WorldWideScience

Sample records for radiation therapy techniques

  1. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  2. Radiation Therapy

    Science.gov (United States)

    ... the area is stitched shut. Another treatment, called proton-beam radiation therapy , focuses the radiation on the ... after radiation treatment ends. Sore mouth and tooth decay. If you received radiation therapy to the head ...

  3. Radiation Therapy

    Science.gov (United States)

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  4. Comparison of a new noncoplanar intensity-modulated radiation therapy technique for craniospinal irradiation with 3 coplanar techniques

    DEFF Research Database (Denmark)

    Hansen, Anders T; Lukacova, Slavka; Lassen-Ramshad, Yasmin A.;

    2015-01-01

    patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanar volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique......When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar...... technique, for delivering irradiation to the cranial part and compare it with 3 other techniques and previously published results. A total of 13 patients who had previously received craniospinal irradiation with standard conformal x-ray technique were reviewed. New treatment plans were generated for each...

  5. Radiation Therapy: Professions in Radiation Therapy

    Science.gov (United States)

    ... Resources Professions Site Index A-Z Professions in Radiation Therapy Radiation Oncologist Therapeutic Medical Physicist Radiation Therapist Dosimetrist Radiation Oncology Nurse Social Worker Dietitian Radiation Oncologist Radiation oncologists are physicians who oversee the ...

  6. The evaluation of properties for radiation therapy techniques with flattening filter-free beam and usefulness of time and economy to a patient with the radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Jang Hyeon; Won, Hui Su; Hong, Joo Wan; Chang, Nam Jun; Park, Jin Hong [Dept. of Radiation Oncology, Seoul national university Bundang hospital, Sungnam (Korea, Republic of)

    2014-12-15

    The aim of this study was to appraise properties for radiation therapy techniques and effectiveness of time and economy to a patient in the case of applying flattening filter-free (3F) and flattening filter (2F) beam to the radiation therapy. Alderson rando phantom was scanned for computed tomography image. Treatment plans for intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) and stereotactic body radiation therapy (SBRT) with 3F and 2F beam were designed for prostate cancer. To evaluate the differences between the 3F and 2F beam, total monitor units (MUs), beam on time (BOT) and gantry rotation time (GRT) were used and measured with TrueBeam{sup TM} STx and Surveillance And Measurement (SAM) 940 detector was used for photoneutron emitted by using 3F and 2F. To assess temporal and economical aspect for a patient, total treatment periods and medical fees were estimated. In using 3F beam, total MUs in IMRT plan increased the highest up to 34.0% and in the test of BOT, GRT and photoneutron, the values in SBRT plan decreased the lowest 39.8, 38.6 and 48.1%, respectively. In the temporal and economical aspect, there were no differences between 3F and 2F beam in all of plans and the results showed that 10 days and 169,560 won was lowest in SBRT plan. According as the results, total MUs increased by using 3F beam than 2F beam but BOT, GRT and photoneutron decreased. From above the results, using 3F beam can decrease intra-fraction setup error and risk of radiation-induced secondary malignancy. But, using 3F beam did not make the benefits of temporal and economical aspect for a patient with the radiation therapy.

  7. COMPARISON OF THE PERIPHERAL DOSES FROM DIFFERENT IMRT TECHNIQUES FOR PEDIATRIC HEAD AND NECK RADIATION THERAPY.

    Science.gov (United States)

    Toyota, Masahiko; Saigo, Yasumasa; Higuchi, Kenta; Fujimura, Takuya; Koriyama, Chihaya; Yoshiura, Takashi; Akiba, Suminori

    2017-02-25

    Intensity-modulated radiation therapy (IMRT) can deliver high and homogeneous doses to the target area while limiting doses to organs at risk. We used a pediatric phantom to simulate the treatment of a head and neck tumor in a child. The peripheral doses were examined for three different IMRT techniques [dynamic multileaf collimator (DMLC), segmental multileaf collimator (SMLC) and volumetric modulated arc therapy (VMAT)]. Peripheral doses were evaluated taking thyroid, breast, ovary and testis as the points of interest. Doses were determined using a radio-photoluminescence glass dosemeter, and the COMPASS system was used for three-dimensional dose evaluation. VMAT achieved the lowest peripheral doses because it had the highest monitor unit efficiency. However, doses in the vicinity of the irradiated field, i.e. the thyroid, could be relatively high, depending on the VMAT collimator angle. DMLC and SMLC had a large area of relatively high peripheral doses in the breast region.

  8. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine, Geneva 4 (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); El Naqa, Issam [Washington University School of Medicine, Department of Radiation Oncology, St. Louis, MO (United States)

    2010-11-15

    Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addressed. (orig.)

  9. Optimization of Radiation Therapy Techniques for Prostate Cancer With Prostate-Rectum Spacers: A Systematic Review

    Energy Technology Data Exchange (ETDEWEB)

    Mok, Gary [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Department of Radiation Oncology, Centre Intégré de Cancérologie de Laval, Centre de Santé et de Services Sociaux de Laval, Laval, Québec (Canada); Department of Radiology, Radiation Oncology, and Nuclear Medicine, Centre Hospitalier Universitaire de Montréal, Montréal, Québec (Canada); Benz, Eileen [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Vallee, Jean-Paul [Department of Radiology, Geneva University Hospital, Geneva (Switzerland); Miralbell, Raymond [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Zilli, Thomas, E-mail: Thomas.Zilli@hcuge.ch [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland)

    2014-10-01

    Dose-escalated radiation therapy for localized prostate cancer improves disease control but is also associated with worse rectal toxicity. A spacer placed between the prostate and rectum can be used to displace the anterior rectal wall outside of the high-dose radiation regions and potentially minimize radiation-induced rectal toxicity. This systematic review focuses on the published data regarding the different types of commercially available prostate-rectum spacers. Dosimetric results and preliminary clinical data using prostate-rectum spacers in patients with localized prostate cancer treated by curative radiation therapy are compared and discussed.

  10. Comparison of different breast planning techniques and algorithms for radiation therapy treatment.

    Science.gov (United States)

    Borges, C; Cunha, G; Monteiro-Grillo, I; Vaz, P; Teixeira, N

    2014-03-01

    This work aims at investigating the impact of treating breast cancer using different radiation therapy (RT) techniques--forwardly-planned intensity-modulated, f-IMRT, inversely-planned IMRT and dynamic conformal arc (DCART) RT--and their effects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB treatment planning system were compared: Pencil Beam Convolution (PBC) and commercial Monte Carlo (iMC). Seven left-sided breast patients submitted to breast-conserving surgery were enrolled in the study. For each patient, four RT techniques--f-IMRT, IMRT using 2-fields and 5-fields (IMRT2 and IMRT5, respectively) and DCART - were applied. The dose distributions in the planned target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose-volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all techniques provided adequate coverage of the PTV. However, statistically significant dose differences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung and heart than tangential techniques. However, IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Differences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the iMC algorithm predicted.

  11. Adaptive radiation therapy for bladder cancer: a review of adaptive techniques used in clinical practice.

    Science.gov (United States)

    Kibrom, Awet Z; Knight, Kellie A

    2015-12-01

    Significant changes in the shape, size and position of the bladder during radiotherapy (RT) treatment for bladder cancer have been correlated with high local failure rates; typically due to geographical misses. To account for this, large margins are added around the target volumes in conventional RT; however, this increases the volume of healthy tissue irradiation. The availability of cone beam computed tomography (CBCT) has not only allowed in-room volumetric imaging of the bladder, but also the development of adaptive radiotherapy (ART) for modification of plans to patient-specific changes. The aim of this review is to: (1) identify and explain the different ART techniques being used in clinical practice and (2) compare and contrast these different ART techniques to conventional RT in terms of target coverage and dose to healthy tissue: A literature search was conducted using EMBASE, MEDLINE and Scopus with the key words 'bladder, adaptive, radiotherapy/radiation therapy'. 11 studies were obtained that compared different adaptive RT techniques to conventional RT in terms of target volume coverage and healthy tissue sparing. All studies showed superior target volume coverage and/or healthy tissue sparing in adaptive RT compared to conventional RT. Cross-study comparison between different adaptive techniques could not be made due to the difference in protocols used in different studies. However, one study found daily re-optimisation of plans to be superior to plan of the day technique. The use of adaptive RT for bladder cancer is promising. Further study is required to assess adaptive RT versus conventional RT in terms of local control and long-term toxicity.

  12. Repeat Whole Brain Radiation Therapy with a Simultaneous Infield Boost: A Novel Technique for Reirradiation

    Directory of Open Access Journals (Sweden)

    William A. Hall

    2014-01-01

    Full Text Available The treatment of patients who experience intracranial progression after whole brain radiation therapy (WBRT is a clinical challenge. Novel radiation therapy delivery technologies are being applied with the objective of improving tumor and symptom control in these patients. The purpose of this study is to describe the clinical outcomes of the application of a novel technology to deliver repeat WBRT with volume modulated arc therapy (VMAT and a simultaneous infield boost (WB-SIB to gross disease. A total of 16 patients were initially treated with WBRT between 2000 and 2008 and then experienced intracranial progression, were treated using repeat WB-SIB, and were analyzed. The median dose for the first course of WBRT was 35 Gy (range: 30–50.4 Gy. Median time between the initial course of WBRT and repeat WB-SIB was 11.3 months. The median dose at reirradiation was 20 Gy to the whole brain with a median boost dose of 30 Gy to gross disease. A total of 2 patients demonstrated radiographic disease progression after treatment. The median overall survival (OS time from initial diagnosis of brain metastases was 18.9 months (range: 7.1–66.6 (95% CI: 0.8–36.9. The median OS time after initiation of reirradiation for all patients was 2.7 months (range: 0.46–14.46 (95% CI: 1.3–8.7. Only 3 patients experienced CTCAE grade 3 fatigue. No other patients experienced any ≥ CTCAE grade 3 toxicity. This analysis reports the result of a novel RT delivery technique for the treatment of patients with recurrent brain metastases. Side effects were manageable and comparable to other conventional repeat WBRT series. Repeat WB-SIB using the VMAT RT delivery technology is feasible and appears to have acceptable short-term acute toxicity. These results may provide a foundation for further exploration of the WB-SIB technique for repeat WBRT in future prospective clinical trials.

  13. Risk of Second Cancers According to Radiation Therapy Technique and Modality in Prostate Cancer Survivors

    Energy Technology Data Exchange (ETDEWEB)

    Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Wong, Jeannette; Kleinerman, Ruth; Kim, Clara; Morton, Lindsay [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Bekelman, Justin E. [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2015-02-01

    Purpose: Radiation therapy (RT) techniques for prostate cancer are evolving rapidly, but the impact of these changes on risk of second cancers, which are an uncommon but serious consequence of RT, are uncertain. We conducted a comprehensive assessment of risks of second cancer according to RT technique (>10 MV vs ≤10 MV and 3-dimensional [3D] vs 2D RT) and modality (external beam RT, brachytherapy, and combined modes) in a large cohort of prostate cancer patients. Methods and Materials: The cohort was constructed using the Surveillance Epidemiology and End Results-Medicare database. We included cases of prostate cancer diagnosed in patients 66 to 84 years of age from 1992 to 2004 and followed through 2009. We used Poisson regression analysis to compare rates of second cancer across RT groups with adjustment for age, follow-up, chemotherapy, hormone therapy, and comorbidities. Analyses of second solid cancers were based on the number of 5-year survivors (n=38,733), and analyses of leukemia were based on number of 2-year survivors (n=52,515) to account for the minimum latency period for radiation-related cancer. Results: During an average of 4.4 years' follow-up among 5-year prostate cancer survivors (2DRT = 5.5 years; 3DRT = 3.9 years; and brachytherapy = 2.7 years), 2933 second solid cancers were diagnosed. There were no significant differences in second solid cancer rates overall between 3DRT and 2DRT patients (relative risk [RR] = 1.00, 95% confidence interval [CI]: 0.91-1.09), but second rectal cancer rates were significantly lower after 3DRT (RR = 0.59, 95% CI: 0.40-0.88). Rates of second solid cancers for higher- and lower-energy RT were similar overall (RR = 0.97, 95% CI: 0.89-1.06), as were rates for site-specific cancers. There were significant reductions in colon cancer and leukemia rates in the first decade after brachytherapy compared to those after external beam RT. Conclusions: Advanced treatment planning may have reduced rectal

  14. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bar Ad, Voichita, E-mail: voichita.bar-ad@jeffersonhospital.org [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Lin, Haibo [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Hwang, Wei-Ting [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Deville, Curtiland [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Dutta, Pinaki R. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Tochner, Zelig; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  15. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer.

    Science.gov (United States)

    Bar Ad, Voichita; Lin, Haibo; Hwang, Wei-Ting; Deville, Curtiland; Dutta, Pinaki R; Tochner, Zelig; Both, Stefan

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  16. Intensity modulated radiation therapy for squamous cell carcinoma of the vulva: Treatment technique and outcomes

    Directory of Open Access Journals (Sweden)

    Yuan James Rao, MD

    2017-04-01

    Conclusions: IMRT for vulvar cancer is associated with high rates of LRC in the postoperative setting and limited radiation-related toxicity. Durable LRC of disease after definitive IMRT remains challenging, and several refinements to our treatment technique are suggested.

  17. HybridArc: A novel radiation therapy technique combining optimized dynamic arcs and intensity modulation

    Energy Technology Data Exchange (ETDEWEB)

    Robar, James L., E-mail: james.robar@cdha.nshealth.ca [Department of Radiation Oncology, Dalhousie University, Halifax (Canada); Department of Physics and Atmospheric Science, Dalhousie University, Halifax (Canada); Thomas, Christopher [Department of Radiation Oncology, Dalhousie University, Halifax (Canada)

    2012-01-01

    This investigation focuses on possible dosimetric and efficiency advantages of HybridArc-a novel treatment planning approach combining optimized dynamic arcs with intensity-modulated radiation therapy (IMRT) beams. Application of this technique to two disparate sites, complex cranial tumors, and prostate was examined. HybridArc plans were compared with either dynamic conformal arc (DCA) or IMRT plans to determine whether HybridArc offers a synergy through combination of these 2 techniques. Plans were compared with regard to target volume dose conformity, target volume dose homogeneity, sparing of proximal organs at risk, normal tissue sparing, and monitor unit (MU) efficiency. For cranial cases, HybridArc produced significantly improved dose conformity compared with both DCA and IMRT but did not improve sparing of the brainstem or optic chiasm. For prostate cases, conformity was improved compared with DCA but not IMRT. Compared with IMRT, the dose homogeneity in the planning target volume was improved, and the maximum doses received by the bladder and rectum were reduced. Both arc-based techniques distribute peripheral dose over larger volumes of normal tissue compared with IMRT, whereas HybridArc involved slightly greater volumes of normal tissues compared with DCA. Compared with IMRT, cranial cases required 38% more MUs, whereas for prostate cases, MUs were reduced by 7%. For cranial cases, HybridArc improves dose conformity to the target. For prostate cases, dose conformity and homogeneity are improved compared with DCA and IMRT, respectively. Compared with IMRT, whether required MUs increase or decrease with HybridArc was site-dependent.

  18. Impact of Evolving Radiation Therapy Techniques on Implant-Based Breast Reconstruction.

    Science.gov (United States)

    Muresan, Horatiu; Lam, Gretl; Cooper, Benjamin T; Perez, Carmen A; Hazen, Alexes; Levine, Jamie P; Saadeh, Pierre B; Choi, Mihye; Karp, Nolan S; Ceradini, Daniel J

    2017-06-01

    Patients undergoing implant-based reconstruction in the setting of postmastectomy radiation therapy suffer from increased complications and inferior outcomes compared with those not irradiated, but advances in radiation delivery have allowed for more nuanced therapy. The authors investigated whether these advances impact patient outcomes in implant-based breast reconstruction. Retrospective chart review identified all implant-based reconstructions performed at a single institution from November of 2010 to November of 2013. These data were cross-referenced with a registry of patients undergoing breast irradiation. Patient demographics, treatment characteristics, and outcomes were analyzed. Three hundred twenty-six patients (533 reconstructions) were not irradiated, whereas 83 patients (125 reconstructions) received radiation therapy; mean follow-up was 24.7 months versus 26.0 months (p = 0.49). Overall complication rates were higher in the irradiated group (35.2 percent versus 14.4 percent; p heart and lung dosing, to optimize reconstructive outcomes. Prone positioning significantly decreases the maximum skin dose and trends toward significance in reducing reconstructive complications. With continued study, this may become clinically important. Interdepartmental studies such as this one ensure quality of care. Therapeutic, III.

  19. Hendee's radiation therapy physics

    CERN Document Server

    Pawlicki, Todd; Starkschall, George

    2016-01-01

    The publication of this fourth edition, more than ten years on from the publication of Radiation Therapy Physics third edition, provides a comprehensive and valuable update to the educational offerings in this field. Led by a new team of highly esteemed authors, building on Dr Hendee’s tradition, Hendee’s Radiation Therapy Physics offers a succinctly written, fully modernised update. Radiation physics has undergone many changes in the past ten years: intensity-modulated radiation therapy (IMRT) has become a routine method of radiation treatment delivery, digital imaging has replaced film-screen imaging for localization and verification, image-guided radiation therapy (IGRT) is frequently used, in many centers proton therapy has become a viable mode of radiation therapy, new approaches have been introduced to radiation therapy quality assurance and safety that focus more on process analysis rather than specific performance testing, and the explosion in patient-and machine-related data has necessitated an ...

  20. Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study.

    Science.gov (United States)

    Court, Laurence E; Tishler, Roy B; Petit, Joshua; Cormack, Robert; Chin, Lee

    2006-05-21

    This work looks at the feasibility of an online adaptive radiation therapy concept that would detect the daily position and shape of the patient, and would then correct the daily treatment to account for any changes compared with planning position. In particular, it looks at the possibility of developing algorithms to correct for large complicated shape change. For co-planar beams, the dose in an axial plane is approximately associated with the positions of a single multi-leaf collimator (MLC) pair. We start with a primary plan, and automatically generate several secondary plans with gantry angles offset by regular increments. MLC sequences for each plan are calculated keeping monitor units (MUs) and number of segments constant for a given beam (fluences are different). Bulk registration (3D) of planning and daily CT images gives global shifts. Slice-by-slice (2D) registration gives local shifts and rotations about the longitudinal axis for each axial slice. The daily MLC sequence is then created for each axial slice/MLC leaf pair combination, by taking the MLC positions from the pre-calculated plan with the nearest rotation, and shifting using a beam's-eye-view calculation to account for local linear shifts. A planning study was carried out using two head and neck region MR images of a healthy volunteer which were contoured to simulate a base-of-tongue treatment: one with the head straight (used to simulate the planning image) and the other with the head tilted to the left (the daily image). Head and neck treatment was chosen to evaluate this technique because of its challenging nature, with varying internal and external contours, and multiple degrees of freedom. Shape change was significant: on a slice-by-slice basis, local rotations in the daily image varied from 2 to 31 degrees, and local shifts ranged from -0.2 to 0.5 cm and -0.4 to 0.0 cm in right-left and posterior-anterior directions, respectively. The adapted treatment gave reasonable target coverage (100

  1. Advances in treatment techniques: stereotactic body radiation therapy and the spread of hypofractionation.

    Science.gov (United States)

    Kavanagh, Brian D; Miften, Moyed; Rabinovitch, Rachel A

    2011-01-01

    Radiation therapy (RT) is an essential component of the management of many cancers. Traditionally, a course of external bream RT often involved daily treatments for a duration of 6 weeks or longer in some instances. Now, however, emerging clinical evidence indicates that, for some common cancers, the total length of treatment can be substantially shortened, offering convenience to patients and opportunities for resource utilization efficiencies. This trend toward so-called hypofractionated RT has been supported by hypothesis-driven clinical research guided by a combination of radiobiological and clinical insights and technological enhancements. The present review presents the rationale behind and current status of hypofractionation for prostate, breast, and medically inoperable early stage lung cancer.

  2. Radiation therapy -- skin care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000735.htm Radiation therapy - skin care To use the sharing features ... this page, please enable JavaScript. When you have radiation treatment for cancer, you may have some changes ...

  3. A framework for automated contour quality assurance in radiation therapy including adaptive techniques

    Science.gov (United States)

    Altman, M. B.; Kavanaugh, J. A.; Wooten, H. O.; Green, O. L.; DeWees, T. A.; Gay, H.; Thorstad, W. L.; Li, H.; Mutic, S.

    2015-07-01

    Contouring of targets and normal tissues is one of the largest sources of variability in radiation therapy treatment plans. Contours thus require a time intensive and error-prone quality assurance (QA) evaluation, limitations which also impair the facilitation of adaptive radiotherapy (ART). Here, an automated system for contour QA is developed using historical data (the ‘knowledge base’). A pilot study was performed with a knowledge base derived from 9 contours each from 29 head-and-neck treatment plans. Size, shape, relative position, and other clinically-relevant metrics and heuristically derived rules are determined. Metrics are extracted from input patient data and compared against rules determined from the knowledge base; a computer-learning component allows metrics to evolve with more input data, including patient specific data for ART. Nine additional plans containing 42 unique contouring errors were analyzed. 40/42 errors were detected as were 9 false positives. The results of this study imply knowledge-based contour QA could potentially enhance the safety and effectiveness of RT treatment plans as well as increase the efficiency of the treatment planning process, reducing labor and the cost of therapy for patients.

  4. A Population-Based Comparative Effectiveness Study of Radiation Therapy Techniques in Stage III Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jeremy P. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Murphy, James D. [Department of Radiation Medicine and Applied Science, University of California– San Diego, Moores Cancer Center, La Jolla, California (United States); Hanlon, Alexandra L. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania (United States); Le, Quynh-Thu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Diehn, Maximilian, E-mail: diehn@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California (United States)

    2014-03-15

    Purpose: Concerns have been raised about the potential for worse treatment outcomes because of dosimetric inaccuracies related to tumor motion and increased toxicity caused by the spread of low-dose radiation to normal tissues in patients with locally advanced non-small cell lung cancer (NSCLC) treated with intensity modulated radiation therapy (IMRT). We therefore performed a population-based comparative effectiveness analysis of IMRT, conventional 3-dimensional conformal radiation therapy (3D-CRT), and 2-dimensional radiation therapy (2D-RT) in stage III NSCLC. Methods and Materials: We used the Surveillance, Epidemiology, and End Results (SEER)-Medicare database to identify a cohort of patients diagnosed with stage III NSCLC from 2002 to 2009 treated with IMRT, 3D-CRT, or 2D-RT. Using Cox regression and propensity score matching, we compared survival and toxicities of these treatments. Results: The proportion of patients treated with IMRT increased from 2% in 2002 to 25% in 2009, and the use of 2D-RT decreased from 32% to 3%. In univariate analysis, IMRT was associated with improved overall survival (OS) (hazard ratio [HR] 0.90, P=.02) and cancer-specific survival (CSS) (HR 0.89, P=.02). After controlling for confounders, IMRT was associated with similar OS (HR 0.94, P=.23) and CSS (HR 0.94, P=.28) compared with 3D-CRT. Both techniques had superior OS compared with 2D-RT. IMRT was associated with similar toxicity risks on multivariate analysis compared with 3D-CRT. Propensity score matched model results were similar to those from adjusted models. Conclusions: In this population-based analysis, IMRT for stage III NSCLC was associated with similar OS and CSS and maintained similar toxicity risks compared with 3D-CRT.

  5. Stereotactic body radiation therapy (SBRT) for adrenal metastases. A feasibility study of advanced techniques with modulated photons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Navarria, Piera; Tozzi, Angelo; Castiglioni, Simona; Clerici, Elena; Reggiori, Giacomo; Lobefalo, Francesca [Istituto Clinico Humanitas, Rozzano-Milan (Italy). Dept. of Radiation Oncology; Fogliata, Antonella; Cozzi, Luca [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland). Medical Physics Unit; Scorsetti, Marta

    2011-04-15

    Purpose: To compare advanced treatment techniques with photons and protons as a stereotactic body radiation therapy (SBRT) for adrenal glands metastases. Materials and Methods: Planning computer tomographic (CT) scans of 10 patients were selected. A total dose of 45 Gy in 7.5 Gy fractions was prescribed. Organs at risk (OAR) were liver and kidneys. Dose-volume metrics were defined to quantify quality of plans assessing target coverage and sparing of organs at risk. Plans for RapidArc, intensity-modulated radiotherapy (IMRT), dynamic conformal arcs, 3D conformal static fields, and intensity modulated protons were compared. The main planning objective for the clinical target volume (CTV) was to cover 100% of the volume with 95% (V{sub 95%} = 100%) and to keep the maximum dose below 107% of the prescribed dose (V{sub 107%} = 0%). Planning objective for planning target volume (PTV) was V{sub 95%} > 80%. For kidneys, the general planning objective was V{sub 15Gy} < 35% and for liver V{sub 15Gy} < (liver volume-700 cm{sup 3}). Results: All techniques achieved the minimum and maximum dose objective for CTV and PTV, D{sub 5-95%} ranged from 1 Gy (protons) to 1.6 Gy (conformal static fields) on CTV. Maximal organ at risk sparing was achieved by protons. RapidArc presented the second lowest dose bath (V{sub 10Gy} and integral dose) after protons and the best conformality together with IMRT. Conclusions: Stereotactic body radiation therapy (SBRT) to adrenal glands metastases is achievable with several advanced techniques with either photons or protons. The intensity modulated approaches using either static fields, dynamic arcs or protons are superior to the other conformal solutions. For their simplicity, IMRT or RapidArc should be considered as the first option radiation treatment for those patients not eligible for proton treatment. (orig.)

  6. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer.

    Science.gov (United States)

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-04-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR's, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR's DVH's as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment.

  7. Radiation therapy physics

    CERN Document Server

    Hendee, William R; Hendee, Eric G

    2013-01-01

    The Third Edition of Radiation Therapy Physics addresses in concise fashion the fundamental diagnostic radiologic physics principles as well as their clinical implications. Along with coverage of the concepts and applications for the radiation treatment of cancer patients, the authors have included reviews of the most up-to-date instrumentation and critical historical links. The text includes coverage of imaging in therapy planning and surveillance, calibration protocols, and precision radiation therapy, as well as discussion of relevant regulation and compliance activities. It contains an upd

  8. Radiation techniques for acromegaly

    Directory of Open Access Journals (Sweden)

    Minniti Giuseppe

    2011-12-01

    Full Text Available Abstract Radiotherapy (RT remains an effective treatment in patients with acromegaly refractory to medical and/or surgical interventions, with durable tumor control and biochemical remission; however, there are still concerns about delayed biochemical effect and potential late toxicity of radiation treatment, especially high rates of hypopituitarism. Stereotactic radiotherapy has been developed as a more accurate technique of irradiation with more precise tumour localization and consequently a reduction in the volume of normal tissue, particularly the brain, irradiated to high radiation doses. Radiation can be delivered in a single fraction by stereotactic radiosurgery (SRS or as fractionated stereotactic radiotherapy (FSRT in which smaller doses are delivered over 5-6 weeks in 25-30 treatments. A review of the recent literature suggests that pituitary irradiation is an effective treatment for acromegaly. Stereotactic techniques for GH-secreting pituitary tumors are discussed with the aim to define the efficacy and potential adverse effects of each of these techniques.

  9. Radiation Therapy for Lung Cancer

    Science.gov (United States)

    ... of the lung cancer and your overall health. Radiation Therapy Radiation is a high-energy X-ray that can ... surgery, chemotherapy or both depending upon the circumstances. Radiation therapy works within cancer cells by damaging their ...

  10. Accelerated partial breast irradiation (APBI): are breath-hold and volumetric radiation therapy techniques useful?

    NARCIS (Netherlands)

    Essers, M.; Osman, S.O.; Hol, S.; Donkers, T.; Poortmans, P.M.P.

    2014-01-01

    BACKGROUND: In a selective group of patients accelerated partial breast irradiation (APBI) might be applied after conservative breast surgery to reduce the amount of irradiated healthy tissue. The role of volumetric modulated arc therapy (VMAT) and voluntary moderately deep inspiration breath-hold (

  11. Involved Node Radiation Therapy

    DEFF Research Database (Denmark)

    Maraldo, Maja V; Aznar, Marianne C; Vogelius, Ivan R

    2012-01-01

    PURPOSE: The involved node radiation therapy (INRT) strategy was introduced for patients with Hodgkin lymphoma (HL) to reduce the risk of late effects. With INRT, only the originally involved lymph nodes are irradiated. We present treatment outcome in a retrospective analysis using this strategy...... to 36 Gy). Patients attended regular follow-up visits until 5 years after therapy. RESULTS: The 4-year freedom from disease progression was 96.4% (95% confidence interval: 92.4%-100.4%), median follow-up of 50 months (range: 4-71 months). Three relapses occurred: 2 within the previous radiation field......, and 1 in a previously uninvolved region. The 4-year overall survival was 94% (95% confidence interval: 88.8%-99.1%), median follow-up of 58 months (range: 4-91 months). Early radiation therapy toxicity was limited to grade 1 (23.4%) and grade 2 (13.8%). During follow-up, 8 patients died, none from HL, 7...

  12. TU-F-CAMPUS-J-04: Evaluation of Metal Artifact Reduction Technique for the Radiation Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K; Kuo, H; Ritter, J; Shen, J; Basavatia, A; Yaparpalvi, R; Kalnicki, S [Montefiore Medical Center, Bronx, NY (United States); Tome, W [Montefiore Medical Center, ALBERT EINSTEIN COLLEGE OF MEDICINE, Bronx, NY (United States)

    2015-06-15

    Purpose: To evaluate the feasibility of using a metal artifact reduction technique in depleting metal artifact and its application in improving dose calculation in External Radiation Therapy Planning. Methods: CIRS electron density phantom was scanned with and without steel drill bits placed in some plug holes. Meta artifact reduction software with Metal Deletion Technique (MDT) was used to remove metal artifacts for scanned image with metal. Hounsfield units of electron density plugs from artifact free reference image and MDT processed images were compared. To test the dose calculation improvement after the MDT processed images, clinically approved head and neck plan with manual dental artifact correction was tested. Patient images were exported and processed with MDT and plan was recalculated with new MDT image without manual correction. Dose profiles near the metal artifacts were compared. Results: The MDT used in this study effectively reduced the metal artifact caused by beam hardening and scatter. The windmill around the metal drill was greatly improved with smooth rounded view. Difference of the mean HU in each density plug between reference and MDT images were less than 10 HU in most of the plugs. Dose difference between original plan and MDT images were minimal. Conclusion: Most metal artifact reduction methods were developed for diagnostic improvement purpose. Hence Hounsfield unit accuracy was not rigorously tested before. In our test, MDT effectively eliminated metal artifacts with good HU reproduciblity. However, it can introduce new mild artifacts so the MDT images should be checked with original images.

  13. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Newhauser, Wayne D., E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Zhang, Rui [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Jones, Timothy G. [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Department of Physics, Abilene Christian University, ACU Box 27963, Abilene, TX 79699 (United States); Giebeler, Annelise; Taddei, Phillip J. [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Stewart, Robert D. [Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195 (United States); Lee, Andrew [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Vassiliev, Oleg [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States)

    2015-04-24

    Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC) and the custom range compensators (RC) were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS) and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality.

  14. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Wayne D. Newhauser

    2015-04-01

    Full Text Available Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC and the custom range compensators (RC were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality.

  15. Radiation therapy physics

    CERN Document Server

    1995-01-01

    The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.

  16. Targeted Radiation Therapy for Cancer Initiative

    Science.gov (United States)

    2015-09-01

    and whether this difference changed the outcome for palliative patients, 6) use of the Calypso system, and other advanced radiation therapy equipment...use of advanced technology radiation therapy techniques, such as IMRT and VMAT, in treating palliative patients. The main obstacle to overcome in...treating low-to-intermediate risk prostate cancer with intensity modulated radiation therapy (IMRT) using an electromagnetic localization system. IMRT

  17. Dosimetric study for cervix carcinoma treatment using intensity modulated radiation therapy (IMRT) compensation based on 3D intracavitary brachytherapy technique.

    Science.gov (United States)

    Yin, Gang; Wang, Pei; Lang, Jinyi; Tian, Yin; Luo, Yangkun; Fan, Zixuan; Tam, Kin Yip

    2016-06-01

    Intensity modulated radiation therapy (IMRT) compensation based on 3D high-dose-rate (HDR) intracavitary brachytherapy (ICBT) boost technique (ICBT + IMRT) has been used in our hospital for advanced cervix carcinoma patients. The purpose of this study was to compare the dosimetric results of the four different boost techniques (the conventional 2D HDR intracavitary brachytherapy [CICBT], 3D optimized HDR intracavitary brachytherapy [OICBT], and IMRT-alone with the applicator in situ). For 30 patients with locally advanced cervical carcinoma, after the completion of external beam radiotherapy (EBRT) for whole pelvic irradiation 45 Gy/25 fractions, five fractions of ICBT + IMRT boost with 6 Gy/fractions for high risk clinical target volume (HRCTV), and 5 Gy/fractions for intermediate risk clinical target volume (IRCTV) were applied. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired using an in situ CT/MRI-compatible applicator. The gross tumor volume (GTV), the high/intermediate-risk clinical target volume (HRCTV/IRCTV), bladder, rectum, and sigmoid were contoured by CT scans. For ICBT + IMRT plan, values of D90, D100 of HRCTV, D90, D100, and V100 of IRCTV significantly increased (p < 0.05) in comparison to OICBT and CICBT. The D2cc values for bladder, rectum, and sigmoid were significantly lower than that of CICBT and IMRT alone. In all patients, the mean rectum V60 Gy values generated from ICBT + IMRT and OICBT techniques were very similar but for bladder and sigmoid, the V60 Gy values generated from ICBT + IMRT were higher than that of OICBT. For the ICBT + IMRT plan, the standard deviations (SD) of D90 and D2cc were found to be lower than other three treatment plans. The ICBT + IMRT technique not only provides good target coverage but also maintains low doses (D2cc) to the OAR. ICBT + IMRT is an optional technique to boost parametrial region or tumor of large size and irregular shape when intracavitary/interstitial brachytherapy

  18. Radiation Therapy: Additional Treatment Options

    Science.gov (United States)

    ... Cancer Upper GI Cancers Search x FIND A RADIATION ONCOLOGIST CLOSE SNIPEND TREATMENT TYPES SNIPSTART Home / Treatment ... novel targeted therapies can act as radiosensitizers. Systemic Radiation Therapy Certain cancers may be treated with radioactive ...

  19. Radiation Therapy for Testicular Cancer

    Science.gov (United States)

    ... Testicular Cancer Treating Testicular Cancer Radiation Therapy for Testicular Cancer Radiation therapy uses a beam of high-energy ... Testicular Cancer, by Type and Stage More In Testicular Cancer About Testicular Cancer Causes, Risk Factors, and Prevention ...

  20. Microbeam radiation therapy

    Science.gov (United States)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  1. Radiation Therapy for Soft Tissue Sarcomas

    Science.gov (United States)

    ... Stage Soft Tissue Sarcoma Treating Soft Tissue Sarcomas Radiation Therapy for Soft Tissue Sarcomas Radiation therapy uses ... spread. This is called palliative treatment . Types of radiation therapy External beam radiation therapy: For this treatment, ...

  2. Investigation of conformal and intensity-modulated radiation therapy techniques to determine the absorbed fetal dose in pregnant patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Öğretici, Akın, E-mail: akinogretici@gmail.com; Akbaş, Uğur; Köksal, Canan; Bilge, Hatice

    2016-07-01

    The aim of this research was to investigate the fetal doses of pregnant patients undergoing conformal radiotherapy or intensity-modulated radiation therapy (IMRT) for breast cancers. An Alderson Rando phantom was chosen to simulate a pregnant patient with breast cancer who is receiving radiation therapy. This phantom was irradiated using the Varian Clinac DBX 600 system (Varian Medical System, Palo Alto, CA) linear accelerator, according to the standard treatment plans of both three-dimensional conformal radiation therapy (3-D CRT) and IMRT techniques. Thermoluminescent dosimeters were used to measure the irradiated phantom's virtually designated uterus area. Thermoluminescent dosimeter measurements (in the phantom) revealed that the mean cumulative fetal dose for 3-D CRT is 1.39 cGy and for IMRT it is 8.48 cGy, for a pregnant breast cancer woman who received radiation treatment of 50 Gy. The fetal dose was confirmed to increase by 70% for 3-D CRT and 40% for IMRT, if it is closer to the irradiated field by 5 cm. The mean fetal dose from 3-D CRT is 1.39 cGy and IMRT is 8.48 cGy, consistent with theoretic calculations. The IMRT technique causes the fetal dose to be 5 times more than that of 3-D CRT. Theoretic knowledge concerning the increase in the peripheral doses as the measurements approached the beam was also practically proven.

  3. [Heavy particle radiation therapy].

    Science.gov (United States)

    Lozares, S; Mañeru, F; Pellejero, S

    2009-01-01

    The characteristics of radiation formed by heavy particles make it a highly useful tool for therapeutic use. Protons, helium nuclei or carbon ions are being successfully employed in radiotherapy installations throughout the world. This article sets out the physical and technological foundations that make these radiation particles suitable for attacking white volume, as well as the different ways of administering treatment. Next, the main clinical applications are described, which show the therapeutic advantages in some of the pathologies most widely employed in proton and hadron therapy centres at present. Under continuous study, the clinical use of heavy particles appears to be an enormously promising path of advance in comparison with classical technologies, both in tumour coverage and in reducing dosages in surrounding tissue.

  4. Screening of microbial radiation-inducible promoter and study of its expression; Development of basic technique of radiogenic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Kim Dongho; Yang, Jaeseung

    2007-02-15

    In the search for new therapeutic modalities for cancer, gene therapy has attracted enormous interest over the last few years. Recently, the use of bacteria as a tumor specific protein transfer system has attracted interest. Attenuated Salmonella has been shown to provide selective colonization in tumors. This strategy to apply gene therapy for cancer has been defined as 'Radiogenic Therapy'. In this research, firstly, we screened a radiation inducible promoter of Salmonella responding to clinically relevant low dose of 10 Gy using microarray analysis. Of all genes showing a expression ratio of at least 2-fold changes relative to wild type, 168 genes were induced. To confirm the findings of the microarray by an alternative method, we investigated the transcriptional changes of radio-inducible genes using real time PCR analysis. To verify the ability of screened genes (fadB, narK, cyoA, STM1011, STM2617, and STM2632) to produce a downstream protein by irradiation, the reporter plasmids were constructed. Finally, we found that the promoter of fadB, cyoA, and STM2617 can be activated by irradiation within cancer cells. These results suggest that these genes may be the most probable candidate used in radiogenic therapy.

  5. A dosimetric evaluation of volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy for the lower extremity soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sol Min; Song, Seong Chan; Hyun, Sung Eun; Park, Heung Deuk; Lee, Jaegi; Kim, Young Suk; Kim, Gwi Eon [Dept. of Radiation Oncology, Jeju National University Hospital, Jeju (Korea, Republic of)

    2016-06-15

    A dosimetric evaluation of volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy for the lower extremity soft tissue sarcoma For the lower extremity soft tissue sarcoma, volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy were evaluated to compare these three treatment planning technique. The mean doses to the planning target volume and the femur were calculated to evaluate target coverage and the risk of bone fracture during radiation therapy. Volumetric modulated arc therapy can reduce the dose to the femur without compromising target coverage and reduce the treatment time compared with intensity modulated radiation therapy.

  6. Stereotactic body radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Simon S. [Univ. Hospitals Seidman Cancer Center, Cleveland, OH (United States). Dept. of Radiation Oncology; Case Western Reserve Univ., Cleveland, OH (United States). Case Comprehensive Cancer Center; Teh, Bin S. [The Methodist Hospital Cancer Center and Research Institute, Houston, TX (United States). Weill Cornell Medical College; Lu, Jiade J. [National Univ. of Singapore (Singapore). Dept. of Radiation Oncology; Schefter, Tracey E. (eds.) [Colorado Univ., Aurora, CO (United States). Dept. of Radiation Oncology

    2012-11-01

    Comprehensive an up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. Examines in detail retrospective studies and prospective clinical trials for various organ sites from around the world. Written by world-renowned experts in SBRT from North America, Asia and Europe. Stereotactic body radiation therapy (SBRT) has emerged as an innovative treatment for various primary and metastatic cancers, and the past five years have witnessed a quantum leap in its use. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.

  7. Study on external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung

    1999-04-01

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT.

  8. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The physics of radiation therapy

    CERN Document Server

    Khan, Faiz M

    2009-01-01

    Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout.

  10. A Technique: Exposure Therapy

    Directory of Open Access Journals (Sweden)

    Serkan AKKOYUNLU

    2013-07-01

    Full Text Available Introduction: Exposure with response prevention is an effective treatment for all anxiety disorders. According to the behavioral learning theories, fears which are conditioned via classical conditioning are reinforced by respondent conditioning. Avoidance and safety seeking behaviors prevent disconfirmation of anxious beliefs. In exposure client faces stimulates or cues that elicit fear or distress, by this avoidance is inhibited. Clients are also encouraged to resists performing safety seeking behaviors or rituals that they utilize to reduce fear or distress. Accomplishing these habituation or extinction is achieved. In addition to this clients learn that feared consequences does not realize or not harmful as they believed by experiencing. Emotional processing is believed to be the mechanism of change in exposure.Objective: The aim of this review is to provide a definition of exposure and its effectiveness briefly, and describe how to implement exposure, its steps and remarkable aspects using. Exposure therapies and treatments that involve exposure are proved to be effective in all anxiety disorders. Exposure therapy can be divided in three parts: Assessment and providing a treatment rationale, creating an exposure hierarchy and response prevention plan, implementing exposure sessions. Clients must also continue to perform exposure between sessions. Therapy transcripts are also provided to exemplify these parts. Conclusion: Exposure with response prevention is a basic and effective technique. Every cognitive behavior therapist must be able to implement this technique and be cognizant of pearls of this procedure.

  11. THERMOPLASTIC MATERIALS APPLICATIONS IN RADIATION THERAPY.

    Science.gov (United States)

    Munteanu, Anca; Moldoveanu, Sinziana; Manea, Elena

    2016-01-01

    This is an example of the use of thermoplastic materials in a high-tech medicine field, oncology radiation therapy, in order to produce the rigid masks for positioning and immobilization of the patient during simulation of the treatment procedure, the imaging verification of position and administration of the indicated radiation dose. Implementation of modern techniques of radiation therapy is possible only if provided with performant equipment (CT simulators, linear accelerators of high energy particles provided with multilamellar collimators and imaging verification systems) and accessories that increase the precision of the treatment (special supports for head-neck, thorax, pelvis, head-neck and thorax immobilization masks, compensating materials like bolus type material). The paper illustrates the main steps in modern radiation therapy service and argues the role of thermoplastics in reducing daily patient positioning errors during treatment. As part of quality assurance of irradiation procedure, using a rigid mask is mandatory when applying 3D conformal radiation therapy techniques, radiation therapy with intensity modulated radiation or rotational techninques.

  12. Modern radiation therapy for primary cutaneous lymphomas

    DEFF Research Database (Denmark)

    Specht, Lena; Dabaja, Bouthaina; Illidge, Tim

    2015-01-01

    Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment, eit...... meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era......., either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational...

  13. Antiangiogenic and Radiation Therapy

    Science.gov (United States)

    Ren, Ying; Fleischmann, Dominik; Foygel, Kira; Molvin, Lior; Lutz, Amelie M.; Koong, Albert C.; Jeffrey, R. Brooke; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Objectives To assess early treatment effects on computed tomography (CT) perfusion parameters after antiangiogenic and radiation therapy in subcutaneously implanted, human colon cancer xenografts in mice and to correlate in vivo CT perfusion parameters with ex vivo assays of tumor vascularity and hypoxia. Materials and Methods Dynamic contrast-enhanced CT (perfusion CT, 129 mAs, 80 kV, 12 slices × 2.4 mm; 150 μL iodinated contrast agent injected at a rate of 1 mL/min intravenously) was performed in 100 subcutaneous human colon cancer xenografts on baseline day 0. Mice in group 1 (n = 32) received a single dose of the antiangiogenic agent bevacizumab (10 mg/kg body weight), mice in group 2 (n = 32) underwent a single radiation treatment (12 Gy), and mice in group 3 (n = 32) remained untreated. On days 1, 3, 5, and 7 after treatment, 8 mice from each group underwent a second CT perfusion scan, respectively, after which tumors were excised for ex vivo analysis. Four mice were killed after baseline scanning on day 0 for ex vivo analysis. Blood flow (BF), blood volume (BV), and flow extraction product were calculated using the left ventricle as an arterial input function. Correlation of in vivo CT perfusion parameters with ex vivo microvessel density and extent of tumor hypoxia were assessed by immunofluorescence. Reproducibility of CT perfusion parameter measurements was calculated in an additional 8 tumor-bearing mice scanned twice within 5 hours with the same CT perfusion imaging protocol. Results The intraclass correlation coefficients for BF, BV, and flow extraction product from repeated CT perfusion scans were 0.93 (95% confidence interval: 0.78, 0.97), 0.88 (0.66, 0.95), and 0.88 (0.56, 0.95), respectively. Changes in perfusion parameters and tumor volumes over time were different between treatments. After bevacizumab treatment, all 3 perfusion parameters significantly decreased from day 1 (P ≤ 0.006) and remained significantly decreased until day 7 (P ≤ 0

  14. Reproducibility Evaluation of Deep inspiration breath-hold(DIBH) technique by respiration data and heart position analysis during radiation therapy for Left Breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jae Young; Bae, Sun Myung; Yoon, In Ha; Lee, Ho Yeon; Kang, Tae Young; Baek, Geum Mun; Bae, Jae Beom [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2014-12-15

    The purpose of this study is reproducibility evaluation of deep inspiration breath-hold(DIBH) technique by respiration data and heart position analysis in radiation therapy for Left Breast cancer patients. Free breathing(FB) Computed Tomography(CT) images and DIBH CT images of three left breast cancer patients were used to evaluate the heart volume and dose during treatment planing system( Eclipse version 10.0, Varian, USA ). The signal of RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, Varian, USA) was used to evaluate respiration stability of DIBH during breast radiation therapy. The images for measurement of heart position were acquired by the Electronic portal imaging device(EPID) cine acquisition mode. The distance of heart at the three measuring points(A, B, C) on each image was measured by Offline Review (ARIA 10, Varian, USA). Significant differences were found between the FB and DIBH plans for mean heart dose (6.82 vs. 1.91 Gy), heart V{sub 30} (68.57 vs. 8.26 cm{sup 3}), V{sub 20} (76.43 vs. 11.34 cm{sup 3}). The standard deviation of DIBH signal of each patient was ±0.07 cm, ±0.04cm, 0.13 cm{sup 3}, respectively. The Maximum and Minimum heart distance on EPID images were measured as 0.32 m and 0.00 cm. Consequently, using the DIBH technique with radiation therapy for left breast cancer patients is very useful to establish the treatment plan and to reduce the heart dose. In addition, it is beneficial to using the Cine acquisition mode of EPID for the reproducibility evaluation of DIBH.

  15. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy.

    Science.gov (United States)

    Kim, Min-Joo; Lee, Seu-Ran; Lee, Min-Young; Sohn, Jason W; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won; Suh, Tae Suk

    2017-01-01

    Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient's age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA

  16. Cancer and electromagnetic radiation therapy: Quo Vadis?

    CERN Document Server

    Makropoulou, Mersini

    2016-01-01

    In oncology, treating cancer with a beam of photons is a well established therapeutic technique, developed over 100 years, and today over 50% of cancer patients will undergo traditional X-ray radiotherapy. However, ionizing radiation therapy is not the only option, as the high-energy photons delivering their cell-killing radiation energy into cancerous tumor can lead to significant damage to healthy tissues surrounding the tumor, located throughout the beam's path. Therefore, in nowadays, advances in ionizing radiation therapy are competitive to non-ionizing ones, as for example the laser light based therapy, resulting in a synergism that has revolutionized medicine. The use of non-invasive or minimally invasive (e.g. through flexible endoscopes) therapeutic procedures in the management of patients represents a very interesting treatment option. Moreover, as the major breakthrough in cancer management is the individualized patient treatment, new biophotonic techniques, e.g. photo-activated drug carriers, help...

  17. Oral care of the cancer patient receiving radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Holtzhausen, T. (Medical Univ. of Southern Africa, Pretoria (South Africa). Dept. of Community Dentistry)

    1982-07-01

    Radiation therapy is frequently being used for the patient with oral cancer. The survival rate is increasing, due to more effective treatment technique. The question of whether any teeth should be extracted, the mode of therapy and the side effects of radiation like Xerostomia, caries, stomatitis, trismus and osteo-radionecrosis and also post radiation care are discussed.

  18. Radiation Therapy for Cancer

    Science.gov (United States)

    ... basic unit of light and other forms of electromagnetic radiation . It can be thought of as a bundle ... 3D-CRT uses very sophisticated computer software and advanced treatment machines to deliver radiation to very precisely shaped target areas. Many other ...

  19. Radiation Therapy (For Parents)

    Science.gov (United States)

    ... with ink to highlight the treatment area. This "tattoo" should not be wiped off because it helps ... quickly to reduce exposure. previous continue Common Side Effects of Radiation If your child has cancer, you' ...

  20. Radiation therapy of acromegaly.

    Science.gov (United States)

    Eastman, R C; Gorden, P; Glatstein, E; Roth, J

    1992-09-01

    Conventional megavoltage irradiation of GH-secreting tumors has predictable effects on tumor mass, GH, and pituitary function. 1. Further growth of the tumor is prevented in more than 99% of patients, with only a fraction of a percent of patients requiring subsequent surgery for tumor mass effects. 2. GH falls predictably with time. By 2 years GH falls by about 50% from the baseline level, and by 5 years by about 75% from the baseline level. The initial GH elevation and the size and erosive features of the sella turcica do not affect the percent decrease in GH from the baseline elevation. 3. With prolonged follow-up, further decrease in GH is seen at 10 and 15 years, with the fraction of surviving patients achieving GH levels less than 5 ng/mL approaching 90% after 15 years in our experience. Gender, previous surgery, and hyperprolactinemia do not seem to affect the response to treatment. Patients with initial GH greater than 100 ng/mL are significantly less likely to achieve GH values less than 5 ng/mL during long-term follow-up. 4. Hypopituitarism is a predictable outcome of treatment, is delayed, and may be more likely in patients who have had surgery prior to irradiation. There is no evidence that this complication is more common in patients with acromegaly than in patients with other pituitary adenomas receiving similar treatment. 5. Vision loss due to megavoltage irradiation--using modern techniques and limiting the total dose to 4680 rad given in 25 fractions over 35 days, with individual fractions not exceeding 180 rad--is extremely rare. The reported cases have occurred almost entirely in patients who have received larger doses or higher fractional doses. The theory that patients with acromegaly are prone to radiation-induced injury to the CNS and optic nerves and chiasm because of small vessel disease is not supported by a review of the reported cases. 6. Brain necrosis and secondary neoplasms induced by irradiation are extremely rare. 7. Although

  1. Radiation Therapy of Pituitary Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon Baik; Hong, Seong Eong [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    Radiation treatment results were analyzed in a retrospective analysis of 47 patients with pituitary adenoma treated with radiation alone or combined with surgery from 1974 through 1987 at the Department of Therapeutic Radiology of Kyung Hee University. The 5-year overall survival rates for all patients was 80.4%. Radiation therapy was effective for improving visual symptoms and headache, but could not normalize amenorrhea and galactorrhoea. There was no difference of survival rate between radiation alone and combination with surgery. Prognostic factors such as age, sex, disease type, visual field, headache and surgical treatment were statistically no significant in survival rates of these patients.

  2. Dependence of achievable plan quality on treatment technique and planning goal refinement: a head-and-neck intensity modulated radiation therapy application.

    Science.gov (United States)

    Qi, X Sharon; Ruan, Dan; Lee, Steve P; Pham, Andrew; Kupelian, Patrick; Low, Daniel A; Steinberg, Michael; Demarco, John

    2015-03-15

    To develop a practical workflow for retrospectively analyzing target and normal tissue dose-volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible. A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose-volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB_IMRT) or RAPIDARC (TB_RAPIDARC), or Siemens Oncor (Siemens_IMRT, Siemens). A MATLAB-based dose-volume extraction and analysis tool was developed to export dosimetric endpoints for each patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data. Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB_IMRT, TB_RAPIDARC, and Siemens_IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose-volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher parotid doses for C-arm linear accelerator-based IMRT

  3. An optimized posterior axillary boost technique in radiation therapy to supraclavicular and axillary lymph nodes: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Victor, E-mail: vhernandezmasgrau@gmail.com [Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Tarragona (Spain); Arenas, Meritxell [Department of Radiation therapy, Hospital Sant Joan de Reus, IISPV, Tarragona (Spain); Müller, Katrin [Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Tarragona (Spain); Gomez, David; Bonet, Marta [Department of Radiation therapy, Hospital Sant Joan de Reus, IISPV, Tarragona (Spain)

    2013-01-01

    To assess the advantages of an optimized posterior axillary (AX) boost technique for the irradiation of supraclavicular (SC) and AX lymph nodes. Five techniques for the treatment of SC and levels I, II, and III AX lymph nodes were evaluated for 10 patients selected at random: a direct anterior field (AP); an anterior to posterior parallel pair (AP-PA); an anterior field with a posterior axillary boost (PAB); an anterior field with an anterior axillary boost (AAB); and an optimized PAB technique (OptPAB). The target coverage, hot spots, irradiated volume, and dose to organs at risk were evaluated and a statistical analysis comparison was performed. The AP technique delivered insufficient dose to the deeper AX nodes. The AP-PA technique produced larger irradiated volumes and higher mean lung doses than the other techniques. The PAB and AAB techniques originated excessive hot spots in most of the cases. The OptPAB technique produced moderate hot spots while maintaining a similar planning target volume (PTV) coverage, irradiated volume, and dose to organs at risk. This optimized technique combines the advantages of the PAB and AP-PA techniques, with moderate hot spots, sufficient target coverage, and adequate sparing of normal tissues. The presented technique is simple, fast, and easy to implement in routine clinical practice and is superior to the techniques historically used for the treatment of SC and AX lymph nodes.

  4. An optimized posterior axillary boost technique in radiation therapy to supraclavicular and axillary lymph nodes: a comparative study.

