energy x-ray sources could expand the existing laser platforms for increasingly penetrating x-ray radiography.

  5. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons

    Directory of Open Access Journals (Sweden)

    Medvid Artur

    2011-01-01

    Full Text Available Abstract On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity.

  6. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons

    Science.gov (United States)

    2011-01-01

    On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity. PMID:22060172

  7. Thin films deposited by laser ablation for the measurement of the ionizing and non-ionizing radiation; Peliculas delgadas depositadas por ablacion laser para la medicion de radiacion ionizante y no ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal B, J.E.; Escobar A, L.; Camps, E.; Romero, S.; Gonzalez, P.; Salinas, B. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    In this work the obtained results to synthesize thin films of amorphous carbon with incorporated nitrogen and hydrogen are presented, as well as thin films of aluminium oxide using the laser ablation technique. The thin films were exposed to ionizing radiation (gamma rays of a {sup 60} Co source, beta radiation of a {sup 90} Sr source) and a non-ionizing radiation (UV radiation). The obtained results show that it is possible to obtain materials in thin film form with thickness of hundreds of nanometers, which present thermoluminescent response when being irradiated with ionizing radiation and non-ionizing radiation. (Author)

  8. Validation of non-local electron heat conduction model for radiation MHD simulation in magnetized laser plasma

    Science.gov (United States)

    Nagatomo, Hideo; Matsuo, Kazuki; Nicolai, Pilippe; Asahina, Takashi; Fujioka, Shinsuke

    2017-10-01

    In laser plasma physics, application of an external magnetic field is an attractive method for various research of high energy density physics including fast ignition. Meanwhile, in the high intense laser plasma the behavior of hot electron cannot be ignored. In the radiation hydrodynamic simulation, a classical electron conduction model, Spitzer-Harm model has been used in general. However the model has its limit, and modification of the model is necessary if it is used beyond the application limit. Modified SNB model, which considering the influence of magnetic field is applied to 2-D radiation magnetohydrodynamic code PINOCO. Some experiments related the non-local model are carried out at GXII, Osaka University. In this presentation, these experimental results are shown briefly. And comparison between simulation results considering the non-local electron heat conduction mode are discussed. This study was supported JSPS KAKENHI Grant No. 17K05728.

  9. Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses

    CERN Document Server

    Wu, Dong; Qiao, B; Zhou, C T; Yan, X Q; Yu, M Y; He, X T

    2014-01-01

    It is shown that the transverse Rayleigh-Taylor-like (RT) instability in the hole boring radiation pressure acceleration can be suppressed by using elliptically polarized (EP) laser. A moderate ${J}\\times{B}$ heating of the EP laser will thermalize the local electrons, which leads to the transverse diffusion of ions, suppressing the short wavelength perturbations of RT instability. A proper condition of polarization ratio is obtained analytically for the given laser intensity and plasma density. The idea is confirmed by two dimensional Particle-in-Cell simulations, showing that the ion beam driven by the EP laser is more concentrated and intense compared with that of the circularly polarized laser.

  10. Simulation model of a new solar laser system of Fresnel lens according to real observed solar radiation data in

    Directory of Open Access Journals (Sweden)

    Yasser A. Abdel-Hadi

    2015-12-01

    Full Text Available A new simulation model of a new solar pumped laser system was tested to be run in Helwan in Egypt (latitude φ = 29°52′N, longitude λ = 31°21′E and elevation = 141 m as an example of an industrial polluted area. The system is based on concentrating the solar radiation using a Fresnel lens on a laser head fixed on a mount tracking the sun during the day and powered by a DC battery. Two cases of this model are tested; the first one is the model consisting of a Fresnel lens and a two-dimensional Compound Parabolic Concentrator (CPC, while the other is the model consisting of a Fresnel lens and a three-dimensional Compound Parabolic Concentrator (CPC. The model is fed by real actual solar radiation data taken in Helwan Solar Radiation Station at NRIAG in the various seasons in order to know the laser power got from such a system in those conditions. For the system of Fresnel lens and 2D-CPC, an average laser output power of 1.27 W in Winter, 2 W in Spring, 5 W in Summer and 4.68 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 3.24 W. For the system of Fresnel lens and 3D-CPC, an average laser output power of 3.28 W in Winter, 3.55 W in Spring, 7.56 W in Summer and 7.13 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 5.38 W.

