WorldWideScience

Sample records for radiation test facility

  1. AREAL test facility for advanced accelerator and radiation source concepts

    Science.gov (United States)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  2. Early test facilities and analytic methods for radiation shielding: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D T [comp.; Oak Ridge National Lab., TN (United States); Ingersoll, J K [comp.; Tec-Com, Knoxville, TN (United States)

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

  3. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.; Johnson, M. B.; Hodgkinson, A.; Loew, T.; Benitez, J. Y.; Todd, D. S.; Xie, D. Z.; Perry, T.; Phair, L.; Bernsteiny, L. A.; Bevins, J.; Brown, J. A.; Goldblum, B. L.; Harasty, M.; Harrig, K. P.; Laplace, T. A.; Matthews, E. F.; Bushmaker, A.; Walker, D.; Oklejas, V.; Hopkins, A. R.; Bleuel, D. L.; Chen, J.; Cronin, S. B.

    2017-10-01

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiation testing of carbon nanotube field effect transistor will be discussed.

  4. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    Science.gov (United States)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  5. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  6. Radiation Tests on the Complete System of the Instrumentation of the LHC Cryogenics at the CERN Neutrinos to Gran Sasso (CNGS) Test Facility

    CERN Document Server

    Gousiou, E; Casas Cubillos, J; de la Gama Serrano, J

    2009-01-01

    There are more than 6000 electronic cards for the instrumentation of the LHC cryogenics, housed in crates and distributed around the 27 km tunnel. Cards and crates will be exposed to a complex radiation field during the 10 years of LHC operation. Rad-tol COTS and rad-hard ASIC have been selected and individually qualified during the design phase of the cards. The test setup and the acquired data presented in this paper target the qualitative assessment of the compliance with the LHC radiation environment of an assembled system. It is carried out at the CNGS test facility which provides exposure to LHC-like radiation field.

  7. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  8. On-Line Radiation Test Facility for Industrial Equipment needed for the Large Hadron Collider at CERN

    CERN Document Server

    Rausch, R

    1999-01-01

    The future Large Hadron Collider to be built at CERN will use superconducting magnets cooled down to 1.2 K. To preserve the superconductivity, the energy deposition dose levels in equipment located outside the cryostat, in the LHC tunnel, are calculated to be of the order of 1 to 10 Gy per year. At such dose levels, no major radiation-damage problems are to be expected, and the possibility of installing Commercial Of The Shelf (COTS) electronic equipment in the LHC tunnel along the accelerator is considered. To this purpose, industrial electronic equipment and circuits have to be qualified and tested against radiation to insure their long term stability and reliability. An on-line radiation test facility has been setup at the CERN Super Proton Synchrotron (SPS) and a program of on-line tests for electronic equipment is ongoing. Equipment tested includes Industrial Programmable Logic Controllers (PLCs) from several manufacturers, standard VME modules, Fieldbuses like Profibus, WorldFIP and CAN, various electro...

  9. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  10. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  11. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  12. CLEAR test facility

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  13. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  14. Synchrotron Radiation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Studies the effects of UV radiation and X rays on solids, and calibrates X-ray optics, detectors, and instruments.DESCRIPTION: Research focuses on applying...

  15. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2014-02-01

    Full Text Available The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC. The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  16. The European Synchrotron Radiation Facility

    DEFF Research Database (Denmark)

    Buras, B.; Materlik, G.

    1986-01-01

    In recent years, X-ray synchrotron radiation became a powerful tool for studies of condensed matter, and in view of that a proposal for the construction of a European Synchrotron Radiation Facility (ESRF) was elaborated in some detail by the European Synchrotron Radiation Project. The heart...... by a great flexibility and a small emittance (7×10−9 rad m) leading to a very high brilliance (1019 photons/(s mm2 mrad2) in a relative bandwidth of 0.1% in case of a 1 Å undulator). The overview, as seen from the users point of view, gives a brief account of the storage ring, emitted radiation...

  17. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  18. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  19. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  20. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  1. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  2. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  3. Urban Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has access to various facilities for use in urban testing applications,including an agreement with the Hazardous Devices School (HDS): a restrictedaccess Urban...

  4. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  5. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  6. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  7. National geothermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    A brief description of the East Mesa test site is given. The test facility is supplied by brines from three of the existing production wells, each brine having distinctive physical characteristics. Some of the experimental programs involving heat exchangers and power cycles are briefly discussed. These include binary fluid cycles, two-phase expansion cycles, and combination cycles. (MOW)

  8. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  9. CERN radiation protection (RP) calibration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Fabio

    2016-04-14

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation

  10. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  11. Test Track Facilities

    Science.gov (United States)

    1979-12-01

    Gradients 48 16/19 3.17 Offset Towing Course 52 20 3.18 Straight and Level course 56 22 3.19 Suspension Courses 589a. Mrv 58 8 b. Boulder 59 8I c. Camera...Track 59 d. Setts 59 5/6t 3.20 Wading Pool 66 34 3.21 Field Dynamometer 68 39 3.22 Winch Test Facility 70 10 3.23 General Vehicle ( Dynamometer ) 73 4...PERCENT GRADE (1 IN 2) 18 TEST GRADIENT 33.3 PERCENT GRAD (1 IN 3) 19 TEST GRADIENT 25 PERCENT GRADE (I IN 4) 20 OFFSET TOWING SUSPENSION COURSE 21 OUTER

  12. Hot Hydrogen Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    W. David Swank

    2007-02-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  13. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  14. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A; Nguyen, F

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  15. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  16. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  17. Electronic Combat Integrated Test Facilities

    National Research Council Canada - National Science Library

    1992-01-01

    ... and evaluating weapons systems hardware and software in a controlled ground test environment. These facilities consist of anechoic chambers connected to various simulation and instrumentation laboratories...

  18. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry.

  19. Facility Activity Inference Using Radiation Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Ramirez Aviles, Camila A. [ORNL

    2017-11-01

    We consider the problem of inferring the operational status of a reactor facility using measurements from a radiation sensor network deployed around the facility’s ventilation off-gas stack. The intensity of stack emissions decays with distance, and the sensor counts or measurements are inherently random with parameters determined by the intensity at the sensor’s location. We utilize the measurements to estimate the intensity at the stack, and use it in a one-sided Sequential Probability Ratio Test (SPRT) to infer on/off status of the reactor. We demonstrate the superior performance of this method over conventional majority fusers and individual sensors using (i) test measurements from a network of 21 NaI detectors, and (ii) effluence measurements collected at the stack of a reactor facility. We also analytically establish the superior detection performance of the network over individual sensors with fixed and adaptive thresholds by utilizing the Poisson distribution of the counts. We quantify the performance improvements of the network detection over individual sensors using the packing number of the intensity space.

  20. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  1. EMI Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports electromagnetic interference/radio frequency interference (EMI/RFI) testing of flight hardware. It is also used to support custom RF testing up to...

  2. Static Loads Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to perform large-scale structural loads testing on spacecraft and other structures. Results from these tests can be used to verify...

  3. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  4. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  5. Solenoid Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Current Configuration: Accommodate a device under test up to 2.8 m diameter, 0.7 m height and 15,000 lbs. weight. Up to 10 g/s, 4.5 K helium flow. Up to 250 A test...

  6. Airborne Test Bed Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory operates the main hangar on the Hanscom Air Force Base flight line. This very large building (~93,000sqft) accommodates the Laboratory's airborne test...

  7. Elevated Fixed Platform Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Elevated Fixed Platform (EFP) is a helicopter recovery test facility located at Lakehurst, NJ. It consists of a 60 by 85 foot steel and concrete deck built atop...

  8. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  9. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  10. New radiation protection calibration facility at CERN.

    Science.gov (United States)

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Development, simulation and test of transition radiation detector prototypes for the compressed baryonic matter experiment at the facility for antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Cyrano S.H.

    2014-07-01

    prototype materials were chosen with special focus on performance and mechanical stability. All eligible materials have been simulated in full radiator parameter space (γ, l{sub 1}, l{sub 2} and N{sub f}) to find optimal materials and parameters with respect to the TR-photon absorption characteristic of the chamber. The best candidates were built in small scales and the simulations were compared to measurements. It was found that the regular radiator model is sufficient to describe all measurements between 2 and 8 GeV/c, if extended by a material dependent constant scaling factor. At the same time, this model is inadequate in case of irregular radiators. The two best radiator candidates for CBM TRD are a micro-structured self-supporting POKALON foil radiator and a foam foil radiator, reaching the PID design goal with at least five to six detector hits per track. The chamber geometry was implemented in the simulation framework (CbmRoot) of the CBM experiment. The measured charge spectra for electrons including TR-photons were reproduced based on a regular radiator model for all tested prototypes, in order to provide a realistic input for the TRD in the simulation. For the first time the TRD simulation includes a realistic detector response simulation and clusterization. In summary, the new real-size TRD prototype providing electron/pion discrimination and tracking of charged particles in high counting rate environments was developed. It was demonstrated that they fulfill the requirements of the CBM experiment at the FAIR facility in terms of particle identification. A final test with respect to the performance in a high counting rate environment has still to be performed. The results encourage the further development of this new design principle for a TRD for the CBM experiment. Based on the prototype performance demonstrated in this thesis, a new generation of TRD prototypes has been developed and is currently under construction.

  12. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  13. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  14. Analysis of 440 GeV proton beam-matter interaction experiments at the High Radiation Materials test facility at CERN

    Science.gov (United States)

    Burkart, F.; Schmidt, R.; Raginel, V.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2015-08-01

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical

  15. Radiation surveillance in and around cyclotron facility

    Science.gov (United States)

    Kaur, Amandeep; Sharma, Sarika; Mittal, BR

    2012-01-01

    The cyclotron is the most widely used particle accelerator for producing medically important radio nuclides. Many medical centers in India have installed compact medical cyclotrons for on-site production of short-lived positron-emitting radio nuclides such as 18F, 13N, and 11C. A mandatory requirement for cyclotron installation is radiation control permit from Atomic Energy Regulatory Board. Cyclotron radiation survey is an integral part of the overall radiation safety in the cyclotron facility. Radiation surveillance in and around a newly installed cyclotron was performed using ionization chamber counter and Geiger Muller counter before, during and after operating the cyclotron. The readings were recorded at various locations where a high radiation field was expected. The results were recorded, tabulated and analyzed. The highest exposure level (0.93 μSv) was found at the back wall of the radiochemistry lab facing the cyclotron vault. Reason for the high exposure of 0.93 μSv/h: Synthesis of 18F-Fluoro-Deoxy-Glucose (18F-FDG) was going in the synthesis module and activity (18F) was present in the synthesis module when reading was taken. All other values were found to be below the recommended levels of exposure. PMID:24019654

  16. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  17. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    Energy Technology Data Exchange (ETDEWEB)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N. [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom); Creed, Richard; Pancake, Daniel [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

    2013-07-01

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 π steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple

  18. Survey of radiation protection facilities in some parts of Nigeria ...

    African Journals Online (AJOL)

    Lead aprons were readily available in all the centers. Thermoluminent Dosimetres were available only at the teaching hospitals. It is concluded therefore, that the levels of radiation protection facilities in these centers are below expectation. Radiation Monitoring is almost non-existent. Key Words: Radiation protection, facility ...

  19. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    Science.gov (United States)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  20. Facility for testing ice drills

    Science.gov (United States)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  1. Cell/Tissue Culture Radiation Exposure Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  2. Research and test facilities for development of technologies and experiments with commercial applications

    Science.gov (United States)

    1989-01-01

    One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

  3. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  4. Successful start for new CLIC test facility

    CERN Multimedia

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  5. Commercial Parts Radiation Testing

    Science.gov (United States)

    2015-01-13

    performing Total Ionizing Dose ( TID ) testing. The project was to be led by the researchers at the Configurable Space Microsystems Innovations and...platform that will allow electrical and physical interconnection to them during the test phase. The way the Total Ionizing Dose ( TID ) testing occurs is...be quite robust in its TID response and is under consideration for several CubeSat missions. Total ionizing dose exposures at high and low dose rates

  6. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  7. Health problems from radiation of high-voltage facilities

    Directory of Open Access Journals (Sweden)

    Hossein Ali Yousefi Rizi

    2013-01-01

    Full Text Available Aims: The aim of this study was to survey the health problems caused by exposure to high-voltage facility radiation. Materials and Methods: Sampling included workers exposed to electromagnetic fields at high-voltage facilities. The strength of the electric and magnetic fields was determined by a field meter. A questionnaire was used to evaluate the prevalence of subjective and psychological symptoms. Statistical descriptive used and data analyzed by a Student′s t-tests. Results: This study indicates that increased symptoms among the exposed workers including depression, anxiety, hostility, paranoia, inter-sensitivity, and obsession-compulsion. Some of the self-reported symptoms were, headache (53.5%, fatigue (35.6%, difficulties in concentration (32.5%, vertigo/dizziness (30.4%, attention disorders (28.8%, nervousness (28.1%, and palpitations (14.7%. A significant relationship was observed between the exposure to the electromagnetic field and psychological symptoms (P < 0.05. Conclusion: Radiation of high-voltage facilities probably increased the risk of mental disorders and intensified them in susceptible workers, especially depression. This finding confirmed the results obtained in provocative studies that indicated an increase in the risk of psychological symptoms, which was put forth by several investigators Observation of occupational health and other control measures play an important role in decreasing the symptoms.

  8. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  9. Testing black hole candidates with electromagnetic radiation

    Science.gov (United States)

    Bambi, Cosimo

    2017-04-01

    Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but there is not yet direct observational evidence that the spacetime geometry around these objects is described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. This paper reviews the state of the art of this research field, describing the possible approaches to test the Kerr metric with current and future observational facilities and discussing current constraints.

  10. Antenna Test Facility (ATF): User Test Planning Guide

    Science.gov (United States)

    Lin, Greg

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  11. Radiant Heat Test Facility (RHTF): User Test Planning Guide

    Science.gov (United States)

    DelPapa, Steven

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  12. Vibration and Acoustic Test Facility (VATF): User Test Planning Guide

    Science.gov (United States)

    Fantasia, Peter M.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  13. Sophisticated test facility to detect land mines

    NARCIS (Netherlands)

    Jong, W. de; Lensen, H.A.; Janssen, Y.H.L.

    1999-01-01

    In the framework of the Dutch government humanitarian demining project 'HOM-2000', an outdoor test facility has been realized to test, improve and develop detection equipment for land mines. This sophisticated facility, allows us to access and compare the performance of the individual and of a

  14. Beam Line Design for the CERN Hiradmat Test Facility

    OpenAIRE

    Hessler, C.; Assmann, R.; Goddard, B; Meddahi, M; Weterings, W

    2009-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to de...

  15. Test problems for radiation and radiation-hydrodynamics codes

    Science.gov (United States)

    Ensman, Lisa

    1994-01-01

    A number of test problems for radiation and radiation-hydrodynamics computer codes are described. These include evolution to radiative equilibrium, cooling from radiative equilibrium, subcritical and supercritical radiating shocks, and a radiating blast wave in a power-law density distribution. For each test problem, example input parameters and plots of the results are presented. Some test problems for pure hydrodynamics are also suggested. The radiation-hydrodynamics code used to perform the example test problems and the equations it solves are described in some detail.

  16. Instrumentation of VISTA test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seok; Choi, Ki Young; Park, Hyun Sik; Lee, Seong Jae; Park, Chun Kyong; Chung, Moon Ki

    2003-11-01

    VISTA (Experimental Verification by Integral Simulation of Transients and Accidents) is experimental facility to verify the performance and safety issues of SMART-P(Pilot plant of the System-integrated Modular Advanced Reactor), basic design of which has been completed by KAERI. The present report provide instrumentation details of VISTA in order to improve understanding on the phenomena and to certify the experimental data.

  17. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  18. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  19. CryoModule Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CMTFis able to test complete SRF cryomodules at cryogenic operating temperatures and with RF Power. CMTF will house the PIP-II Injector Experiment allowing test of...

  20. Construction and commissioning test report of the CEDM test facility

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system.

  1. Fast flux test facility hazards assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, L.N.

    1994-10-24

    This document establishes the technical basis in support of Emergency Planning Activities for the Fast Flux Test Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  2. Design Study of Beijing XFEL Test Facility

    CERN Document Server

    Dai, J P

    2005-01-01

    As R&D of X-ray Free Electron Laser facility in China, the construction of Beijing XFEL Test Facility (BTF) has been proposed. And the start to end simulation of BTF was made with codes PARMELA, ELEGANT and TDA. This paper presents the motivation, the scheme and the simulation results of BTF.

  3. Ballast Water Treatment Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides functionality for the full-scale testing and controlled simulation of ship ballasting operations for assessment of aquatic nuisance species (ANS)...

  4. Battery Post-Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Post-test diagnostics of aged batteries can provide additional information regarding the cause of performance degradation, which, previously, could be only inferred...

  5. Irradiation test of the HCAL Forward and Endcap upgrade electronics at the CHARM facility at CERN

    CERN Document Server

    AUTHOR|(CDS)2068434; Costanza, Francesco; Karakaya, Tugba; Sahin, Mehmet Ozgur; Lincoln, Don; Strobbe, Nadja; Kaminskiy, Alexander; Tlisov, Danila; Wang, Yanchu; Hirschauer, James Francis

    2016-01-01

    In the period October 21 – 28, 2015, the CMS HCAL group did a radiation tolerance study for the Phase I Upgrade HF, HE and HB front end electronics. The test was conducted at the CERN CHARM facility, which is a mixed field radiation facility. No permanent damages were observed. Effects observed during the irradiation are presented.

  6. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  7. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  8. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  9. Radiation applications research and facilities in AECL research company

    Science.gov (United States)

    Iverson, S. L.

    In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate

  10. System model of a natural circulation integral test facility

    Science.gov (United States)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  11. Cryogenic magnet test facility for fair

    CERN Document Server

    Schroeder, C; Marzouki, F; Stafiniac, A; Floch, E; Schnizer, P; Moritz, G; Xiang, Y; Kauschke, M; Meier, J; Hess, G ,

    2009-01-01

    For testing fast-pulsed superconducting model and pre-series magnets for FAIR (Facility of Antiproton and Ion Research), a cryogenic magnet test facility was built up at GSI. The facility is able to cool either cold masses in a universal cryostat or complete magnets in their own cryo-module. It is possible to operate bath cooled, 2 phase cooled, and supercritical cooled magnets with a maximum current up to 11 kA and a ramp rate up to 14 kA/s. Measurements of magnet heat loss, with calorimetric and a V-I methods, are available, as are quench and magnetic field measurements. Design and functionality of the test facility will be described. Results of measurements with a supercritical cooled magnet and with a 2 phase cooled SIS100 model magnet will be shown.

  12. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  13. Automation of electromagnetic compatability (EMC) test facilities

    Science.gov (United States)

    Harrison, C. A.

    1986-01-01

    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.

  14. Irradiation Facilities of the Takasaki Advanced Radiation Research Institute

    Directory of Open Access Journals (Sweden)

    Satoshi Kurashima

    2017-03-01

    Full Text Available The ion beam facility at the Takasaki Advanced Radiation Research Institute, the National Institutes for Quantum and Radiological Science and Technology, consists of a cyclotron and three electrostatic accelerators, and they are dedicated to studies of materials science and bio-technology. The paper reviews this unique accelerator complex in detail from the viewpoint of its configuration, accelerator specification, typical accelerator, or irradiation technologies and ion beam applications. The institute has also irradiation facilities for electron beams and 60Co gamma-rays and has been leading research and development of radiation chemistry for industrial applications in Japan with the facilities since its establishment. The configuration and utilization of those facilities are outlined as well.

  15. Cryogenic vertical test facility for the SRF cavities at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Than, R.; Liaw, CJ; Porqueddu, R.; Grau, M.; Tuozzolo, J.; Tallerico, T.; McIntyre, G.; Lederle, D.; Ben-Zvi, I.; Burrill, A.; Pate, D.

    2011-03-28

    A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars. The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.

  16. A combined cycle engine test facility

    Energy Technology Data Exchange (ETDEWEB)

    Engers, R.; Cresci, D.; Tsai, C. [General Applied Science Laboratories Inc., Ronkonkoma, NY (United States)

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  17. Radiation protection studies for the SHiP facility

    CERN Document Server

    Strabel, Claudia Christina; Vincke, Helmut

    2015-01-01

    The enlarged scope of the recently proposed experiment to search for Heavy Neutral Leptons, SPSC-EOI-010, is a general purpose fixed target facility which in the initial phase is aimed at a general Search for Hidden Particles (SHiP) as well as tau neutrino physics. This report summarizes radiation protection considerations for the SHiP facility and the primary beam extraction for SHiP.

  18. Real-Gas Aerothermodynamics Test Facilities

    Science.gov (United States)

    Arnold, James O.; Seibert, George L.; Wendt, John F.

    1998-01-01

    This chapter provides an overview of the current ground-based aerothermodynamic testing capabilities in Western Europe and the United States. The focus is on facilities capable of producing real-gas effects (dissociation, ionization, and thermochemical nonequilibrium) pertinent to the study of atmospheric flight in the Mach number range of 5 < M < 50. Perceived mission needs of interest to the Americans and Western Europeans are described where such real-gas flows are important. The role of Computational Fluid Dynamics (CFD) in modern ground testing is discussed, and the capabilities of selected American and European real-gas facilities are described. An update on the current instrumentation in aerothermodynamic testing is also outlined. Comments are made regarding the use of new facilities which have been brought on line during the past 3-5 years. Finally, future needs for aerothermodynamic testing, including instrumentation, are discussed and recommendations for implementation are reported.

  19. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  20. Kauai Test Facility hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  1. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  2. Plasma-Materials Interactions Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, T.

    1986-11-01

    The Plasma-Materials Interactions Test Facility (PMITF), recently designed and constructed at Oak Ridge National Laboratory (ORNL), is an electron cyclotron resonance microwave plasma system with densities around 10/sup 11/ cm/sup -3/ and electron temperatures of 10-20 eV. The device consists of a mirror cell with high-field-side microwave injection and a heating power of up to 0.8 kW(cw) at 2.45 GHz. The facility will be used for studies of plasma-materials interactions and of particle physics in pump limiters and for development and testing of plasma edge diagnostics.

  3. EBR-II Breached Fuel Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lehto, W K; Koenig, J F; Seim, O S; Olp, R H; Strain, R V; Colburn, R P

    1979-01-01

    The Breached Fuel Test Facility (BFTF) is a multipurpose experimental facility, designed to provide the capability to conduct and monitor safety and fuel behavior experiments under move severe conditions than previously allowed in EBR-II. The facility consists of an outer thimble assembly with an internal instrument stalk which extends from the reactor floor through the primary tank cover to the top of the core. Coolant from a breached element test is directed upward to the instrument train above the core. The BFTF has the capability to measure flow, temperature, particle size distribution and deposition, and delayed neutron levels for breach site characterization. This paper describes the design, the instrumentation, the operational safety concerns and the initial experiments.

  4. Low power arcjet test facility impacts

    Science.gov (United States)

    Morren, W. Earl; Lichon, Paul J.

    1992-01-01

    Performance characterization of a flight-type 1.4 kW arcjet system were conducted at the Rocket Research Company (RRC) in Redmond, WA, and at the NASA LeRC in Cleveland, OH. The objectives of these tests were as follows: to compare low-power arcjet performance at two different test facilities; to compare arcjet performance obtained with a 2:1 mixture of gaseous hydrogen and nitrogen and hydrazine; and to quantify the effects of test cell pressure on thruster operating characteristics. Performance and thruster temperature distributions were measured at thruster input power levels and propellant mass flow rates ranging from 1274 to 1370 W and from 3.2 x 10(exp -5) to 5.1 x 10(exp -5) kg/s, respectively. Specific impulses measured at the two facilities, at comparable test cell pressures, using gaseous hydrogen-nitrogen propellant mixtures agreed to within 1 percent over the range of operating conditions tested. The specific impulses measured using hydrazine propellant were higher than that for the cold hydrogen-nitrogen mixtures. Agreement between by hydrazine and gas mixture data was good, however, when the differences in propellant enthalpies at the thruster inlet were considered. Specific impulse showed a strong dependence on test facility pressure, and was 3 to 4 percent higher below 0.1 Pa than for test cell pressures above 5 Pa.

  5. Low-power arcjet test facility impacts

    Science.gov (United States)

    Morren, W. E.; Lichon, Paul J.

    1992-01-01

    Performance characterizations of a flight-type 1.4 kW arcjet system were conducted. Performance and thruster temperature distributions were measured at thruster input power levels and propellant mass flow rates ranging from 1274 to 1370 W and from 3.2 x 10 exp -5 to 5.1 x 10 exp -5 kg/s, respectively. Specific impulses measured at the two facilities, at comparable test cell pressures, using gaseous hydrogen-nitrogen propellant mixtures agreed to within 1 percent over the range of operating conditions tested. The specific impulses measured using hydrazine propellant were higher than that for the cold hydrogen/nitrogen mixtures. Agreement between the hydrazine and gas mixture data was good, however, when the differences in propellant ethalpies at the thruster inlet were considered. Specific impulse showed a strong dependence on test facility pressure, and was 3 to 4 percent higher below 0.1 Pa than for test cell pressures above 5 Pa.

  6. FAST FLUX TEST FACILITY DRIVER FUEL MEETING

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1966-06-01

    The Pacific Northwest Laboratory has convened this meeting to enlist the best talents of our laboratories and industry in soliciting factual, technical information pertinent to the Pacific Northwest's Laboratory's evaluation of the potential fuel systems for the Fast Flux Test Facility. The particular factors emphasized for these fuel systems are those associated with safety, ability to meet testing objectives, and economics. The proceedings includes twenty-three presentations, along with a transcript of the discussion following each, as well as a summary discussion.