    Science.gov (United States)

    Hernandez, Victor; Arenas, Meritxell; Müller, Katrin; Gomez, David; Bonet, Marta

    2013-01-01

    To assess the advantages of an optimized posterior axillary (AX) boost technique for the irradiation of supraclavicular (SC) and AX lymph nodes. Five techniques for the treatment of SC and levels I, II, and III AX lymph nodes were evaluated for 10 patients selected at random: a direct anterior field (AP); an anterior to posterior parallel pair (AP-PA); an anterior field with a posterior axillary boost (PAB); an anterior field with an anterior axillary boost (AAB); and an optimized PAB technique (OptPAB). The target coverage, hot spots, irradiated volume, and dose to organs at risk were evaluated and a statistical analysis comparison was performed. The AP technique delivered insufficient dose to the deeper AX nodes. The AP-PA technique produced larger irradiated volumes and higher mean lung doses than the other techniques. The PAB and AAB techniques originated excessive hot spots in most of the cases. The OptPAB technique produced moderate hot spots while maintaining a similar planning target volume (PTV) coverage, irradiated volume, and dose to organs at risk. This optimized technique combines the advantages of the PAB and AP-PA techniques, with moderate hot spots, sufficient target coverage, and adequate sparing of normal tissues. The presented technique is simple, fast, and easy to implement in routine clinical practice and is superior to the techniques historically used for the treatment of SC and AX lymph nodes. © 2013 American Association of Medical Dosimetrists.

  5. Radiation therapy in pseudotumour haemarthrosis

    Energy Technology Data Exchange (ETDEWEB)

    Lal, P.; Biswal, B.M.; Thulkar, S.; Patel, A.K.; Venkatesh, R.; Julka, P.K. [Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi (India). Departments of Radiation Oncology, Radiodiagnosis and Haematology

    1998-11-01

    Total or partial deficiency of factor VIII and IX in the coagulation cascade leads to haemophilia. Haemophilia affecting weight-bearing joints gives a `pseudotumour` or haemarthrosis-like condition. Surgery and cryoprecipitate infusions have been the treatment for this condition. Radiocolloids and radiation therapy have been used with some benefit. One case of ankle pseudotumour which was treated by low-dose external beam radiation is presented here. Copyright (1998) Blackwell Science Pty Ltd 14 refs., 2 figs.

  6. [The application of total quality management (TQM) in quality management of radiation therapy].

    Science.gov (United States)

    Jiang, Rui-yao; Fu, Shen; Li, Bin

    2009-03-01

    The strategies and methods of the total quality management (TQM) need to applied in quality management of radiation therapy. We should improve the level of quality control and quality assurance in radiation therapy. By establishing quality control system in radiation therapy, standardization of radiation therapy workflow, strengthening quality control of devices and physical technique and paying attention to safety protection and staff training.

  7. A quantitative method to implement and to assess the single isocenter technique for breast cancer radiation therapy

    Directory of Open Access Journals (Sweden)

    Abdulhamid Chaikh

    2015-09-01

    Full Text Available Purpose: We propose a process of quality assurance to validate and implement the single isocenter technique for breast cancer radiotherapy. We evaluated the dosimetric and temporal gains using the single isocenter technique compared to classic source to skin distance (SSD technique. Methods: 6 patients of breast cancer localization were studied. For each patient 2 treatment plans were generated. In plan 1 the dose was calculated using SSD technique. In plan 2 the dose was calculated using single isocenter technique. To implement the plan 2 a dosimetric analysis including monitor units (MU, isodose curves, cumulative and differential dose volume histograms cDVH, dDVH respectively, coverage index, conformity index for planning target volume were used. The measurements using a PMMA phantom consist of measuring point dose by an ionization chamber and 2D dose distributions using 2D diodes arrays. Wilcoxon signed rank and Spearman’s tests were used to calculate p-value and correlation coefficient, respectively.Results: The single isocenter technique reduced the MU by average on -30.1 ± 13.6%, (p = 0.03. We observed an improvement with statistical significance between the two techniques for the mean dose, minimum dose and volume receiving 95% of the prescribed dose without over-dosage. The analysis for dDVH showed that the dose distribution in the target volume calculated in the single isocenter technique is more homogeneous than the SSD technique. Wilcoxon test showed that the two treatment plans had the same quality (p > 0.05. The difference between calculated and measured dose was within 2.4 ± 3.3% for absolute point dose and the percentage of points passing gamma criteria was on average 99.8 ± 0.2%. Conclusion: This method provides a quantitative evaluation and comparison of the two irradiation techniques for breast cancer and the consequences of the technical change on dose calculation.

  8. Radiation Therapy of Testicular Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong Gyun; Oh, Do Hoon; Ha, Sung Whan [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1994-10-15

    Purpose: Testicular seminomas are radiosensitive and adjuvant radiation therapy after orchiectomy results in long term survival in early stage diseases. Ten year results of radiation therapy after orchiectomy and results of definitive treatment of recurrent seminoma are presented. Materials and Methods: Between August 1980 and February 1990, 32 patients with testicular seminomas were treated at the Department of Therapeutic Radiology, Seoul National University Hospital. Twenty-seven patients received radiation therapy after orchiectomy and 5 patients for treatment of recurrent tumors. Two of postoperatively treated patients and 2 of recurrent patients were excluded from the study because of incomplete treatment. Of the patients treated postoperatively. 18 were stage I, 5 were stage IIA, one was stage IIB, and one was stage IIC. There were 4 ipsilateral and 2 contralateral cryptorchids. Preoperatively, b-HCG levels were elevated in 5 patients. Median dose to pelvic and paraaortic lymph node area was 2900 cGy (1550-4550 cGy). One patient with stage I, 4 with stage IIA, and 1 with stage IIB received prophylactic mediastinal irradiation. Two patients were treated with chemotherapy before radiation therapy. Median follow-up period was 104(3-144) months. Result: Local control rates were 100% at 5 years after orchiectomy. Five year survival rates were 94.4% in Stage I and 100% in Stage II patients. One patient with stage I disease died 3 months after surgery due to mediastinal metastasis. All the 3 patients treated for recurrent disease are alive without disease. Conclusion: Postorchiectomy radiation to the pelvis and para-aortic area remains the treatment of choice for patient with early stage testicular seminoma. Radiation therapy is also an excellent treatment modality for recurrent seminoma.

  9. [Radiation therapy for prostate cancer in modern era].

    Science.gov (United States)

    Nishimura, Takuya

    2016-01-01

    The purpose of this paper is to provide overview of the latest research trend on technique of radiation therapy of prostate cancer. Three-dimensional conformal radiation therapy(3D -CRT) has achieved better outcome of treatment for prostate cancer than 2-dimensional radiation therapy. Intensity-modulated radiation therapy(IMRT) is considered to be superior to 3D-CRT at certain points. Image-guided (IG) radiation therapy (IGRT), mainly IG-IMRT, is investigated what kind of influence it has on an outcome, both tumor control rate and adverse events. Particle therapy is a most ideal therapy theoretically. There is, however, few evidence which revealed that the therapy is superior to any other modalities.

  10. Real-Time Pretreatment Review Limits Unacceptable Deviations on a Cooperative Group Radiation Therapy Technique Trial: Quality Assurance Results of RTOG 0933

    Energy Technology Data Exchange (ETDEWEB)

    Gondi, Vinai, E-mail: vgondi@chicagocancer.org [Cadence Brain Tumor Center and CDH Proton Center, Warrenville, Illinois (United States); University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin (United States); Cui, Yunfeng [Duke University School of Medicine, Durham, North Carolina (United States); Mehta, Minesh P. [University of Maryland School of Medicine, Baltimore, Maryland (United States); Manfredi, Denise [Radiation Therapy Oncology Group—RTQA, Philadelphia, Pennsylvania (United States); Xiao, Ying; Galvin, James M. [Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Rowley, Howard [University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin (United States); Tome, Wolfgang A. [Montefiore Medical Center and Institute for Onco-Physics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York (United States)

    2015-03-01

    cases passed the pre-enrollment credentialing, the pretreatment centralized review disqualified 5.7% of reviewed cases, prevented unacceptable deviations in 24% of reviewed cases, and limited the final unacceptable deviation rate to 5%. Thus, pretreatment review is deemed necessary in future hippocampal avoidance trials and is potentially useful in other similarly challenging radiation therapy technique trials.

  11. Khan's the physics of radiation therapy

    CERN Document Server

    Khan, Faiz M

    2014-01-01

    Expand your understanding of the physics and practical clinical applications of advanced radiation therapy technologies with Khan's The Physics of Radiation Therapy, 5th edition, the book that set the standard in the field. This classic full-color text helps the entire radiation therapy team-radiation oncologists, medical physicists, dosimetrists, and radiation therapists-develop a thorough understanding of 3D conformal radiotherapy (3D-CRT), stereotactic radiosurgery (SRS), high dose-rate remote afterloaders (HDR), intensity modulated radiation therapy (IMRT), image-guided radiation therapy (

  12. [Stereotactic radiation therapy].

    Science.gov (United States)

    Aristu, J J; Ciérvide, R; Guridi, J; Moreno, M; Arbea, L; Azcona, J D; Ramos, L I; Zubieta, J L

    2009-01-01

    Stereotactic radiotherapy is a form of external radiotherapy that employs a system of three dimensional coordinates independent of the patient for the precise localisation of the lesion. It also has the characteristic that the radiation beams are conformed and precise, and converge on the lesion, making it possible to administer very high doses of radiotherapy without increasing the radiation to healthy adjacent organs or structures. When the procedure is carried out in one treatment session it is termed radiosurgery, and when administered over several sessions it is termed stereotactic radiotherapy. Special systems of fixing or immobilising the patient (guides or stereotactic frames) are required together with radiotherapy devices capable of generating conformed beams (lineal accelerator, gammaknife, cyberknife, tomotherapy, cyclotrons). Modern stereotactic radiotherapy employs intra-tumoural radio-opaque frames or CAT image systems included in the irradiation device, which make possible a precise localisation of mobile lesions in each treatment session. Besides, technological advances make it possible to coordinate the lesion's movements in breathing with the radiotherapy unit (gating and tracking) for maximum tightening of margins and excluding a greater volume of healthy tissue. Radiosurgery is mainly indicated in benign or malign cerebral lesions less than 3-4 centimetres (arteriovenous malformations, neurinomas, meningiomas, cerebral metastases) and stereotactic radiotherapy is basically administered in tumours of extracraneal localisation that require high conforming and precision, such as inoperable early lung cancer and hepatic metastasis.

  13. Sensitizing Osteosarcoma to Radiation Therapy

    Science.gov (United States)

    Mamo, Tewodros Kebede

    Several strategies to enhance the effects of radiation therapy are being explored for various cancers, with multiple molecular pathways and physical approaches suggested to play a role. One approach to improve the effectiveness of radiation therapy in tumors is the use of radiosensitizing molecules. Among the key radiosensitizing molecules being explored in various cancers include pharmacologic inhibitors of DNA repair and gold nanoparticles that physically enhance the amount of radiation deposited inside cancer cells. The main goal of this thesis is to explore the role of DNA repair inhibition as a radiosensitizing strategy for osteosarcoma cells. Additionally, the thesis investigates the effects of particle size in the application of gold nanoparticles in osteosarcoma cells to help identify the key parameters relevant to choosing an effective gold nanoparticle-based radiosensitizer.

  14. SU-E-T-633: Preparation and Planning of a VMAT Multi - Arc Radiation Therapy Technique for Full Scalp Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, C; Bardock, A; Berkelaar, S; Gillund, D; McGee, K; Mohamed, I; Lapointe, C [British Columbia Cancer Agency, Kelowna, BC (Canada)

    2015-06-15

    Purpose: The target volume for angiosarcoma of the scalp encompasses the entire scalp. Full scalp radiotherapy (FSRT) requires careful design of required bolus, immobilization and marking of the field before the patient CT is acquired. A VMAT multi-arc technique was designed to deliver FSRT for a patient with angiosarcoma of the scalp to a dose of 6000cGy in 25 fractions. Methods: A custom bolus helmet was fabricated from a 0.5 cm thick sheet of aquaplast material, which was molded to the patient’s head. With the bolus helmet in place the patient was then positioned supine on a H&N immobilization board. A custom vaclock bag positioned on a standard headrest and a thermoplastic mask were used to immobilize the patient. Additional bolus to cover the remaining treatment area was attached to the mask. We acquired two CT scans of the patient’s head, one in treatment position and an additional scan without the immobilization mask with wires marking the treatment area that the oncologist had delineated on the patient’s skin. The second scan was registered to the first and used to define the treatment CTV. A four-arc VMAT treatment planned using Varian-Eclipse was optimized to cover the skin with a PTV margin while sparing the brain and limiting the dose to the optic apparatus and lacrimal glands. Daily treatment setup was verified using anterior and lateral kV on-board-imaging. To verify the treated dose, TLDs were positioned on the patient’s scalp during one fraction. Results: With full dose coverage to the PTV, the mean dose to the brain was less than 24 Gy. The dose measured by the TLDs (mean difference 1%, standard deviation 4%)showed excellent agreement with the treatment planning calculation. Conclusion: FSRT delivered with a bolus helmet and a VMAT multi-arc technique can be accurately delivered with high dose uniformity and conformality.

  15. New radiation techniques in gynecological cancer.

    Science.gov (United States)

    Ahamad, A; Jhingran, A

    2004-01-01

    Radiation therapy has been a major therapeutic modality for eradicating malignant tumors over the past century. In fact, it was not long after the discovery of radium that the first woman with cervical cancer underwent intracavitary brachytherapy. Progress in the way that this cytotoxic agent is manipulated and delivered has seen an explosive growth over the past two decades with technological developments in physics, computing capabilities, and imaging. Although radiation oncologists are educated in and familiar with the wealth of new revolutionary techniques, it is not easy for other key members of the team to keep up with the rapid progress and its significance. However, to fully exploit these enormous gains and to communicate effectively, medical and gynecological oncologists are expected to be aware of state-of-the-art radiation oncology. Here, we elucidate and illustrate contemporary techniques in radiation oncology, with particular attention paid to the external beam radiotherapy used for adjuvant and primary definitive management of malignancies of the female pelvis.

  16. [Laser radiations in medical therapy].

    Science.gov (United States)

    Richand, P; Boulnois, J L

    1983-06-30

    The therapeutic effects of various types of laser beams and the various techniques employed are studied. Clinical and experimental research has shown that Helio-Neon laser beams are most effective as biological stimulants and in reducing inflammation. For this reasons they are best used in dermatological surgery cases (varicose ulcers, decubital and surgical wounds, keloid scars, etc.). Infrared diode laser beams have been shown to be highly effective painkillers especially in painful pathologies like postherpetic neuritis. The various applications of laser therapy in acupuncture, the treatment of reflex dermatologia and optic fibre endocavital therapy are presented. The neurophysiological bases of this therapy are also briefly described.

  17. Late complications of radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Norie [Osaka Prefectural Center for Adult Diseases (Japan)

    1998-03-01

    There are cases in which, although all traces of acute radiation complications seem to have disappeared, late complications may appear months or years to become apparent. Trauma, infection or chemotherapy may sometimes recall radiation damage and irreversible change. There were two cases of breast cancer that received an estimated skin dose in the 6000 cGy range followed by extirpation of the residual tumor. The one (12 y.o.) developed atrophy of the breast and severe teleangiectasis 18 years later radiotherapy. The other one (42 y.o.) developed severe skin necrosis twenty years later radiotherapy after administration of chemotherapy and received skin graft. A case (52 y.o.) of adenoidcystic carcinoma of the trachea received radiation therapy. The field included the thoracic spinal cord which received 6800 cGy. Two years and 8 months after radiation therapy she developed complete paraplegia and died 5 years later. A truly successful therapeutic outcome requires that the patient be alive, cured and free of significant treatment-related morbidity. As such, it is important to assess quality of life in long-term survivors of cancer treatment. (author)

  18. Development of local radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Lim, Sang Moo; Choi, Chang Woon; Chai, Jong Su; Kim, Eun Hee; Kim, Mi Sook; Yoo, Seong Yul; Cho, Chul Koo; Lee, Yong Sik; Lee, Hyun Moo

    1999-04-01

    The major limitations of radiation therapy for cancer are the low effectiveness of low LET and inevitable normal tissue damage. Boron Neutron Capture Therapy (BNCT) is a form of potent radiation therapy using Boron-10 having a high propensityof capturing theraml neutrons from nuclear reactor and reacting with a prompt nuclear reaction. Photodynamic therapy is a similiar treatment of modality to BNCT using tumor-seeking photosenistizer and LASER beam. If Boron-10 and photosensitizers are introduced selectively into tumor cells, it is theoretically possible to destroy the tumor and to spare the surrounding normal tissue. Therefore, BNCT and PDT will be new potent treatment modalities in the next century. In this project, we performed PDT in the patients with bladder cancers, oropharyngeal cancer, and skin cancers. Also we developed I-BPA, new porphyrin compounds, methods for estimation of radiobiological effect of neutron beam, and superficial animal brain tumor model. Furthermore, we prepared preclinical procedures for clinical application of BNCT, such as the macro- and microscopic dosimetry, obtaining thermal neutron flux from device used for fast neutron production in KCCH have been performed.

  19. Stereotactic Ablative Body Radiation Therapy for Primary Kidney Cancer: A 3-Dimensional Conformal Technique Associated With Low Rates of Early Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Daniel, E-mail: daniel.pham@petermac.org [Department of Radiotherapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Victoria (Australia); Thompson, Ann [Department of Radiotherapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne, Victoria (Australia); Foroudi, Farshad [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne, Victoria (Australia); Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Kolsky, Michal Schneider [Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Victoria (Australia); Devereux, Thomas; Lim, Andrew [Department of Radiotherapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Siva, Shankar [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne, Victoria (Australia); Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia)

    2014-12-01

    Purpose: To describe our 3-dimensional conformal planning approaches and report early toxicities with stereotactic body radiation therapy for the management of primary renal cell carcinoma. Methods and Materials: This is an analysis of a phase 1 trial of stereotactic body radiation therapy for primary inoperable renal cell carcinoma. A dose of 42 Gy/3 fractions was prescribed to targets ≥5 cm, whereas for <5 cm 26 Gy/1 fraction was used. All patients underwent a planning 4-dimensional CT to generate a planning target volume (PTV) from a 5-mm isotropic expansion of the internal target volume. Planning required a minimum of 8 fields prescribing to the minimum isodose surrounding the PTV. Intermediate dose spillage at 50% of the prescription dose (R50%) was measured to describe the dose gradient. Early toxicity (<6 months) was scored using the Common Terminology Criteria for Adverse Events (v4.0). Results: From July 2012 to August 2013 a total of 20 patients (median age, 77 years) were recruited into a prospective clinical trial. Eleven patients underwent fractionated treatment and 9 patients a single fraction. For PTV targets <100 cm{sup 3} the median number of beams used was 8 (2 noncoplanar) to achieve an average R50% of 3.7. For PTV targets >100 cm{sup 3} the median beam number used was 10 (4 noncoplanar) for an average R50% value of 4.3. The R50% was inversely proportional to decreasing PTV volume (r=−0.62, P=.003) and increasing total beams used (r=−0.51, P=.022). Twelve of 20 patients (60%) suffered grade ≤2 early toxicity, whereas 8 of 20 patients (40%) were asymptomatic. Nausea, chest wall pain, and fatigue were the most common toxicities reported. Conclusion: A 3-dimensional conformal planning technique of 8-10 beams can be used to deliver highly tolerable stereotactic ablation to primary kidney targets with minimal early toxicities. Ongoing follow-up is currently in place to assess long-term toxicities and cancer control.

  20. Characterization and evaluation of ionizing and non-ionizing imaging systems used in state of the art image-guided radiation therapy techniques

    Science.gov (United States)

    Stanley, Dennis Nichols

    With the growing incidence of cancer worldwide, the need for effective cancer treatment is paramount. Currently, radiation therapy exists as one of the few effective, non-invasive methods of reducing tumor size and has the capability for the elimination of localized tumors. Radiation therapy utilizes non-invasive external radiation to treat localized cancers but to be effective, physicians must be able to visualize and monitor the internal anatomy and target displacements. Image-Guided Radiation Therapy frequently utilizes planar and volumetric imaging during a course of radiation therapy to improve the precision and accuracy of the delivered treatment to the internal anatomy. Clinically, visualization of the internal anatomy allows physicians to refine the treatment to include as little healthy tissue as possible. This not only increases the effectiveness of treatment by damaging only the tumor but also increases the quality of life for the patient by decreasing the amount of healthy tissue damaged. Image-Guided Radiation Therapy is commonly used to treat tumors in areas of the body that are prone to movement, such as the lungs, liver, and prostate, as well as tumors located close to critical organs and tissues such as the tumors in the brain and spinal cord. Image-Guided Radiation Therapy can utilize both ionizing modalities, like x-ray based planar radiography and cone-beam CT, and nonionizing modalities like MRI, ultrasound and video-based optical scanning systems. Currently ionizing modalities are most commonly utilized for their ability to visualize and monitor internal anatomy but cause an increase to the total dose to the patient. Nonionizing imaging modalities allow frequent/continuous imaging without the increase in dose; however, they are just beginning to be clinically implemented in radiation oncology. With the growing prevalence and variety of Image-Guided Radiation Therapy imaging modalities the ability to evaluate the overall image quality, monitor

  1. Insufficiency fracture after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Ryul; Huh, Seung Jae [Dept.of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    Insufficiency fracture occurs when normal or physiological stress applied to weakened bone with demineralization and decreased elastic resistance. Recently, many studies reported the development of IF after radiation therapy (RT) in gynecological cancer, prostate cancer, anal cancer and rectal cancer. The RT-induced insufficiency fracture is a common complication during the follow-up using modern imaging studies. The clinical suspicion and knowledge the characteristic imaging patterns of insufficiency fracture is essential to differentiate it from metastatic bone lesions, because it sometimes cause severe pain, and it may be confused with bone metastasis.

  2. WE-G-17A-01: Improving Tracking Image Spatial Resolution for Onboard MR Image Guided Radiation Therapy Using the WHISKEE Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y; Mutic, S; Du, D; Green, O [Washington University School of Medicine, Saint Louis, MO (United States); Zeng, Q; Nana, R; Patrick, J; Shvartsman, S; Dempsey, J [ViewRay Incorporated, Oakwood Village, OH (United States)

    2014-06-15

    Purpose: To evaluate the feasibility of using the weighted hybrid iterative spiral k-space encoded estimation (WHISKEE) technique to improve spatial resolution of tracking images for onboard MR image guided radiation therapy (MR-IGRT). Methods: MR tracking images of abdomen and pelvis had been acquired from healthy volunteers using the ViewRay onboard MRIGRT system (ViewRay Inc. Oakwood Village, OH) at a spatial resolution of 2.0mm*2.0mm*5.0mm. The tracking MR images were acquired using the TrueFISP sequence. The temporal resolution had to be traded off to 2 frames per second (FPS) to achieve the 2.0mm in-plane spatial resolution. All MR images were imported into the MATLAB software. K-space data were synthesized through the Fourier Transform of the MR images. A mask was created to selected k-space points that corresponded to the under-sampled spiral k-space trajectory with an acceleration (or undersampling) factor of 3. The mask was applied to the fully sampled k-space data to synthesize the undersampled k-space data. The WHISKEE method was applied to the synthesized undersampled k-space data to reconstructed tracking MR images at 6 FPS. As a comparison, the undersampled k-space data were also reconstructed using the zero-padding technique. The reconstructed images were compared to the original image. The relatively reconstruction error was evaluated using the percentage of the norm of the differential image over the norm of the original image. Results: Compared to the zero-padding technique, the WHISKEE method was able to reconstruct MR images with better image quality. It significantly reduced the relative reconstruction error from 39.5% to 3.1% for the pelvis image and from 41.5% to 4.6% for the abdomen image at an acceleration factor of 3. Conclusion: We demonstrated that it was possible to use the WHISKEE method to expedite MR image acquisition for onboard MR-IGRT systems to achieve good spatial and temporal resolutions simultaneously. Y. Hu and O. green

  3. Which technique for radiation is most beneficial for patients with locally advanced cervical cancer? Intensity modulated proton therapy versus intensity modulated photon treatment, helical tomotherapy and volumetric arc therapy for primary radiation - an intraindividual comparison.

    Science.gov (United States)

    Marnitz, Simone; Wlodarczyk, Waldemar; Neumann, Oliver; Koehler, Christhardt; Weihrauch, Mirko; Budach, Volker; Cozzi, Luca

    2015-04-17

    To compare highly sophisticated intensity-modulated radiotherapy (IMRT) delivered by either helical tomotherapy (HT), RapidArc (RA), IMRT with protons (IMPT) in patients with locally advanced cervical cancer. Twenty cervical cancer patients were irradiated using either conventional IMRT, VMAT or HT; ten received pelvic (PEL) and ten extended field irradiation (EFRT). The dose to the planning-target volume A (PTV_A: cervix, uterus, pelvic ± para-aortic lymph nodes) was 1.8/50.4 Gy. The SIB dose for the parametrium (PTV_B), was 2.12/59.36 Gy. MRI-guided brachytherapy was administered with 5 fractions up to 25 Gy. For EBRT, the lower target constraints were 95% of the prescribed dose in 95% of the target volume. The irradiated small bowel (SB) volumes were kept as low as possible. For every patient, target parameters as well as doses to the organs at risk (SB, bladder, rectum) were evaluated intra-individually for IMRT, HT, VMAT and IMPT. All techniques provided excellent target volume coverage, homogeneity, conformity. With IMPT, there was a significant reduction of the mean dose (Dmean) of the SB from 30.2 ± 4.0 Gy (IMRT); 27.6 ± 5.6 Gy (HT); 34.1 ± 7.0 (RA) to 18.6 ± 5.9 Gy (IMPT) for pelvic radiation and 26.3 ± 3.2 Gy (IMRT); 24.0 ± 4.1 (HT); 25.3 ± 3.7 (RA) to 13.8 ± 2.8 Gy (IMPT) for patients with EFRT, which corresponds to a reduction of 38-52% for the Dmean (SB). Futhermore, the low dose bath (V10Gy) to the small bowel was reduced by 50% with IMPT in comparison to all photon techniques. Furthermore, Dmean to the bladder and rectum was decresed by 7-9 Gy with IMPT in patents with pelvic radiation and EFRT. All modern techniques (were proved to be dosimetrically adequate regarding coverage, conformity and homogeneity of the target. Protons offered the best sparing of small bowel and rectum and therefore could contribute to a significant reduction of acute and late toxicity in cervical cancer treatment.

  4. SU-F-18C-02: Evaluations of the Noise Power Spectrum of a CT Iterative Reconstruction Technique for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dolly, S [University of Missouri, Columbia, MO (United States); Washington University School of Medicine, Saint Louis, MO (United States); Chen, H; Anastasio, M; Mutic, S; Li, H [Washington University School of Medicine, Saint Louis, MO (United States)

    2014-06-15

    Purpose: To quantitatively assess the noise power spectrum (NPS) of the new, commercially released CT iterative reconstruction technique, iDose{sup 4} from Philips, to compare it with filtered back-projection techniques (FBP), and to provide clinical practice suggestions for radiation therapy. Methods: A uniform phantom was CT imaged with 120kVp tube potential over a range of mAs (250-3333). The image sets were reconstructed using two reconstruction algorithms (FBP and iDose{sup 4} with noise reduction levels 1, 3, and 6) and three reconstruction filters (standard B, smooth A, and sharp C), after which NPS variations were analyzed and compared on region of interest (ROI) sizes (16×16 to 128×128 pixels), ROI radii (0–65 mm), reconstruction algorithms, reconstruction filters, and mAs. Results: The NPS magnitude and shape depended considerably on ROI size and location for both reconstruction algorithms. Regional noise variance became more stationary as ROI size decreased, minimizing NPS artifacts. The optimal 32×32-pixel ROI size balanced the trade-off between stationary noise and adequate sampling. NPS artifacts were greatest at the center of reconstruction space and decreased with increasing ROI distance from the center. The optimal ROI position was located near the phantom's radial midpoint (∼40mm). For sharper filters, the NPS magnitude and the maximum magnitude frequency increased. Higher dose scans yielded lower NPS magnitudes for both reconstruction algorithms and all filters. Compared to FBP, the iDose{sup 4} algorithm reduced the NPS magnitude while preferentially reducing noise at mid-range spatial frequencies, altering noise texture. This reduction was more significant with increasing iDose{sup 4} noise reduction level. Conclusion: Compared to pixel standard deviation, NPS has greater clinical potential for task-based image quality assessment, describing both the magnitude and spatial frequency characteristics of image noise. While iDose{sup 4

  5. Cancer and Radiation Therapy: Current Advances and Future Directions

    Directory of Open Access Journals (Sweden)

    Rajamanickam Baskar, Kuo Ann Lee, Richard Yeo, Kheng-Wei Yeoh

    2012-01-01

    Full Text Available In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. However with its increasing incidence, the clinical management of cancer continues to be a challenge for the 21st century. Treatment modalities comprise of radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Radiation therapy remains an important component of cancer treatment with approximately 50% of all cancer patients receiving radiation therapy during their course of illness; it contributes towards 40% of curative treatment for cancer. The main goal of radiation therapy is to deprive cancer cells of their multiplication (cell division potential. Celebrating a century of advances since Marie Curie won her second Nobel Prize for her research into radium, 2011 has been designated the Year of Radiation therapy in the UK. Over the last 100 years, ongoing advances in the techniques of radiation treatment and progress made in understanding the biology of cancer cell responses to radiation will endeavor to increase the survival and reduce treatment side effects for cancer patients. In this review, principles, application and advances in radiation therapy with their biological end points are discussed.

  6. Advances in three-dimensional conformal radiation therapy physics with intensity modulation.

    Science.gov (United States)

    Webb, S

    2000-09-01

    Intensity-modulated radiation therapy, a specific form of conformal radiation therapy, is currently attracting a lot of attention, and there are high expectations for this class of treatment techniques. Several new technologies are in development, but physicists are still working to improve the physical basis of radiation therapy.

  7. Analysis of the radiation shielding of the bunker of a 230MeV proton cyclotron therapy facility; comparison of analytical and Monte Carlo techniques.

    Science.gov (United States)

    Sunil, C

    2016-04-01

    The neutron ambient dose equivalent outside the radiation shield of a proton therapy cyclotron vault is estimated using the unshielded dose equivalent rates and the attenuation lengths obtained from the literature and by simulations carried out with the FLUKA Monte Carlo radiation transport code. The source terms derived from the literature and that obtained from the FLUKA calculations differ by a factor of 2-3, while the attenuation lengths obtained from the literature differ by 20-40%. The instantaneous dose equivalent rates outside the shield differ by a few orders of magnitude, not only in comparison with the Monte Carlo simulation results, but also with the results obtained by line of sight attenuation calculations with the different parameters obtained from the literature. The attenuation of neutrons caused by the presence of bulk iron, such as magnet yokes is expected to reduce the dose equivalent by as much as a couple of orders of magnitude outside the shield walls.

  8. Implications of a high-definition multileaf collimator (HD-MLC on treatment planning techniques for stereotactic body radiation therapy (SBRT: a planning study

    Directory of Open Access Journals (Sweden)

    Chen Yiyi

    2009-07-01

    Full Text Available Abstract Purpose To assess the impact of two multileaf collimator (MLC systems (2.5 and 5 mm leaf widths on three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and dynamic conformal arc techniques for stereotactic body radiation therapy (SBRT of liver and lung lesions. Methods Twenty-nine SBRT plans of primary liver (n = 11 and lung (n = 18 tumors were the basis of this study. Five-millimeter leaf width 120-leaf Varian Millennium (M120 MLC-based plans served as reference, and were designed using static conformal beams (3DCRT, sliding-window intensity-modulated beams (IMRT, or dynamic conformal arcs (DCA. Reference plans were either re-optimized or recomputed, with identical planning parameters, for a 2.5-mm width 120-leaf BrainLAB/Varian high-definition (HD120 MLC system. Dose computation was based on the anisotropic analytical algorithm (AAA, Varian Medical Systems with tissue heterogeneity taken into account. Each plan was normalized such that 100% of the prescription dose covered 95% of the planning target volume (PTV. Isodose distributions and dose-volume histograms (DVHs were computed and plans were evaluated with respect to target coverage criteria, normal tissue sparing criteria, as well as treatment efficiency. Results Dosimetric differences achieved using M120 and the HD120 MLC planning were generally small. Dose conformality improved in 51.7%, 62.1% and 55.2% of the IMRT, 3DCRT and DCA cases, respectively, with use of the HD120 MLC system. Dose heterogeneity increased in 75.9%, 51.7%, and 55.2% of the IMRT, 3DCRT and DCA cases, respectively, with use of the HD120 MLC system. DVH curves demonstrated a decreased volume of normal tissue irradiated to the lower (90%, 50% and 25% isodose levels with the HD120 MLC. Conclusion Data derived from the present comparative assessment suggest dosimetric merit of the high definition MLC system over the millennium MLC system. However, the clinical significance of these results

  9. Injectable Colloidal Gold in a Sucrose Acetate Isobutyrate Gelating Matrix with Potential Use in Radiation Therapy

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Binderup, Tina; Hansen, Anders Elias

    2014-01-01

    External beam radiation therapy relies on the ability to deliver high radiation doses to tumor cells with minimal exposure to surrounding healthy tissue. Advanced irradiation techniques, including image-guided radiation therapy (IGRT), rely on the ability to locate tumors to optimize the therapeu......External beam radiation therapy relies on the ability to deliver high radiation doses to tumor cells with minimal exposure to surrounding healthy tissue. Advanced irradiation techniques, including image-guided radiation therapy (IGRT), rely on the ability to locate tumors to optimize...

  10. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  11. Radiation Therapy for Early Stage Lung Cancer

    OpenAIRE

    Parashar, Bhupesh; Arora, Shruthi; Wernicke, A. Gabriella

    2013-01-01

    Radiation therapy for early stage lung cancer is a promising modality. It has been traditionally used in patients not considered candidates for standard surgical resection. However, its role has been changing rapidly since the introduction of new and advanced technology, especially in tumor tracking, image guidance, and radiation delivery. Stereotactic radiation therapy is one such advancement that has shown excellent local control rates and promising survival in early stage lung cancer. In a...

  12. Radiation Therapy for Early Stage Lung Cancer

    OpenAIRE

    Parashar, Bhupesh; Arora, Shruthi; Wernicke, A. Gabriella

    2013-01-01

    Radiation therapy for early stage lung cancer is a promising modality. It has been traditionally used in patients not considered candidates for standard surgical resection. However, its role has been changing rapidly since the introduction of new and advanced technology, especially in tumor tracking, image guidance, and radiation delivery. Stereotactic radiation therapy is one such advancement that has shown excellent local control rates and promising survival in early stage lung cancer. In a...

  13. Radiation Sensitization in Cancer Therapy.

    Science.gov (United States)

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  14. Modern radiation therapy for extranodal lymphomas

    DEFF Research Database (Denmark)

    Yahalom, Joachim; Illidge, Tim; Specht, Lena

    2015-01-01

    Extranodal lymphomas (ENLs) comprise about a third of all non-Hodgkin lymphomas (NHL). Radiation therapy (RT) is frequently used as either primary therapy (particularly for indolent ENL), consolidation after systemic therapy, salvage treatment, or palliation. The wide range of presentations of EN...

  15. PET-based radiation therapy planning.

    Science.gov (United States)

    Speirs, Christina K; Grigsby, Perry W; Huang, Jiayi; Thorstad, Wade L; Parikh, Parag J; Robinson, Clifford G; Bradley, Jeffrey D

    2015-01-01

    In this review, we review the literature on the use of PET in radiation treatment planning, with an emphasis on describing our institutional methodology (where applicable). This discussion is intended to provide other radiation oncologists with methodological details on the use of PET imaging for treatment planning in radiation oncology, or other oncologists with an introduction to the use of PET in planning radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Migratory eosinophilic alveolitis caused by radiation therapy.

    Science.gov (United States)

    Lim, Jun Hyeok; Nam, Hae-Seong; Kim, Hun Jung; Choi, Chang-Hwan; Park, In-Suh; Cho, Jae Hwa; Ryu, Jeong-Seon; Kwak, Seung Min; Lee, Hong Lyeol

    2015-05-01

    Although radiation pneumonitis is usually confined to irradiated areas, some studies have reported that radiation-induced lymphocytic alveolitis can also spread to the non-irradiated lung. However, there have been few reports of radiation-induced eosinophilic alveolitis. We report the case of a 27-year-old female with radiation pneumonitis, occurring 4 months after radiation therapy for cancer of the left breast. Clinical and radiological relapse followed withdrawal of corticosteroids. Examination of bronchoalveolar lavage (BAL) in patchy airspace consolidations revealed increased eosinophil counts. Finally, clinical and radiological signs resolved rapidly after reintroduction of corticosteroids. Eosinophilic alveolitis may be promoted by radiation therapy. In the present case report, possible mechanisms for radiation-induced eosinophilic alveolitis are also reviewed.

  17. Comparison of acute and subacute genitourinary and gastrointestinal adverse events of radiotherapy for prostate cancer using intensity-modulated radiation therapy, three-dimensional conformal radiation therapy, permanent implant brachytherapy and high-dose-rate brachytherapy

    NARCIS (Netherlands)

    Morimoto, Masahiro; Yoshioka, Yasuo; Konishi, Koji; Isohashi, Fumiaki; Takahashi, Yutaka; Ogata, Toshiyuki; Koizumi, Masahiko; Teshima, Teruki; Bijl, Henk P; van der Schaaf, Arjen; Langendijk, Johannes A; Ogawa, Kazuhiko

    2014-01-01

    AIMS AND BACKGROUND: To examine acute and subacute urinary and rectal toxicity in patients with localized prostate cancer monotherapeutically treated with the following four radiotherapeutic techniques: intensity-modulated radiation therapy, three-dimensional conformal radiation therapy,

  18. Radiation Therapy: Preventing and Managing Side Effects

    Science.gov (United States)

    ... Also be careful not to rub away the ink marks needed for your radiation therapy until it’s ... Health Care Professionals Programs & Services Breast Cancer Support TLC Hair Loss & Mastectomy Products Hope Lodge® Lodging Rides ...

  19. Comparing Postoperative Radiation Therapies for Brain Metastases

    Science.gov (United States)

    In this clinical trial, patients with one to four brain metastases who have had at least one of the metastatic tumors removed surgically will be randomly assigned to undergo whole-brain radiation therapy or stereotactic radiosurgery.

  20. Nursing care update: Internal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, D.L.

    1990-01-01

    Internal radiation therapy has been used in treating gynecological cancers for over 100 years. A variety of radioactive sources are currently used alone and in combination with other cancer treatments. Nurses need to be able to provide safe, comprehensive care to patients receiving internal radiation therapy while using precautions to keep the risks of exposure to a minimum. This article discusses current trends and issues related to such treatment for gynecological cancers.20 references.

  1. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    Directory of Open Access Journals (Sweden)

    Mei Lin

    2015-01-01

    Full Text Available Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression’s controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy.

  2. Once-Daily Radiation Therapy for Inflammatory Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Lindsay [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Harmsen, William [Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (United States); Blanchard, Miran [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Goetz, Matthew [Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota (United States); Jakub, James [Department of Surgery, Mayo Clinic, Rochester, Minnesota (United States); Mutter, Robert; Petersen, Ivy; Rooney, Jessica [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Stauder, Michael [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yan, Elizabeth [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Laack, Nadia, E-mail: laack.nadia@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

    2014-08-01

    Purpose: Inflammatory breast cancer (IBC) is a rare and aggressive breast cancer variant treated with multimodality therapy. A variety of approaches intended to escalate the intensity and efficacy of radiation therapy have been reported, including twice-daily radiation therapy, dose escalation, and aggressive use of bolus. Herein, we examine our outcomes for patients treated with once-daily radiation therapy with aggressive bolus utilization, focusing on treatment technique. Methods and Materials: A retrospective review of patients with nonmetastatic IBC treated from January 1, 2000, through December 31, 2010, was performed. Locoregional control (LRC), disease-free survival (DFS), overall survival (OS) and predictors thereof were assessed. Results: Fifty-two women with IBC were identified, 49 (94%) of whom were treated with neoadjuvant chemotherapy. All underwent mastectomy followed by adjuvant radiation therapy. Radiation was delivered in once-daily fractions of 1.8 to 2.25 Gy (median, 2 Gy). Patients were typically treated with daily 1-cm bolus throughout treatment, and 33 (63%) received a subsequent boost to the mastectomy scar. Five-year Kaplan Meier survival estimates for LRC, DFS, and OS were 81%, 56%, and 64%, respectively. Locoregional recurrence was associated with poorer OS (P<.001; hazard ratio [HR], 4.1). Extracapsular extension was associated with worse LRC (P=.02), DFS (P=.007), and OS (P=.002). Age greater than 50 years was associated with better DFS (P=.03). Pathologic complete response was associated with a trend toward improved LRC (P=.06). Conclusions: Once-daily radiation therapy with aggressive use of bolus for IBC results in outcomes consistent with previous reports using various intensified radiation therapy regimens. LRC remains a challenge despite modern systemic therapy. Extracapsular extension, age ≤50 years, and lack of complete response to chemotherapy appear to be associated with worse outcomes. Novel strategies are needed in IBC

  3. Three-Phase Adaptive Radiation Therapy for Patients With Nasopharyngeal Carcinoma Undergoing Intensity-Modulated Radiation Therapy: Dosimetric Analysis.

    Science.gov (United States)

    Deng, Shan; Liu, Xu; Lu, Heming; Huang, Huixian; Shu, Liuyang; Jiang, Hailan; Cheng, Jinjian; Peng, Luxing; Pang, Qiang; Gu, Junzhao; Qin, Jian; Lu, Zhiping; Mo, Ying; Wu, Danling; Wei, Yinglin

    2017-01-01

    Patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy may experience significant anatomic changes throughout the entire treatment course, and adaptive radiation therapy may be necessary to maintain optimal dose delivered both to the targets and to the critical structures. The timing of adaptive radiation therapy, however, is largely unknown. This study was to evaluate the dosimetric benefits of a 3-phase adaptive radiation therapy technique for nasopharyngeal carcinoma. Twenty patients with nasopharyngeal carcinoma treated with intensity-modulated radiation therapy were recruited prospectively. After fractions 5 and 15, each patient had repeat computed tomography scans, and adaptive replans with recontouring the targets and organs at risk on the new computed tomography images were generated and used for subsequent treatment (replan 1 and replan 2). Two hybrid intensity-modulated radiation therapy plans (plan 1 and plan 2) were generated by superimposing the initial plan (plan 0) to each repeated new computed tomography image, reflecting the actual dose delivered to the targets and organs at risk if no changes were made to the original plan. Dosimetric comparisons were made between the adaptive replans (adaptive radiation therapy plans: plan 0 + replan 1 + replan 2) and their corresponding nonadaptive radiation therapy plans (plan 0 + plan 1 + plan 2). Comparing with the nonadaptive radiation therapy plans, the adaptive radiation therapy plans resulted in a significant improvement in conformity index for planning target volumes for primary disease, involved lymph node, high-risk clinical target volume, and low-risk clinical target volume (PTVnx, PTVnd, PTV1, and PTV2, respectively). Median V95 for PTVnx; D95, D99, V100, V95, and V93 for PTVnd; D99 and V100 for PTV1; and D95, D99, V100, V95, and V93 for PTV2 were increased significantly. There were significant dose-volume reductions, including maximum doses to the brainstem and

  4. Ocular neuromyotonia after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lessell, S.; Lessell, I.M.; Rizzo, J.F. III

    1986-12-15

    Ocular neuromyotonia is a paroxysmal monocular deviation that results from spasm of eye muscles secondary to spontaneous discharges from third, fourth, or sixth nerve axons. We observed this rare disorder in four patients who had been treated with radiation for tumors in the region of the sella turcica and cavernous sinus. Based on these cases and four others identified in the literature it would appear that radiation predisposes to a cranial neuropathy in which ocular neuromyotonia may be the major manifestation. Radiation appears to be the most common cause of ocular neuromyotonia.

  5. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  6. Application of multileaf collimator in breast cancer radiation techniques

    Science.gov (United States)

    Janiszewska, Marzena; Dupla, Dorota; Nowakowski, Grzegorz

    2004-07-01

    Modern radiation therapy tools allow a precise delivery of a high dose to a target area (so-called planning target volume -- PTV) and spare, at the same time, critical organs in the vicinity of cancerous lesions. One of the tools of conformal therapy is a multi-leaf collimator, which provides the opportunity to optimally adjust the therapeutic field to the tumor area. More difficult areas for radiation therapy include: mamma, after BCT, and chest after mammectomy with regional lymph nodes. The objective of the study is to present technical and physical aspects of breast carcinoma irradiation when applying a multi-leaf collimator. The following techniques were applied: (a) the isocentric technique of tangent fields (from two to four) for the mamma after BCT; (b) the method of a common isocenter, for the areas of mamma and for regional lymph nodes; (c) the technique of complementary photon + electron fields, for the area of chest after mammectomy and lymph nodes. The presented techniques were implemented as standard procedures in the preparation of breast carcinoma radiation treatment in the Lower Silesian Oncology Center.

  7. Radiation Therapy and You: Support for People with Cancer

    Science.gov (United States)

    ... Terms Blogs and Newsletters Health Communications Publications Reports Radiation Therapy and You: Support for People With Cancer ... Copy This booklet covers: Questions and Answers About Radiation Therapy. Answers common questions, such as what radiation ...

  8. Image-guided radiation therapy; Bildgefuehrte Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Boda-Heggemann, J.; Wertz, H.; Blessing, M.; Wenz, F.; Lohr, F. [Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim der Universitaet Heidelberg, Klinik fuer Strahlentherapie und Radioonkologie, Mannheim (Germany); Guckenberger, M. [Universitaetsklinikum Wuerzburg, Klinik fuer Strahlentherapie, Wuerzburg (Germany); Ganswindt, U.; Belka, C. [Klinikum der Ludwig-Maximilians-Universitaet, Klinik fuer Strahlentherapie und Radioonkologie, Muenchen (Germany); Fuss, M. [Oregon Health and Science University, Program in Image-guided Radiation Therapy, Department of Radiation Medicine, Portland, OR (United States)

    2012-03-15

    Radiotherapy technology has improved rapidly over the past two decades. New imaging modalities, such as positron emission (computed) tomography (PET, PET-CT) and high-resolution morphological and functional magnetic resonance imaging (MRI) have been introduced into the treatment planning process. Image-guided radiation therapy (IGRT) with 3D soft tissue depiction directly imaging target and normal structures, is currently replacing patient positioning based on patient surface markers, frame-based intracranial and extracranial stereotactic treatment and partially also 2D field verification methods. On-line 3D soft tissue-based position correction unlocked the full potential of new delivery techniques, such as intensity-modulated radiotherapy, by safely delivering highly conformal dose distributions that facilitate dose escalation and hypofractionation. These strategies have already resulted in better clinical outcomes, e.g. in prostate and lung cancer and are expected to further improve radiotherapy results. (orig.) [German] Die Strahlentherapie hat in den vergangenen 2 Dekaden von zahlreichen technischen Entwicklungen profitiert. Neue Bildgebungsmodalitaeten wie Positronenemissionstomographie (PET, PET/CT) und hochaufloesende morphologische und funktionelle MR-Sequenzen wurden in den Bestrahlungsplanungsprozess integriert. Die bildgesteuerte Strahlentherapie (''image-guided radiation therapy'', IGRT) ermoeglicht mittlerweile unmittelbar am Beschleuniger auch die 3-D-Darstellung von Weichgewebetumoren und ersetzt die Patientenpositionierung mittels Hautmarkern, rahmenbasierten stereotaktischen Verfahren im Kopf- und Koerperstamm und teilweise auch die 2-D-Verifikation der Bestrahlungsfelder. IGRT gestattet die Realisierung des vollen Potenzials fortgeschrittener Bestrahlungstechniken wie der intensitaetsmodulierten Strahlentherapie, mit deren Hilfe hochkonformale Dosisverteilungen realisiert werden koennen. Diese Strategien haben zu verbesserten

  9. Results of Radiation Therapy in Stage III Uterine Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Woo; Shin, Byung Chul; Yum, Ha Yong; Jeung, Tae Sig; Yoo, Myung Jin [Kosin University College of Medicine, Seoul (Korea, Republic of)

    1995-09-15

    Purpose : The aim of this study is to analyze the survival rate, treatment failure and complication of radiation therapy alone in stage III uterine cervical cancer. Materials and Methods : From January 1980 through December 1985, 227 patients with stage II uterine cervical cancer treated with radiation therapy at Kosin Medical Center were retrospectively studied. Among 227 patients, 72 patients(31.7%) were stage IIIa, and 155 patients(68.3%) were stage IIIb according to FIGO classification. Age distribution was 32-71 years(median: 62 years). Sixty nine patients(95.8%) in stage IIIa and 150 patients(96.8%) in stage IIIb were squamous cell carcinoma. Pelvic lymph node metastasis at initial diagnosis was 8 patients (11.1%) in stage IIIa and 29 patients(18.7%) in stage IIIb. Among 72 patients with stage IIIa, 36 patients(50%) were treated with external radiation therapy alone by conventional technique (180-200 cGy/fr). And 36 patients(50%) were treated with external radiation therapy with intracavitary radiotherapy(ICR) with Cs137 sources, and among 155 patients with stage IIIb, 80 patients(51.6%) were treated with external radiation therapy alone and 75 patients(48.4%) were treated with external radiation therapy with ICR. Total radiation doses of stage IIIa and IIIb were 65-105 Gy(median : 78.5 Gy) and 65-125.5 Gy (median :83.5 Gy). Survival rate was calculated by life-table method. Results : Complete response rates were 58.3% (42 patients) in state IIIa and 56.1%(87 patients) in stage Iiib. Overall 5 year survival rates were 57% in stage IIIa and 40% in stage IIIb. Five year survival rates by radiation technique in stage IIIa and IIIb were 64%, 40% in group treated in combination of external radiation and ICR, and 50%, 40% in the group of external radiation therapy alone(P=NS). Five year survival rates by response of radiation therapy in stage IIIa and IIIb were 90%, 66% in responder group, and 10%, 7% in non-responder group (P<0.01). There were statistically no

  10. Radiation therapy of follicular lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, Masahiko; Nakamura, Naoki; Tsubokura, Takuji; Gomi, Koutarou; Yamashita, Takashi [Japanese Foundation for Cancer Research, Tokyo (Japan). Hospital; Shikama, Naoto

    2001-09-01

    The follicular lymphoma, exactly, the cancer of follicular center and germinal center B lymphocytes, is reviewed on its immunological, pathological and genetic diagnoses, epidemiology, clinical symptoms, prognosis factors, therapy and assessment of therapy effects together with respective therapy of follicular small cleaved and follicular mixed small cleaved and large cell lymphoma of grade I, II; and of follicular large cell lymphoma of grade III. The therapy is essentially the radiotherapy combined with chemotherapy and others, of which effect is mainly assessed by CT. In clinical application grade II, III, irradiation of X- and electron rays and their combination is done in a fractionated manner with the maximal dose of around 35 Gy. In clinical disease grade II, III, regimen of irradiation is not fixed. In III, IV, chemotherapy and immunotherapy are major. In recurrence and malignant transformation, there is a report of large dose chemotherapy + whole body irradiation + bone marrow transplantation. (K.H.)

  11. Herpes Zoster infection and radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.; Okazaki, A.; Mitsuhashi, N.; Ito, I.; Niibe, H. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1981-02-01

    Between 1970 and 1979, among 3,320 patients with malignant neoplasms, herpes zoster (HZ) occurred in 54 (1.6%) after radiation therapy. The incidence of HZ infection was increased in patients with epipharyngeal cancer (10.0%), malignant lymphoma (5.7%), ovarial tumor (3.7%) and testicular tumor (3.6%). Most of these patients received extensive radiation therapy along the spinal cord and/or nerve roots. The location of HZ infection was divided as follows; HZ infectious lesion located in the area of (I-A) innervated segment of the irradiated nerve root (75.9%), (I-B) irradiated dermatome (5.6%) and (II) not associated with radiation field (18.5%). In 44 patients of I-A and B, HZ infection developed within a year, particularly in three months (22 cases) after the completion of irradiation. This latent period between completing irradiation and the development of HZ infection was likely to be compatible with the period between radiation therapy and earlier radiation injury. Among 10 patients in Group II, 7 patients developed HZ infection more than a year after radiation therapy. The cumulative survival of these patients except for the patients with malignant lymphoma was 66.7% and so HZ infection was considered to have no prognostic significance.

  12. Surface dose with grids in electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.-H.; Huang, C.-Y.; Lin, J.-P.; Chu, T.-C. E-mail: tcchu@mx.nthu.edu.tw

    2002-03-01

    This investigation attempts to solve the problem of the lack of skin-sparing effect in electron radiation therapy and to increase the tolerance of skin to radiation using the grid technique. Electron grid therapy involves the mounting of a Cerrobend grid in the electron cone. Film dosimetry was employed to measure the relative surface dose and the percentage depth dose profile of electron grid portals. Various grid hole diameters (d=0.45, 1.0, 1.5 cm) and grid hole spacings (s=0.4, 0.2 cm) were considered for electron beams from 6 to 14 MeV. Experimental results indicate that the electron grid technique can reduce the relative surface dose in electron radiation therapy. Degradations of the relative surface dose depend on the percentage of open area in the grid portal. A proper grid design allows the surface dose to be reduced and the range of nonhomogeneous doses to be limited to a depth at which the target volume can receive a homogeneous dose. The grid technique can lower the surface dose in electron radiation therapy.

  13. Technical basis of radiation therapy. Practical clinical applications. 5. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Seymour H. [Karolinska Institutet Stockholm (Sweden). Dept. of Oncol-Pathol; Perez, Carlos A. [Washington Univ. Medical Center, St. Louis, MO (United States). Dept. of Radiation Oncology; Purdy, James A. [California Univ., Sacramento, CA (United States). Dept. of Radiation Oncology; Poortmans, Philip [Institute Verbeeten, Tilburg (Netherlands). Dept. of Radiation Oncology

    2012-07-01

    This well-received book, now in its fifth edition, is unique in providing a detailed description of the technological basis of radiation therapy. Another novel feature is the collaborative writing of the chapters by North American and European authors. This considerably broadens the book's perspective and increases its applicability in daily practice throughout the world. The book is divided into two sections. The first covers basic concepts in treatment planning, including essential physics and biological principles related to time-dose-fractionation, and explains the various technological approaches to radiation therapy, such as intensity-modulated radiation therapy, tomotherapy, stereotactic radiotherapy, and high and low dose rate brachytherapy. Issues relating to quality assurance, technology assessment, and cost-benefit analysis are also reviewed. The second part of the book discusses in depth the practical clinical applications of the different radiation therapy techniques in a wide range of cancer sites. All of the chapters have been written by leaders in the field. This book will serve to instruct and acquaint teachers, students, and practitioners in the various fields of oncology with the basic technological factors and approaches in radiation therapy. (orig.)

  14. Constrictive pericarditis following mediastinal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Coffee, M.A.; Hamman, J.L.