  11. Evaluation of the morphological alteration of the root surface radiated with a diode laser; Avaliacao da alteracao morfologica da superficie cimentaria irradiada com laser de diodo

    Energy Technology Data Exchange (ETDEWEB)

    Gulin, Mauricio

    2003-07-01

    The diode laser has been studied for periodontal therapy, as much for removal of calculus as for microbial reduction of periodontal pockets, as well as the visible analgesic effects and biomodulation capacity. For this reason the purpose of this study was to evaluate the morphological alteration of the root surface after radiation with the diode laser, 808 nm through analysis by scanning electron microscopy (SEM). Besides this, to verify the temperature variations caused during the radiation, a thermometer put into the dentinal wall of the root canal was used. In all, 18 teeth were used, 15 of which for the SEM study, and the other 3 were used to temperature variation analysis. The 25 samples were scraped on the root surface and planed with manual instruments. The other 5 were not subjected to any type of treatment. This, 6 groups of 5 samples each were formed. Control Group C whose samples had not received any treatment; Control Group C 1 was only scraped and polished conventionally with Hu-Friedy Gracey curettes 5 and 6; the other samples groups L1, L2, L3, L4 were radiated by diode laser using parameters of power 1,0 W; 1,2 W; 1,4 W; and 1,6 W respectively, 2 times for 10 seconds with 20 seconds intervals between each radiation in continuous mode. The results with relation to the increase of temperature in the interior of the root canal demonstrated that there was an increase of more than 5 degree Celsius. The results of the scanning electron microscope analysis of Control Group C demonstrated great irregularity and ridges on the root surface, with the presence of a dentine layer. Control Group C1 presented a similar aspect to Group L 1's, smoother and more homogeneous surface. Groups L2, L3, and L4 presented scratches alternating with smoother areas showing that fiber contacted the surface of the sample. The results reconfirmed the necessity of further studies using diode laser, with a beam of light emitted in an interrupted mode to improve the control of

  12. Fusion of blastomeres in mouse embryos under the action of femtosecond laser radiation. Efficiency of blastocyst formation and embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Osychenko, A A; Zalesskii, A D; Krivokharchenko, A S; Zhakhbazyan, A K; Nadtochenko, V A [N N Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Ryabova, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-05-31

    Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using the methods of femtosecond laser surgery is demonstrated. (extreme light fields and their applications)

  13. High-speed visualization and radiated pressure measurement of a laser-induced gas bubble in glycerin-water solutions

    Science.gov (United States)

    Nakajima, Takehiro; Kondo, Tomoki; Ando, Keita

    2016-11-01

    We study the dynamics of a spherical gaseous bubble created by focusing a nanosecond laser pulse at 532 nm into a large volume of glycerin-water solutions. Free oscillation of the bubble and shock wave emission from the bubble dynamics are recorded by a high-speed camera together with a pulse laser stroboscope; concurrently, pressure radiated from the oscillating bubble is measured by a hydrophone. The bubble achieves a mechanical equilibrium after free oscillation is damped out; the equilibrium state stays for a while, unlike vapor bubbles. We speculate that the bubble content is mainly gases originally dissolved in the liquid (i.e., air). The bubble dynamics we observed are compared to Rayleigh-Plesset-type calculations that account for diffusive effects; the (unknown) initial pressure just after laser focusing is tuned to obtain agreement between the experiment and the calculation. Moreover, viscous effects on the shock propagation are examined with the aid of compressible Navier-Stokes simulation.

  14. Theoretical investigation of the ultra-intense laser interaction with plasma mirrors in radiation pressure dominant regime

    Science.gov (United States)

    Sonia, Krishna Kumar; Maheshwari, K. P.; Jaiman, N. K.

    2017-05-01

    At laser intensity in the range ~ 1022 -1023W/cm2, the radiation pressure starts to play a key role in the interaction of an intense electromagnetic wave with a dense plasma foil. Depending upon the incident laser intensity, polarization of the incident beam and also on the density of the thin plasma layer the mirror motion may be assumed to be uniform, accelerated, or oscillatory. A solid dense plasma slab, accelerated in the radiation pressure dominant (RPD) regime, can efficiently reflect a counter-propagating relativistically strong source pulse consisting of up-shifted frequency and high harmonics. In this RPD regime we present our numerical results for the frequency and brightness of the reflected radiation from a uniformly moving plasma mirror. Our numerical results show that for the appropriate laser and plasma parameters in the case 2γ {({n}e{λ }s3)}1/6 for the same parameters and ad = 300, λd = 0.8 μm, the brightness is found to be 3.27 × 1034 photons / (mm2 - mrad2 - sec. - 0.1% bandwidth) in the energy range ~100 keV.

  15. The effect of positively chirped laser pulse on energy enhancement of proton acceleration in combinational radiation pressure and bubble regime

    Science.gov (United States)

    Vosoughian, H.; Sarri, G.; Borghesi, M.; Hajiesmaeilbaigi, F.; Afarideh, H.

    2017-10-01

    Proton energy enhancement in a combinational radiation pressure and bubble regime by applying a positively chirped laser pulse has been studied using a series of two-dimensional particle-in-cell simulations. In this regime, the proton injection in the half-first period of an excited plasma wave in an under-dense plasma plays the main role in the acceleration process. Moreover, exciting as high as large-amplitude plasma waves can significantly increase the conversion efficiency of laser energy into kinetic energy of the trapped protons. Here, the utilization of the positively chirped laser pulse is proposed as an effective approach to excite the higher amplitude wake in the combinational regime. Our studies indicate that in the positively chirped combinational regime, the plasma wake with approximately two-fold enhancement is produced that results in the generation of the proton bunch with the narrower energy spread and also the peak enhancement by a factor of two, compared with the un-chirped one. This improvement in proton energy reveals that the chirped laser pulse can be introduced as a tool to tune the energy of generated protons in the combinational radiation pressure and bubble regime.