  7. Report on the Radiation Effects Testing of the Infrared and Optical Transition Radiation Camera Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    Presented in this report are the results tests performed at Argonne National Lab in collaboration with Los Alamos National Lab to assess the reliability of the critical 99Mo production facility beam monitoring diagnostics. The main components of the beam monitoring systems are two cameras that will be exposed to radiation during accelerator operation. The purpose of this test is to assess the reliability of the cameras and related optical components when exposed to operational radiation levels. Both X-ray and neutron radiation could potentially damage camera electronics as well as the optical components such as lenses and windows. This report covers results of the testing of component reliability when exposed to X-ray radiation. With the information from this study we provide recommendations for implementing protective measures for the camera systems in order to minimize the occurrence of radiation-induced failure within a ten month production run cycle.

  8. Fuel cell hybrid drive train test facility

    OpenAIRE

    Bruinsma, J.; Tazelaar, Edwin; Veenhuizen, Bram; Zafina, I.; Bosma, H.

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a stationary test facility, comprising an 8 kW PEM stack and a 185 [Ah] 48 [V] NiCd battery, which is connected to an asynchronous motor, which is loaded by an eddy current brake. The objective of the test ...

  9. Radiation-driven hydrodynamics of high- hohlraums on the national ignition facility.

    Science.gov (United States)

    Dewald, E L; Suter, L J; Landen, O L; Holder, J P; Schein, J; Lee, F D; Campbell, K M; Weber, F A; Pellinen, D G; Schneider, M B; Celeste, J R; McDonald, J W; Foster, J M; Niemann, C; Mackinnon, A J; Glenzer, S H; Young, B K; Haynam, C A; Shaw, M J; Turner, R E; Froula, D; Kauffman, R L; Thomas, B R; Atherton, L J; Bonanno, R E; Dixit, S N; Eder, D C; Holtmeier, G; Kalantar, D H; Koniges, A E; Macgowan, B J; Manes, K R; Munro, D H; Murray, J R; Parham, T G; Piston, K; Van Wonterghem, B M; Wallace, R J; Wegner, P J; Whitman, P K; Hammel, B A; Moses, E I

    2005-11-18

    The first hohlraum experiments on the National Ignition Facility (NIF) using the initial four laser beams tested radiation temperature limits imposed by plasma filling. For a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with an analytical model that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits with full NIF (1.8 MJ), greater, and of longer duration than required for ignition hohlraums.

  10. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development of sustainable solutions for the nation's energy and environmental challenges.

  11. Simulation Facilities and Test Beds for Galileo

    Science.gov (United States)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  12. A New Acoustic Test Facility at Alcatel Space Test Centre

    Science.gov (United States)

    Meurat, A.; Jezequel, L.

    2004-08-01

    Due to the obsolescence of its acoustic test facility, Alcatel Space has initiated the investment of a large acoustic chamber on its test centre located in Cannes, south of France. This paper presents the main specification elaborated to design the facility, and the solution chosen : it will be located on a dedicated area of the existing test centre and will be based on technical solution already used in similar facilities over the world. The main structure consists in a chamber linked to an external envelope (concrete building) through suspension aiming at decoupling the vibration and preventing from seismic risks. The noise generation system is based on the use of Wyle modulators located on the chamber roof. Gaseous nitrogen is produced by a dedicated gas generator developed by Air-Liquide that could deliver high flow rate with accurate pressure and temperature controls. The control and acquisition system is based on existing solution implemented on the vibration facilities of the test centre. With the start of the construction in May 2004, the final acceptance tests are planned for April 2005, and the first satellites to be tested are planned for May 2005.

  13. Clemson University Wind Turbine Drivetrain Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tuten, James Maner [Clemson Univ., SC (United States); Haque, Imtiaz [Clemson Univ., SC (United States); Rigas, Nikolaos [Clemson Univ., SC (United States)

    2016-03-30

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the United States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development of these

  14. Vitrification Facility integrated system performance testing report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    1997-05-01

    This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process.

  15. The Great Plains Wind Power Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John [Texas Tech Univ., Lubbock, TX (United States)

    2014-01-30

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  16. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  17. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef [Universite de Saint-Etienne, Lab. Hubert Curien, UMR-CNRS 5516, F-42000 Saint-Etienne (France); Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre [ISAE, Universite de Toulouse, F-31055 Toulouse (France); Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-07-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  18. The first wall test facility FIWATKA - description of the facility and report on commissioning tests

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, G.; Eggert, E.

    1994-09-01

    A facility for performing thermo-mechanical cycle tests (thermal fatigue tests) was designed and constructed. Such tests are in support of the design of first wall structures for fusion reactors. The requirements necessary to achieve the test goals are outlined. The facility and its components are described; its upgrading capabilities are discussed. The main commissioning tests are reported. It is concluded that the facility is ready to perform thermal fatigue tests; the capability of the facility includes the testing of specimens with high surface temperatures. (orig.) [Deutsch] Ein Pruefstand zur Durchfuehrung thermomechanischer Zyklus-Tests (Versuche zur thermischen Ermuedung) wurde entworfen und aufgebaut. Solche Tests begleiten und unterstuetzen den Entwurf von Erste-Wand-Strukturen fuer Fusionsreaktoren. Die Anforderungen, die zum Erreichen der Versuchsziele erfuellt sein muessen, werden umrissen. Der Pruefstand und seine Komponenten werden beschrieben; die Moeglichkeiten fuer Pruefstands-Erweiterungen werden diskutiert. Ueber die wichtigsten Inbetriebnahme-Versuche wird berichtet. Zusammenfassend wird festgestellt, dass der Pruefstand bereit ist fuer thermische Ermuedungs-Experimente; die besondere Faehigkeit des Pruefstandes liegt darin, dass Proben mit hohen Oberflaechentemperaturen untersucht werden koennen. (orig.)

  19. Diverse Studies in the Reactivated NASA/Ames Radiation Facility: From Shock Layer Spectroscopy to Thermal Protection System Impact

    Science.gov (United States)

    Miller, Robert J.; Hartman, G. Joseph (Technical Monitor)

    1994-01-01

    NASA/Ames' Hypervelocity Free-Flight Radiation Facility has been reactivated after having been decommissioned for some 15 years, first tests beginning in early 1994. This paper discusses two widely different studies from the first series, one involving spectroscopic analysis of model shock-layer radiation, and the other the production of representative impact damage in space shuttle thermal protection tiles for testing in the Ames arc-jet facilities. These studies emphasize the interorganizational and interdisciplinary value of the facility in the newly-developing structure of NASA.

  20. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  1. 40 CFR 792.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... personnel, resources, facilities, equipment, materials and methodologies are available as scheduled. (f...

  2. Usability Testing and Analysis Facility (UTAF)

    Science.gov (United States)

    Wong, Douglas T.

    2010-01-01

    This slide presentation reviews the work of the Usability Testing and Analysis Facility (UTAF) at NASA Johnson Space Center. It is one of the Space Human Factors Laboratories in the Habitability and Human Factors Branch (SF3) at NASA Johnson Space Center The primary focus pf the UTAF is to perform Human factors evaluation and usability testing of crew / vehicle interfaces. The presentation reviews the UTAF expertise and capabilities, the processes and methodologies, and the equipment available. It also reviews the programs that it has supported detailing the human engineering activities in support of the design of the Orion space craft, testing of the EVA integrated spacesuit, and work done for the design of the lunar projects of the Constellation Program: Altair, Lunar Electric Rover, and Outposts

  3. Space technology test facilities at the NASA Ames Research Center

    Science.gov (United States)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  4. Cryogenic controls for the TESLA test facility

    Science.gov (United States)

    Clausen, M.; Gerke, Chr.; Knopf, U.; Rettig, S.; Schoeneburg, B.

    1994-12-01

    The TESLA Test Facility (TTF) is designed to perform intensive testing of the superconducting cavities foreseen for the next generation of linear colliders. The cryogenic system is one part of this facility. The controls for this system will initially use the existing software and hardware to be able to cool down the first cavities fabricated in the TTF workshop. Later the control system will be modified to meet the current standards in process and accelerator controls. The hardware will be changed to use the VME system as the major platform. The operating system and the communication will be based on de-facto standards such as UNIX for the workstations and the front-end computers and TCP/IP for network communication. The application software (EPICS) will be part of a collaboration with several other institutes. The final goal is to port all the software to the POSIX standard and to use Object-Oriented tools wherever possible. The first part of this paper describes the migration from the existing control system to the future design. Special decisions on hardware and software solutions are highlighted. Nonproprietary field busses for remote process I/O are becoming usual for slow control. A suitable bus for our future basic I/O system had to be selected. Finally a new temperature monitor module working on the CAN-bus and its measurement procedure will be explained.

  5. Radiation Protection in the NLC Test Accelerator at SLAC

    Science.gov (United States)

    Lavine, Theodore L.; Vylet, Vaclav

    1997-05-01

    This paper describes the elements of the design of the NLC Test Accelerator pertaining to ionizing radiation protection and safety. The NLC Test Accelerator is an accelerator physics research facility at SLAC designed to validate 2.6-cm microwave linear accelerator technology for a future high-energy linear collider (the "Next Linear Collider"). The NLC Test Accelerator is designed for average beam power levels up to 1.5 kW, at energies up to 1 GeV (roughly equivalent to 1/500 of an NLC linac). The design for radiation protection incorporates shielding, configuration controls, safety interlock systems for personnel protection and beam containment, and operations procedures. The design was guided by the DOE Accelerator Safety Order, internal Laboratory policy, and the general principle of keeping radiation doses as low as reasonably achievable.

  6. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  7. 40 CFR 160.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...

  8. 21 CFR 58.31 - Testing facility management.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Organization and Personnel § 58.31 Testing facility management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study...

  9. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  10. Design, Evaluation and Test Technology Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of this facility, which is composed of numerous specialized facilities, is to provide capabilities to simulate a wide range of environments for component...

  11. The negative ion source test facility ELISE

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, B., E-mail: bernd.heinemann@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85748 Garching (Germany); Falter, H.-D.; Fantz, U.; Franzen, P.; Froeschle, M.; Kraus, W.; Martens, C.; Nocentini, R.; Riedl, R.; Speth, E.; Staebler, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Postfach 1533, D-85748 Garching (Germany)

    2011-10-15

    The ITER neutral beam system is using inductively coupled radio frequency (RF) ion sources, that have demonstrated the required ITER parameters on (small) sources with extraction areas up to 200 cm{sup 2}. As a next step towards the full size ITER source IPP is presently constructing the test facility ELISE ('Extraction from a Large Ion Source Experiment') operating with a 'half-size' source which has approximately the width but only half the height of the ITER source. The modular driver concept is expected to allow a further extrapolation to the full size in one direction to be made. The main aim of this experiment is to demonstrate the production of a large uniform negative ion beam with ITER relevant parameters in stable conditions up to one hour. Plasma operation of the source is foreseen to be performed continuously for 1 h; extraction and acceleration of negative ions up to 60 kV is only possible in pulsed mode (10 s every 180 s) due to limitations of the existing IPP HV system. The design of the source and extraction system implements a high experimental flexibility and a good diagnostic access while still staying as close as possible to the ITER design. The main differences are the source operating in air and the use of a large gate valve between the source and the target chamber. ELISE is expected to start operation at the end of 2011 and is an important step for the development of the ITER NBI system; the experience gained early will support the design as well as the commissioning and operating phases of the PRIMA NBI test facilities and the ITER neutral beam system.

  12. Orbiter radiator panel solar focusing test

    Science.gov (United States)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  13. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Asano, Yoshihiro; /JAERI-RIKEN, Hyogo; Casey, William R.; /Brookhaven; Donahue, Richard J.; /LBL, Berkeley

    2005-06-29

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  14. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  15. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  16. Electronics and Telemetry Engineering and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronics Laboratory is a fully equipped facility providing the capability to support electronic product development from highly complex weapon system sensors,...

  17. Facilities for studying radiation damage in nonmetals during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P.W.

    1984-08-01

    Two facilities have been developed for making optical absorption, luminescence and other measurements on a single sample before, during and after irradiation. One facility uses /sup 60/Co gamma rays and the other 0.5 to 3 MeV electrons from an accelerator. Optical relays function as spectrophotometers, luminescenc detectors, etc. All radiation sensitive components are outside of walk-in irradiation chambers; all measurement control and data recording is computerized. Irradiations are made at controlled temperatures between 5K and 900/sup 0/C. The materials studied include glasses, quartz, alkali halides (especially natural rock salt), organic crystals, etc. As determined from color center measurements the damage formation rate in all materials studied at 25/sup 0/C or above is strongly temperature dependent. The defect concentration during irradiation is usually much greater than that measured after irradiation. The fraction of defects annealing after irradiation and the annealing rate usually increases as the irradiation temperature increases. The completed studies demonstrate that, in most cases, the extent of maximum damage and the damage formation and annealing kinetics can be determined only by making measurements during irradiation.

  18. Ion chambers compliance results of Brazilian radiation therapy facilities.

    Science.gov (United States)

    Joana, Georgia Santos; Salata, Camila; Leal, Paulo; Oliveira, Renato; Couto, Nozimar do; Teixeira, Flavia Cristina; Soares, Abner Duarte; Santini, Eduardo Sergio; Gonçalves, Marcello Gomes

    2017-12-07

    Brazilian Nuclear Energy Commission (cnen) has been making a constant effort to keep updated with international standards and national needs to strengthen the status of radiological protection of the country. The guidelines related to radiation therapy facilities have been revised in the last five years in order to take in consideration the most relevant aspects of the growing technology as well as to mitigate the accidents or incidents observed in practice. Hence, clinical dosimeters have gained special importance in this matter. In the present work we discuss the effectiveness of regulation and inspections to the enforcement of instrument calibration accuracy for improvement of patient dosimetry and quality control. As a result, we observed that the number of calibrated instruments, mainly well-chambers, is increasing each year. The same behavior is observed for instruments employed in technologically advanced radiation treatments such as intensity modulated radiotherapy (imrt), volumetric therapy and stereotatic radiosurgery (srs). We ascribe this behavior to the new regulation. © 2017 IOP Publishing Ltd.

  19. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  20. LISA PathFinder radiation monitor proton irradiation test results

    Science.gov (United States)

    Mateos, I.; Diaz-Aguiló, M.; Gibert, F.; Grimani, C.; Hollington, D.; Lloro, I.; Lobo, A.; Nofrarias, M.; Ramos-Castro, J.

    2012-06-01

    The design of the Radiation Monitor in the LISA Technology Package on board LISA Pathnder is based on two silicon PIN diodes, placed parallel to each other in a telescopic configuration. One of them is able to record spectral information of the particle hitting the diode. A test campaign for the flight model Radiation Monitor was done in the Paul Scherrer Institute Proton Irradiation Facility in September 2010. Its purpose was to check correct functionality of the Radiation Monitor under real high energy proton fluxes. Here we present the results of the experiments done and their assessment by means of a simulated flight model geometry using GEANT4 toolkit. No deviation from nominal RM performance was detected, which means the instrument is fully ready for flight.

  1. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility

    Science.gov (United States)

    Huang, Xian Bin; Ren, Xiao Dong; Dan, Jia Kun; Wang, Kun Lun; Xu, Qiang; Zhou, Shao Tong; Zhang, Si Qun; Cai, Hong Chun; Li, Jing; Wei, Bing; Ji, Ce; Feng, Shu Ping; Wang, Meng; Xie, Wei Ping; Deng, Jian Jun

    2017-09-01

    The preliminary experimental results of Z-pinch dynamic hohlraums conducted on the Primary Test Stand (PTS) facility are presented herein. Six different types of dynamic hohlraums were used in order to study the influence of load parameters on radiation characteristics and implosion dynamics, including dynamic hohlraums driven by single and nested arrays with different array parameters and different foams. The PTS facility can deliver a current of 6-8 MA in the peak current and 60-70 ns in the 10%-90% rising time to dynamic hohlraum loads. A set of diagnostics monitor the implosion dynamics of plasmas, the evolution of shock waves in the foam and the axial/radial X-ray radiation, giving the key parameters characterizing the features of dynamic hohlraums, such as the trajectory and related velocity of shock waves, radiation temperature, and so on. The experimental results presented here put our future study on Z-pinch dynamic hohlraums on the PTS facility on a firm basis.

  2. Development of the standard system for integrated radiation management and an efficient safety manual for the complex radiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Jong; Lee, Jin Woo; Lee, Eun Je; Kim, Jong Soo; Ju, Young Jin

    2012-11-15

    The purpose of this study is to develop the effective radiation safety management system from a diversified and complex radiation sources and facilities. In this study, radiation safety management organization, safety risk factors, protection object and protection requirements of medical, industrial, research, and other radiation facilities were analyzed. After analyzing, the flow of individual radiation working process was ordered. In this study, after we analyzed radiation protection organization using complex radiation source and safety risk factors of radiation facilities and protection object and protection requirements, each individual task analysis was illustrated, i.e, process-mapping. The basic type and characteristics of hardware to facilitate the radiation protection was introduced and software between devices was designed in the form of flow-chart. The standardized process mapping will be utilized as a basic flow chart of individual working process such as access control of radiation control area. These flow charts based on the detail analysis of the work will reduce an error and failure in development of radiation protection control program in each institute. In addition, a standardized management procedures of radiation management will be provided.

  3. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  4. Learning Design at White Sands Test Facility

    Science.gov (United States)

    Grotewiel, Shane

    2010-01-01

    During the Fall of 2010, I spent my time at NASA White Sands Test Facility in Las Cruces, NM as an Undergraduate Student Research Program (USRP) Intern. During that time, I was given three projects to work on: Large Altitude Simulation System (LASS) basket strainer, log books, and the design of a case for touch screen monitors used for simulations. I spent most of my time on the LASS basket strainer. The LASS system has a water feed line with a basket strainer that filters out rust. In 2009, there were three misfires which cost approximately $27,000 and about 8% of the allotted time. The strainer was getting a large change in pressure that would result in a shutdown of the system. I have designed a new basket that will eliminate the large pressure change and it can be used with the old basket strainer housing. The LASS system has three steam generators (modules). Documents pertaining to these modules are stored electronically, and the majority of the documents are not able to be searched with keywords, so they have to be gone through one by one. I have come up with an idea on how to organize these files so that the Propulsion Department may efficiently search through the documents needed. Propulsion also has a LASS simulator that incorporates two touch screen monitors. Currently these monitors are in six foot by two foot metal cabinet on wheels. During simulation these monitors are used in the block house and need to be taken out of the block house when not in use. I have designed different options for hand held cases for storing and transporting the monitors in and out of the block house. The three projects previously mentioned demonstrate my contributions to the Propulsion Department and have taught me real world experience that is essential in becoming a productive engineer.

  5. 10 CFR 61.81 - Tests at land disposal facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Tests at land disposal facilities. 61.81 Section 61.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.81 Tests at land disposal facilities. (a) Each...

  6. Computational Modeling in Support of High Altitude Testing Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in rocket engine test facility design and development by assessing risks, identifying failure modes and predicting...

  7. Computational Modeling in Support of High Altitude Testing Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in propulsion test facility design and development by assessing risks, identifying failure modes and predicting...

  8. High-field conductor testing at the FENIX facility

    Science.gov (United States)

    Shen, S. S.; Chaplin, M. R.; Felker, B.; Hassenzahl, W. V.; Kishiyama, K. I.; Parker, J. M.

    1993-04-01

    The Fusion Engineering International experiments (FENIX) Test Facility, which was commissioned at the end of 1991, is the first facility in the world capable of testing prototype conductors for the International Thermonuclear Experimental Reactor (ITER) superconducting magnets. The FENIX facility provides test conditions that simulate the ITER magnet operating environment; more importantly, it also accommodates specific experiments to determine the operational margins for the prototype conductors. The FENIX facility generates magnetic fields close to 14 T, and transport currents over 40 kA for testing the prototype conductors. This paper describes an experimental program that measures critical currents, current-sharing temperatures, forced-flow properties, and cyclic effects.

  9. Radiation management at the occurrence of accident and restoration works. Fire and explosion of asphalt solidification processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Kenjiro; Jin, K.; Namiki, A.; Mizutani, K.; Horiuchi, N.; Saruta, J. [Power Reactor and Nuclear Fuel Development Corp., Health and Safety Division, Tokai, Ibaraki (Japan); Ninomiya, Kazushige [Power Reactor and Nuclear Fuel Development Corp., Tsuruga, Fukui (Japan). Monju Construction Office

    1998-06-01

    Fire and explosion accident in the cell of Asphalt Solidification Processing Facility(ASP) in PNC took placed at March 11 in 1997. Following to the alarm of many radiation monitoring system in the facility, some of workers inhale radioactive materials in their bodies. Indication values of an exhaust monitor installed in the first auxiliary exhaust stack increased suddenly. A large number of windows, doors, and shutters in the facility were raptured by the explosion. A lot of radioactive materials blew up and were released to the outside of the facility. Reinforcement of radiation surveillance function, nose smearing test for the workers and confirmation of contamination situation were implemented on the fire. Investigation of radiation situation, radiation management on the site, exposure management for the workers, surveillance of exhaustion, and restoration works of the damaged radiation management monitoring system were carried out after the explosion. The detailed data of radiation management measures taken during three months after the accident are described in the paper. (M. Suetake)

  10. Preliminary Design of the AEGIS Test Facility

    CERN Document Server

    Dassa, Luca; Cambiaghi, Danilo

    2010-01-01

    The AEGIS experiment is expected to be installed at the CERN Antiproton Decelerator in a very close future, since the main goal of the AEGIS experiment is the measurement of gravity impact on antihydrogen, which will be produced on the purpose. Antihydrogen production implies very challenging environmental conditions: at the heart of the AEGIS facility 50 mK temperature, 1e-12 mbar pressure and a 1 T magnetic field are required. Interfacing extreme cryogenics with ultra high vacuum will affect very strongly the design of the whole facility, requiring a very careful mechanical design. This paper presents an overview of the actual design of the AEGIS experimental facility, paying special care to mechanical aspects. Each subsystem of the facility – ranging from the positron source to the recombination region and the measurement region – will be shortly described. The ultra cold region, which is the most critical with respect to the antihydrogen formation, will be dealt in detail. The assembly procedures will...

  11. An Injector Test Facility for the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Colby, E., (ed.); /SLAC

    2007-03-14

    SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

  12. Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2012-07-07

    The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

  13. Test facility of thermal storage equipment for space power generation

    Science.gov (United States)

    Inoue, T.; Nakagawa, M.; Mochida, Y.; Ohtomo, F.; Shimizu, K.; Tanaka, K.; Abe, Y.; Nomura, O.; Kamimoto, M.

    A thermal storage equipment test facility has been built in connection with developing solar dynamic power systems (SDPSs). The test facility consists of a recuperative closed Brayton cycle system (CBC), with a mixture of helium and xenon with a molecular weight of 39.9 serving as the working fluid. CBC has been shown to be the most attractive power generation system among several types of SDPSs because of its ability to meet the required high power demand and its thermal efficiency, about 30 percent. The authors present a description of this test facility and give results of the preliminary test and the first-stage test with heat storage equipment.

  14. Overview of US fast-neutron facilities and testing capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.A.; Cox, C.M.; Jackson, R.J.

    1982-01-01

    Rather than attempt a cataloging of the various fast neutron facilities developed and used in this country over the last 30 years, this paper will focus on those facilities which have been used to develop, proof test, and explore safety issues of fuels, materials and components for the breeder and fusion program. This survey paper will attempt to relate the evolution of facility capabilities with the evolution of development program which use the facilities. The work horse facilities for the breeder program are EBR-II, FFTF and TREAT. For the fusion program, RTNS-II and FMIT were selected.

  15. NASA Ames-Dryden integrated test facility: Presentation outline

    Science.gov (United States)

    Schilling, Larry; Bolen, Dave

    1991-01-01

    The topics are presented in view graph form and include the following: (1) a Dryden overview; (2) the Integrated Tests Facility (ITF); (3) the ITF system architecture; (4) the computer aided system testing; and (5) the ITF system video.

  16. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann

    2017-04-01

    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  17. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    Science.gov (United States)

    Bateman, F. B.; Desrosiers, M. F.; Hudson, L. T.; Coursey, B. M.; Bergstrom, P. M.; Seltzer, S. M.

    2003-08-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources.

  18. FY11 Facility Assessment Study for Aeronautics Test Program

    Science.gov (United States)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  19. Space Chemical Propulsion Test Facilities at NASA Lewis Research Center

    Science.gov (United States)

    Urasek, Donald C.; Calfo, Frederick D.

    1993-01-01

    The NASA Lewis Research Center, located in Cleveland, Ohio, has a number of space chemical propulsion test facilities which constitute a significant national space testing resource. The purpose of this paper is to make more users aware of these test facilities and to encourage their use through cooperative agreements between the government, industry, and universities. Research which is of interest to the government is especially encouraged and often can be done in a cooperative manner that best uses the resources of all parties. An overview of the Lewis test facilities is presented.

  20. Major Range and Test Facility Base Summary of Capabilities.

    Science.gov (United States)

    1983-06-01

    V:ISHAM LINDER Director Defense Test and Evaluation *1 DoD 3200.11-D MAJOR RANGE AND TEST FACILITY BASE SUMMARY OF CAPABILITIES TABLE OF CONTENTS White...suitable for zero g testing and rocket plume signature studies. TYPICAL PROJECTS SUPPORTED B-i and F-15/16 Air-Launched Cruise Missile Global Position...rocket plumes , trucks, and other aerospace and ground-based objects. The RATSCAT facility is isolated physically and electromagnetically by its

  1. Single Event Effects Test Facility Options at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Riemer, Bernie [ORNL; Gallmeier, Franz X [ORNL; Dominik, Laura J [ORNL

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of integrated circuits (ICs) and systems for use in radiation environments requires the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.

  2. Propeller Test Facilities Â

    Data.gov (United States)

    Federal Laboratory Consortium — Description: Three electrically driven whirl test stands are used to determine propeller (or other rotating device) performance at various rotational speeds. These...