    1977-02-01

    In recent years, an increasing number of patients with neoplastic disease have received aggressive radiation therapy to the mediastinum. Following this therapy as many as 30% of patients develop pericarditis with effusion, which may later severely compromise cardiovascular function because of constriction and/or tamponade. In a retrospective study, Martin et al found either transient or persistent pericardial effusion in 24 of 81 patients with Hodgkin's disease, Stages I-III B, who underwent upper mantle radiation. Five of the 24 patients eventually required pericardiectomy for signs and symptoms of cardiac tamponade. Most of the retrospective studies of heart disease following radiation therapy demonstrate an increased incidence of cardiac involvement following high doses (over 4000 rads) to the mediastinum; however, acute pericarditis, restrictive disease, and even myocardial infarctions have occurred with a total dose of less than 4000 rads.

  15. Radiation therapy in cholangiocellular carcinomas.

    Science.gov (United States)

    Brunner, Thomas B; Seufferlein, Thomas

    2016-08-01

    Cholangiocarcinoma can arise in all parts of the biliary tract and this has implications for therapy. Surgery is the mainstay of therapy however local relapse is a major problem. Therefore, adjuvant treatment with chemoradiotherapy was tested in trials. The SWOG-S0809 trial regimen of chemoradiotherapy which was tested in extrahepatic cholangiocarcinoma and in gallbladder cancer can currently be regarded as highest level of evidence for this indication. In contrast to adjuvant therapy where only conventionally fractionated radiotherapy plays a role, stereotactic body radiotherapy (SBRT) today has become a powerful alternative to chemoradiotherapy for definitive treatment due to the ability to administer higher doses of radiotherapy to improve local control. Sequential combinations with chemotherapy are also frequently employed. Nevertheless, in general cholangiocarcinoma is an orphan disease and future clinical trials will have to improve the available level of evidence.

  16. Eosinophilia following radiation therapy in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Yoshifumi; Hosoya, Ryota; Ohhashi, Tohya; Yamamoto, Keiko; Shiraga, Hiroshi (Saint Luke' s International Hospital, Tokyo (Japan))

    1983-06-01

    Radiation related eosinophilia (R.R.E.) has been observed mainly among the patients who received radiation therapy for uterine cancer, which was said to be the sign of good prognosis. Retrospective study of eosinophilia following radiation therapy was performed in 41 pediatric patients with acute lymphoblastic leukemia, brain tumor and so on. Thirty-two per cent of all courses of radiation therapy was associated with R.R.E.. Eosinophil counts increased gradually from two weeks after the start of therapy and reached to maximun on the 33rd day (mean). R.R.E. was seen much more frequently among the patients with brain tumor than those with ALL. And R.R.E. was also related to radiation dose. Patients under 3 years of age showed R.R.E. less frequently comparing to the older age group. Those findings might mean that R.R.E. was strongly related to the host's immunological function. This is the first report about R.R.E. in childhood.

  17. Respiratory Motion Prediction in Radiation Therapy

    Science.gov (United States)

    Vedam, Sastry

    Active respiratory motion management has received increasing attention in the past decade as a means to reduce the internal margin (IM) component of the clinical target volume (CTV)—planning target volume (PTV) margin typically added around the gross tumor volume (GTV) during radiation therapy of thoracic and abdominal tumors. Engineering and technical developments in linear accelerator design and respiratory motion monitoring respectively have made the delivery of motion adaptive radiation therapy possible through real-time control of either dynamic multileaf collimator (MLC) motion (gantry based linear accelerator design) or robotic arm motion (robotic arm mounted linear accelerator design).

  18. Building immunity to cancer with radiation therapy.

    Science.gov (United States)

    Haikerwal, Suresh J; Hagekyriakou, Jim; MacManus, Michael; Martin, Olga A; Haynes, Nicole M

    2015-11-28

    Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy.

  19. Radiation therapy for resistant sternal hydatid disease

    Energy Technology Data Exchange (ETDEWEB)

    Ulger, S.; Barut, H.; Tunc, M.; Aydinkarahaliloglu, E. [Ataturk Chest Disease and Thorasic Surgery Training and Research Hospital, Ankara (Turkey). Dept. of Radiation Oncology; Aydin, E.; Karaoglanoglu, N. [Ataturk Chest Disease and Thorasic Surgery Training and Research Hospital, Ankara (Turkey). Dept. of Thorasic Surgery; Gokcek, A. [Ataturk Chest Disease and Thorasic Surgery Training and Research Hospital, Ankara (Turkey). Dept. of Radiology

    2013-06-15

    Hydatid disease is a zoonotic infectious disease for which there are known treatment procedures and effective antibiotics; however, there are resistant cases that do not respond to medication or surgery. We report a case diagnosed as hydatid disease of the chest wall and treated with radiation therapy (RT) after medical and surgical therapy had failed. In conclusion, RT represents an alternative treatment modality in resistant cases. (orig.)

  20. Bullous pemphigoid after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Duschet, P.; Schwarz, T.; Gschnait, F.

    1988-02-01

    Electron beam therapy applied to a lymph node metastasis from a squamous cell carcinoma was followed by the development of histologically and immunologically typical bullous pemphigoid, the lesions being initially strictly confined to the irradiation area. This observation suggests that the bullous pemphigoid antigen may be altered or unmasked by electron beam radiotherapy, leading subsequently to the production of autoantibodies. The disease in this case effectively responded to the administration of tetracycline and niacinamide, a therapeutic regimen described recently.

  1. Radiation dermatitis and pneumonitis following breast conserving therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoden, Eisaku; Hiratsuka, Junichi; Imajo, Yoshinari [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    2000-09-01

    We investigated the frequency, degree and risk factors of radiation-induced dermatitis and pneumonitis in 255 patients receiving breast conserving therapy between April 1987 and April 1998. The majority of the patients underwent a wide excision or quadrantectomy with a level I, II axillary dissection, followed by radiotherapy consisting of 50 Gy/25 Fr/5 weeks to the preserved breast with a 4 MV beam by tangentially opposed portals using the half-field technique. Eleven patients received an additional 10 Gy/5 Fr of electron therapy to the tumor bed. Most of the patients developed radiation dermatitis which was limited to reddening or dry desquamation, with the exception of 14 patients with a localized moist reaction. The skin reaction was transient in all patients and improved with conservative treatments. Radiation pneumonitis appeared on chest X-rays in 30 patients, with a slight appearance in 21 and patchy appearance in 9. Three patients presented with persistent symptoms requiring medication. They were treated with steroids, resulting in complete resolution of the symptoms. A large volume of the chest wall within the irradiation field and a large area of irradiated skin were the risk factors of radiation dermatitis. The volume of irradiated lung significantly correlated with the frequency and degree of radiation pneumonitis. It was preferable that the maximum thickness of the involved lung should not exceed 3 cm. Complicated disease, adjuvant therapy and boost irradiation had no impact on the radiation dermatitis or pneumonitis. (author)

  2. Radiation therapy for stage IVA cervical cancer.

    Science.gov (United States)

    Murakami, Naoya; Kasamatsu, Takahiro; Morota, Madoka; Sumi, Minako; Inaba, Koji; Ito, Yoshinori; Itami, Jun

    2013-11-01

    To evaluate the outcome and discover predictive factors for patients with stage IVA cervical cancer treated with definitive radiation therapy. We retrospectively reviewed 34 patients with stage IVA cervical cancer who received definitive radiation therapy between 1992 and 2009. On univariate analysis, statistically significant prognostic factors for improved local control rate (LCR) were absence of pyometra (p=0.037) and equivalent dose in 2 Gy fractions (EQD2) at point A greater than 60 Gy (p=0.023). Prognostic factors for improved progression-free survival (PFS) were absence of pelvic lymph node metastasis at initial presentation (p=0.014), and EQD2 at point A greater than 60 Gy (p=0.023). Patients with stage IVA disease had poor median survival. However adequate radiation dose to point A produced favorable LCR and PFS, therefore efforts should be made to increase the point A dose.

  3. Radiation therapy of Graves' ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Toshiki; Koga, Sukehiko; Anno, Hirofumi; Komai, Satoshi (Fujita-Gakuen Health Univ., Toyoake, Aichi (Japan))

    1992-01-01

    During the decade from 1978 to 1987, 20 patients with Graves' ophthalmopathy were treated with irradiation of 2000 cGy to the orbital tissue. We examined the effects of the therapy on 17 such patients. Exophthalmos tended to decrease. When the degree of deviation of the exophthalmic eye was small, the effect of therapy tended to be better than when it was large. Two cases that showed an increase in retrobulbar fatty tissue without thickening of the extraocular muscles did not respond as well as those that had thickening of the extraocular muscles. Diplopia tended to improve both subjectively and objectively. Ocular movement improved in 11 of the 17 patients. There were no serious radiation injuries after the radiation therapy, except for some transient swelling of the eyelid. (author).

  4. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Sharon [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); Back, Michael [Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun [National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore); Lu, Jaide Jay, E-mail: mdcljj@nus.edu.sg [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore)

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  5. The concept and evolution of involved site radiation therapy for lymphoma

    DEFF Research Database (Denmark)

    Specht, Lena; Yahalom, Joachim

    2015-01-01

    We describe the development of radiation therapy for lymphoma from extended field radiotherapy of the past to modern conformal treatment with involved site radiation therapy based on advanced imaging, three-dimensional treatment planning and advanced treatment delivery techniques. Today, radiatio...

  6. Protection Strategy of Sensitive Body Organs in Radiation Therapy

    CERN Document Server

    Abolfath, Ramin M

    2009-01-01

    In this paper, we investigate protection strategies of sensitive body anatomy against the irradiation to the cancerous moving tumors in intensity modulated radiation therapy. Inspired by optimization techniques developed in statistical physics and dynamical systems, we deploy a method based on variational principles and formulate an efficient genetic algorithm which enable us to search for global minima in a complex landscape of irradiation dose delivered to the radiosensitive organs at risk. We take advantage of the internal motion of body anatomy during radiation therapy to reduce the unintentional delivery of the radiation to sensitive organs. We show that the accurate optimization of the control parameters, compare to the conventional IMRT and widely used delivery based on static anatomy assumption, leads to a significant reduction of the dose delivered to the organs at risk.

  7. Radiation Therapy -- What It Is, How It Helps

    Science.gov (United States)

    ... Types Radiation Therapy EASY READING Radiation Therapy -- What It Is, How It Helps This easy-to-read guide offers a ... Imagine a world free from cancer. Help make it a reality. DONATE Cancer Information Cancer Prevention & Detection ...

  8. Migratory organizing pneumonitis `primed` by radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, J.Y.; Nesme, P.; Guerin, J.C. [Hopital de la Croix Rousse, Service de Pneumologie, Lyon (France); Bejui-Thivolet, F. [Hopital de la Croix Rousse, Laboratorie d`Anatomopatologie, Lyon (France); Loire, R. [Hopital Cardiovasculaire et Pneumologique, Universite Claude Bernard, Laboratoire d`Anatomopathologie, Lyon (France); Cordier, J.F. [Hopital Cardiovasculaire et Pneumologique, Universite Claude Bernard, Service de Pneumologie, Lyon (France)

    1995-02-01

    We report on two women presenting with cough and fever, 4 and 7 months, respectively, after starting breast radiation therapy following surgery for breast carcinoma. Chest roentgenogram and computed tomographic (CT) scan demonstrated alveolar opacities, initially limited to the pulmonary area next to the irradiated breast, but later migrating within both lungs. Intra-alveolar granulation tissue was found in transbronchial lung biopsies. Corticosteroid treatment resulted in dramatic clinical improvment, together with complete clearing of the pulmonary opacities on chest imaging. However, clinical and imaging relapses occurred when corticosteroids were withdrawn too rapidly; with further improvment when they were reintroduced. The reported cases clearly differ from radiation pneumonitis. They were fairly typical of cryptogenic organizing pneumonitis, also called idiopathic bronchiolitis obliterans organizing pneumonia, with the exception of the radiation therapy, partially affecting the lung, which had been performed within the previous months. Since focal radiation therapy involving the lung may induce diffuse bilateral lymphocytic alveolitis, we hypothesize that this may `prime` the lung to further injury, leading to cryptogenic organizing pneumonitis. (au) (26 refs.).

  9. Role of radiation dating technique - one example

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shigueo [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Etchevarne, Carlos A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Filosofia e Ciencias Humanas. Dept. Antropologia e Etnologia; Cano, Nilo F.; Munita, C.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-07-01

    Full text: The great majority of archaeological or geological dating technique is based on radiation effect. The so called radioactivity method uses radioactive decays of elements. This is the case of the well known radiocarbon or carbon-14 method. Also the method of relating daughter nucleus to decaying nucleus, as in K-40/Ar-40, Th- 230/U-234, etc. Here we will concentrate in the method based on energy deposition in a solid by radiation from the disintegration of U-series and Th-series. {beta}-rays emitted by the decay of K-40 into Ca-40 (80%) and Ar-40 (11%) also contributes. The role of {alpha}, {beta} and {gamma} radiation emitted by radionuclides in the U-238 and Th-232 series and of {beta} rays from the decay of K-40, all of them in the soil irradiate anything in their course. For dating, we can have sediments as well as potteries produced by ancient people and became buried. The important process consists in transferring a fraction of the energy of radiation to the solid, mainly liberating electrons from valence band to conduction band and from there to traps. In many case the energy of the radiation is used to create defects which in turn create energy levels (traps) in the forbidden gap (or energy gap). There are three ways to recover the energy stored in the solid: (1) by emission of light optically stimulated (OSL), (2) by emission of light thermally stimulated (TL), (3) by microwave absorption (EPR or ESR). Using these techniques among several applications, we will present one to find the first settlers in the northeaster region of Brazil. (author)

  10. Protection Strategy of Sensitive Body Organs in Radiation Therapy

    OpenAIRE

    Abolfath, Ramin M.; Papiez, Lech

    2009-01-01

    In this paper, we investigate protection strategies of sensitive body anatomy against the irradiation to the cancerous moving tumors in intensity modulated radiation therapy. Inspired by optimization techniques developed in statistical physics and dynamical systems, we deploy a method based on variational principles and formulate an efficient genetic algorithm which enable us to search for global minima in a complex landscape of irradiation dose delivered to the radiosensitive organs at risk....

  11. External and internal radiation therapy: Past and future directions

    Directory of Open Access Journals (Sweden)

    Sadeghi Mahdi

    2010-01-01

    Full Text Available Cancer is a leading cause of morbidity and mortality in the modern world. Treatment modalities comprise radiation therapy, surgery, chemotherapy and hormonal therapy. Radiation therapy can be performed by using external or internal radiation therapy. However, each method has its unique properties which undertakes special role in cancer treatment, this question is brought up that: For cancer treatment, whether external radiation therapy is more efficient or internal radiation therapy one? To answer this question, we need to consider principles and structure of individual methods. In this review, principles and application of each method are considered and finally these two methods are compared with each other.

  12. Comparison of particle-radiation-therapy modalities

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P.

    1981-01-01

    The characteristics of dose distribution, beam alignment, and radiobiological advantages accorded to high LET radiation were reviewed and compared for various particle beam radiotherapeutic modalities (neutron, Auger electrons, p, ..pi../sup -/, He, C, Ne, and Ar ions). Merit factors were evaluated on the basis of effective dose to tumor relative to normal tissue, linear energy transfer (LET), and dose localization, at depths of 1, 4, and 10 cm. In general, it was found that neutron capture therapy using an epithermal neutron beam provided the best merit factors available for depths up to 8 cm. The position of fast neutron therapy on the Merit Factor Tables was consistently lower than that of other particle modalities, and above only /sup 60/Co. The largest body of clinical data exists for fast neutron therapy; results are considered by some to be encouraging. It then follows that if benefits with fast neutron therapy are real, additional gains are within reach with other modalities.

  13. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... operator to administer gamma radiation therapy, with the radiation source located at a distance from the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide radiation therapy system. 892.5750... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation...

  14. Radiation Therapy in Elderly Skin Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2008-06-15

    To evaluate the long term results (local control, survival, failure, and complications) after radiation therapy for skin cancer in elderly patients. The study spanned from January 1990 to October 2002. Fifteen elderly patients with skin cancer were treated by radiotherapy at the Keimyung University Dongsan Medical Center. The age distribution of the patients surveyed was 72 to 95 years, with a median age of 78.8 years. The pathologic classification of the 15 patients included squamous cell carcinoma (10 patients), basal cell carcinoma (3 patients), verrucous carcinoma (1 patient) and skin adnexal origin carcinoma (1 patient). The most common tumor location was the head (13 patients). The mean tumor diameter was 4.9 cm (range 2 to 9 cm). The radiation dose was delivered via an electron beam of 6 to 15 MeV. The dose range was adjusted to the tumor diameter and depth of tumor invasion. The total radiation dose ranged from 50{approx}80 Gy (mean: 66 Gy) with a 2 Gy fractional dose prescribed to the 80% isodose line once a day and 5 times a week. One patient with lymph node metastasis was treated with six MV photon beams boosted with electron beams. The length of the follow-up periods ranged from 10 to 120 months with a median follow-up period of 48 months. The local control rates were 100% (15/15). In addition, the five year disease free survival rate (5YDFS) was 80% and twelve patients (80%) had no recurrence and skin cancer recurrence occurred in 3 patients (20%). Three patients have lived an average of 90 months (68{approx}120 months) without recurrence or metastasis. A total of 9 patients who died as a result of other causes had a mean survival time of 55.8 months after radiation therapy. No severe acute or chronic complications were observed after radiation therapy. Only minor complications including radiation dermatitis was treated with supportive care. The results suggest that radiation therapy is an effective and safe treatment method for the treatment of skin

  15. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham [Andrew Love Cancer Centre, Geelong Hospital, Geelong, Victoria (Australia)

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  16. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    Directory of Open Access Journals (Sweden)

    Daniel R. Cooper

    2014-10-01

    Full Text Available Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79. However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  17. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    Science.gov (United States)

    Cooper, Daniel; Bekah, Devesh; Nadeau, Jay

    2014-10-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  18. Deformable image registration in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jong; Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2017-06-15

    The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

  19. The value of radiation therapy for pituitary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Tsutomu [Dokkyo Univ., Mibu, Tochigi (Japan). School of Medicine

    1995-09-01

    Following points are discussed in this review. (1) Historical review of our previous therapeutic management. (2) Classification of pituitary adenomas. (3) Clinical analysis of my recent 58 cases. (4) Verification of usefulness of postoperative irradiation which achieved to increase in local control rate. (5) Authoritativeness of radiotherapy. In general, 3 to 4 portal technique or arc therapy were employed. The lateral opposing field technique was avoid to use. The recommended doses using linear accelerator x-ray technique is approximately 5000 cGy in 5 weeks. To prevent radiation hazard; (1) examiner should not use technique of two opposed fields, (2) total doses should not exceed 5000 cGy in 5 to 6 weeks and the use of daily fractions should not exceed 200 cGy. (6) Correlation of hormone secreting tumors and radiation therapy. (7) Problem of radiosurgery and heavy particle. (8) Countermeasure for recurrence cases. (9) Problem of side effects of radiotherapy and its precaution. Complication of radiation for pituitary adenoma found that the significant side effects are negligibly small in recent years. (10) Pituitary tumor are originally slow growing and benign tumor, therefore the response to irradiation takes long time to elapse for final evaluation. For instance, over 80 to 90% of acromegaly patients respond HGH successfully, but this may require from one to several years. (11) Conclusion. (author).

  20. Chronic neuroendocrinological sequelae of radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sklar, C.A. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Constine, L.S. [Univ. of Rochester Medical Center, Rochester, NY (United States)

    1995-03-30

    A variety of neuroendocrine disturbances are observed following treatment with external radiation therapy when the hypothalamic-pituitary axis (HPA) is included in the treatment field. Radiation-induced abnormalities are generally dose dependent and may develop many years after irradiation. Growth hormone deficiency and premature sexual development can occur following doses as low as 18 Gy fractionated radiation and are the most common neuroendocrine problems noted in children. Deficiency of gonadotropins, thyroid stimulating hormone, and adrenocorticotropin are seen primarily in individuals treated with > 40 Gy HPA irradiation. Hyperprolactinemia can be seen following high-dose radiotherapy (>40 Gy), especially among young women. Most neuroendocrine disturbances that develop as a result of HPA irradiation are treatable; patients at risk require long-term endocrine follow-up. 23 refs., 6 figs., 2 tabs.

  1. Cone positioning device for oral radiation therapy.

    Science.gov (United States)

    Mahanna, G K; Ivanhoe, J R; Attanasio, R A

    1994-06-01

    This article describes the fabrication and modification of a peroral cone-positioning device. The modification provides added cone stability and prevents tongue intrusion into the radiation field. This device provides a repeatable accurate cone/lesion relationship and the fabrication technique is simplified, accurate, and minimizes patient discomfort.

  2. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y., E-mail: prezado@imnc.in2p3.fr [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406 (France); Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N. [Institut Curie - Centre de Protonthérapie d’Orsay, Campus Universitaire, Bât. 101, Orsay 91898 (France)

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  3. Radiation therapy for unresected gastric lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Masaaki; Kawamura, Masashi; Kimura, Yoshiko; Itoh, Hisao; Tsuda, Takaharu; Komatsu, Akira; Hamamoto, Ken (Ehime Univ., Ehime (Japan). School of Medicine)

    1990-05-01

    Six consecutive patients with unresected gastric lymphoma which were treated by radiation therapy between November 1976 and March 1989 were reviewed. Radiation therapy was performed using involved fields, total radiation dosages of which ranged from 25.2 to 36 Gy (mean, 29.3 Gy). Five out of the 6 patients were treated with chemotherapy combined with radiation. Regimen of the chemotherapy was CHOP (cyclophophamide, adriamycin, vincristine and prednisone) in most cases. Three out of the 6 underwent probe laparotomy, but the tumors were diagnosed as unresectable due to locally invading the adjacent structures. They were treated by chemo-radiotherapy and 2 of them are surviving as of the present study (40 and 116 months). The other 3 patients were diagnosed as with clinical stage IV disease and 2 of them were successfully treated with chemo-radiotherapy (21 and 66 months, surviving). These data suggest that unresected gastric lymphomas, which are locally advanced or stage IV disease, are treated by chemo-radiotherapy with high curability without any serious complications. (author).

  4. Development of a Fast and Highly Efficient Gas Ionization Chamber For Patient Imaging and Dosimetry in Radiation Therapy

    CERN Document Server

    Hinderler, R; Keller, H; Mackie, T R

    2003-01-01

    In radiation therapy of cancer, more accurate delivery techniques spur the need for improved patient imaging during treatment. To this purpose, the megavoltage radiation protocol that is used for treatment is also used for imaging.

  5. Development of Fast and Highly Efficient Gas Ionization Chamber For Patient Imaging and Dosimetry in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    R. Hinderler; H. Keller; T.R. Mackie; M.L. Corradini

    2003-09-08

    In radiation therapy of cancer, more accurate delivery techniques spur the need for improved patient imaging during treatment. To this purpose, the megavoltage radiation protocol that is used for treatment is also used for imaging.

  6. Radiation therapy of psoriasis and parapsoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Wiskemann, A.

    1982-09-15

    Selective UV-Phototherapy with lambda 300-320 nm (SUP) as well as oral photochemotherapy with 8-methoxy-psoralen plus UVA-radiation (PUVA intern) are very effective in clearing the lesions of the generalized psoriasis and those of the chronic forms of parapsoriasis. Being treated with 4 suberythemal doses per week psoriasis patients are free or nearly free of symptoms after averagely 6.3 weeks of SUP-therapy or after 5.3 weeks of PUVA orally. The PUVA-therapy is mainly indicated in pustular, inverse and erythrodermic psoriasis as well as in parapsoriasis en plaques and variegata. In all other forms of psoriasis and in pityriasis lichenoides-chronica, we prefer the SUP-therapy because of less acute or chronic side effects, and because of its better practicability. X-rays are indicated in psoriais of nails, grenz-rays in superficial psoriatic lesions of the face, the armpits, the genitals and the anal region.

  7. Clinical experience of radiation therapy for Graves` ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takeo; Mitsuhashi, Norio; Nagashima, Hisako; Sakurai, Hideyuki; Murata, Osamu; Ishizeki, Kei; Shimaya, Sanae; Hayakawa, Kazushige; Niibe, Hideo [Gunma Univ., Maebashi (Japan). School of Medicine

    1996-11-01

    The effect of radiation therapy for Graves` ophthalmopathy was evaluated. Ten patients with Graves` ophthalmopathy were treated with radiation therapy between 1992 and 1993 in Gunma University Hospital. All patients had a past history of hyperthyroidism and received 2,000 cGy to the retrobulbar tissues in 20 fractions. Nine of ten patients were treated with radiation therapy after the failure of corticosteroids. Six patients (60%) showed good or excellent responses. The exophthalmos type was more responsive to radiation therapy than the double vision type in this series. Two of five patients with the exophthalmos type demonstrated excellent responses, and their symptoms disappeared almost completely. The improvement of symptoms appeared within 3-6 months, and obvious clinical effects were demonstrated after 6 months of radiotherapy. Radiation therapy was well tolerated, and we have not observed any side effects of radiation therapy. In conclusion, radiation therapy is effective treatment for Graves` ophthalmopathy. (author)

  8. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    Energy Technology Data Exchange (ETDEWEB)

    Orton, C [Wayne State University, Grosse Pointe, MI (United States); Borras, C [Radiological Physics and Health Services, Washington, DC (United States); Carlson, D [Yale University School of Medicine, New Haven, CT (United States)

    2014-06-15

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protection will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples of how

  9. Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seo-Hyun; Nam, Jae-Kyung; Jang, Junho; Lee, Hae-June, E-mail: hjlee@kcch.re.kr; Lee, Yoon-Jin, E-mail: yjlee8@kcch.re.kr

    2015-06-26

    Radiotherapy is a widely used treatment for many tumors. Combination therapy using anti-angiogenic agents and radiation has shown promise; however, these combined therapies are reported to have many limitations in clinical trials. Here, we show that radiation transformed tumor endothelial cells (ECs) to fibroblasts, resulting in reduced vascular endothelial growth factor (VEGF) response and increased Snail1, Twist1, Type I collagen, and transforming growth factor (TGF)-β release. Irradiation of radioresistant Lewis lung carcinoma (LLC) tumors greater than 250 mm{sup 3} increased collagen levels, particularly in large tumor vessels. Furthermore, concomitant sunitinib therapy did not show a significant difference in tumor inhibition versus radiation alone. Thus, we evaluated multimodal therapy that combined pirfenidone, an inhibitor of TGF-induced collagen production, with radiation and sunitinib treatment. This trimodal therapy significantly reduced tumor growth, as compared to radiation alone. Immunohistochemical analysis revealed that radiation-induced collagen deposition and tumor microvessel density were significantly reduced with trimodal therapy, as compared to radiation alone. These data suggest that combined therapy using pirfenidone may modulate the radiation-altered tumor microenvironment, thereby enhancing the efficacy of radiation therapy and concurrent chemotherapy. - Highlights: • Radiation changes tumor endothelial cells to fibroblasts. • Radio-resistant tumors contain collagen deposits, especially in tumor vessels. • Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy. • Pirfenidone reduces radiation-induced collagen deposits in tumors.

  10. Salvage interstitial brachytherapy based on computed tomography for recurrent cervical cancer after radical hysterectomy and adjuvant radiation therapy: case presentations and introduction of the technique.

    Science.gov (United States)

    Liu, Zhong-Shan; Guo, Jie; Zhao, Yang-Zhi; Lin, Xia; Chen, Bin; Zhang, Ming; Li, Jiang-Ming; Ren, Xiao-Jun; Zhang, Bing-Ya; Wang, Tie-Jun

    2016-10-01

    Locally recurring cervical cancer after surgery and adjuvant radiotherapy remains a major therapeutic challenge. This paper presents a new therapeutic technique for such patients: interstitial brachytherapy (BT) guided by real-time three-dimensional (3D) computed tomography (CT). Sixteen patients with recurrent cervical cancer after radical surgery and adjuvant external-beam radiotherapy (EBRT) were included in this study. These patients underwent high-dose-rate (HDR) interstitial BT with free-hand placement of metal needles guided by real-time 3D-CT. Six Gy in 6 fractions were prescribed for the high-risk clinical target volume (HR-CTV). D90 and D100 for HR-CTV of BT, and the cumulative D2cc for the bladder, rectum, and sigmoid, including previous EBRT and present BT were analyzed. Treatment-related complications and 3-month tumor-response rates were investigated. The mean D90 value for HR-CTV was 52.5 ± 3.3 Gy. The cumulative D2cc for the bladder, rectum, and sigmoid were 85.6 ± 5.8, 71.6 ± 6.4, and 69.6 ± 5.9 Gy, respectively. The mean number of needles was 6.1 ± 1.5, with an average depth of 3.5 ± 0.9 cm for each application. Interstitial BT was associated with minor complications and passable tumor-response rate. Interstitial BT guided by real-time 3D-CT for recurrent cervical cancer results in good dose-volume histogram (DVH) parameters. The current technique may be clinically feasible. However, long-term clinical outcomes should be further investigated.

  11. Personalized Radiation Therapy (PRT) for Lung Cancer.

    Science.gov (United States)

    Jin, Jian-Yue; Kong, Feng-Ming Spring

    2016-01-01

    This chapter reviews and discusses approaches and strategies of personalized radiation therapy (PRT) for lung cancers at four different levels: (1) clinically established PRT based on a patient's histology, stage, tumor volume and tumor locations; (2) personalized adaptive radiation therapy (RT) based on image response during treatment; (3) PRT based on biomarkers; (4) personalized fractionation schedule. The current RT practice for lung cancer is partially individualized according to tumor histology, stage, size/location, and combination with use of systemic therapy. During-RT PET-CT image guided adaptive treatment is being tested in a multicenter trial. Treatment response detected by the during-RT images may also provide a strategy to further personalize the remaining treatment. Research on biomarker-guided PRT is ongoing. The biomarkers include genomics, proteomics, microRNA, cytokines, metabolomics from tumor and blood samples, and radiomics from PET, CT, SPECT images. Finally, RT fractionation schedule may also be personalized to each individual patient to maximize therapeutic gain. Future PRT should be based on comprehensive considerations of knowledge acquired from all these levels, as well as consideration of the societal value such as cost and effectiveness.

  12. Some computer graphical user interfaces in radiation therapy

    Institute of Scientific and Technical Information of China (English)

    James C L Chow

    2016-01-01

    In this review, five graphical user interfaces(GUIs) used in radiation therapy practices and researches are introduced. They are:(1) the treatment time calculator, superficialx-ray treatment time calculator(SUPCALC) used in the superficial X-ray radiation therapy;(2) the monitor unit calculator, electron monitor unit calculator(EMUC) used in the electron radiation therapy;(3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy(SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy;(4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and(5) the monitor unit calculator, photon beam monitor unit calculator(PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the

  13. Some computer graphical user interfaces in radiation therapy.

    Science.gov (United States)

    Chow, James C L

    2016-03-28

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  14. Modern Radiation Therapy for Primary Cutaneous Lymphomas: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Lena, E-mail: lena.specht@regionh.dk [Departments of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Dabaja, Bouthaina [Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Illidge, Tim [Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, The Christie National Health Service Foundation Trust, Manchester (United Kingdom); Wilson, Lynn D. [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States); Hoppe, Richard T. [Department of Radiation Oncology, Stanford University, Stanford, California (United States)

    2015-05-01

    Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment, either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era.

  15. The Role of Hypofractionated Radiation Therapy with Photons, Protons and Heavy Ions for Treating Extracranial Lesions

    Directory of Open Access Journals (Sweden)

    Aaron Michael Laine

    2016-01-01

    Full Text Available Traditionally, the ability to deliver large doses of ionizing radiation to a tumor has been limited by radiation induced toxicity to normal surrounding tissues. This was the initial impetus for the development of conventionally fractionated radiation therapy, where large volumes of healthy tissue received radiation and were allowed the time to repair the radiation damage. However, advances in radiation delivery techniques and image guidance have allowed for more ablative doses of radiation to be delivered in a very accurate, conformal and safe manner with shortened fractionation schemes. Hypofractionated regimens with photons have already transformed how certain tumor types are treated with radiation therapy. Additionally, hypofractionation is able to deliver a complete course of ablative radiation therapy over a shorter period of time compared to conventional fractionation regimens making treatment more convenient to the patient and potentially more cost-effective. Recently there has been an increased interest in proton therapy because of the potential further improvement in dose distributions achievable due to their unique physical characteristics. Furthermore, with heavier ions the dose conformality is increased and in addition there is potentially a higher biological effectiveness compared to protons and photons. Due to the properties mentioned above, charged particle therapy has already become an attractive modality to further investigate the role of hypofractionation in the treatment of various tumors. This review will discuss the rationale and evolution of hypofractionated radiation therapy, the reported clinical success with initially photon and then charged particle modalities, and further potential implementation into treatment regimens going forward.

  16. Mapping the literature of radiation therapy.

    Science.gov (United States)

    Delwiche, Frances A

    2013-04-01

    This study characterizes the literature of the radiation therapy profession, identifies the journals most frequently cited by authors writing in this discipline, and determines the level of coverage of these journals by major bibliographic indexes. Cited references from three discipline-specific source journals were analyzed according to the Mapping the Literature of Allied Health Project Protocol of the Nursing and Allied Health Resources Section of the Medical Library Association. Bradford's Law of Scattering was applied to all journal references to identify the most frequently cited journal titles. Journal references constituted 77.8% of the total, with books, government documents, Internet sites, and miscellaneous sources making up the remainder. Although a total of 908 journal titles were cited overall, approximately one-third of the journal citations came from just 11 journals. MEDLINE and Scopus provided the most comprehensive indexing of the journal titles in Zones 1 and 2. The source journals were indexed only by CINAHL and Scopus. The knowledgebase of radiation therapy draws heavily from the fields of oncology, radiology, medical physics, and nursing. Discipline-specific publications are not currently well covered by major indexing services, and those wishing to conduct comprehensive literature searches should search multiple resources.

  17. The role of a prone setup in breast radiation therapy

    Directory of Open Access Journals (Sweden)

    Nelly eHuppert

    2011-10-01

    Full Text Available Most patients undergoing breast conservation therapy (BCT receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy (IMRT and image-guided radiation therapy (IGRT have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials.

  18. The role of a prone setup in breast radiation therapy.

    Science.gov (United States)

    Huppert, Nelly; Jozsef, Gabor; Dewyngaert, Keith; Formenti, Silvia Chiara

    2011-01-01

    Most patients undergoing breast conservation therapy receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy and image-guided radiation therapy have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials.

  19. Potential for heavy particle radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.; Phillips, T.L.

    1977-03-01

    Radiation therapy remains one of the major forms of cancer treatment. When x rays are used in radiotherapy, there are large variations in radiation sensitivity among tumors because of the possible differences in the presence of hypoxic but viable tumor cells, differences in reoxygenation during treatment, differences in distribution of the tumor cells in their cell cycle, and differences in repair of sublethal damage. When high-LET particles are used, depending upon the LET distribution, these differences are reduced considerably. Because of these differences between x rays and high-LET particle effects, the high-LET particles may be more effective on tumor cells for a given effect on normal cells. Heavy particles have potential application in improving radiotherapy because of improved dose localization and possible advantages of high-LET particles due to their radiobiological characteristics. Protons, because of their defined range, Bragg peak, and small effects of scattering, have good dose localization characteristics. The use of protons in radiotherapy minimizes the morbidity of radiotherapy treatment and is very effective in treating deep tumors located near vital structures. Fast neutrons have no physical advantages over /sup 60/Co gamma rays but, because of their high-LET component, could be very effective in treating tumors that are resistant to conventional radiations. Negative pions and heavy ions combine some of the advantages of protons and fast neutrons.

  20. Potential for heavy particle radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.; Phillips, T.L.

    1977-03-01

    Radiation therapy remains one of the major forms of cancer treatment. When x rays are used in radiotherapy, there are large variations in radiation sensitivity among tumors because of the possible differences in the presence of hypoxic but viable tumor cells, differences in reoxygenation during treatment, differences in distribution of the tumor cells in their cell cycle, and differences in repair of sublethal damage. When high-LET particles are used, depending upon the LET distribution, these differences are reduced considerably. Because of these differences between x rays and high-LET particle effects, the high-LET particles may be more effective on tumor cells for a given effect on normal cells. Heavy particles have potential application in improving radiotherapy because of improved dose localization and possible advantages of high-LET particles due to their radiobiological characteristics. Protons, because of their defined range, Bragg peak, and small effects of scattering, have good dose localization characteristics. The use of protons in radiotherapy minimizes the morbidity of radiotherapy treatment and is very effective in treating deep tumors located near vital structures. Fast neutrons have no physical advantages over /sup 60/Co gamma rays but, because of their high-LET component, could be very effective in treating tumors that are resistant to conventional radiations. Negative pions and heavy ions combine some of the advantages of protons and fast neutrons.

  1. Head and neck intensity modulated radiation therapy leads to an increase of opportunistic oral pathogens

    NARCIS (Netherlands)

    Schuurhuis, Jennifer M.; Stokman, Monique A.; Witjes, Max J. H.; Langendijk, Johannes A.; van Winkelhoff, Arie J.; Vissink, Arjan; Spijkervet, Frederik K. L.

    2016-01-01

    Objectives: The introduction of intensity modulated radiation therapy (IMRT) has led to new possibilities in the treatment of head and neck cancer (HNC). Limited information is available on how this more advanced radiation technique affects the oral microflora. In a prospective study we assessed the

  2. Tooth extraction by orthodontic force after radiation therapy: report of case

    Energy Technology Data Exchange (ETDEWEB)

    Rodu, B.; Filler, S.J.; Woodfin, G.K.

    1985-12-01

    This report presents a therapeutic approach to orthodontic tooth extraction in a patient at high risk for the development of osteoradionecrosis with conventional techniques. The rationale for this procedure is discussed in detail, combining principles of radiation biology, clinical radiation therapy, and biomechanics of tooth movement.

  3. Radiation pneumonitis after stereotactic radiation therapy for lung cancer

    Institute of Scientific and Technical Information of China (English)

    Hideomi; Yamashita; Wataru; Takahashi; Akihiro; Haga; Keiichi; Nakagawa

    2014-01-01

    Stereotactic body radiation therapy(SBRT)has a locacontrol rate of 95%at 2 years for non-small cell lungcancer(NSCLC)and should improve the prognosis oinoperable patients,elderly patients,and patients withsignificant comorbidities who have early-stage NSCLCThe safety of SBRT is being confirmed in internationalmulti-institutional PhaseⅡtrials for peripheral lungcancer in both inoperable and operable patients,bureports so far have found that SBRT is a safe and effective treatment for early-stage NSCLC and early metastatic lung cancer.Radiation pneumonitis(RP)is oneof the most common toxicities of SBRT.Although mospost-treatment RP is Grade 1 or 2 and either asymptomatic or manageable,a few cases are severe,symptomatic,and there is a risk for mortality.The reportedrates of symptomatic RP after SBRT range from 9%to28%.Being able to predict the risk of RP after SBRT isextremely useful in treatment planning.A dose-effecrelationship has been demonstrated,but suggesteddose-volume factors like mean lung dose,lung V20and/or lung V2.5 differed among the reports.We foundthat patients who present with an interstitial pneumo-nitis shadow on computed tomography scan and high levels of serum Krebs von den Lungen-6 and surfactant protein D have a high rate of severe radiation pneumo-nitis after SBRT.At our institution,lung cancer patients with these risk factors have not received SBRT since 2006,and our rate of severe RP after SBRT has de-creased significantly since then.

  4. 3D measurement of absolute radiation dose in grid therapy

    Energy Technology Data Exchange (ETDEWEB)

    Trapp, J V [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Department of Applied Physics, RMIT University, GPO Box 2476V, Melbourne 3001 (Australia); Warrington, A P [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Partridge, M [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Philps, A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Leach, M O [Cancer Research UK Clinical MR Research Group, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Webb, S [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  5. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    DEFF Research Database (Denmark)

    Appelt, A. L.; Ploen, J.; Vogelius, I. R.

    2013-01-01

    of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from the histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect......Purpose: Preoperative chemoradiation therapy (CRT) is part of the standard treatment of locally advanced rectal cancers. Tumor regression at the time of operation is desirable, but not much is known about the relationship between radiation dose and tumor regression. In the present study we...... estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination...

  6. A Patterns of Care Study of the Various Radiation Therapies for Prostate Cancer among Korean Radiation Oncologists in 2006

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [Keimyung Univ., Daegu (Korea, Republic of); Kim, Jae Sung; Ha, Sung Whan [Seoul National University College of Medicine, Seoul (Korea, Republic of)] (and others)

    2008-06-15

    To conduct a nationwide academic hospital patterns of the practice status and principles of radiotherapy for prostate cancer. The survey will help develop the framework of a database of Korean in Patterns of Case Study. A questionnaire about radiation treatment status and principles was sent to radiation oncologists in charge of prostate cancer treatment at thirteen academic hospitals in Korea. The data was analyzed to find treatment principles among the radiation oncologists when treating prostate cancer. The number of patients with prostate cancer and treated with radiation ranged from 60 to 150 per academic hospital in Seoul City and 10 to 15 outside of Seoul City in 2006. The primary diagnostic methods of prostate cancer included the ultrasound guided biopsy on 6 to 12 prostate sites (mean=9), followed by magnetic resonance imaging and a whole body bone scan. Internal and external immobilizations were used in 61.5% and 76.9%, respectively, with diverse radiation targets. Whole pelvis radiation therapy (dose ranging from 45.0 to 50.4 Gy) was performed in 76.9%, followed by the irradiation of seminal vesicles (54.0{approx}73.8 Gy) in 92.3%. The definitive radiotherapy doses were increased as a function of risk group, but the range of radiation doses was wide (60.0 to 78.5 Gy). Intensity modulated radiation therapy using doses greater than 70 Gy, were performed in 53.8% of academic hospitals. In addition, the simultaneous intra-factional boost (SIB) technique was used in three hospitals; however, the target volume and radiation dose were diverse. Radiation therapy to biochemical recurrence after a radical prostatectomy was performed in 84.6%; however, the radiation dose was variable and the radiation field ranged from whole pelvis to prostate bed. The results of this study suggest that a nationwide Korean Patterns of Care Study is necessary for the recommendation of radiation therapy guidelines of prostate cancer.

  7. 脊柱转移瘤放射治疗的研究进展%Radiation therapy of spine metastasis

    Institute of Scientific and Technical Information of China (English)

    蒋伟刚; 刘耀升; 刘蜀彬

    2015-01-01

    With longer survival time of cancer patients, spine metastasis is of growing importance. Management of spine metastasis is quite complicated. Advances in research, surgical techniques and radiosurgical implementation have altered drastically the treatment paradigm for spine metastasis. At present, multi-disciplinary therapy including orthopedics, oncology, radiation oncology, neurosurgery and other disciplines are recommended. Radiation therapy has been proven effective to relieve the pain of spinal metastases. In patients with severe spinal metastases, who is unfavorable for operation, radiotherapy is preferred. Radiation therapy can be used alone or combined with chemotherapy and surgery. Stereotactic radiotherapy makes up for the deficiency of the traditional radiation therapy, giving maximum radiation dose to tumors on the premise of suitable surrounding organ tolerance. Traditional external radiation therapy, brachytherapy, intensity-modulated radiotherapy, stereotactic radiotherapy are commonly used. Radiation therapy of spinal metastases will be reviewed in this paper.

  8. Combination Adriamycin and radiation therapy in gynecologic cancers

    Energy Technology Data Exchange (ETDEWEB)

    Watring, W.G.; Byfield, J.E.; Lagasse, L.D.; Lee, Y.D.; Juillard, G.; Jacobs, M.; Smith, M.L.

    1974-12-01

    Anthracyclic antibiotics, of which adriamycin is representative, have the ability to bind to cellular DNA and thereby interfere with the X ray repair process. When radiation survival curves of tissue cultures were studied, increased cell-killing was noted in those cultures with adriamycin over those without the drug. The mechanism by which this occurs may be related to a reduced rate of DNA strand break rejoining, as demonstrated by use of alkaline sucrose gradient techniques. A preliminary clinical Phase I study, in which patients with advanced gynecologic malignancy were treated by simultaneous adriamycin and X radiation, suggests that combined therapy is well-tolerated, and that such combinations may prove useful in selected patients.

  9. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy

    Directory of Open Access Journals (Sweden)

    Mohammad Eftekhari

    2015-01-01

    Full Text Available Objective(s: Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right–sided cancer. Methods: To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. Results: A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed and 36 patients with right-sided cancer (controls] were enrolled. Dose-volume histogram (DVH [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46. In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03 and anterolateral (17.1% versus 2.8%, P=0.049 walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS of>3 was observed in twelve cases (34.3%, while in five of the controls (13.9%,(Odds ratio=1.3. There was no significant difference between the groups regarding left ventricular ejection fraction. Conclusion: The risk of radiation induced myocardial

  10. Updates in outcomes of stereotactic radiation therapy in acromegaly.

    Science.gov (United States)

    Gheorghiu, Monica Livia

    2017-02-01

    Purpose Treatment of acromegaly has undergone important progress in the last 20 years mainly due to the development of new medical options and advances in surgical techniques. Pituitary surgery is usually first-line therapy, and medical treatment is indicated for persistent disease, while radiation (RT) is often used as third-line therapy. The benefits of RT (tumor volume control and decreased hormonal secretion) are hampered by the long latency of the effect and the high risk of adverse effects. Stereotactic RT methods have been developed with the aim to provide more precise targeting of the tumor with better control of the radiation dose received by the adjacent brain structures. The purpose of this review is to present the updates in the efficacy and safety of pituitary RT in acromegalic patients, with an emphasis on the new stereotactic radiation techniques. Methods A systematic review was performed using PubMed and articles/abstracts and reviews detailing RT in acromegaly from 2000 to 2016 were included. Results Stereotactic radiosurgery and fractionated stereotactic RT (FSRT) for patients with persistent active acromegaly after surgery and/or during medical therapy provide comparable high rates of tumor control, i.e. stable or decrease in size of the tumor in 93-100% of patients at 5-10 years and endocrinological remission in 40-60% of patients at 5 years. Hypofractionated RT is an optimal option for tumors located near the optic structures, due to its lower toxicity for the optic nerves compared to single-dose radiosurgery. The rate of new hypopituitarism varies from 10 to 50% at 5 years and increases with the duration of follow-up. The risk for other radiation-induced complications is usually low (0-5% for new visual deficits, cranial nerves damage or brain radionecrosis and 0-1% for secondary brain tumors) and risk of stroke may be higher in FSRT. Conclusion Although the use of radiotherapy in patients with acromegaly has decreased with advances in

  11. Novel Silicon Devices for Radiation Therapy Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzi, Mara, E-mail: mara.bruzzi@unifi.it

    2016-02-11

    Modern radiotherapy techniques pose specific constraints in radiation-monitoring and dosimetry due to the occurrence of small radiation fields with high dose gradients, variation in space and time of the dose rate, variation in space and time of the beam energy spectrum. Novel devices coping with these strict conditions are needed. This paper reviews the most advanced technologies developed with silicon-based materials for clinical radiotherapy. Novel Si diodes as Pt-doped Si, epitaxial Si as well as thin devices have optimized performance, their response being independent of the accumulated dose, thus ensuring radiation tolerance and no need of recalibration. Monolithic devices based on segmented Si detectors can be easily tailored to optimize spatial resolution in the large active areas required in clinical radiotherapy. In particular, a monolithic device based on epitaxial p-type silicon, characterized by high spatial resolution and ability to directly measure temporal variations in dose modulation proved to be best viable solution for pre-treatment verifications in IMRT fields.

  12. Clinical results of radiation therapy for thymoma

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro; Ono, Koji; Hiraoka, Masahiro; Sasai, Keisuke; Kitakabu, Yoshizumi; Abe, Mitsuyuki (Kyoto Univ. (Japan). Faculty of Medicine); Takahashi, Masaji; Tsutsui, Kazushige; Fushiki, Masato

    1992-05-01

    From August 1968 to December 1989, 58 patients with thymoma were treated by radiotherapy using cobalt-60 gamma ray. Eleven cases were treated by radiothrapy alone, 1 by preoperative radiotheapy, 43 by postoperative radiotherapy, and 3 in combination with intraoperative radiotherapy. The following points were clarified: (a) Postoperative and intraoperative radiotherapy were effective; (b) For postoperative radiotherapy, operability was the major factor influencing survival and local control, and Stage I and II tumors resected totally or subtotally as well as Stage III tumors resected totally were good indications for such therapy; (c) The patients with complicating myasthenia gravis had a longer survival time and better local control rate than those without it. Radiation pneumonitis was observed in 17 patients, and none of them died of this complication. In all cases in combination with intraoperative radiotherapy, dry desquamation was observed within the irradiated field. (author).

  13. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    Energy Technology Data Exchange (ETDEWEB)

    Osa, Etin-Osa O.; DeWyngaert, Keith [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Roses, Daniel [Department of Surgery, New York University School of Medicine, New York, New York (United States); Speyer, James [Department of Medical Oncology, New York University School of Medicine, New York, New York (United States); Guth, Amber; Axelrod, Deborah [Department of Surgery, New York University School of Medicine, New York, New York (United States); Fenton Kerimian, Maria [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Goldberg, Judith D. [Department of Population Health, New York University School of Medicine, New York, New York (United States); Formenti, Silvia C., E-mail: Silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  14. Severe prostatic calcification after radiation therapy for cancer.

    Science.gov (United States)

    Jones, W A; Miller, E V; Sullivan, L D; Chapman, W H

    1979-06-01

    Severe symptomatic prostatic calcification was seen in 3 patients who had carcinoma of the prostate treated initially with transurethral resection, followed in 2 to 4 weeks by definitive radiation therapy. This complication is probably preventable if an interval of 6 weeks is allowed between transurethral resection of the prostate and radiation therapy.

  15. [Importance of sonotomography in radiation therapy (author's transl)].

    Science.gov (United States)

    Heckemann, R; Quast, U; Glaeser, L; Schmitt, G

    1976-08-01

    Ultrasound tomography provides true scale representation of body contours and organ structures. The image supplies substantial, individual geometrical data, essential for computerized radiation treatment planning. The mehtod is described. Typical planning examples for therapy are demonstrated. The value of follow up sonograms for radiation therapy is described. The limitations of the method are pointed out.

  16. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Lena, E-mail: lena.specht@regionh.dk [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen (Denmark); Yahalom, Joachim [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Illidge, Tim [Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Christie Hospital NHS Trust, Manchester (United Kingdom); Berthelsen, Anne Kiil [Department of Radiation Oncology and PET Centre, Rigshospitalet, University of Copenhagen (Denmark); Constine, Louis S. [Department of Radiation Oncology and Pediatrics, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York (United States); Eich, Hans Theodor [Department of Radiation Oncology, University of Münster (Germany); Girinsky, Theodore [Department of Radiation Oncology, Institut Gustave-Roussy, Villejuif (France); Hoppe, Richard T. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Mauch, Peter [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts (United States); Mikhaeel, N. George [Department of Clinical Oncology and Radiotherapy, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Ng, Andrea [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts (United States)

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  17. Particle fluence measurements by activation technique for radiation damage studies

    CERN Document Server

    León-Florián, E; Furetta, C; Leroy, Claude

    1995-01-01

    High-level radiation environment can produce radiation damage in detectors and their associate electronic components. The establishment of a correlation between damage, irradiation level and absorbed dose requires a precise measurement of the fluence of particles causing the damage. The activation technique is frequently used for performing particle fluence measurements. A review of this technique is presented.

  18. Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials

    Energy Technology Data Exchange (ETDEWEB)

    Cui Yunfeng [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Galvin, James M. [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania (United States); Parker, William [Department of Medical Physics, McGill University Health Center, Montreal, QC (Canada); Breen, Stephen [Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); Yin Fangfang; Cai Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Papiez, Lech S. [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Bednarz, Greg [Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Chen Wenzhou [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Xiao Ying, E-mail: ying.xiao@jefferson.edu [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania (United States)

    2013-01-01

    Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA

  19. Implementation of remote 3-dimensional image guided radiation therapy quality assurance for radiation therapy oncology group clinical trials.

    Science.gov (United States)

    Cui, Yunfeng; Galvin, James M; Parker, William; Breen, Stephen; Yin, Fang-Fang; Cai, Jing; Papiez, Lech S; Li, X Allen; Bednarz, Greg; Chen, Wenzhou; Xiao, Ying

    2013-01-01

    To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. This first experience indicated that remote review for 3D IGRT as part of QA for RTOG clinical trials is feasible and effective

  20. ENVISION, developing motion monitoring techniques for particle therapy

    CERN Multimedia

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the challenge of treating a tumour as it moves due to patient breathing. The ENVISION project is co-funded by the European Commission under FP7 Grant Agreement N. 241851. ENVISION serves as a training platform for the Marie Curie Initial Training Programme ENTERVISION, funded by the European Commission under FP7 Grant Agreement N. 264552. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  1. Occurrence of BOOP outside radiation field after radiation therapy for small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Oida, Kazukiyo [Tenri Hospital, Nara (Japan); Morimatu, Takafumi (and others)

    2001-09-01

    We report a case of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy for small cell lung cancer. A 74-year-old woman received chemotherapy and a total of 60 Gy of radiation therapy to the right hilum and mediastinum for small cell carcinoma of the suprahilar area of the right lung. Radiation pneumonitis developed within the radiation port 3 months after the completion of radiation therapy. She complained of cough and was admitted 7 months after completion of the radiation therapy. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the side contralateral to that receiving the radiation therapy. Bronchoalveolar lavage showed that the total cell count was increased, with a markedly increased percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid improvement of the symptoms and complete resolution of the radiographic abnormalities of the left lung. Although some cases of BOOP following radiation therapy for breast cancer have been reported, none of BOOP after radiation therapy for lung cancer have appeared in the literature. (author)

  2. ROENTGEN: case-based reasoning and radiation therapy planning.

    Science.gov (United States)

    Berger, J.

    1992-01-01

    ROENTGEN is a design assistant for radiation therapy planning which uses case-based reasoning, an artificial intelligence technique. It learns both from specific problem-solving experiences and from direct instruction from the user. The first sort of learning is the normal case-based method of storing problem solutions so that they can be reused. The second sort is necessary because ROENTGEN does not, initially, have an internal model of the physics of its problem domain. This dependence on explicit user instruction brings to the forefront representational questions regarding indexing, failure definition, failure explanation and repair. This paper presents the techniques used by ROENTGEN in its knowledge acquisition and design activities. PMID:1482869

  3. Development of system technology for radiation cancer therapy with the dexterous auto lesions tracking

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungho; Jeong, Kyungmin; Jung, Seungho; Lee, Namho; and others

    2013-01-15

    The project objectives are to establish the fundamental core technologies for precise auto lesions tracking radiation cancer therapy and developing related system technology as well. Radiation cancer therapy apparatus should be domestically produced to reduce medical expenses, hence advanced technologies are suggested and developed to make cost down medical expenses and save expenditure for importing 10 million dollars/set from overseas. To achieve these targets, we have carried out reviewing of domestic and foreign technology trend. Based on review of state-of-the-art technology, radiation sensory system is studied. 3m high precise image processing technique and intelligent therapy planning software are developed. Also precedent study on the redundant robot for dexterous motion control system has been performed for developing of radiation cancel therapy robot system.