  16. Development of oral mucositis model induced by radiation in hamsters: prevention and treatment with low power laser

    Energy Technology Data Exchange (ETDEWEB)

    Galletta, Vivian C.; Folgosi-Correa, Melissa S.; Zezell, Denise M., E-mail: vivian.galletta@gmail.com, E-mail: melfolgosi@gmail.com, E-mail: zezell@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Gouw-Soares, Sheila, E-mail: sheilagouw@hotmail.com [Universidade Cruzeiro do Sul (UNICSUL), Sao Paulo, SP (Brazil). Fac. de Odontologia; Correa, Luciana, E-mail: lcorrea@usp.br [Universidade de Sao Paulo (FO/USP), SP (Brazil). Fac. de Odontologia

    2013-07-01

    Despite the benefits for the prognosis of patients treated with radiotherapy for oral cancer treatment, it might cause local side effects such as oral mucositis. The oral mucositis is a pathological condition that may appear in affected oral mucosa by ionizing radiation, and the pain related can alter and even stop the antineoplastic treatment, decreasing tumor control rates. Oral mucositis has several treatment modalities, although it remains as a problem since therapies available are not enough to treat efficiently this inflammatory process. Many pharmacological solutions (anti-inflammatory, antibiotics, antiseptic, lubricant agents) are used to alleviate oral mucositis symptoms. Laser treatment has been used as an option, but there is lack of studies to verify the process of laser therapy in oral mucositis caused by ionizing radiation. This work accomplishes follow-up of oral mucositis evolution, comparing laser and benzydamine therapies in an animal model. Forty-two animals were irradiated at head and neck in a single dose of 30 Grays, by means of a Co{sup 60} source. After irradiation, treatments were applied daily, once a day, for 20 days, in which severity of lesions were clinically classified by two calibrated examiners. Histological evaluation was performed to search for mucosal alterations at treated tissues. Statistical analysis of data showed that laser treatment was more efficient than benzydamine treatment, diminishing severity and duration of oral mucosal lesions caused by ionizing irradiation. (author)

  17. UV laser radiation alters the embryonic protein profile of adrenal-kidney-gonadal complex and gonadal differentiation in the lizard, Calotes Versicolor.

    Science.gov (United States)

    Khodnapur, Bharati S; Inamdar, Laxmi S; Nindi, Robertraj S; Math, Shivkumar A; Mulimani, B G; Inamdar, Sanjeev R

    2015-02-01

    To examine the impact of ultraviolet (UV) laser radiation on the embryos of Calotes versicolor in terms of its effects on the protein profile of the adrenal-kidney-gonadal complex (AKG), sex determination and differentiation, embryonic development and hatching synchrony. The eggs of C. versicolor, during thermo-sensitive period (TSP), were exposed to third harmonic laser pulses at 355 nm from a Q-switched Nd:YAG laser for 180 sec. Subsequent to the exposure they were incubated at the male-producing temperature (MPT) of 25.5 ± 0.5°C. The AKG of hatchlings was subjected to protein analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and to histology. The UV laser radiation altered the expression of the protein banding pattern in the AKG complex of hatchlings and it also affected the gonadal sex differentiation. SDS-PAGE of AKG of one-day-old hatchlings revealed a total of nine protein bands in the control group whereas UV laser irradiated hatchlings expressed a total of seven protein bands only one of which had the same Rf as a control band. The UV laser treated hatchlings have an ovotestes kind of gonad exhibiting a tendency towards femaleness instead of the typical testes. It is inferred that 355 nm UV laser radiation during TSP induces changes in the expression of proteins as well as their secretions. UV laser radiation had an impact on the gonadal differentiation pathway but no morphological anomalies were noticed.

  18. Characteristics of the evolution of a plasma generated by radiation from CW and repetitively pulsed CO2 lasers in different gases

    Science.gov (United States)

    Kanevskii, M. F.; Stepanova, M. A.

    1990-06-01

    The interaction between high-power CW and repetitively pulsed CO2 laser radiation and a low-threshold optical-breakdown plasma near a metal surface is investigated. The characteristics of the breakdown plasma are examined as functions of the experimental conditions. A qualitative analysis of the results obtained was performed using a simple one-dimensional model for laser combustion waves.