  3. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    Directory of Open Access Journals (Sweden)

    T. Schietinger

    2016-10-01

    Full Text Available The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  4. Experimental proposal Test of radiation protection instrumentation in HiRadMat

    OpenAIRE

    Charitonidis, Nikolaos; Silari, Marco; Manessi, Paolo Giacomo

    2012-01-01

    The knowledge of the response of radiation protection detectors in pulsed fields is very important, since this is a typical condition often encountered with stray radiation fields around particle accelerators at CERN and elsewhere. This document presents a proposal for testing a prototype detector and commercial instrumentation in use with the RAMSES monitoring system, due to the unique conditions that can be found in the HiRadMat facility. These tests can be extended to include instrumentati...

  5. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  6. Super Conducting and Conventional Magnets Test & Mapping Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Vertical Magnet Test Facility: Accommodate a device up to 3.85 m long, 0.61 m diameter, and 14,400 lbs. Configured for 5 psig sub-cooled liquid helium bath cooling...

  7. Fast Flux Test Facility project plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  8. Technical Evaluation of Oak Ridge Filter Test Facility

    CERN Document Server

    Kriskovich, J R

    2002-01-01

    Two evaluations of the Oak Ridge Department of Energy (DOE) Filter Test Facility (FTF) were performed on December 11 and 12, 2001, and consisted of a quality assurance and a technical evaluation. This report documents results of the technical evaluation.

  9. Development of virtual reality simulator for spent fuel test facility

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Byung Ha; Kang, Hyun Kuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper describes the development of spent fuel management research and test facility simulator including hot cell configuration, engineering simulation of spent fuel management process and others. 4 figs.

  10. Micro-Combined Heat and Power Device Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has developed a test facility for micro-combined heat and power (micro-CHP) devices to measure their performance over a range of different operating strategies...

  11. Fast Flux Test Facility (FFTF) standby plan

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1997-03-06

    The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

  12. Preconceptual design of the new production reactor circulator test facility

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, G.

    1990-06-01

    This report presents the results of a study of a new circulator test facility for the New Production Reactor Modular High-Temperature Gas-Cooled Reactor. The report addresses the preconceptual design of a stand-alone test facility with all the required equipment to test the Main Circulator/shutoff valve and Shutdown Cooling Circulator/shutoff valve. Each type of circulator will be tested in its own full flow, full power helium test loop. Testing will cover the entire operating range of each unit. The loop will include a test vessel, in which the circulator/valve will be mounted, and external piping. The external flow piping will include a throttle valve, flowmeter, and heat exchanger. Subsystems will include helium handling, helium purification, and cooling water. A computer-based data acquisition and control system will be provided. The estimated costs for the design and construction of this facility are included. 2 refs., 15 figs.

  13. Cell/Tissue Culture Radiation Exposure Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of automated systems to improve radiobiology research capabilities at NASA Space Radiation Laboratory (NSRL) at Brookhaven National...

  14. Test of radiation detectors used in homeland security applications.

    Science.gov (United States)

    Pibida, L; Minniti, R; O'Brien, M; Unterweger, M

    2005-05-01

    This work was performed as part of the National Institute of Standards and Technology (NIST) program to support the development of the new American National Standards Institute (ANSI) standards N42.32-2003 and N42.33-2003 for hand-held detectors, and personal electronic dosimeters, as well as to support the Office of Law Enforcement Standards (OLES) and the Department of Homeland Security (DHS) in testing these types of detectors for their use by first responders. These instruments are required to operate over a photon energy range of 60 keV to 1.33 MeV and over a wide range of air-kerma rates. The performance and response of various radiation detectors, purchased by the NIST, was recorded when placed in 60Co, 137Cs, and x-ray beams at different air-kerma rates. The measurements described in this report were performed at the NIST x-ray and gamma-ray radiation calibration facilities. The instruments' response (exposure or dose rate readings) shows strong energy dependence but almost no dependence to different air-kerma rates. The data here reported provide a benchmark in support of current protocols that are being developed for radiation detection instrumentation used in homeland security applications. A future plan is to test these devices, plus other commercially available detectors, against ANSI standards N42.32-2003 and N42.33-2003.

  15. String 2, test facility for the LHC

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    String 2 is the long chain seen to the right, representing one complete cell of bending dipoles, focusing quadrupoles and corrector magnets. On 17 June 2002 the test string reached the nominal running current of 11 860 A and magnetic field of 8.335 T for the LHC.

  16. Fuel cell hybrid drive train test facility

    NARCIS (Netherlands)

    J. Bruinsma; Edwin Tazelaar; Bram Veenhuizen; I. Zafina; H. Bosma

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a

  17. Overview of the NASA AMES-Dryden Integrated Test Facility

    Science.gov (United States)

    Mackall, Dale; McBride, David; Cohen, Dorothea

    1990-01-01

    The Integrated Test Facility (ITF), being built at the NASA Ames Research Center's Dryden Flight Research Facility (ADFRF), will provide new real-time test capabilities for emerging research aircraft. An overview of the ITF and the real-time systems being developed to operate this unique facility are outlined in this paper. The ITF will reduce flight test risk by minimizing the difference between the flight- and ground-test environments. The ground-test environment is provided by combining real-time flight simulation with the actual aircraft. The generic capabilities of the ITF real-time systems, the real-time data recording, and the remotely augmented vehicle (RAV) monitoring system will be discussed. The benefits of applying simulation to aircraft-in-the-loop testing and RAV monitoring system capabilities to the X-29A flight research program will also be discussed.

  18. Non Volatile Flash Memory Radiation Tests

    Science.gov (United States)

    Irom, Farokh; Nguyen, Duc N.; Allen, Greg

    2012-01-01

    Commercial flash memory industry has experienced a fast growth in the recent years, because of their wide spread usage in cell phones, mp3 players and digital cameras. On the other hand, there has been increased interest in the use of high density commercial nonvolatile flash memories in space because of ever increasing data requirements and strict power requirements. Because of flash memories complex structure; they cannot be treated as just simple memories in regards to testing and analysis. It becomes quite challenging to determine how they will respond in radiation environments.

  19. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  20. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  1. Antiscalent Field Testing for the LBNE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Daily, William D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bahowick, Sally [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-10-12

    This paper was intended as an overview of options and considerations related to the field testing of an antiscalant injection system to be used on a cooling water system where minimal equipment, costs, energy, footprint, and maintenance are desired. It is anticipated that engineering oversight and judgment will be utilized to determine the applicability of each parameter and process suggested herein and modify the plan as necessary prior to implementation. Comparisons between options are given to weigh the benefits of each approach. Suggestions for equipment, materials, automation, monitoring and analytical are provided based on experience and industrial standards and may not be applicable for specific field applications.

  2. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  3. Aerospace Structures Test Facility Environmental Test Chambers (ETC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The ETCs test the structural integrity of aerospace structures in representative operating temperatures and aerodynamic load distributions. The test article...

  4. The fields of activity of a contract radiation center with three different facilities

    Science.gov (United States)

    Wiesner, L.

    After discussing the key-position of contract radiation centers in the further development of radiation processing, the BGS facilities, comprising two electron accelerators (550 keV and 3 MeV) and a gamma irradiator, are described. With these facilities and the appropriate handling equipment, service can be offered for most of the products which may benefit from a radiation treatment. Types of products for which the capabilities are shortly described include electrical wires and cables, tubes and hoses, different moulded plastic parts, foils, bonds and sheets, medical supplies and similar products, polymer powders and wastes.

  5. The dual axis radiographic hydrodynamic test (DARHT) facility personnel safety system (PSS) control system

    Energy Technology Data Exchange (ETDEWEB)

    Jacquez, Edward B [Los Alamos National Laboratory

    2008-01-01

    The mission of the Dual Axis Radiograph Hydrodynamic Test (DARHT) Facility is to conduct experiments on dynamic events of extremely dense materials. The PSS control system is designed specifically to prevent personnel from becoming exposed to radiation and explosive hazards during machine operations and/or the firing site operation. This paper will outline the Radiation Safety System (RSS) and the High Explosive Safety System (HESS) which are computer-controlled sets of positive interlocks, warning devices, and other exclusion mechanisms that together form the PSS.

  6. Building 772 - CERN’s new calibration facility for radiation protection instruments is ready to go

    CERN Multimedia

    2014-01-01

    Building 772 is becoming the new home of CERN’s calibration facility for radiation protection instrumentation. The new laboratory in Prévessin will be a state-of-the-art calibration facility and the first of its kind in both France and Switzerland, offering a wide range of possibilities with respect to radiation fields and instrumentation.   New four-axis calibration bench for radiation protection instruments.   Civil engineering work started in November 2013 in Prévessin and Building 772 is now finished and ready for inauguration. CERN’s calibration facility was previously located in Building 172 in Meyrin. Although still very accurate, the technology used was becoming obsolete and needed replacement. “Having considered different options, the decision was taken to build a new facility fully designed and conceived to meet all international safety and technical requirements of such a laboratory,” says Pie...

  7. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cantwell, K.; St. Pierre, M. [eds.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  8. Cryogenic turbulence test facilities at CEA/SBT

    Science.gov (United States)

    Rousset, B.; Baudet, C.; Bon Mardion, M.; Bourgoin, M.; Braslau, A.; Daviaud, F.; Diribarne, P.; Dubrulle, B.; Gagne, Y.; Gallet, B.; Gibert, M.; Girard, A.; Lehner, T.; Moukharski, I.; Sy, F.

    2015-12-01

    Recently, CEA Grenoble SBT has designed, built and tested three liquid helium facilities dedicated to turbulence studies. All these experiments can operate either in HeI or HeII within the same campaign. The three facilities utilize moving parts inside liquid helium. The SHREK experiment is a von Kármán swirling flow between 0.72 m diameter counterrotating disks equipped with blades. The HeJet facility is used to produce a liquid helium free jet inside a 0.200 m I.D., 0.47 m length stainless steel cylindrical testing chamber. The OGRES experiment consists of an optical cryostat equipped with a particle injection device and an oscillating grid. We detail specific techniques employed to accommodate these stringent specifications. Solutions for operating these facilities without bubbles nor boiling/cavitation are described. Control parameters as well as Reynolds number and temperature ranges are given.

  9. Operational Performance of the Horizontal Fast Rise EMP Pulser at the Patuxent River EMP Test Facility

    Science.gov (United States)

    2011-06-01

    program. The facility utilized the hybrid elliptical horizontally polarized dipole antenna that was driven by the Maxwell Labs 5 MV (ML-5) dual...new pulser was delivered to Patuxent River October 1st, 2010, where it was re-assembled, installed, and tested in the HPD antenna by December 1st...Electromagnetic Pulse which radiates from its 150 Ohm biconical launch antenna1. A simplistic equivalent circuit model is shown in Figure 2. Each

  10. 200 area effluent treatment facility opertaional test report

    Energy Technology Data Exchange (ETDEWEB)

    Crane, A.F.

    1995-10-26

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting.

  11. Development of a fault test experimental facility model using Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  12. Electromagnetic Interference/Compatibility (EMI/EMC) Control Test and Measurement Facility: User Test Planning Guide

    Science.gov (United States)

    Scully, Robert C.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  13. Test and evaluation facility for THAAD IR seekers

    Science.gov (United States)

    Leary, Arthur R.; Watson, W.; Florie, D.; Colosimo, J.; Hoschette, John A.; Murphy, G.

    1995-05-01

    The high performance requirements for the Theater High Altitude Area Defense (THAAD) Seeker required the build and verification of a state-of-the-art infrared seeker test and evaluation facility. The test and evaluation facility is completely enclosed in a class 10,000 clean room and is divided into four major areas. These areas are the build and assembly area, goniometric test area, boresight test area, and analysis area. The build and assembly area is where parts are inspected, cleaned, kitted and finally assembled. After assembly is complete, the seeker is moved to the goniometric and boresight test areas for calibration and test. The goniometric/radiometric test area is where seeker gain and offset, IFOV, FOV, FOR, PSF's, dynamic range and uniformity tests are performed. The boresight test area is where the seeker boresight and servo rate tests are conducted. The seeker operation and performance is controlled and monitored via the Seeker Test Set (STS). The STS provides seeker power, controls all seeker functions, collects simultaneous servo and image data and controls table movements and blackbody target temperatures. For storage and further analysis of data, the STS has been networked via an ethernet connection to the data analysis area. The analysis area contains an off-line data processing and reduction lab consisting of networked high performance PC's. This paper discusses the test facility created for the THAAD IR seeker including requirements, layout and unique functionality.

  14. Wipe testing of sealed radiation sources using a radiation protection assistant robot

    Directory of Open Access Journals (Sweden)

    Zeb Jahan

    2009-01-01

    Full Text Available Sealed radiation sources are commonly used in different research institutes, industries, and hospitals. The sources of various strengths are manufactured in different sizes and shapes. It is a regulatory requirement that these sources must be monitored frequently for their integrity and to avoid any radiological contamination hazard. Mainly, a wipe test is recommended for the contamination detection due to the leakage of sealed radiation sources. A radiation protection assistant robot has been fabricated to execute different tasks in a hazardous radiation environment. In this study, the robot was used to conduct the wipe test of five sealed radiation sources. The sealed radiation sources were tested safely and securely without giving any radiation dose to the radiation worker. The radiation doses received by the robot gripper and waist during the wipe test were 3.4 Gy and 208.9 mGy, respectively.

  15. Large-Scale Cryogen Systems and Test Facilities

    Science.gov (United States)

    Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

    2007-01-01

    NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

  16. An approach to radiation safety department benchmarking in academic and medical facilities.

    Science.gov (United States)

    Harvey, Richard P

    2015-02-01

    Based on anecdotal evidence and networking with colleagues at other facilities, it has become evident that some radiation safety departments are not adequately staffed and radiation safety professionals need to increase their staffing levels. Discussions with management regarding radiation safety department staffing often lead to similar conclusions. Management acknowledges the Radiation Safety Officer (RSO) or Director of Radiation Safety's concern but asks the RSO to provide benchmarking and justification for additional full-time equivalents (FTEs). The RSO must determine a method to benchmark and justify additional staffing needs while struggling to maintain a safe and compliant radiation safety program. Benchmarking and justification are extremely important tools that are commonly used to demonstrate the need for increased staffing in other disciplines and are tools that can be used by radiation safety professionals. Parameters that most RSOs would expect to be positive predictors of radiation safety staff size generally are and can be emphasized in benchmarking and justification report summaries. Facilities with large radiation safety departments tend to have large numbers of authorized users, be broad-scope programs, be subject to increased controls regulations, have large clinical operations, have significant numbers of academic radiation-producing machines, and have laser safety responsibilities.

  17. Assessment of Radiation Exposure Dose Due to the Operation of Daeduk Nuclear Facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Won Tae; Lee, Young Bok; Han, Moon Hee; Kim, Eun Han; Suh, Kyung Suk; Choi, Young Gil [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-02-01

    The objective of this project is to assure the public acceptance for nuclear facilities and the environmental safety of Daeduk nuclear facilities, such as HANARO research reactor, nuclear fuel processing facility and other. For the assessment of the safety, the maximum individual doses at the site boundary and on the areas of high population density were assessed. Also, the population doses within radius 80 km from the site were investigated. The radiation impacts for residents around the site due to the operation of nuclear facilities in 1997 were neglectable. 9 refs., 43 tabs., 14 figs. (author)

  18. Radiation safety aspects of the AGOR superconducting cyclotron facility

    NARCIS (Netherlands)

    Beijers, JPM; de Meijer, RJ

    1996-01-01

    This paper describes shielding calculations and skyshine estimates for the new AGOR K=600 superconducting cyclotron facility. Both simple, semi-empirical models and Monte-Carlo simulations were used. The calculations are based on a 200 MeV proton beam incident on a trick aluminum target. Also the

  19. Upgrade and development of nuclear data production test facility

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Won; Ko, I. S.; Cho, M. H.; Lee, Y. S.; Kang, H. S. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National Univ., Daegu (Korea, Republic of); Koh, S. K. [Univ. of Ulsan, Ulsan (Korea, Republic of); Ro, T. I. [Donga Univ., Busan (Korea, Republic of); Choi, G. U. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2005-04-15

    It is necessary to improve the Pohang Neutron Facility (PNF) in order to be used as a nuclear data production facility for users in both domestic and abroad. We improved following items: upgrade the electron linac, collimators inside the TOF beam pipe, the development and installation of an automatic sample changer, the extension of the TOF beam line, and the data acquisition system. We would like to establish a utilization system for users to measure the nuclear data at the PNF. To do this, we made manuals for the accelerator operation and the data acquisition system. We also made an application form to apply for users to measure the nuclear data in both domestic and abroad. The main object of the Pohang Neutron Facility is to measure the nuclear data in the neutron energy region from thermal neutron to few hundreds of eV. In addition to neutron beams produced at the PNF, photon and electron beams are produced in this facility. We thus utilize this facility for other fields, such as test facility for detectors, activation experiments, polarized neutron beam source, and so on. In addition to these, we could use this facility for training students.

  20. Upgrade and Development of Nuclear Data Production Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    It is necessary to improve the Pohang Neutron Facility (PNF) in order to be used as a nuclear data production facility for users in both domestic and abroad. We improved following items: (1) upgrade the electron linac, (2) collimators inside the TOF beam pipe, (3) the development and installation of an automatic sample changer, (4) the extension of the TOF beam line, and (5) the data acquisition system. We would like to establish a utilization system for users to measure the nuclear data at the PNF. To do this, we made manuals for the accelerator operation and the data acquisition system. We also made an application form to apply for users to measure the nuclear data in both domestic and abroad. The main object of the Pohang Neutron Facility is to measure the nuclear data in the neutron energy region from thermal neutron to few hundreds of eV. In addition to neutron beams produced at the PNF, photon and electron beams are produced in this facility. We thus utilize this facility for other fields, such as test facility for detectors, activation experiments, polarized neutron beam source, and so on. In addition to these, we could use this facility for training students

  1. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  2. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R&D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets.

  3. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  4. Noise Radiation Measure-Sound Power and its Test Methods

    OpenAIRE

    Zeng Xianren; Zuo Yanyan

    2013-01-01

    This study mainly aims to study the characteristics and theory of sound radiation of steady-state vibration. Study shows that sound radiation power of steady-state vibration is constant. And taking excavator for experimental object by hemisphere surface method, the radiated sound power of the excavator is the same as testing the sound pressure on various surfaces based on relevant international standard. Finally, a test method of radiated sound power for cylindrical vibration object is proposed.

  5. R and D needs assessment for the Engineering Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The Engineering Test Facility (ETF), planned to be the next major US magnetic fusion device, has its mission (1) to provide the capability for moving into the engineering phase of fusion development and (2) to provide a test-bed for reactor components in a fusion environment. The design, construction, and operation of the ETF requires an increasing emphasis on certain key research and development (R and D) programs in magnetic fusion in order to provide the necessary facility design base. This report identifies these needs and discusses the apparent inadequacies of the presently planned US program to meet them, commensurate with the ETF schedule.

  6. Prototype space erectable radiator system ground test article development

    Science.gov (United States)

    Alario, Joseph P.

    1988-01-01

    A prototype heat rejecting system is being developed by NASA-JSC for possible space station applications. This modular system, the Space-Erectable Radiator System Ground Test Article (SERS-GTA) with high-capacity radiator panels, can be installed and replaced on-orbit. The design, fabrication and testing of a representative ground test article are discussed. Acceptance test data for the heat pipe radiator panel and the whiffletree clamping mechanism have been presented.

  7. Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2005-11-30

    This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

  8. Analyses of the OSU-MASLWR Experimental Test Facility

    Directory of Open Access Journals (Sweden)

    F. Mascari

    2012-01-01

    Full Text Available Today, considering the sustainability of the nuclear technology in the energy mix policy of developing and developed countries, the international community starts the development of new advanced reactor designs. In this framework, Oregon State University (OSU has constructed, a system level test facility to examine natural circulation phenomena of importance to multi-application small light water reactor (MASLWR design, a small modular pressurized water reactor (PWR, relying on natural circulation during both steady-state and transient operation. The target of this paper is to give a review of the main characteristics of the experimental facility, to analyse the main phenomena characterizing the tests already performed, the potential transients that could be investigated in the facility, and to describe the current IAEA International Collaborative Standard Problem that is being hosted at OSU and the experimental data will be collected at the OSU-MASLWR test facility. A summary of the best estimate thermal hydraulic system code analyses, already performed, to analyze the codes capability in predicting the phenomena typical of the MASLWR prototype, thermal hydraulically characterized in the OSU-MASLWR facility, is presented as well.

  9. Irradiation test facility of the HTTR and possible international cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Sanokawa, Konomo; Fujishoro, Toshio; Arai, Taketoshi; Miyamoto, Yoshiaki; Tanaka, Toshiyuki; Shiozawa, Shusaku [Oarai Research Establishment, Japan Atomic Energy Research Institute JAERI, Ibaraki-ken (Japan)

    1998-09-01

    The HTTR (High Temperature Engineering Test Reactor) is a high temperature gas-cooled reactor with a maximum helium coolant temperature of 950C at the reactor outlet. The construction of the HTTR started in March 1991 and its first criticality will be attained very soon. All of the components of the HTTR except fuels has been installed and an overall functional test of the components is under way. Fuel fabrication was finished and is ready to be installed in the reactor core. The HTTR project is intended to establish and upgrade the technology basis necessary for HTGR developments. At the same time new materials development, etc., are also planned for innovative basic research using the HTTR test facility. This paper describes the construction status of the HTTR, planned irradiation test facilities and possible international cooperation on irradiation test programs using the HTTR

  10. Uninstrumented assembly airflow testing in the Annular Flow Distribution facility

    Energy Technology Data Exchange (ETDEWEB)

    Kielpinski, A.L.

    1992-02-01

    During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

  11. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  12. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.; Nickson, R.; Harboe-Sorensen, R. [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W.; Berger, G.

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  13. Fermilab Test Beam Facility Annual Report. FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  14. Cold Vacuum Drying Facility Stack Air Sampling System Qualification Tests

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.

    2001-01-24

    This report documents tests that were conducted to verify that the air monitoring system for the Cold Vacuum Drying Facility ventilation exhaust stack meets the applicable regulatory criteria regarding the placement of the air sampling probe, sample transport, and stack flow measurement accuracy.

  15. 40 CFR 160.15 - Inspection of a testing facility.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Inspection of a testing facility. 160.15 Section 160.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE... not consider reliable for purposes of supporting an application for a research or marketing permit any...

  16. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    Science.gov (United States)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-06-01

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  17. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India)

    2012-06-05

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  18. Direct sunlight facility for testing and research in HCPV

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA (Italy); Barbera, Marco [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA, Italy and Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy); Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo [IDEA s.r.l., Contrada Molara, Zona Industriale III Fase, 90018 Termini Imerese (Panama) (Italy); Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy)

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  19. The development of radiation hardened robot for nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Seung Ho; Kim, Byung Soo and others

    2000-04-01

    The work conducted in this stage covers development of core technology of tele-robot system including monitoring technique in high-level radioactive area, tele-sensing technology and radiation-hardened technology for the non-destructive tele-inspection system which monitors the primary coolant system during the normal operations of PHWR(Pressurized Heavy Water Reactor) NPPs and measures the decrease of bending part of feeder pipe during overall. Based on the developed core technology, the monitoring mobile robot system of the primary coolant system and the feeder pipe inspecting robot system are developed.

  20. A simulation facility for testing Space Station assembly procedures

    Science.gov (United States)

    Hajare, Ankur R.; Wick, Daniel T.; Shehad, Nagy M.

    1994-11-01

    NASA plans to construct the Space Station Freedom (SSF) in one of the most hazardous environments known to mankind - space. It is of the utmost importance that the procedures to assemble and operate the SSF in orbit are both safe and effective. This paper describes a facility designed to test the integration of the telerobotic systems and to test assembly procedures using a real-world robotic arm grappling space hardware in a simulated microgravity environment.

  1. Beam profile monitoring at the test beam line at the Compact Linear Collider test facility

    Directory of Open Access Journals (Sweden)

    M. Olvegård

    2013-08-01

    Full Text Available The Compact Linear Collider (CLIC is a study for a future linear electron-positron collider based on a two-beam acceleration scheme in which a high-intensity drive beam is decelerated in order to provide the power to accelerate the main beam for collision in the TeV range. The power extracted from the drive beam deteriorates the beam quality and increases the energy spread significantly. Monitoring of the beam properties is therefore challenging but essential. These challenges are being addressed experimentally at the CLIC test facility where up to 55% of the power is extracted from the beam in the test beam line, a small-scale version of the CLIC drive-beam decelerator, leaving the beam with a very wide energy profile. For monitoring of the transverse beam profile and Twiss parameters we use optical transition radiation screens and quadrupole scans. The intra-pulse-train energy spectrum before and after deceleration is measured with segmented beam dumps. In this paper we discuss the performance of these diagnostic devices with a particular emphasis on the large energy spread and its effect on the beam imaging techniques, and with a final outlook to the CLIC drive-beam diagnostics.

  2. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    Science.gov (United States)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  3. Integral Test Facility PKL: Experimental PWR Accident Investigation

    Directory of Open Access Journals (Sweden)

    Klaus Umminger

    2012-01-01

    Full Text Available Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circulation pumps and steam generators (SGs arranged symmetrically around the reactor pressure vessel (RPV. The investigations carried out encompass a very broad spectrum from accident scenario simulations with large, medium, and small breaks, over the investigation of shutdown procedures after a wide variety of accidents, to the systematic investigation of complex thermal-hydraulic phenomena. This paper presents a survey of test objectives and programs carried out to date. It also describes the test facility in its present state. Some important results obtained over the years with focus on investigations carried out since the beginning of the international cooperation are exemplarily discussed.