  4. The role of Cobalt-60 in modern radiation therapy: Dose delivery and image guidance

    Directory of Open Access Journals (Sweden)

    Schreiner L

    2009-01-01

    Full Text Available The advances in modern radiation therapy with techniques such as intensity-modulated radiation therapy and image-guid-ed radiation therapy (IMRT and IGRT have been limited almost exclusively to linear accel-erators. Investigations of modern Cobalt-60 (Co-60 radiation delivery in the context of IMRT and IGRT have been very sparse, and have been limited mainly to computer-modeling and treatment-planning exercises. In this paper, we report on the results of experiments using a tomotherapy benchtop apparatus attached to a conventional Co-60 unit. We show that conformal dose delivery is possible and also that Co-60 can be used as the radiation source in megavoltage computed tomography imaging. These results complement our modeling studies of Co-60 tomotherapy and provide a strong motivation for continuing development of modern Cobalt-60 treatment devices.

  5. Radiation Therapy for Chloroma (Granulocytic Sarcoma)

    Energy Technology Data Exchange (ETDEWEB)

    Bakst, Richard; Wolden, Suzanne [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yahalom, Joachim, E-mail: yahalomj@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-04-01

    Objectives: Chloroma (granulocytic sarcoma) is a rare, extramedullary tumor of immature myeloid cells related to acute nonlymphocytic leukemia or myelodysplastic syndrome. Radiation therapy (RT) is often used in the treatment of chloromas; however, modern studies of RT are lacking. We reviewed our experience to analyze treatment response, disease control, and toxicity associated with RT to develop treatment algorithm recommendations for patients with chloroma. Patients and Methods: Thirty-eight patients who underwent treatment for chloromas at our institution between February 1990 and June 2010 were identified and their medical records were reviewed and analyzed. Results: The majority of patients that presented with chloroma at the time of initial leukemia diagnosis (78%) have not received RT because it regressed after initial chemotherapy. Yet most patients that relapsed or remained with chloroma after chemotherapy are in the RT cohort (90%). Thirty-three courses of RT were administered to 22 patients. Radiation subsite breakdown was: 39% head and neck, 24% extremity, 9% spine, 9% brain, 6% genitourinary, 6% breast, 3% pelvis, and 3% genitourinary. Median dose was 20 (6-36) Gy. Kaplan-Meier estimates of progression-free survival and overall survival in the RT cohort were 39% and 43%, respectively, at 5 years. At a median follow-up of 11 months since RT, only 1 patient developed progressive disease at the irradiated site and 4 patients developed chloromas at other sites. RT was well tolerated without significant acute or late effects and provided symptom relief in 95% of cases. Conclusions: The majority of patients with chloromas were referred for RT when there was extramedullary progression, marrow relapse, or rapid symptom relief required. RT resulted in excellent local disease control and palliation of symptoms without significant toxicity. We recommend irradiating chloromas to at least 20 Gy, and propose 24 Gy in 12 fractions as an appropriate regimen.

  6. Scatter factors assessment in microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y.; Martinez-Rovira, I.; Sanchez, M. [Laboratoire Imagerie et Modelisation en Neurobiologie et Cancerologie IMNC-UMR 8165, Centre National de la Recherche Scientifique (CNRS), Campus Universitaire, Bat. 440, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, E-08028 Barcelona (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, B.P. 220, 38043 Grenoble Cedex (France); Servicio de Radiofisica, Complejo Hospitalario de Santiago de Compostela, Rua Choupana S/N, 15706 Santiago de Compostela (Spain)

    2012-03-15

    Purpose: The success of the preclinical studies in Microbeam Radiation Therapy (MRT) paved the way to the clinical trials under preparation at the Biomedical Beamline of the European Synchrotron Radiation Facility. Within this framework, an accurate determination of the deposited dose is crucial. With that aim, the scatter factors, which translate the absolute dose measured in reference conditions (2 x 2 cm{sup 2} field size at 2 cm-depth in water) to peak doses, were assessed. Methods: Monte Carlo (MC) simulations were performed with two different widely used codes, PENELOPE and GEANT4, for the sake of safety. The scatter factors were obtained as the ratio of the doses that are deposited by a microbeam and by a field of reference size, at the reference depth. The calculated values were compared with the experimental data obtained by radiochromic (ISP HD-810) films and a PTW 34070 large area chamber. Results: The scatter factors for different microbeam field sizes assessed by the two MC codes were in agreement and reproduced the experimental data within uncertainty bars. Those correction factors were shown to be non-negligible for the future MRT clinical settings: an average 30% lower dose was deposited by a 50 {mu}m microbeam with respect to the reference conditions. Conclusions: For the first time, the scatter factors in MRT were systematically studied. They constitute an essential key to deposit accurate doses in the forthcoming clinical trials in MRT. The good agreement between the different calculations and the experimental data confirms the reliability of this challenging micrometric dose estimation.

  7. Arc binary intensity modulated radiation therapy (AB IMRT)

    Science.gov (United States)

    Yang, Jun

    The state of the art Intensity Modulate Radiation Therapy (IMRT) has been one of the most significant breakthroughs in the cancer treatment in the past 30 years. There are two types of IMRT systems. The first system is the binary-based tomotherapy, represented by the Peacock (Nomos Corp) and Tomo unit (TomoTherapy Inc.), adopting specific binary collimator leafs to deliver intensity modulated radiation fields in a serial or helical fashion. The other uses the conventional dynamic multileaf collimator (MLC) to deliver intensity modulated fields through a number of gantry positions. The proposed Arc Binary IMRT attempts to deliver Tomo-like IMRT with conventional dynamic MLC and combines the advantages of the two types of IMRT techniques: (1) maximizing the number of pencil beams for better dose optimization, (2) enabling conventional linear accelerator with dynamic MLC to deliver Tomo-like IMRT. In order to deliver IMRT with conventional dynamic MLC in a binary fashion, the slice-by-slice treatment with limited slice thickness has been proposed in the thesis to accommodate the limited MLC traveling speed. Instead of moving the patient to subsequent treatment slices, the proposed method offsets MLC to carry out the whole treatment, slice by slice sequentially, thus avoid patient position error. By denoting one arc pencil beam set as a gene, genetic algorithm (GA) is used as the searching engine for the dose optimization process. The selection of GA parameters is a crucial step and has been studied in depth so that the optimization process will converge with reasonable speed. Several hypothetical and clinical cases have been tested with the proposed IMRT method. The comparison of the dose distribution with other commercially available IMRT systems demonstrates the clear advantage of the new method. The proposed Arc Binary Intensity Modulated Radiation Therapy is not only theoretically sound but practically feasible. The implementation of this method would expand the

  8. Treatment of retinoblastoma by precision megavoltage radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, J.; Peperzeel, H.A. van (Rijksuniversiteit Utrecht (Netherlands). Academisch Ziekenhuis); Tan, K.E.W.P. (Royal Dutch Eye Hospital, Utrecht, Netherlands)

    1985-02-01

    The principal treatment concept in the Utrecht Retinoblastoma Centre is megavoltage irradiation, followed by light coagulation and/or cryotherapy if there is any doubt as to whether the residual tumour is still active. Radiation therapy is administered by means of a simple but highly accurate temporal beam technique. A standardized dose of 45 Gy is given in 15 fractions of 3 Gy at 3 fractions per week. From 1971 to 1982, 39 children with retinoblastoma have been irradiated in at least one eye. Of the 73 affected eyes, 18 were primarily enucleated, one received light coagulation only, and 54 received radiation therapy. Of the 54 irradiated eyes, 32 were additionally treated by light coagulation and/or cryotherapy for suspicious residual tumour (in 29 eyes), recurrent tumour (in 1 eye), and/or new tumour (in 3 eyes) and 10 were ultimately enucleated. Two eyes also received hyperthermia. The percentages of cure of the irradiated eyes with a minimum follow-up of 2 years were 100% (14/14), 100% (9/9), 83% (10/12), 79% (11/14) and 0% (0/5) in the Reese-Ellsworth groups I to V-A, respectively. Of the saved eyes 95% achieved useful vision. Eighteen eyes developed a clinically detectable radiation cataract; in five of these the lens was aspirated. Cataracts developed exclusively in those lenses of which a posterior portion of more than 1 mm had to be included in the treatment field. The likelihood and the degree of cataract formation was found to be directly related to the dose of radiation to the germinative zone of the lens epithelium. The minimum cataractogenic dose found in this series was 8 Gy.

  9. Individual skin care during radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J.S. [Klinik fuer Strahlentherapie (Radioonkologie), Christian-Albrechts-Universitaet Kiel (Germany); Budach, W. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Eberhard-Carls-Universitaet Tuebingen (Germany); Doerr, W. [Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Medizinische Fakultaet Carl Gustav Carus, Dresden (Germany)

    1998-11-01

    Background: In many clinical settings, the irradiated patient feels additional discomfort by the inhibition of washing the treatment portals and interruption of his adapted skin care habits. Material and methods: An analysis of the scientific recommendations as well as an analysis of the skin dose to the irradiated portals has been performed. An individual scheme for skin care under radiation has been developed. Results: A substantial decrease of the skin dose is achieved in many modern radiation techniques. The consequent reduction of severe skin reactions allowed the use of water and mild soaps as has been approved within many radiotherapy departments. This has lead to an individualized concept for skin care under radiation treatment including the allowance of gentle washing. The skin marks may be saved by using highly tolerable adhesive plasters or small tattoo points, if they are not superfluous by using masks or single referee points instead of marks for the field borders. Conclusions: The individualized concept for skin care during radiation may offer improved life quality to the patient and may decrease the acute reactions of the skin at least in some cases. (orig.) [Deutsch] Hintergrund: In vielen klinischen Situationen erfaehrt der bestrahlte Patient zusaetzliche Belastungen durch das frueher ausgesprochene Waschverbot der Bestrahlungsfelder wie auch durch die Unterbrechung seiner langjaehrigen Hygienegewohnheiten. Material und Methoden: Es wurde eine Analyse der wissenschaftlichen Empfehlungen wie auch der heutzutage bei modernen Bestrahlungstechniken auftretenden Hautdosis durchgefuehrt. Ein individuelles Schema zur Pflege der bestrahlten Haut wurde entwickelt. Ergebnisse: Durch eine Verringerung der Hautdosis und damit der Inzidenz schwerer Hautreaktionen bei modernen Bestrahlungstechniken wird mittlerweile in vielen Abteilungen das `Waschverbot` fuer bestrahlte Haut gelockert. Dies hat zu einem individualisierten Hautpflegekonzept unter der Bestrahlung

  10. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Takada, Mitsuaki; Hirata, Toshifumi; Funakoshi, Takashi; Doi, Hidetaka; Yanagawa, Shigeo (Gifu Univ. (Japan). Faculty of Medicine)

    1989-04-01

    Intraoperative radiation therapy (IOR) is an ideal means of exterminating residual tumor after surgical resection. In this study, the clinical results of IOR using a Scanditronix Microtron MM-22 were evaluated in 14 patients with malignant glioma, five of whom had recurrent tumors. Between July, 1985 and October, 1986, 11 patients with glioblastoma multiforme (GB) were irradiated 18 times (mean, 1.6 times/case), and three with astrocytoma (Kernohan grade III) underwent IOR once each. The target-absorbed dose at 1 to 2 cm deeper than the tumor resection surface was 15 to 50 Gy. During irradiation, a cotton bolus was placed in the dead space after over 91% of the tumor had been resected. As a rule, external irradiation therapy was also given postoperatively at a dose of 30 to 52 Gy. One patient died of pneumonia and disseminated intravascular coagulation syndrome 1 month postoperatively. The 1- and 2-year survival rates of the ramaining 13 patients were 84.6% and 61.5%, respectively; among the 10 with GB, they were 80% and 50%. Generally, the smaller the tumor size, the better the results. There were no adverse effects, despite the dose 15 to 50 Gy applied temporally to the tumor bed. IOR was especially effective against small, localized tumors, but was not always beneficial in cases of large tumors, particularly those with a contralateral focus. The improved survival rate in this series demonstrates that IOR is significantly effective in the 'induction of remission' following surgical excision of malignant gliomas. (author).

  11. Palliative Radiation Therapy for Symptomatic Control of Inoperable Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Anatoly Nikolaev

    2016-01-01

    Full Text Available Renal cell carcinoma (RCC is traditionally considered to be resistant to conventional low dose radiation therapy (RT. The emergence of image-guided stereotactic body radiation therapy (SBRT made it possible to deliver much higher doses of radiation. Recent clinical trials of SBRT for RCC showed improvement in local control rates and acceptable toxicity. Here we report a case of inoperable symptomatic RCC that was managed with SBRT. Strikingly, the presenting symptoms of gross hematuria and severe anemia were completely resolved following a course of SBRT. Thus, our case report highlights the potential benefit of this technique for patients with inoperable RCC.

  12. Radiation therapy for long-bone metastases

    Energy Technology Data Exchange (ETDEWEB)

    Wadasaki, Kouichi; Tomiyoshi, Hideki; Ooshima, Yoshie; Urashima, Masaki; Mori, Masaki (Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital (Japan))

    1992-09-01

    Efficacy of palliative and prophylactic radiotherapies for metastatic bone pain and pathological fracture was investigated in 14 patients with long bone metastases. Irradiation sites were the femur in 10 patients, the humerus in 2, the radius in one, and the tibia in one. Radiographs showed osteolytic lesion in 13 patients and osteoblastic lesion in one. A total dose of 48.6 Gy to 87.3 Gy was delivered in daily fractional doses of 2 Gy (one patient), 2.5 Gy (3), 3 Gy (6), 4 Gy (2) and 5 Gy (2), 5 days a week. For 13 patients, except for one death within one month after the completion of irradiation, pain relief was attained. Of these patients, 7 (54%) had complete pain relief. In one patient, pathological fracture occurred as early as 10 days after the beginning of irradiation when irradiation efficacy was not attained. In none of the 13 others, was pathological fracture encountered. No side effects were seen at all during or after irradiation. Radiation therapy was an extremely effective means for managing patients with long bone metastases in terms of its palliative and prophylactic role. (N.K.).

  13. Radiation therapy for the solitary plasmacytoma

    Directory of Open Access Journals (Sweden)

    Esengül Koçak

    2010-06-01

    Full Text Available Plasma-cell neoplasms are classically categorized into four groups as: multiple myeloma (MM, plasma-cell leukemias, solitary plasmacytomas (SP of the bone (SPB, and extramedullary plasmacytomas (EMP. These tumors may be described as localized or diffuse in presentation. Localized plasma-cell neoplasms are rare, and include SP of the skeletal system, accounting for 2-5% of all plasma-cell neoplasms, and EMP of soft tissue, accounting for approximately 3% of all such neoplasms. SP is defined as a solitary mass of neoplastic plasma cells either in the bone marrow or in various soft tissue sites. There appears to be a continuum in which SP often progresses to MM. The main treatment modality for SP is radiation therapy (RT. However, there are no conclusive data in the literature on the optimal RT dose for SP. This review describes the interrelationship of plasma-cell neoplasms, and attempts to determine the minimal RT dose required to obtain local control.

  14. Radiation therapy for oral verrucous carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, Yasushi; Niino, Keiji; Yoshino, Masanari; Yamaguchi, Koichi; Yoshizawa, Nobuo; Takahashi, Koji [Yamagata Univ. (Japan). School of Medicine; Itagaki, Takatomo; Watarai, Jiro

    2000-12-01

    In order to examine the usefulness of radiotherapy for verrucous carcinoma, eight cases of oral verrucous carcinoma treated with radiation therapy were reviewed. Definitive radiotherapy was performed in six patients and preoperative radiotherapy was performed in two patients. Definitive radiotherapy doses ranged from 20 to 60 Gy (median: 47.5 Gy) and preoperative radiotherapy doses were 25 Gy, delivered with a daily fraction size of 2.5 Gy in principle. All cases that received definitive irradiation became CR, but two of these patients underwent local recurrence; one was a patient irradiated with only 20 Gy and the other case underwent local recurrence of squamous cell carcinoma. In the cases irradiated with 45 Gy or more, 4 of 5 cases were locally controlled. No patient underwent regional lymph node metastases. One of two patients that received preoperative radiotherapy had local recurrence in spit of a negative surgical margin. Because the radiosensitivity of verrucous carcinoma was often good and anaplastic transformation was not common, radiotherapy can become a radical treatment for verrucous carcinoma. (author)

  15. Insufficiency fractures following radiation therapy for gynecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Hitoshi; Takegawa, Yoshihiro; Matsuki, Hirokazu; Yasuda, Hiroaki; Kawanaka, Takashi; Shiba, Atsushi; Kishida, Yoshiomi; Iwamoto, Seiji; Nishitani, Hiromu [Tokushima Univ. (Japan). School of Medicine

    2002-12-01

    The purpose of this study was to investigate the incidence, clinical and radiological findings of insufficiency fractures (IF) of the female pelvis following radiation therapy. We retrospectively reviewed the radiation oncology records of 108 patients with gynecologic malignancies who underwent external beam radiation therapy of the whole pelvis. All patients underwent conventional radiography and computed tomography (CT) scan every 6 months in follow-up after radiation therapy and magnetic resonance imaging (MRI) and radionuclide bone scan were added when the patients complained of pelvic pain. Thirteen of 108 patients (12%) developed IF in the irradiated field with a median interval of 6 months (range 3-51) from the completion of external beam radiation therapy. All patients who developed IF were postmenopausal women. Age of the patients who developed IF was significantly higher than that of the other patients. The parts of IF were sacroiliac joints, pubis, sacral body and 5th lumbar vertebra and six of 14 patients had multiple lesions. Treatment with rest and nonsteroidal anti-inflammatory drugs lead to symptomatic relief in all patients, although symptoms lasted from 3 to 20 months. Radiation-induced pelvic IF following radiation therapy for gynecologic malignancies were frequently observed in the post-menopausal patients within 1 year after external beam radiation therapy. Symmetrical fractures of the bilateral sacroiliac joint and pubis were the characteristic pattern of pelvic IF. All patients healed with conservative treatment, and nobody became non-ambulant. (author)

  16. Development of Radiation Technique for Environmental Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myun Joo; Kuk, Il Hiun; Jin, Joon Ha (and others)

    2007-02-15

    The purpose of this research is to development of technologies for 1) the removal of toxic organic chemicals in sewage sludges and the volume reduction of the sewage sludge 2) the recycling/reuse of sewage sludge 3) the reconvey of resource from fishery waste by using radiation technologies. This research project focused on the study of treatment, disposal, and recycling/reuse of sewage sludge by radiation technology, and recovery of highly value-added resources from the wastes. As basic studies with a radiation technology, an enhancement of dewaterbilities of sewage sludge, development of dewatering conditioner, reduction of trace toxic organic chemicals, and the toxicities of the byproducts were studied. Based on the basic experimental results, we developed the pilot-scale system with the continuous e-beam and dewatering unit and the advanced treatment system with the use of carbon source recovered from sewage sludge.

  17. Clinical applications of advanced rotational radiation therapy

    Science.gov (United States)

    Nalichowski, Adrian

    Purpose: With a fast adoption of emerging technologies, it is critical to fully test and understand its limits and capabilities. In this work we investigate new graphic processing unit (GPU) based treatment planning algorithm and its applications in helical tomotherapy dose delivery. We explore the limits of the system by applying it to challenging clinical cases of total marrow irradiation (TMI) and stereotactic radiosurgery (SRS). We also analyze the feasibility of alternative fractionation schemes for total body irradiation (TBI) and TMI based on reported historical data on lung dose and interstitial pneumonitis (IP) incidence rates. Methods and Materials: An anthropomorphic phantom was used to create TMI plans using the new GPU based treatment planning system and the existing CPU cluster based system. Optimization parameters were selected based on clinically used values for field width, modulation factor and pitch. Treatment plans were also created on Eclipse treatment planning system (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) for dose delivery on IX treatment unit. A retrospective review was performed of 42 publications that reported IP rates along with lung dose, fractionation regimen, dose rate and chemotherapy. The analysis consisted of nearly thirty two hundred patients and 34 unique radiation regimens. Multivariate logistic regression was performed to determine parameters associated with IP and establish does response function. Results: The results showed very good dosimetric agreement between the GPU and CPU calculated plans. The results from SBRT study show that GPU planning system can maintain 90% target coverage while meeting all the constraints of RTOG 0631 protocol. Beam on time for Tomotherapy and flattening filter free RapidArc was much faster than for Vero or Cyberknife. Retrospective data analysis showed that lung dose and Cyclophosphomide (Cy) are both predictors of IP in TBI/TMI treatments. The

  18. Overview of novel techniques for radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, Stefano, E-mail: stefano.agosteo@polimi.i [Politecnico of Milano, Dipartimento di Energia, Sezione di Ingegneria Nucleare - CeSNEF, via Ponzio 34/3, 20133 Milano (Italy); INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2010-12-15

    Generally, the main approaches for assessing the radiation protection (RP) quantities in neutron fields are: i) the use of an instrument with a response to the protection quantity quasi-independent of energy; ii) neutron spectrometry; iii) microdosimetry. The techniques based on the first approach include rem-meters, superheated emulsions and the electronic personal dosemeters. Passive rem-meters have recently been developed for assessing the ambient dose equivalent in pulsed neutron fields around particle accelerators for hadrontherapy and research. Most of these instruments are characterised by a response extended to high-energies (up to a few GeV). An example is given by the GSI-ball, which employs a pair of LiF TLDs as a thermal neutron detector. It is likely that passive instruments will play a fundamental role also for monitoring the neutron fields generated by ultra-high intensity lasers, where the duration of a single pulse is of the order of hundreds femtoseconds. Arrays of tissue-equivalent proportional counters (TEPCs) of a millimetric/sub-millimetric physical size have been developed both for assessing the quality of therapeutic radiation beams and for estimating the RP quantities in low-intensity fields, which may limit the use of conventional microdosemeters. Very satisfactory results were obtained with GEM-based TEPCs and gas microstrip detectors (GMDs). Moreover, mini-TEPCs have been constructed and tested for measuring the quality of hadrontherapy beams (BNCT included). Silicon microdosemeters have also been demonstrated to be very promising for characterizing proton and ion beams for radiation therapy and for estimating the occurrence of single event effects in space applications.

  19. Optimizing patient positioning for intensity modulated radiation therapy in hippocampal-sparing whole brain radiation therapy.

    Science.gov (United States)

    Siglin, Joshua; Champ, Colin E; Vakhnenko, Yelena; Witek, Matthew E; Peng, Cheng; Zaorsky, Nicholas G; Harrison, Amy S; Shi, Wenyin

    2014-01-01

    Sparing the hippocampus during whole brain radiation therapy (WBRT) offers potential neurocognitive benefits. However, previously reported intensity modulated radiation therapy (IMRT) plans use multiple noncoplanar beams for treatment delivery. An optimized coplanar IMRT template for hippocampal-sparing WBRT would assist in clinical workflow and minimize resource utilization. In this study, we sought to determine the optimal patient position to facilitate coplanar treatment planning and delivery of hippocampal-sparing WBRT using IMRT. A variable angle, inclined board was utilized for patient positioning. An anthropomorphic phantom underwent computed tomography simulation at various head angles. The IMRT goals were designed to achieve target coverage of the brain while maintaining hippocampal dose-volume constraints designed to conform to the Radiation Therapy Oncology Group 0933 protocol. Optimal head angle was then verified using data from 8 patients comparing coplanar and noncoplanar WBRT IMRT plans. Hippocampal, hippocampal avoidance region, and whole brain mean volumes were 1.1 cm(3), 12.5 cm(3), and 1185.1 cm(3), respectively. The hippocampal avoidance region occupied 1.1% of the whole brain planning volume. For the 30-degree head angle, a 7-field coplanar IMRT plan was generated, sparing the hippocampus to a maximum dose of 14.7 Gy; D100% of the hippocampus was 7.4 Gy and mean hippocampal dose was 9.3 Gy. In comparison, for flat head positioning the hippocampal Dmax was 22.9 Gy with a D100% of 9.2 Gy and mean dose of 11.7 Gy. Target coverage and dose homogeneity was comparable with previously published noncoplanar IMRT plans. Compared with conventional supine positioning, an inclined head board at 30 degrees optimizes coplanar whole brain IMRT treatment planning. Clinically acceptable hippocampal-sparing WBRT dosimetry can be obtained using a simplified coplanar plan at a 30-degree head angle, thus obviating the need for complex and time consuming noncoplanar

  20. Natural health products and cancer chemotherapy and radiation therapy

    Directory of Open Access Journals (Sweden)

    Doreen Oneschuk

    2011-12-01

    Full Text Available Complementary therapies, notably natural health products such as herbs and vitamins, are frequently used by cancer patients receiving chemotherapy and radiation therapy. There is much controversy as to whether these natural health products should be taken during conventional cancer treatments. Supporters of this practice cite beneficial effects of the antioxidant properties, while opponents are concerned about the potential for natural health product-chemotherapy/radiation related negative interactions. This involves understanding the role and effect on metabolizing enzymes. This review will highlight the present evidence for both the beneficial and negative consequences of the use of natural health products during chemotherapy and radiation therapy.

  1. Particle beam radiation therapy:re-introducing the future

    Institute of Scientific and Technical Information of China (English)

    Omar Abdel-Rahman

    2014-01-01

    Particle radiation therapy is an exciting area of radiotherapy basic and clinical researches. The majority of particle radiotherapy work is being done with proton beams having essential y the same radiobiologic properties as conventional photon/electron radiation but al owing a much more precise control of the radiation dose distribution. However, other charged particles are also playing an increasing role, like neutrons. In this review article we wil summarize the data related to basic and clinical experiences related to particle beam radiation therapy.

  2. The Impact of the Myeloid Response to Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Michael J. Gough

    2013-01-01

    Full Text Available Radiation therapy is showing potential as a partner for immunotherapies in preclinical cancer models and early clinical studies. As has been discussed elsewhere, radiation provides debulking, antigen and adjuvant release, and inflammatory targeting of effector cells to the treatment site, thereby assisting multiple critical checkpoints in antitumor adaptive immunity. Adaptive immunity is terminated by inflammatory resolution, an active process which ensures that inflammatory damage is repaired and tissue function is restored. We discuss how radiation therapy similarly triggers inflammation followed by repair, the consequences to adaptive immune responses in the treatment site, and how the myeloid response to radiation may impact immunotherapies designed to improve control of residual cancer cells.

  3. SU-C-16A-06: Optimum Radiation Source for Radiation Therapy of Skin Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, Habib [Science and Research Branch, Islamic Azad University, Fars, Persepolis (Iran, Islamic Republic of); Meigooni, A S. [Comprehensive cancer center of Nevada, Las Vegas, NV (United States); University of Nevada Las Vegas (UNLV), Las Vegas, NV (United States)

    2014-06-15

    Purpose: Recently, different applicators are designed for treatment of the skin cancer such as scalp and legs, using Ir-192 HDR Brachytherapy Sources (IR-HDRS), Miniature Electronic Brachytherapy Sources (MEBXS), and External Electron Beam Radiation Therapy (EEBRT). Although, all of these methodologies may deliver the desired radiation dose to the skin, the dose to the underlying bone may become the limiting factor for selection of the optimum treatment technique. In this project the radiation dose delivered to the underlying bone has been evaluated as a function of the radiation source and thickness of the underlying bone. Methods: MC simulations were performed using MCNP5 code. In these simulations, the mono-energetic and non-divergent photon beams of 30 keV, 50 keV, and 70 keV for MEBXS, 380 keV photons for IR-HDRS, and 6 MeV mono-energetic electron beam for EEBRT were modeled. A 0.5 cm thick soft tissue (0.3 cm skin and 0.2 cm adipose) with underlying 0.5 cm cortical bone followed by 14 cm soft tissue are utilized for simulations. Results: Dose values to bone tissue as a function of beam energy and beam type, for a delivery of 5000 cGy dose to skin, were compared. These results indicate that for delivery of 5000 cGy dose to the skin surface with 30 keV, 50 keV, 70 keV of MEBXS, IR-HDRS, and EEBRT techniques, bone will receive 31750 cGy, 27450 cGy, 18550 cGy, 4875 cGy, and 10450 cGy, respectively. Conclusion: The results of these investigations indicate that, for delivery of the same skin dose, average doses received by the underlying bone are 5.2 and 2.2 times larger with a 50 keV MEBXS and EEBRT techniques than IR-HDRS, respectively.

  4. Radiation therapy in Kimura's disease

    Energy Technology Data Exchange (ETDEWEB)

    Itami, J.; Arimizu, N.; Miyoshi, T.; Ogata, H.; Miura, K. (Chiba Univ. (Japan). Dept. of Radiology)

    1989-01-01

    Kimura's disease is a rare disorder which predominantly involves the head and neck region and causes eosinophilia in peripheral blood. It often responds well to corticosteroid therapy but some patients can be resistant; in these patients symptomatic radiation therapy can be of value. We reviewed 10 patients with Kimura's disease who received radiation therapy from 1975 through 1981 in the Department of Radiology, Chiba University Hospital. Nineteen tumors were irradiated and 15 of them locally controlled. In 5 patients, steroid therapy could be withdrawn. For local control, 25 to 30 Gy seemed to be adequate. (orig.).

  5. Controlled study of CCNU and radiation therapy in malignant astrocytoma.

    Science.gov (United States)

    Reagan, T J; Bisel, H F; Childs, D S; Layton, D D; Rhoton, A L; Taylor, W F

    1976-02-01

    The authors report 63 patients with biopsy-proved malignant (Grades 3 and 4) astrocytomas who were randomly placed in one of three treatment schedules within 2 weeks of surgery. One group (22 patients) received radiation therapy alone; the second group (22 patients) received 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) orally at intervals of 8 weeks; and the third group (19 patients) received combined radiation and drug therapy. Patients who received radiation therapy, with or without the drug, had a significantly longer survival than did those who received the drug alone. There was no difference in survival between the two groups who received radiation. The nitrosourea derivative CCNU does not seem to be an effective agent in the therapy of primary malignant brain tumors.

  6. Advances in Radiation Therapy in Pediatric Neuro-oncology.

    Science.gov (United States)

    Bindra, Ranjit S; Wolden, Suzanne L

    2016-03-01

    Radiation therapy remains a highly effective therapy for many pediatric central nervous system tumors. With more children achieving long-term survival after treatment for brain tumors, late-effects of radiation have become an important concern. In response to this problem, treatment protocols for a variety of pediatric central nervous system tumors have evolved to reduce radiation fields and doses when possible. Recent advances in radiation technology such as image guidance and proton therapy have led to a new era of precision treatment with significantly less exposure to healthy tissues. These developments along with the promise of molecular classification of tumors and targeted therapies point to an optimistic future for pediatric neuro-oncology.

  7. Skin Reaction in Radiation Therapy for Breast Cancer

    Directory of Open Access Journals (Sweden)

    Bagher Farhood

    2014-11-01

    Full Text Available Introduction The first medical intervention for many breast cancer patients is breast conserving surgery (BCS and/or modified radical mastectomy (MRM. Most of these patients undergo radiation therapy, following surgery. The most common side-effect of breast radiotherapy is skin damage. In the present study, the severity of acute skin changes and the underlying causes were investigated in patients undergoing BCS and radiotherapy. Materials and Methods This prospective, cohort study was performed on 31 female patients, undergoing breast surgery therapy at Shahid Rajaie Babolsar Radiotherapy Center from September 2011 to July 2012. A questionnaire was designed, including the patient’s characteristics, details of radiotherapy technique, and skin damage; the questionnaire was completed for each patient. The obtained results were analysed by performing ANOVA and Fisher's exact tests. Complications were graded using the radiation therapy oncology group (RTOG scale. Results Grade 0 or 4 of skin damage was observed in none of the patients. Among the evaluated patients, 58%, 35.5%, and 6.5% of the patients had grade 1, grade 2, and grade 3 of skin damage, respectively. There was no statistically significant relationship between regional skin burns and factors such as average tangential field size, internal mammary field, chemotherapy, prior history of diseases, tamoxifen use, previous radiotherapy in breast area, or skin type (p>0.05. However, there was a significant relationship between skin burns and presence of supraclavicular field (p=0.05. Conclusion Considering the significant relationship between skin burn and supraclavicular field, special attention needs to be paid to factors affecting the treatment planning of supraclavicular field such as field size and photon energy.

  8. Physics fundamentals and biological effects of synchrotron radiation therapy; Fundamentos fisicos y efectos biologicos de la radioterapia con radiacion sincrotron

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y.

    2010-07-01

    The main goal of radiation therapy is to deposit a curative dose in the tumor without exceeding the tolerances in the nearby healthy tissues. For some radioresistant tumors, like gliomas, requiring high doses for complete sterilization, the major obstacle for curative treatment with ionizing radiation remains the limited tolerance of the surrounding healthy tissue. This limitation is particularly severe for brain tumors and, especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restricted. One possible solution is the development of new radiation therapy techniques exploiting radically different irradiation modes and modifying, in this way, the biological equivalent doses. This is the case of synchrotron radiation therapy (SR T). In this work the three new radiation therapy techniques under development at the European Synchrotron Radiation Facility (ESR F), in Grenoble (France) will be described, namely: synchrotron stereotactic radiation therapy (Ssr), microbeam radiation therapy (MR T) and mini beam radiation therapy. The promising results in the treatment of the high grade brain tumors obtained in preclinical studies have paved the way to the clinical trials. The first patients are expected in the fall of 2010. (Author).

  9. Proton-minibeam radiation therapy: A proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y. [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Fois, G. R. [Dipartimento di Fisica, Universita degli Studi di Cagliari, Strada provinciale Monserrato Sestu km 0.700, Monserrato, Cagliari 09042 (Italy)

    2013-03-15

    Purpose: This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. Methods: Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. Results: Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. Conclusions: The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.

  10. Superficial Radiation Therapy for the Treatment of Nonmelanoma Skin Cancers.

    Science.gov (United States)

    McGregor, Sean; Minni, John; Herold, David

    2015-12-01

    Superficial radiation therapy has become more widely available to dermatologists. With the advent of more portable machines, it has become more convenient for dermatology practices to employ in an office-based setting. The goal of this paper is to provide a deeper insight into the role of superficial radiation therapy in dermatology practice and to review the current literature surrounding its use in the treatment of both basal and squamous cell carcinomas.

  11. Optimization of adaptive radiation therapy in cervical cancer: Solutions for photon and proton therapy

    NARCIS (Netherlands)

    van de Schoot, A.J.A.J.

    2016-01-01

    In cervical cancer radiation therapy, an adaptive strategy is required to compensate for interfraction anatomical variations in order to achieve adequate dose delivery. In this thesis, we have aimed at optimizing adaptive radiation therapy in cervical cancer to improve treatment efficiency and

  12. Optimization of adaptive radiation therapy in cervical cancer: Solutions for photon and proton therapy

    NARCIS (Netherlands)

    van de Schoot, A.J.A.J.

    2016-01-01

    In cervical cancer radiation therapy, an adaptive strategy is required to compensate for interfraction anatomical variations in order to achieve adequate dose delivery. In this thesis, we have aimed at optimizing adaptive radiation therapy in cervical cancer to improve treatment efficiency and reduc

  13. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu [Washington University School of Medicine, St Louis, MO (United States); Barthold, H. Joseph [Commonwealth Hematology and Oncology, Weymouth, MA (United States); Beth Israel Deaconess Medical Center, Boston, MA (Israel); O' Meara, Elizabeth [Radiation Therapy Oncology Group, Philadelphia, PA (United States); Bosch, Walter R. [Washington University School of Medicine, St Louis, MO (United States); El Naqa, Issam [Department of Radiation Oncology, McGill University Health Center, Montreal, Quebec (Canada); Al-Lozi, Rawan [Washington University School of Medicine, St Louis, MO (United States); Rosenthal, Seth A. [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); Lawton, Colleen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Sandler, Howard [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Zietman, Anthony [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Myerson, Robert [Washington University School of Medicine, St Louis, MO (United States); Dawson, Laura A. [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Willett, Christopher [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Kachnic, Lisa A. [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA (United States); Jhingran, Anuja [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Portelance, Lorraine [University of Miami, Miami, FL (United States); Ryu, Janice [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  14. Impact of machines on plan quality: volumetric modulated arc therapy and intensity modulated radiation therapy.

    Science.gov (United States)

    Clemente, S; Cozzolino, M; Oliviero, C; Fiorentino, A; Chiumento, C; Fusco, V

    2014-02-01

    To evaluate the impact of different machines on plan quality using both intensity modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) techniques. Eight patients with squamous cell carcinoma of the oropharynx were selected at random. Plans were computed for IMRT and VMAT Smart Arc, using Pinnacle TPS for an Elekta (IMRT-E, VMAT-E) and Varian linac (IMRT-V, VMAT-V). A three-dose level prescription was used to deliver 70, 63 and 58.1 Gy to regions of macroscopic, microscopic high- and low-risk disease, respectively. All doses were given in 35 fractions. Comparisons were performed on dose-volume histogram data, monitor units (MU), and delivery time. VMAT-E plans resulted slightly MU efficient (-24 % p delivery time (-19 % p < 0.05) compared to IMRT-E. All the delivery techniques resulted in equivalent target coverage in terms of D(98) % and D(2) %. For VMAT technique, a significant improvement of 7 % in homogeneity index (HI) for PTV58.1 was observed for Varian machine. A slight improvement in OARs sparing was observed with Elekta machine both for IMRT and VMAT techniques. Similar plan quality was observed for Elekta and Varian linacs, significant differences were observed in delivery efficiency, as MU number and delivery times, in favor of Elekta and Varian, respectively.

  15. Therapy radiation apparatus for veterinary medicine

    Energy Technology Data Exchange (ETDEWEB)

    Parris, D.M.

    1987-03-03

    A radiation device is described for use in veterinary medicine, for treating exterior and interior portions of animal bodies, comprising: (a) power supply means providing selected voltages; (b) high frequency oscillator means; (c) frequency divider means responsive to the oscillator means, and adapted to control switch means for modulating a voltage supply for at least one non-laser broad band infrared radiation diode providing an expanding beam of radiation; and (d) means for applying at least one one-laser broad band infrared radiation diode to a dermal surface of an animal.

  16. Radiation therapy planning for early-stage Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Maraldo, Maja V; Dabaja, Bouthaina S; Filippi, Andrea R

    2015-01-01

    PURPOSE: Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements...

  17. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    Science.gov (United States)

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  18. Equipment for measuring radiation. Part 3. Technique of measuring radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radwanowski, L.J.

    1979-01-01

    Difficulties are noted in measuring the effects of radiation because of the excessively low energy of the measured fields. In nature there are different magnetic-dynamic and magnetic-hydrodynamic generators which are sources of very low intensity which changes in time. The equipment of measurements is examined in the example of one of the generators, underground water current. The apparatus is described in detail for measuring the intensity of the electromagnetic SHF field. Under the underground water currents a change is observed in the intensity of the electromagnetic field. The possibilities are also examined of direct measurement of ultrasonic elastic fluctuations caused by the underground current, as well as the possibility of recording other physical fields (spontaneous polarization, soil temperature). A study was made of the effect of the underground water current on the occurrence of physical, chemical and biological processes: photochemical reactions, reactions of metal oxidation, Golomb effect (change in the rate of sedimentation of argillaceous particles in water under the influence of a biofield), change in air humidity and soil water content, change in intensity of the magnetic field, Hall effect, change in luminescence of certain organisms or the luminophore released by them. Basic plans are presented of certain measurement and recording devices.

  19. Radiation therapy: model standards for determination of need

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, L.G.; Devins, T.B.

    1982-03-01

    Contents: Health planning process; Health care requirements (model for projecting need for megavoltage radiation therapy); Operational objectives (manpower, megavoltage therapy and treatment planning equipment, support services, management and evaluation of patient care, organization and administration); Compliance with other standards imposed by law; Financial feasibility and capability; Reasonableness of expenditures and costs; Relative merit; Environmental impact.

  20. [Ozone therapy for radiation reactions and skin lesions after neutron therapy in patients with malignant tumors].

    Science.gov (United States)

    Velikaya, V V; Gribova, O V; Musabaeva, L I; Startseva, Zh A; Simonov, K A; Aleinik, A N; Lisin, V A

    2015-01-01

    The article discusses the problem of radiation complications from normal tissues in patients after therapy with fast neutrons of 6.3 MeV. The methods of treatment using ozone technologies in patients with radiation reactions and skin lesions on the areas of irradiation after neutron and neutron-photon therapy have been worked out. Ozone therapy showed its harmlessness and increased efficiency of complex treatment of these patients.

  1. Radiation therapy of lung carcinoma; Strahlentherapie des Bronchialkarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, S.; Debus, J.; Hof, H.; Bischof, M. [Universitaetsklinikum Heidelberg, Abteilung Radioonkologie und Strahlentherapie, Heidelberg (Germany)

    2010-08-15

    At first presentation and primary diagnosis approximately 50% of patients with non-small cell lung carcinoma (NSCLC) and 25% of patients with small cell lung carcinoma (SCLC) have a potentially curable tumor stage. Definitive, adjuvant and neoadjuvant radio- (chemo-)therapy play an important role as part of multimodal treatment approaches. High radiation doses can be achieved in tumor areas with modern radiotherapy planning and treatment techniques without an increase of side-effects. The 3 year overall survival after primary radiotherapy is approximately 50% for patients with NSCLC in stage I and 20% in stage IIIA. Radiotherapy can be used in patients with progressive metastatic disease after insufficient response to systemic therapy with threatening thoracic symptoms and for palliative treatment of cerebral, lymphatic and osseous metastases. (orig.) [German] Etwa 50% der Patienten mit einem nichtkleinzelligen Bronchialkarzinom (NSCLC, ''non-small cell lung carcinoma'') und 25% der Patienten mit einem kleinzelligen Bronchialkarzinom (SCLC, ''small cell lung carcinoma'') befinden sich zum Zeitpunkt der Primaerdiagnose in einem potenziell heilbaren Tumorstadium. Die definitive, adjuvante und neoadjuvante Radio- (chemo-)therapie hat im Rahmen der multimodalen Behandlungskonzepte einen festen Stellenwert. Durch den Einsatz modernster Techniken bei der Bestrahlungsplanung und -therapie koennen hohe Strahlendosen bei gleichzeitiger Schonung des gesunden Gewebes appliziert werden. Die 3-Jahres-Ueberlebensraten fuer Patienten mit NSCLC betragen nach primaerer Bestrahlung {approx}50% im Stadium I und {approx}20% im Stadium IIIA. Im metastasierten Stadium wird eine Radiotherapie bei unzureichendem Ansprechen der systemischen Behandlung mit drohender thorakaler Symptomatik sowie zur palliativen Behandlung zerebraler, lymphogener oder ossaerer Metastasen eingesetzt. (orig.)

  2. Development of medical application methods using radiation. Radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S. M.; Kim, E.H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Choi, T. H.; Hong, S. W.; Chung, H. Y.; No, W. C. [Korea Atomic Energy Research Institute. Korea Cancer Center Hospital, Seoul, (Korea, Republic of); Oh, B. H. [Seoul National University. Hospital, Seoul (Korea, Republic of); Hong, H. J. [Antibody Engineering Research Unit, Taejon (Korea, Republic of)

    1999-04-01

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: (1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology.

  3. An Accurate Technique for Calculation of Radiation From Printed Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min; Sorensen, Stig B.; Jorgensen, Erik

    2011-01-01

    The accuracy of various techniques for calculating the radiation from printed reflectarrays is examined, and an improved technique based on the equivalent currents approach is proposed. The equivalent currents are found from a continuous plane wave spectrum calculated by use of the spectral dyadic...

  4. Individual patient information to select patients for different radiation techniques

    NARCIS (Netherlands)

    Quik, E. H.; Feenstra, T. L.; Postmus, D.; Slotman, B. J.; Leemans, C. R.; Krabbe, P. F. M.; Langendijk, J. A.

    2016-01-01

    Background and purpose: Proton therapy is an emerging technique in radiotherapy which results in less dose to the normal tissues with similar target dose than photon therapy, the current standard. Patient-level simulation models support better decision making on which patients would benefit most. Ma

  5. Music therapy CD creation for initial pediatric radiation therapy: a mixed methods analysis.

    Science.gov (United States)

    Barry, Philippa; O'Callaghan, Clare; Wheeler, Greg; Grocke, Denise

    2010-01-01

    A mixed methods research design was used to investigate the effects of a music therapy CD (MTCD) creation intervention on pediatric oncology patients' distress and coping during their first radiation therapy treatment. The music therapy method involved children creating a music CD using interactive computer-based music software, which was "remixed" by the music therapist-researcher to extend the musical material. Eleven pediatric radiation therapy outpatients aged 6 to 13 years were randomly assigned to either an experimental group, in which they could create a music CD prior to their initial treatment to listen to during radiation therapy, or to a standard care group. Quantitative and qualitative analyses generated multiple perceptions from the pediatric patients, parents, radiation therapy staff, and music therapist-researcher. Ratings of distress during initial radiation therapy treatment were low for all children. The comparison between the two groups found that 67% of the children in the standard care group used social withdrawal as a coping strategy, compared to 0% of the children in the music therapy group; this trend approached significance (p = 0.076). MTCD creation was a fun, engaging, and developmentally appropriate intervention for pediatric patients, which offered a positive experience and aided their use of effective coping strategies to meet the demands of their initial radiation therapy treatment.

  6. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    Science.gov (United States)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  7. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Science.gov (United States)

    2010-10-01

    ... radioactive isotope therapy, and materials and the services of technicians administering the treatment. ... 42 Public Health 2 2010-10-01 2010-10-01 false X-ray therapy and other radiation therapy services... HEALTH AND HUMAN SERVICES MEDICARE PROGRAM SUPPLEMENTARY MEDICAL INSURANCE (SMI) BENEFITS Medical and...

  8. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  9. Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial.

    Science.gov (United States)

    Chun, Stephen G; Hu, Chen; Choy, Hak; Komaki, Ritsuko U; Timmerman, Robert D; Schild, Steven E; Bogart, Jeffrey A; Dobelbower, Michael C; Bosch, Walter; Galvin, James M; Kavadi, Vivek S; Narayan, Samir; Iyengar, Puneeth; Robinson, Clifford G; Wynn, Raymond B; Raben, Adam; Augspurger, Mark E; MacRae, Robert M; Paulus, Rebecca; Bradley, Jeffrey D

    2017-01-01

    Purpose Although intensity-modulated radiation therapy (IMRT) is increasingly used to treat locally advanced non-small-cell lung cancer (NSCLC), IMRT and three-dimensional conformal external beam radiation therapy (3D-CRT) have not been compared prospectively. This study compares 3D-CRT and IMRT outcomes for locally advanced NSCLC in a large prospective clinical trial. Patients and Methods A secondary analysis was performed to compare IMRT with 3D-CRT in NRG Oncology clinical trial RTOG 0617, in which patients received concurrent chemotherapy of carboplatin and paclitaxel with or without cetuximab, and 60- versus 74-Gy radiation doses. Comparisons included 2-year overall survival (OS), progression-free survival, local failure, distant metastasis, and selected Common Terminology Criteria for Adverse Events (version 3) ≥ grade 3 toxicities. Results The median follow-up was 21.3 months. Of 482 patients, 53% were treated with 3D-CRT and 47% with IMRT. The IMRT group had larger planning treatment volumes (median, 427 v 486 mL; P = .005); a larger planning treatment volume/volume of lung ratio (median, 0.13 v 0.15; P = .013); and more stage IIIB disease (30.3% v 38.6%, P = .056). Two-year OS, progression-free survival, local failure, and distant metastasis-free survival were not different between IMRT and 3D-CRT. IMRT was associated with less ≥ grade 3 pneumonitis (7.9% v 3.5%, P = .039) and a reduced risk in adjusted analyses (odds ratio, 0.41; 95% CI, 0.171 to 0.986; P = .046). IMRT also produced lower heart doses ( P < .05), and the volume of heart receiving 40 Gy (V40) was significantly associated with OS on adjusted analysis ( P < .05). The lung V5 was not associated with any ≥ grade 3 toxicity, whereas the lung V20 was associated with increased ≥ grade 3 pneumonitis risk on multivariable analysis ( P = .026). Conclusion IMRT was associated with lower rates of severe pneumonitis and cardiac doses in NRG Oncology clinical trial RTOG 0617, which supports

  10. Dosimetry of different techniques in postmastectomy radiation therapy on the ipsilateral lung%乳腺癌改良根治术后放疗降低患侧肺受量的剂量学研究

    Institute of Scientific and Technical Information of China (English)

    洪卫; 冉立; 卢冰; 杨黎; 常建英; 甘家应; 胡银祥

    2011-01-01

    Objective To identify the best technique of postmastectomy radiation therapy (PMRT).Methods Twenty-eight patients with stage Ⅱ or Ⅲ invasive breast cancer were treated with modified radical mastectomy and radiotherapy sequaciously involving the supraclavicular region and the chest wall.Three different techniques were developed for each patient:two tangential conformal fields ( half field) in the chest wall plus supraclavicular intensity modulated radiotherapy (3D-CRT + IMRT),integrated chest wall and supraclavicular IMRT(IMRT),and two tangential conformal fields (half field) in the chest wall plus single field electron beam radiotherapy in the supraclavicular region( 3D-CRT + E).The dose distributions of the target areas and the irradiated volumes of the ipsilateral lung ( V5,V10,V20,and V45)were estimated with the dosage volume histogram (DVH).The dosage prescription was 50.4 Gy (1.8 Gy × 28 f).Results The conformity index (CI) of the 3D-CRT + IMRT group was (0.61 ± 0.03),not different from that of the IMRT [ (0.62 ±0.03),q =2.16,P >0.05],and the CI levels of these 2 groups were both higher than that of the 3D-CRT + E group [ (0.44 ± 0.02 ),q =20.50,22.66,P <0.01 ].The heterogeneity index (HI) of the 3D-CRT + IMRT group was ( 1.17 ±0.02),not different from that of the IMRT [ (1.15 ±0.02),q =1.66,P >0.05],and the HI levels of these 2 groups were both lower than that of the 3D-CRT + E group[ ( 1.24 ±0.04),q =3.91,5.58,P <0.01 ].The levels of V5 and V10 of the ipsilateral lungs of the 3D-CRT + E group(48.70% ±3.24%,38%.56% ±3.70% ) and 3D-CRT + IMRT group (49.12% ±3.03%,38.38% ± 3.56% ) were all significantly lower than those of the IMRTgroup [(77.18% ±8.01%,53.07% ±6.85%),V5,q =20.35,20.05,P<0.01; V10,q=12.10,12.24,P <0.01 ] and there were not significant differences in the V5 and V10 levels between the 3D-CRT + E and 3D-CRT + IMRT groups ( q =0.30,0.14,P > 0.05 ).The levels of V20 of the ipsilateral lungs of

  11. Synchrotron Radiation Lithography and MEMS Technique at NSRL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two beamlines and stations for soft X-ray lithography and hard X-ray lithography at NSRL are presented. Synchrotron radiation lithography (SRL) and mask techniques are developed, and the micro-electro-mechanical systems (MEMS) techniques are also investigated at NSRL. In this paper, some results based on SRL and MEMS techniques are reported, and sub-micron and high aspect ratio microstructures are given. Some micro-devices, such as microreactors are fabricated at NSRL.

  12. Stereotactic body radiation therapy versus conventional radiation therapy in patients with early stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jeppesen, Stefan Starup; Schytte, Tine; Jensen, Henrik R

    2013-01-01

    Abstract Introduction. Stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) is now an accepted and patient friendly treatment, but still controversy exists about its comparability to conventional radiation therapy (RT). The purpose of this single...... and SBRT predicted improved prognosis. However, staging procedure, confirmation procedure of recurrence and technical improvements of radiation treatment is likely to influence outcomes. However, SBRT seems to be as efficient as conventional RT and is a more convenient treatment for the patients....

  13. Predicting Radiation Pneumonitis After Stereotactic Ablative Radiation Therapy in Patients Previously Treated With Conventional Thoracic Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hui; Zhang Xu [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy Y. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Swisher, Stephen G. [Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-11-15

    Purpose: To determine the incidence of and risk factors for radiation pneumonitis (RP) after stereotactic ablative radiation therapy (SABR) to the lung in patients who had previously undergone conventional thoracic radiation therapy. Methods and Materials: Seventy-two patients who had previously received conventionally fractionated radiation therapy to the thorax were treated with SABR (50 Gy in 4 fractions) for recurrent disease or secondary parenchymal lung cancer (T <4 cm, N0, M0, or Mx). Severe (grade {>=}3) RP and potential predictive factors were analyzed by univariate and multivariate logistic regression analyses. A scoring system was established to predict the risk of RP. Results: At a median follow-up time of 16 months after SABR (range, 4-56 months), 15 patients had severe RP (14 [18.9%] grade 3 and 1 [1.4%] grade 5) and 1 patient (1.4%) had a local recurrence. In univariate analyses, Eastern Cooperative Oncology Group performance status (ECOG PS) before SABR, forced expiratory volume in 1 second (FEV1), and previous planning target volume (PTV) location were associated with the incidence of severe RP. The V{sub 10} and mean lung dose (MLD) of the previous plan and the V{sub 10}-V{sub 40} and MLD of the composite plan were also related to RP. Multivariate analysis revealed that ECOG PS scores of 2-3 before SABR (P=.009), FEV1 {<=}65% before SABR (P=.012), V{sub 20} {>=}30% of the composite plan (P=.021), and an initial PTV in the bilateral mediastinum (P=.025) were all associated with RP. Conclusions: We found that severe RP was relatively common, occurring in 20.8% of patients, and could be predicted by an ECOG PS score of 2-3, an FEV1 {<=}65%, a previous PTV spanning the bilateral mediastinum, and V{sub 20} {>=}30% on composite (previous RT+SABR) plans. Prospective studies are needed to validate these predictors and the scoring system on which they are based.

  14. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy.