  19. Formation of periodic mesoscale structures arranged in a circular symmetry at the silicon surface exposed to radiation of a single femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Romashevskiy, S.A., E-mail: sa.romashevskiy@gmail.com [Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya st. 13, Bd. 2, Moscow 125412 (Russian Federation); Ashitkov, S.I.; Ovchinnikov, A.V. [Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya st. 13, Bd. 2, Moscow 125412 (Russian Federation); Kondratenko, P.S. [Nuclear Safety Institute of the Russian Academy of Sciences, Bol' shaya Tul' skaya st. 53, Moscow 115191 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700 (Russian Federation); Agranat, M.B. [Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya st. 13, Bd. 2, Moscow 125412 (Russian Federation)

    2016-06-30

    Graphical abstract: - Highlights: • Single pulse irradiation of silicon gave rise to the periodic mesoscale structures. • The number of the periodic structures depends on the incident laser fluence. • The theory of periodically modulated absorption of laser energy is proposed. - Abstract: The periodic mesoscale structures arranged in a circular symmetry were found at the silicon surface exposed to radiation of the single femtosecond laser pulse with a Gaussian intensity profile in the ambient air conditions. These peculiar structures have the appearance of the protrusions of ∼10 nm height and of ∼600 nm width (at a FWHM) separately located inside the ablated region with a period of the incident laser wavelength. It was found that their position at the surface corresponds to the specified laser intensity slightly above the ablation threshold. The number of the formed periodic structures varies with the fluence of the incident laser pulse and in our experiments it was found to have changed from one to eleven. We suppose that formation of these mesoscale structures is caused by heating of a microscale volume to the strongly defined temperature. The theoretical model was proposed to explain the obtained data. It assumes that the interference of incident laser radiation with laser-induced surface electromagnetic waves results in generation of periodic distribution of electron temperature. Thus formation of the periodic structures at the specified laser intensity is attributed to periodically modulated absorption of laser energy at a focal laser spot.

  20. In-situ microscopy of front and rear side ablation processes in alkali aluminosilicate glass using ultra short pulsed laser radiation

    OpenAIRE

    Großmann, D.; Reininghaus, M.; Kalupka, C.; Jenne, M.; Kumkar, M.

    2017-01-01

    The visualization of the nonlinear absorption, the subsequent relaxation of excited states and the formation of defects enables the investigation of fundamental laser-material-interaction as well as the identification of process windows for micromachining of transparent materials with ultra short pulsed laser radiation. In this work, time resolved pump probe microscopy is applied to analyze the laser-material-interaction and to reduce damage inside the material during front- and rear side abl...

  1. Proceedings of the Symposium of Medical (Ophthalmic) Surveillance of Personnel Potentially Exposed to Laser Radiation Held on 8-9 September 1982.

    Science.gov (United States)

    1982-01-01

    somewhat difficult to maintain that damage to Bruch’s membrane from a laser would predispose the subject to the formation of disciform maculopathy ...because that is the way one treats disciform maculopathy . COL Whitmore: We are referring to reports in the literature of this pathology following laser ...Medical (Ophthalmic) Surveillance of Personnel Potentially Exposed to Laser Radiation, 8-9 September 1982 12 PERSONAL AUTHOR(S) r Pitf Dyrid H_

  2. Efficiency of applying low-intensity laser radiation in treating patients with granuloma annulare

    Science.gov (United States)

    Kochetkov, M. A.; Volnukhin, Vladimir A.; Kozlov, Valentine I.

    2001-04-01

    This article considers the application of low-intensity laser therapy in treating patients with granuloma annulare. The treatment was carried out by using two different laser therapeutic techniques, namely, the local laser irradiation of pathological foci and the laser transcutaneous irradiation of blood. It was found that both techniques produced a unidirectional effect, brought about a pronounced improvement of the clinical picture of the disease, and normalized microcirculation and microvascular reactivity of the affected skin.

  3. Effect of surface-breakdown plasma on metal drilling by pulsed CO2-laser radiation

    Science.gov (United States)

    Arutiunian, P. V.; Baranov, V. Iu.; Bobkov, I. V.; Bol'Shakov, L. A.; Dolgov, V. A.

    1988-03-01

    The effect of low-threshold surface breakdown produced by short (5-microsec) CO2-laser pulses on the metal drilling process is investigated. Data on the interaction of metals with laser pulses having the same duration but different shape are shown to be different. The effect of the ambient atmospheric pressure on the laser drilling process is investigated.

  4. High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma

    Science.gov (United States)

    Singh, Ram Kishor; Singh, Monika; Rajouria, Satish Kumar; Sharma, R. P.

    2017-10-01

    An analytical expression has been derived for terahertz (THz) emission by optical rectification of a laser pulse having a Gaussian as well as hyperbolic-secant shape in axially magnetised ripple density plasma. The interaction between short laser pulses of sub picoseconds duration and plasma leads to the radiation of a wave having frequency in THz regime. The non-uniform intensity profile, say supper-Gaussian, of laser beam exerts a quasi-static ponderomotive force to the electron. The electron acquired a nonlinear transverse drift velocity component. Hence, a strong transient current density having a frequency component in the THz regime produces due to coupling of this velocity component with ripple density plasma and derives a strong THz wave. The generated THz field amplitude is directly proportional to the amplitude of the density ripple and field amplitude of the laser beam. In this generation mechanism, the ripple wave number plays a critical role. The THz field amplitude is maximized when cyclotron frequency approaches to the THz frequency and higher value of profile index. For typical laser plasma parameter, the emitted normalised amplitude of THz field is on the order of 10-2.

  5. Graphite and ablative material response to CO2 laser, carbon-arc, and xenon-arc radiation

    Science.gov (United States)

    Brewer, W. D.