  4. Production Facility Prototype Blower 1000 Hour Test Results II

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-08

    Long duration tests of the Aerzen GM 12.4 roots style blower in a closed loop configuration provides valuable data and lessons learned for long-term operation at the Mo-99 production facility. The blower was operated in a closed loop configuration with the flow conditions anticipated in plant operation with a Mo-100 target inline. The additional thermal energy generated from beam heating of the Mo-100 disks were not included in these tests. Five 1000 hour tests have been completed since the first test was performed in January of 2016. All five 1000 hour tests have proven successful in exposing preventable issues related to oil and helium leaks. All blower tests to this date have resulted in stable blower performance and consistency. A summary of the results for each test, including a review of the first and second tests, are included in this report.

  5. SIRHEX—A new experimental facility for high heat flux testing of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, André, E-mail: andre.kunze@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Ghidersa, Bradut-Eugen [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Bonelli, Flavia [Politecnico di Torino, Dipartimento Energia (Italy)

    2015-10-15

    Highlights: • Commercial infrared heaters have been qualified for future First Wall experiments. • In first tests surface heat flux densities up to 470 kW/m were achieved. • The homogeneity of the heat distribution stayed within ±5% of the nominal value. • With the heaters a typical ITER pulse can be reproduced. • An adequate testing strategy will be required to improve heater lifetime. - Abstract: SIRHEX (“Surface Infrared Radiation Heating Experiment”) is a small-scale experimental facility at KIT, which has been built for testing and qualifying high heat flux radiation heaters for blanket specific conditions using an instrumented water cooled target. This paper describes the SIRHEX facility and the experimental set-up for the heater tests. The results of a series of tests focused on reproducing homogeneous surface heat flux densities up to 500 kW/m{sup 2} will be presented and the impact of the heater performance on the design of the First Wall test rig will be discussed.

  6. 5-Megawatt solar-thermal test facility: environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-30

    An Environmental Assessment of the 5 Megawatt Solar Thermal Test Facility (STTF) is presented. The STTF is located at Albuquerque, New Mexico. The facility will have the capability for testing scale models of major subsystems comprising a solar thermal electrical power plant. The STTF capabilities will include testing a solar energy collector subsystem comprised of heliostat arrays, a receiver subsystem which consists of a boiler/superheater in which a working fluid is heated, and a thermal storage subsystem which includes tanks of high heat capacity material which stores thermal energy for subsequent use. The STTF will include a 200-foot receiver tower on which experimental receivers will be mounted. The Environmental Assessment describes the proposed STTF, its anticipated benefits, and the environment affected. It also evaluates the potential environmental impacts associated with STTF construction and operation.

  7. I and C functional test facility user guide

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ki Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ``C`` language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author).

  8. Design of a test facility for probe calibration

    Directory of Open Access Journals (Sweden)

    Šimák Jan

    2017-01-01

    Full Text Available A possibility to easily calibrate probes for flow field measurements is always welcome. From this reason, a design of a test facility for probe calibration was made. The probes will be calibrated in a free jet of known properties, which is created by an exchangeable nozzle to cover a wide range of Mach numbers up to Mach 2. The most important is to create a homogeneous flow across the test section. This is accomplished by a precise design of the nozzles carried out by numerical tools. The convergent nozzle part is common for all subsonic flow regimes while the divergent part (forming a de Laval nozzle is suited for a specific supersonic Mach number. These parts are designed using the method of characteristics. Numerical simulations performed by a CFD code show a feasibility and quality of the proposed test facility.

  9. INFLUENCE OF SCATTERED NEUTRON RADIATION ON METROLOGICAL CHARACTERISTICS OF АТ140 NEUTRON CALIBRATION FACILITY

    Directory of Open Access Journals (Sweden)

    D. I. Komar

    2017-01-01

    Full Text Available Today facilities with collimated radiation field are widely used as reference in metrological support of devices for neutron radiation measurement. Neutron fields formed by radionuclide neutron sources. The aim of this research was to study characteristics of experimentally realized neutron fields geometries on АТ140 Neutron Calibration Facility using Monte Carlo method.For calibration, we put a device into neutron field with known flux density or ambient equivalent dose rate. We can form neutron beam from radionuclide fast-neutron source in different geometries. In containercollimator of АТ140 Neutron Calibration Facility we can install special inserts to gather fast-neutron geometry or thermal-neutron geometry. We need to consider neutron scattering from air and room’s walls. We can conduct measurements of neutron field characteristics in several points and get the other using Monte Carlo method.Thermal neutron collimator forms a beam from radionuclide source with a significant amount of neutrons with thermal energies. From found relationship between full neutron flux and distance to neutron source we see that inverse square law is violated. Scattered radiation contribution into total flux increases when we are moving away from neutron source and significantly influences neutron fields characteristics. While source is exposed in shadow-cone geometry neutron specter has pronounced thermal component from wall scattering.In this work, we examined main geometry types used to acquire reference neutron radiation using radionuclide sources. We developed Monte Carlo model for 238Pu-Be neutron source and АТ140 Neutron Calibration Facility’s container-collimator. We have shown the most significant neutron energy distribution factor to be scattered radiation from room’s walls. It leads to significant changes of neutron radiation specter at a distance from the source. When planning location, and installing the facility we should consider

  10. Multiloop Integral System Test (MIST): MIST Facility Functional Specification

    Energy Technology Data Exchange (ETDEWEB)

    Habib, T F; Koksal, C G; Moskal, T E; Rush, G C; Gloudemans, J R [Babcock and Wilcox Co. (USA)

    1991-04-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Functional Specification documents as-built design features, dimensions, instrumentation, and test approach. It also presents the scaling basis for the facility and serves to define the scope of work for the facility design and construction. 13 refs., 112 figs., 38 tabs.

  11. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  12. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kerisit, Sebastien N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krogstad, Eirik J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burton, Sarah D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bjornstad, Bruce N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  13. Design study of an ERL Test Facility at CERN

    CERN Document Server

    Jensen, E; Brüning, O; Calaga, R; Catalan-Lasheras, N; Goddard, B; Klein, M; Torres-Sanchez, R; Valloni, A

    2014-01-01

    The modern concept of an Energy Recovery Linac allows providing large electron currents at large beam energy with low power consumption. This concept is used in FEL’s, electron-ion colliders and electron coolers. CERN has started a Design Study of an ERL Test Facility with the purpose of 1) studying the ERL principle, its specific beam dynamics and operational issues, as relevant for LHeC, 2) providing a test bed for superconducting cavity modules, cryogenics and integration, 3) studying beam induced quenches in superconducting magnets and protection methods, 4) providing test beams for detector R&D and other applications. It will be complementary to existing or planned facilities and is fostering international collaboration. The operating frequency of 802 MHz was chosen for performance and for optimum synergy with SPS and LHC; the design of the cryomodule has started. The ERL Test Facility can be constructed in stages from initially 150 MeV to ultimately 1 GeV in 3 passes, with beam currents of up to 8...

  14. The Development of a Radiation Hardened Robot for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil (and others)

    2007-04-15

    We has been developed two remotely controlled robotic systems. One is a underwater vehicle for inspection of the internal structures of PWRs and retrieving foreign stubs in the reactor pressure vessels and reactor coolant pipes. The other robotic system consists of a articulated-type mobile robot capable of recovering the failure of the fuel exchange machine and a mini modular mobile robot for inspection of feeder pipes with ultrasonic array sensors in PHWRs. The underwater robot has been designed by considering radiation effect, underwater condition, and accessibility to the working area. The size of underwater robot is designed to enter the cold legs. A extendable manipulator is mounted on the mobile robot, which can restore nuclear fuel exchange machine. The mini modular mobile robot is composed of dual inch worm mechanisms, which are constructed by two gripper bodies that can fix the robot body on to the pipe and move along the longitudinal and to rotate in a circumferential direction to access all of the outer surfaces of the pipe.

  15. Fast Flux Test Facility fuel and test management: The first 10 years

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, R.A.; Bennett, C.L.; Campbell, L.R.; Dobbin, K.D.; Tang, E.L.

    1991-07-01

    Core design and fuel and test management have been performed efficiently at the Fast Flux Test Facility. No outages have been extended to adjust core loadings. Development of mixed oxide fuels for advanced liquid metal breeder reactors has been carried out successfully. In fact, the fuel performance is extraordinary. Failures have been so infrequent that further development and refinement of fuel requirements seem appropriate and could lead to a significant reduction in projected electrical busbar costs. The Fast Flux Test Facility is also involved in early metal fuel development tests and appears to be an ideal test bed for any further fuel development or refinement testing. 3 refs., 4 figs., 2 tabs.

  16. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    Science.gov (United States)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  17. OPSys: optical payload systems facility for testing space coronagraphs

    Science.gov (United States)

    Fineschi, S.; Crescenzio, G.; Massone, G.; Capobianco, G.; Zangrilli, L.; Antonucci, E.; Anselmi, F.

    2011-10-01

    The Turin Astronomical Observatory, Italy, has implemented in ALTEC, Turin, a new Optical Payload Systems (OPSys) facility for testing of contamination sensitive optical space flight instrumentation. The facility is specially tailored for tests on solar instruments like coronagraphs. OPSys comprises an ISO 7 clean room for instrument assembly and a relatively large (4.4 m3) optical test and calibration vacuum chamber: the Space Optics Calibration Chamber (SPOCC). SPOCC consists of a test section with a vacuum-compatible motorized optical bench, and of a pipeline section with a sun simulator at the opposite end of the optical bench hosting the instrumentation under tests. The solar simulator is an off-axis parabolic mirror collimating the light from the source with the solar angular divergence. After vacuum conditioning, the chamber will operate at an ultimate pressure of 10-6 mbar. This work describes the SPOCC's vacuum system and optical design, and the post-flight stray-light tests to be carried out on the Sounding-rocket Experiment (SCORE). This sub-orbital solar coronagraph is the prototype of the METIS coronagraph for the ESA Solar Orbital mission whose closest perihelion is one-third of the Sun-Earth distance. The plans are outlined for testing METIS in the SPOCC simulating the observing conditions from the Solar Orbiter perihelion.

  18. Atmospheric Radiation Measurement Program facilities newsletter, November 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, D. J.

    2002-12-03

    Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle--In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled-down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results in large-scale global models. With measured values for a starting point, the SCM predicts atmospheric variables during prescribed time periods. A computer calculates values for such quantities as the amount of solar radiation reaching the surface and predicts how clouds will evolve and interact with incoming light from the sun. Researchers compare the SCM's predictions with actual measurements made during the IOP, then adjust the submodels to make predictions more reliable. A second IOP conducted concurrently with the SCM IOP involves high-altitude, long-duration aircraft flights. The original plan was to use an unmanned aerospace vehicle (UAV), but the National Aeronautics and Space Administration (NASA) aircraft Proteus will be substituted because all UAVs have been deployed elsewhere. The UAV is a small, instrument-equipped, remote-control plane that is operated from the ground by a computer. The Proteus is a manned aircraft, originally designed to carry telecommunications relay equipment, that can be reconfigured for uses such as reconnaissance and surveillance, commercial imaging, launching of small space satellites, and atmospheric research. The plane is designed for two on-board pilots in a pressurized cabin, flying to altitudes up to 65,000 feet for as long as 18 hours. The Proteus has a variable wingspan of 77-92 feet and is 56 feet long. The plane

  19. A high resolution cavity BPM for the CLIC Test Facility

    CERN Document Server

    Chritin, N.; Soby, L.; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.

    2012-01-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  20. Status of Centralized Environmental Creep Testing Facility Preparation and Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Battiste, Rick [ORNL

    2006-10-01

    Because the ASME Codes do not cover environmental issues that are crucial in the design and construction of VHTR system, investigation of long-term impure helium effects on metallurgical stability and properties becomes very important. The present report describes the development of centralized environmental creep testing facility, its close collaborations with the experiments in low velocity helium recirculation loop, important lessons learned, upgrades in system design in FY06, and current status of the development.

  1. First experimental data of the cryogenic safety test facility PICARD

    Science.gov (United States)

    Heidt, C.; Henriques, A.; Stamm, M.; Grohmann, S.

    2017-02-01

    The test facility PICARD, which stands for Pressure Increase in Cryostats and Analysis of Relief Devices, has been designed and constructed for cryogenic safety experiments. With a cryogenic liquid volume of 100 L, a nominal design pressure of 16 bar(g) and the capacity of measuring helium mass flow rates through safety relief devices up to 4 kg/s, the test facility allows the systematic investigation of hazardous incidents in cryostats under realistic conditions. In the course of experiments, the insulating vacuum is vented with atmospheric air or gaseous nitrogen at ambient temperature under variation of the venting diameter, the thermal insulation, the cryogenic fluid, the liquid level and the set pressure in order to analyze the impact on the heat flux and hence on the process dynamics. A special focus will be on the occurrence and implications of two-phase flow during expansion and on measuring the flow coefficients of safety devices at cryogenic temperatures. This paper describes the commissioning and the general performance of the test facility at liquid helium temperatures. Furthermore, the results of first venting experiments are presented.

  2. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  3. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    Science.gov (United States)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  4. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  5. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  6. Embracing Safe Ground Test Facility Operations and Maintenance

    Science.gov (United States)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  7. Results from phase 2 of the radioiodine test facility experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J.M.; Kupferschmid, W.C.H.; Wren, J.C. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-01

    A series of intermediate-scale experiments were conducted in the Radioiodine Test Facility (RTF) in a vinyl-painted, zinc-primer coated, carbon steel vessel in order to assess the effects of vinyl surfaces on iodine volatility in both the presence and absence of radiation. This test series, Phase 2 of a larger, comprehensive program assessing a variety of containment surfaces, also examined the effects of organic (i.e., methyl ethyl ketone) and inorganic (i.e., hydrazine) additives, pH, and venting on the aqueous chemistry and volatility of solutions initially containing cesium iodide. These tests have clearly demonstrated that organics are released to the aqueous phase from the vinyl coating and that, under radiation conditions, these organics can have a significant effect on the formation of volatile iodine species. In particular, the RTF results suggest that radiolytic decomposition of the released organics results in dramatic reductions in pH and dissolved oxygen concentration, which in turn are responsible for increased formation of molecular iodine and organic iodides. When the pH was maintained at 10 (Test 3), much lower iodine volatility was observed; low iodine volatility was also observed in the absence of radiation. This test series also demonstrated that vinyl surfaces, particularly those in contact with the gas phase, were a sink for iodine. (author) 4 figs., 6 tabs., 17 refs.

  8. The LECCE cosmic ray testing facility for the ATLAS RPC

    Science.gov (United States)

    Bianco, M.; Cataldi, G.; Chiodini, G.; Coluccia, M. R.; Gorini, E.; Grancagnolo, F.; Perrino, R.; Primavera, M.; Spagnolo, S.; Tassielli, G.

    2006-09-01

    A detailed description of a dedicated facility built in the Lecce INFN and Physics Department High Energy Laboratory to test part of the Resistive Plate Counters (RPCs) of the ATLAS barrel muon spectrometer is presented. In this cosmic ray test stand the chambers are operated for the first time, after being assembled and equipped with all required services for gas and electrical connections. A complete set of measurements is performed on each chamber in order to certificate its quality and performances before the installation in the experiment.

  9. GENIUS-TF: a test facility for the GENIUS project

    Science.gov (United States)

    Klapdor-Kleingrothaus, H. V.; Baudis, L.; Dietz, A.; Heusser, G.; Krivosheina, I.; Majorovits, B.; Strecker, H.

    2002-04-01

    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the Genius Test-Facility will be built at the Laboratori Nazionali del Gran Sasso. With about 40kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation seasonal modulation signature within about 2yr of measurement using both, signal and signature of the claimed WIMP Dark Matter. The construction of the experiment has already been started, and four 2.5kg germanium detectors with an extreme low threshold of 500eV have been produced.

  10. The Development of the Code Safety Valve Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Kim, Young Ae; Park, Jong Woon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2007-07-01

    The Pressurizer Safety Valves (PSV) in Pressurized Water Reactors (PWRs) are required to provide the overpressure protection for the Reactor Coolant System (RCS) during the overpressure transients. According to the ASME OM code, all safety valves should be tested every 5 years with the acceptance tolerance of 1%. If one valve failed to meet this criterion, other two additional valves should be tested and if these valves don't meet the requirement, all valves should be tested. These frequent tests may make the valves decrepit and become a cause of leak. Therefore, increase of the acceptance tolerance is vital for the safe operation of the plant. In the United States, the acceptance tolerances are enlarged up to about 3% in most plants. This requires re-analysis of relevant accidents in FSAR. Also, the technical background data for the valve pop-up characteristics and the loop seal dynamics (if the plant has the loop seal in the upstream of PSV) are needed for the new safety analysis. Korea Hydro and Nuclear Power Company (KHNP) plans to build the PSV test facility for the purpose of providing the background data. This paper describes the preliminary design of the facility and studies on the system dynamics using GOTHIC-7.2a code to verify the pressure vessel capacities and to find the best operating condition.

  11. CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Steeper, T.

    2010-09-15

    This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that

  12. Prediction of the radiation situation during conditioned radioactive waste storage in hangar-type storage facilities

    Science.gov (United States)

    Rosnovskii, S. V.; Bulka, S. K.

    2014-02-01

    An original technology for the conditioning of solidified radioactive waste was developed by the Novovoronezh nuclear power plant (NPP) staff. The technology provides for waste placement inside NZK-150-1.5P containers with their further storage at light hangar-type storage facilities. A number of technical solutions were developed that allow for reducing the gamma-radiation dose rate from the package formed. A methodology for prediction of the radiation situation around hangars, depending on the radiation characteristics of irrecoverable shielding containers (ISCs) located in the peripheral row of a storage facility, was developed with the purpose of assuring safe storage. Based on empirical data, the field background gamma-radiation dose rate at an area as a function of the average dose rate at the hangar surface and the average dose rate close packages, placed in the peripheral row of the storage facility, was calculated. The application of the developed methodology made it possible to reduce by ten times the expenditures for the conditioning and holding of solidified radioactive waste (SRW) while unconditionally providing storage safety.

  13. 78 FR 59946 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-09-30

    ... and Instrumented Initial Testing Facilities Which Meet Minimum Standards To Engage in Urine Drug... the Laboratories and Instrumented Initial Testing Facilities (IITF) currently certified to meet the standards of the Mandatory Guidelines for Federal Workplace Drug Testing Programs (Mandatory Guidelines...

  14. 78 FR 7795 - Current List of Laboratories and Instrumented Initial Testing Facilities Which Meet Minimum...

    Science.gov (United States)

    2013-02-04

    ... and Instrumented Initial Testing Facilities Which Meet Minimum Standards To Engage in Urine Drug... the Laboratories and Instrumented Initial Testing Facilities (IITF) currently certified to meet the standards of the Mandatory Guidelines for Federal Workplace Drug Testing Programs (Mandatory Guidelines...

  15. Evaluation and redesign of radiation shielding in a radionuclide production facility at a particle accelerator / Onalenna Kegopotsemang

    OpenAIRE

    Kegopotsemang, Onalenna

    2004-01-01

    iThemba LABS is a particle accelerator facility housing a radionuclide production facility that uses a 66 MeV proton beam to produce radionuclides for medical and industrial use. Ionising radiation is produced by a variety of sources at Themba LABS. Ionising is a health hazard. High doses can cause acute radiation syndrome, i.e. "radiation sickness". Lower doses cannot cause acute symptom, but carry a risk of radiation-related cancer. Ionising radiation is also detrimental to materials, and c...

  16. Sandia National Laboratories' new high level acoustic test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J. D.; Hendrick, D. M.

    1989-01-01

    A high intensity acoustic test facility has been designed and is under construction at Sandia National Laboratories in Albuquerque, NM. The chamber is designed to provide an acoustic environment of 154dB (re 20 {mu}Pa) overall sound pressure level over the bandwidth of 50 Hz to 10,000 Hz. The chamber has a volume of 16,000 cubic feet with interior dimensions of 21.6 ft {times} 24.6 ft {times} 30 ft. The construction of the chamber should be complete by the summer of 1990. This paper discusses the design goals and constraints of the facility. The construction characteristics are discussed in detail, as are the acoustic performance design characteristics. The authors hope that this work will help others in designing acoustic chambers. 12 refs., 6 figs.

  17. The ERDA/LeRC Photovoltaic Systems Test Facility

    Science.gov (United States)

    Forestieri, A. F.

    1978-01-01

    The ERDA/LeRC Photovoltaic Systems Test Facility (STF) provides a vital support function to the overall ERDA National Solar Photovoltaic Program. It allows preliminary investigation and checkout of components, subsystems, and complete photovoltaic systems before installation in actual service. The STF can also be used to determine optimum system configurations and operating modes. A facility description is presented, taking into account the solar cell array, the energy storage equipment, the power conditioning equipment, electric utility distribution network and loads, and instrumentation and data acquisition systems. Safety procedures which have been set up for maintenance and inspection of the solar array are discussed. Attention is also given to a number of investigations regarding the effect of environmental factors on solar cell array operation.

  18. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  19. Information on the Advanced Plant Experiment (APEX) Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The purpose of this report provides information related to the design of the Oregon State University Advanced Plant Experiment (APEX) test facility. Information provided in this report have been pulled from the following information sources: Reference 1: R. Nourgaliev and et.al, "Summary Report on NGSAC (Next-Generation Safety Analysis Code) Development and Testing," Idaho National Laboratory, 2011. Note that this is report has not been released as an external report. Reference 2: O. Stevens, Characterization of the Advanced Plant Experiment (APEX) Passive Residual Heat Removal System Heat Exchanger, Master Thesis, June 1996. Reference 3: J. Reyes, Jr., Q. Wu, and J. King, Jr., Scaling Assessment for the Design of the OSU APEX-1000 Test Facility, OSU-APEX-03001 (Rev. 0), May 2003. Reference 4: J. Reyes et al, Final Report of the NRC AP600 Research Conducted at Oregon State University, NUREG/CR-6641, July 1999. Reference 5: K. Welter et al, APEX-1000 Confirmatory Testing to Support AP1000 Design Certification (non-proprietary), NUREG-1826, August 2005.

  20. Radiation protection in nuclear facilities; Dossier: Radioprotection et installations nucleaires de base

    Energy Technology Data Exchange (ETDEWEB)

    Piechowski, J. [Direction Generale de la Sante, 75 - Paris (France); Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th [Centre d`Etude sur l`evaluation de la protection dans le domaine nucleaire (CEPN), 75 - Paris (France); Lecomte, J.F. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Massuelle, M.H.; Hubert, Ph. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire, Dept. de Protection de la Sante de l`Homme et de la Dosimetrie (DPHD); Delmont, D. [CEA Grenoble, 38 (France). Service de Protection contre les Rayonnements et de Surveillance de l`Environnement (SPRSE); Boitel, S.; Le Fauconnier, J.P. [CEA Centre d`Etudes de Valduc, 21 - Is-sur-Tille (France). Dept. de Support Technique et Administratif; Kalimbadjian, J. [Cogema la Hague, 50 (France). Service de Prevention et de Radioprotection; Laize, J. [Cogema la Hague, 50 (France). Groupe Radioprotection atelier T7; Blain, A. [Framatome, 69 - Lyon (France). Dept. Radioprotection Securite des Services Nucleaires; Cassou, M. [Electricite de France (EDF), 13 - Marseille (France). Projet RGV; Jacq, V.; Champion, D. [Ministere de l`Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75-Paris (France). Direction de la Surete des Installations Nucleaires; Spira, A.; Bouton, O. [Institut National de la Sante et de la Recherche Medicale (INSERM), Paris-11 Univ. (France); Sugier, A [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Bishop, A.J. [Commission de Controle de l`Energie Atomique, 75 - Paris (France); Zerbib, J.C. [Conseil superieur de la Surete et de l`information Nucleaires, 75 - Paris (France); Barbey, P. [Association pour le Controle de la Radioactivite dans l`Ouest, ACRO (France)

    1998-06-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.) 20 refs.

  1. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Mikhail [Michigan State Univ., East Lansing, MI (United States); Mokhov, Nikolai [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Niita, Koji [Research Organization for Information Science and Technology, Ibaraki-ken (Japan)

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  2. Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    Science.gov (United States)

    Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

    2014-01-01

    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

  3. European radiation protection in the Essen practice test; Europaeischer Strahlenschutz im Essener Praxistest

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Bernd; Ludwig, Sabine; Peinsipp, Norbert (eds.)

    2013-07-01

    The proceeding of the meeting European radiation protection in the Essen practice test includes contributions to the following issues: basic radiation protection standards; clearance values and permitted activities; optimization, guidance values for dose limits; radon and radiation protection standards; radiation protection - eye lens; RPE (radiation protection expert)/RPO (radiation protection officer); environmental radiation protection; radiation protection in medicine.

  4. Fast Flux Test Facility Asbestos Location Tracking Program

    Energy Technology Data Exchange (ETDEWEB)

    REYNOLDS, J.A.

    1999-04-13

    Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

  5. Upgrade of the BATMAN test facility for H- source development

    Science.gov (United States)

    Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-01

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  6. High current test facility for superconductors at Saclay

    CERN Document Server

    Berriaud, C; Vieillard, L

    2001-01-01

    A high DC current (100 kA-design) test facility for superconducting material is under realisation. Aluminum stabilised conductor (as for LHC detectors) can be tested Including the stabiliser in a 4.75 T dipole field of 0.8 m length which can be rotated in both cable perpendicular directions. A superconductor transformer creates the high current with a primary current from -200 A to +200 A. The output power useable is 25 kJ so that junctions between cables or conductors can be measured at high current. Samples, with a cross sections up to 12 mm*30 mm, were 0.8 m long and were equipped with soldered cables of 0.4 m length at both ends. To test different samples without warming the dipole magnet, samples are placed in a separate dewar. The conception design is described and the first results without external dipole magnetic field are reported. (9 refs).