    Science.gov (United States)

    Song, Guosheng; Cheng, Liang; Chao, Yu; Yang, Kai; Liu, Zhuang

    2017-08-01

    Radiation therapy (RT) including external beam radiotherapy (EBRT) and internal radioisotope therapy (RIT) has been widely used for clinical cancer treatment. However, owing to the low radiation absorption of tumors, high doses of ionizing radiations are often needed during RT, leading to severe damages to normal tissues adjacent to tumors. Meanwhile, the RT efficacies are limited by different mechanisms, among which the tumor hypoxia-associated radiation resistance is a well-known one, as there exists hypoxia inside most solid tumors while oxygen is essential to enhance radiation-induced DNA damages. With the development in nanotechnology, there have been great interests in using nanomedicine strategies to enhance radiation responses of tumors. Nanomaterials containing high-Z elements to absorb radiation rays (e.g. X-ray) can act as radio-sensitizers to deposit radiation energy within tumors and promote treatment efficacy. Nanoscale carriers are able to deliver therapeutic radioisotopes into tumors for internal RIT, or chemotherapeutic drugs for synergistically combined chemo-radiotherapy. As uncovered in recent studies, the tumor microenvironment could be modulated by various nanomedicine approaches to overcome hypoxia-associated radiation resistance. Herein, the authors will summarize the applications of nanomedicine for RT cancer treatment, and pay particular attention to the latest development of 'advanced materials' for enhanced cancer RT. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Late adverse effects of radiation therapy for rectal cancer - a systematic overview

    Energy Technology Data Exchange (ETDEWEB)

    Birgisson, Helgi; Paahlman, Lars; Gunnarsson, Ulf [Dept. of Surgery, Univ. Hospital, Univ. of Uppsala, Uppsala (Sweden); Glimelius, Bengt [Dept. of Oncology, Radiology and Clinical Immunology, Univ. Hospital, Univ. of Uppsala, Uppsala (Sweden); Dept. of Oncology and Pathology, Karolinska Inst., Stockholm (Sweden)

    2007-05-15

    Purpose. The use of radiation therapy (RT) together with improvement in the surgical treatment of rectal cancer improves survival and reduces the risk for local recurrences. Despite these benefits, the adverse effects of radiation therapy limit its use. The aim of this review was to present a comprehensive overview of published studies on late adverse effects related to the RT for rectal cancer. Methods. Meta-analyses, reviews, randomised clinical trials, cohort studies and case-control studies on late adverse effects, due to pre- or postoperative radiation therapy and chemo-radiotherapy for rectal cancer, were systematically searched. Most information was obtained from the randomised trials, especially those comparing preoperative short-course 5x5 Gy radiation therapy with surgery alone. Results. The late adverse effects due to RT were bowel obstructions; bowel dysfunction presented as faecal incontinence to gas, loose or solid stools, evacuation problems or urgency; and sexual dysfunction. However, fewer late adverse effects were reported in recent studies, which generally used smaller irradiated volumes and better irradiation techniques; although, one study revealed an increased risk for secondary cancers in irradiated patients. Conclusions. These results stress the importance of careful patient selection for RT for rectal cancer. Improvements in the radiation technique should further be developed and the long-term follow-up of the randomised trials is the most important source of information on late adverse effects and should therefore be continued.

  16. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  17. Decision Regret in Men Undergoing Dose-Escalated Radiation Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Steer, Anna N. [Department of Radiation Oncology, North Coast Cancer Institute, Coffs Harbour (Australia); Aherne, Noel J., E-mail: noel.aherne@ncahs.health.nsw.gov.au [Department of Radiation Oncology, North Coast Cancer Institute, Coffs Harbour (Australia); Rural Clinical School Faculty of Medicine, University of New South Wales, Coffs Harbour (Australia); Gorzynska, Karen; Hoffman, Matthew; Last, Andrew; Hill, Jacques [Department of Radiation Oncology, North Coast Cancer Institute, Coffs Harbour (Australia); Shakespeare, Thomas P. [Department of Radiation Oncology, North Coast Cancer Institute, Coffs Harbour (Australia); Rural Clinical School Faculty of Medicine, University of New South Wales, Coffs Harbour (Australia)

    2013-07-15

    Purpose: Decision regret (DR) is a negative emotion associated with medical treatment decisions, and it is an important patient-centered outcome after therapy for localized prostate cancer. DR has been found to occur in up to 53% of patients treated for localized prostate cancer, and it may vary depending on treatment modality. DR after modern dose-escalated radiation therapy (DE-RT) has not been investigated previously, to our knowledge. Our primary aim was to evaluate DR in a cohort of patients treated with DE-RT. Methods and Materials: We surveyed 257 consecutive patients with localized prostate cancer who had previously received DE-RT, by means of a validated questionnaire. Results: There were 220 responses (85.6% response rate). Image-guided intensity modulated radiation therapy was given in 85.0% of patients and 3-dimensional conformal radiation therapy in 15.0%. Doses received included 73.8 Gy (34.5% patients), 74 Gy (53.6%), and 76 Gy (10.9%). Neoadjuvant androgen deprivation (AD) was given in 51.8% of patients and both neoadjuvant and adjuvant AD in 34.5%. The median follow-up time was 23 months (range, 12-67 months). In all, 3.8% of patients expressed DR for their choice of treatment. When asked whether they would choose DE-RT or AD again, only 0.5% probably or definitely would not choose DE-RT again, compared with 8.4% for AD (P<.01). Conclusion: Few patients treated with modern DE-RT express DR, with regret appearing to be lower than in previously published reports of patients treated with radical prostatectomy or older radiation therapy techniques. Patients experienced more regret with the AD component of treatment than with the radiation therapy component, with implications for informed consent. Further research should investigate regret associated with individual components of modern therapy, including AD, radiation therapy and surgery.

  18. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  19. Emotional aspects and pranayama in breast cancer patients undergoing radiation therapy: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Jyothi Chakrabarty

    2016-01-01

    Full Text Available Objective: Emotional disturbances are commonly experienced by cancer patients. The aim of this study was to determine the effectiveness of certain Pranayama techniques on the emotional aspects such as impatience, worry, anxiety, and frustration among breast cancer patients undergoing radiation therapy in India. Methods: The study was conducted as a randomized controlled trial. Patients were recruited when they were seeking radiation therapy for breast cancer. They were allocated into two groups using block randomization technique. The experimental group performed Pranayama along with radiation therapy, whereas the control group received only routine care. Results: Emotional aspects of the two groups were compared at the end of the treatment. Mann-Whitney U-test was used for comparison as the data were not following normality. It showed a significant difference between the two groups with the group who performed Pranayama showing a lesser mean score for these negative emotions. Conclusions: Pranayama might help in controlling the negative emotions likely to be faced by breast cancer patients, and it can be used as a supportive therapy for breast cancer patients receiving radiation therapy.

  20. Gestalt Therapy: Development, Theory, and Techniques.

    Science.gov (United States)

    Witchel, Robert

    This paper presents a full review of the literature in the area of Gestalt Therapy and could be helpful in familiarizing people with this discipline. The roots contributing to the development of Gestalt therapy as presently practiced are explored briefly. Gestalt theory is presented in a developmental way, initially exploring the relationship…

  1. Immobilization for the radiation therapy treatment of the pelvic region

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, F.; De Beukeleer, M.; Nys, F.; Bijdekerke, P.; Robberechts, M.; Van Cauwenbergh, R. [Brussels Univ. (Belgium). Dept. of Radiotherapy

    1995-12-01

    Previous experience with the treatment of the pelvic region has shown that geometric setup errors are considerable in extent and incidence. A proposal to alleviate this problem is the introduction of immobilization devices in analogy with head and neck treatment. The practicality and efficacy of such a technique is investigated and compared with an earlier proposed technique using interactive adjustment and Electronic Portal Imaging (EPI). A group of 13 patients treated in the pelvic region using external radiation therapy was immobilized using an Orfit-like cast. Every fraction for every patients was imaged using an EPID. Immediately after obtaining an image it was compared to a digitized simulation image using the in-house developed OPIDUM system. Patient position was adjusted when an error in one of the main directions (transversal or longitudinal) exceeded 5 mm. Time measurements were carried out in order to asses the impact of the immobilization procedure on the patient throughput. In 68% of the cases a corrective action was necessary. The fraction of total treatment time was 50% for 26% of the fields. The range of errors measured in the longitudinal direction was between 29 and -22 mm. In the transversal direction the range was from -7 to 60 mm. A full analysis 13 patients yielding statistics for more than 200 fields is presented. Special attention has been paid to the determination of the nature of the errors (random or systematic) and the impact on patient throughput.

  2. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy.

    Science.gov (United States)

    FitzGerald, Thomas J; Bishop-Jodoin, Maryann; Followill, David S; Galvin, James; Knopp, Michael V; Michalski, Jeff M; Rosen, Mark A; Bradley, Jeffrey D; Shankar, Lalitha K; Laurie, Fran; Cicchetti, M Giulia; Moni, Janaki; Coleman, C Norman; Deye, James A; Capala, Jacek; Vikram, Bhadrasain

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy quality assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.

  3. Using Music Therapy Techniques To Treat Teacher Burnout.

    Science.gov (United States)

    Cheek, James R.; Bradley, Loretta J.; Parr, Gerald; Lan, William

    2003-01-01

    This study was conducted to determine the effectiveness of music therapy techniques as an intervention for teacher burnout. Results of the study indicated that teachers who participated in school-based counseling groups, using music therapy techniques in conjunction with cognitive behavioral interventions, reported lower levels of burnout symptoms…

  4. Using Music Therapy Techniques To Treat Teacher Burnout.

    Science.gov (United States)

    Cheek, James R.; Bradley, Loretta J.; Parr, Gerald; Lan, William

    2003-01-01

    This study was conducted to determine the effectiveness of music therapy techniques as an intervention for teacher burnout. Results of the study indicated that teachers who participated in school-based counseling groups, using music therapy techniques in conjunction with cognitive behavioral interventions, reported lower levels of burnout symptoms…

  5. Implications of Intercellular Signaling for Radiation Therapy: A Theoretical Dose-Planning Study

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2013-12-01

    Purpose: Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy. Methods and Materials: Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose–volume histograms and mean doses were evaluated by converting these survival levels into “signaling-adjusted doses” for comparison. Results: Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions: Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro

  6. Second Solid Cancers After Radiation Therapy: A Systematic Review of the Epidemiologic Studies of the Radiation Dose-Response Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Gilbert, Ethel; Curtis, Rochelle; Inskip, Peter; Kleinerman, Ruth; Morton, Lindsay; Rajaraman, Preetha; Little, Mark P. [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-06-01

    Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.

  7. Two Effective Heuristics for Beam Angle Optimization in Radiation Therapy

    CERN Document Server

    Yarmand, Hamed

    2013-01-01

    In radiation therapy, mathematical methods have been used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to critical surrounding structures minimal. This optimization problem can be modeled using mixed integer programming (MIP) whose solution gives the optimal beam orientation as well as optimal beam intensity. The challenge, however, is the computation time for this large scale MIP. We propose and investigate two novel heuristic approaches to reduce the computation time considerably while attaining high-quality solutions. We introduce a family of heuristic cuts based on the concept of 'adjacent beams' and a beam elimination scheme based on the contribution of each beam to deliver the dose to the tumor in the ideal plan in which all potential beams can be used simultaneously. We show the effectiveness of these heuristics for intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) on a clinical liver case.

  8. Determinants of job satisfaction among radiation therapy faculty.

    Science.gov (United States)

    Swafford, Larry G; Legg, Jeffrey S

    2009-01-01

    Job satisfaction is one of the most significant predictors of employee retention in a variety of occupational settings, including health care and education. A national survey of radiation therapy educators (n = 90) has indicated that respondents are not satisfied with their jobs based on data collected using the Minnesota Satisfaction Questionnaire (MSQ). To predict the factors associated with job satisfaction or dissatisfaction, the authors used a nine-item questionnaire derived from the MSQ. Educators were grouped according to their job satisfaction scores, and multiple discriminant analysis was used to determine which factors were predictive of satisfaction among groups of educators. Statistical results indicate that ability utilization, institutional support, compensation, personnel, and job characteristics were key determinants of job satisfaction among radiation therapy educators. These results may better inform faculty and administration of important factors that can promote job satisfaction and retain faculty in radiation therapy education programs.

  9. Communication skills training for radiation therapists: preparing patients for radiation therapy.

    Science.gov (United States)

    Halkett, Georgia; O'Connor, Moira; Aranda, Sanchia; Jefford, Michael; Merchant, Susan; York, Debra; Miller, Lisa; Schofield, Penelope

    2016-12-01

    Patients sometimes present for radiation therapy with high levels of anxiety. Communication skills training may assist radiation therapists to conduct more effective consultations with patients prior to treatment planning and treatment commencement. The overall aim of our research is to examine the effectiveness of a preparatory programme 'RT Prepare' delivered by radiation therapists to reduce patient psychological distress. The purpose of this manuscript was to describe the communication skills workshops developed for radiation therapists and evaluate participants' feedback. Radiation therapists were invited to participate in two communication skills workshops run on the same day: (1) Consultation skills in radiation therapy and (2) Eliciting and responding to patients' emotional cues. Evaluation forms were completed. Radiation therapists' consultations with patients were then audio-recorded and evaluated prior to providing a follow-up workshop with participants. Nine full day workshops were held. Sixty radiation therapists participated. Positive feedback was received for both workshops with 88% or more participants agreeing or strongly agreeing with all the statements about the different components of the two workshops. Radiation therapists highlighted participating in role play with an actor, discussing issues; receiving feedback; acquiring new skills and knowledge; watching others role play and practicing with checklist were their favourite aspects of the initial workshop. The follow-up workshops provided radiation therapists with feedback on how they identified and addressed patients' psychological concerns; time spent with patients during consultations and the importance of finding private space for consultations. Communication skills training consisting of preparing patients for radiation therapy and eliciting and responding to emotional cues with follow-up workshops has the potential to improve radiation therapists' interactions with patients undergoing

  10. The Role for Radiation Therapy in the Management of Sarcoma.

    Science.gov (United States)

    Leachman, Brooke K; Galloway, Thomas J

    2016-10-01

    Although there is no consensus regarding the optimal sequencing of external beam radiotherapy and surgery for extremity soft tissue sarcoma, radiation therapy delivered before or after limb-sparing surgery significantly improves local control, particularly for high-grade tumors. Large database analyses suggest that improved local control may translate into an overall survival benefit. Best practices require ample communication between the radiation and surgical teams to ensure appropriate tissues are targeted, unnecessary radiation is avoided, and patients are afforded the best opportunity for cure while maintaining function. Modern experiences with intensity-modulated radiotherapy/image-guided radiation therapy suggest toxicity is reduced through field size reduction and precise targeting, improving the therapeutic ratio. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Hypofractionated radiation therapy versus conventional radiation therapy in prostate cancer: A systematic review of its safety and efficacy.

    Science.gov (United States)

    Sánchez-Gómez, L M; Polo-deSantos, M; Rodríguez-Melcón, J I; Angulo, J C; Luengo-Matos, S

    2015-01-01

    New therapeutic alternatives can improve the safety and efficacy of prostate cancer treatment. To assess whether hypofractionated radiation therapy results in better safety and efficacy in the treatment of prostate cancer. Systematic review of the literature through searches on PubMed, Cochrane Library, CRD, ClinicalTrials and EuroScan, collecting indicators of safety and efficacy. We included 2 systematic reviews and a clinical trial. In terms of efficacy, there is considerable heterogeneity among the studies, and no conclusive results were found concerning the superiority of the hypofractionated option over the normal fractionated option. In terms of safety, there were no significant differences in the onset of acute genitourinary complications between the 2 treatments. However, one of the reviews found more acute gastrointestinal complications in patients treated with hypofractionated radiation therapy. There were no significant differences in long-term complications based on the type of radiation therapy used, although the studies did have limitations. To date, there are no conclusive results that show that hypofractionated radiation therapy is more effective or safer than normal fractionated radiation therapy in the treatment of localized prostate cancer. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. From analytic inversion to contemporary IMRT optimization: radiation therapy planning revisited from a mathematical perspective.

    Science.gov (United States)

    Censor, Yair; Unkelbach, Jan

    2012-04-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT).

  13. Meningeal hemangiopericytoma treated with surgery and radiation therapy -case report-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Young; Oh, Yoon Kyeong [College of Medicine, Chosun University, Gwangju (Korea, Republic of)

    2006-06-15

    Meningeal hemangiopericytoma (HPC) is an uncommon dura-based tumor and can recur not only locally but also distantly in the neural axis or extraneural sites. We report our experience of radiation therapy, one preoperative and one elective postoperative, in two patients with meningeal HPC and reviewed the role of radiation therapy. A 41-year-old man (Case 1) presented with a 3-month history of headache and right hemiparesis. The mass was nearly unresectable at the first and second operation and diagnosed as meningeal HPC. Preoperative radiation therapy was given with a total dose of 55.8 Gy/31 fractions to the large residual mass of left frontoparietal area. Follow-up computerized tomography (CT) showed marked regression of tumor after radiation therapy. The third operation was performed to remove the residual tumor at 6 months after the radiation therapy and a 2 x 2 cm sized tumor was encountered. The mass was totally removed. The serial follow-up CT showed no evidence of recurrence and he is alive without distant metastasis for 4 years and 10 months after the first operation. A 45-year-old woman (Case 2) presented with suddenly developed headache and visual impairment. Tumor mass occupying right frontal lobe was removed with the preoperative diagnosis of meningioma. It was totally removed with attached sagittal sinus and diagnosed as meningeal HPC. Elective postoperative radiation therapy was performed to reduce local recurrence with a total dose of 54 Gy/30 fractions to the involved area of right frontal lobe. She is alive for 5 years maintaining normal activity without local recurrence and distant metastasis.

  14. The physical basis and future of radiation therapy

    Science.gov (United States)

    Bortfeld, T; Jeraj, R

    2011-01-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued “fuelling” of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more “professionalism” in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics. PMID:21606068

  15. Statistical Decision Theory Applied to Radiation Therapy Treatment Decisions

    OpenAIRE

    Schultheiss, T. E.; El-Mahdi, Anas M.

    1982-01-01

    Statistical decision theory has been applied to the treatment planning decision of radiation therapy. The decision involves the choice of parameters which determine the radiation dose distribution. To choose among dose distributions requires a decision rule which reflects the uncertainty of possible outcomes for any specific dose distribution and the various risks associated with each outcome. A relative gravity or morbidity is assigned to each possible complication of treatment. In this stud...

  16. Current status of radiation therapy. Evidence-based medicine (EBM) of radiation therapy. Current management of patients with esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kenji [Tohoku Univ., Sendai (Japan). School of Medicine

    2002-03-01

    The best management for small mucosal esophageal cancer is generally endoscopic mucosal resection. However, for submucosal cancer and extensive mucosal caner, either radical surgery or radiation seems to be an equally efficacious option. Radiation therapy concurrent with chemotherapy is more effective than radiation therapy alone for patients with unresectable esophageal cancer. The key drugs are cisplatin and 5-fluorouracil. However, for patients with poor performance status or for aged patients, radiation therapy alone is still a choice of treatment. Surgery has generally been indicated for patients with resectable esophageal cancer. However, outcomes of concurrent chemoradiation therapy may be comparable with those of surgery. Therefore, a prospective randomized study should be performed to determine the best management for patients with resectable esophageal cancer. The usefulness of intra-cavitary irradiation for esophageal cancer has not been clarified. A prospective randomized trial with a large number of patients is necessary to determine the effectiveness of intra-cavitary irradiation. The best management for patients with loco-regionally recurrent esophageal cancer after surgery has not been determined. Intensive therapy should be considered if the site of recurrence is limited and the time interval from surgery to recurrence is long. Chemotherapy is essential in the management of patients with small cell esophageal cancer. However, the best local therapy has not been determined. (author)

  17. Khan's lectures handbook of the physics of radiation therapy

    CERN Document Server

    Khan, Faiz M; Mihailidis, Dimitris

    2011-01-01

    Khan's Lectures: Handbook of the Physics of Radiation Therapy will provide a digest of the material contained in The Physics of Radiation Therapy. Lectures will be presented somewhat similar to a PowerPoint format, discussing key points of individual chapters. Selected diagrams from the textbook will be used to initiate the discussion. New illustrations will used, wherever needed, to enhance the understanding of important concepts. Discussion will be condensed and often bulleted. Theoretical details will be referred to the textbook and the cited literature. A problem set (practice questions) w

  18. Complications of head and neck radiation therapy and their management

    Energy Technology Data Exchange (ETDEWEB)

    Engelmeier, R.L.; King, G.E.

    1983-04-01

    Patients who receive radiation therapy to the head and neck suffer potential complications and undesirable side-effects of this therapy. The extent of undesirable responses is dependent on the source of irradiation, the fields of irradiation, and the dose. The radiotherapist determines these factors by the extent, location, and radiosensitivity of the tumor. The potential undesirable side-effects are xerostomia, mucositis, fibrosis, trismus, dermatitis, photosensitivity, radiation caries, soft tissue necrosis, and osteoradionecrosis. Each of these clinical entities and their proposed management have been discussed.

  19. Phototherapy cabinet for ultraviolet radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, S.N.; Frost, P.

    1981-08-01

    A newly designed cabinet can be used for the treatment of psoriasis with fluorescent ultraviolet (UV) lamps. the new design provides more uniform distribution of UV radiation in both the horizontal and vertical axes, and several safety features have been added. The distribution and uniformity of UV output in this and in a previously described cabinet are compared. The UV output at the vertical center of the older UV light cabinet was six times greater than that at either the top or bottom, while the design of the present cabinet provides uniform UV radiation except for a slight increase at head height and at the level of the lower legs compared with the middle third of the cabinet. The variation in output of the older cabinet may, in part, explain the commonly encountered difficulty in the phototherapy of psoriasis of the scalp and lower extremities.

  20. Cancer of the breast. Radiation therapy.

    Science.gov (United States)

    Mercado, R; Deutsch, M

    1979-01-01

    There are many questions that have to be answered concerning the role of radiotherapy in the management of primary breast cancer. Hopefully, prospective clinical trials will provide some answers, but more basic research into the biology of breast cancer and the host-tumor relationship will be needed. There are indications that radiotherapy alone, or following minimal extirpative surgery in selected cases, may be as effective for control of breast cancer as conventional mastectomies. The role of radiotherapy following segmental mastectomy, with or without axillary dissection, needs to be clarified. The possibility exists that high LET (linear energy transfer) radiation such as neutron or pi meson beams may provide better local control than conventional radiation. Thus, it may be possible to treat effectively all primary breast cancers with such radiations and obviate the need for any type of mastectomy. It remains to be demonstrated whether adjuvant chemotherapy is as effective as radiotherapy in preventing chest wall and regional node recurrences. If it is not, there may be a place for both adjuvant chemotherapy and radiotherapy in the treatment of operable cancer of the breast. Likewise, effective chemotherapy combined with radiotherapy may increase the local and regional control achieved with radiotherapy alone and make more primary lesions suitable for treatment without mastectomy. Meyer (1970) recently called attention to the leukopenia and cellualr immune deficiency produced by irradiation to the thorax and mediastinum. Further study is necessary to define exactly how much immunosuppression results from radiotherapy, its clinical significance and what can be done to avoid or counter it. If Stjervsward's thesis (1974) concerning the deleterious effects of radiotherapy on survival is correct, then it is of great importance to identify those patients most likely to be adversely affected by radiotherapy. Conversely, it may be possible in the future to identify a

  1. Targeted Radiation Therapy for Cancer Initiative

    Science.gov (United States)

    2016-09-01

    Localization System will help to spare toxicity to the heart, 5) a military medical center department, with essentially fixed costs and without financial ...research was presented at the ACRO ( American College of Radiation Oncology) Annual Meeting in Orlando, FL March 17-19, 2016. We continue to analyze...data endpoints as the remaining subjects complete the follow-up phase. Databases have been created for the raw data gained from the Expanded Prostate

  2. Study and application of X radiation sampling technique

    Institute of Scientific and Technical Information of China (English)

    葛良全; 章晔; 等

    1996-01-01

    The physical bases of a X radiation sampling technique are investigated.Three technical problems of unevenness,matrix and heterogeneous mineralization effects,are considered and successfully resolved.This new technique was appled to three sites of Au,Sn and Cu deposits(representing higher,medial and lower atomic number minerals)in different exploration stages in China and satisfactory results are obtained.

  3. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  4. Postoperative radiation therapy for malignant glioma. Results of conventional radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, T.; Inoue, T.; Chatani, M.; Hata, K.; Taki, T.; Nii, Y.; Nakagawa, H.

    1987-02-01

    From December 1977 through September 1984, a total of 39 cases of malignant glioma were treated with radiation therapy (RT) postoperatively. Twenty-nine cases were classified into glioblastoma (GM) and 10 astrocytoma (AS) (low grade : 6 and anaplastic : 4) histologically. One third of cases received 50 Gy/25 FRX/5 WKS of whole brain RT. Another two thirds of cases underwent 60 Gy/30 FRX/6 WKS of whole brain or 50 Gy/25 FRX/5 WKS of whole brain + additional 20 Gy/10 FRX/2 WKS of localized field RT. Chemotherapy (BLM, MeCCNU and ACNU) was given for 34 cases. Survivals at 3 years for GM and AS were 12 % and 68 %, respectively. Prognostic factors for GM were age, neurologic function (RTOG), AJC-staging T-factor, pre-RT LDH level and volume of residual tumor. Corresponding factors for AS were histological subclassification and neurologic function (RTOG). However, RT dose and field did not impact on survival significantly. Acute adverse effects of RT were otitis media or externa (70 %) and conjunctivitis (8 %). Retinal bleeding was noted in three long-term survivors at 2 years after RT.

  5. Radiation-induced pseudotumor following therapy for soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lacey F.; Kransdorf, Mark J. [Mayo Clinic, Department of Radiology, Jacksonville, FL (United States); Buskirk, Steven J. [Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL (United States); O' Connor, Mary I. [Mayo Clinic, Department of Orthopedic Surgery, Jacksonville, FL (United States); Menke, David M. [Mayo Clinic, Department of Pathology, Jacksonville, FL (United States)

    2009-06-15

    The purpose of this study was to describe the prevalence and imaging appearance of radiation induced pseudotumors in patients following radiation therapy for extremity soft tissue sarcomas. We retrospectively reviewed the serial magnetic resonance (MR) images of 24 patients following radiation therapy for extremity soft tissue sarcomas. A total of 208 exams were reviewed (mean, 8.7 exams per patient) and included all available studies following the start of radiation therapy. Exams were analyzed for the identification of focal signal abnormalities within the surgical bed suggesting local tumor recurrence. Histopathologic correlation was available in nine patients suspected of having local tumor recurrence. Additional information recorded included patient demographics, tumor type and location, radiation type, and dose. The study group consisted of 12 men and 12 women, having an average age of 63 years (range, 39-88 years). Primary tumors were malignant fibrous histiocytoma (n = 13), leiomyosarcoma (n = 6), liposarcoma (n = 3), synovial sarcoma (n = 1), and extraskeletal chondrosarcoma (n = 1). All lesions were high-grade sarcomas, except for two myxoid liposarcomas. Average patient radiation dose was 5,658 cGy (range, 4,500-8,040 cGy). Average follow-up time was 63 months (range, 3-204 months). Focal signal abnormalities suggesting local recurrence were seen in nine (38%) patients. Three of the nine patients with these signal abnormalities were surgically proven to have radiation-induced pseudotumor. The pseudotumors developed between 11 and 61 months following the initiation of radiation therapy (mean, 38 months), with an average radiation dose of 5,527 cGy (range, 5,040-6,500 cGy). MR imaging demonstrated a relatively ill-defined ovoid focus of abnormal signal and intense heterogeneous enhancement with little or no associated mass effect. MR imaging of radiation-induced pseudotumor typically demonstrates a relatively ill-defined ovoid mass-like focus of intense

  6. Targeted Radiation Therapy for Cancer Initiative

    Science.gov (United States)

    2012-09-01

    technique for treating left-sided breast cancer, which allows sparing of the heart. The Calypso system provides a previously unavailable level of...from both centers. Task 6. Post-prostatectomy Daily Target Guided Radiotherapy Using Real-Time, State-of-the-Art Motion Tracking with the Calypso...the skin surface to track breathing motion during a breath-hold technique for left-sided breast cancer treatment. Analysis would reveal the

  7. Immunomodulatory effects of radiation: what is next for cancer therapy?

    Science.gov (United States)

    Kumari, Anita; Simon, Samantha S; Moody, Tomika D; Garnett-Benson, Charlie

    2016-01-01

    Despite its former reputation as being immunosuppressive, it has become evident that radiation therapy can enhance antitumor immune responses. This quality can be harnessed by utilizing radiation as an adjuvant to cancer immunotherapies. Most studies combine the standard radiation dose and regimens indicated for the given disease state, with novel cancer immunotherapies. It has become apparent that low-dose radiation, as well as doses within the hypofractionated range, can modulate tumor cells making them better targets for immune cell reactivity. Herein, we describe the range of phenotypic changes induced in tumor cells by radiation, and explore the diverse mechanisms of immunogenic modulation reported at these doses. We also review the impact of these doses on the immune cell function of cytotoxic cells in vivo and in vitro.

  8. The Application of FLUKA to Dosimetry and Radiation Therapy

    Science.gov (United States)

    Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni

    2005-01-01

    Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.

  9. Dosimetric and radiobiological comparison of Forward Tangent Intensity Modulated Radiation Therapy (FT-IMRT) and Volumetric Modulated Arc Therapy (VMAT) for early stage whole breast cancer

    Science.gov (United States)

    Moshiri Sedeh, Nader

    Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed.

  10. Projections onto the Pareto surface in multicriteria radiation therapy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Bokrantz, Rasmus, E-mail: bokrantz@kth.se, E-mail: rasmus.bokrantz@raysearchlabs.com [Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden and RaySearch Laboratories, Sveavägen 44, Stockholm SE-103 65 (Sweden); Miettinen, Kaisa [Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden and University of Jyvaskyla, Department of Mathematical Information Technology, FI-400 14 University of Jyvaskyla (Finland)

    2015-10-15

    Purpose: To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. Methods: The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose–volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. Results: The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose–volume histogram constraints were used. No consistent improvements in target homogeneity were observed. Conclusions: There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan.

  11. [Modern methods for cancer external radiation therapies].

    Science.gov (United States)

    Giraud, Philippe; Henni, Mehdi; Housset, Martin

    2008-10-15

    Radiotherapy has been in constant progress for the past century. New technologies are based on modern imaging modalities, efficient 3D treatment planning systems, sophisticated immobilization systems and rigorous quality assurance and treatment verification. The central objective of conformal radiotherapy is to ensure a high dose distribution tailored to the limits of the target volume while reducing exposure of healthy tissues. These techniques would then allow a further tumor dose escalation. New systems like CyberKnife, tomotherapy and hadrontherapy represent major potential progress for the treatment of complex tumours that are very difficult to treat with conventional radiotherapy techniques.

  12. Factors influencing radiation therapy student clinical placement satisfaction

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Pete; Carmichael, Mary-Ann [School of Clinical Sciences, Queensland University of Technology, Brisbane (Australia)

    2014-02-15

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning.

  13. Pregnancy after radiation therapy for carcinoma of the cervix.

    Science.gov (United States)

    Browde, S; Friedman, M; Nissenbaum, M

    1986-01-01

    A successful pregnancy after intracavitary radiation therapy for carcinoma of the cervix is described. An additional 13 similar cases from the literature are reviewed. The possible reasons for the occurrence of these pregnancies despite irradiation to the ovaries, cervical canal and endometrium are discussed. The fact is emphasized that no genetic damage to the child was expected.

  14. Radiation therapy for portal venous invasion by hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Keiichi Nakagawa; Masatoshi Makuuchi; Kuni Ohtomo; Hideomi Yamashita; Kenshiro Shiraishi; Naoki Nakamura; Masao Tago; Hiroshi Igaki; Yoshio Hosoi; Shuichiro Shiina; Masao Omata

    2005-01-01

    AIM: To clarify the efficacy and safety of three-dimensional conformal radiotherapy (3-D CRT) for this disease and to specify patient subgroups suitable for this treatment.METHODS: Fifty-two patients with HCC received PVI-targeted radiation therapy from January 1995 through December 2003. Portal venous invasion (PVI) was found in the second or lower order branches of the portal vein in 6 patients, in the first branch in 24 patients and in the main trunk in 22 patients. Child classifications of liver function before radiation therapy were A, B, and C for 19, 24 and 2 patients, respectively. All patients received three-dimensional conformal radiotherapy with a total dose ranging from 39 to 60 Gy (57.0 Gy in average).RESULTS: Overall survival rates at 1, 2, 3, 4, and 5 years were 45.1%, 25.3%, 15.2%, 10.1%, and 5.1%, respectively. Univariate analysis revealed that Child status, the number of tumor foci, tumor type,transcatheter arterial embolization (TAE) after radiation therapy were statistically significant prognostic factors.Multivariate analysis showed that the number of tumor foci and TAE after radiation therapy were statistically significant.CONCLUSION: The results of this study strongly suggest the efficacy of 3-D CRT as treatment for PVI in HCC. 3-D CRT is recommended in combination with postradiation TAE for PVI of HCC with 5 tumor foci or less in the liver and with Child A liver function.

  15. Waiting Lists for Radiation Therapy: A Case Study

    Directory of Open Access Journals (Sweden)

    Singer Peter A

    2001-04-01

    Full Text Available Abstract Background Why waiting lists arise and how to address them remains unclear, and an improved understanding of these waiting list "dynamics" could lead to better management. The purpose of this study is to understand how the current shortage in radiation therapy in Ontario developed; the implications of prolonged waits; who is held accountable for managing such delays; and short, intermediate, and long-term solutions. Methods A case study of the radiation therapy shortage in 1998-99 at Princess Margaret Hospital, Toronto, Ontario, Canada. Relevant documents were collected; semi-structured, face-to-face interviews with ten administrators, health care workers, and patients were conducted, audio-taped and transcribed; and relevant meetings were observed. Results The radiation therapy shortage arose from a complex interplay of factors including: rising cancer incidence rates; broadening indications for radiation therapy; human resources management issues; government funding decisions; and responsiveness to previous planning recommendations. Implications of delays include poorer cancer control rates; patient suffering; and strained doctor-patient relationships. An incompatible relationship exists between moral responsibility, borne by government, and legal liability, borne by physicians. Short-term solutions include re-referral to centers with available resources; long-term solutions include training and recruiting health care workers, improving workload standards, increasing compensation, and making changes to the funding formula. Conclusion Human resource planning plays a critical role in the causes and solutions of waiting lists. Waiting lists have harsh implications for patients. Accountability relationships require realignment.

  16. Radiation therapy of prostate cancer applied with cooling effect

    Energy Technology Data Exchange (ETDEWEB)

    Furuhata, Akihiko; Ogawa, Katsuaki; Miyazaki, Machiko; Iwai, Hiroshi [Yokosuka National Hospital, Kanagawa (Japan); Takeda, Takashi

    1995-05-01

    The radio-sensitivity of prostate carcinoma is a resistant one. Also a prostate locates close to rectum, urethra and bladder of which mucus membranes are intermediate sensitive for irradiation, and causes side effects frequently. In this study, we applied with hyperfraction and local membrane cooling to the radiation therapy of the prostate cancer. This brought favorable clinical results with decreased morbidities. (author).

  17. Radiation therapy for neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Robert Petrarca

    2011-01-01

    Full Text Available Robert Petrarca, Timothy L JacksonDepartment of Ophthalmology, King’s College Hospital NHS Foundation Trust, London, UKAbstract: Antivascular endothelial growth factor (anti-VEGF therapies represent the standard of care for most patients presenting with neovascular (wet age-related macular degeneration (neovascular AMD. Anti-VEGF drugs require repeated injections and impose a considerable burden of care, and not all patients respond. Radiation targets the proliferating cells that cause neovascular AMD, including fibroblastic, inflammatory, and endothelial cells. Two new neovascular AMD radiation treatments are being investigated: epimacular brachytherapy and stereotactic radiosurgery. Epimacular brachytherapy uses beta radiation, delivered to the lesion via a pars plana vitrectomy. Stereotactic radiosurgery uses low voltage X-rays in overlapping beams, directed onto the lesion. Feasibility data for epimacular brachytherapy show a greatly reduced need for anti-VEGF therapy, with a mean vision gain of 8.9 ETDRS letters at 12 months. Pivotal trials are underway (MERLOT, CABERNET. Preliminary stereotactic radiosurgery data suggest a mean vision gain of 8 to 10 ETDRS letters at 12 months. A large randomized sham controlled stereotactic radiosurgery feasibility study is underway (CLH002, with pivotal trials to follow. While it is too early to conclude on the safety and efficacy of epimacular brachytherapy and stereotactic radiosurgery, preliminary results are positive, and these suggest that radiation offers a more durable therapeutic effect than intraocular injections.Keywords: wet age-related macular degeneration, neovascular, radiation therapy, epimacular brachytherapy, stereotactic radiosurgery, anti-VEGF

  18. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Charlene; Zhang, Junran, E-mail: Junran.zhang@case.edu

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.

  19. Clinical Opportunities in Combining Immunotherapy with Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Steven Eric Finkelstein

    2012-11-01

    Full Text Available Preclinical work in murine models suggests that local radiotherapy plus intratumoral syngeneic DC injection can mediate immunologic tumor eradication. Radiotherapy affects the immune response to cancer, besides the direct impact on the tumor cells, and other ways to coordinate immune modulation with radiotherapy have been explored. We review here the potential for immune mediated anticancer activity of radiation on tumors. This is mediated by antigen acquisition and presentation by dendritic cells, and through changes of lymphocytes’ activity. Recent work has implemented the combination of external beam radiation (EBRT with intratumoral injection of dendritic cells (DC. This included a pilot study of coordinated intraprostatic, autologous DC injection together with radiation therapy with five HLA-A2(+ subjects with high-risk, localized prostate cancer; the protocol used androgen suppression, external beam radiation therapy (25 fractions, 45 Gy, DC injections after fractions 5, 15, and 25, and then interstitial radioactive implant. Another was a phase II trial using neo-adjuvant cell death-inducing EBRT plus intra-tumoral DC in soft tissue sarcoma, to test if this would increase immune activity toward soft tissue sarcoma associated antigens. Clinical experience using radiation therapies combined with other systemic immune treatments are additionally surveyed, including use of investigational recombinant vaccinia and fowlpox, interleukin-2, toll like receptor 9 (TLR9 agonists and lymphocyte checkpoint inhibitors directed at PD1 and at CTLA4.

  20. Modern Radiation Therapy for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Specht, Lena; Yahalom, Joachim; Illidge, Tim

    2014-01-01

    by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission...

  1. Pelvic radiation therapy: Between delight and disaster

    Institute of Scientific and Technical Information of China (English)

    Kirsten; AL; Morris; Najib; Y; Haboubi

    2015-01-01

    In the last few decades radiotherapy was established as one of the best and most widely used treatmentmodalities for certain tumours. Unfortunately that came with a price. As more people with cancer survive longer an ever increasing number of patients are living with the complications of radiotherapy and have become, in certain cases, difficult to manage. Pelvic radiation disease(PRD) can result from ionising radiationinduced damage to surrounding non-cancerous tissues resulting in disruption of normal physiological functions and symptoms such as diarrhoea, tenesmus, incontinence and rectal bleeding. The burden of PRDrelated symptoms, which impact on a patient’s quality of life, has been under appreciated and sub-optimally managed. This article serves to promote awareness of PRD and the vast potential there is to improve current service provision and research activities.

  2. Radiation protection at Hadron therapy facilities.

    Science.gov (United States)

    Pelliccioni, Maorizio

    2011-07-01

    The Italian National Centre for Oncological Hadrontherapy is currently under construction in Pavia. It is designed for the treatment of deep-seated tumours (up to a depth of 27 cm of water equivalent) with proton and C-ion beams as well as for both clinical and radiobiological research. The particles will be accelerated by a 7-MeV u(-1) LINAC injector and a 400-MeV u(-1) synchrotron. In the first phase of the project, three treatment rooms will be in operation, equipped with four fixed beams, three horizontal and one vertical. The accelerators are currently undergoing commissioning. The main radiation protection problems encountered (shielding, activation, etc.) are hereby illustrated and discussed in relation to the constraints set by the Italian national authorities.

  3. Associations of ATM Polymorphisms With Survival in Advanced Esophageal Squamous Cell Carcinoma Patients Receiving Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhongli [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Zhang, Wencheng [Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Zhou, Yuling; Yu, Dianke; Chen, Xiabin; Chang, Jiang; Qiao, Yan; Zhang, Meng; Huang, Ying; Wu, Chen [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Xiao, Zefen, E-mail: xiaozefen@sina.com [Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Tan, Wen, E-mail: tanwen@cicams.ac.cn [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); and others

    2015-09-01

    Purpose: To investigate whether single nucleotide polymorphisms (SNPs) in the ataxia telangiectasia mutated (ATM) gene are associated with survival in patients with esophageal squamous cell carcinoma (ESCC) receiving radiation therapy or chemoradiation therapy or surgery only. Methods and Materials: Four tagSNPs of ATM were genotyped in 412 individuals with clinical stage III or IV ESCC receiving radiation therapy or chemoradiation therapy, and in 388 individuals with stage I, II, or III ESCC treated with surgery only. Overall survival time of ESCC among different genotypes was estimated by Kaplan-Meier plot, and the significance was examined by log-rank test. The hazard ratios (HRs) and 95% confidence intervals (CIs) for death from ESCC among different genotypes were computed by a Cox proportional regression model. Results: We found 2 SNPs, rs664143 and rs664677, associated with survival time of ESCC patients receiving radiation therapy. Individuals with the rs664143A allele had poorer median survival time compared with the rs664143G allele (14.0 vs 20.0 months), with the HR for death being 1.45 (95% CI 1.12-1.89). Individuals with the rs664677C allele also had worse median survival time than those with the rs664677T allele (14.0 vs 23.5 months), with the HR of 1.57 (95% CI 1.18-2.08). Stratified analysis showed that these associations were present in both stage III and IV cancer and different radiation therapy techniques. Significant associations were also found between the SNPs and locosregional progression or progression-free survival. No association between these SNPs and survival time was detected in ESCC patients treated with surgery only. Conclusion: These results suggest that the ATM polymorphisms might serve as independent biomarkers for predicting prognosis in ESCC patients receiving radiation therapy.

  4. Implementation of contemporary radiation therapy planning concepts for pediatric Hodgkin lymphoma: Guidelines from the International Lymphoma Radiation Oncology Group.

    Science.gov (United States)

    Hodgson, David C; Dieckmann, Karin; Terezakis, Stephanie; Constine, Louis

    2015-01-01

    The optimal management of children with Hodgkin lymphoma (HL) should limit the risk of treatment-related toxicity without compromising disease control. Consequently, increasing effort is being directed to retaining the demonstrated efficacy of radiation therapy (RT) in maximizing the cure of HL while reducing the radiation exposure of normal tissues. Historically, guidelines for RT volume definition used in pediatric HL trials have referenced 2-dimensional imaging and bony landmarks to define classical involved field RT. With recognition of the efficacy of chemotherapy, the data on the adverse late effects of radiation, and the evolution of advanced imaging techniques that reveal the location of both tumor and normal tissues, it is necessary that radiation techniques for children and adolescents be refined. The concepts described by the International Commission on Radiation Units provide a common approach for field definition using 3-dimensional computed tomographic--based RT planning and volumetric image guidance. Here we describe the application of these concepts in the planning of RT for pediatric HL. This will be increasingly important as current and upcoming pediatric HL trials will employ these concepts to deliver RT.

  5. Study on neutron radiation field of carbon ions therapy

    CERN Document Server

    Xu, Jun-Kui; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2015-01-01

    Carbon ions offer significant advantages for deep-seated local tumors therapy due to their physical and biological properties. Secondary particles, especially neutrons caused by heavy ion reactions should be carefully considered in treatment process and radiation protection. For radiation protection purposes, the FLUKA Code was used in order to evaluate the radiation field at deep tumor therapy room of HIRFL in this paper. The neutron energy spectra, neutron dose and energy deposition of carbon ion and neutron in tissue-like media was studied for bombardment of solid water target by 430MeV/u C ions. It is found that the calculated neutron dose have a good agreement with the experimental date, and the secondary neutron dose may not exceed one in a thousand of the carbon ions dose at Bragg peak area in tissue-like media.

  6. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pollom, Erqi L.; Deng, Lei [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Pai, Reetesh K. [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Brown, J. Martin; Giaccia, Amato; Loo, Billy W.; Shultz, David B.; Le, Quynh Thu; Koong, Albert C. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Chang, Daniel T., E-mail: dtchang@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States)

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.

  7. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  8. Radiation treatment for the right naris in a pediatric anesthesia patient using an adaptive oral airway technique

    Energy Technology Data Exchange (ETDEWEB)

    Sponseller, Patricia, E-mail: sponselp@uw.edu; Pelly, Nicole; Trister, Andrew; Ford, Eric; Ermoian, Ralph

    2015-10-01

    Radiation therapy for pediatric patients often includes the use of intravenous anesthesia with supplemental oxygen delivered via the nasal cannula. Here, we describe the use of an adaptive anesthesia technique for electron irradiation of the right naris in a preschool-aged patient treated under anesthesia. The need for an intranasal bolus plug precluded the use of standard oxygen supplementation. This novel technique required the multidisciplinary expertise of anesthesiologists, radiation therapists, medical dosimetrists, medical physicists, and radiation oncologists to ensure a safe and reproducible treatment course.

  9. [Low-energy wideband electromagnetic radiation and manual therapy in the treatment of neurological manifestations of spinal osteochondrosis].

    Science.gov (United States)

    Afoshin, S A; Gerasimenko, M Iu

    2006-01-01

    It is shown that the advanced technique of low-energy wideband electromagnetic radiation improves vascular tonicity and peripheral circulation while a modified technique of manual therapy facilitates movements in the affected part of the spine and reduces tonicity of the muscles involved in the pathological process.

  10. Giant calcified meningioma after radiation therapy; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Zenke, Kiichiro; Fukumoto, Shinya; Ohta, Shinsuke; Sakaki, Saburo (Ehime Univ., Shigenobu (Japan). School of Medicine); Matsui, Seishi

    1993-09-01

    We presented a case of secondary giant meningioma with dense calcification (brain stone) after radiation therapy for primary ependymoma removed 25 years before. A 31-year-old man was referred to our hospital because of generalized convulsion. He had received extirpation of an ependymoma in the left frontoparietal region and postoperative radiation therapy 25 years before. Skull X-ray and CT revealed a giant brain stone in the left parietal region. It was totally removed en bloc. Photomicrograph of the specimen showed proliferation of arachnoid cell-like tumor cells in narrow spaces surrounded by marked calcified lesions which showed partial ossification. The etiology and therapy of this tumor were discussed. (author).

  11. Motion-Compensated Estimation of Delivered Dose during External BeamRadiation Therapy: Implementation in Philips’ Pinnacle3 Treatment Planning System

    NARCIS (Netherlands)

    Bharat, S.; Parikh, P.; Noel, C.; Meltsner, M.; Bzdusek, K.; Kaus, M.

    2012-01-01

    Purpose: Recent research efforts investigating dose escalation techniques for three-dimensional conformal radiation therapy (3D CRT) andintensity modulated radiation therapy (IMRT) have demonstrated great benefit when high-dose hypofractionated treatment schemes are implemented16,21. The use of the

  12. Role of the Technical Aspects of Hypofractionated Radiation Therapy Treatment of Prostate Cancer: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, Stefania, E-mail: clemente_stefania@libero.it [Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico della Basilicata Rionero in Vulture, Potenza (Italy); Nigro, Roberta [Azienda Sanitaria Locale Rieti, Roma (Italy); Oliviero, Caterina [Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico della Basilicata Rionero in Vulture, Potenza (Italy); Marchioni, Chiara [Azienda Sanitaria Locale Rieti, Roma (Italy); Esposito, Marco [Azienda Sanitaria, Firenze (Italy); Giglioli, Francesca Romana [Azienda Ospedaliera Città della Salute e della Scienza di Torino, Torino (Italy); Mancosu, Pietro [Humanitas Clinical and Research Hospital, Rozzano, Milano (Italy); Marino, Carmelo [Humanitas Centro Catanese di Oncologia, Catania (Italy); Russo, Serenella [Azienda Sanitaria, Firenze (Italy); Stasi, Michele [Azienda Ospedaliera Ordine Mauriziano di Torino, Torino (Italy); Strigari, Lidia [Istituto Nazionale Tumori Regina Elena, Roma (Italy); Veronese, Ivan [Universita' degli Studi di Milano, Milano (Italy); Landoni, Valeria [Istituto Nazionale Tumori Regina Elena, Roma (Italy)

    2015-01-01

    The increasing use of moderate (<35 fractions) and extreme (<5 fractions) hypofractionated radiation therapy in prostate cancer is yielding favorable results, both in terms of maintained biochemical response and toxicity. Several hypofractionation (HF) schemes for the treatment of prostate cancer are available, although there is considerable variability in the techniques used to manage intra-/interfraction motion and deliver radiation doses. We performed a review of the published studies on HF regimens as a topic of interest for the Stereotactic Ablative Radiotherapy working group, which is part of the Italian Association of Medical Physics. Aspects of organ motion management (imaging for contouring, target volume definition, and rectum/bladder preparation) and treatment delivery (prostate localization, image guided radiation therapy strategy and frequency) were evaluated and categorized to assess outcome relative to disease control and toxicity. Despite the heterogeneity of the data, some interesting trends that emerged from the review might be useful in identifying an optimum HF strategy.

  13. 4D modeling and estimation of respiratory motion for radiation therapy

    CERN Document Server

    Lorenz, Cristian

    2013-01-01

    Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient’s body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the br...

  14. Strategy Development through Interview Technique from Narrative Therapy

    DEFF Research Database (Denmark)

    Kryger, Anders

    2017-01-01

    workshop, facilitated with interview technique from narrative therapy, and later authorized by the business area director. The organizational intervention preceded the scholarly inquiry. Findings: Employees’ retrospective storytelling about working at the company enabled them to formulate a joint mission...

  15. Indications for radiation therapy in hypopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Teruki; Chatani, Masashi; Inoue, Toshihiko; Yoshino, Kunitoshi; Sato, Takeo (Osaka Prefectural Center for Adult Diseases (Japan)); Miyahara, Hiroshi

    1989-01-01

    With the aim of determining indications for radiotherapy in hypopharyngeal carcinoma, a retrospective analysis was made on 79 patients treated between 1977 and 1985. The patients were followed up for a median of 6 yr. and 2 mo. with a range of 3 yr. and 2 mo. to 8 yr. and 11 mo.. According to the UICC TNM classification system (1987), 11 patients were T1, 31 T2, 23 T3, and 14 T4; and 23 patients were N0, 18 N1, 9 N2a, 15 N2b, 7 N2c, and 7 N3. Radiotherapy was administered with radical intent (n=14), with palliative intent (n=11), preoperatively (n=32), and postoperatively (n=22). The 5-year survival rate was 23% in the radically treated group, 0% in the palliatively treated group, 31% in the preoperatively treated group, and 49% in the postoperatively treated group. It also depended significantly on N staging: 55% for N0 patients vs 28% for N1 patients and 29% for N2a-b patients. The most common recurrence or relapse occurred in the cervical lymph nodes, followed by distant and local sites. For N1-3 patients, local control was significantly better in the group treated with combined radiotherapy and surgery (36% for neck dissection and 70% for radical neck dissection), as compared with 9% for radiation alone. Patients receiving 50 Gy or more had significantly higher local control than those receiving less than 50 Gy (55% vs 22%). Patients of stage NO had lymph node metastases in the area irradiated with less than 50 Gy. The results revealed the following indications: (1) lesions of early T stage and N0 confined to the posterior wall or the upper half of the piriform recess for radical radiotherapy (less than 10% of all cases); (2) potentially curable lesions of N0-N2b, regardless of T stages, for pre- or post-operative radiotherapy; (3) the other advanced lesions for palliative radiotherapy. Radiation of 50 Gy or more combined with neck dissection was proposed in local control for N1-3 patients. (N.K.).

  16. Music Techniques in Therapy, Counseling, and Special Education, Third Edition

    Science.gov (United States)

    Standley, Jayne M.; Jones, Jennifer

    2007-01-01

    "Music Techniques in Therapy, Counseling, and Special Education" is the culmination of the first author's research in the skill development of prospective music therapists and music educators during graduate and undergraduate preparation. Standley studied the abilities and progress of students across multiple clinical music therapy and music…

  17. Radiation therapy planning with photons and protons for early and advanced breast cancer: an overview

    Directory of Open Access Journals (Sweden)

    Lomax Antony J

    2006-07-01

    Full Text Available Abstract Postoperative radiation therapy substantially decreases local relapse and moderately reduces breast cancer mortality, but can be associated with increased late mortality due to cardiovascular morbidity and secondary malignancies. Sophistication of breast irradiation techniques, including conformal radiotherapy and intensity modulated radiation therapy, has been shown to markedly reduce cardiac and lung irradiation. The delivery of more conformal treatment can also be achieved with particle beam therapy using protons. Protons have superior dose distributional qualities compared to photons, as dose deposition occurs in a modulated narrow zone, called the Bragg peak. As a result, further dose optimization in breast cancer treatment can be reasonably expected with protons. In this review, we outline the potential indications and benefits of breast cancer radiotherapy with protons. Comparative planning studies and preliminary clinical data are detailed and future developments are considered.