    1976-01-01

    The behavior was investigated of graphite and several charring ablators in a variety of high-radiative heat-flux environments. A commercial-grade graphite and nine state-of-the-art charring ablators were subjected to various radiative environments produced by a CO2 laser and a carbon arc. Graphite was also tested in xenon-arc radiation. Heat-flux levels ranged from 10 to 47 MW/sq m. Tests were conducted in air, nitrogen, helium, and a CO2-N2 mixture which simulated the Venus atmosphere. The experimental results were compared with theoretical results obtained with a one-dimensional charring-ablator analysis and a two-dimensional subliming-ablator analysis. Neither the graphite nor the charring ablators showed significant differences in appearance or microstructure after testing in the different radiative environments. The performance of phenolic nylon and graphite was predicted satisfactorily with existing analyses and published material property data. Good agreement between experimental and analytical results was obtained by using sublimation parameters from a chemical nonequilibrium analysis of graphite sublimation. Some charring ablators performed reasonably well and could withstand radiative fluxes of the level encountered in certain planetary entries. Other materials showed excessive surface recession and/or large amounts of cracking and spalling, and appear to be unsuitable for severe radiative environments.

  6. Enhanced Radiation-tolerant Oxide Dispersion Strengthened Steel and its Microstructure Evolution under Helium-implantation and Heavy-ion Irradiation

    Science.gov (United States)

    Lu, Chenyang; Lu, Zheng; Wang, Xu; Xie, Rui; Li, Zhengyuan; Higgins, Michael; Liu, Chunming; Gao, Fei; Wang, Lumin

    2017-01-01

    The world eagerly needs cleanly-generated electricity in the future. Fusion reactor is one of the most ideal energy resources to defeat the environmental degradation caused by the consumption of traditional fossil energy. To meet the design requirements of fusion reactor, the development of the structural materials which can sustain the elevated temperature, high helium concentration and extreme radiation environments is the biggest challenge for the entire material society. Oxide dispersion strengthened steel is one of the most popular candidate materials for the first wall/blanket applications in fusion reactor. In this paper, we evaluate the radiation tolerance of a 9Cr ODS steel developed in China. Compared with Ferritic/Martensitic steel, this ODS steel demonstrated a significantly higher swelling resistance under ion irradiation at 460 °C to 188 displacements per atom. The role of oxides and grain boundaries on void swelling has been explored. The results indicated that the distribution of higher density and finer size of nano oxides will lead a better swelling resistance for ODS alloy. The original pyrochlore-structured Y2Ti2O7 particles dissolved gradually while fine Y-Ti-O nano clusters reprecipitated in the matrix during irradiation. The enhanced radiation tolerance is attributed to the reduced oxide size and the increased oxide density.

  7. Normal tissue tolerance to external beam radiation therapy: The vagina; Dose de tolerance a l'irradiation des tissus sains: le vagin Normal

    Energy Technology Data Exchange (ETDEWEB)

    Magne, N. [Unite de curietherapie, departement de radiotherapie, institut de cancerologie de la Loire, 42 - Saint-Priest-en-Jarez (France); Chargari, C. [Service d' oncologie radiotherapie, hopital d' instruction des armees du Val-de-Grace, 75 - Paris (France); Pointreau, Y. [Clinique d' oncologie radiotherapie, centre Henry-S.-Kaplan, hopital de Bretonneau, CHU de Tours, 37 - Tours (France); Haie-Meder, C. [Service de curietherapie, departement de radiotherapie, institut Gustave-Roussy, 94 - Villejuif (France)

    2010-07-15

    The vagina is a virtual cavity involved in sexual reproduction field. Due to its anatomical location, it may be exposed in whole or in part to ionizing radiation in external radiotherapy and/or brachytherapy of the pelvic region. This review aims to describe the vaginal acute and late side effects due to radiation, probably inadequately reported in the literature. Medline and PubMed literature searches were performed using the keywords -vaginal - radiotherapy - toxicity. The acute and late functional changes after external beam radiation consist mainly of drought. Their incidences are poorly described in the literature and the delivered doses even less. Recommendations are non-existent as the normal tissue complication probability (NTCP). Brachytherapy delivers high and heterogeneous doses, making it difficult to estimate the dose. The concomitant administration of chemotherapy appears to be a factor increasing the risk of toxicity. Modern techniques of conformal radiotherapy with modulated intensity appear to have little impact on this body. Only a maximum dose on each third of the vagina appears to be currently proposed to avoid the risk of side effects. (authors)

  8. Research on quasi-cw and pulse interaction of strong laser radiation with the military technical materials

    Science.gov (United States)

    Rycyk, Antoni; CzyŻ, Krzysztof; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Ostrowski, Roman; Strzelec, Marek; Jach, Karol; Świerczyński, Robert