  7. Wipe testing of sealed radiation sources using a radiation protection assistant robot

    OpenAIRE

    Zeb Jahan; Rashid Farooq; Iqbal Naeem; Ahmad Nasir

    2009-01-01

    Sealed radiation sources are commonly used in different research institutes, industries, and hospitals. The sources of various strengths are manufactured in different sizes and shapes. It is a regulatory requirement that these sources must be monitored frequently for their integrity and to avoid any radiological contamination hazard. Mainly, a wipe test is recommended for the contamination detection due to the leakage of sealed radiation sources. A radiation protection assistant robot has bee...

  8. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  9. Design of Pump as Turbine Experimental Test Facility

    Directory of Open Access Journals (Sweden)

    Zariatin D. L.

    2017-01-01

    Full Text Available This paper presents the design process of experimental test facility for pump as turbine hydropower system. Three design possibilities that related to the PAT condition of operation was developed and analyzed by using CFD Software. It is found that the First Variant with a straight flow to the PAT will produce higher velocity, which is needed to generate more rotation of the shaft generator, in order to generate more electric power. The strength of PAT construction was analyzed by using FEM software. It was found that the maximum stress is 6 MPa and can be concluded that the construction is appropriate to the design requirement.

  10. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  11. Proton irradiation test on the flight model radiation monitor for LISA Pathfinder

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, I; Lobo, A; Sanjuan, J; Diaz-Aguilo, M [Institut de Ciencies de l' Espai (CSIC-IEEC), Ed. Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Ramos-Castro, J [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya (UPC), Campus Nord, Ed. C4, Jordi Girona 1-3, 08034 Barcelona (Spain); Wass, P J [Dipartimento di Fisica, Universita di Trento and INFN Gruppo collegato di Trento, via Sommarive 14, 38050 Povo (Italy); Grimani, C, E-mail: mateos@ice.csic.e [Istituto di Fisica Universita degli Studi di Urbino ' Carlo Bo' , Urbino (PU) and Istituto a Nazionale di Fisica Nucleare, Florence (Italy)

    2010-05-01

    The design of the Radiation Monitor in the LISA Technology Package on board LISA Pathfinder is based on two silicon PIN diodes, placed parallel to each other in a telescopic configuration. One of them will be able to record spectral information of the particle hitting the diode. A test campaign for the Flight Model Radiation Monitor is proposed to verify its performance. This paper shows the results obtained with a simulated flight model geometry using GEANT4, to be compared with the real data that will be obtained in a proton irradiation facility.

  12. The benefit of the European User Community from transnational access to national radiation facilities.

    Science.gov (United States)

    Barrier, Elise; Braz Fernandes, Francisco Manuel; Bujan, Maya; Feiters, Martin C; Froideval, Annick; Ghijsen, Jacques; Hase, Thomas; Hough, Michael A; Jergel, Matej; Jimenez, Ignacio; Kajander, Tommi; Kikas, Arvo; Kokkinidis, Michael; Kover, Laszlo; Larsen, Helge B; Lawson, David Mark; Lawniczak-Jablonska, Krystyna; Mariani, Carlo; Mikulik, Petr; Monnier, Judith; Morera, Solange; McGuinness, Cormac; Müller-Buschbaum, Peter; Meedom Nielson, Martin; Pietsch, Ullrich; Tromp, Moniek; Simon, Marc; Stangl, Julian; Zanotti, Giuseppe

    2014-05-01

    Transnational access (TNA) to national radiation sources is presently provided via programmes of the European Commission by BIOSTRUCT-X and CALIPSO with a major benefit for scientists from European countries. Entirely based on scientific merit, TNA allows all European scientists to realise synchrotron radiation experiments for addressing the Societal Challenges promoted in HORIZON2020. In addition, by TNA all European users directly take part in the development of the research infrastructure of facilities. The mutual interconnection of users and facilities is a strong prerequisite for future development of the research infrastructure of photon science. Taking into account the present programme structure of HORIZON2020, the European Synchrotron User Organization (ESUO) sees considerable dangers for the continuation of this successful collaboration in the future.

  13. Passive and Active Radiation Measurements Capability at the INL Zero Power Physics Reactor (ZPPR) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Robert Neibert; John Zabriskie; Collin Knight; James L. Jones

    2010-12-01

    The Zero Power Physics Reactor (ZPPR) facility is a Department of Energy facility located in the Idaho National Laboratory’s (INL) Materials and Fuels Complex. It contains various nuclear and non-nuclear materials that are available to support many radiation measurement assessments. User-selected, single material, nuclear and non-nuclear materials can be readily utilized with ZPPR clamshell containers with almost no criticality concerns. If custom, multi-material configurations are desired, the ZPPR clamshell or an approved aluminum Inspection Object (IO) Box container may be utilized, yet each specific material configuration will require a criticality assessment. As an example of the specialized material configurations possible, the National Nuclear Security Agency’s Office of Nuclear Verification (NNSA/NA 243) has sponsored the assembly of six material configurations. These are shown in the Appendixes and have been designated for semi-permanent storage that can be available to support various radiation measurement applications.

  14. Numerical Tests and Properties of Waves in Radiating Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B M; Klein, R I

    2009-09-03

    We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare the solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.

  15. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  16. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    OpenAIRE

    Ammigan, Kavin; Amroussia, Aida; Avilov, Mikhail; Boehlert, Carl; Calviani, Marco; Casella, Andrew; Densham, Chris; Fornasiere, Elvis; Hurh, Patrick; Ishida, Taku; KUKSENKO Viacheslav; Lee, Yongjoong; Makimura, Shunsuke; Mausner, Leonard; Medvedev, Dmitri

    2017-01-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collabor...

  17. Test Facilities in Support of High Power Electric Propulsion Systems

    Science.gov (United States)

    van Dyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert

    2003-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.

  18. An assessment of research opportunities and the need for synchrotron radiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held.

  19. RADIATION CONTROL DURING THE CONSTRUCTION OF THE OLYMPIC FACILITIES IN SOCHI CITY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2015-01-01

    Full Text Available This paper presents data on the organization and results of the provision of the radiation safety in the period of preparation for the Winter Olympic and Paralympic games in Sochi, 2014. The following topics are overviewed in the paper: allocation of land plots for construction of the Olympic facilities; organization of the sanitary surveillance of the imported equipment, construction materials and designs for the construction of the Olympic facilities; putting the Olympic venues into operation. Dose rate of gamma radiation at all land plots, which were allocated for the construction of the Olympic facilities, conformed to the requirements of sanitary regulations. The average dose rate of gamma radiation was 0.11 μSv h-1 in the Coastal cluster and 0.14 μSv h-1 in the Mountain cluster. The radon fluence rate from the ground surface exceeded the prescribed limit of 80 mBq m-2 s-1 only at the land plot allocated for construction of the «House of receiving official delegations «Achipse» and the «House of receiving official delegations «Psekhako» in the Mountain cluster. The maximal value of 188 mBq m-2 s -1 was registered here. The buildings projects for this area included using radon protection measures, which were implemented during the construction.

  20. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server

    MARTYR, A J

    2012-01-01

    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  1. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, Jimmy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Individual datastreams from instrumentation at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research observatories (sites) are collected and routed to the ARM Data Center (ADC). The Data Management Facility (DMF), a component of the ADC, executes datastream processing in near-real time. Processed data are then delivered approximately daily to the ARM Data Archive, also a component of the ADC, where they are made freely available to the research community. For each instrument, ARM calculates the ratio of the actual number of processed data records received daily at the ARM Data Archive to the expected number of data records. DOE requires national user facilities to report time-based operating data.

  2. Radiation management during restoration works after fire and explosion accident of Asphalt Solidification Facility (ASP)

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Kenjiro; Ninomiya, Kazushige; Imakuma, Yoshikazu (and others)

    1999-04-01

    A fire broke out at 10:06 a.m. March 11 in 1997 in asphalt filling up room of Asphalt Solidification Processing Facility (ASP) in Japan Nuclear Cycle Development Institute (JNC), and an explosion occurred at 8:04 p.m. on the same day. A large number of installations and equipment in the facility were damaged by the accident. As the containment function of the facility were lost, radioactive materials were released to outside of the facility. Thirty seven workers (thirty four workers inside the ASP building at fire, and three workers near the ASP at explosion) suffered internal exposures. Effective dose equivalent for each worker which was estimated based on the intake of radioactive materials, was below the record level for internal exposure management (2msv). Restoration works of the ASP including repairs of broken windows, shutters, doors, ventilation exhaust systems, radiation control and management equipment, and decontamination, were completed on July 31 in 1998. The radiation management during the restoration are described in this report. (Suetake, M.)

  3. Experimental facility for testing nuclear instruments for planetary landing missions

    Science.gov (United States)

    Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey

    2017-04-01

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.

  4. Knowledge, skills, and abilities for key radiation protection positions at DOE facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This document provides detailed qualification criteria for contractor key radiation protection personnel. Although federal key radiation protection positions are also identified, qualification standards for federal positions are provided in DOE O 360.1 and the DOE Technical Qualifications Program. Appendices B and D provide detailed listings for knowledge, skills, and abilities for contractor and DOE federal key radiation protection positions. This information may be used in developing position descriptions and individual development plans. Information provided in Appendix C may be useful in developing performance measures and assessing an individual`s performance in his or her specific position. Additionally, Federal personnel may use this information to augment their Office/facility qualification standards under the Technical Qualifications Program.

  5. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2010-03-12

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  6. Preliminary design of safety and interlock system for indian test facility of diagnostic neutral beam

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Himanshu, E-mail: htyagi@iter-india.org [ITER-India, Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Soni, Jignesh [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Yadav, Ratnakar; Bandyopadhyay, Mainak; Rotti, Chandramouli [ITER-India, Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Gahlaut, Agrajit [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Joshi, Jaydeep; Parmar, Deepak [ITER-India, Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India); Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun [Institute For Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2016-11-15

    Highlights: • Indian Test Facility being built to characterize DNB for ITER delivery. • Interlock system required to safeguard the investment incurred in building the facility and protecting ITER deliverable components. • Interlock levels upto 3IL-3 identified. • Safety instrumented system for occupational safety being designed. Safety I&C functions of SIL-2 identified. • The systems are based on ITER PIS and PSS design guidelines. - Abstract: Indian Test Facility (INTF) is being built in Institute For Plasma Research to characterize Diagnostic Neutral Beam in co-operation with ITER Organization. INTF is a complex system which consists of several plant systems like beam source, gas feed, vacuum, cryogenics, high voltage power supplies, high power RF generators, mechanical systems and diagnostics systems. Out of these, several INTF components are ITER deliverable, that is, beam source, beam line components and power supplies. To ensure successful operation of INTF involving integrated operation of all the constituent plant systems a matured Data Acquisition and Control System (DACS) is required. The INTF DACS is based on CODAC platform following on PCDH (Plant Control Design Handbook) guidelines. The experimental phases involve application of HV power supplies (100 KV) and High RF power (∼800 KW) which will produce energetic beam of maximum power 6MW within the facility for longer durations. Hence the entire facility will be exposed tohigh heat fluxes and RF radiations. To ensure investment protection and to provide occupational safety for working personnel a matured Safety and Interlock system is required for INTF. The Safety and Interlock systems are high-reliability I&C systems devoted completely to the specific functions. These systems will be separate from the conventional DACS of INTF which will handle the conventional control and acquisition functions. Both, the Safety and Interlock systems are based on IEC 61511 and IEC 61508 standards as

  7. Manual for operation of the multipurpose thermalhydraulic test facility TOPFLOW (Transient Two Phase Flow Test Facility); Betriebshandbuch fuer die Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S. [SAAS Systemanalyse und Automatisierungsservice GmbH, Possendorf (Germany)

    2004-07-01

    The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)

  8. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Chantant, M., E-mail: michel.chantant@cea.fr [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Genini, L. [CEA/DSM/Irfu CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Bayetti, P. [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Millet, F. [CEA/DSM/INAC, F-38054 Grenoble Cedex (France); Wanner, M. [F4E, Broader Fusion Development Department Boltzmannstr.2, D-85748 Garching (Germany); Massaut, V. [SCK/CEN Boeretang 200 2400 Mol (Belgium); Corte, A. Della [ENEA CRE Frascati Via Enrico Fermi 45 CP65 00044 frascati Italy (Italy); Ardelier-Desage, F. [CEA/DSM/Irfu CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Catherine-Dumont, V. [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Dael, A. [CEA/DSM/Irfu CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Decool, P. [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Donati, A. [CEA/DSM/Irfu CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P. [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Jamotton, P. [CSL-LIEGE Science Park, Avenue du Pre-Aily, 4031 Angleur (Belgium); Jourdheuil, L. [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Juster, F.P. [CEA/DSM/Irfu CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2011-10-15

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  9. Power Systems Development Facility Gasification Test Run TC11

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2003-04-30

    This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

  10. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  11. Analyses of Control Surface Seal Tested in the Ames Arc Jet Tunnel (Panel Test Facility)

    Science.gov (United States)

    Reich, Alton J.; Athavale, Mahesh; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Breen, Daniel P.; Robbie, Malcolm G.

    2002-01-01

    The contents include: 1) Rope Seal; 2) Improvements to porous medial simulation in CFD-ACE+; 3) Porous media heat transfer validation case-stead-state and transient flat plate; 4) Simulation of GRC cold flow seal test fixture; 5) Simulation of calibration plate in the Panel Test Facility (PTF); and 6) Simulation of rope seal test in the PTF. This paper is in viewgraph form.

  12. Radiation shielding calculations for MuCool test area at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Igor Rakhno; Carol Johnstone

    2004-05-26

    The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets being developed for cooling intense muon beams. In this shielding study the results of Monte Carlo radiation shielding calculations performed using the MARS14 code for the MuCool Test Area and including the downstream portion of the target hall and berm around it, access pit, service building, and parking lot are presented and discussed within the context of the proposed MTA experimental configuration.

  13. Radiation Testing at Sandia National Laboratories: Sandia – JPL Collaboration for Europa Lander

    Energy Technology Data Exchange (ETDEWEB)

    Hattar, Khalid Mikhiel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Ion Beam Lab.; Olszewska-Wasiolek, Maryla Aleksandra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Gamma Irradiation Facility

    2017-01-01

    Sandia National Laboratories (SNL) is assisting Jet Propulsion Laboratory in undertaking feasibility studies and performance assessments for the Planetary Protection aspect of the Europa Lander mission. The specific areas of interest for this project are described by task number. This white paper presents the evaluation results for Task 2, Radiation Testing, which was stated as follows: Survey SNL facilities and capabilities for simulating the Europan radiation environment and assess suitability for: A. Testing batteries, electronics, and other component and subsystems B. Exposing biological organisms to assess their survivability metrics. The radiation environment the Europa Lander will encounter on route and in orbit upon arrival at its destination consists primarily of charged particles, energetic protons and electrons with the energies up to 1 GeV. The charged particle environments can be simulated using the accelerators at the Ion Beam Laboratory. The Gamma Irradiation Facility and its annex, the Low Dose Rate Irradiation Facility, offer irradiations using Co-60 gamma sources (1.17 and 1.33 MeV), as well as Cs-137 gamma (0.661 MeV) AmBe neutron (0-10 MeV) sources.

  14. The Fast Flux Test Facility shutdown program plan

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S.; Jones, D.H.; Midgett, J.C.; Nielsen, D.L.

    1995-01-01

    The Fast Flux Test Facility (FFTF) is a 400 MWt sodium-cooled research reactor owned by the US Department of Energy (DOE) and operated by the Westinghouse Hanford Company (WHC) on the Hanford Site in southeastern Washington State. The decision was made by the DOE in December, 1993, to initiate shutdown of the FFTF. This paper describes the FFTF Transition Project Plan (1) (formerly the FFTF Shutdown Program Plan) which provides the strategy, major elements, and project baseline for transitioning the FFTF to an industrially and radiologically safe shutdown condition. The Plan, and its resource loaded schedule, indicate this transition can be achieved in a period of six to seven years at a cost of approximately $359 million. The transition activities include reactor defueling, fuel offload to dry cask storage, sodium drain and reaction, management of sodium residuals, shutdown of auxiliary systems, and preparation of appropriate environmental and regulatory documentation. Completion of these activities will involve resolution of many challenging and unique issues associated with shutdown of a large sodium reactor facility. At the conclusion of these activities, the FFTF will be in a safe condition for turnover to the Hanford Site Environmental Restoration Contractor for a long term surveillance and maintenance phase and decommissioning.

  15. Hypervelocity Impact Test Facility: A gun for hire

    Science.gov (United States)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  16. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S.; Lischke, W. [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1997-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  17. Production Facility Prototype Blower 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended tests of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.

  18. Cryogenic system for the Cryomodule Test Facility at Fermilab

    Science.gov (United States)

    White, Michael; Martinez, Alex; Bossert, Rick; Dalesandro, Andrew; Geynisman, Michael; Hansen, Benjamin; Klebaner, Arkadiy; Makara, Jerry; Pei, Liujin; Richardson, Dave; Soyars, William; Theilacker, Jay

    2014-01-01

    This paper provides an overview of the current progress and near-future plans for the cryogenic system at the new Cryomodule Test Facility (CMTF) at Fermilab, which includes the helium compressors, refrigerators, warm vacuum compressors, gas and liquid storage, and a distribution system. CMTF will house the Project X Injector Experiment (PXIE), which is the front end of the proposed Project X. PXIE includes one 162.5 MHz half wave resonator (HWR) cryomodule and one 325 MHz single spoke resonator (SSR) cryomodule. Both cryomodules contain superconducting radio-frequency (SRF) cavities and superconducting magnets operated at 2.0 K. CMTF will also support the Advanced Superconducting Test Accelerator (ASTA), which is located in the adjacent New Muon Lab (NML) building. A cryomodule test stand (CMTS1) located at CMTF will be used to test 1.3 GHz cryomodules before they are installed in the ASTA cryomodule string. A liquid helium pump and transfer line will be used to provide supplemental liquid helium to ASTA.

  19. Power Systems Development Facility Gasification Test Campaing TC18

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  20. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-14

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  1. A laboratory facility for electric vehicle propulsion system testing

    Science.gov (United States)

    Sargent, N. B.

    1980-01-01

    The road load simulator facility located at the NASA Lewis Research Center enables a propulsion system or any of its components to be evaluated under a realistic vehicle inertia and road loads. The load is applied to the system under test according to the road load equation: F(net)=K1F1+K2F2V+K3 sq V+K4(dv/dt)+K5 sin theta. The coefficient of each term in the equation can be varied over a wide range with vehicle inertial representative of vehicles up to 7500 pounds simulated by means of flywheels. The required torque is applied by the flywheels, a hydroviscous absorber and clutch, and a drive motor integrated by a closed loop control system to produce a smooth, continuous load up to 150 horsepower.

  2. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  3. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  4. Beam Instrumentation for the Single Electron DAFNE Beam Test Facility

    CERN Document Server

    Mazzitelli, G; Valente, P; Vescovi, M

    2003-01-01

    The DAΦNE Beam Test Facility (BTF) has been successfully commissioned in February 2002, and started operation in November of the same year. Although the BTF is a beam transfer line optimized for single particle production, mainly for high energy detectors calibration, it can provide electrons and positrons in a wide range of multiplicity: between 1-1010, with energies from a few tens of MeV up to 800 MeV. The large multiplicity range requires many different diagnostic devices, from high-energy calorimeters and ionization/fluorescence chambers in the few particles range, to standard beam diagnostics systems. The schemes of operation, the commissioning results, as well as the beam diagnostics are presented.

  5. Nevada Test Site Radiation Protection Program - Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  6. Study of fast reactor safety test facilities. Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.; Boudreau, J.E.; McLaughlin, T.; Palmer, R.G.; Starkovich, V.; Stein, W.E.; Stevenson, M.G.; Yarnell, Y.L.

    1975-05-01

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods. (DG)

  7. ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

  8. Modeling and Simulation of Radiative Compressible Flows in Aerodynamic Heating Arc-Jet Facility

    Science.gov (United States)

    Bensassi, Khalil; Laguna, Alejandro A.; Lani, Andrea; Mansour, Nagi N.

    2016-01-01

    Numerical simulations of an arc heated flow inside NASA's 20 [MW] Aerodynamics heating facility (AHF) are performed in order to investigate the three-dimensional swirling flow and the current distribution inside the wind tunnel. The plasma is considered in Local Thermodynamics Equilibrium(LTE) and is composed of Air-Argon gas mixture. The governing equations are the Navier-Stokes equations that include source terms corresponding to Joule heating and radiative cooling. The former is obtained by solving an electric potential equation, while the latter is calculated using an innovative massively parallel ray-tracing algorithm. The fully coupled system is closed by the thermodynamics relations and transport properties which are obtained from Chapman-Enskog method. A novel strategy was developed in order to enable the flow solver and the radiation calculation to be preformed independently and simultaneously using a different number of processors. Drastic reduction in the computational cost was achieved using this strategy. Details on the numerical methods used for space discretization, time integration and ray-tracing algorithm will be presented. The effect of the radiative cooling on the dynamics of the flow will be investigated. The complete set of equations were implemented within the COOLFluiD Framework. Fig. 1 shows the geometry of the Anode and part of the constrictor of the Aerodynamics heating facility (AHF). Fig. 2 shows the velocity field distribution along (x-y) plane and the streamline in (z-y) plane.

  9. A Review on Radiation Damage in Concrete for Nuclear Facilities: From Experiments to Modeling

    Directory of Open Access Journals (Sweden)

    Beatrice Pomaro

    2016-01-01

    Full Text Available Concrete is a relatively cheap material and easy to be cast into variously shaped structures. Its good shielding properties against neutrons and gamma-rays, due to its intrinsic water content and relatively high-density, respectively, make it the most widely used material for radiation shielding also. Concrete is so chosen as biological barrier in nuclear reactors and other nuclear facilities where neutron sources are hosted. Theoretical formulas are available in nuclear engineering manuals for the optimum thickness of shielding for radioprotection purposes; however they are restricted to one-dimensional problems; besides the basic empirical constants do not consider radiation damage effects, while its long-term performance is crucial for the safe operation of such facilities. To understand the behaviour of concrete properties, it is necessary to examine concrete strength and stiffness, water behavior, volume change of cement paste, and aggregate under irradiated conditions. Radiation damage process is not well understood yet and there is not a unified approach to the practical and predictive assessment of irradiated concrete, which combines both physics and structural mechanics issues. This paper provides a collection of the most distinguished contributions on this topic in the past 50 years. At present a remarkable renewed interest in the subject is shown.

  10. Radiation Testing of Electronics for the CMS Endcap Muon System

    CERN Document Server

    INSPIRE-00070357; Celik, A.; Durkin, L.S.; Gilmore, J.; Haley, J.; Khotilovich, V.; Lakdawala, S.; Liu, J.; Matveev, M.; Padley, B.P.; Roberts, J.; Roe, J.; Safonov, A.; Suarez, I.; Wood, D.; Zawisza, I.

    2013-01-01

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels o...

  11. Power Systems Development Facility Gasification Test Run TC09

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-09-30

    This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

  12. Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.; Wachs, D.; Carmack, J.; Woolstenhulme, N.

    2017-01-01

    The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, and salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.

  13. Cone Penetrometer Load Cell Temperature and Radiation Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2013-08-28

    This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.

  14. Radiation Resistance Test of Wireless Sensor Node and the Radiation Shielding Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liqan; Sur, Bhaskar [Atomic Energy of Canada Limited, Ontario (Canada); Wang, Quan [University of Western Ontario, Ontario (Canada); Deng, Changjian [The University of Electronic Science and Technology, Chengdu (China); Chen, Dongyi; Jiang, Jin [Applied Physics Branch, Ontario (Korea, Republic of)

    2014-08-15

    A wireless sensor network (WSN) is being developed for nuclear power plants. Amongst others, ionizing radiation resistance is one essential requirement for WSN to be successful. This paper documents the work done in Chalk River Laboratories of Atomic Energy of Canada Limited (AECL) to test the resistance to neutron and gamma radiation of some WSN nodes. The recorded dose limit that the nodes can withstand before being damaged by the radiation is compared with the radiation environment inside a typical CANDU (CANada Deuterium Uranium) power plant reactor building. Shielding effects of polyethylene, cadmium and lead to neutron and gamma radiations are also analyzed using MCNP simulation. The shielding calculation can be a reference for the node case design when high dose rate or accidental condition (like Fukushima) is to be considered.

  15. Datasets for radiation network algorithm development and testing

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S [ORNL; Sen, Satyabrata [ORNL; Berry, M. L.. [New Jersey Institute of Technology; Wu, Qishi [University of Memphis; Grieme, M. [New Jersey Institute of Technology; Brooks, Richard R [ORNL; Cordone, G. [Clemson University

    2016-01-01

    Domestic Nuclear Detection Office s (DNDO) Intelligence Radiation Sensors Systems (IRSS) program supported the development of networks of commercial-off-the-shelf (COTS) radiation counters for detecting, localizing, and identifying low-level radiation sources. Under this program, a series of indoor and outdoor tests were conducted with multiple source strengths and types, different background profiles, and various types of source and detector movements. Following the tests, network algorithms were replayed in various re-constructed scenarios using sub-networks. These measurements and algorithm traces together provide a rich collection of highly valuable datasets for testing the current and next generation radiation network algorithms, including the ones (to be) developed by broader R&D communities such as distributed detection, information fusion, and sensor networks. From this multiple TeraByte IRSS database, we distilled out and packaged the first batch of canonical datasets for public release. They include measurements from ten indoor and two outdoor tests which represent increasingly challenging baseline scenarios for robustly testing radiation network algorithms.