  18. Predictors of Radiation Pneumonitis in Patients Receiving Intensity Modulated Radiation Therapy for Hodgkin and Non-Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Pinnix, Chelsea C., E-mail: ccpinnix@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Grace L.; Milgrom, Sarah; Osborne, Eleanor M.; Reddy, Jay P.; Akhtari, Mani; Reed, Valerie; Arzu, Isidora; Allen, Pamela K.; Wogan, Christine F. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Fanale, Michele A.; Oki, Yasuhiro; Turturro, Francesco; Romaguera, Jorge; Fayad, Luis; Fowler, Nathan; Westin, Jason; Nastoupil, Loretta; Hagemeister, Fredrick B.; Rodriguez, M. Alma [Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); and others

    2015-05-01

    Purpose: Few studies to date have evaluated factors associated with the development of radiation pneumonitis (RP) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially in patients treated with contemporary radiation techniques. These patients represent a unique group owing to the often large radiation target volumes within the mediastinum and to the potential to receive several lines of chemotherapy that add to pulmonary toxicity for relapsed or refractory disease. Our objective was to determine the incidence and clinical and dosimetric risk factors associated with RP in lymphoma patients treated with intensity modulated radiation therapy (IMRT) at a single institution. Methods and Materials: We retrospectively reviewed clinical charts and radiation records of 150 consecutive patients who received mediastinal IMRT for HL and NHL from 2009 through 2013. Clinical and dosimetric predictors associated with RP according to Radiation Therapy Oncology Group (RTOG) acute toxicity criteria were identified in univariate analysis using the Pearson χ{sup 2} test and logistic multivariate regression. Results: Mediastinal radiation was administered as consolidation therapy in 110 patients with newly diagnosed HL or NHL and in 40 patients with relapsed or refractory disease. The overall incidence of RP (RTOG grades 1-3) was 14% in the entire cohort. Risk of RP was increased for patients who received radiation for relapsed or refractory disease (25%) versus those who received consolidation therapy (10%, P=.019). Several dosimetric parameters predicted RP, including mean lung dose of >13.5 Gy, V{sub 20} of >30%, V{sub 15} of >35%, V{sub 10} of >40%, and V{sub 5} of >55%. The likelihood ratio χ{sup 2} value was highest for V{sub 5} >55% (χ{sup 2} = 19.37). Conclusions: In using IMRT to treat mediastinal lymphoma, all dosimetric parameters predicted RP, although small doses to large volumes of lung had the greatest influence. Patients with relapsed

  19. Radiation therapy in the multimodal treatment approach of pituitary adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G. [Klinik am Eichert, Goeppingen (Germany). Dept. of Radiooncology and Radiation Therapy; Radiooncologic Univ. Clinic, Tuebingen (Germany); Kocher, M.; Mueller, R.P. [Koeln Univ. (Germany). Clinic of Radiation Therapy; Kortmann, R.D.; Paulsen, F.; Jeremic, B.; Bamberg, M. [Radiooncologic Univ. Clinic, Tuebingen (Germany)

    2002-04-01

    In this paper, literature will be reviewed to assess the role of modern radiotherapy and radiosurgery in the management of pituitary adenomas. Material and Methods: Nowadays, magnetic resonance imaging for the definition of the target volume and a real three-dimensional (3-D) treatment planning with field conformation and the possibility for non-coplanar irradiation has to be recommended. Most groups irradiate these benign tumors with single doses of 1.8-2.0 Gy up to a total dose of 45 Gy or 50.4 Gy in extensive parasellar adenomas. Adenomas are mostly small, well circumscribed lesions, and have, therefore, attracted the use of stereotactically guided high-precision irradiation techniques which allow extreme focussing and provide steep dose gradients with selective treatment of the target and optimal protection of the surrounding brain tissue. Results: Radiation therapy controls tumor growth in 80-98% of patients with non-secreting adenomas and 67-89% for endocrine active tumors. Reviewing the recent literature including endocrine active and non-secreting adenomas, irradiated postoperatively or in case of recurrence the 5-, 10- and 15-year local control rates amount 92%, 89% and 79%. In cases of microprolactinoma primary therapy consists of dopamine agonists. Irradiation should be preferred in patients with macroprolactinomas, when drug therapy and/or surgery failed or for patients medically unsuitable for surgery. Reduction and control of prolactin secretion can be achieved in 44-70% of patients. After radiotherapy in acromegaly patients somatomedin-C and growth hormone concentrations decrease to normal levels in 70-90%, with a decrease rate of 10-30% per year. Hypercortisolism is controlled in 50-83% of adults and 80% of children with Cushing's disease, generally in less than 9 months. Hypopituitarism is the most common side effect of pituitary irradiation with an incidence of 13-56%. Long-term overall risk for brain necrosis in a total of 1,388 analyzed

  20. Occurrence of BOOP outside radiation field after tangential radiation therapy for breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Gohma, Iwao; Oida, Kazukiyo [Tenri Hospital, Nara (Japan)] (and others)

    2000-07-01

    We report three cases of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy using tangential fields for breast carcinoma. All patients complained of a cough between 14 and 20 weeks after completion of radiation therapy. Fever also developed in two of the three. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the same side as the radiation therapy. Laboratory data showed an increased level of C-reactive protein and an increased erythrocyte sedimentation rate. Bronchoalveolar lavage showed an elevated total cell count with a very high percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid clinical improvement and complete resolution of the radiographic abnormalities. This pulmonary disorder appears to be induced by radiation, especially when a tangential field is employed for breast carcinoma, though the etiology has not been fully investigated. It is important to be aware of this type of pulmonary complication in patients given radiotherapy for breast carcinoma. (author)

  1. Impacts of radiation management techniques on the North Atlantic Oscillation

    Science.gov (United States)

    Adakudlu, Muralidhar; Helge Otterå, Odd; Tjiputra, Jerry; Muri, Helene; Grini, Alf; Schulz, Michael

    2017-04-01

    The effectiveness of various climate engineering techniques in limiting the global warming signal to reasonable levels has been the topic of state-of-the-art research on climate change. Using an Earth system model, we show that these techniques have the potential to bring down the high CO2 concentration climate in RCP8.5 to a moderate climate similar to RCP4.5 in terms of global temperature. Nevertheless, their influence on the regional aspects of atmospheric circulation is not clear. The regional circulation patterns in the atmosphere are largely characterized by the natural variability modes, such as the North Atlantic Oscillation (NAO). In this study, we assess the impacts of three radiation managment techniques, namely, Stratospheric Aerosol Injection (SAI), Marine Sky Brightening (MSB) and Cirrus Cloud Thinning (CCT), on the structure and features of the NAO. The results indicate an east-northeastward shift as well as intensification of the NAO spatial pattern in the global warming scenarios of RCP4.5 and RCP8.5, with the signal being most intense in the latter. The climate engineering forcings when applied to the RCP8.5 case tend to reduce the strength of the NAO with little impact on its position. The CCT case appears to have the maximum effect on the NAO signal. The patterns of cloud radiative forcing, expressed as the difference between net radiative forcing at TOA under average conditions and clear sky conditions, reveal a northeastward shift of the radiative heating in the north Atlantic region. This implies a possible link between the changes in the NAO signal and the cloud radiative forcing.

  2. Anaemia and radiation therapy; Anemie et radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Denis, F. [Clinique d' Oncologie et de Radiotherapie, INSERM U619, 37 - Tours (France); Lartigau, E. [Centre de Lutte Contre le Cancer Oscar-Lambret, Dept. de Radiotherapie, 59 - Lille (France)

    2004-11-01

    Anaemia is frequent in cancer and may increase tumour hypoxia that stimulates angiogenesis. However, erythropoietin is a hypoxia-inducible stimulator of erythropoiesis which seems to improve quality of life in cancer patients. Two recent phase III randomized studies showed negative results using erythropoietin in head and neck cancer patients and in metastatic breast cancer patients with impaired specific survival. In vitro and in vivo experiments have provided erythropoietin-receptor expression in endothelial cancer cells including malignant tumours of the breast, prostate, cervix, lung, head and neck, ovary, melanoma, stomach, gut, kidney etc. Biologic effect of erythropoietin and its receptor linkage induces proliferation of human breast cancer and angiogenesis and may limit anti-tumour effect of cancer treatment, in part, by tumour vascularization improvement. In addition, the use of exogenous erythropoietin could be able to favour tumour progression by improving tumour oxygenation and nutriment supply. If erythropoietin receptor were functional in human cancer. the assessment of erythropoietin receptor expression on tumour cell may help to select patients benefiting from exogenous erythropoietin. However. the relationship between erythropoietin receptor expression, tumour growth and exogenous erythropoietin. requires more studies. The results of recent clinical trials suggest that using erythropoietin should be avoided in non-anemic patients and discussed in patients receiving curative therapy. (authors)

  3. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol With Radiation Response Biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Janet K., E-mail: janet.horton@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Blitzblau, Rachel C.; Yoo, Sua [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Geradts, Joseph [Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Chang, Zheng [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Baker, Jay A. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Georgiade, Gregory S. [Department of Surgery, Duke University Medical Center, Durham, North Carolina (United States); Chen, Wei [Department of Bioinformatics: Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Siamakpour-Reihani, Sharareh; Wang, Chunhao [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Broadwater, Gloria [Department of Biostatistics: Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Groth, Jeff [Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha; Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Barry, William T. [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Duffy, Eileen A. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); and others

    2015-07-15

    Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative, estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should

  4. Orthovoltage intraoperative radiation therapy for pancreatic adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Kapp Daniel S

    2010-11-01

    Full Text Available Abstract Purpose To analyze the outcomes of patients from a single institution treated with surgery and orthovoltage intraoperative radiotherapy (IORT for pancreatic adenocarcinoma. Methods We retrospectively reviewed 23 consecutive patients from 1990-2001 treated with IORT to 23 discrete sites with median and mean follow up of 6.5 and 21 months, respectively. Most tumors were located in the head of the pancreas (83% and sites irradiated included: tumor bed (57%, vessels (26%, both the tumor bed/vessels (13% and other (4%. The majority of patients (83% had IORT at the time of their definitive surgery. Three patients had preoperative chemoradiation (13%. Orthovoltage X-rays (200-250 kVp were employed via individually sized and beveled cone applicators. Additional mean clinical characteristics include: age 64 (range 41-81; tumor size 4 cm (range 1.4-11; and IORT dose 1106 cGy (range 600-1500. Post-operative external beam radiation (EBRT or chemotherapy was given to 65% and 76% of the assessable patients, respectively. Outcomes measured were infield control (IFC, loco-regional control (LRC, distant metastasis free survival (DMFS, overall survival (OS and treatment-related complications. Results Kaplan-Meier (KM 2-year IFC, LRC, DMFS and OS probabilities for the whole group were 83%, 61%, 26%, and 27%, respectively. Our cohort had three grade 3-5 complications associated with treatment (surgery and IORT. Conclusions Orthovoltage IORT following tumor reductive surgery is reasonably well tolerated and seems to confer in-field control in carefully selected patients. However, distant metastases remain the major problem for patients with pancreatic adenocarcinoma.

  5. High pressure x-ray diffraction techniques with synchrotron radiation

    Institute of Scientific and Technical Information of China (English)

    刘景

    2016-01-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefl y introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented.

  6. Intraoperative radiation therapy (IORT) in head and neck cancer

    Science.gov (United States)

    Kyrgias, George; Hajiioannou, Jiannis; Tolia, Maria; Kouloulias, Vassilios; Lachanas, Vasileios; Skoulakis, Charalambos; Skarlatos, Ioannis; Rapidis, Alexandros; Bizakis, Ioannis

    2016-01-01

    Abstract Background: Multimodality therapy constitutes the standard treatment of advanced and recurrent head and neck cancer. Since locoregional recurrence comprises a major obstacle in attaining cure, the role of intraoperative radiation therapy (IORT) as an add-on in improving survival and local control of the disease has been investigated. IORT allows delivery of a single tumoricidal dose of radiation to areas of potential residual microscopic disease while minimizing doses to normal tissues. Advantages of IORT include the conformal delivery of a large dose of radiation in an exposed and precisely defined tumor bed, minimizing the risk of a geographic miss creating the potential for subsequent dose reduction of external beam radiation therapy (EBRT). This strategy allows for shortening overall treatment time and dose escalation. The aim of this review is to summarize recent published work on the use of IORT as an adjuvant modality to treat common head and neck cancer in the primary or recurrent setting. Methods: We searched the Medline, Scopus, Ovid, Cochrane, Embase, and ISI Web of Science databases for articles published from 1980 up to March 2016. Results: Based on relevant publications it appears that including IORT in the multimodal treatment may contribute to improved local control. However, the benefit in overall survival is not so clear. Conclusion: IORT seems to be a safe, promising adjunct in the management of head and neck cancer and yet further well organized clinical trials are required to determine its role more precisely. PMID:27977569

  7. Three dimensional conformal radiation therapy may improve the therapeutic ratio of radiation therapy after pneumonectomy for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trouette, R.; Causse, N.; Elkhadri, M.; Caudry, M.; Maire, J.P.; Houlard, J.P.; Racaldini, L.; Demeaux, H.

    1995-12-01

    Three dimensional conformal radiation therapy would allow to decrease the normal tissue dose while maintaining the same target dose as standard treatment. To evaluate the feasibility of normal tissue dose reduction for ten patients with pneumonectomy for lung cancer, we determined the dose distribution to the normal tissue with 3-dimensional conformal radiation therapy (3-DCRT) and conventional treatment planning (CTP). Dose-volume histograms for target and normal tissue (lung, heart) were used for comparison of the different treatment planning. The mean percentages of lung and heart volumes which received 40 Gy with 3-DCRT were respectively 63% and 37% of the mean percentage of lung and volumes which received the same dose with CTP. These preliminary results suggest that conformal therapy may improve the therapeutic ratio by reducing risk to normal tissue.

  8. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Thorek, Daniel L.J., E-mail: dthorek1@jhmi.edu [Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins School of Medicine, Baltimore, MD (United States); Kramer, Robin M. [Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center (MSKCC), Weill Cornell Medical College, The Rockefeller University, New York, NY (United States); Chen, Qing; Jeong, Jeho; Lupu, Mihaela E. [Department of Medical Physics, MSKCC, New York, NY (United States); Lee, Alycia M.; Moynahan, Mary E.; Lowery, Maeve [Department of Medicine, MSKCC, New York, NY (United States); Ulmert, David [Molecular Pharmacology and Chemistry Program, MSKCC, New York, NY (United States); Department of Surgery (Urology), Skåne University Hospital, Malmö (Sweden); Zanzonico, Pat; Deasy, Joseph O.; Humm, John L. [Department of Medical Physics, MSKCC, New York, NY (United States); Russell, James, E-mail: russellj@mskcc.org [Department of Medical Physics, MSKCC, New York, NY (United States)

    2015-10-01

    Purpose: To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials: After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Mice could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. Results: Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions: This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response.

  9. Neutrophils, a candidate biomarker and target for radiation therapy?

    Science.gov (United States)

    Schernberg, Antoine; Blanchard, Pierre; Chargari, Cyrus; Deutsch, Eric

    2017-08-23

    Neutrophils are the most abundant blood-circulating white blood cells, continuously generated in the bone marrow. Growing evidence suggests they regulate the innate and adaptive immune system during tumor evolution. This review will first summarize the recent findings on neutrophils as a key player in cancer evolution, then as a potential biomarker, and finally as therapeutic targets, with respective focuses on the interplay with radiation therapy. A complex interplay: Neutrophils have been associated with tumor progression through multiple pathways. Ionizing radiation has cytotoxic effects on cancer cells, but the sensitivity to radiation therapy in vivo differ from isolated cancer cells in vitro, partially due to the tumor microenvironment. Different microenvironmental states, whether baseline or induced, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. Inflammatory biomarkers: Inflammation-based scores have been widely studied as prognostic biomarkers in cancer patients. We have performed a large retrospective cohort of patients undergoing radiation therapy (1233 patients), with robust relationship between baseline blood neutrophil count and 3-year's patient's overall survival in patients with different cancer histologies. (Pearson's correlation test: p = .001, r = -.93). Therapeutic approaches: Neutrophil-targeting agents are being developed for the treatment of inflammatory and autoimmune diseases. Neutrophils either can exert antitumoral (N1 phenotype) or protumoral (N2 phenotype) activity, depending on the Tumor Micro Environment. Tumor associated N2 neutrophils are characterized by high expression of CXCR4, VEGF, and gelatinase B/MMP9. TGF-β within the tumor microenvironment induces a population of TAN with a protumor N2 phenotype. TGF-β blockade slows tumor growth through activation of CD8 + T cells, macrophages, and tumor associated neutrophils with an antitumor N1 phenotype. This supports

  10. The effect of radiation therapy on hemophilic arthropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin Oh; Hong, Seong Eon; Kim, Sang Gi; Shin, Dong Oh [School of Medicine, KyungHee University, Seoul (Korea, Republic of)

    2005-06-15

    Repetitive bleeding into the joint space is the cause of debilitative hemophilic arthropathy. To interrupt this process, we treated the hemophilic patients suffering from repetitive joint bleeding with radiation therapy. From 1997 to 2001, a total of 41 joints from 37 hemophilic arthropathy patients were treated with radiation therapy at KyungHee University Hospital. The treated joints were 35 ankles, 3 knees and 3 elbows, respectively. The age of the patients ranged from 4 to 27 years (median age: 11 years). The radiation dose ranged from 900 cGy to 2360 cGy (median dose: 900 cGy). The fraction size was 150 cGy, 180 cGy or 200 cGy. The number of bleeding in one year before and after radiotherapy was compared. There was a tendency of frequent bleeding for the patients younger than 11 ({rho} 0.051) but there was also a tendency for more improvement in this group ({rho} 0.057). The number of joint bleedings was related with joint pain ({rho} 0.012) and joint swelling ({rho} = 0.033) but not with the Arbold-Hilgartner stage ({rho} 0.739),cartilage destruction ({rho} = 0.718) and synovial hypertrophy ({rho} = 0.079). The number of bleeding was reduced in thirty-three cases, and eight cases showed no improvement after radiation therapy. The average number of bleeding in a month was 2.52 before radiotherapy, but this was reduced to 1.4 after radiotherapy ({rho} = 0.017). Radiation therapy was effective for the hemophilia patients with repetitive joint bleeding to decrease the bleeding frequency and to prevent hemophilic arthropathy.

  11. Immunotherapy and radiation therapy for malignant pleural mesothelioma.

    Science.gov (United States)

    Alley, Evan W; Katz, Sharyn I; Cengel, Keith A; Simone, Charles B

    2017-04-01

    Malignant pleural mesothelioma (MPM) is a particularly aggressive thoracic malignancy with limited survival following combination chemotherapy. As a result, there has been increased interested in immunotherapy for mesothelioma, both in the first-line and salvage settings. Early investigations of interleukin-2 (IL-2) and interferon alfa-2a/b have been limited by modest response rates and toxicity, whereas cytokine gene therapy is currently being investigated and shows early promise. The most prominent class of immunotherapies to be trialed with mesothelioma in the past half-decade has been immune checkpoint inhibitors (CPI). Early results are encouraging, particularly for agents targeting the PD-1/PD-L1 pathways. With the increasing recognition of the immune potential of mesothelioma, interest in the immunomodulatory properties of radiation therapy has emerged. The combination of immunotherapy and radiation therapy may allow for complimentary immunologic effects that can enhance antitumor response. This article reviews the existing literature on the efficacy of immunotherapy for MPM, describes the rationale for combining immunotherapy with radiation therapy, and discusses early literature on this treatment combination.

  12. Immunotherapy and radiation therapy for malignant pleural mesothelioma

    Science.gov (United States)

    Katz, Sharyn I.; Cengel, Keith A.; Simone, Charles B.

    2017-01-01

    Malignant pleural mesothelioma (MPM) is a particularly aggressive thoracic malignancy with limited survival following combination chemotherapy. As a result, there has been increased interested in immunotherapy for mesothelioma, both in the first-line and salvage settings. Early investigations of interleukin-2 (IL-2) and interferon alfa-2a/b have been limited by modest response rates and toxicity, whereas cytokine gene therapy is currently being investigated and shows early promise. The most prominent class of immunotherapies to be trialed with mesothelioma in the past half-decade has been immune checkpoint inhibitors (CPI). Early results are encouraging, particularly for agents targeting the PD-1/PD-L1 pathways. With the increasing recognition of the immune potential of mesothelioma, interest in the immunomodulatory properties of radiation therapy has emerged. The combination of immunotherapy and radiation therapy may allow for complimentary immunologic effects that can enhance antitumor response. This article reviews the existing literature on the efficacy of immunotherapy for MPM, describes the rationale for combining immunotherapy with radiation therapy, and discusses early literature on this treatment combination. PMID:28529903

  13. Methods for reducing patient radiation exposure during proton therapy for eye disease

    Directory of Open Access Journals (Sweden)

    Victor A. Bakaev

    2017-06-01

    Full Text Available The paper is dedicated to techniques for reduction of background radiation in the room for conducting proton eye radiotherapy. The necessity of this reduction stems from the health risk of low-dose effect on the personnel and patients. We have touched the aspects of background reduction both at the cost of secondary particles, produced in beam-forming systems, and the dose reduction for the patient's healthy tissue (when carrying out beam therapy owing to correct assessment of the biological effects of protons with energies up to 60MeV. The obtained calculation results prove that an increase in the proton beam diameter provides the possibility of reducing the background radiation by more than a factor of three in the room and of correspondingly decreasing the body's radiation exposure. It is necessary to take correct account of RBE to reduce the radiation exposure of adjacent organs.

  14. [Formation of optimum dose fields in contact radiation therapy of malignant tumors].

    Science.gov (United States)

    Klepper, L Ia

    2003-01-01

    The definition of the homogeneity of a dose field in the contact radiation therapy for malignant tumors is introduced. The mathematical interpretation of problems in the formation of optimum dose fields, to which the maximum homogeneity of a dose field at the site of lesion corresponds, is presented. It is shown that the problems in the formation of optimum dose fields may be divided into two subsets in relation to whether the sources of radiation are located at the site of lesion or adjacent to the latter (application techniques of radiation). An analytical method for solving a problem in the formation of an optimal dose field in the ring circle by means of one ring source of radiation (the first type of problems). The investigation was conducted with the support of the Russian Fund of Fundamental Investigations (RFFI 01-01-00137).

  15. Radiation therapy in the treatment of metastatic renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Onufrey, V.; Mohiuddin, M.

    1985-11-01

    Adenocarcinoma of the kidney is an unusual tumor, both in its biological behavior and in its response to radiation treatment. Historically, these tumors have been considered to be radioresistant, and the role of radiation therapy remains questionable in the primary management of this disease. However, radiation treatment is routinely used in the palliation of metastatic lesions for relief of symptoms. Therefore, we have undertaken a review of our experience in the treatment of this disease to determine the effectiveness of radiation in its palliation. From 1956 to 1981, 125 patients with metastatic lesions from hypernephroma have been treated in the Department of Radiation Therapy at Thomas Jefferson University Hospital. Most patients were referred for relief of bone pain (86), brain metastasis (12), spinal cord compression (9), and soft tissue masses (18). Total doses varied from 2000 rad to a maximum of 6000 rad. Response to treatment was evaluated on the basis of relief of symptoms, either complete, partial or no change. Our results indicate a significantly higher response rate of 65% for total doses equal to or greater than a TDF of 70, as compared to 25% for doses lower than a TDF of 70. No difference in response was observed either for bone or soft tissue metastasis or visceral disease. This leads us to believe that metastatic lesions from adenocarcinomas of the kidney should be treated to higher doses to obtain maximum response rates. Analysis of these results are presented in detail.

  16. Delayed damage after radiation therapy for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yoshiyuki [Osaka Dental Univ., Hirakata (Japan)

    2000-03-01

    I investigated radiation damage, including osteoradionecrosis, arising from tooth extraction in fields that had received radiation therapy for head and neck cancer, and evaluated the effectiveness of pilocarpine for xerostomia. Between January 1990 and April 1996, I examined 30 patients for bone changes after tooth extraction in fields irradiated at the Department of Oral Radiology, Osaka Dental University Hospital. Nineteen of the patients had been treated for nasopharyngeal cancer and 11 for oropharyngeal cancer. Between January and April 1996, 4 additional patients were given pilocarpine hydrochloride (3-mg, 6-mg and 9-mg of KSS-694 orally three times a day) for 12 weeks and evaluated every 4 weeks as a base line. One had been treated for nasopharyngeal carcinoma, two for cancer of the cheek and one for an unknown carcinoma. Eighteen of the patients (11 with nasopharyngeal carcinoma and 7 with oropharyngeal carcinoma) had extractions. Use of preoperative and postoperative radiographs indicated that damage to the bone following tooth extraction after radiation exposure was related to whether antibiotics were administered the day before the extraction, whether forceps or elevators were used, and whether the tooth was in the field of radiation. Xerostomia improved in all 4 of the patients who received 6-mg or 9-mg of pilocarpine. It improved saliva production and relieved the symptoms of xerostomia after radiation therapy for head and neck cancer, although there were minor side effects such as fever. This information can be used to improve the oral environment of patients who have received radiation therapy for head and neck cancer, and to better understand their oral environment. (author)

  17. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    Science.gov (United States)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  18. Toward robust adaptive radiation therapy strategies.

    Science.gov (United States)

    Böck, Michelle; Eriksson, Kjell; Forsgren, Anders; Hårdemark, Björn

    2017-06-01

    -at-risk protection. In case of unpredictably larger treatment errors, the first strategy in combination with at most weekly adaptation performs best at notably improving treatment quality in terms of target coverage and organ-at-risk protection in comparison with a non-adaptive approach and the other adaptive strategies. The authors present a framework that provides robust plan re-optimization or margin adaptation of a treatment plan in response to interfractional geometric errors throughout the fractionated treatment. According to the simulations, these robust adaptive treatment strategies are able to identify candidates for an adaptive treatment, thus giving the opportunity to provide individualized plans, and improve their treatment quality through adaptation. The simulated robust adaptive framework is a guide for further development of optimally controlled robust adaptive therapy models. © 2017 American Association of Physicists in Medicine.

  19. Accounting for radiation quality in heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kellerer, A.M. [LMU, Muenchen (Germany). Radiobiological Inst.]|[Gesellschaft fuer Strahlen- und Umweltforschung, Muenchen (Germany). Inst. fuer Nuklearbiologie

    1997-09-01

    This introductory contribution outlines the need for models and their use in radiotherapy dose planning. The linear-quadratic dose relation is now predominantly used in therapy dose planning. In Section I it is linked to the earlier quantitative scheme for conventional radiotherapy. In Section II two major approaches are presented in a form that makes them comparable; the section can be read by itself, if this comparison alone is of interest. Models for therapy planning are tools, largely of empirical character; they do not need to elucidate unknown mechanisms of radiation action. The emphasis is, therefore, on the computational scheme, not on its interpretation. (orig.)

  20. Intensity-modulated radiation therapy for oropharyngeal cancer: radiation dosage constraint at the anterior mandible.

    NARCIS (Netherlands)

    Verdonck, H.W.; Jong, J.M. de; Granzier, M.E.; Nieman, F.H.; Baat, C. de; Stoelinga, P.J.W.

    2009-01-01

    Because the survival of endosseous implants in irradiated bone is lower than in non-irradiated bone, particularly if the irradiation dose exceeds 50Gy, a study was carried out to assess the irradiation dose in the anterior mandible, when intensity modulated radiation therapy (IMRT) is used. The hypo

  1. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Valicenti, Richard K., E-mail: Richard.valicenti@ucdmc.ucdavis.edu [Department of Radiation Oncology, University of California, Davis School of Medicine, Davis, California (United States); Thompson, Ian [Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States); Albertsen, Peter [Division of Urology, University of Connecticut Health Center, Farmington, Connecticut (United States); Davis, Brian J. [Department of Radiation Oncology, Mayo Medical School, Rochester, Minnesota (United States); Goldenberg, S. Larry [Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia (Canada); Wolf, J. Stuart [Department of Urology, University of Michigan, Ann Arbor, Michigan (United States); Sartor, Oliver [Department of Medicine and Urology, Tulane Medical School, New Orleans, Louisiana (United States); Klein, Eric [Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio (United States); Hahn, Carol [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Michalski, Jeff [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Roach, Mack [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Faraday, Martha M. [Four Oaks, Inc (United States)

    2013-08-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review.

  2. Technique to Predict Ultraviolet Radiation Embrittlement of Polymers in Space

    Science.gov (United States)

    1996-01-01

    In the low-Earth-orbit environment, solar ultraviolet (UV) radiation embrittles polymer materials through bond breaking and crosslinking. This UV embrittlement increases the surface hardness of the polymer. Before the durability of polymer materials in the low- Earth-orbit environment can be predicted, the extent of UV embrittlement needs to be determined. However, traditional techniques for measuring the microhardness of materials cannot be employed to measure changes in the hardness of UV-embrittled surfaces because traditional techniques measure bulk hardness and are not sensitive enough to surface changes. A unique technique was used at the NASA Lewis Research Center to quantify polymer surface damage that had been induced by UV radiation. The technique uses an atomic force microscope (AFM) to measure surface microhardness. An atomic force microscope measures the repulsive forces between the atoms in a microscopic cantilevered tip and the atoms on the surface of a sample. Typically, an atomic force microscope produces a topographic image of a surface by monitoring the movement of the tip over features of the surface. The force applied to the cantilevered tip, and the indention of the tip into the surface, can be measured. The relationship between force and distance of indentation, the quantity force/distance (newtons/meter), provides a measure of the surface hardness. Under identical operating conditions, direct comparisons of surface hardness values can be made.

  3. Impact of dose calculation algorithm on radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhou; Chen; Ying; Xiao; Jun; Li

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimizing the normal tissue complication probability.Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems.The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work.The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic.Further,the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups.All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy.

  4. [Ameloblastoma of the maxillary sinus treated with radiation therapy].

    Science.gov (United States)

    Chehal, Asmaa; Lobo, Rosabel; Naim, Asmaa; Azinovic, Ignacio

    2017-01-01

    Ameloblastoma is a benign aggressive odontogenic tumor which requires early diagnosis and appropriate treatment. It commonly affects the mandible and radical surgery is the gold standard treatment. We report the case of a patient with ameloblastoma in extremely advanced phase affecting the maxillary sinus who was treated with intensity modulated conformal radiation therapy. Patient's evolution was marked by complete remission maintained after 24 months follow-up. Maxillary ameloblastoma is not well documented in the literature. It is usually diagnosed at the later stage when optimal surgery cannot be performed. This case study aimed to demonstrate that radiation therapy is a real therapeutic alternative in the treatment of advanced and inoperable forms of ameloblastoma.

  5. Dosimetric evaluation of whole-breast radiation therapy: Clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Osei, Ernest, E-mail: ernest.osei@grhosp.on.ca [Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario (Canada); Department of Systems Design, University of Waterloo, Waterloo, Ontario (Canada); Darko, Johnson [Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario (Canada); Fleck, Andre [Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); White, Jana [Department of Radiation Therapy, Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Kiciak, Alexander; Redekop, Rachel [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario (Canada); Gopaul, Darin [Department of Radiation Oncology, Grand River Regional Cancer Centre, Kitchener, Ontario (Canada)

    2015-01-01

    Radiation therapy of the intact breast is the standard therapy for preventing local recurrence of early-stage breast cancer following breast conservation surgery. To improve patient standard of care, there is a need to define a consistent and transparent treatment path for all patients that reduces significance variations in the acceptability of treatment plans. There is lack of consistency among institutions or individuals about what is considered an acceptable treatment plan: target coverage vis-à-vis dose to organs at risk (OAR). Clinical trials usually resolve these issues, as the criteria for an acceptable plan within the trial (target coverage and doses to OAR) are well defined. We developed an institutional criterion for accepting breast treatment plans in 2006 after analyzing treatment data of approximately 200 patients. The purpose of this article is to report on the dosimetric review of 623 patients treated in the last 18 months to evaluate the effectiveness of the previously developed plan acceptability criteria and any possible changes necessary to further improve patient care. The mean patient age is 61.6 years (range: 25.2 to 93.0 years). The mean breast separation for all the patients is 21.0 cm (range: 12.4 to 34.9 cm), and the mean planning target volume (PTV-eval) (breast volume for evaluation) is 884.0 cm{sup 3} (range: 73.6 to 3684.6 cm{sup 3}). Overall, 314 (50.4%) patients had the disease in the left breast and 309 (49.6%) had it in the right breast. A total of 147 (23.6%) patients were treated using the deep inspiration breath-hold (DIBH) technique. The mean normalized PTV-eval receiving at least 92% (V{sub 92%} {sub PD}) and 95% (V{sub 95%} {sub PD}) of the prescribed dose (PD) are more than 99% and 97%, respectively, for all patients. The mean normalized PTV-eval receiving at least 105% (V{sub 105%} {sub PD}) of the PD is less than 1% for all groups. The mean homogeneity index (HI), uniformity index (UI), and conformity index (CI) for the

  6. Oxygenation-Enhanced Radiation Therapy of Breast Tumors

    Science.gov (United States)

    2011-11-01

    fluorocarbons in lung surfactant therapy. Artif . Cells, Blood Substitutes, Biotechnol. 2007, 35, 211-220. (11) Rapoport, N.; Gao, Z.; Kennedy, A. Multifunctional...potential blood oxygen careers and are currently approved for limited use during heart surgery [4], the key difference of the proposed approach compared...be achieved by targeted, localized heating, sonication, and radiation. Because O2 solubility in PFC is substantially higher than in blood , oxygen

  7. Massive osteolysis of the right clavicle developing after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, W.L.; Buzdar, A.U.; Libshitz, H.I.

    1988-07-15

    This report describes an unusual case of clavicular osteolysis, a late complication of radiation therapy for breast cancer, and demonstrates the diagnostic implications that radiotherapy changes can pose. Radiotherapy to the chest wall produces a spectrum of alterations in bone over time, ranging from early roentgenographic findings of osteoporosis and trabecular thickening to spontaneous fractures and changes that may be confused with metastatic disease or postirradiation sarcoma.

  8. A practical three-dimensional dosimetry system for radiation therapy

    OpenAIRE

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-01-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE™) and a commercial optical computed tomography (CT) scanning system (OCTOPUS™). PRESAGE™ is a transparent material with com...

  9. Vocal changes in patients undergoing radiation therapy for glottic carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.; Harrison, L.B.; Solomon, B.; Sessions, R.B. (Memorial Sloan-Kettering Cancer Center, New York, NY (USA))

    1990-06-01

    A prospective evaluation of vocal changes in patients receiving radiation therapy for T1 and T2 (AJC) glottic carcinoma was undertaken in January 1987. Vocal analysis was performed prior to radiotherapy and at specific intervals throughout the radiation treatment program. The voicing ratio was extrapolated from a sustained vowel phonation using the Visipitch interfaced with the IBM-PC. Preliminary observations suggested three distinct patterns of vocal behavior: 1. reduced voicing ratio with precipitous improvement within the course of treatment, 2. high initial voicing ratio with reduction secondary to radiation induced edema, with rapid improvement in the voicing component after the edema subsided, and 3. fluctuating voicing ratio during and following treatment. Enrollment of new patients and a 2-year follow-up of current patients was undertaken.

  10. Postprostatectomy radiation therapy: an evidence-based review.

    Science.gov (United States)

    Mishra, Mark V; Champ, Colin E; Den, Robert B; Scher, Eli D; Shen, Xinglei; Trabulsi, Edouard J; Lallas, Costas D; Knudsen, Karen E; Dicker, Adam P; Showalter, Timothy N

    2011-12-01

    While the majority of men with localized prostate cancer who undergo a radical prostatectomy will remain disease free, men with certain clinical and pathological features are known to be at an increased risk for developing a biochemical recurrence and, ultimately, distant metastatic disease. The optimal management of these patients continues to be a source of controversy. To date, three randomized Phase III trials have demonstrated that adjuvant radiation therapy (ART) for patients with certain adverse pathological features results in an improvement in several clinically-relevant end points, including biochemical recurrence-free survival and overall survival. Despite the evidence from these trials showing a benefit for ART, many believe that ART results in overtreatment and unwarranted treatment morbidity for a significant number of patients. Many physicians, therefore, instead advocate for close observation followed by early salvage radiation therapy (SRT) at the time of a biochemical recurrence. The purpose of this review is to evaluate the evidence for and to distinguish between ART and early SRT. We will also highlight current and future areas of research for this patient population, including radiation treatment dose escalation, hypofractionation and androgen deprivation therapy. We will also discuss the cost-effectiveness of ART and early SRT.

  11. Real-time dosimetry in external beam radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Ramachandran; Prabhakar

    2013-01-01

    With growing complexity in radiotherapy treatment delivery,it has become mandatory to check each and every treatment plan before implementing clinically.This process is currently administered by an independent secondary check of all treatment parameters and as a pre-treatment quality assurance (QA) check for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy treatment plans.Although pre-treatment IMRT QA is aimed to ensure the correct dose is delivered to the patient,it does not necessarily predict the clinically relevant patient dose errors.During radiotherapy,treatment uncertainties can affect tumor control and may increase complications to surrounding normal tissues.To combat this,image guided radiotherapy is employed to help ensure the plan conditions are mimicked on the treatment machine.However,it does not provide information on actual delivered dose to the tumor volume.Knowledge of actual dose delivered during treatment aid in confirming the prescribed dose and also to replan/reassess the treatment in situations where the planned dose is not delivered as expected by the treating physician.Major accidents in radiotherapy would have been averted if real time dosimetry is incorporated as part of the routine radiotherapy procedure.Of late real-time dosimetry is becoming popular with complex treatments in radiotherapy.Realtime dosimetry can be either in the form of point doses or planar doses or projected on to a 3D image dataset to obtain volumetric dose.They either provide entrance dose or exit dose or dose inside the natural cavities of a patient.In external beam radiotherapy,there are four different established platforms whereby the delivered dose information can be obtained:(1)Collimator;(2)Patient;(3)Couch;and(4)Electronic Portal Imaging Device.Current real-time dosimetric techniques available in radiotherapy have their own advantages and disadvantages and a combination of one or more of these methods provide vital information

  12. OPTIMIZATION OF PALLIATIVE EXTERNAL BEAM RADIATION THERAPY FOR BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    Yu. V. Gumenetskaya

    2014-08-01

    Full Text Available Purpose: To improve the efficacy of palliative radiation therapy for patients with bladder cancer (BC.Materials and Methods: In the years 1990−2010, 90 patients with BC were treated with palliative external beam radiation therapy (EBRT using three regimens: conventional fractionation in group 1 (n = 37, hypofractionation in group 2 (n = 22 and accelerated dynamic fractionation in group 3 (n = 31.Results: The immediate efficacy of EBRT was evaluated taking into account rapid relief of local symptoms of disease. In group 1, a clinically significant response (hematuria relief was achieved in 63,0 % cases, in group 2 — in 62,5 %, in group 3 — in 91,7 % cases. The 10-year follow-up showed that in group 1, the median survival was 21,8 ± 3,3 months; in groups 2 and 3, the median survival was 27,0 ± 7,8 and 32,6 ± 9,8 months, respectively. In group 2, an increase in the rate of acute radiation reactions was noted, whereas in group 3, palliative EBRT did not produce higher rates and severity of acute radiation reactions and complications.Conclusion: Accelerated dynamic fractionation was found to shorten treatment times and to improve outcomes and quality of life for incurable patients with BC.

  13. OPTIMIZATION OF PALLIATIVE EXTERNAL BEAM RADIATION THERAPY FOR BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    Yu. V. Gumenetskaya

    2012-01-01

    Full Text Available Purpose: To improve the efficacy of palliative radiation therapy for patients with bladder cancer (BC.Materials and Methods: In the years 1990−2010, 90 patients with BC were treated with palliative external beam radiation therapy (EBRT using three regimens: conventional fractionation in group 1 (n = 37, hypofractionation in group 2 (n = 22 and accelerated dynamic fractionation in group 3 (n = 31.Results: The immediate efficacy of EBRT was evaluated taking into account rapid relief of local symptoms of disease. In group 1, a clinically significant response (hematuria relief was achieved in 63,0 % cases, in group 2 — in 62,5 %, in group 3 — in 91,7 % cases. The 10-year follow-up showed that in group 1, the median survival was 21,8 ± 3,3 months; in groups 2 and 3, the median survival was 27,0 ± 7,8 and 32,6 ± 9,8 months, respectively. In group 2, an increase in the rate of acute radiation reactions was noted, whereas in group 3, palliative EBRT did not produce higher rates and severity of acute radiation reactions and complications.Conclusion: Accelerated dynamic fractionation was found to shorten treatment times and to improve outcomes and quality of life for incurable patients with BC.

  14. USE OF PROTON MAGNETIC RESONANCE SPECTROSCOPIC IMAGING DATA IN PLANNING FOCAL RADIATION THERAPIES FOR BRAIN TUMORS

    Directory of Open Access Journals (Sweden)

    Edward E Graves

    2011-05-01

    Full Text Available Advances in radiation therapy for malignant neoplasms have produced techniques such as Gamma Knife radiosurgery, capable of delivering an ablative dose to a specific, irregular volume of tissue. However, efficient use of these techniques requires the identification of a target volume that will produce the best therapeutic response while sparing surrounding normal brain tissue. Accomplishing this task using conventional computed tomography (CT and contrast-enhanced magnetic resonance imaging (MRI techniques has proven difficult because of the difficulties in identifying the effective tumor margin. Magnetic resonance spectroscopic imaging (MRSI has been shown to offer a clinically-feasible metabolic assessment of the presence and extent of neoplasm that can complement conventional anatomic imaging. This paper reviews current Gamma Knife protocols and MRSI acquisition, reconstruction, and interpretation techniques, and discusses the motivation for including magnetic resonance spectroscopy findings while planning focal radiation therapies. A treatment selection and planning strategy incorporating MRSI is then proposed, which can be used in the future to assess the efficacy of spectroscopy-based therapy planning.

  15. Readout techniques and radiation damage of undoped cesium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Woody, C.L.; Levy, P.W.; Kierstead, J.A.; Skwarnicki, T.; Sobolewski, Z.; Goldberg, M.; Horwitz, N.; Souder, P.; Anderson, D.F. (Brookhaven National Lab., Upton, NY (USA); Syracuse Univ., NY (USA). Dept. of Physics; Fermi National Accelerator Lab., Batavia, IL (USA))

    1989-01-01

    Several readout techniques for undoped CsI have been studied which utilize the fast scintillation component for speed, and the high photon yield for good energy resolution. Quantum yields have been measured for samples up to 30 cm in length using photomultiplier tubes, wavelength shifters, and silicon photodiodes. A study has also been made of the scintillation properties of undoped CsI. It is found that the light output and decay time of the 310 nm fast component increases and the emission spectrum shifts to longer wavelengths at lower temperatures. The effects on the optical transmission and scintillation light output due to radiation damage from {sup 60}Co gamma rays has been measured for doses up to {approximately}10{sup 6} rad. It is found that the radiation resistance of undoped CsI is substantially higher than has been reported for thallium doped CsI. 16 refs., 11 figs., 3 tabs.

  16. Debate: Pro intraoperative radiation therapy in breast cancer; Debat: pour la radiotherapie peroperatoire dans le cancer du sein

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J.B.; Lemanski, C.; Azria, D. [Departement de radiotherapie, CRLC Val-d' Aurelle-Paul-Lamarque, 208, rue des Apothicaires, 34298 Montpellier cedex 5 (France); Gutowski, M.; Rouanet, P.; Saint-Aubert, B. [Departement de chirurgie, CRLC Val-d' Aurelle-Paul-Lamarque, 208, rue des Apothicaires, 34298 Montpellier cedex 5 (France)

    2011-10-15

    The use of intraoperative radiation therapy in breast cancer patients started about 20 years ago. Several retrospective and prospective studies have been published. Intraoperative radiation therapy was initially given as a boost to the tumour bed, followed by whole-breast irradiation. These studies have demonstrated the feasibility of the technique, with local control rates and cosmetic results similar to those obtained with standard treatments. Accelerated partial breast irradiation yields local recurrence rates as low as those observed after whole-breast irradiation. Intraoperative radiation therapy as a single irradiation modality with a unique dose has been investigated in recent prospective studies showing satisfactory local results. Intraoperative radiation therapy can be proposed either as a boost or as a unique treatment in selected cases (tumour size, nodal and hormonal status, patient's age). Intraoperative radiation therapy can be delivered by orthovoltage (50 kV) X-rays from mobile generators, or by electrons from linear accelerators, mobile or fixed, dedicated or not to intraoperative radiation therapy. (authors)

  17. Development and efficacy of music therapy techniques within palliative care.

    Science.gov (United States)

    Clements-Cortés, Amy

    2016-05-01

    Music therapy is increasingly becoming an intervention used in palliative care settings around the globe. While the specialty of palliative care music therapy is relatively young having emerged in the late 1980s, there is a strong and growing body of evidence demonstrating its efficacy in assisting a variety of issues common at end-of-life. There are multiple music therapy techniques that are implemented with clients in palliative care and they can be categorized in four broad areas: receptive, creative, recreative and combined. These techniques will be presented with respect to their development by clinicians as supported by the descriptive and research literature. Information is also provided on the use of music therapy in facilitating the grieving and bereavement process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Comparison and evaluation of volumetric modulated arc therapy and intensity modulated radiation therapy plans for postoperative radiation therapy of prostate cancer patient using a rectal balloon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hae Youn; Seok, Jin Yong; Hong, Joo Wan; Chang, Nam Jun; Choi, Byeong Don; Park, Jin Hong [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Sangnam (Korea, Republic of)

    2015-06-15

    The dose distribution of organ at risk (OAR) and normal tissue is affected by treatment technique in postoperative radiation therapy for prostate cancer. The aim of this study was to compare dose distribution characteristic and to evaluate treatment efficiency by devising VMAT plans according to applying differed number of arc and IMRT plan for postoperative patient of prostate cancer radiation therapy using a rectal balloon. Ten patients who received postoperative prostate radiation therapy in our hospital were compared. CT images of patients who inserted rectal balloon were acquired with 3 mm thickness and 10 MV energy of HD120MLC equipped Truebeam STx (Varian, Palo Alto, USA) was applied by using Eclipse (Version 11.0, Varian, Palo Alto, USA). 1 Arc, 2 Arc VMAT plans and 7-field IMRT plan were devised for each patient and same values were applied for dose volume constraint and plan normalization. To evaluate these plans, PTV coverage, conformity index (CI) and homogeneity index (HI) were compared and R{sub 50%} was calculated to assess low dose spillage as per treatment plan. D{sub 50%} of rectum and bladder Dmean were compared on OAR. And to evaluate the treatment efficiency, total monitor units(MU) and delivery time were considered. Each assessed result was analyzed by average value of 10 patients. Additionally, portal dosimetry was carried out for accuracy verification of beam delivery. There was no significant difference on PTV coverage and HI among 3 plans. Especially CI and R{sub 50%} on 7F-IMRT were the highest as 1.230, 3.991 respectively(p=0.00). Rectum D{sub 50%} was similar between 1A-VMAT and 2A-VMAT. But approximately 7% higher value was observed on 7F-IMRT compare to the others(p=0.02) and bladder Dmean were similar among the all plan(P>0.05). Total MU were 494.7, 479.7, 757.9 respectively(P=0.00) for 1A-VMAT, 2A-VMAT, 7F-IMRT and at the most on 7F-IMRT. The delivery time were 65.2sec, 133.1sec, 145.5sec respectively(p=0.00). The obvious shortest

  19. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a (60)Co Magnetic Resonance Image Guidance Radiation Therapy System

    DEFF Research Database (Denmark)

    Wooten, H Omar; Green, Olga; Yang, Min

    2015-01-01

    % prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range doses >20 Gy. The mean doses for all (60)Co plan OARs were within......PURPOSE: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. METHODS AND MATERIALS...... plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses...

  20. Contribution of radiation treatment to the breast conserving therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Sho; Shibuya, Hitoshi; Matsumoto, Satoru; Hoshina, Masao (Tokyo Medical and Dental Univ. (Japan). School of Medicine); Nishi, Tsunehiro; Kawahito, Hirotsugu; Inoue, Yoshihiro; Horiuchi, Junichi

    1991-11-01

    Breast-conserving surgery followed by irradiation for the early breast cancer has become the alternative therapy to mastectomy in European countries and U.S.A., but not yet commonly employed in our country. Sixty-one breasts in 60 patients treated with the above mentioned therapy from September 1983 to April 1991 were surveyed. Although the distant metastases of bone and pleura were found in one patient about four years after the therapy, neither failure of local control nor death was disclosed among them. Moderate fibrotic change with slight telangiectsia was found in only one patient. Otherwise, late effect of radiation was generally found to be mild and acceptable. (author) 59 refs.

  1. Modern imaging techniques during therapy in patients with multiple myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Horger, M; Claussen, CD; Lichy, M (Dept. of Diagnostic and Interventional Radiology, Eberhard-Karls-Univ. (Germany)), email: marius.horger@med.uni-tuebingen.de; Weisel, K (Dept. of Internal Medicine II, Hematology and Oncology, Eberhard-Karls-Univ. (Germany)); Bares, R (Dept. of Nuclear Medicine, Eberhard-Karls-Univ. (Germany)); Ernemann, U; Fenchel, M (Dept. of Diagnostic and Interventional Neuroadiology, Eberhard-Karls-Univ., Tuebingen (Germany))

    2011-10-15

    Imaging modalities used in the diagnosis of multiple myeloma have evolved and most of them are also suitable for either early or mid-term monitoring of response to novel antimyeloma therapy. This pictorial essay focuses on modern imaging techniques for diagnosis and follow-up of patients with multiple myeloma in order to highlight their individual strengths and limitations. Also, the impact of recently established modern pharmaceutical therapy, like anti-angiogenic medication, on the tumor is addressed

  2. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    Science.gov (United States)

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-01-01

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu2+), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate 137Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu2+, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu2+ dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100–700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0–5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu2+ material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu2+ exhibits strong radiation hardness and lends support for further investigations

  3. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gunther, Jillian R. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sato, Mariko; Chintagumpala, Murali [Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children' s Cancer Center, Houston, Texas (United States); Ketonen, Leena [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jones, Jeremy Y. [Department of Pediatric Radiology, Texas Children' s Hospital, Houston, Texas (United States); Allen, Pamela K. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Paulino, Arnold C. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children' s Cancer Center, Houston, Texas (United States); Okcu, M. Fatih; Su, Jack M. [Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children' s Cancer Center, Houston, Texas (United States); Weinberg, Jeffrey [Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Boehling, Nicholas S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Khatua, Soumen [Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Adesina, Adekunle [Department of Pathology, Baylor College of Medicine, Texas Children' s Hospital, Houston, Texas (United States); Dauser, Robert; Whitehead, William E. [Department of Neurosurgery, Texas Children' s Hospital, Houston, Texas (United States); Mahajan, Anita, E-mail: amahajan@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.

  4. Resistance in Cognitive Behavioral Therapy and Motivational Interviewing Techniques

    Directory of Open Access Journals (Sweden)

    Nurcihan Alpaydin

    2016-06-01

    Full Text Available As is valid for each psychotherapy method, the factors such as whether the therapy is appropriate and sufficient, whether the client is ready to therapy, duration and frequency of the therapy shall determine the success of the treatment also for clients whom are treated with cognitive-behavioral therapy. However, while considering these factors, the concept of resistance should not be ignored. The aim of this article is to understand the underlying causes of the resistance for cognitive-behavioral therapy and to make suggestions on how to manage it. In this context, motivational interviewing techniques will also be explained in detail. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 94-101

  5. Analysis of radiation pneumonitis outside the radiation field in breast conserving therapy for early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ogo, Etsuyo; Fujimoto, Kiminori; Hayabuchi, Naofumi [Kurume Univ., Fukuoka (Japan). School of Medicine] (and others)

    2002-02-01

    In a retrospective study of radiation-induced pulmonary changes for patients with breast conserving therapy for early breast cancer, we sent questionnaires to the main hospitals in Japan. In this study, we analyzed pulmonary changes after tangential whole-breast irradiation. The purpose of this study was to determine the incidence and risk factors for radiation pneumonitis outside the radiation field. The questionnaires included patients data, therapy data, and lung injury information between August 1999 and May 2000. On the first questionnaires, answer letters were received from 107 institutions out of 158 (67.7%). On the second questionnaires, response rate (hospitals which had radiation pneumonitis outside the radiation field) was 21.7% (23/106). We could find no risk factors of this type of pneumonitis. We suggested that lung irradiation might trigger this type of pneumonitis which is clinically similar to BOOP (bronchiolitis obliterans organizing pneumonia). It developed in 1.5-2.1% among the patients with breast conserving surgery and tangential whole-breast irradiation. And it is likely appeared within 6 months after radiotherapy. (author)

  6. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States); Pawlik, Timothy M. [Department of Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States); Ford, Eric [Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA (United States); Herman, Joseph M., E-mail: jherma15@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States)

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  7. Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging

    Science.gov (United States)

    Hugo, Geoffrey D.; Rosu, Mihaela

    2014-01-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described. PMID:22784929

  8. Three-dimensional dosimetry of TomoTherapy by MRI-based polymer gel technique.

    Science.gov (United States)

    Watanabe, Yoichi; Gopishankar, N

    2010-09-14

    Verification of the dose calculation model and the software used for treatment planning is an important step for accurate radiation delivery in radiation therapy. Using BANG3 polymer gel dosimeter with a 3 Tesla magnetic resonance imaging (MRI) scanner, we examined the accuracy of TomoTherapy treatment planning and radiation delivery. We evaluated one prostate treatment case and found the calculated three-dimensional (3D) dose distributions agree with the measured 3D dose distributions with an exception in the regions where the dose was much smaller (25% or less) than the maximum dose (2.5 Gy). The analysis using the gamma-index (3% dose difference and 3 mm distance-to-agreement) for a volume of 12 cm × 11 cm × 9 cm containing the planning target volume showed that the gamma values were smaller than unity for 53% of the voxels. Our measurement protocol and analysis tools can be easily applied to the evaluation of other newer complex radiation delivery techniques, such as intensity-modulated arc therapy, with a reasonably low financial investment.

  9. A Delphi study on research priorities in radiation therapy: The Australian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Jennifer [Faculty of Health Sciences, University of Sydney, P.O. Box 170, Lidcombe, NSW 1825 (Australia)], E-mail: jenny.cox@usyd.edu.au; Halkett, Georgia [Western Australia Centre for Cancer and Palliative Care, Curtin University of Technology, Health Research Campus, GPO Box U1987, Perth, WA 6845 (Australia)], E-mail: g.halkett@curtin.edu.au; Anderson, Claudia [Faculty of Health Sciences, University of Sydney, P.O. Box 170, Lidcombe, NSW 1825 (Australia)], E-mail: claudia.anderson@usyd.edu.au; Heard, Robert [Faculty of Health Sciences, University of Sydney, P.O. Box 170, Lidcombe, NSW 1825 (Australia)], E-mail: r.heard@staff.usyd.edu.au

    2010-02-15

    Radiation therapists (RTs) need to engage more in research to establish an evidence base for their daily practice. However, RTs world-wide conduct little research themselves, although positive moves have been made in some countries. This project is the second stage of a Delphi process aimed at prioritising RT areas of research interest. A questionnaire was constructed using responses to a previous questionnaire which identified the research interests of Australian RTs. Fifty-three Research Areas were identified from these responses and grouped into 12 categories such as 'imaging in radiation therapy', 'symptom management', 'accuracy of patient positioning' and 'techniques/equipment'. The survey was sent to all Australian departments of radiation oncology, and RTs were asked to form interest groups to discuss and prioritise the Research Areas. There was a 50% response rate (18 of 36 departments surveyed). The highest ranked research Category was 'imaging in radiation therapy'. Six of the top 10 ranked Research Areas were within Central RT practice ('imaging in radiation therapy'; 'symptom management'; 'accuracy of patient positioning' and 'techniques/equipment') and the other four were within broader RT practice ('diversification, recognition and other professional issues'; and 'management and staff issues'). Patient Care was also considered to be an area requiring more research. This prioritization of Research Areas and categories provides a useful list of future research for RTs, which will enable them to decide whether their research ideas are a high priority, and spend less time deciding on a relevant research topic that needs investigation in their own workplaces.