    2016-12-01

    The paper describes work connected to the investigation of the interaction of strong laser radiation with selected metals, constituting typical materials applied in military technology, like aluminum, copper, brass and titanium. A special laser experimental stand was designed and constructed to achieve this objective. The system consisted of two Nd:YAG lasers working in the regime of free generation (quasi-cw) and another Nd:YAG laser, generating short pre-pulses in the Qswitching regime. During the concurrent operation of both quasi-cw systems it was possible to obtain pulse energies amounting to 10 J in a time period (pulses) of 1 ms. The synchronized, serial operation resulted in energy amounting to 5 J over a time period (pulse) of 2 ms. Variations of the target's surface reflection coefficient, caused by the interaction of short pre-pulses with high power density were determined. The experiments were performed using a standard Nd:YAG laser with amplifiers, generating output pulses whose duration amounted to 10 ns and energy to 1 J, with near Gaussian profile. Laser induced breakdown spectroscopy (LIBS) was used to analyze the emission spectra of targets under the conditions of the interaction of destructive strong and weak as well as long and short excitation laser pulses. A decay of the spectra in the UV range from 200 to around 350 nm was observed when irradiating the target with a long, quasi-cw destructive pulse. Moreover, in the case of an Al target, some AlO molecular spectra appeared, suggesting a chemical reaction of the aluminum atoms with oxygen.

  9. Directional radiative transfer by SCOPE, SLC and DART using laser scan derived structural forest parameters

    Science.gov (United States)

    Timmermans, Joris; Gastellu-Etchegorry, Jean Philippe; van der Tol, Christiaan; Verhoef, Wout; Vekerdy, Zoltan; Su, Zhongbo

    2017-04-01

    terrestrial laser scan of the Speulderbos in the Netherlands. The comparison between DART and SCOPE/SLC models showed a good match for the simple scenarios. Calculated rMSDs showed lower than 7.5% errors for crown coverage values lower than 0.87, with the Near-Hotspot viewing angles found to be the largest contributor to this deviation. For more complex scenarios (using Multiple Crowns), the comparison between SCOPE and DART showed mixed results. Good results were obtained for crown coverage values of 0.93, with rMSD (6.77% and 5.96%), lower than the defined threshold value, except near hotspot. For scenarios with crown coverages lower than 0.93 the rMSD were too large to validate the use of SCOPE model. When considering the Soil Leaf Canopy (SLC) model, an improved version of SAIL that considers the canopy clumping, better results were obtained for these complex scenarios, with good agreement for medium crown coverage values (0.93 and 0.87) with rMSD (6.33% and 5.99; 6.66% and 7.12%). This indicates that the radiative transfer model within SCOPE might be upgraded in the future.

  10. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  11. Geriatric Assessment as a Predictor of Tolerance, Quality of Life, and Outcomes in Older Patients With Head and Neck Cancers and Lung Cancers Receiving Radiation Therapy.

    Science.gov (United States)

    VanderWalde, Noam A; Deal, Allison M; Comitz, Elizabeth; Stravers, Lori; Muss, Hyman; Reeve, Bryce B; Basch, Ethan; Tepper, Joel; Chera, Bhishamjit

    2017-07-15

    To evaluate the association between functional status based on a geriatric assessment (GA) and outcomes of tolerance to treatment in patients with lung or head and neck cancer receiving radiation therapy (RT) or chemoradiation (CRT). A prospective cohort study was conducted in patients aged ≥65 years with head and neck cancer or lung cancer undergoing curative intent RT or CRT. Pretreatment GA, health-related quality of life (HRQoL), and patient-reported outcomes (PRO) were obtained. Questionnaires were repeated biweekly during RT and at 6 weeks after treatment. Dysfunction was defined as scores 3-day treatment delay, change in RT or CRT regimen, or death. Associations of dysfunction with tolerance to radiation therapy, HRQoL changes, and PRO ratings were evaluated. Of the 50 patients accrued, 46 had evaluable data. Mean age was 72.5 years (range, 65-92 years). At baseline, 37% had dysfunction. Poor tolerance to RT or CRT occurred in 39%. There was no association between dysfunction and tolerance. Patients with dysfunction had lower baseline HRQoL scores. From baseline to end of RT, those with baseline dysfunction had less of a decline in Role Functioning (P=.01) and Global Health Score (P=.04) domains. However, from end of RT to 6-week follow-up, those with dysfunction were more likely to continue to drop in the Physical, Role Functioning, and Social domains (all Ppatient population. Larger studies could further elucidate the GA's predictive value. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Photo-induced changes in optical parameters of silicate glasses multiphoton laser radiation absorption

    Science.gov (United States)

    Efimov, Oleg M.; Glebov, Leonid B.; Matveev, Yurii A.; Mekryukov, Andrei M.