  16. Power Systems Development Facility Gasification Test Run TC07

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-04-05

    This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

  17. Defense Waste Processing Facility Canister Closure Weld Current Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maxwell, D. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-29

    Two closure welds on filled Defense Waste Processing Facility (DWPF) canisters failed to be within the acceptance criteria in the DWPF operating procedure SW4-15.80-2.3 (1). In one case, the weld heat setting was inadvertently provided to the canister at the value used for test welds (i.e., 72%) and this oversight produced a weld at a current of nominally 210 kA compared to the operating procedure range (i.e., 82%) of 240 kA to 263 kA. The second weld appeared to experience an instrumentation and data acquisition upset. The current for this weld was reported as 191 kA. Review of the data from the Data Acquisition System (DAS) indicated that three of the four current legs were reading the expected values, approximately 62 kA each, and the fourth leg read zero current. Since there is no feasible way by further examination of the process data to ascertain if this weld was actually welded at either the target current or the lower current, a test plan was executed to provide assurance that these Nonconforming Welds (NCWs) meet the requirements for strength and leak tightness. Acceptance of the welds is based on evaluation of Test Nozzle Welds (TNW) made specifically for comparison. The TNW were nondestructively and destructively evaluated for plug height, heat tint, ultrasonic testing (UT) for bond length and ultrasonic volumetric examination for weld defects, burst pressure, fractography, and metallography. The testing was conducted in agreement with a Task Technical and Quality Assurance Plan (TTQAP) (2) and applicable procedures.

  18. Power Systems Development Facility Gasification Test Campaign TC25

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  19. Test of aerogel as Cherenkov radiator

    CERN Document Server

    Alemi, M; Calvi, M; Matteuzzi, C; Negri, P; Paganoni, M; Liko, D; Neufeld, N; Chesi, Enrico Guido; Joram, C; Séguinot, Jacques; Ypsilantis, Thomas

    2001-01-01

    Two different stacks of aerogel were tested in a pion/proton beam of momentum between 3 and 10 GeV/c. The optical characteristics of the aerogel samples were different: one sample was hygroscopic while the other was hydrophobic. Two HPD tubes were used as photodetectors, and different thicknesses of the stacks were used, in order to determine the photoelectron yield, the Cherenkov angle and its precision. Pion/proton separation has been demonstrated at momenta up to 10 GeV/c.

  20. Heater test planning for the near surface test facility at the Hanford reservation

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, A.; Binnall, E.; Chan, T.; McEvoy, M.; Nelson, P.; Remer, J.

    1979-03-01

    The underground test facility NSTF being constructed at Gable Mountain, is the site for a group of experiments designed to evaluate the thermo-mechanical suitability of a deep basalt stratum as a permanent repository for nuclear waste. Thermo-mechanical modeling was performed to help design the instrumentation arrays for the three proposed heater tests (two full scale tests and one time scale test) and predict the thermal environment of the heaters and instruments. The modeling does not reflect recent RHO revisions to the in situ heater experiment plan. Heaters, instrumentation, and data acquisition system designs and recommendations were adapted from those used in Sweden. (DLC)

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  2. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  4. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. POST-SHOT RADIATION ENVIRONMENT FOLLOWING LOW-YIELD SHOTS INSIDE THE NATIONAL IGNITION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, S; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Verbeke, J

    2010-10-29

    A detailed model of the Target Bay (TB) at the National Ignition Facility (NIF) has been developed to estimate the post-shot radiation environment inside the facility. The model includes large number of structures and diagnostic instruments present inside the TB. These structures and instruments are activated by the few nanosecond pulse of neutrons generated during a shot and the resultant gamma dose rates are estimated at various decay times following the shot. The results presented in this paper are based on a low-yield D-T shot of 10{sup 16} neutrons. General environment dose rates drop to below 3 mrem/h within three hours following a shot with higher dose rates observed at contact with some of the components. Dose rate maps of the different TB levels were generated to aid in estimating worker stay-out times following a shot before entry is permitted into the TB.

  6. PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J; Young, M; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Sitaraman, S

    2010-10-22

    A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10{sup 16} D-T shot and will be presented in this paper.

  7. A cyclotron isotope production facility designed to maximize production and minimize radiation dose

    Science.gov (United States)

    Dickie, W. J.; Stevenson, N. R.; Szlavik, F. F.

    1993-06-01

    Continuing increases in requirements from the nuclear medicine industry for cyclotron isotopes is increasing the demands being put on an aging stock of machines. In addition, with the 1990 recommendations of the ICRP publication in place, strict dose limits will be required and this will have an effect on the way these machines are being operated. Recent advances in cyclotron design combined with lessons learned from two decades of commercial production mean that new facilities can result in a substantial charge on target, low personnel dose, and minimal residual activation. An optimal facility would utilize a well engineered variable energy/high current H - cyclotron design, multiple beam extraction, and individual target caves. Materials would be selected to minimize activation and absorb neutrons. Equipment would be designed to minimize maintenance activities performed in high radiation fields.

  8. Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). User Test Planning Guide

    Science.gov (United States)

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ARMSEF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  9. Fast Flux Test Facility (FFTF) Briefing Book 1 Summary

    Energy Technology Data Exchange (ETDEWEB)

    WJ Apley

    1997-12-01

    This report documents the results of evaluations preformed during 1997 to determine what, if an, future role the Fast Flux Test Facility (FFTF) might have in support of the Department of Energy’s tritium productions strategy. An evaluation was also conducted to assess the potential for the FFTF to produce medical isotopes. No safety, environmental, or technical issues associated with producing 1.5 kilograms of tritium per year in the FFTF have been identified that would change the previous evaluations by the Department of Energy, the JASON panel, or Putnam, Hayes & Bartlett. The FFTF can be refitted and restated by July 2002 for a total expenditure of $371 million, with an additional $64 million of startup expense necessary to incorporate the production of medical isotopes. Therapeutic and diagnostic applications of reactor-generated medical isotopes will increase dramatically over the next decade. Essential medical isotopes can be produced in the FFTF simultaneously with tritium production, and while a stand-alone medical isotope mission for the facility cannot be economically justified given current marker conditions, conservative estimates based on a report by Frost &Sullivan indicate that 60% of the annual operational costs (reactor and fuel supply) could be offset by revenues from medical isotope production within 10 yeas of restart. The recommendation of the report is for the Department of Energy to continue to maintain the FFTF in standby and proceed with preparation of appropriate Nations Environmental Policy Act documentation in full consultation with the public to consider the FFTF as an interim tritium production option (1.5 kilograms/year) with a secondary mission of producing medical isotopes.

  10. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2008

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2009-12-01

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2008 annual reports submitted by five of the seven categories1 of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Because there are no geologic repositories for high-level waste currently licensed and no low-level waste disposal facilities in operation, only five categories will be considered in this report.

  11. Feasibility of low energy radiative capture experiments at the LUNA underground accelerator facility

    CERN Document Server

    Bemmerer, D; Lemut, A; Bonetti, R; Broggini, C; Corvisiero, P; Costantini, H; Cruz, J; Formicola, A; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, G; Imbriani, G; Jesus, A P; Junker, M; Limata, B; Menegazzo, R; Prati, P; Roca, V; Rogalla, D; Rolfs, C; Romano, M; Alvarez, C R; Schumann, F; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A; Fulop, Zs.; Gyurky, Gy.

    2005-01-01

    The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been designed to study nuclear reactions of astrophysical interest. It is located deep underground in the Gran Sasso National Laboratory, Italy. Two electrostatic accelerators, with 50 and 400 kV maximum voltage, in combination with solid and gas target setups allowed to measure the total cross sections of the radiative capture reactions $^2$H(p,$\\gamma$)3He and $^{14}$N(p,$\\gamma$)$^{15}$O within their relevant Gamow peaks. We report on the gamma background in the Gran Sasso laboratory measured by germanium and bismuth germanate detectors, with and without an incident proton beam. A method to localize the sources of beam induced background using the Doppler shift of emitted gamma rays is presented. The feasibility of radiative capture studies at energies of astrophysical interest is discussed for several experimental scenarios.

  12. Power Systems Development Facility Gasification Test Campaign TC24

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-03-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

  13. X-ray grating interferometer for biomedical imaging applications at Shanghai Synchrotron Radiation Facility.

    Science.gov (United States)

    Xi, Yan; Kou, Binquan; Sun, Haohua; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X; Xiao, Tiqiao; Wang, Yujie

    2012-09-01

    An X-ray grating interferometer was installed at the BL13W beamline of Shanghai Synchrotron Radiation Facility (SSRF) for biomedical imaging applications. Compared with imaging results from conventional absorption-based micro-computed tomography, this set-up has shown much better soft tissue imaging capability. In particular, using the set-up, the carotid artery and the carotid vein in a formalin-fixed mouse can be visualized in situ without contrast agents, paving the way for future applications in cancer angiography studies. The overall results have demonstrated the broad prospects of the existing set-up for biomedical imaging applications at SSRF.

  14. The present status of high-pressure research at Beijing Synchrotron Radiation Facility

    CERN Document Server

    Liu, J; Li, Y C

    2002-01-01

    The present status of high-pressure research at Beijing Synchrotron Radiation Facility is reported. A ten-poles wiggler beamline provides a white beam for investigating samples using a diamond anvil cell. In situ energy-dispersive diffraction is used to determine the pressure-induced phase transitions and equations of state. High pressure can be stably applied by a stepper-motorized loading system with a strain sensor. Some megabar experiments have been carried out without damage on diamonds. Improved beam collimation reduces the background and eliminates gasket scatter. Some research and future developments are also presented.

  15. Radiation testing of electronics for the CMS endcap muon system

    Science.gov (United States)

    Bylsma, B.; Cady, D.; Celik, A.; Durkin, L. S.; Gilmore, J.; Haley, J.; Khotilovich, V.; Lakdawala, S.; Liu, J.; Matveev, M.; Padley, B. P.; Roberts, J.; Roe, J.; Safonov, A.; Suarez, I.; Wood, D.; Zawisza, I.

    2013-01-01

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the innermost portion of the CMS detector, with 8900 rad over 10 years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  16. Research on Core Design for ACME Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Fang Fang; Qin, Ben Ke [Tsinghua University, Beijing (China); Chang, Hua Jian; Chen, Lian [State Nuclear Power Technology R and D Center, Beijing (China)

    2011-08-15

    The Advanced Core-Cooling Mechanism Experiment (ACME) is designed and will be built to assess the performance of the passive safety system of CAP1400. In the reactor core of ACME, the electrical heater rods simulating the fuel rods provide the energy that drives the natural circulation in the primary loop, and single phase and two phase natural circulation are the main physical processes transporting core decay heat during small break loss of coolant accident (SBLOCA), which is the key part of the ACME test program. Natural circulation scaling which determines the integral scaling parameters of the test facility was presented in this paper, and the criteria in the core design were also investigated, which leads to a procedure that could be applied to the core design. According to the results from calculation, the maximum heat flux of heater rods, the maximum power for a single rod would increase while the number of rods would decrease with the increasing of pitch to diameter ratio (P/D) and the rod diameter fixed. Therefore a reasonable pitch value can be obtained by considering the maximum heat flux, the maximum single-rod power and other engineering factors. On this basis, the number of rods could be selected according to the similarity principle of flow area. Finally, a reasonable core arrangement could be designed by requiring the core to be symmetrical and approximately circular.

  17. Cooled Ceramic Composite Panel Tested Successfully in Rocket Combustion Facility

    Science.gov (United States)

    Jaskowiak, Martha H.

    2003-01-01

    Regeneratively cooled ceramic matrix composite (CMC) structures are being considered for use along the walls of the hot-flow paths of rocket-based or turbine-based combined-cycle propulsion systems. They offer the combined benefits of substantial weight savings, higher operating temperatures, and reduced coolant requirements in comparison to components designed with traditional metals. These cooled structures, which use the fuel as the coolant, require materials that can survive aggressive thermal, mechanical, acoustic, and aerodynamic loads while acting as heat exchangers, which can improve the efficiency of the engine. A team effort between the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and various industrial partners has led to the design, development, and fabrication of several types of regeneratively cooled panels. The concepts for these panels range from ultra-lightweight designs that rely only on CMC tubes for coolant containment to more maintainable designs that incorporate metal coolant containment tubes to allow for the rapid assembly or disassembly of the heat exchanger. One of the cooled panels based on an all-CMC design was successfully tested in the rocket combustion facility at Glenn. Testing of the remaining four panels is underway.

  18. Arc Jet Facility Test Condition Predictions Using the ADSI Code

    Science.gov (United States)

    Palmer, Grant; Prabhu, Dinesh; Terrazas-Salinas, Imelda

    2015-01-01

    The Aerothermal Design Space Interpolation (ADSI) tool is used to interpolate databases of previously computed computational fluid dynamic solutions for test articles in a NASA Ames arc jet facility. The arc jet databases are generated using an Navier-Stokes flow solver using previously determined best practices. The arc jet mass flow rates and arc currents used to discretize the database are chosen to span the operating conditions possible in the arc jet, and are based on previous arc jet experimental conditions where possible. The ADSI code is a database interpolation, manipulation, and examination tool that can be used to estimate the stagnation point pressure and heating rate for user-specified values of arc jet mass flow rate and arc current. The interpolation is performed in the other direction (predicting mass flow and current to achieve a desired stagnation point pressure and heating rate). ADSI is also used to generate 2-D response surfaces of stagnation point pressure and heating rate as a function of mass flow rate and arc current (or vice versa). Arc jet test data is used to assess the predictive capability of the ADSI code.

  19. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  20. Power Systems Development Facility Gasification Test Campaign TC21

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2007-01-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of gasification operation with lignite coal following the 2006 gasifier configuration modifications. This demonstration took place during test campaign TC21, occurring from November 7, 2006, through January 26, 2007. The test campaign began with low sodium lignite fuel, and after 304 hours of operation, the fuel was changed to high sodium lignite, for 34 additional hours of operation. Both fuels were from the North Dakota Freedom mine. Stable operation with low sodium lignite was maintained for extended periods, although operation with high sodium lignite was problematic due to agglomeration formation in the gasifier restricting solids circulation.

  1. Testing of ceramic filter materials at the PCFB test facility; Keraamisten suodinmateriaalien testaus PCFB-koelaitoksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P.; Tiensuu, J. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula, Finland since 1986. In 1989, a 10 MW PCFB test facility was constructed. The test facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main objective of the project Y53 was to evaluate advanced candle filter materials for the Hot Gas Clean-up Unit (HGCU) to be used in a commercial PCFB Demonstration Project. To achieve this goal, the selected candle materials were exposed to actual high temperature, high pressure coal combustion flue gases for a period of 1000-1500 h during the PCFB test runs. The test runs were carried out in three test segments in Foster Wheeler`s PCFB test facility at the Karhula R and D Center. An extensive inspection and sampling program was carried out after the second test segment. Selected sample candles were analyzed by the filter supplier and the preliminary results were encouraging. The material strength had decreased only within expected range. Slight elongation of the silicon carbide candles was observed, but at this phase the elongation can not be addressed to creep, unlike in the candles tested in 1993-94. The third and last test segment was completed successfully in October 1996. The filter system was inspected and several sample candles were selected for material characterization. The results will be available in February - March 1997. (orig.)

  2. Radiation protection program for early detection of breast cancer in a mammography facility

    Energy Technology Data Exchange (ETDEWEB)

    Mariana, Villagomez Casimiro, E-mail: marjim10-66@ciencias.unam.mx, E-mail: cesar@fisica.unam.mx; Cesar, Ruiz Trejo, E-mail: marjim10-66@ciencias.unam.mx, E-mail: cesar@fisica.unam.mx [Instituto de Física, UNAM. Cd. Universitaria, CP 04510 (Mexico); Ruby, Espejo Fonseca [Instituto de Enfermedades de la Mama FUCAM-AC, CP 04980 (Mexico)

    2014-11-07

    Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1–4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systems (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)– presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied.

  3. Design Study and Optimization of Irradiation Facilities for Detector and Accelerator Equipment Testing in the SPS North Area at CERN

    CERN Document Server

    AUTHOR|(CDS)2079748; Stekl, Ivan

    Due to increasing performance of LHC during the last years, the strong need of new detector and electronic equipment test areas at CERN appeared from user communities. This thesis reports on two test facilities: GIF++ and H4IRRAD. GIF++, an upgrade of GIF facility, is a combined high-intensity gamma and particle beam irradiation facility for testing detectors for LHC. It combines a high-rate 137Cs source, providing photons with energy of 662 keV, together with the high-energy secondary particle beam from SPS. H4IRRAD is a new mixed-field irradiation area, designed for testing LHC electronic equipment for radiation damage effects. In particular, large volume assemblies such as full electronic racks of high current power converters can be tested. The area uses alternatively an attenuated primary 400 GeV/c proton beam from SPS, or a secondary, mainly proton, beam of 280 GeV/c directed towards a copper target. Different shielding layers are used to reproduce a radiation field similar to the LHC “tunnel” and �...

  4. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  5. Power Systems Development Facility Gasification Test Run TC08

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-06-30

    This report discusses Test Campaign TC08 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier in air- and oxygen-blown modes during TC08. Test Run TC08 was started on June 9, 2002 and completed on June 29. Both gasifier and PCD operations were stable during the test run with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen blown was smooth. The gasifier temperature was varied between 1,710 and 1,770 F at pressures from 125 to 240 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC08, 476 hours of solid circulation and 364 hours of coal feed were attained with 153 hours of pure oxygen feed. The gasifier and PCD operations were stable in both enriched air and 100 percent oxygen blown modes. The oxygen concentration was slowly increased during the first transition to full oxygen-blown operations. Subsequent transitions from air to oxygen blown could be completed in less than 15 minutes. Oxygen-blown operations produced the highest synthesis gas heating value to date, with a projected synthesis gas heating value averaging 175 Btu/scf. Carbon conversions averaged 93 percent, slightly lower than carbon conversions achieved during air-blown gasification.

  6. Distance to Radiation Facility and Treatment Choice in Early-Stage Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Sahaja; Hsieh, Samantha; Michalski, Jeff M. [Department of Radiation Oncology, Washington University School of Medicine-St. Louis, St. Louis, Missouri (United States); Shinohara, Eric T. [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Perkins, Stephanie M., E-mail: sperkins@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine-St. Louis, St. Louis, Missouri (United States)

    2016-03-15

    Purpose: Breast-conserving therapy (BCT) is a recommended alternative to mastectomy (MT) for early-stage breast cancer. Limited access to radiation therapy (RT) may result in higher rates of MT. We assessed the association between distance to the nearest RT facility and the use of MT, in a modern cohort of women. Methods and Materials: Women with stage 0-II breast cancer eligible for BCT diagnosed from 2004 to 2010 were identified from the Florida Cancer Data System (FCDS). Distances from patient census tracts to the nearest RT facility census tract were calculated. Multivariate logistic regression was used to identify explanatory variables that influenced MT use. Results: Of the 27,489 eligible women, 32.1% (n=8841) underwent MT, and 67.8% (n=18,648) underwent BCS. Thirty-two percent of patients lived in a census tract that was >5 miles from an RT facility. MT use increased with increasing distance to RT facility (31.1% at ≤5 miles, 33.8% at >5 to <15 miles, 34.9% at 15 to <40 miles, and 51% at ≥40 miles, P<.001). The likelihood was that MT was independently associated with increasing distance to RT facility on multivariate analysis (P<.001). Compared to patients living <5 miles away from an RT facility, patients living 15 to <40 miles away were 1.2 times more likely to be treated with MT (odds ratio [OR]: 1.19, 95% confidence interval [CI]: 1.05-1.35, P<.01), and those living ≥40 miles away were more than twice as likely to be treated with MT (OR: 2.17, 95% CI: 1.48-3.17, P<.001). However, in patients younger than 50 years (n=5179), MT use was not associated with distance to RT facility (P=.235). Conclusions: MT use in a modern cohort of women is independently associated with distance to RT facility. However, for young patients, distance to RT is not a significant explanatory variable for MT use.

  7. Lap Shear Testing of Candidate Radiator Panel Adhesives

    Science.gov (United States)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  8. Current clinical trials testing combinations of immunotherapy and radiation.

    Science.gov (United States)

    Crittenden, Marka; Kohrt, Holbrook; Levy, Ronald; Jones, Jennifer; Camphausen, Kevin; Dicker, Adam; Demaria, Sandra; Formenti, Silvia

    2015-01-01

    Preclinical evidence of successful combinations of ionizing radiation with immunotherapy has inspired testing the translation of these results to the clinic. Interestingly, the preclinical work has consistently predicted the responses encountered in clinical trials. The first example came from a proof-of-principle trial started in 2001 that tested the concept that growth factors acting on antigen-presenting cells improve presentation of tumor antigens released by radiation and induce an abscopal effect. Granulocyte-macrophage colony-stimulating factor was administered during radiotherapy to a metastatic site in patients with metastatic solid tumors to translate evidence obtained in a murine model of syngeneic mammary carcinoma treated with cytokine FLT-3L and radiation. Subsequent clinical availability of vaccines and immune checkpoint inhibitors has triggered a wave of enthusiasm for testing them in combination with radiotherapy. Examples of ongoing clinical trials are described in this report. Importantly, most of these trials include careful immune monitoring of the patients enrolled and will generate important data about the proimmunogenic effects of radiation in combination with a variety of immune modulators, in different disease settings. Results of these studies are building a platform of evidence for radiotherapy as an adjuvant to immunotherapy and encourage the growth of this novel field of radiation oncology. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning environmental test... conditioning environmental test facility ambient requirements. The goal of an air conditioning test facility is... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating...

  10. The radiation field in the Gamma Irradiation Facility GIF++ at CERN

    Science.gov (United States)

    Pfeiffer, Dorothea; Gorine, Georgi; Reithler, Hans; Biskup, Bartolomej; Day, Alasdair; Fabich, Adrian; Germa, Joffrey; Guida, Roberto; Jaekel, Martin; Ravotti, Federico

    2017-09-01

    The high-luminosity LHC (HL-LHC) upgrade is setting now a new challenge for particle detector technologies. The increase in luminosity will produce a particle background in the gas-based muon detectors that is ten times higher than under conditions at the LHC. The detailed knowledge of the detector performance in the presence of such a high background is crucial for an optimized design and efficient operation after the HL-LHC upgrade. A precise understanding of possible aging effects of detector materials and gases is of extreme importance. To cope with these challenging requirements, a new Gamma Irradiation Facility (GIF++) was designed and built at the CERN SPS North Area as successor of the Gamma Irradiation Facility (GIF) during the Long Shutdown 1 (LS1) period. It features an intense source of 662 keV photons with adjustable intensity, to simulate continuous background over large areas, and, combined with a high energy muon beam, to measure detector performance in the presence of the background. The new GIF++ facility has been operational since spring 2015. In addition to describing the facility and its infrastructure, the goal of this work is to provide an extensive characterization of the GIF++ photon field with different configurations of the absorption filters in both the upstream and downstream irradiation areas. Moreover, the measured results are benchmarked with Geant4 simulations to enhance the knowledge of the radiation field. The absorbed dose in air in the facility may reach up to 2.2 Gy/h directly in front of the irradiator. Of special interest is the low-energy photon component that develops due to the multiple scattering of photons within the irradiator and from the concrete walls of the bunker.

  11. Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-09-01

    The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution of 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments with

  12. Radiation activities and application of ionizing radiation on cultural heritage at ENEA Calliope gamma facility (Casaccia R.C., Rome, Italy

    Directory of Open Access Journals (Sweden)

    Baccaro Stefania

    2017-12-01

    Full Text Available Since the 1980s, research and qualification activities are being carried out at the 60Co gamma Calliope plant, a pool-type irradiation facility located at the Research Centre ENEA-Casaccia (Rome, Italy. The Calliope facility is deeply involved in radiation processing research and on the evaluation and characterization of the effects induced by gamma radiation on materials for different applications (crystals, glasses, optical fibres, polymers and biological systems and on devices to be used in hostile radiation environment such as nuclear plants, aerospace and high energy physics experiments. All the activities are carried out in the framework of international projects and collaboration with industries and research institutions. In the present work, particular attention will be paid to the cultural heritage activities performed at the Calliope facility, focused on two different aspects: (a conservation and preservation by bio-deteriogen eradication in archived materials, and (b consolidation and protection by degraded wooden and stone porous artefacts consolidation.

  13. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  14. An Injector for the CLIC Test Facility (CTF3)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Roger H.

    2001-01-23

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  15. Development of a test facility for analyzing supercritical fluid blowdown

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D.; Alvim, Antonio C.M., E-mail: thiagodbtr@gmail.com [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Silva, Mario A.B. da, E-mail: mabs500@gmail.com [Universidade Federal de Pernambuco (CTG/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The generation IV nuclear reactors under development mostly use supercritical fluids as the working fluid because higher temperatures improve the thermal efficiency. Supercritical fluids are used by modern nuclear power plants to achieve thermal efficiencies of around 45%. With water as the supercritical working fluid, these plants operate at a high temperature and pressure. However, experiments on supercritical water are limited by technical and financial difficulties. These difficulties can be overcome by using model fluids, which have more feasible supercritical conditions and exhibit a lower critical pressure and temperature. Experimental research is normally used to determine the conditions under which model fluids represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine model fluids that can represent supercritical fluids in a transient state. This paper presents an application of fractional scale analysis to determine the simulation parameters for a depressurization test facility. Carbon dioxide (CO{sub 2}) and R134a gas were considered as the model fluids because their critical point conditions are more feasible than those of water. The similarities of water (prototype), CO{sub 2} (model) and R134a (model) for depressurization in a pressure vessel were analyzed. (author)

  16. Laserwire at the Accelerator Test Facility 2 with submicrometer resolution

    Directory of Open Access Journals (Sweden)

    L. J. Nevay

    2014-07-01

    Full Text Available A laserwire transverse electron beam size measurement system has been developed and operated at the Accelerator Test Facility 2 at the High Energy Accelerator Research Organization, Japan (KEK. Special electron beam optics were developed to create an approximately 1×100  μm (vertical×horizontal electron beam at the laserwire location, which was profiled using 150 mJ, 71 ps laser pulses with a wavelength of 532 nm. The precise characterization of the laser propagation allows the non-Gaussian laserwire scan profiles caused by the laser divergence to be deconvolved. A minimum vertical electron beam size of 1.07±0.06(stat±0.05(sys  μm was measured. A vertically focusing quadrupole just before the laserwire was varied while making laserwire measurements and the projected vertical emittance was measured to be 82.56±3.04  pm rad.