  10. Adjuvant postoperative radiation therapy for carcinoma of the uterine cervix

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Ja; Moon, Hye Seong; Kim, Seung Cheol; Kim, Chong Il; Ahn, Jung Ja [College of Medicine, Ewha Womans Univ., Seoul (Korea, Republic of)

    2003-09-01

    This study was undertaken to evaluate the efficacy of postoperative radiotherapy, and to investigate the prognostic factors for FIGO stages IB-IIB cervical cancer patients who were treated with simple hysterectomy, or who had high-risk factors following radical hysterectomy and pelvic lymph node dissection. Between March 1986 and December 1998, 58 patients, with FIGO stages IB-IIB cervical cancer were included in this study, The indications for postoperative radiation therapy were based on the pathological findings, including lymph node metastasis, positive surgical margin, parametrial extension, Iymphovascular invasion, invasion of more than half the cervical stroma, uterine extension and the incidental finding of cervix cancer following simple hysterectomy. All patients received external pelvic radiotherapy, and 5 patients, received an additional intracavitary radiation therapy. The radiation dose from the external beam to the whole pelvis was 45 - 50 Gy. Vagina cuff irradiation was performed, after completion of the external beam irradiation, al a low-dose rate of CS-137, with the total dose of 4488-4932 chy (median: 4500 chy) at 5 mm depth from the vagina surface. The median follow-up period was 44 months (15-108 months), The 5-yr actuarial local control rate, distant free survival and disease-free survival rate were 98%, 95% and 94%, respectively. A univariate analysis of the clinical and pathological parameters revealed that the clinical stage (p=0.0145), status of vaginal resection margin (p=0.0002) and parametrial extension (p=0.0001) affected the disease-free survival. From a multivariate analysis, only a parametrial extension independently influenced the disease-free survival. Five patients (9%) experienced Grade 2 late treatment-related complications, such as radiation proctitis (1 patient), cystitis (3 patients) and lymphedema of the leg (1 patient). No patient had grade 3 or 4 complications. Our results indicate that postoperative radiation therapy can

  11. Hypofractionated Whole-Breast Radiation Therapy: Does Breast Size Matter?

    Energy Technology Data Exchange (ETDEWEB)

    Hannan, Raquibul, E-mail: Raquibul.Hannan@gmail.com [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Thompson, Reid F.; Chen Yu; Bernstein, Karen; Kabarriti, Rafi; Skinner, William [Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (United States); Chen, Chin C. [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Landau, Evan; Miller, Ekeni; Spierer, Marnee; Hong, Linda; Kalnicki, Shalom [Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (United States)

    2012-11-15

    Purpose: To evaluate the effects of breast size on dose-volume histogram parameters and clinical toxicity in whole-breast hypofractionated radiation therapy using intensity modulated radiation therapy (IMRT). Materials and Methods: In this retrospective study, all patients undergoing breast-conserving therapy between 2005 and 2009 were screened, and qualifying consecutive patients were included in 1 of 2 cohorts: large-breasted patients (chest wall separation >25 cm or planning target volume [PTV] >1500 cm{sub 3}) (n=97) and small-breasted patients (chest wall separation <25 cm and PTV <1500 cm{sub 3}) (n=32). All patients were treated prone or supine with hypofractionated IMRT to the whole breast (42.4 Gy in 16 fractions) followed by a boost dose (9.6 Gy in 4 fractions). Dosimetric and clinical toxicity data were collected and analyzed using the R statistical package (version 2.12). Results: The mean PTV V95 (percentage of volume receiving >= 95% of prescribed dose) was 90.18% and the mean V105 percentage of volume receiving >= 105% of prescribed dose was 3.55% with no dose greater than 107%. PTV dose was independent of breast size, whereas heart dose and maximum point dose to skin correlated with increasing breast size. Lung dose was markedly decreased in prone compared with supine treatments. Radiation Therapy Oncology Group grade 0, 1, and 2 skin toxicities were noted acutely in 6%, 69%, and 25% of patients, respectively, and at later follow-up (>3 months) in 43%, 57%, and 0% of patients, respectively. Large breast size contributed to increased acute grade 2 toxicity (28% vs 12%, P=.008). Conclusions: Adequate PTV coverage with acceptable hot spots and excellent sparing of organs at risk was achieved by use of IMRT regardless of treatment position and breast size. Although increasing breast size leads to increased heart dose and maximum skin dose, heart dose remained within our institutional constraints and the incidence of overall skin toxicity was comparable

  12. Phantom dosimetry at 15 MV conformal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa; Campos, Tarcisio P.R., E-mail: larissathompson@hotmail.com, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Dias, Humberto G., E-mail: fisicamedica.hl@mariopenna.org.br [Luxemburgo Hospital, Mario Penna Institute, Belo Horizonte, MG (Brazil)

    2015-07-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  13. Phantom dosimetry at 15 MV conformal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa; Campos, Tarcisio P.R., E-mail: larissathompson@hotmail.com, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Minas Gerais, MG (Brazil). Dept. de Engenharia Nuclear; Dias, Humberto G., E-mail: fisicamedica.hl@mariopenna.org.br [Instituto Mario Penna, Minas Gerais, MG (Brazil). Hospital Luxemburgo

    2013-07-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  14. Combined preoperative therapy for oral cancer with nedaplatin and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Masatoshi; Shibata, Akihiko; Hayashi, Munehiro [Nippon Dental Univ., Tokyo (Japan). Hospital] (and others)

    2002-03-01

    We performed preoperative combined therapy using nedaplatin (CDGP) and radiation in 12 patients with squamous cell carcinoma originating from the oral cavity and maxillary sinus, and examined for any adverse events that may have occurred during this therapeutic regimen. Regarding the irradiation, external irradiation utilizing a 6 MV linac (linear accelerator) at a dose of 2.0 Gy/day was performed 5 times a week, with the target total radiation dose set at 40 Gy. In addition, CDGP was intravenously administered 30 minutes before irradiation at a dose of 5 mg/m{sup 2}/day. Mucositis was observed in all 12 subjects, however, the severity was observed to be grade 1-2 with no major differences in comparison to the patients given standard radiation monotherapy. Two subjects developed grade 3 leucopenia and were thus given granulocyte colony stimulating factor (G-CSF). In addition, grade 2 and grade 3 thrombocytopenia were both observed in one subject each. The subject with grade 3 thrombocytopenia required a platelet transfusion during surgery. No marked changes in serum creatinine levels were noted. These findings are therefore considered to provide evidence supporting the safety of this combination therapy. (author)

  15. Failure of odontogenesis after chemo-radiation therapy for rhabdomyosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Young; Hong, Sung Woo; Koh, Kwang Joon [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Chonbuk National University, Chonju (Korea, Republic of)

    1998-02-15

    This report details a case of 8-year-old girl showing failure of odontogenesis after chemo-radiation therapy for rhabdomysarcoma at the age of 4. The observed results were as follows: 1. Past history revealed that she had received for a total radiation dose od 4430 cGy, 29 fractions in 6 weeks and chemotherapy with vincristine, actinomycin D and cytoxan, followed as maintenance phase for 2 years. 2. The patient was symptom-free and appointed for the treatment of multiple dental caries. 3. Oral examination showed hypoplastic enamel on whole erupted permanent teeth and showed retarded eruption. 4. Conventional radiograms showed failure of root development including abrupt cessation of root formation and root agenesis, and microdobtia, missing teeth, irregular enamel, dislocation of the impacted teeth. Additional finding showed good healing bone pattern on the left mandibular ramus and angle area. 5. Cehalometric analysis revealed failure of bite raising due to incomplete eruption of all the first molars and made it possible to suspect entrapped mandibular growth and then Class II tendency growth. 6. There was correlation between the time of chemo-radiation therapy and the damage of the teeth.

  16. High pressure x-ray diffraction techniques with synchrotron radiation

    Science.gov (United States)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  17. Focused interventional cancer radiation therapy using lipid nanoparticle-carried radionuclides

    Science.gov (United States)

    Hrycushko, Brian Andrew

    2011-07-01

    The overall goal in cancer therapy is to achieve complete tumor eradication while causing minimal damage to healthy organs and tissue. Based on the broadly accepted theory of tumor control being a probabilistic event, every fraction of radiation treatment kills a portion of cancer cells and higher radiation dose should result in improved tumor control. Ultimately, radiation oncologists must balance the delivery of high enough radiation to tumors for achieving tumor control while not delivering so much radiation as to cause unacceptable normal tissue risk. This project centers on the locoregional delivery of lipid (liposome) nanoparticle-carried therapeutic radionuclides (186Re/ 188Re) to apply a focal and ablative radiation dose to target regions while greatly decreasing normal tissue toxicity of surrounding tissues. Specific Aim 1 includes the development of dosimetric and radiobiological models to assess small animal / patient specific radionuclide therapy at a voxel level. This will be used for a proof of concept study to characterize a novel technique to treat the post-lumpectomy wall for residual early stage breast cancer while simultaneously treating draining lymph nodes. Specific Aim 2 will look at methods of improving therapeutic ratio by evaluating in vivo characteristics of different liposome formulations and tumor vasculature modification chemicals following direct intratumoral infusion of 99m Tc-liposomes within a human head and neck squamous cell carcinoma xenograft (HNSCC) model in nude rats. Specific Aim 3 will evaluate the therapy potential for direct intratumoral injection of 186Re-liposomes within a human HNSCC xenograft model in nude rats using the dosimetric and radiobiological models of Aim 1 with improved treatment modifications from Aim 2.

  18. Concurrent Weekly Cisplatin and Radiation Therapy for High risk group of Uterine Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Hyun Suk; Kang, Seung Hee; Kim, Ju Ree; Lee, Eung Soo; Kim, Yong Bong; Park, Sung Kwan [Inje University College of Medicine, Seoul (Korea, Republic of)

    1992-12-15

    Locally advanced cervical carcinoma has shown high rate of local failure and poor survival rate despite the advances in modern radiation therapy techniques. Combination of chemotherapy and radiation therapy demonstrated benefit in improving local control and possibly the overall survival. Twelve patients with advanced stages(Figo stage III, IV) or 11b with bulky tumors(>5 cm in diameter) were treated with combination of radiation therapy and concurrent weekly cisplatin between May of 1988 and September of 1991 at Inje University Paik Hospital. Cisplatin was administered in bolus injections of 50mg at weekly intervals during the courses of radiation therapy. Median follow-up period was 34 months with ranges from 3 to 53 months. Eleven patients were evaluable for the estimation of response. Response was noted in all the 11 patients: complete response(CR) in 7(64%), partial response (PR) in 4(36%). Of the 7 patients with CR, all maintained local control, whereas only 1 of 4 with PR showed local control. Six of 7 with CR are alive disease free on the completion of follow-up. Eight of 11 patients (73%) maintained local control in the pelvis. The Median survival for CR patient is 27 months and 9 months for the PR patients. Analysis of survival by stage shows 11 b 4/5, III 2/e and IV 1/3. Overall survival rate was 61%. Three patients recurred : 1 at local, 1 in distant site and 1 with local and distant site. Toxicity for the combination therapy was not excessive. These results are preliminary, but definitely encouraging in view of markedly improved response rate compared with the results of historical control group.

  19. Dosimetric and Late Radiation Toxicity Comparison Between Iodine-125 Brachytherapy and Stereotactic Radiation Therapy for Juxtapapillary Choroidal Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Krema, Hatem, E-mail: htmkrm19@yahoo.com [Department of Ocular Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Heydarian, Mostafa [Department of Radiation Medicine, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Beiki-Ardakani, Akbar [Department of Radiation Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Weisbrod, Daniel [Department of Ocular Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Xu, Wei [Department of Biostatistics, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Laperriere, Normand J.; Sahgal, Arjun [Department of Radiation Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada)

    2013-07-01

    Purpose: To compare the dose distributions and late radiation toxicities for {sup 125}I brachytherapy (IBT) and stereotactic radiation therapy (SRT) in the treatment of juxtapapillary choroidal melanoma. Methods: Ninety-four consecutive patients with juxtapapillary melanoma were reviewed: 30 have been treated with IBT and 64 with SRT. Iodine-125 brachytherapy cases were modeled with plaque simulator software for dosimetric analysis. The SRT dosimetric data were obtained from the Radionics XKnife RT3 software. Mean doses at predetermined intraocular points were calculated. Kaplan-Meier estimates determined the actuarial rates of late toxicities, and the log–rank test compared the estimates. Results: The median follow-up was 46 months in both cohorts. The 2 cohorts were balanced with respect to pretreatment clinical and tumor characteristics. Comparisons of radiation toxicity rates between the IBT and SRT cohorts yielded actuarial rates at 50 months for cataracts of 62% and 75% (P=.1), for neovascular glaucoma 8% and 47% (P=.002), for radiation retinopathy 59% and 89% (P=.0001), and for radiation papillopathy 39% and 74% (P=.003), respectively. Dosimetric comparisons between the IBT and SRT cohorts yielded mean doses of 12.8 and 14.1 Gy (P=.56) for the lens center, 17.6 and 19.7 Gy (P=.44) for the lens posterior pole, 13.9 and 10.8 Gy (P=.30) for the ciliary body, 61.9 and 69.7 Gy (P=.03) for optic disc center, and 48.9 and 60.1 Gy (P<.0001) for retina at 5-mm distance from tumor margin, respectively. Conclusions: Late radiation-induced toxicities were greater with SRT, which is secondary to the high-dose exposure inherent to the technique as compared with IBT. When technically feasible, IBT is preferred to treat juxtapapillary choroidal melanoma.

  20. MO-G-9A-01: Imaging Refresher for Standard of Care Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Labby, Z [The University of Michigan Hospital ' Health Sys, Ann Arbor, MI (United States); Sensakovic, W [Florida Hospital, Orlando, FL (United States); Hipp, E [NYULMC Clinical Cancer Center, New York, NY (United States); Altman, M [Washington University School of Medicine, St. Louis, MO (United States)

    2014-06-15

    Imaging techniques and technology which were previously the domain of diagnostic medicine are becoming increasingly integrated and utilized in radiation therapy (RT) clinical practice. As such, there are a number of specific imaging topics that are highly applicable to modern radiation therapy physics. As imaging becomes more widely integrated into standard clinical radiation oncology practice, the impetus is on RT physicists to be informed and up-to-date on those imaging modalities relevant to the design and delivery of therapeutic radiation treatments. For example, knowing that, for a given situation, a fluid attenuated inversion recovery (FLAIR) image set is most likely what the physician would like to import and contour is helpful, but may not be sufficient to providing the best quality of care. Understanding the physics of how that pulse sequence works and why it is used could help assess its utility and determine if it is the optimal sequence for aiding in that specific clinical situation. It is thus important that clinical medical physicists be able to understand and explain the physics behind the imaging techniques used in all aspects of clinical radiation oncology practice. This session will provide the basic physics for a variety of imaging modalities for applications that are highly relevant to radiation oncology practice: computed tomography (CT) (including kV, MV, cone beam CT [CBCT], and 4DCT), positron emission tomography (PET)/CT, magnetic resonance imaging (MRI), and imaging specific to brachytherapy (including ultrasound and some brachytherapy specific topics in MR). For each unique modality, the image formation process will be reviewed, trade-offs between image quality and other factors (e.g. imaging time or radiation dose) will be clarified, and typically used cases for each modality will be introduced. The current and near-future uses of these modalities and techniques in radiation oncology clinical practice will also be discussed. Learning

  1. An Annotated Bibliography of the Gestalt Methods, Techniques, and Therapy

    Science.gov (United States)

    Prewitt-Diaz, Joseph O.

    The purpose of this annotated bibliography is to provide the reader with a guide to relevant research in the area of Gestalt therapy, techniques, and methods. The majority of the references are journal articles written within the last 5 years or documents easily obtained through interlibrary loans from local libraries. These references were…

  2. Setup errors in patients with head-neck cancer (HNC), treated using the Intensity Modulated Radiation Therapy (IMRT) technique: how it influences the customised immobilisation systems, patient's pain and anxiety.

    Science.gov (United States)

    Contesini, Massimiliano; Guberti, Monica; Saccani, Roberta; Braglia, Luca; Iotti, Cinzia; Botti, Andrea; Abbati, Emilio; Iemmi, Marina

    2017-04-27

    In patients with head-neck cancer treated with IMRT, immobility of the upper part of the body during radiation is maintained by means of customised immobilisation devices. The main purpose of this study was to determine how the procedures for preparation of customised immobilisation systems and the patients characteristics influence the extent of setup errors. A longitudinal, prospective study involving 29 patients treated with IMRT. Data were collected before CT simulation and during all the treatment sessions (528 setup errors analysed overall); the correlation with possible risk factors for setup errors was explored using a linear mixed model. Setup errors were not influenced by the patient's anxiety and pain. Temporary removal of the thermoplastic mask before carrying out the CT simulation shows statistically borderline, clinically relevant, increase of setup errors (+24.7%, 95% CI: -0.5% - 55.8%). Moreover, a unit increase of radiation therapists who model the customised thermoplastic mask is associated to a -18% (-29.2% - -4.9%) reduction of the errors. The setup error is influenced by the patient's physical features; in particular, it increases both in patients in whom the treatment position is obtained with 'Shoulder down' (+27.9%, 2.2% - 59.7%) and in patients with 'Scoliosis/kyphosis' problems (+65.4%, 2.3% - 164.2%). Using a 'Small size standard plus customized neck support device' is associated to a -52.3% (-73.7% - -11.2%) reduction. The increase in number of radiation therapists encountered during the entire treatment cycle does not show associations. Increase in the body mass index is associated with a slight reduction in setup error by (-2.8%, -5% - -0.7%). The position of the patient obtained by forcing the shoulders downwards, clinically significant scoliosis or kyphosis and the reduction of the number of radiation therapists who model the thermoplastic mask are found to be statistically significant risk factors that can cause an increase in setup

  3. Multi-criteria optimization methods in radiation therapy planning: a review of technologies and directions

    CERN Document Server

    Craft, David

    2013-01-01

    We review the field of multi-criteria optimization for radiation therapy treatment planning. Special attention is given to the technique known as Pareto surface navigation, which allows physicians and treatment planners to interactively navigate through treatment planning options to get an understanding of the tradeoffs (dose to the target versus over-dosing of important nearby organs) involved in each patient's plan. We also describe goal programming and prioritized optimization, two other methods designed to handle multiple conflicting objectives. Issues related to nonconvexities, both in terms of dosimetric goals and the fact that the mapping from controllable hardware parameters to patient doses is usually nonconvex, are discussed at length since nonconvexities have a large impact on practical solution techniques for Pareto surface construction and navigation. A general planning strategy is recommended which handles the issue of nonconvexity by first finding an ideal Pareto surface with radiation delivere...

  4. Evaluation of Online/Offline Image Guidance/Adaptation Approaches for Prostate Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, An [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Sun, Ying [Department of Radiotherapy, Cancer Center, Sun Yat-sen University, Guangzhou (China); Liang, Jian [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Yan, Di, E-mail: dyan@beaumont.edu [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States)

    2015-04-01

    Purpose: To evaluate online/offline image-guided/adaptive treatment techniques for prostate cancer radiation therapy with daily cone-beam CT (CBCT) imaging. Methods and Materials: Three treatment techniques were evaluated retrospectively using daily pre- and posttreatment CBCT images on 22 prostate cancer patients. Prostate, seminal vesicles (SV), rectal wall, and bladder were delineated on all CBCT images. For each patient, a pretreatment intensity modulated radiation therapy plan with clinical target volume (CTV) = prostate + SV and planning target volume (PTV) = CTV + 3 mm was created. The 3 treatment techniques were as follows: (1) Daily Correction: The pretreatment intensity modulated radiation therapy plan was delivered after online CBCT imaging, and position correction; (2) Online Planning: Daily online inverse plans with 3-mm CTV-to-PTV margin were created using online CBCT images, and delivered; and (3) Hybrid Adaption: Daily Correction plus an offline adaptive inverse planning performed after the first week of treatment. The adaptive plan was delivered for all remaining 15 fractions. Treatment dose for each technique was constructed using the daily posttreatment CBCT images via deformable image registration. Evaluation was performed using treatment dose distribution in target and critical organs. Results: Treatment equivalent uniform dose (EUD) for the CTV was within [85.6%, 100.8%] of the pretreatment planned target EUD for Daily Correction; [98.7%, 103.0%] for Online Planning; and [99.2%, 103.4%] for Hybrid Adaptation. Eighteen percent of the 22 patients in Daily Correction had a target dose deficiency >5%. For rectal wall, the mean ± SD of the normalized EUD was 102.6% ± 2.7% for Daily Correction, 99.9% ± 2.5% for Online Planning, and 100.6% ± 2.1% for Hybrid Adaptation. The mean ± SD of the normalized bladder EUD was 108.7% ± 8.2% for Daily Correction, 92.7% ± 8.6% for Online Planning, and 89.4% ± 10.8% for Hybrid

  5. Role of Local Radiation Therapy in Cancer Immunotherapy.

    Science.gov (United States)

    Demaria, Sandra; Golden, Encouse B; Formenti, Silvia C

    2015-12-01

    The recent success of cancer immunotherapy has demonstrated the power of the immune system to clear tumors, generating renewed enthusiasm for identifying ways to induce antitumor immune responses in patients. Natural antitumor immune responses are detectable in a fraction of patients across multiple malignant neoplasms and can be reactivated by targeting rate-limiting immunosuppressive mechanisms. In most patients, however, interventions to induce a de novo antitumor immune response are necessary. We review growing evidence that radiation therapy targeted to the tumor can convert it into an in situ tumor vaccine by inducing release of antigens during cancer cell death in association with proinflammatory signals that trigger the innate immune system to activate tumor-specific T cells. In addition, radiation's effects on the tumor microenvironment enhance infiltration of activated T cells and can overcome some of the barriers to tumor rejection. Thus, the complementary effects of radiation on priming and effector phases of antitumor immunity make it an appealing strategy to generate immunity against a patient's own individual tumor, that through immunological memory, can result in long-lasting systemic responses. Several anecdotal cases have demonstrated the efficacy of combining radiation with available immunotherapies, and results of prospective trials are forthcoming.

  6. Hypofractionated radiation therapy of oral melanoma in five cats.

    Science.gov (United States)

    Farrelly, John; Denman, David L; Hohenhaus, Ann E; Patnaik, Amiya K; Bergman, Philip J

    2004-01-01

    Five cats with melanoma involving the oral cavity were treated with hypofractionated radiation therapy (RT). Cobalt photons were used to administer three fractions of 8.0 Gray (Gy) for a total dose of 24 Gy. Four cats received radiation on days 0, 7, and 21 and one cat received radiation on days 0, 7, and 13. One of the cats received additional irradiation following the initial treatment course. Two cats received chemotherapy. Their age ranged from 11 to 15 years with a median age of 12 years. Three cats had a response to radiation, including one complete response and two partial responses. All five cats were euthanized due to progression of disease, with one cat having evidence of metastatic disease at the time of euthanasia. The median survival time for the five cats was 146 days (range 66-224 days) from the start of RT. The results of this study suggest that oral melanoma in cats may be responsive to hypofractionated RT, but response does not seem to be durable.

  7. Extrapleural pneumonectomy, photodynamic therapy and intensity modulated radiation therapy for the treatment of malignant pleural mesothelioma.

    Science.gov (United States)

    Du, Kevin L; Both, Stefan; Friedberg, Joseph S; Rengan, Ramesh; Hahn, Stephen M; Cengel, Keith A

    2010-09-01

    Intensity modulated radiation therapy (IMRT) has recently been proposed for the treatment of malignant pleural mesothelioma (MPM). Here, we describe our experience with a multimodality approach for the treatment of mesothelioma, incorporating extrapleural pneumonectomy, intraoperative photodynamic therapy and postoperative hemithoracic IMRT. From 2004-2007, we treated 11 MPM patients with hemithoracic IMRT, 7 of whom had undergone porfimer sodium-mediated PDT as an intraoperative adjuvant to surgical debulking. The median radiation dose to the planning treatment volume (PTV) ranged from 45.4-54.5 Gy. For the contralateral lung, V20 ranged from 1.4-28.5%, V5 from 42-100% and MLD from 6.8-16.5 Gy. In our series, 1 patient experienced respiratory failure secondary to radiation pneumonitis that did not require mechanical ventilation. Multimodality therapy combining surgery with increased doses of radiation using IMRT, and newer treatment modalities such as PDT , appears safe. Future prospective analysis will be needed to demonstrate efficacy of this approach in the treatment of malignant mesothelioma. Efforts to reduce lung toxicity and improve dose delivery are needed and provide the promise of improved local control and quality of life in a carefully chosen multidisciplinary approach.

  8. Transmission block to simplify combined pelvic and inguinal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kalnicki, S.; Zide, A.; Maleki, N.; DeWyngaert, J.K.; Lipsztein, R.; Dalton, J.F.; Bloomer, W.D.

    1987-08-01

    A homogeneous dose distribution of radiation to inguinal lymph nodes and deep pelvic structures can be achieved with use of a transmission block over the central portion of a large anterior pelvic-inguinal portal, together with a smaller posterior field. This relatively simple technique permits individualization of isodose distributions and eliminates the problems of matching abutting portals. Reproducibility of daily setup and optimization of machine utilization are both improved.

  9. Transmission block to simplify combined pelvic and inguinal radiation therapy.

    Science.gov (United States)

    Kalnicki, S; Zide, A; Maleki, N; DeWyngaert, J K; Lipsztein, R; Dalton, J F; Bloomer, W D

    1987-08-01

    A homogeneous dose distribution of radiation to inguinal lymph nodes and deep pelvic structures can be achieved with use of a transmission block over the central portion of a large anterior pelvic-inguinal portal, together with a smaller posterior field. This relatively simple technique permits individualization of isodose distributions and eliminates the problems of matching abutting portals. Reproducibility of daily setup and optimization of machine utilization are both improved.

  10. The evolving role of radiation therapy in paediatric oncology, Philadelphia, USA, 19-21 January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, G. [Royal Prince Alfred Hospital, Camperdown, NSW (Australia); Sexton, M. [Peter MacCallum Cancer Institute, VIC (Australia).; Gray, A. [King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Oncology

    1995-11-01

    A summary of a conference reviewing recent developments and changes in the use of radiation therapy in paediatric oncology is reported. Although the use of radiation therapy has resulted in improved cure rates, the long-term complications of radiation in a paediatric population are recognised. More intensive systemic therapy and the increasing availability of prognostic data, including biological markers to tailor therapy to the individual patient, has resulted in a more selective use of radiation therapy. Changes in the management of specific tumour types are discussed.

  11. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Lindsay C. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Diehn, Felix E. [Department of Radiology, Mayo Clinic, Rochester, Minnesota (United States); Boughey, Judy C. [Department of Surgery, Mayo Clinic, Rochester, Minnesota (United States); Childs, Stephanie K.; Park, Sean S.; Yan, Elizabeth S.; Petersen, Ivy A. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Mutter, Robert W., E-mail: mutter.robert@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

    2015-07-01

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted.

  12. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy.

    Science.gov (United States)

    Brown, Lindsay C; Diehn, Felix E; Boughey, Judy C; Childs, Stephanie K; Park, Sean S; Yan, Elizabeth S; Petersen, Ivy A; Mutter, Robert W

    2015-07-01

    To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Retreatment for prostate cancer with stereotactic body radiation therapy (SBRT): Feasible or foolhardy?

    Science.gov (United States)

    Arcangeli, Stefano; Agolli, Linda; Donato, Vittorio

    2015-01-01

    The most popular therapeutic option in the management of radio-recurrent prostatic carcinoma is represented by the androgen deprivation therapy, that however should be considered only palliative and hampered by potential adverse effects of testosterone suppression. Local therapies such as surgery, cryoablation or brachytherapy might be curative choices for patients in good conditions and with a long-life expectancy, but at cost of significant risk of failure and severe toxicity. The administration of stereotactic body radiation therapy (SBRT) in this setting have come about because of tremendous technologic advances in image guidance and treatment delivery techniques that enable the delivery of large doses to tumor with reduced margins and high gradients outside the target, thereby reducing the volume of rectum which already received significant doses from primary radiotherapy. So far, very modest data are available to support its employment. Rationale, clinical experience, and challenges are herein reviewed and discussed.

  14. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    Science.gov (United States)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  15. Linear algebraic methods applied to intensity modulated radiation therapy.

    Science.gov (United States)

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  16. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  17. Image-guided radiation therapy. Paradigm change in radiation therapy; Bildgestuetzte Strahlentherapie. Paradigmenwechsel in der Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, F. [Universitaetsmedizin Mannheim der Universitaet Heidelberg, Klinik fuer Strahlentherapie und Radioonkologie, Mannheim (Germany); Belka, C. [Klinikum der Ludwig-Maximilians-Universitaet, Klinik fuer Strahlentherapie und Radioonkologie, Muenchen (Germany); Reiser, M. [Klinikum der Ludwig-Maximilians-Universitaet, Institut fuer Klinische Radiologie, Muenchen (Germany); Schoenberg, S.O. [Universitaetsmedizin Mannheim der Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Mannheim (Germany)

    2012-03-15

    The introduction of image-guided radiotherapy (IGRT) has changed the workflow in radiation oncology more dramatically than any other innovation in the last decades. Imaging for treatment planning before the initiation of the radiotherapy series does not take alterations in patient anatomy and organ movement into account. The principle of IGRT is the temporal and spatial connection of imaging in the treatment position immediately before radiation treatment. The actual position and the target position are compared using cone-beam computed tomography (CT) or stereotactic ultrasound. The IGRT procedure allows a reduction of the safety margins and dose to normal tissue without an increase in risk of local recurrence. In the future the linear treatment chain in radiation oncology will be developed based on the closed-loop feedback principle. The IGRT procedure is increasingly being used especially for high precision radiotherapy, e.g. for prostate or brain tumors. (orig.) [German] Die Einfuehrung der bildgestuetzten Radiotherapie (IGRT - ''image-guided radiotherapy'') hat wie kaum eine andere Innovation die Behandlungsablaeufe in der Radioonkologie veraendert. Eine einmalige Bildgebung zur Bestrahlungsplanung vor der Behandlungsserie beruecksichtigt nicht die Aenderung der Patientengeometrie und die Organbeweglichkeit. Das Prinzip der IGRT besteht in der raeumlichen und zeitlichen Zusammenfuehrung von Bildgebung in der Bestrahlungsposition unmittelbar vor der eigentlichen Bestrahlung. Mittels Cone-beam-CT oder stereotaktischem Ultraschall wird die Ist- mit der Sollposition verglichen. Die IGRT erlaubt die Reduktion der Sicherheitssaeume und damit die Schonung des Normalgewebes, ohne das Rezidivrisiko zu erhoehen. Zukuenftig wird die lineare Behandlungskette in der Radioonkologie durch eine geschlossene, multipel rueckgekoppelte Therapieschleife ersetzt werden. Speziell bei Praezisionsbestrahlungen wie z. B. Prostata- oder Hirntumoren kommt die IGRT

  18. Radiation Therapy With Full-Dose Gemcitabine and Oxaliplatin for Unresectable Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Klaudia U.; Feng, Felix Y. [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Griffith, Kent A. [Comprehensive Cancer Center Biostatistics Unit, University of Michigan, Ann Arbor, MI (United States); Francis, Isaac R. [Department of Radiology, University of Michigan, Ann Arbor, MI (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Desai, Sameer [Department of Internal Medicine, University of Michigan, Ann Arbor, MI (United States); Murphy, James D. [School of Medicine, University of Michigan, Ann Arbor, MI (United States); Zalupski, Mark M. [Department of Internal Medicine, University of Michigan, Ann Arbor, MI (United States); Ben-Josef, Edgar, E-mail: edgarb@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States)

    2012-07-01

    Purpose: We completed a Phase I trial of gemcitabine and oxaliplatin with concurrent radiotherapy in patients with previously untreated pancreatic cancer. The results of a subset of patients with unresectable disease who went on to receive planned additional therapy are reported here. Methods and Materials: All patients received two 28-day cycles of gemcitabine (1,000 mg/m{sup 2} on Days 1, 8, and 15) and oxaliplatin (40-85 mg/m{sup 2} on Days 1 and 15, per a dose-escalation schema). Radiation therapy was delivered concurrently with Cycle 1 (27 Gy in 1.8-Gy fractions). At 9 weeks, patients were reassessed for resectability. Those deemed to have unresectable disease were offered a second round of treatment consisting of 2 cycles of gemcitabine and oxaliplatin and 27 Gy of radiation therapy (total, 54 Gy). Radiation was delivered to the gross tumor volume plus 1 cm by use of a three-dimensional conformal technique. We used the Common Terminology Criteria for Adverse Events to assess acute toxicity. Late toxicity was scored per the Radiation Therapy Oncology Group scale. Computed tomography scans were reviewed to determine pattern of failure, local response, and disease progression. Kaplan-Meier methodology and Cox regression models were used to evaluate survival and freedom from failure. Results: Thirty-two patients from the Phase I dose-escalation study had unresectable disease, three of whom had low-volume metastatic disease. Of this group, 16 patients went on to receive additional therapy to complete a total of 4 cycles of chemotherapy and 54 Gy of concurrent radiation. For this subset, 38% had at least a partial tumor response at a median of 3.2 months. Median survival was 11.8 months (range, 4.4-26.3 months). The 1-year freedom from local progression rate was 93.8% (95% confidence interval, 63.2-99.1). Conclusions: Radiation therapy to 54 Gy with concurrent full-dose gemcitabine and oxaliplatin is well tolerated and results in favorable rates of local tumor

  19. A simulation study investigating a radiation detector utilizing the prompt gamma range verification technique for proton radiotherapy

    Science.gov (United States)

    Lau, Andrew David

    Proton therapy has shown to be a viable therapy for radiation oncology applications. The advantages of using protons as compared to photons in the treatments of diseases with radiation are numerous including the ability to deliver overall lower amounts of lethal radiation doses to the patient. This advantage is due to the fundamental interaction mechanism of the incident therapeutic protons with the patient, which produces a characteristic dose-distribution unique only to protons. Unlike photons, the entire proton beam is absorbed within the patent and the dose-distribution's maximum occurs near the end of the proton's path. Protons deliver less dose on the skin and intervening tissues, tighter dose conformality to the disease site, as well as no dose past the target volume, sparring healthy tissue distally in the patient. Current research in proton therapy is geared towards minimizing proton range uncertainty and monitoring in-vivo the location of the proton's path. Monitoring the beam's path serves also to verify which healthy structures/tissues were irradiated and whether the target volume has met the prescription dose. Among the many techniques used for in-vivo proton monitoring, the technique based on the emitted secondary particles, specifically the Prompt Gamma (PG) method, can be used for clinical implementation. This work focuses on developing a radiation detector system for using the PG method by investigating the characterizing the secondary particle field emitted from plastic and water phantoms as well as a radiation detector based on glass materials that exploits the Cherenkov phenomenon.

  20. A simulation technique for 3D MR-guided acoustic radiation force imaging

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Allison, E-mail: apayne@ucair.med.utah.edu [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84112 (United States); Bever, Josh de [Department of Computer Science, University of Utah, Salt Lake City, Utah 84112 (United States); Farrer, Alexis [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Coats, Brittany [Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Parker, Dennis L. [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84108 (United States); Christensen, Douglas A. [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  1. Comparative cost-effectiveness of stereotactic body radiation therapy versus intensity-modulated and proton radiation therapy for localized prostate cancer.

    Directory of Open Access Journals (Sweden)

    Anju eParthan

    2012-08-01

    Full Text Available Objective. To determine the cost-effectiveness of several external beam radiation treatment modalities for the treatment of patients with localized prostate cancer.Methods. A lifetime Markov model incorporated the probabilities of experiencing treatment-related long-term toxicity or death. Toxicity probabilities were derived from published sources using meta-analytical techniques. Utilities and costs in the model were obtained from publically available secondary sources. The model calculated quality-adjusted life expectancy and expected lifetime cost per patient, and derived ratios of incremental cost per quality-adjusted life year (QALY gained between treatments. Analyses were conducted from both a payer and societal perspectives. One-way and probabilistic sensitivity analyses were performed.Results. Compared to intensity modulated radiation therapy (IMRT and proton beam therapy (PT, stereotactic body radiation therapy (SBRT was less costly and resulted in more QALYs. Sensitivity analyses showed that the conclusions in the base-case scenario were robust with respect to variations in toxicity and cost parameters consistent with available evidence. At a threshold of $50,000/QALY, SBRT was cost effective in 75%, and 94% of probabilistic simulations compared to IMRT and PT, respectively, from a payer perspective. From a societal perspective, SBRT was cost-effective in 75%, and 96% of simulations compared to IMRT and PT, respectively, at a threshold of $50,000/QALY. In threshold analyses, SBRT was less expensive with better outcomes compared to IMRT at toxicity rates 23% greater than the SBRT base-case rates. Conclusions. Based on the assumption that each treatment modality results in equivalent long-term efficacy, SBRT is a cost-effective strategy resulting in improved quality-adjusted survival compared to IMRT and PT for the treatment of localized prostate cancer.

  2. The use of discrete-event simulation modelling to improve radiation therapy planning processes.

    Science.gov (United States)

    Werker, Greg; Sauré, Antoine; French, John; Shechter, Steven

    2009-07-01

    The planning portion of the radiation therapy treatment process at the British Columbia Cancer Agency is efficient but nevertheless contains room for improvement. The purpose of this study is to show how a discrete-event simulation (DES) model can be used to represent this complex process and to suggest improvements that may reduce the planning time and ultimately reduce overall waiting times. A simulation model of the radiation therapy (RT) planning process was constructed using the Arena simulation software, representing the complexities of the system. Several types of inputs feed into the model; these inputs come from historical data, a staff survey, and interviews with planners. The simulation model was validated against historical data and then used to test various scenarios to identify and quantify potential improvements to the RT planning process. Simulation modelling is an attractive tool for describing complex systems, and can be used to identify improvements to the processes involved. It is possible to use this technique in the area of radiation therapy planning with the intent of reducing process times and subsequent delays for patient treatment. In this particular system, reducing the variability and length of oncologist-related delays contributes most to improving the planning time.

  3. A Survivin-Associated Adaptive Response in Radiation Therapy

    Science.gov (United States)

    Grdina, David J.; Murley, Jeffrey S.; Miller, Richard C.; Mauceri, Helena J.; Sutton, Harold G.; Li, Jian Jian; Woloschak, Gayle E.; Weichselbaum, Ralph R.

    2013-01-01

    Adaptive responses can be induced in cells by very low doses of ionizing radiation resulting in an enhanced resistance to much larger exposures. The inhibitor of apoptosis (IAP) protein, survivin, has been implicated in many adaptive responses to cellular stress. Computerized axial tomography (CAT) used in image guided radiotherapy to position and monitor tumor response utilizes very low radiation doses ranging from 0.5 to 100 mGy. We investigated the ability of these very low radiation doses administered along with two 2 Gy doses separated by 24 h, a standard conventional radiotherapy dosing schedule, to initiate adaptive responses resulting in the elevation of radiation resistance in exposed cells. Human colon carcinoma (RKO36), mouse sarcoma (SA-NH), along with transformed mouse embryo fibroblasts (MEF), wild type (WT) or cells lacking functional tumor necrosis factor receptors 1 and 2 (TNFR1−R2−) were used to assess their relative ability to express an adaptive response when grown either to confluence in vitro or as tumors in the flank of C57BL/6 mice. The survival of each of these cells was elevated from 5 to 20% (P ≤ 0.05) as compared to cells not receiving a 100 mGy or lesser dose. Additionally, the cells exposed to 100 mGy exhibited elevations in survivin levels, reductions in apoptosis frequencies, and loss of an adaptive response if transfected with survivin siRNA. This survivin-mediated adaptive response has the potential for affecting outcomes if regularly induced throughout a course of image guided radiation therapy. PMID:23651635

  4. A survivin-associated adaptive response in radiation therapy.

    Science.gov (United States)

    Grdina, David J; Murley, Jeffrey S; Miller, Richard C; Mauceri, Helena J; Sutton, Harold G; Li, Jian Jian; Woloschak, Gayle E; Weichselbaum, Ralph R

    2013-07-15

    Adaptive responses can be induced in cells by very low doses of ionizing radiation resulting in an enhanced resistance to much larger exposures. The inhibitor of apoptosis protein, survivin, has been implicated in many adaptive responses to cellular stress. Computerized axial tomography used in image-guided radiotherapy to position and monitor tumor response uses very low radiation doses ranging from 0.5 to 100 mGy. We investigated the ability of these very low radiation doses administered along with two 2 Gy doses separated by 24 hours, a standard conventional radiotherapy dosing schedule, to initiate adaptive responses resulting in the elevation of radiation resistance in exposed cells. Human colon carcinoma (RKO36), mouse sarcoma (SA-NH), along with transformed mouse embryo fibroblasts, wild type or cells lacking functional tumor necrosis factor receptors 1 and 2 were used to assess their relative ability to express an adaptive response when grown either to confluence in vitro or as tumors in the flank of C57BL/6 mice. The survival of each of these cells was elevated from 5% to 20% (P ≤ 0.05) as compared to cells not receiving a 100 mGy or lesser dose. In addition, the cells exposed to 100 mGy exhibited elevations in survivin levels, reductions in apoptosis frequencies, and loss of an adaptive response if transfected with survivin siRNA. This survivin-mediated adaptive response has the potential for affecting outcomes if regularly induced throughout a course of image guided radiation therapy. ©2013 AACR.

  5. Applications of synchrotron radiation techniques to materials science 4

    Energy Technology Data Exchange (ETDEWEB)

    Mini, S.M. [ed.] [Northern Illinois Univ., DeKalb, IL (United States)]|[Argonne National Lab., IL (United States); Stock, S.R. [ed.] [Georgia Inst. of Tech., Atlanta, GA (United States); Perry, D.L. [ed.] [Lawrence Berkeley National Lab., CA (United States); Terminello, L.J. [ed.] [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    As more synchrotron facilities are constructed and go online both in the US and in other countries, even more applications of synchrotron radiation will be realized. Both basic and applied research possibilities are manifold, including studies of materials mentioned below and those that are yet to be discovered. Also, the combination of synchrotron-based spectroscopic techniques with ever increasing high-resolution microscopy allows researchers to study very small domains of materials in an attempt to understand their chemical and electronic properties. This is especially important in the areas of composites and other related materials involving material bonding interfaces. The topics covered in this symposium include surfaces, interfaces, electronic materials, metal oxides, solar cells, thin films, carbides, polymers, alloys, nanoparticles, and graphitic materials. Results reported at this symposium relate recent advances in X-ray absorption and scattering, imaging, tomography, microscopy, and topography methods.

  6. Assessment of secondary radiation and radiation protection in laser-driven proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Faby, Sebastian; Wilkens, Jan J. [Technische Univ. Muenchen Klinikum rechts der Isar (Germany). Dept. of Radiation Oncology; Technische Univ. Muenchen (Germany). Physik-Dept.

    2015-09-01

    This work is a feasibility study of a radiation treatment unit with laser-driven protons based on a state-of-the-art energy selection system employing four dipole magnets in a compact shielded beamline. The secondary radiation emitted from the beamline and its energy selection system and the resulting effective dose to the patient are assessed. Further, it is evaluated whether or not such a compact system could be operated in a conventional treatment vault for clinical linear accelerators under the constraint of not exceeding the effective dose limit of 1 mSv per year to the general public outside the treatment room. The Monte Carlo code Geant4 is employed to simulate the secondary radiation generated while irradiating a hypothetical tumor. The secondary radiation inevitably generated inside the patient is taken into account as well, serving as a lower limit. The results show that the secondary radiation emanating from the shielded compact therapy system would pose a serious secondary dose contamination to the patient. This is due to the broad energy spectrum and in particular the angular distribution of the laser-driven protons, which make the investigated beamline together with the employed energy selection system quite inefficient. The secondary radiation also cannot be sufficiently absorbed in a conventional linear accelerator treatment vault to enable a clinical operation. A promising result, however, is the fact that the secondary radiation generated in the patient alone could be very well shielded by a regular treatment vault, allowing the application of more than 100 fractions of 2 Gy per day with protons. It is thus theoretically possible to treat patients with protons in such treatment vaults. Nevertheless, the results show that there is a clear need for alternative more efficient energy selection solutions for laser-driven protons.

  7. The Role of a Prone Setup in Breast Radiation Therapy

    OpenAIRE

    Huppert, Nelly; Jozsef, Gabor; DeWyngaert, Keith; Formenti, Silvia Chiara

    2011-01-01

    Most patients undergoing breast conservation therapy receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of ...

  8. Study of four cases of radiation colitis needed operation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shigeru; Takesue, Yoshio; Yokoyama, Takashi [Hiroshima Univ. (Japan). School of Medicine] [and others

    1996-09-01

    On the 4 cases of operation for the late radiation effect, the process and notes for radiation colitis were described. Case 1; a female of 57 y with cervical carcinoma (IIIb) received 59.8 Gy of external irradiation and 24.0 Gy of intracervical irradiation. About 8 months after the radiotherapy, anemia due to gut bleeding was observed and hemorrhage was seen in the colon with the colon fiber. One year later, colostomy was performed. Case 2; a female of 79 y with cervical carcinoma (IIb) received 50.0 Gy of external irradiation and 18.0 Gy of intracervical irradiation. About 8 months after the therapy, gut bleeding and ileac symptom were observed and ulcer and stenosis in the sigmoid colon were seen. Sigmoidectomy was performed. Case 3; a female of 75 y with cervical carcinoma (IIIb) received external 49.8 Gy irradiation and intracervical 23.0 Gy irradiation. About 4 months after the therapy, anemia and ulcer with hemorrhage in the sigmoidal colon were recognized. Sigmoidectomy and colostomy were performed. Case 4; a female of 68 y with cervical carcinoma (IIb) and chronic renal failure received 50.4 Gy of external irradiation post hysterectomy. About 5 months later, iliac symptom was observed. She received ileectomy and then colostomy but died of MOF due to renal failure. (K.H.)

  9. The use of customized spreadsheets in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Balog, J.P.; Sibata, C.H.; Podgorsak, M.B.; Shin, K.H. [Roswell Park Memorial Inst., Buffalo, NY (United States)

    1995-06-01

    A number of radiation-therapy-related uses based on a commercially available spreadsheet program have been developed at our facility. The graphics and display capabilities inherent in these spreadsheet programs allow for concise visual results. The spreadsheets are used as an independent check for several types of radiation therapy dose calculations. A spreadsheet will verify the monitor units (MU) or time required to deliver a prescribed dose to a point on an isodose line as calculated by a commercial treatment planning system. Spreadsheet programs have been developed to perform the calculations necessary for the output calibration of cobalt and high-energy photon and electron beams according to the TG-21 protocol. The user must indicate which beam, electrometer, chamber, phantom material, temperature, pressure and depth of measurement that apply. The MU per arc is calculated based on the following: the average depth per arc as obtained from a commercial radiosurgery program, the collimator size, and the prescription dose. The patient`s width is entered into the spreadsheet program, which then calculates the MU needed to deliver a prescribed dose to the midline. (author).

  10. Radiation therapy plan checks in a paperless clinic.

    Science.gov (United States)

    Siochi, R Alfredo; Pennington, Edward C; Waldron, Timothy J; Bayouth, John E

    2009-01-27

    Traditional quality assurance checks of a patient's radiation therapy plan involve printing out treatment parameters from the treatment planning system and the "record and verify" (R&V) system and visually checking the information for one-to-one correspondence. In a paperless environment, one can automate this process through independent software that can read the treatment planning data directly and compare it against the parameters in the R&V system's database. In addition to verifying the data integrity, it is necessary to check the logical consistency of the data and the accuracy of various calculations. The results are then imported into the patient's electronic medical record. Appropriate workflows must be developed to ensure that no steps of the QA process are missed. This paper describes our electronic QA system (EQS), consisting of in-house software and workflows. The EQS covers 3D conformal and intensity modulated radiation therapy, electrons, stereotactic radiosurgery, total body irradiation, and clinical set ups with and without virtual simulation. The planning systems handled by our EQS are ADAC Pinnacle and Varian FASTPLAN, while the R&V systems are LANTIS and VARIS. The improvement in our plan check process over the paperless system is described in terms of the types of detected errors. The potential problems with the implementation and use of the EQS, as well as workarounds for data that are not easily accessible through electronic means, are described.

  11. Inflammatory bowel diseases activity in patients undergoing pelvic radiation therapy

    Science.gov (United States)

    Seisen, Thomas; Klotz, Caroline; Mazeron, Renaud; Maroun, Pierre; Petit, Claire; Deutsch, Eric; Bossi, Alberto; Haie-Meder, Christine; Chargari, Cyrus; Blanchard, Pierre

    2017-01-01

    Background Few studies with contradictory results have been published on the safety of pelvic radiation therapy (RT) in patients with inflammatory bowel disease (IBD). Methods From 1989 to 2015, a single center retrospective analysis was performed including all IBD patients who received pelvic external beam radiation therapy (EBRT) or brachytherapy (BT) for a pelvic malignancy. Treatment characteristics, IBD activity and gastrointestinal (GI) toxicity were examined. Results Overall, 28 patients with Crohn’s disease (CD) (n=13) or ulcerative colitis (n=15) were included in the present study. Median follow-up time after irradiation was 5.9 years. Regarding IBD activity, only one and two patients experienced a severe episode within and after 6 months of follow-up, respectively. Grade 3/4 acute GI toxicity occurred in 3 (11%) patients, whereas one (3.6%) patient experienced late grade 3/4 GI toxicity. Only patients with rectal IBD location (P=0.016) or low body mass index (BMI) (P=0.012) experienced more severe IBD activity within or after 6 months following RT, respectively. Conclusions We report an acceptable tolerance of RT in IBD patients with pelvic malignancies. Specifically, a low risk of uncontrolled flare-up was observed. PMID:28280621

  12. Stereotactic Radiosurgery (SRS and Stereotactic Body Radiation Therapy (SBRT Cost-Effectiveness Results

    Directory of Open Access Journals (Sweden)

    Akash eBijlani

    2013-04-01

    Full Text Available Objective: To describe and synthesize the current stereotactic radiosurgery (SRS and stereotactic body radiation therapy (SBRT cost-effectiveness research to date across several common SRS and SBRT applications. Methods: This review was limited to comparative economic evaluations of SRS, SBRT and alternative treatments (e.g., other radiotherapy techniques or surgery. Based on PubMed searches using the terms, stereotactic, stereotactic radiosurgery, stereotactic radiotherapy, stereotactic body radiotherapy, stereotactic body radiation therapy, stereotactic ablative radiotherapy, economic evaluation, quality adjusted life year (QALY, cost, cost effectiveness, cost utility and cost analysis, published studies of cost-effectiveness and health economics were obtained. Included were articles in peer-reviewed journals that presented a comparison of costs between treatment alternatives from January 1997 to November 2012. Papers were excluded if they did not present cost calculations, therapeutic cost comparisons, or health economic endpoints. Results: Clinical outcomes and costs of SRS and SBRT were compared to other therapies for treatment of cancer in the brain, spine, lung, prostate and pancreas. Treatment outcomes for SRS and SBRT are usually superior or comparable, and cost-effective, relative to alternative techniques. Conclusion: Based on the review of current SRS and SBRT clinical and health economic literature, from a patient perspective, SRS and SBRT provide patients a clinically-effective treatment option, while from the payer and provider perspective, SRS and SBRT demonstrate cost-savings.

  13. Radiation Therapy Planning for Early-Stage Hodgkin Lymphoma: Experience of the International Lymphoma Radiation Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Maraldo, Maja V., E-mail: dra.maraldo@gmail.com [Departments of Clinical Oncology and Hematology, Rigshospitalet, University of Copenhagen (Denmark); Dabaja, Bouthaina S. [Department of Radiation Oncology, MD Anderson Cancer Center, Texas (United States); Filippi, Andrea R. [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Illidge, Tim [Department of Oncology, Christie Hospital, Manchester (United Kingdom); Tsang, Richard [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Ricardi, Umberto [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Petersen, Peter M.; Schut, Deborah A. [Departments of Clinical Oncology and Hematology, Rigshospitalet, University of Copenhagen (Denmark); Garcia, John [Department of Radiation Oncology, MD Anderson Cancer Center, Texas (United States); Headley, Jayne [Department of Oncology, Christie Hospital, Manchester (United Kingdom); Parent, Amy; Guibord, Benoit [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Ragona, Riccardo [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Specht, Lena [Departments of Clinical Oncology and Hematology, Rigshospitalet, University of Copenhagen (Denmark)

    2015-05-01

    Purpose: Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements, planning parameters, and estimated doses to the critical organs at risk (OARs). Methods: Ten patients with stage I-II classic HL with masses of different sizes and locations were selected. On the basis of the clinical information, 5 ILROG centers were asked to create RT plans to a prescribed dose of 30.6 Gy. A postchemotherapy computed tomography scan with precontoured clinical target volume (CTV) and OARs was provided for each patient. The treatment technique and planning methods were chosen according to each center's best practice in 2013. Results: Seven patients had mediastinal disease, 2 had axillary disease, and 1 had disease in the neck only. The median age at diagnosis was 34 years (range, 21-74 years), and 5 patients were male. Of the resulting 50 treatment plans, 15 were planned with volumetric modulated arc therapy (1-4 arcs), 16 with intensity modulated RT (3-9 fields), and 19 with 3-dimensional conformal RT (2-4 fields). The variations in CTV-to-planning target volume margins (5-15 mm), maximum tolerated dose (31.4-40 Gy), and plan conformity (conformity index 0-3.6) were significant. However, estimated doses to OARs were comparable between centers for each patient. Conclusions: RT planning for HL is challenging because of the heterogeneity in size and location of disease and, additionally, to the variation in choice of treatment techniques and field arrangements. Adopting ILROG guidelines and implementing universal dose objectives could further standardize treatment techniques and contribute to lowering the dose to the surrounding OARs.

  14. Radiation therapy planning for early-stage Hodgkin lymphoma: experience of the International Lymphoma Radiation Oncology Group.

    Science.gov (United States)

    Maraldo, Maja V; Dabaja, Bouthaina S; Filippi, Andrea R; Illidge, Tim; Tsang, Richard; Ricardi, Umberto; Petersen, Peter M; Schut, Deborah A; Garcia, John; Headley, Jayne; Parent, Amy; Guibord, Benoit; Ragona, Riccardo; Specht, Lena

    2015-05-01

    Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements, planning parameters, and estimated doses to the critical organs at risk (OARs). Ten patients with stage I-II classic HL with masses of different sizes and locations were selected. On the basis of the clinical information, 5 ILROG centers were asked to create RT plans to a prescribed dose of 30.6 Gy. A postchemotherapy computed tomography scan with precontoured clinical target volume (CTV) and OARs was provided for each patient. The treatment technique and planning methods were chosen according to each center's best practice in 2013. Seven patients had mediastinal disease, 2 had axillary disease, and 1 had disease in the neck only. The median age at diagnosis was 34 years (range, 21-74 years), and 5 patients were male. Of the resulting 50 treatment plans, 15 were planned with volumetric modulated arc therapy (1-4 arcs), 16 with intensity modulated RT (3-9 fields), and 19 with 3-dimensional conformal RT (2-4 fields). The variations in CTV-to-planning target volume margins (5-15 mm), maximum tolerated dose (31.4-40 Gy), and plan conformity (conformity index 0-3.6) were significant. However, estimated doses to OARs were comparable between centers for each patient. RT planning for HL is challenging because of the heterogeneity in size and location of disease and, additionally, to the variation in choice of treatment techniques and field arrangements. Adopting ILROG guidelines and implementing universal dose objectives could further standardize treatment techniques and contribute to lowering the dose to the surrounding OARs. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Low Toxicity in Inflammatory Bowel Disease Patients Treated With Abdominal and Pelvic Radiation Therapy.