    1995-07-01

    In this paper are the results of investigations of the mechanisms of photo-induced changes of alkali-silicate (crown) and lead-silicate (flint) glasses optical parameters upon the exposure to intense laser radiation, and the basic regularities of these processes are reported. These investigations were performed in Research Center 'S.I. Vavilov State Optical Institute' during the last 15 years. The kinetics of stable and unstable CC formation and decay, the effect of widely spread impurity ions on these processes, the characteristics of fundamental and impure luminescence, the kinetics of refractive index change under conditions of multi-photon glass matrix excitation, and other properties are considered. On the basis of analysis of received regularities it was shown that the nonlinear coloration of alkali-silicate glasses (the fundamental absorption edge is nearly 6 eV) takes place only as a result of two-photon absorption. Important efforts were aimed at the detection of three or more photon matrix ionization of these glasses, but they failed. However it was established that in the lead silicate glasses, the long-wave carriers mobility boundary is placed considerably higher than the fundamental absorption edge of material matrix. This results in that the linear color centers formation in the lead silicate glasses is not observed. The coloration of these glasses arises only from the two- or three-photon matrix ionization, and the excitation occurs through virtual states that are placed in the fundamental absorption region. In the report the available mechanisms of photo-induced changes of glasses optical parameters, and some applied aspects of this problem are discussed.

  13. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    Directory of Open Access Journals (Sweden)

    Youngchul Bae

    2016-05-01

    Full Text Available An optical sensor such as a laser range finder (LRF or laser displacement meter (LDM uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  14. Measuring the modulation-transfer function of radiation-tolerant machine-vision system using the sum of harmonic components of different frequency

    Science.gov (United States)

    Perezyabov, Oleg A.; Maltseva, Nadezhda K.; Ilinski, Aleksandr V.

    2017-05-01

    There are a number of robotic systems that are used for nuclear power plant maintenance and it is important to ensure the necessary safety level. The machine-vision systems are applied for this purpose. There are special requirements for the image quality of these systems. To estimate the resolution of a video-system one should determine the impact of the system on the special test pattern. In this paper we describe the procedure of determining the number of the modulation transfer function values of the radiation-tolerant machine-vision systems using the test pattern, containing the sum of the harmonic functions of different frequency.

  15. Change in the scattering spectrum of laser radiation in a plasma on transition from spontaneous to stimulated Mandelstam--Brillouin scattering

    Energy Technology Data Exchange (ETDEWEB)

    Burunov, E.A.; Malyshev, G.M.; Razdobarin, G.T.; Semyonov, V.V.; Folomkin, I.P.

    1975-01-01

    The spectrum of radiation scattered by ion-sound plasma oscillations is obtained under conditions when the power density of the laser radiation is close to the threshold value for Mandelstam--Brillouin stimulated scattering. An additional maximum arises in the longwave range of the scattering spectrum when the laser power exceeds the threshold value. The width of the additional maximum indicates that damping of the stimulated oscillations is weak. When the threshold power is exceeded by several times, the intensity of the scattered radiation exceeds that of scattering by thermal oscillations by 15 to 20 percent.

  16. Transmission of 1064 nm laser radiation during ablation with an ultra-short pulse laser (USPL) system

    Science.gov (United States)

    Schelle, Florian; Meister, Jörg; Oehme, Bernd; Frentzen, Matthias

    2012-01-01

    During ablation of oral hard tissue with an USPL system a small amount of the incident laser power does not contribute to the ablation process and is being transmitted. Partial transmission of ultra-short laser pulses could potentially affect the dental pulp. The aim of this study was to assess the transmission during ablation and to deduce possible risks for the patient. The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz and an average power of 9 W were chosen to achieve high ablation efficiency. A scanner system created square cavities with an edge length of 1 mm. Transmission during ablation of mammoth ivory and dentin slices with a thickness of 2 mm and 5 mm was measured with a power meter, placed directly beyond the samples. Effects on subjacent blood were observed by ablating specimens placed in contact to pork blood. In a separate measurement the temperature increase during ablation was monitored using an infrared camera. The influence of transmission was assessed by tuning down the laser to the corresponding power and then directly irradiating the blood. Transmission during ablation of 2 mm specimens was about 7.7% (ivory) and 9.6% (dentin) of the incident laser power. Ablation of specimens directly in contact to blood caused coagulation at longer irradiation times (t~18s). Direct irradiation of blood with the transmitted power provoked bubbling and smoke formation. Temperature measurements identified heat generation as the main reason for the observed coagulation.

  17. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus.

    Directory of Open Access Journals (Sweden)

    Jie Pan

    Full Text Available BACKGROUND: Globally, about 20% of cultivated land is now affected by salinity. Salt tolerance is a trait of importance to all crops in saline soils. Previous efforts to improve salt tolerance in crop plants have met with only limited success. Bacteria of the genus Deinococcus are known for their ability to survive highly stressful conditions, and therefore possess a unique pool of genes conferring extreme resistance. In Deinococcus radiodurans, the irrE gene encodes a global regulator responsible for extreme radioresistance. METHODOLOGY/PRINCIPAL FINDINGS: Using plate assays, we showed that IrrE protected E. coli cells against salt shock and other abiotic stresses such as oxidative, osmotic and thermal shocks. Comparative proteomic analysis revealed that IrrE functions as a switch to regulate different sets of proteins such as stress responsive proteins, protein kinases, glycerol-degrading enzymes, detoxification proteins, and growth-related proteins in E. coli. We also used quantitative RT-PCR to investigate expression of nine selected stress-responsive genes in transgenic and wild-type Brassica napus plants. Transgenic B. napus plants expressing the IrrE protein can tolerate 350 mM NaCl, a concentration that inhibits the growth of almost all crop plants. CONCLUSIONS: Expression of IrrE, a global regulator for extreme radiation resistance in D. radiodurans, confers significantly enhanced salt tolerance in both E. coli and B. napus. We thus propose that the irrE gene might be used as a potentially promising transgene to improve abiotic stress tolerances in crop plants.