  17. Desiccant contamination research: Report on the desiccant contamination test facility

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Bingham, C.E.

    1991-07-01

    The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

  18. Maintenance schemes for the ITER neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaccaria, P. [Consorzio RFX, Association EURATOM-ENEA, I-35127 Padova (Italy)]. E-mail: pierluigi.zaccaria@igi.cnr.it; Dal Bello, S. [Consorzio RFX, Association EURATOM-ENEA, I-35127 Padova (Italy); Marcuzzi, D. [Consorzio RFX, Association EURATOM-ENEA, I-35127 Padova (Italy); Masiello, A. [Consorzio RFX, Association EURATOM-ENEA, I-35127 Padova (Italy); Cordier, J.J. [Association EURATOM-CEA, DSM/Departement Recherche Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France); Hemsworth, R. [Association EURATOM-CEA, DSM/Departement Recherche Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France); Antipenkov, A. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, 76021 Karlsruhe (Germany); Day, C. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, 76021 Karlsruhe (Germany); Dremel, M. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, 76021 Karlsruhe (Germany); Mack, A. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, 76021 Karlsruhe (Germany); Jones, T. [UKAEA Culham EURATOM/UKAEA Fusion Association Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Coniglio, A. [Consorzio RFX, Association EURATOM-ENEA, I-35127 Padova (Italy); Pillon, M. [ENEA, Centro Ricerche Frascati, I-00044 Frascati, Rome (Italy); Sandri, S. [ENEA, Centro Ricerche Frascati, I-00044 Frascati, Rome (Italy); Speth, E. [IPP CSU-Max-Planck-Institut fuer Plasma Physik, D-85748 Garching (Germany); Tanga, A. [IPP CSU-Max-Planck-Institut fuer Plasma Physik, D-85748 Garching (Germany); Antoni, V. [Consorzio RFX, Association EURATOM-ENEA, I-35127 Padova (Italy); Pietro, E. Di [EFDA CSU, D-85748 Garching (Germany); Mondino, P.L. [EFDA CSU, D-85748 Garching (Germany)

    2005-11-15

    The ITER neutral beam test facility (NBTF) is planned to be built, after the approval of the ITER construction and the choice of the ITER site, with the agreement of the ITER international team and of the JA and RF participant teams. The key purpose is to progressively increase the performance of the first ITER injector and to demonstrate its reliability at the maximum operation parameters: power delivered to the plasma 16.5 MW, beam energy 1 MeV, accelerated D{sup -} ion current 40 A, pulse length 3600 s. Several interventions for possible modifications and for maintenance are expected during the early operation of the ITER injector in order to optimise the beam generation, aiming and steering. The maintenance scheme and the related design solutions are therefore a very important aspect to be considered for the NBTF design. The paper describes consistently the many interrelated aspects of the design, such as the optimisation of the vessel and cryopump geometry, in order to get a better maintenance flexibility, an easier man access and a larger access for diagnostic and monitoring.

  19. Maintenance schemes for the ITER neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaccaria, P.; Dal Bello, S.; Marcuzzi, D.; Masiello, A.; Coniglio, A.; Antoni, V. [Consorzio RFX Association Euratom-ENEA, Padova (Italy); Cordier, J.J.; Hemsworth, R. [Association Euratom-CEA Cadarache (DSM/DRFC), 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Antipenkov, A.; Day, C.; Dremel, M.; Mack, A. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Technische Physik; Pillon, M.; Sandri, S. [ENEA, Frascati (Italy). Centro Ricerche Energia; Speth, E.; Tanga, A. [Max-Planck-Institut fuer Plasmaphysik, IPP CSU, Garching (Germany); Jones, T. [UKAEA Culham Euratom/Ukaea Fusion Association Culham Science Centre, Abingdom OX (United Kingdom); Di Pietro, E.; Mondino, P.L. [EFDA CSU, Garching (Germany)

    2004-07-01

    The ITER neutral beam test facility (NBTF) is planned to be built, after the approval of the ITER construction and the choice of the ITER site, with the agreement of the ITER International Team and of the JA and RF participant teams. The key purpose is to progressively increase the performance of the first ITER injector and to demonstrate its reliability at the maximum operation parameters: power delivered to the plasma 16.5 MW, beam energy 1 MeV, accelerated D{sup -} ion current 40 A, pulse length 3600 s. Several interventions for possible modifications and for maintenance are expected during the early operation of the ITER injector in order to optimize the beam generation, aiming and steering. The maintenance scheme and the related design solutions are therefore a very important aspect to be considered for the NBTF design. The paper describes consistently the many interrelated aspects of the design, such as the optimisation of the vessel and cryopump geometry, in order to get a better maintenance flexibility, an easier man access and a larger access for diagnostic and monitoring. (authors)

  20. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  1. Radiation Testing of PICA at the Solar Power Tower

    Science.gov (United States)

    White, Susan

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  2. Numerical test of an inverse polarized radiative transfer algorithm

    CERN Document Server

    Viik, T

    2003-01-01

    A procedure is tested with which to determine the single-scattering albedo from polarization measurements of the angle-dependent intensity at two locations within, or on the boundaries of, a homogeneous finite or infinite atmosphere that scatters radiation according to the Rayleigh law with true absorption.

  3. Radiation Testing and Evaluation Issues for Modern Integrated Circuits

    Science.gov (United States)

    LaBel, Kenneth A.; Cohn, Lew M.

    2005-01-01

    Abstract. Changes in modern integrated circuit (IC) technologies have modified the way we approach and conduct radiation tolerance and testing of electronics. These changes include scaling of geometries, new materials, new packaging technologies, and overall speed and device complexity challenges. In this short course section, we will identify and discuss these issues as they impact radiation testing, modeling, and effects mitigation of modern integrated circuits. The focus will be on CMOS-based technologies, however, other high performance technologies will be discussed where appropriate. The effects of concern will be: Single-Event Effects (SEE) and steady state total ionizing dose (TID) IC response. However, due to the growing use of opto-electronics in space systems issues concerning displacement damage testing will also be considered. This short course section is not intended to provide detailed "how-to-test" information, but simply provide a snapshot of current challenges and some of the approaches being considered.

  4. Radiation protection procedures for the dismantling and decontamination of nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, C.C.; Garcia, R.H.L.; Cambises, P.B.S.; Silva, T.M. da; Paiva, J.E.; Carneiro, J.C.G.G.; Rodrigues, D.L., E-mail: calmeida@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This work presents the operational procedures and conditions to ensure the required level of protection and safety during the dismantling and decontamination of a natural uranium purification facility at IPEN-CNEN/SP, Brazil. The facility was designed for chemical processing of natural uranium, aiming to obtain the uranyl nitrate, nuclear-grade. Afterwards, the installation operated in treatment and washing of thorium sulfate and thorium oxycarbonate dissolution, to get thorium nitrate as final product. A global evaluation of the potential exposure situation was carried out by radioprotection team in order to carry out the operations planned. For the facility dismantling, was established both measures to control the radiation exposure at workplace and individual monitoring of workers. A combination of physical, chemical and mechanical methods was used in the decontamination procedure applied in this unit. Concerning the internal operation procedures of IPEN-CNEN/SP, the radioactive waste control, the transport of the radioactive materials and authorization of use of decontaminated equipment were also subject of study. (author)

  5. Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  6. Radiation-induced bystander effects. Mechanisms, biological implications, and current investigations at the Leipzig LIPSION facility

    Energy Technology Data Exchange (ETDEWEB)

    Oesterreicher, J. [Dept. of Nuclear Solid State Physics, Univ. of Leipzig (Germany); Dept. of Radiobiology and Immunology, Purkyne Military Medical Academy, Hradec Kralove (Czech Republic); Prise, K.M.; Michael, B.D. [Gray Cancer Inst., Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Vogt, J.; Butz, T. [Dept. of Nuclear Solid State Physics, Univ. of Leipzig (Germany); Tanner, J.M. [Clinic and Polyclinic of Radiation Oncology, Martin Luther Univ. Halle-Wittenberg (Germany)

    2003-02-01

    Background: The bystander effect is a relatively new area of radiobiological research, which is aimed at studying post-radiation changes in neighboring non-hit cells or tissues. The bystander effect of ionizing irradiation is important after low-dose irradiation in the range of up to 0.2 Gy, where a higher incidence of stochastic damage was observed than was expected from a linear-quadratic model. It is also important when the irradiation of a cell population is highly non-uniform. Objective: This review summarizes most of the important results and proposed bystander effect mechanisms as well as their impact on theory and clinical practice. The literature, in parts contradictory, is collected, the main topics are outlined, and some basic papers are described in more detail. In order to illustrate the microbeam technique, which is considered relevant for the bystander effect research, the state of the Leipzig LIPSION nanoprobe facility is described. Results: The existence of a radiation-induced bystander effect is now generally accepted. The current state of knowledge on it is summarized here. Several groups worldwide are working on understanding its different aspects and its impact on radiobiology and radiation protection. Conclusion: The observation of a bystander effect has posed many questions, and answering them is a challenging topic for radiobiology in the future. (orig.)

  7. Thermal Testing of Ablators in the NASA Johnson Space Center Radiant Heat Test Facility

    Science.gov (United States)

    Del Papa, Steven; Milhoan, Jim; Remark, Brian; Suess, Leonard

    2016-01-01

    A spacecraft's thermal protection system (TPS) is required to survive the harsh environment experienced during reentry. Accurate thermal modeling of the TPS is required to since uncertainties in the thermal response result in higher design margins and an increase in mass. The Radiant Heat Test Facility (RHTF) located at the NASA Johnson Space Center (JSC) replicates the reentry temperatures and pressures on system level full scale TPS test models for the validation of thermal math models. Reusable TPS, i.e. tile or reinforced carbon-carbon (RCC), have been the primary materials tested in the past. However, current capsule designs for MPCV and commercial programs have required the use of an ablator TPS. The RHTF has successfully completed a pathfinder program on avcoat ablator material to demonstrate the feasibility of ablator testing. The test results and corresponding ablation analysis results are presented in this paper.

  8. Cryomodule tests of four Tesla-like cavities in the Superconducting RF Test Facility at KEK

    Directory of Open Access Journals (Sweden)

    Eiji Kako

    2010-04-01

    Full Text Available A 6-m cryomodule including four Tesla-like cavities was developed, and was tested in the Superconducting RF Test Facility phase-I at KEK. The performance as a total superconducting cavity system was checked in the cryomodule tests at 2 K with high rf power. One of the four cavities achieved a stable pulsed operation at 32  MV/m, which is higher than the operating accelerating gradient in the ILC. The maximum accelerating gradient (E_{acc,max⁡} obtained in the vertical cw tests was maintained or slightly improved in the cryomodule tests operating in a pulse mode. Compensation of the Lorentz force detuning at 31  MV/m was successfully demonstrated by a piezo tuner and predetuning.

  9. Zero-Gravity Research Facility Drop Test (2/4)

    Science.gov (United States)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  10. Zero-Gravity Research Facility Drop Test (3/4)

    Science.gov (United States)

    1995-01-01

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  11. Zero-Gravity Research Facility Drop Test (1/4)

    Science.gov (United States)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  12. Zero-Gravity Research Facility Drop Test (4/4)

    Science.gov (United States)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  13. Construction, testing and development of large wind energy facilities

    Science.gov (United States)

    Windheim, R. (Editor); Cuntze, R. (Editor)

    1982-01-01

    Building large rotor blades and control of oscillations in large facilities are discussed. It is concluded that the technical problems in the design of large rotor blades and control of oscillations can be solved.

  14. Long pulse, high power operation of the ELISE test facility

    Science.gov (United States)

    Wünderlich, D.; Kraus, W.; Fröschle, M.; Riedl, R.; Fantz, U.; Heinemann, B.

    2017-08-01

    The ion source of the ELISE test facility (0.9×1.0 m2 with an extraction area of 0.1 m2) has half the size of the ion source foreseen for the ITER NBI beam lines. Aim of ELISE is to demonstrate that such large RF driven negative ion sources can achieve the following parameters at a filling pressure of 0.3 Pa and for pulse lengths of up to one hour: extracted current densities of 28.5 mA/cm2 in deuterium and 33.0 mA/cm2 in hydrogen, a ratio of co-extracted electrons to extracted ions below one and deviations in the uniformity of the extracted beam of less than 10 %. From the results obtained at ELISE so far it can be deduced that for demonstrating the ITER parameters, an RF power of 80 kW/driver will be necessary, i.e. final aim is to demonstrate long pulses (up to one hour) at this power level and a stable source performance. The most crucial factor limiting the source performance during such pulses - in particular in deuterium - is a steady increase in the co-extracted electron current. This paper reports measures that counteract this steady increase, namely applying a dedicated long pulse caesium conditioning technique and modifying the filter field topology by adding strengthening external permanent magnets. Additionally, RF issues are discussed that prevented increasing the RF power towards the target value. Although it was not possible up to now to perform long pulses at 80 kW/driver, a significant improvement of the source performance and its stability are demonstrated. The latter allowed performing the very first 1 h deuterium pulse in ELISE.

  15. A study on probabilistic radiological risk assessments for radiation facilities with vague information

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Han Ki

    2011-02-15

    A procedure for the radiological risk assessment was established for radiation facility with vague information on risk contribution factors. In contrast to the nuclear power plant systems for which probabilistic risk assessments(PRAs) have been performed over three decades, risk models and associated variables used in PRAs are often vague in radiation facilities because of the scarcity of data. In that, experts provide valuable insights through his or her judgment on the uncertain but needed elements for risk analysis. Especially, the Delphi method was confirmed as a useful research tool for elicitation of expert opinions for a system with vague information. In addition, the streamlined procedure employs advanced techniques particularly useful for an object system with vague information, which include the Bayesian update and two-dimensional Monte Carlo analysis(2D MCA). The methodology developed in this study was applied, as an illustration, to risk assessments for two selected types of radiation facilities: {sup 131}I therapy facility and field radiography. Firstly, the utility of Bayesian updates was testified for risk assessments of the selected systems. The model variables for analyzing risks were obtained through three-round Delphi surveys. The resulting risks with the Bayesian updating of the variables were compared with both those without updating(3rd round Delphi survey) and those estimated by employing data within the 95% confidence intervals after the third round Delphi survey. The cumulative distribution functions(CDFs) without Bayesian updating showed unrealistically extreme values of radiation dose in the lower and upper tails. On the other hand, the risks estimated with Bayesian updating agreed with the risks reflecting those data in 95% confidence interval. The later, however, suffers intentional rejection of certain data collected. With this observation, the Bayesian updates were incorporated in the radiological risk assessment procedure. With the

  16. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  17. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, Ben [NICADD, DeKalb; Mihalcea, Daniel [NICADD, DeKalb; Panuganti, Harsha [NICADD, DeKalb; Piot, Philippe [Fermilab; Brau, Charles [Vanderbilt U.; Choi, Bo [Vanderbilt U.; Gabella, William [Vanderbilt U.; Ivanov, Borislav [Vanderbilt U.; Mendenhall, Marcus [Vanderbilt U.; Lynn, Christopher [Swarthmore Coll.; Sen, Tanaji [Fermilab; Wagner, Wolfgang [Forschungszentrum Dresden Rossendorf

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  18. Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part C

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-17

    Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part C describes test facility support, data acquisition and control system design, cost data, energy self-sufficiency, and test facility applications.

  19. Power Systems Development Facility Gasification Test Run TC10

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-12-30

    This report discusses Test Campaign TC10 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC10 in air- (mainly for transitions and problematic operations) and oxygen-blown mode. Test Run TC10 was started on November 16, 2002, and completed on December 18, 2002. During oxygen-blown operations, gasifier temperatures varied between 1,675 and 1,825 F at pressures from 150 to 180 psig. After initial adjustments were made to reduce the feed rate, operations with the new fluidized coal feeder were stable with about half of the total coalfeed rate through the new feeder. However, the new fluidized-bed coal feeder proved to be difficult to control at low feed rates. Later the coal mills and original coal feeder experienced difficulties due to a high moisture content in the coal from heavy rains. Additional operational difficulties were experienced when several of the pressure sensing taps in the gasifier plugged. As the run progressed, modifications to the mills (to address processing the wet coal) resulted in a much larger feed size. This eventually resulted in the accumulation of large particles in the circulating solids causing operational instabilities in the standpipe and loop seal. Despite problems with the coal mills, coal feeder, pressure tap nozzles and the standpipe, the gasifier did experience short periods of stability during oxygenblown operations. During these periods, the syngas quality was high. During TC10, the gasifier gasified over 609 tons of Powder River Basin subbituminous coal and

  20. Decline in Radiation Hardened Microcircuit Infrastructure

    Science.gov (United States)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  1. Radiation microscope for SEE testing using GeV ions.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee; Knapp, James Arthur; Rossi, Paolo; Hattar, Khalid M.; Vizkelethy, Gyorgy; Brice, David Kenneth; Branson, Janelle V.

    2009-09-01

    Radiation Effects Microscopy is an extremely useful technique in failure analysis of electronic parts used in radiation environment. It also provides much needed support for development of radiation hard components used in spacecraft and nuclear weapons. As the IC manufacturing technology progresses, more and more overlayers are used; therefore, the sensitive region of the part is getting farther and farther from the surface. The thickness of these overlayers is so large today that the traditional microbeams, which are used for REM are unable to reach the sensitive regions. As a result, higher ion beam energies have to be used (> GeV), which are available only at cyclotrons. Since it is extremely complicated to focus these GeV ion beams, a new method has to be developed to perform REM at cyclotrons. We developed a new technique, Ion Photon Emission Microscopy, where instead of focusing the ion beam we use secondary photons emitted from a fluorescence layer on top of the devices being tested to determine the position of the ion hit. By recording this position information in coincidence with an SEE signal we will be able to indentify radiation sensitive regions of modern electronic parts, which will increase the efficiency of radiation hard circuits.

  2. Pre and post test analyses for the core scenarios tested in the ATLAS facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Goo; Kim, H. J.; Cho, Y. J.; Yang, C. Y.; Yoo, S. O.; Choi, Y. S.; Bang, Y. S.; Shin, A. D.; Huh, B. G.; Kim, S. J. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-02-15

    The scope of present study is to establish an environment to operate ATLAS Standard Problem for the core scenarios. Following has been performed in this study : evaluation of the characteristics of ATLAS facility by using RELAP5 code, development of steady input data deck for ATLAS TRACE assessment, evaluation of QA requirements for the important thermal-hydraulic tests, organization of ATLAS standard problem. In this study, the characteristics of ATLAS, which is the first large IET facility, has been analyzed and it was confirmed that ATLAS program will provide meaningful date for the assurance of APR1400 safety. A comparing work on the characteristics of APR1400 and ATLAS confirmed general similarities between two installations. Also, some specific characteristics of each ones were founded in this study. It was recommended that special care should be given to them in developing a test scenario and code assessment. In this study, QA requirements for thermal hydraulic experiments used for proof test and/or code assessment were identified. Finally, an infrastructure for ATLAS Standard Problem (ASP) was successfully established. ASP will play important role of an systematic connection between ATLAS test and code assessment programs, and be actively operated for the next period of ATLAS program. QA requirements proposed in this study would be applied for the quality improvement of experimental programs in Korea. Also, an infrastructure for ATLAS Standard Problem will be directly applied for the next ATLAS program.

  3. Transverse coupling impedance of the storage ring at the European Synchrotron Radiation Facility

    Directory of Open Access Journals (Sweden)

    T. F. Günzel

    2006-11-01

    Full Text Available The vertical and horizontal impedance budgets of the European Synchrotron Radiation Facility (ESRF storage ring are calculated by element-by-element wake potential calculation. Resistive wall wakes are calculated analytically; the short range geometrical wakes are calculated by a 3D electromagnetic field solver. The effect of the quadrupolar wakes due to the flatness of most ESRF vacuum chambers is included in the model. It can well explain the sensitivity of the horizontal single bunch threshold on vacuum chamber changes, in particular, in low-gap sections of the ESRF storage ring. The values of the current thresholds on the transverse planes could be predicted correctly by the model within a factor of 2.

  4. The future SwissFEL facility - challenges from a radiation protection point of view

    Science.gov (United States)

    Strabel, Claudia; Fuchs, Albert; Galev, Roman; Hohmann, Eike; Lüscher, Roland; Musto, Elisa; Mayer, Sabine

    2017-09-01

    The Swiss Free Electron Laser is a new large-scale facility currently under construction at the Paul Scherrer Institute. Accessible areas surrounding the 720 m long accelerator tunnel, together with the pulsed time structure of the primary beam, lead to new challenges for ensuring that the radiation level in these areas remains in compliance with the legal constraints. For this purpose an online survey system based on the monitoring of the ambient dose rate arising from neutrons inside of the accelerator tunnel and opportunely calibrated to indicate the total dose rate outside of the tunnel, will be installed. The presented study provides a conceptual overview of this system, its underlying assumptions and measurements so far performed to validate its concept.

  5. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  6. A microfocus X-ray fluorescence beamline at Indus-2 synchrotron radiation facility.

    Science.gov (United States)

    Tiwari, M K; Gupta, P; Sinha, A K; Kane, S R; Singh, A K; Garg, S R; Garg, C K; Lodha, G S; Deb, S K

    2013-03-01

    A microfocus X-ray fluorescence spectroscopy beamline (BL-16) at the Indian synchrotron radiation facility Indus-2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X-ray fluorescence mapping, X-ray microspectroscopy and total-external-reflection fluorescence characterization. The beamline is installed on a bending-magnet source with a working X-ray energy range of 4-20 keV, enabling it to excite K-edges of all elements from S to Nb and L-edges from Ag to U. The optics of the beamline comprises of a double-crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick-Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.

  7. Development and Commissioning of a Small/Mid-Size Wind Turbine Test Facility: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Valyou, D.; Arsenault, T.; Janoyan, K.; Marzocca, P.; Post, N.; Grappasonni, G.; Arras, M.; Coppotelli, G.; Cardenas, D.; Elizalde, H.; Probst, O.

    2015-01-01

    This paper describes the development and commissioning tests of the new Clarkson University/Center for Evaluation of Clean Energy Technology Blade Test Facility. The facility is a result of the collaboration between the New York State Energy Research and Development Authority and Intertek, and is supported by national and international partners. This paper discusses important aspects associated with blade testing and includes results associated with modal, static, and fatigue testing performed on the Sandia National Laboratories' Blade Systems Design Studies blade. An overview of the test capabilities of the Blade Test Facility are also provided.

  8. Engineering study: Fast Flux Test Facility fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Beary, M.M.; Raab, G.J.; Reynolds, W.R. Jr.; Yoder, R.A.

    1974-01-07

    Several alternatives were studied for reprocessing FFTF fuels at Hanford. Alternative I would be to decontaminate and trim the fuel at T Plant and electrolytically dissolve the fuel at Purex. Alternative II would be to decontaminate and shear leach the fuels in a new facility near Purex. Alternative III would be to decontaminate and store fuel elements indefinitely at T Plant for subsequent offsite shipment. Alternative I, 8 to 10 M$ and 13 quarter-years; for Alternative II, 24 to 28 M$ and 20 quarter-years; for Alternative III, 3 to 4 M$ and 8 quarter-years. Unless there is considerable slippage in the FFTF shipping schedule, it would not be possible to build a new facility as described in Alternative II in time without building temporary storage facilities at T Plant, as described in Alternative III. (auth)

  9. Radiation technology facilities operating at the italian ENEA-Casaccia research center

    Energy Technology Data Exchange (ETDEWEB)

    Tata, A.; Festinesi, A.; Rosa, R. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1998-04-01

    The ENEA Casaccia Research Center, 20 km far from Rome, is the main Italian technological research Center, with more than 2000 scientists involved in several advanced research fields (materials, energy, environment, etc.). Within the frame of radiation technology, three main facilities are in service at full power at the Casaccia research Center: a 1 MW TRIGA Mark II reactor (RC-1); a 5 kW fast source reactor (TAPIRO); a 3.7 x 10{sup 15} Bq Cobalt-60 irradiation plant (CALLIOPE). Main R-D programmes carried out regard medical radioisotopes and radio trackers production, neutron radiography, neutron activation analysis, radiation damage analysis, neutron diffractometry, foodstuffs treatment, crosslinking processes, wastes (hazardous, chemical, hospital) processing. The paper provides a features description of utilized facilities and reports main present carried out projects. [Italiano] Il Centro Ricerca ENEA della casaccia, situato a 20 km circa da Roma, e` il maggiore centro di ricerca tecnologica italiano, con oltre 2000 ricercatori impegnati in numerosi campi di ricerca avanzata (materiali, energia, ambiente, etc.). Nell`ambito delle tecnologie di irraggiamento, sono presenti e pienamente funzionanti presso il C.R. Casaccia tre principali impianti: un reattore termico TRIGA mark II da 1 MW (RC-1); un reattore-sorgente veloce da 5 kW (TAPIRO); un impianto di irraggiamento a Cobalto-60 da 3.7. x 10{sup 15} Bq (CALLIOPE). I principali programmi R-D condotti riguardano la produzione di radioisotopi e radiotraccianti di utilizzo in campo medico, la radiografia neutronica, l`analisi per attivazione neutronica, l`analisi del danno da radiazioni, la diffrattometria neutronica, il trattamento di derrate alimentari, i processi di reticolazione polimerica, il trattamento di rifiuti (tossico-nocivi, chimici, ospedaliri). Il presente lavoro fornisce una descrizione tecnica degli impianti, nonche` indicazioni sui principali programmo condotti attualmente presso tali impienti.