    Science.gov (United States)

    White, Evan C; Murphy, James D; Chang, Daniel T; Koong, Albert C

    2015-12-01

    To determine the short-term and long-term toxicity of abdominal and pelvic radiation therapy in a cohort of patients with inflammatory bowel disease (IBD). We hypothesize that with newer techniques, such as intensity-modulated radiation therapy (IMRT) and 3-dimensional conformal radiotherapy (3D-CRT), patients with IBD can safely undergo abdominal and pelvic radiation, with low risk for major acute or late toxicity. Nineteen consecutive patients with IBD (14 with ulcerative colitis, 5 with Crohn disease) who were treated with abdominal or pelvic external beam radiation therapy at Stanford University from 1997 to 2011 were identified. Fourteen patients were treated with IMRT and 5 were treated with 3D-CRT. Treated sites included prostate (n=8), gastric/esophageal (n=5), rectal/anal (n=3), and liver (n=3) tumors. Charts were reviewed and toxicity was graded according to the Common Terminology Criteria for Acute Events version 4.0. Median follow-up was 32.5 months. Fisher exact test was used to determine if any clinical and/or treatment factors were associated with toxicity outcomes. Acute grade ≥3 toxicity occurred in 2 patients (11%). Late grade ≥3 toxicity occurred in 1 patient (6%). Acute grade ≥2 toxicity occurred in 28% of patients treated with IMRT versus 100% of patients treated with 3D-CRT (P=0.01). Acute grade ≥2 gastrointestinal toxicity was lower in patients treated with IMRT versus 3D-CRT (14% vs. 100%, respectively, P=0.002). Late grade ≥2 toxicity occurred in 21% of patients. Higher total dose (Gy) and biologically effective dose (Gy) were associated with increased rates of late grade ≥2 toxicity (P=0.02 and 0.03, respectively). These data suggest that select patients with IBD can safely undergo abdominal and pelvic radiation therapy. The use of IMRT was associated with decreased acute toxicity. Acute and late severe toxicity rates were low in this patient population with the use of modern radiation techniques.

  16. Managing Radiation Therapy Side Effects: What to Do When You Have Loose Stools (Diarrhea)

    Science.gov (United States)

    ... rice • White toast Fruits and other foods • Applesauce • Bananas • Canned fruit, such as peaches and pears • Gelatin ( ... series of 9 Radiation Therapy Side Effects Fact Sheets at: www. cancer. gov/ radiation- side- effects

  17. Stage IA non-Hodgkin's lymphoma of the Waldeyer's ring; Limited chemotherapy and radiation therapy versus radiation therapy alone

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Minoru (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology Dept. of Radiology, National Defense Medical College, Saitama (Japan)); Kondo, Makoto (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Hiramatsu, Hideko (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Ikeda, Yasuo (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Hematology); Mikata, Sumio (Chiba Univ. (Japan). School of Medicine); Katayama, Michiaki (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Ito, Hisao (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology); Kusano, Shoichi (Dept. of Radiology, National Defense Medical College, Saitama (Japan)); Kubo, Asuchishi (Keio Univ. School of Medicine, Tokyo (Japan). Dept. of Radiology)

    1993-01-01

    Seventeen patients with stage IA non-Hodgkin's lymphoma of the Waldeyer's ring were treated with radiation therapy with or without chemotherapy. All lesions were judged as having intermediate grade malignancy in the Working Formulation. Eight patients received combined treatment with three cycles of cylcophosphamide, doxorubicin, vincristine and prednison (CHOP) and radiation therapy with 30 to 40 Gy. Another 9 patients were treated with radiation therapy 40 to 60 Gy alone. After a median follow-up of 69 months, all 8 patients, treated with combined modality were alive and relapse-free whereas 4 of the 9 treated with irradiation alone had relapsed. All relapses occurred transdiaphragmatically. Two of the 4 relapsing patients were saved, but the other two died of the disease. The 5-year relapse-free and cause-specific survival rates were 100% and 100% in the combined modality group, and 56% and 76% in the radiation therapy alone group (relapse-free: p=0.04, cause-specific: p=0.16). There were no serious complications related to treatment, although most patients complained of mouth dryness and most patients given CHOP had paresthesia. Our opinion was that the total impact of these two side-effects on quality of life was less pronounced after combined modality than after radiation therapy alone. Limited chemotherapy and radiation therapy seemed to be more beneficial than radiation therapy alone not only in relapse-free survival but also in quality of life after treatment. (orig.).

  18. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    Energy Technology Data Exchange (ETDEWEB)

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W. [Department of Radiation Oncology, Drexel University College of Medicine, Philadelphia, Pennsylvania (United States); Komarnicky, Lydia T., E-mail: lydia.komarnicky-kocher@drexelmed.edu [Department of Radiation Oncology, Drexel University College of Medicine, Philadelphia, Pennsylvania (United States)

    2012-11-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15-84 years). The range of external-beam radiation delivered was 50.0-75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90-120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues-Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7-70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  19. Skeletal sequelae of radiation therapy for malignant childhood tumors

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.S.; Robertson, W.W. Jr.; Rate, W.; D' Angio, G.J.; Drummond, D.S. (UMDNJ Robert Wood Johnson Medical School, New Brunswick (USA))

    1990-02-01

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) had scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy.

  20. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy.

    Science.gov (United States)

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-11-10

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.

  1. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Byeong Mo Kim

    2015-11-01

    Full Text Available Ionizing radiation (IR, such as X-rays and gamma (γ-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.

  2. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy

    Science.gov (United States)

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-01-01

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR. PMID:26569225

  3. ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-10-1-0582 TITLE: ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer PRINCIPAL...ETS gene fusion status associated with clinical outcomes following radiation therapy , by analyzing both the collected biomarker and clinical data...denotes absence of an ERG fusion). ETS gene fusions status did not predict outcomes following radiation therapy , as demonstrated by Kaplan Meier

  4. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, Katia, E-mail: Katia.parodi@physik.uni-muenchen.de [Faculty of Physics, Department of Medical Physics, Ludwig Maximilians University Munich, Munich 85748 (Germany)

    2015-12-15

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  5. Targeted therapies and radiation for the treatment of head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwi Eon [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2004-06-15

    The purpose of this review is to provide an update on novel radiation treatments for head and neck cancer. Despite the remarkable advances in chemotherapy and radiotherapy techniques, the management of advanced head and neck cancer remains challenging. Epidermal growth factor receptor (EGFR) is an appealing target for novel therapies in head and neck cancer because not only EGFR activation stimulates many important signaling pathways associated with cancer development and progression, and importantly, resistance to radiation. Furthermore, EGFR overexpression is known to be portended for a worse outcome in patients with advanced head and neck cancer. Two categories of compounds designed to abrogate EGFR signaling, such as monoclonal antibodies (Cetuximab) and tyrosine kinase inhibitors (ZD1839 and OSI-774) have been assessed and have been most extensively studied in preclinical models and clinical trials. Additional TKIs in clinical trials include a reversible agent, Cl-1033, which blocks activation of all erbB receptors. Encouraging preclinical data for head and neck cancers resulted in rapid translation into the clinic. Results from initial clinical trials show rather surprisingly that only minority of patients benefited from EGFR inhibition as monotherapy or in combination with chemotherapy. In this review, we begin with a brief summary of erbB-mediated signal transduction. Subsequently, we present data on prognostic-predictive value of erbB receptor expression in HNC followed by preclinical and clinical data on the role of EGFR antagonists alone or in combination with radiation in the treatment of HNC. Finally, we discuss the emerging thoughts on resistance to EGFR blockade and efforts in the development of multiple-targeted therapy for combination with chemotherapy or radiation. Current challenges for investigators are to determine (1) who will benefit from targeted agents and which agents are most appropriate to combine with radiation and/or chemotherapy, (2

  6. Radiation therapy and simultaneous chemotherapy for recurrent cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Windschall, A.; Ott, O.J.; Sauer, R.; Strnad, V. [Erlangen Univ. (Germany). Dept. of Radiation Oncology

    2005-08-01

    Purpose: To evaluate the efficacy and toxicity in patients with recurrence of cervical cancer treated with radiotherapy and simultaneous chemotherapy. Patients and methods: Between 1987 and 2001, 24 patients with recurrent cervical carcinoma were treated with concurrent chemoradiotherapy. Nine patients had incomplete tumor resection prior to radiation therapy. Irradiation was delivered to a total dose of 60 Gy, in three patients with central recurrence supplemented by brachytherapy. One patient was treated with brachytherapy alone. Simultaneous chemotherapy was done as a combined therapy of 5-fluorouracil-(5-FU, 600 mg/m{sup 2}/d1-5, 29-33) and cisplatin (20 mg/m{sup 2}/d1-5, 29-33; 16/24 patients) or of 5-FU (1,000 mg/m{sup 2}/d1-5, 29-33) and mitomycin C (10 mg/m{sup 2}/d2, 30; 1/24 patients). Cisplatin alone (25 mg/m{sup 2}/d1-5) and carboplatin alone (800 mg/m{sup 2}/d1-5) were administered in 5/24 patients (21%) and 2/24 patients (8%). Results: The 5-year local recurrence-free survival rate was 37%, disease-free survival 33%, and overall survival 34%. Grade 3 toxicity (NCI-CTC grade 3) occurred mainly as diarrhea (38%), leukopenia (33%), and nausea (21%). Severe toxicity (grade 4) was not seen in any of the patients. Conclusion: Radiation therapy with simultaneous chemotherapy for recurrences of cervical cancer is an effective treatment with acceptable toxicity. (orig.)

  7. Estimation of impairment of gustation and salivary secretion after radiation therapy for head and neck malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Yoshiyuki; Fuwa, Nobukazu; Kikuchi, Yuzo [Aichi Cancer Center, Nagoya (Japan). Hospital; Morita, Kozo; Murao, Takayuki; Yokoi, Motoo

    1995-06-01

    To estimate impairment of gustation and salivary secretion after radiation therapy, we classified the degree of gustation and xerostomia into 4 grades in 50 patients who had received radiation therapy for head and neck malignancies. We found that gustation recovered in most patients regardless of radiation dose, but salivary secretion recovered only when radiation dose was less than 40 to 50 Gy on the gland of the affected side and less than 30 to 40 Gy on the opposite side. (author).

  8. Usefulness of radiation treatment planning allpied respiration factor for streotatic body radiation therapy in the lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sung Pil; Kim, Tae Hyung; So, Woon Young; Back, Geum Mun [Dept. of Medical Health Science, Graduate School, Kangwon National University, Chuncheon (Korea, Republic of)

    2016-12-15

    We are evaluated the usefulness of radiation treatment planning applied respiration factor for stereotactic body radiation therapy in the lung cancer. Four dimensional computed tomography images were obtained in 10 patients with lung cancer. The radiation treatment plans were established total lung volume according to respiration images (new method) and conventional method. We was analyzed in the lung volume, radiation absorbed dose of lung and main organs (ribs, tracheobronchus, esophagus, spinal cord) around the tumor, respectively. We were confirmed that lung volume and radiation absorbed dose of lung and main organs around the tumor deference according to applied respiration. In conclusion, radiation treatment planning applied respiration factor seems to be useful for stereotactic body radiation therapy in the lung cancer.

  9. Clinical significance of radiation therapy in breast recurrence and prognosis in breast-conserving surgery

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Reiki; Nagao, Kazuharu; Miyayama, Haruhiko [Kumamoto City Hospital (Japan)] [and others

    1999-03-01

    Significant risk factors for recurrence of breast cancer after breast-conserving therapy, which has become a standard treatment for breast cancer, are positive surgical margins and the failure to perform radiation therapy. In this study, we evaluated the clinical significance of radiation therapy after primary surgery or breast recurrence. In 344 cases of breast-conserving surgery, disease recurred in 43 cases (12.5%), which were classified as follows: 17 cases of breast recurrence, 13 cases of breast and distant metastasis, and 13 cases of distant metastasis. Sixty-two patients (16.7%) received radiation therapy. A positive surgical margin and younger age were significant risk factors for breast recurrence in patients not receiving postoperative radiation therapy but not in patients receiving radiation therapy. Radiation therapy may be beneficial for younger patients with positive surgical margins. Furthermore, radiation therapy after recurrence was effective in the cases not treated with postoperative radiation but not in cases with inflammatory recurrence. Patients with breast recurrence alone had significantly higher survival rates than did patients with distant metastases regardless of breast recurrence. These findings suggest that the adaptation criteria of radiation therapy for local control must be clarified. (author)

  10. Modern Radiation Therapy for Nodal Non-Hodgkin Lymphoma—Target Definition and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    DEFF Research Database (Denmark)

    Illidge, Tim; Specht, Lena; Yahalom, Joachim

    2014-01-01

    Radiation therapy (RT) is the most effective single modality for local control of non-Hodgkin lymphoma (NHL) and is an important component of therapy for many patients. Many of the historic concepts of dose and volume have recently been challenged by the advent of modern imaging and RT planning...... tools. The International Lymphoma Radiation Oncology Group (ILROG) has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the ILROG steering committee on the use of RT in NHL in the modern era. The roles...... of reduced volume and reduced doses are addressed, integrating modern imaging with 3-dimensional planning and advanced techniques of RT delivery. In the modern era, in which combined-modality treatment with systemic therapy is appropriate, the previously applied extended-field and involved-field RT...

  11. Combined Radiation Therapy and Immune Checkpoint Blockade Therapy for Breast Cancer.

    Science.gov (United States)

    Hu, Zishuo I; Ho, Alice Y; McArthur, Heather L

    2017-09-01

    Treatment with checkpoint inhibitors has shown durable responses in a number of solid tumors, including melanoma, lung, and renal cell carcinoma. However, most breast cancers are resistant to monotherapy with checkpoint inhibitors. Radiation therapy (RT) has been shown to have a number of immunostimulatory effects, including priming the immune system, recruiting immune cells to the tumor environment, and altering the immunosuppressive effects of the tumor microenvironment. RT therefore represents a promising adjuvant therapy to checkpoint blockade in breast cancer. We review the data from the checkpoint blockade studies on breast cancer reported to date, the mechanisms by which RT potentiates immune responses, the preclinical and clinical data of checkpoint blockade and RT combinations, and the landscape of current clinical trials of RT and immune checkpoint inhibitor combinations in breast cancer. Clinical trials with checkpoint blockade therapy have demonstrated response rates of up to 19% in breast cancer, and many of the responses are durable. Preclinical data indicate that RT combined with checkpoint inhibition synergizes not only to enhance antitumor efficacy but also to induce responses outside of the radiation field. Thus multiple clinical trials are currently investigating the combination of checkpoint inhibition with RT. The use of combination strategies that incorporate chemotherapy and/or local strategies such as RT may be needed to augment responses to immune therapy in breast cancer. Preclinical and clinical results show that RT in combination with checkpoint blockade may be a promising therapeutic option in breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    Science.gov (United States)

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  13. Endoscopic incisional therapy for benign esophageal strictures: Technique and results.

    Science.gov (United States)

    Samanta, Jayanta; Dhaka, Narendra; Sinha, Saroj Kant; Kochhar, Rakesh

    2015-12-25

    Benign esophageal strictures refractory to the conventional balloon or bougie dilatation may be subjected to various adjunctive modes of therapy, one of them being endoscopic incisional therapy (EIT). A proper delineation of the stricture anatomy is a prerequisite. A host of electrocautery and mechanical devices may be used, the most common being the use of needle knife, either standard or insulated tip. The technique entails radial incision and cutting off of the stenotic rim. Adjunctive therapies, to prevent re-stenosis, such as balloon dilatation, oral or intralesional steroids or argon plasma coagulation can be used. The common strictures where EIT has been successfully used are Schatzki's rings (SR) and anastomotic strictures (AS). Short segment strictures (< 1 cm) have been found to have the best outcome. When compared with routine balloon dilatation, EIT has equivalent results in treatment naïve cases but better long term outcome in refractory cases. Anecdotal reports of its use in other types of strictures have been noted. Post procedure complications of EIT are mild and comparable to dilatation therapy. As of the current evidence, incisional therapy can be used for management of refractory AS and SR with relatively short stenosis (< 1 cm) with good safety profile and acceptable long term patency.

  14. An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy.

    Science.gov (United States)

    Mittone, Alberto; Baldacci, Fabien; Bravin, Alberto; Brun, Emmanuel; Delaire, François; Ferrero, Claudio; Gasilov, Sergei; Freud, Nicolas; Létang, Jean Michel; Sarrut, David; Smekens, François; Coan, Paola

    2013-09-01

    Medical imaging and radiation therapy are widely used synchrotron-based techniques which have one thing in common: a significant dose delivery to typically biological samples. Among the ways to provide the experimenters with image guidance techniques indicating optimization strategies, Monte Carlo simulation has become the gold standard for accurately predicting radiation dose levels under specific irradiation conditions. A highly important hampering factor of this method is, however, its slow statistical convergence. A track length estimator (TLE) module has been coded and implemented for the first time in the open-source Monte Carlo code GATE/Geant4. Results obtained with the module and the procedures used to validate them are presented. A database of energy-absorption coefficients was also generated, which is used by the TLE calculations and is now also included in GATE/Geant4. The validation was carried out by comparing the TLE-simulated doses with experimental data in a synchrotron radiation computed tomography experiment. The TLE technique shows good agreement versus both experimental measurements and the results of a classical Monte Carlo simulation. Compared with the latter, it is possible to reach a pre-defined statistical uncertainty in about two to three orders of magnitude less time for complex geometries without loss of accuracy.

  15. Automatic CT simulation optimization for radiation therapy: A general strategy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Yu, Lifeng [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-15

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube

  16. An analysis of the incidence and related factors for radiation dermatitis in breast cancer patients who receive radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun Young; Kwon, Hyoung Cheol; Kim, Jung Soo [Dept. of Radiation Oncology, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Heui Kwan [Prebyterian Medical Center, Jeonju (Korea, Republic of)

    2010-11-15

    We analyzed the incidence and related factors of radiation dermatitis; at first, to recognize whether a decrease in radiation dermatitis is possible or not in breast cancer patients who received radiation therapy. Of 338 patients, 284 with invasive breast cancer who received breast conservation surgery with radiotherapy at Chonbuk National University Hospital from January 2007 to June 2009 were evaluated. Patients who also underwent bolus, previous contralateral breast irradiation and irradiation on both breasts were excluded. For patients who appeared to have greater than moderate radiation dermatitis, the incidence and relating factors for radiation dermatitis were analyzed retrospectively. A total of 207 and 77 patients appeared to have RTOG grade 0/1 or above RTOG grade 2 radiation dermatitis, respectively. The factors found to be statistically significant for the 77 patients who appeared to have greater than moderate radiation dermatitis include the presence of lymphocele due to the stasis of lymph and lymph edema which affect the healing disturbance of radiation dermatitis (p=0.003, p=0.001). Moreover, an allergic reaction to plaster due to the immune cells of skin and the activation of cytokine and concomitant hormonal therapy were also statistically significant factors (p=0.001, p=0.025). Most of the breast cancer patients who received radiation therapy appeared to have a greater than mild case of radiation dermatitis. Lymphocele, lymphedema, an allergy to plaster and concomitant hormonal therapy which affect radiation dermatitis were found to be significant factors. Consequently, we should eliminate lymphocele prior to radiation treatment for patients who appear to have an allergic reaction to plaster. We should also instruct patients of methods to maintain skin moisture if they appear to have a greater than moderate case of radiation dermatitis.

  17. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    CERN Document Server

    Povoli, Marco; Bravin, Alberto; Cornelius, Iwan; Bräuer-Krisch, Elke; Fournier, Pauline; Hansen, Thor-Erik; Kok, Angela; Lerch, Michael; Monakhov, Edouard; Morse, John; Petasecca, Marco; Requardt, Herwig; Rosenfeld, Anatoly; Röhrich, Dieter; Sandaker, Heidi; Salomé, Murielle; Stugu, Bjarne

    2015-01-01

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any...

  18. Combinations of Radiation Therapy and Immunotherapy for Melanoma: A Review of Clinical Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Christopher A., E-mail: barkerc@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Postow, Michael A. [Department of Medicine, Melanoma and Sarcoma Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-04-01

    Radiation therapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiation therapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiation therapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiation therapy. The cytokines interferon-α and interleukin-2 have been combined with radiation therapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiation therapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested that radiation therapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiation therapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study.

  19. Dianhydrogalactitol and radiation therapy. Treatment of supratentorial glioma.

    Science.gov (United States)

    Eagan, R T; Childs, D S; Layton, D D; Laws, E R; Bisel, H F; Holbrook, M A; Fleming, T R

    1979-05-11

    Dianhydrogalactitol was the most active of 177 agents tested against a mouse ependymoblastoma tumor. We conducted a prospectively randomized trial comparing whole-brain irradiation alone vs identical irradiation plus dianhydrogalactitol in 42 patients with grade 3 and 4 supratentorial astrocytomas. Patients receiving dianhydrogalactitol in addition to irradiation had a significantly longer median survival time (67 vs 35 weeks) than did patients receiving only irradiation. The major toxic effect of dianhydrogalactitol is hematologic suppression of a cumulative nature. Dianhydrogalactitol may play an important role (in conjunction with radiation therapy) in the initial treatment of patients with supratentorial glioma. Our data may indicate that the mouse ependymoblastoma system is a useful screen for agents to be used in the treatment of human glioma.

  20. Early effects of preoperative radiation therapy for invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Isaka, Shigeo; Igarashi, Tatsuo; Ito, Haruo

    1983-10-01

    22 patients with high grade invasive bladder cancer were treated with preoperative radiation therapy (910 rad by fast neutron or 3000 rad by X ray during 2 weeks) followed by radical cystectomy and urinary diversion. 62.5 % of patients showed reduction in tumor size more than 50% evaluated by cystogram. Stage down was observed in 38% of patients compared between clinical and pathological stage. Histopathological effect of GII or GIII, according to the criteria described by Ohboshi, was noticed in 79 % of the patients. Better effect seemed to be obtained in fast neutron treated group than in X ray group. 19 patients received curative surgery, and 18 patients were alive without recurrence after 10 months (mean observed term). One died from lung metastasis 4.5 months after surgery. 50% of the patients complained of side effects of irradiation although they were tolerable, and 32% of the patients had major complications of surgery.

  1. On-Line Adaptive Radiation Therapy: Feasibility and Clinical Study

    Directory of Open Access Journals (Sweden)

    Taoran Li

    2010-01-01

    Full Text Available The purpose of this paper is to evaluate the feasibility and clinical dosimetric benefit of an on-line, that is, with the patient in the treatment position, Adaptive Radiation Therapy (ART system for prostate cancer treatment based on daily cone-beam CT imaging and fast volumetric reoptimization of treatment plans. A fast intensity-modulated radiotherapy (IMRT plan reoptimization algorithm is implemented and evaluated with clinical cases. The quality of these adapted plans is compared to the corresponding new plans generated by an experienced planner using a commercial treatment planning system and also evaluated by an in-house developed tool estimating achievable dose-volume histograms (DVHs based on a database of existing treatment plans. In addition, a clinical implementation scheme for ART is designed and evaluated using clinical cases for its dosimetric qualities and efficiency.

  2. Low Level Laser Therapy: laser radiation absorption in biological tissues

    Science.gov (United States)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  3. [Radiation therapy in simultaneous choroidal and brain metastases].

    Science.gov (United States)

    Conill, C; Jorcano, S; Planas, I; Marruecos, J; Casas, F; Fontenla, J R

    2005-09-01

    Choroidal metastases from lung cancer can be the initial clinical manifestation of metastasic disease, although they generally coexist with at least two more metastasic sites. The most common symptom is decreased vision, however 20% of brain metastases can present with visual alterations. A differential diagnosis within brain metastases and/or choroidal is necessary. We present the case of a patient with lung cancer and decreased vision who was diagnosed as simultaneous choroidal and brain metastases. Radiation therapy (20Gy/5fractions) significantly improves decreased vision. This case shows that, although life expectancy of patients with metastasic lung cancer is short, an adequate diagnosis and treatment, can improve the quality of life of those patients.

  4. External radiation therapy for internal fistulation of malignant obstructive jaundice

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Yoshikazu; Miyazaki, Minoru; Yasumasa, Keigo; Higuti, Takuya; Hayashi, Hiroki; Iwahashi, Masahiro; Ishikawa, Shirou; Sumimura, Junichi; Nagai, Isao [Kinan General Hospital, Tanabe, Wakayama (Japan)

    1999-03-01

    Internal fistulation is one of way to improve QOL for patients afflicted by malignant obstructive jaundice. Of 15 patients with obstructive jaundice secondary to malignancy in the past three years, percutaneous transhepatic biliary drainage (PTBD) was performed in all cases, and internal fistulation was achieved in six and not in the other nine. Three of successful cases were irradiated with 10 MV x-ray using parallel opposing fields, with average dose of 29 Gy. There were no complaints of vomiting and nausea, pneumonia, or GI bleeding during radiation therapy. For the irradiated cases, it took 52 days from PTBD to fistulation. Internal fistulated patients had no problem with cholangitis or tube trouble, and all were discharged with good QOL. (author)

  5. Radiation therapy for brain metastasis from lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, Masayuki; Fukuoka, Masahiro; Kusunoki, Youko (Osaka Prefectural Habikino Hospital (Japan)) (and others)

    1991-04-01

    The prognosis for patients with brain metastasis from lung cancer following radiation therapy was evaluated. Seventy-eight patients received brain irradiation in the Osaka Prefectural Habikino Hospital between April 1985 and March 1989. Almost all patients had conventional radiotherapy of the whole brain, with a single dose of 2 or 3 Gy. Patients characteristics associated with favorable prognosis were as follows: Performance status of 0{similar to}1, age{le}49, female, histology of adenocarcinoma. Patients who received radiotherapy of 56 Gy{sub 10} or more, had longer survival time. The findings in the brain CT were evaluated, but the number, size, site of metastases, and mass effect to ventricular system were not related to the prognosis. The overall median survival was 3.5 months and the 1-year survival rate was 9.0%. Further clinical studies are necessary to improve the prognosis in brain metastases. (author).

  6. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E.B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pediatrics and Dept. of Pathology; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States). Section of Radiation Oncology; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Liwnicz, B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pathology

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  7. Intensity modulated radiation therapy versus three-dimensional conformal radiation therapy for the treatment of high grade glioma: a dosimetric comparison.

    Science.gov (United States)

    MacDonald, Shannon M; Ahmad, Salahuddin; Kachris, Stefanos; Vogds, Betty J; DeRouen, Melissa; Gittleman, Alicia E; DeWyngaert, Keith; Vlachaki, Maria T

    2007-04-19

    The present study compared the dosimetry of intensity-modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D-CRT) techniques in patients treated for high-grade glioma. A total of 20 patients underwent computed tomography treatment planning in conjunction with magnetic resonance imaging fusion. Prescription dose and normal-tissue constraints were identical for the 3D-CRT and IMRT plans. The prescribed dose was 59.4 Gy delivered at 1.8 Gy per fraction using 4-10 MV photons. Normal-tissue dose constraints were 50-54 Gy for the optic chiasm and nerves, and 55-60 Gy for the brainstem. The IMRT plan yielded superior target coverage as compared with the 3D-CRT plan. Specifically, minimum and mean planning target volume cone down doses were 54.52 Gy and 61.74 Gy for IMRT and 50.56 Gy and 60.06 Gy for 3D-CRT (p < or = 0.01). The IMRT plan reduced the percent volume of brainstem receiving a dose greater than 45 Gy by 31% (p = 0.004) and the percent volume of brain receiving a dose greater than 18 Gy, 24 Gy, and 45 Gy by 10% (p = 0.059), 14% (p = 0.015), and 40% (p < or = 0.0001) respectively. With IMRT, the percent volume of optic chiasm receiving more than 45 Gy was also reduced by 30.40% (p = 0.047). As compared with 3D-CRT, IMRT significantly increased the tumor control probability (p < or = 0.005) and lowered the normal-tissue complication probability for brain and brainstem (p < 0.033). Intensity-modulated radiation therapy improved target coverage and reduced radiation dose to the brain, brainstem, and optic chiasm. With the availability of new cancer imaging tools and more effective systemic agents, IMRT may be used to intensify tumor doses while minimizing toxicity, therefore potentially improving outcomes in patients with high-grade glioma.

  8. Sulfasalazine and temozolomide with radiation therapy for newly diagnosed glioblastoma

    Directory of Open Access Journals (Sweden)

    Satoru Takeuchi

    2014-01-01

    Full Text Available Background: A recent phase 1/2 clinical trial argued for caution for the use of sulfasalazine in progressive glioblastoma (GBM. However, the study enrolled patients with recurrent or progressive high-grade glioma indicating that patients recruited probably had severe disease. Thus, the study may not accurately reflect the effectiveness of sulfasalazine for GBM and we hypothesized that earlier sulfasalazine administration may lead to anticancer effects. Aim: The aim of this study was to investigate whether sulfasalazine can improve the outcomes of patients with newly diagnosed GBM. Subjects and Methods: A total of 12 patients were treated with temozolomide and sulfasalazine with radiation therapy after surgery. Twelve patients with primary GBM treated with temozolomide and radiation therapy formed the control group. Progression-free survival (PFS, overall survival (OS and seizure-free survival (SFS curves were obtained using the Kaplan-Meier method. The survival curves were compared using the log-rank test. Results: The median OS, PFS and SFS did not differ between the groups. Grade 3 or 4 adverse events occurred over the duration of the study in nine (75% patients. The median SFS was 12 months in nine patients who received sulfasalazine administration for more than 21 days, which was strongly but not significantly longer than the 3 months observed in the control group (P = 0.078. Conclusions: Sulfasalazine treatment with temozolomide plus radiotherapy for newly diagnosed primary GBM is associated with a high rate of discontinuation due to hematologic toxic effects. This treatment may have no effect on OS or PFS, although it may improve seizure control if an adequate dose can be administered.

  9. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Karen [Department of Radiation Oncology, Liverpool Hospital, Sydney (Australia); Stewart, James [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada); Kelly, Valerie [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Xie, Jason [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Brock, Kristy K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Moseley, Joanne [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Cho, Young-Bin; Fyles, Anthony [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Lundin, Anna; Rehbinder, Henrik; Löf, Johan [RaySearch Laboratories AB, Stockholm (Sweden); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute for the Advancement of Technology for Health, Toronto, Ontario (Canada); Milosevic, Michael, E-mail: mike.milosevic@rmp.uhn.ca [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  10. A practical three-dimensional dosimetry system for radiation therapy.

    Science.gov (United States)

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE optical

  11. Development of food preservation and processing techniques by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Yook, Hong Sun; Lee, Ju Woon and others

    1999-03-01

    Development of food preservation and processing techniques by radiation was performed. Gamma irradiation at 2-10 kGy is considered to be an effective method to control pathogenic bacteria in species including Escherichia coli O157:H7. Gamma irradiation at 5 kGy completely eliminated pathogenic bacteria in beef. Gamma irradiation at such doses and subsequent storage at less than 4 deg C could ensure hygienic quality and prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. Gamma irradiation on pre-rigor beef shortens the aging-period, improves tenderness and enhances the beef quality. And, a new beef processing method using gamma irradiation, such as in the low salt sausage and hygienic beef patty was developed. Safety tests of gamma-irradiated meats(beefs: 0-5 kGy; porks: 0-30 kGy) in areas such as genotoxicity, acute toxicity, four-week oral toxicity, rat hepato carcinogenesis and the anti oxidative defense system, were not affected by gamma irradiation. To pre-establish an alternative technique to the toxic fumigant, methyl bromide, which is the current quarantine measure of agricultural products for export and import, some selected agricultural products, such as chestnuts, acorns, red beans and mung beans, were subjected to a preliminary study to confirm the comparative effects of gamma irradiation and MBr fumigant on their disinfestation and quality, thereby preparing the basic data for the practical approach.Current fumigation(MBr) was perfect in its disinfecting capability, but it caused detrimental effects on the physical quality of agricultural produce. However, irradiation doses suitable for controlling pests did not induce any significant changes in the quality of the products. (author)

  12. Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer.

    Science.gov (United States)

    Freilich, J; Hoffe, S E; Almhanna, K; Dinwoodie, W; Yue, B; Fulp, W; Meredith, K L; Shridhar, R

    2015-01-01

    Emerging data suggests a benefit for using intensity modulated radiation therapy (IMRT) for the management of esophageal cancer. We retrospectively reviewed patients treated at our institution who received definitive or preoperative chemoradiation with either IMRT or 3D conformal radiation therapy (3DCRT) between October 2000 and January 2012. Kaplan Meier analysis and the Cox proportional hazard model were used to evaluate survival outcomes. We evaluated a total of 232 patients (138 IMRT, 94 3DCRT) who received a median dose of 50.4 Gy (range, 44-64.8) to gross disease. Median follow up for all patients, IMRT patients alone, and 3DCRT patients alone was 18.5 (range, 2.5-124.2), 16.5 (range, 3-59), and 25.9 months (range, 2.5-124.2), respectively. We observed no significant difference based on radiation technique (3DCRT vs. IMRT) with respect to median overall survival (OS) (median 29 vs. 32 months; P = 0.74) or median relapse free survival (median 20 vs. 25 months; P = 0.66). On multivariable analysis (MVA), surgical resection resulted in improved OS (HR 0.444; P 20% weight loss (OR 0.51; P = 0.050). Our data suggest that while IMRT-based chemoradiation for esophageal cancer does not impact survival there was significantly less toxicity. In the IMRT group there was significant decrease in weight loss and grade ≥3 toxicity compared to 3DCRT.

  13. The use of heavy charged particles in the radiation therapy of tumors

    CERN Document Server

    Kraft, G

    1995-01-01

    Beams of heavy charged particles like carbon or oxygen ions represent the ultimate tool of external radiotherapy of deep-seated tumors.Small range and lateral scattering and the increase of the energy deposition with penetration depth are the physical basis for a more efficient tumor targeting. High biological efficiency in the tumor is the perequisite for a successful treatment of tumors radioresistant to sparsely ionizing radiation.The possibility to perform target-conform irradiation and to control the achieved actual distribution using PET techniques guarantees that biological highly efficient stopping particles can be restricted to the tumor volume only.Although the physical and radiobiological properties of ion beams are very favorable for therapy, the necessity to produce these particles in an accelerator has restricted the general application of heavy ions up to now.Presently, the heavy ion accelerator SIS at GSI is the only source of heavy ion beams sufficient in enrgy and intensity for therapy in Eu...

  14. Standard fractionation intensity modulated radiation therapy (IMRT of primary and recurrent glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Fuller Clifton D

    2007-07-01

    Full Text Available Abstract Background Intensity-modulated radiation therapy (IMRT affords unparalleled capacity to deliver conformal radiation doses to tumors in the central nervous system. However, to date, there are few reported outcomes from using IMRT, either alone or as a boost technique, for standard fractionation radiotherapy for glioblastoma multiforme (GBM. Methods Forty-two patients were treated with IMRT alone (72% or as a boost (28% after 3-dimensional conformal radiation therapy (3D-CRT. Thirty-three patients with primary disease and 9 patients with recurrent tumors were included. Thirty-four patients (81% had surgery, with gross tumor resection in 13 patients (36%; 22 patients (53% received chemo-radiotherapy. The median total radiation dose for all patients was 60 Gy with a range from 30.6 to 74 Gy. Standard fractions of 1.8 Gy/day to 2.0 Gy/day were utilized. Results Median survival was 8.7 months, with 37 patients (88% deceased at last contact. Nonparametric analysis showed no survival difference in IMRT-boost vs. IMRT-only groups. Conclusion While technically feasible, preliminary results suggest delivering standard radiation doses by IMRT did not improve survival outcomes in this series compared to historical controls. In light of this lack of a survival benefit and the costs associated with use of IMRT, future prospective trials are needed to evaluate non-survival endpoints such as quality of life and functional preservation. Short of such evidence, the use of IMRT for treatment of GBM needs to be carefully rationalized.

  15. Development of food preservation and processing techniques by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Yook, Hong Sun; Lee, Ju Woon and others

    2000-03-01

    Development of food preservation and processing techniques by radiation was performed. Gamm irradiation at 5 kGy completely eliminated pathogenic bacteria in pork and chicken meats. Gamma irradiation at such doses and subsequent storage at less than 4 deg C could ensure hygienic quality and prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. Pork loin ham with desirable color was also developed without using of sodium nitrite that is known as a carcinogen. Safety tests of gamma-irradiated meats in areas such as genotoxicity, acute toxicity, four-week oral toxicity, rat hepatocarcinogenesis and the antioxidative defense system, were not affected by gamma irradiation. Gamma irradiation at about 1 kGy completely eliminated the parasites in foods and drinking water. In the study of quarantine treatment of apple and pear for export by gamma irradiation, current fumigation(MBr) was perfect in its disinfesting capability, but it caused detrimental effects on the physical quality of apple and pear. However, irradiation doses at 1-3 kGy was suitable for controlling pests and did not induce any significant changes in the quality of the products. The result of the survey to assess the public understanding indicated that the irradiated food had somewhat negative impression to general public. Therefore, it is necessary to establish a public education and information program by using mass communication and by constructing communication system to obtain the enhanced impression from the general public.

  16. Stroke-like Migraine Attacks after Radiation Therapy Syndrome

    Institute of Scientific and Technical Information of China (English)

    Qian Zheng; Li Yang; Li-Ming Tan; Li-Xia Qin; Chun-Yu Wang; Hai-Nan Zhang

    2015-01-01

    Objective:To summarize the clinical presentation,pathogenesis,neuroimaging,treatment,and outcome of stroke-like migraine attacks after radiation therapy (SMART) syndrome,and to propose diagnostic criteria for this disorder.Data Sources:We searched the PubMed database for articles in English published from 1995 to 2015 using the terms of "stroke-like AND migraine AND radiation." Reference lists of the identified articles and reviews were used to retrieve additional articles.Study Selection:Data and articles related to late-onset effects of cerebral radiation were selected and reviewed.Results:SMART is a rare condition that involves complex migraines with focal neurologic deficits following cranial irradiation for central nervous system malignancies.The recovery,which ranges from hours to days to weeks,can be partial or complete.We propose the following diagnostic criteria for SMART:(1) Remote history of therapeutic external beam cranial irradiation for malignancy;(2) prolonged,reversible clinical manifestations mostly years after irradiation,which may include migraine,seizures,hemiparesis,hemisensory deficits,visuospatial defect,aphasia,confusion and so on;(3) reversible,transient,unilateral cortical gadolinium enhancement correlative abnormal T2 and fluid-attenuated inversion recovery signal of the affected cerebral region;(4) eventual complete or partial recovery,the length of duration of recovery ranging from hours to days to weeks;(5) no evidence of residual or recurrent tumor;(6) not attributable to another disease.To date,no specific treatment has been identified for this syndrome.Conclusions:SMART is an extremely rare delayed complication of brain irradiation.However,improvements in cancer survival rates have resulted in a rise in its frequency.Hence,awareness and recognition of the syndrome is important to make a rapid diagnosis and avoid aggressive interventions such as brain biopsy and cerebral angiography.

  17. Long-term outcomes for adult craniopharyngioma following radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Masson-Cote, Laurence; Masucci, Giuseppina Laura; Millar, Barbara-Ann; Laperriere, Normand J. [Dept. of Radiation Oncology, Princess Margaret Hospital, Univ. of Toronto, Toronto (Canada); Atenafu, Eshetu G. [Dept. of Biostatistics, Princess Margaret Hospital, Univ. of Toronto, Toronto (Canada); Cusimano, Michael [Dept. of Surgery, Div. of Neurosurgery, St. Michaels Hospital, Toronto (Canada); Croul, Sidney [Dept. of Pathology, Univ. of Toronto, Toronto (Canada); Mason, Warren [Dept. of Medicine, Princess Margaret Hospital, Univ. of Toronto, Toronto (Canada); Sahgal, Arjun [Dept. of Radiation Oncology, Princess Margaret Hospital, Univ. of Toronto, Toronto (Canada), E-mail: Arjun.sahgal@rmp.uhn.on.ca; Dept. of Radiation Oncology, Sunnybrook Health Sciences Center, Univ. of Toronto, Toronto (Canada)

    2013-01-15

    Background. We report long-term outcomes in adult patients with craniopharyngioma following surgery and radiation therapy (RT). Material and methods. Fifty-three patients treated with RT (median, 50 Gy in 25 fractions) between 1980 and 2009 with pathologically confirmed craniopharyngioma were reviewed (53% solid and 47% cystic/solid). The median age was 53 years (range, 22-76), 53% were female, 83% were sub-totally resected, 6% were gross totally resected and 11% had a biopsy and/or cyst aspiration alone. RT was delivered adjuvantly in 53% of patients as opposed to salvage intent upon progression. Results. Median follow-up was seven years (86 months, range, 8-259). The 5- and 10-year progression-free survival (PFS) rates were 85% and 69%, overall survival (OS) rates were 76% and 70%, and cause-specific survival (CSS) rates were both 88%, respectively. Both univariable and multivariable analysis identified age (<53 or {>=}53) as a prognostic factor for OS (p =0.0003) and CSS (p =0.05). PFS was observed to be worse in patients with >2 surgeries prior to RT (p =0.01). Neither the intent of radiation or tumor type (cystic vs. solid/cystic) were prognostic or predictive. New endocrinopathies and visual dysfunction were observed in 53% and 17% of patients post-surgery, and in 11% and 6% post-RT, respectively. Conclusion. We report long-term favorable PFS, CSS and OS for craniopharyngioma post-RT. We observe age as a significant prognostic factor, however, timing of radiation was not.

  18. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H{sub 2}O{sub 2} removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities.

  19. On bolus for megavoltage photon and electron radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, Vedang [University of Waterloo, Waterloo, Ontario (Canada); Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Palmer, Lisa; Mudge, Ray [Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Jiang, Runqing [University of Waterloo, Waterloo, Ontario (Canada); Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Fleck, Andre [Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Schaly, Bryan [London Regional Cancer Program, London, Ontario (Canada); Osei, Ernest [University of Waterloo, Waterloo, Ontario (Canada); Grand River Regional Cancer Centre, Kitchener, Ontario (Canada); Charland, Paule, E-mail: paule.charland@grhosp.on.ca [Grand River Regional Cancer Centre, Kitchener, Ontario (Canada)

    2013-10-01

    Frequently, in radiation therapy one must treat superficial lesions on cancer patients; these are at or adjacent to the skin. Megavoltage photon radiotherapy penetrates through the skin to irradiate deep-seated tumors, with skin-sparing property. Hence, to treat superficial lesions, one must use a layer of scattering material to feign as the skin surface. Although megavoltage electron beams are used for superficial treatments, one occasionally needs to enhance the dose near the surface. Such is the function of a “bolus,” a natural or synthetically developed material that acts as a layer of tissue to provide a more effective treatment to the superficial lesions. Other uses of boluses are to correct for varying surface contours and to add scattering material around the patient's surface. Materials used as bolus vary from simple water to metal and include various mixtures and compounds. Even with the modernization of the technology for external-beam therapy and the emergence of various commercial boluses, the preparation and utilization of a bolus in clinical radiotherapy remains an art. Considering the varying experiences and practices, this paper briefly summarizes available boluses that have been proposed and are employed in clinical radiotherapy. Although this review is not exhaustive, it provides some initial guidance and answers questions that may arise in clinical practice.

  20. Molecular targeted treatment and radiation therapy for rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, Friederike; Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus [Dept. of Radiation Therapy, Univ. of Frankfurt/Main (Germany)

    2009-06-15

    Background: EGFR (epidermal growth factor receptor) and VEGF (vascular endothelial growth factor) inhibitors confer clinical benefit in metastatic colorectal cancer when combined with chemotherapy. An emerging strategy to improve outcomes in rectal cancer is to integrate biologically active, targeted agents as triple therapy into chemoradiation protocols. Material and methods: cetuximab and bevacizumab have now been incorporated into phase I-II studies of preoperative chemoradiation therapy (CRT) for rectal cancer. The rationale of these combinations, early efficacy and toxicity data, and possible molecular predictors for tumor response are reviewed. Computerized bibliographic searches of Pubmed were supplemented with hand searches of reference lists and abstracts of ASCO and ASTRO meetings. Results: the combination of cetuximab and CRT can be safely applied without dose compromises of the respective treatment components. Disappointingly low rates of pathologic complete remission have been noted in several phase II studies. The K-ras mutation status and the gene copy number of EGFR may predict tumor response. The toxicity pattern (radiation-induced enteritis, perforations) and surgical complications (wound healing, fistula, bleeding) observed in at least some of the clinical studies with bevacizumab and CRT warrant further investigations. Conclusion: longer follow-up (and, finally, randomized trials) is needed to draw any firm conclusions with respect to local and distant failure rates, and toxicity associated with these novel treatment approaches. (orig.)

  1. A dosimetric comparison between 3D-Conformal radiation therapy and intensity modulated radiation therapy plans in the treatment of posterior fossa boost in children with high risk medulloblastom

    Institute of Scientific and Technical Information of China (English)

    Saad El Din I; Abd El AAl H; Makaar W; Mashhour K; El Beih D; Hashem W

    2013-01-01

    Objective:The work is a comparative study between two modalities of radiation therapy, the aim of which is to compare 3D conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) in treating posterior fossa boost in children with high risk medul oblastoma;dosimetrical y evaluating and comparing both techniques as regard target coverage and doses to organs at risk (OAR). Methods:Twenty patients with high risk medul oblastoma were treated by 3D-CRT technique. A dosimetric comparison was done by performing two plans for the posterior fossa boost, 3D-CRT and IMRT plans, for the same patient using Eclipse planning system (version 8.6). Results:IMRT had a better conformity index compared to 3D-CRT plans (P value of 0.000). As for the dose homogeneity it was also better in the IMRT plans, yet it hasn’t reached the statistical significant value. Also, doses received by the cochleae, brainstem and spinal cord were significantly less in the IMRT plans than those of 3D-CRT (P value<0.05). Conclusion:IMRT technique was clearly able to improve conformity and homogeneity index, spare the cochleae, reduce dose to the brainstem and spinal cord in comparison to 3D-CRT technique.

  2. Prevention of normal tissue complications in radiation therapy of head and neck cancer : the role of 3D conformal radiation therapy (3DCRT)

    NARCIS (Netherlands)

    O.B. Wijers (Oda)

    2002-01-01

    textabstractIn The Netherlands. head and neck cancer (3.9%) ranks the eighth most frequemly diagnoscd malignant tumor. Radiation therapy (IIT) plays an important role in the treatmem of patients with head and neck cancer, as they constitute approximately 6% of those treated in a routine radiation th

  3. Dysuria Following Stereotactic Body Radiation Therapy for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Einsley-Marie eJanowski

    2015-07-01

    Full Text Available Background: Dysuria following prostate radiation therapy is a common toxicity that adversely affects patients’ quality of life and may be difficult to manage. Methods: 204 patients treated with stereotactic body radiation therapy (SBRT from 2007 to 2010 for localized prostate carcinoma with a minimum follow up of three years were included in this retrospective review of prospectively collected data. All patients were treated to 35-36.25Gy in 5 fractions delivered with robotic SBRT with real time fiducial tracking. Dysuria and other lower urinary tract symptoms were assessed via Question 4b (Pain or burning on urination of the Expanded Prostate Index Composite (EPIC-26 and the American Urological Association (AUA Symptom Score at baseline and at routine follow up. Results: 204 patients (82 low-, 105 intermediate-, and 17 high risk according to the D’Amico classification at a median age of 69 years (range 48-91 received SBRT for their localized prostate cancer with a median follow up of 47 months. Bother associated with dysuria significantly increased from a baseline of 12% to a maximum of 43% at one month (p<0.0001. There were two distinct peaks of moderate to severe dysuria bother at 1 month and at 6-12 months, with 9% of patients experiencing a late transient dysuria flare. While a low level of dysuria was seen through the first two years of follow-up, it returned to below baseline by two years (p=0.91. The median baseline AUA score of 7.5 significantly increased to 11 at 1 month (p<0.0001 and returned to 7 at 3 months (p= 0.54. Patients with dysuria had a statistically higher AUA score at baseline and at all follow-ups up to 30 months. Dysuria significantly correlated with dose and AUA score on multivariate analysis. Frequency and strain significantly correlated with dysuria on stepwise multivariate analysis.Conclusions: The rate and severity of dysuria following SBRT is comparable to patients treated with other radiation modalities.

  4. Whole-Pelvic Nodal Radiation Therapy in the Context of Hypofractionation for High-Risk Prostate Cancer Patients: A Step Forward

    Energy Technology Data Exchange (ETDEWEB)

    Kaidar-Person, Orit [Division of Oncology, Rambam Health Care Campus, Haifa (Israel); Roach, Mack [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Créhange, Gilles, E-mail: gcrehange@cgfl.fr [Department of Radiation Oncology, Georges-François Leclerc Cancer Center, Dijon (France)

    2013-07-15

    Given the low α/β ratio of prostate cancer, prostate hypofractionation has been tested through numerous clinical studies. There is a growing body of literature suggesting that with high conformal radiation therapy and even with more sophisticated radiation techniques, such as high-dose-rate brachytherapy or image-guided intensity modulated radiation therapy, morbidity associated with shortening overall treatment time with higher doses per fraction remains low when compared with protracted conventional radiation therapy to the prostate only. In high-risk prostate cancer patients, there is accumulating evidence that either dose escalation to the prostate or hypofractionation may improve outcome. Nevertheless, selected patients who have a high risk of lymph node involvement may benefit from whole-pelvic radiation therapy (WPRT). Although combining WPRT with hypofractionated prostate radiation therapy is feasible, it remains investigational. By combining modern advances in radiation oncology (high-dose-rate prostate brachytherapy, intensity modulated radiation therapy with an improved image guidance for soft-tissue sparing), it is hypothesized that WPRT could take advantage of recent results from hypofractionation trials. Moreover, the results from hypofractionation trials raise questions as to whether hypofractionation to pelvic lymph nodes with a high risk of occult involvement might improve the outcomes in WPRT. Although investigational, this review discusses the challenging idea of WPRT in the context of hypofractionation for patients with high-risk prostate cancer.

  5. Whole-pelvic nodal radiation therapy in the context of hypofractionation for high-risk prostate cancer patients: a step forward.

    Science.gov (United States)

    Kaidar-Person, Orit; Roach, Mack; Créhange, Gilles

    2013-07-15

    Given the low α/β ratio of prostate cancer, prostate hypofractionation has been tested through numerous clinical studies. There is a growing body of literature suggesting that with high conformal radiation therapy and even with more sophisticated radiation techniques, such as high-dose-rate brachytherapy or image-guided intensity modulated radiation therapy, morbidity associated with shortening overall treatment time with higher doses per fraction remains low when compared with protracted conventional radiation therapy to the prostate only. In high-risk prostate cancer patients, there is accumulating evidence that either dose escalation to the prostate or hypofractionation may improve outcome. Nevertheless, selected patients who have a high risk of lymph node involvement may benefit from whole-pelvic radiation therapy (WPRT). Although combining WPRT with hypofractionated prostate radiation therapy is feasible, it remains investigational. By combining modern advances in radiation oncology (high-dose-rate prostate brachytherapy, intensity modulated radiation therapy with an improved image guidance for soft-tissue sparing), it is hypothesized that WPRT could take advantage of recent results from hypofractionation trials. Moreover, the results from hypofractionation trials raise questions as to whether hypofractionation to pelvic lymph nodes with a high risk of occult involvement might improve the outcomes in WPRT. Although investigational, this review discusses the challenging idea of WPRT in the context of hypofractionation for patients with high-risk prostate cancer.

  6. Doses to Carotid Arteries After Modern Radiation Therapy for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Maraldo, M.V.; Brodin, Nils Patrik; Aznar, Marianne Camille

    2013-01-01

    Hodgkin lymphoma (HL) survivors are at an increased risk of stroke because of carotid artery irradiation. However, for early-stage HL involved node radiation therapy (INRT) reduces the volume of normal tissue exposed to high doses. Here, we evaluate 3-dimensional conformal radiation therapy (3D...

  7. MO-D-BRB-00: Pediatric Radiation Therapy Planning, Treatment, and Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Most Medical Physicists working in radiotherapy departments see few pediatric patients. This is because, fortunately, children get cancer at a rate nearly 100 times lower than adults. Children have not smoked, abused alcohol, or been exposed to environmental carcinogens for decades, and of course, have not fallen victim to the aging process. Children get very different cancers than adults. Breast or prostate cancers, typical in adults, are rarely seen in children but instead a variety of tumors occur in children that are rarely seen in adults; examples are germinomas, ependymomas and primitive neuroectodermal tumors, which require treatment of the child’s brain or neuroblastoma, requiring treatment in the abdomen. The treatment of children with cancer using radiation therapy is one of the most challenging planning and delivery problems facing the physicist. This is because bones, brain, breast tissue, and other organs are more sensitive to radiation in children than in adults. Because most therapy departments treat mostly adults, when the rare 8 year-old patient comes to the department for treatment, the physicist may not understand the clinical issues of his disease which drive the planning and delivery decisions. Additionally, children are more prone than adults to developing secondary cancers after radiation. For bilateral retinoblastoma for example, an irradiated child has a 40% chance of developing a second cancer by age 50. The dosimetric tradeoffs made during the planning process are complex and require careful consideration for children treated with radiotherapy. In the first presentation, an overview of childhood cancers and their corresponding treatment techniques will be given. These can be some of the most complex treatments that are delivered in the radiation therapy department. These cancers include leukemia treated with total body irradiation, medulloblastoma, treated with craniospinal irradiation plus a conformal boost to the posterior fossa

  8. [Past, present and near future of techniques in radiation oncology].

    Science.gov (United States)

    Gérard, J-P; Thariat, J; Giraud, P; Cosset, J-M

    2010-07-01

    Since the discovery of X-rays, the goal of radiotherapy has been to deliver an optimal dose in the target volume and the lowest possible dose in the normal tissues. The history of radiotherapy can be divided in three periods. The Kilovoltage era (1900-1939) where only superficial and radiosensitive tumours could be controlled, the Megavoltage era (1950-1995) where Telecobalt and linear accelerators could deliver high doses in all parts of the body. Radiotherapy has since been playing an important curative and conservative role for most cancers. The Computer-Assisted Radiotherapy era (1995-2010) now provides the capacity to optimise the dose distribution in three dimensions. Dose is better conformed to the target volume and organ at risk are better preserved. intensity modulated radio-therapy (IMRT) allows to "shape" concave isodoses and to spare the parotids when irradiating oropharyngeal tumours. Moving targets (lung, liver etc.) are efficiently irradiated using "on-line tracking" and "image-guided radiotherapy". Stereotactic irradiation, first initiated for brain lesions, is now performed for extra-cranial tumours and due to its millimetric precision opens the way back to hypo-fractionated treatments. The next period, already ongoing, is Hadrontherapy with protons and soon helium or carbon ions techniques. In a multidisciplinary strategy, progress in radiotherapy is based on a global approach of the patient and tailored/personalized well targeted treatment of the tumour.

  9. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Joseph C., E-mail: joseph.hodges@utsouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Beg, Muhammad S. [Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Das, Prajnan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Meyer, Jeffrey [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States)

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  10. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H. Harold; Mutic, Sasa

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. Th