  18. A Radiation-Hydrodynamics Code Comparison for Laser-Produced Plasmas: FLASH versus HYDRA and the Results of Validation Experiments

    CERN Document Server

    Orban, Chris; Chawla, Sugreev; Wilks, Scott C; Lamb, Donald Q

    2013-01-01

    The potential for laser-produced plasmas to yield fundamental insights into high energy density physics (HEDP) and deliver other useful applications can sometimes be frustrated by uncertainties in modeling the properties and expansion of these plasmas using radiation-hydrodynamics codes. In an effort to overcome this and to corroborate the accuracy of the HEDP capabilities recently added to the publicly available FLASH radiation-hydrodynamics code, we present detailed comparisons of FLASH results to new and previously published results from the HYDRA code used extensively at Lawrence Livermore National Laboratory. We focus on two very different problems of interest: (1) an Aluminum slab irradiated by 15.3 and 76.7 mJ of "pre-pulse" laser energy and (2) a mm-long triangular groove cut in an Aluminum target irradiated by a rectangular laser beam. Because this latter problem bears a resemblance to astrophysical jets, Grava et al., Phys. Rev. E, 78, (2008) performed this experiment and compared detailed x-ray int...

  19. Normal tissue tolerance to external beam radiation therapy: Small bowel; Dose de tolerance a l'irradiation des tissus sains: intestin grele

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E. [Departement de radiotherapie, centre Georges-Francois-Leclerc, 21 - Dijon (France); Pointreau, Y.; Barillot, I. [Service de radiotherapie, centre regional universitaire de cancerologie Henry-S.-Kaplan, hopital Bretonneau, CHRU de Tours, 37 - Tours (France); Roche-Forestier, S. [Centre Jean-Bernard, 72 - Le Mans (France); Barillot, I. [Universite Francois-Rabelais, centre de cancerologie Henry-S.-Kaplan, CHU de Tours, 37 - Tours (France)

    2010-07-15

    The small bowel is a hollow organ involved in the transit and absorption of food. In relation to its anatomical location, a significant amount of this organ is exposed in whole or in part to ionizing radiation in external radiotherapy during abdominal or pelvic irradiation either for primary cancers or metastasis. The acute functional changes during external beam radiation are mainly leading to diarrhea, abdominal pain and bloating. The main late side effects of irradiation of the small intestine are chronic diarrhea, malabsorption with steatorrhoea, abdominal spasms, intestinal obstruction, bleeding and fistulas. The architecture of the small intestine may be considered as parallel with a significant correlation between the irradiated volume of small bowel and the likelihood of acute toxicity, whatever the dose. The literature analysis recommends to consider the volume of small bowel receiving 15 Gy (threshold of 100 to 200 cm{sup 3}) but also 30 and 50 Gy (thresholds of 35 to 300 cm{sup 3}, depending on the level of dose considered). Modern techniques of conformal radiotherapy with modulated intensity will probably have beneficial impact on small bowel toxicity. (authors)

  20. Normal tissue tolerance to external beam radiation therapy: Spinal cord; Tolerance a l'irradiation des tissus sains: moelle epiniere

    Energy Technology Data Exchange (ETDEWEB)

    Habrand, J.L. [Departement de radiotherapie, institut Gustave-Roussy, 94 - Villejuif (France); Centre de protontherapie, institut Curie, 91 - Orsay (France); Drouet, F. [Departement de radiotherapie, centre Rene-Gauducheau, 44 - Nantes (France)

    2010-07-15

    Radiation myelopathy is one of the most dreadful complications of radiation therapy. Despite multiple animal experiments and human autopsic series, its pathogenesis remains largely unknown. In most instances, the classical aspect of myelomalacia combines glial and vascular injuries in various sequences. Recent studies point out the role of oligo-dendrocytes and their precursors, as well as of intercellular mediators (cytokines and stress molecules). The clinical presentation comprises a spectrum of non specific neurological symptoms whose evolution is sometimes regressive but more commonly progressive and life-threatening. Usually, it occurs following a latent period of six months to two years after irradiation of the cervical, thoracic or upper lumbar spine to a dose in excess of 50 Gy, conventionally fractionated. Nonetheless, these typical features can be altered by extrinsic factors, such as hypo fractionation/acceleration of the dose, multiple surgical procedures, chemotherapy especially mega therapy, or neurotoxic drugs. Conversely, hyperfractionated regimens that take into account protracted half-time repair of sublethal damages to the CNS, as well as sophisticated estimates of the dose to the cord and QA programs during the treatment course minimize such risks. (authors)