  10. Test facility requirements for the thermal vacuum thermal balance test of the Cosmic Background Explorer Observatory

    Science.gov (United States)

    Milam, Laura J.

    1991-01-01

    The Cosmic Background Explorer Observatory (COBE) underwant a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.

  11. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH Univ. of Applied Sciences, Deggendorf (Germany)

    2014-07-01

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation programme was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment with integrated pressure suppression system. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The main target was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. (orig.)

  12. Testing of the Engineering Model Electrical Power Control Unit for the Fluids and Combustion Facility

    Science.gov (United States)

    Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.

    1999-01-01

    The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.

  13. Probabilistic risk analysis for Test Area North Hot Shop Storage Pool Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meale, B.M.; Satterwhite, D.G.

    1990-01-01

    A storage pool facility used for storing spent fuel and radioactive debris from the Three Mile Island (TMI) accident was evaluated to determine the risk associated with its normal operations. Several hazards were identified and examined to determine if any any credible accident scenarios existed. Expected annual occurrence frequencies were calculated for hazards for which accident scenarios were identified through use of fault trees modeling techniques. Fault tree models were developed for two hazards: (1) increased radiation field and (2) spread of contamination. The models incorporated facets of the operations within the facility as well as the facility itself. 6 refs.

  14. Evaluation of the Netherlands' International Test Facility for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-06-01

    The Netherlands Enterprise Agency (Rijksdienst voor Ondernemend Nederland, or RVO) engaged the U.S. National Renewable Energy Laboratory (NREL) for two primary purposes: to evaluate the International Test Facility for Smart Grids (ITF) sponsored by RVO and to learn best practices for integrated test facilities from NREL's Energy Systems Integration Facility (ESIF). This report covers the ITF evaluation and is largely based on a one-week visit to the Netherlands in November 2014.

  15. A reference radiation facility for dosimetry at flight altitude and in space

    CERN Document Server

    Ferrari, A; Silari, Marco

    2001-01-01

    A reference facility for the intercomparison of active and passive detectors in high-energy neutron fields is available at CERN since 1993. A positive charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction are filtered by a shielding of either 80 cm of concrete or 40 cm of iron. Behind the iron shielding, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the concrete shielding, the neutron spectrum has a pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. The facility is used for a variety of investigations with active and passive neutron dosimeters. Its use for measurements related to the space programme is discussed. (21 refs).

  16. Radiation Tests on 2Gb NAND Flash Memories

    Science.gov (United States)

    Nguyen, Duc N.; Guertin, Steven M.; Patterson, J. D.

    2006-01-01

    We report on SEE and TID tests of highly scaled Samsung 2Gbits flash memories. Both in-situ and biased interval irradiations were used to characterize the response of the total accumulated dose failures. The radiation-induced failures can be categorized as followings: single event upset (SEU) read errors in biased and unbiased modes, write errors, and single-event-functional-interrupt (SEFI) failures.

  17. Characterization of radiation effects in 65 nm digital circuits with the DRAD digital radiation test chip

    Science.gov (United States)

    Jara Casas, L. M.; Ceresa, D.; Kulis, S.; Miryala, S.; Christiansen, J.; Francisco, R.; Gnani, D.

    2017-02-01

    A Digital RADiation (DRAD) test chip has been specifically designed to study the impact of Total Ionizing Dose (TID) (digital logic gates in a 65 nm CMOS technology. Nine different versions of standard cell libraries are studied in this chip, basically differing in the device dimensions, Vt flavor and layout of the device. Each library has eighteen test structures specifically designed to characterize delay degradation and power consumption of the standard cells. For SEU study, a dedicated test structure based on a shift register is designed for each library. TID results up to 500 Mrad are reported.

  18. Characterization of radiation effects in 65 nm digital circuits with the DRAD digital radiation test chip

    Science.gov (United States)

    Jara Casas, L. M.; Ceresa, D.; Kulis, S.; Miryala, S.; Christiansen, J.; Francisco, R.; Gnani, D.

    2017-02-01

    A Digital RADiation (DRAD) test chip has been specifically designed to study the impact of Total Ionizing Dose (TID) (Event Upset (SEU) on digital logic gates in a 65 nm CMOS technology. Nine different versions of standard cell libraries are studied in this chip, basically differing in the device dimensions, Vt flavor and layout of the device. Each library has eighteen test structures specifically designed to characterize delay degradation and power consumption of the standard cells. For SEU study, a dedicated test structure based on a shift register is designed for each library. TID results up to 500 Mrad are reported.

  19. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  20. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  1. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  2. Assessment of the Radiation Enclosure Models in SPACE and RELAP5 with GOTA Test 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. B.; Lee, G. W.; Choi, T. S. [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    SPACE (Safety and Performance Analysis Code) for nuclear power plant has been developed to calculate the transient thermal-hydraulic response of PWRs that can contain multiple types of fluids. Without explaining 3-D effects such as the change of fuel rod/guide tube thermal behavior as a result of the radiation heat transfer, the 1-D code could predict an unrealistically high peak clad temperature. A useful function to simulate the wall-to-wall radiation heat transfer is implemented in the SPACE and RELAP5 codes. This paper discusses the assessment results of the radiation enclosure model of SPACE and RELAP5. The capability of handling wall-to-wall radiation problem of the SPACE and the RELAP5 codes has been evaluated using the experimental data from the GOTA test facility. At the top of the bundle, the maximum errors of SPACE and RELAP5 are less than 1.6% and 2.3%, respectively. As noted, there is a small discrepancy between the calculated results and experimental data except for the predictions near the top of the test section. The SPACE code is based on the version 2.16 distributed by KHNP. In order to perform the simulation of the GOTA test 27, it was necessary to modify the SPACE code. There was the subroutine for an input process corresponding to the radiation model, the inp{sub c}heck function of the RadEncData Class, contained in a vulnerable algorithm to figure out the reciprocity rule of the view factor.

  3. Shock Radiation Tests for Saturn and Uranus Entry Probes

    Science.gov (United States)

    Cruden, Brett A.; Bogdanoff, David W.

    2014-01-01

    This paper describes a test series in the Electric Arc Shock Tube at NASA Ames Research Center with the objective of quantifying shock-layer radiative heating magnitudes for future probe entries into Saturn and Uranus atmospheres. Normal shock waves are measured in Hydrogen/Helium mixtures (89:11 by mole) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. No shock layer radiation is detected below 25 km/s, a finding consistent with predictions for Uranus entries. Between 25-30 km/s, radiance is quantified from the Vacuum Ultraviolet through Near Infrared, with focus on the Lyman-alpha and Balmer series lines of Hydrogen. Shock profiles are analyzed for electron number density and electronic state distribution. The shocks do not equilibrate over several cm, and distributions are demonstrated to be non-Boltzmann. Radiation data are compared to simulations of Decadal survey entries for Saturn and shown to be significantly lower than predicted with the Boltzmann radiation model.

  4. Compilation of radiation damage test data cable insulating materials

    CERN Document Server

    Schönbacher, H; CERN. Geneva

    1979-01-01

    This report summarizes radiation damage test data on commercially available organic cable insulation and jacket materials: ethylene- propylene rubber, Hypalon, neoprene rubber, polyethylene, polyurethane, polyvinylchloride, silicone rubber, etc. The materials have been irradiated in a nuclear reactor to integrated absorbed doses from 5*10/sup 5/ to 5*10/sup 6/ Gy. Mechanical properties, e.g. tensile strength, elongation at break, and hardness, have been tested on irradiated and non-irradiated samples. The results are presented in the form of tables and graphs, to show the effect of the absorbed dose on the measured properties. (13 refs).

  5. Reverberation Chamber Uniformity Validation and Radiated Susceptibility Test Procedures for the NASA High Intensity Radiated Fields Laboratory

    Science.gov (United States)

    Koppen, Sandra V.; Nguyen, Truong X.; Mielnik, John J.

    2010-01-01

    The NASA Langley Research Center's High Intensity Radiated Fields Laboratory has developed a capability based on the RTCA/DO-160F Section 20 guidelines for radiated electromagnetic susceptibility testing in reverberation chambers. Phase 1 of the test procedure utilizes mode-tuned stirrer techniques and E-field probe measurements to validate chamber uniformity, determines chamber loading effects, and defines a radiated susceptibility test process. The test procedure is segmented into numbered operations that are largely software controlled. This document is intended as a laboratory test reference and includes diagrams of test setups, equipment lists, as well as test results and analysis. Phase 2 of development is discussed.

  6. Radiation facilities for fusion-reactor first-wall and blanket structural-materials development

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Bloom, E.E.

    1981-12-01

    Present and future irradiation facilities for the study of fusion reactor irradiation damage are reviewed. Present studies are centered on irradiation in accelerator-based neutron sources, fast- and mixed-spectrum fission reactors, and ion accelerators. The accelerator-based neutron sources are used to demonstrate damage equivalence between high-energy neutrons and fission reactor neutrons. Once equivalence is demonstrated, the large volume of test space available in fission reactors can be used to study displacement damage, and in some instances, the effects of high-helium concentrations and the interaction of displacement damage and helium on properties. Ion bombardment can be used to study the mechanisms of damage evolution and the interaction of displacement damage and helium. These techniques are reviewed, and typical results obtained from such studies are examined. Finally, future techniques and facilities for developing damage levels that more closely approach those expected in an operating fusion reactor are discussed.

  7. Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center

    Science.gov (United States)

    2012-02-27

    dynamometers rated at 350 hp and 600 hp NA NA Wheeled Vehicle Roller Brake Dynamometer 70 Brake forces up to 45 kN (10,000 lb) at axle weights up to 2000...2.11.9 Wheeled Vehicle Roller Brake Dynamometer. The roller brake dynamometer is capable of dynamically testing brakes and anti-lock brake systems...used for closely controlled engineering tests such as drawbar pull (Figure 12), tractive resistance measurements, coast-down, braking , and fuel

  8. Test results of the FER/ITER conductors in the FENIX test facility

    Science.gov (United States)

    Sugimoto, M.; Isono, T.; Koizumi, K.; Takahashi, Y.; Nishi, M.; Okuno, K.; Yoshida, K.; Nakajima, H.; Ando, T.; Hosono, F.

    1994-07-01

    The Japan Atomic Energy Research Institute (JAERI) has developed the Advanced Disk and the Hollow Monolithic conductors for the FER/ITER Toroidal Field coils. The Advanced Disk conductor is a Cable-in-Conduit conductor which consists of 324 Nb3Sn strands. The Hollow monolithic conductor has hollow cooling channels and 23 Nb3Sn strands. The JA-FENIX sample consists of a pair of straight legs: one leg is the Advanced disk conductor and another is the Hollow Monolithic one. The FENIX facility at the Lawrence Livermore National Laboratory (LLNL) can provide a magnetic field up to 13T on a sample conductor of over 40cm-length. The performance test of the JA-sample was carried out in Autumn 1992. The critical current, the current sharing temperature, and the stability margin of each conductor were measured in this test. These results are presented and discussed.

  9. Aerospace Technology: Technical Data and Information on Foreign Test Facilities

    Science.gov (United States)

    1990-06-22

    Ishikawajima - Harima Heavy Industries IMF Institut de Mecanique des Fluides (Institute of Fluid Mechanics) IMFL Institut de Mecanique des Fluides de Lille (Lille...Cell 11 High-Pressure Turbine Facility Country: Japan Performance Maximum Flow Rate: 40 lb/s Location: Ishikawajima - Harima Heavy Industries , Chiyoda...6,000 hp Ishikawajima - Harima Heavy Industries Comments: None Aero-Engines and Space Operations Shin Ohtemachi Building. 2-chome Cost

  10. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1992; Twenty-fifth annual report, Volume 14

    Energy Technology Data Exchange (ETDEWEB)

    Raddatz, C.T. [US Nuclear Regulatory Commission, Washington, DC (United States). Division of Regulatory Applications; Hagemeyer, D. [Science Applications International Corp., Oak Ridge, TN (United States)

    1993-12-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC`s Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1992. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10CFR20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10CFR20.408. The 1992 annual reports submitted by about 364 licensees indicated that approximately 204,365 individuals were monitored, 183,927 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measurable dose of about 0.30 (cSv). Termination radiation exposure reports were analyzed to reveal that about 74,566 individuals completed their employment with one or more of the 364 covered licensees during 1992. Some 71,846 of these individuals terminated from power reactor facilities, and about 9,724 of them were considered to be transient workers who received an average dose of 0.50 rem (cSv).

  11. Automated Computer-Based Facility for Measurement of Near-Field Structure of Microwave Radiators and Scatterers

    DEFF Research Database (Denmark)

    Mishra, Shantnu R.;; Pavlasek, Tomas J. F.;; Muresan, Letitia V.

    1980-01-01

    An automatic facility for measuring the three-dimensional structure of the near fields of microwave radiators and scatterers is described. The amplitude and phase for different polarization components can be recorded in analog and digital form using a microprocessor-based system. The stored data...

  12. Experimental Breeder Reactor II (EBR-II) Fuel-Performance Test Facility (FPTF)

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, J.A.; Brubaker, R.C.; Veith, D.J.; Giorgis, G.C.; Walker, D.E.; Seim, O.S.

    1982-01-01

    The Fuel-Performance Test Facility (FPTF) is the latest in a series of special EBR-II instrumented in-core test facilities. A flow control valve in the facility is programmed to vary the coolant flow, and thus the temperature, in an experimental-irradiation subassembly beneath it and coupled to it. In this way, thermal transients can be simulated in that subassembly without changing the temperatures in surrounding subassemblies. The FPTF also monitors sodium flow and temperature, and detects delayed neutrons in the sodium effluent from the experimental-irradiation subassembly beneath it. This facility also has an acoustical detector (high-temperature microphone) for detecting sodium boiling.

  13. Efficacy of Structured Organizational Change Intervention on HIV Testing in Correctional Facilities.

    Science.gov (United States)

    Belenko, Steven; Visher, Christy; Pearson, Frank; Swan, Holly; Pich, Michele; O'Connell, Daniel; Dembo, Richard; Frisman, Linda; Hamilton, Leah; Willett, Jennifer

    2017-06-01

    This article presents findings from a multisite cluster randomized trial of a structured organizational change intervention for improving HIV testing services in jails and prisons. Matched pairs of prison and jail facilities were randomized to experimental and control conditions; all facilities received baseline training about best practices in HIV testing and other HIV services and selected an area of HIV services on which to focus improvement efforts. The experimental facilities formed local change teams and were provided external coaching based on the Network for the Improvement of Addiction Treatment (NIATx) process improvement model. Difference-indifference analyses indicate a significant relative increase in HIV testing in the experimental compared to the control condition. Meta-analyses across the matched pairs indicated a small to medium effect of increased testing overall. The results indicate that the local change team model can achieve significant increases in HIV testing in correctional facilities. Implications for HIV testing policies and challenges for expanding testing are discussed.

  14. A field test of a simple stochastic radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, N. [Science Applications International Corp., San Diego, CA (United States)

    1995-09-01

    The problem of determining the effect of clouds on the radiative energy balance of the globe is of well-recognized importance. One can in principle solve the problem for any given configuration of clouds using numerical techniques. This knowledge is not useful however, because of the amount of input data and computer resources required. Besides, we need only the average of the resulting solution over the grid scale of a general circulation model (GCM). Therefore, we are interested in estimating the average of the solutions of such fine-grained problems using only coarse grained data, a science or art called stochastic radiation transfer. Results of the described field test indicate that the stochastic description is a somewhat better fit to the data than is a fractional cloud cover model, but more data are needed. 1 ref., 3 figs.

  15. Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part A

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-17

    Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. The document, Volume II - Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part A contains definitions, baseline revisions, test plans, and energy utilization sections.

  16. Field test of a post-closure radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.E. [Babcock & Wilcox, Alliance, OH (United States); Christy, C.E. [Department of Energy, Morgantown, WV (United States); Heath, R.E. [FERMCO, Cincinnati, OH (United States)

    1995-10-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. The system designed in Phase I of this development program monitors gamma radiation using a subsurface cesium iodide scintillator coupled to above-ground detection electronics using optical waveguide. The radiation probe can be installed to depths up to 50 meters using cone penetrometer techniques, and requires no downhole electrical power. Multiplexing, data logging and analysis are performed at a central location. A prototype LPRMS probe was built, and B&W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE`s Office of Technology Development (EM-50) through METC. The system was used measure soil and water with known uranium contamination levels, both in drums and in situ depths up to 3 meters. For comparison purposes measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics.

  17. Rocket nozzle thermal shock tests in an arc heater facility

    Science.gov (United States)

    Painter, James H.; Williamson, Ronald A.

    1986-01-01

    A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.

  18. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  19. Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests

    Science.gov (United States)

    Hienz, Robert; Davis, Catherine; Weed, Michael; Guida, Peter; Gooden, Virginia; Brady, Joseph; Roma, Peter

    Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests INTRODUCTION Risk assessment of the biological consequences of living in the space radiation environment represents one of the highest priority areas of NASA radiation research. Of critical importance is the need for a risk assessment of damage to the central nervous system (CNS) leading to functional cognitive/behavioral changes during long-term space missions, and the development of effective shielding or biological countermeasures to such risks. The present research focuses on the use of an animal model that employs neurobehavioral tests identical or homologous to those currently in use in human models of risk assessment by U.S. agencies such as the Depart-ment of Defense and Federal Aviation and Federal Railroad Administrations for monitoring performance and estimating accident risks associated with such variables as fatigue and/or alcohol or drug abuse. As a first approximation for establishing human risk assessments due to exposure to space radiation, the present work provides animal performance data obtained with the rPVT (rat Psychomotor Vigilance Test), an animal analog of the human PVT that is currently employed for human risk assessments via quantification of sustained attention (e.g., 'vigilance' or 'readiness to perform' tasks). Ground-based studies indicate that radiation can induce neurobehavioral changes in rodents, including impaired performance on motor tasks and deficits in spatial learning and memory. The present study is testing the hypothesis that radiation exposure impairs motor function, performance accuracy, vigilance, motivation, and memory in adult male rats. METHODS The psychomotor vigilance test (PVT) was originally developed as a human cognitive neurobe-havioral assay for tracking the temporally dynamic changes in sustained attention, and has also been used to track changes in circadian rhythm. In humans the test requires responding to a small, bright

  20. Development and Testing of an ISRU Soil Mechanics Vacuum Test Facility

    Science.gov (United States)

    Kleinhenz, Julie E.; Wilkinson, R. Allen

    2014-01-01

    For extraterrestrial missions, earth based testing in relevant environments is key to successful hardware development. This is true for both early component level development and system level integration. For In-Situ Resource Utilization (ISRU) on the moon, hardware must interface with the surface material, or regolith, in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, properly conditioned bed of lunar regolith simulant. However, in earth-based granular media, such as lunar regolith simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. A mid-size chamber (3.66 m tall, 1.5 m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64 m deep by 0.914 m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types were used. Data obtained from an electric cone penetrometer can be used to determine strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off-gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5 Torr, regardless of the pump rate. The slow off-gassing of the soil at low pressure lead to long test times; a full week to reach 10(exp -5) Torr. Robotic soil manipulation would enable multiple ISRU hardware test within the same vacuum cycle. The feasibility of a robotically controlled auger and tamper was explored at vacuum conditions.

  1. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  2. Beam dynamics simulations and measurements at the Project X Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

    2011-03-01

    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It

  4. The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase

    Science.gov (United States)

    Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O’hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko

    2018-01-01

    As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.

  5. The photomultiplier tube testing facility for the Borexino experiment at LNGS

    Energy Technology Data Exchange (ETDEWEB)

    Brigatti, A. [INFN sez. di Milano, Via Celoria, 16, I-20133 Milan (Italy); Ianni, A. [INFN - Laboratori Nazionali del Gran Sasso, S.S. 17bis Km 18-910, I-67010 Assergi, Aquila (Italy); Lombardi, P. [Dipartimento di Fisica Universita and INFN. sez. di Milano, Via Celoria, 16, I-20133 Milan (Italy); Ranucci, G. [Dipartimento di Fisica Universita and INFN. sez. di Milano, Via Celoria, 16, I-20133 Milan (Italy); Smirnov, O.Ju. [Joint Institute for Nuclear Research, Joliot-Curie, 6, 141980 Dubna (Russian Federation)]. E-mail: smirnov@lngs.infn.it

    2005-02-01

    A facility to test the photomultiplier tubes (PMTs) for the solar neutrino detector Borexino was built at the Gran Sasso laboratory. Using the facility 2200 PMTs with optimal characteristics were selected from the 2350 delivered from the manufacturer. The details of the hardware used are presented.

  6. Design and Testing of Subsystems for Mo-99 Production Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey; Bailey, James; Virgo, Mathew; Gromov, R.; Makarashvili, Vakhtang; Micklich, Bradley

    2014-10-01

    Three beamline configurations have been proposed for the SHINE Medical Technologies facility for producing fission-product 99Mo using a D/T-accelerator (Figure 1). One configuration, proposed by Los Alamos National Laboratory (LANL), includes a three-bend magnet system with a total 20° bending angle. This configuration also includes a set of octuplet magnets to generate a non-Gaussian beam profile. Argonne has proposed two beamlines based on a (1) 10° bending magnet (Appendix A and Ref. 1) and (2) alpha magnets (Appendix B) that use a pair of raster doublets to redistribute the beam over the face of the target. This report gives an overview of the various designs.

  7. Testing of actively cooled mock-ups in several high heat flux facilities-An International Round Robin Test

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M. [Forschungszentrum Juelich, EURATOM Association, B-NM, D-52425 Juelich (Germany)]. E-mail: m.roedig@fz-juelich.de; Bobin-Vastra, I. [AREVA Centre Technique de Framatome, Porte Magenta, BP181, 71205 Le Creusot Cedex (France); Cox, S. [JET, UKAEA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Escourbiac, F. [CEA-DRFC, Cadarache, 13115 St. Paul lez Durance (France); Gervash, A. [Efremov Institute, St. Petersburg 196641 (Russian Federation); Kapoustina, A. [Forschungszentrum Juelich, EURATOM Association, B-NM, D-52425 Juelich (Germany); Kuehnlein, W. [Forschungszentrum Juelich, EURATOM Association, B-NM, D-52425 Juelich (Germany); Kuznetsov, V. [Efremov Institute, St. Petersburg 196641 (Russian Federation); Merola, M. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Nygren, R. [Sandia National Laboratories, Albuquerque, NM 87185-1129 (United States); Youchison, D.L. [Sandia National Laboratories, Albuquerque, NM 87185-1129 (United States)

    2005-11-15

    Several electron beam and ion beam facilities are involved in high heat flux testing of plasma-facing components for next step fusion devices. Up to a certain degree, these machines are comparable, but differences concern, e.g. beam generation, beam sweeping, calibration techniques and diagnostics. In order to get an information if tests in the different facilities are really comparable, a set of actively cooled CFC monoblocks has been heated in four electron beam and one ion beam facility at comparable power densities. The temperature response during these loadings has been registered and used as a criteria for assessment.

  8. A Cryogenic RF Material Testing Facility at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Martin, David; Tantawi, Sami; Yoneda, Charles; /SLAC

    2012-06-22

    The authors have developed an X-band SRF testing system using a high-Q copper cavity with an interchangeable flat bottom for the testing of different materials. By measuring the Q of the cavity, the system is capable to characterize the quenching magnetic field of the superconducting samples at different power level and temperature, as well as the surface resistivity. This paper presents the most recent development of the system and testing results.

  9. Ames T-3 fire test facility - Aircraft crash fire simulation

    Science.gov (United States)

    Fish, R. H.

    1976-01-01

    There is a need to characterize the thermal response of materials exposed to aircraft fuel fires. Large scale open fire tests are costly and pollute the local environment. This paper describes the construction and operation of a subscale fire test that simulates the heat flux levels and thermochemistry of typical open pool fires. It has been termed the Ames T-3 Test and has been used extensively by NASA since 1969 to observe the behavior of materials exposed to JP-4 fuel fires.

  10. Intercomparison of U.S. Ballast Water Test Facilities

    Science.gov (United States)

    2012-11-01

    GBF) and the Great Ships Initiative (GSI). Due to scheduling factors, the first TF to conduct testing was GBF, located in Vallejo , California... VALLEJO , CA ......................................................................................... A-1  APPENDIX B.  CONTENTS OF THE VERIFICATION...defined as a full-scale ballast water test using water taken up from the Carquinez Strait at the vessel’s mooring point in Vallejo , CA. All testing

  11. Design, construction, and testing of the vacuum vessel for the tandem Mirror Fusion Test Facility

    Science.gov (United States)

    Gerich, J. W.

    1985-11-01

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-ton concrete-shielding vault with the 2850-ton vacuum vessel system. To maintain a vacuum of 2 x 10 to the -8 Torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200 cu m) has been fabricated, erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system.

  12. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    Science.gov (United States)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  13. Applications of Fast, Facile, Radiation-Free Radical Polymerization Techniques Enabled by Room Temperature Alkylborane Chemistry.

    Science.gov (United States)

    Ahn, Dongchan; Wier, Kevin A; Mitchell, Timothy P; Olney, Patricia A

    2015-11-04

    Fast, robust, and scalable techniques for covalent materials assembly are shown to be enabled by variants of a simple mixing-induced free radical initiation scheme broadly termed room-temperature alkylborane (RTA) chemistry. Unique process versatility, speed of reaction, high conversion, and structural control at ambient conditions occur by exploiting air-stable alkylborane-amine complexes that rapidly initiate upon mixing with common amine-reactive decomplexing agents such as carboxylic acid compounds. Three diverse application examples are presented, illustrating facile ambient routes to covalent assembly varying in length scale: (1) copolymers with controllable pressure-sensitive adhesive properties, (2) hydrophilically modified silicone microparticles from heterophase reactions, and (3) UV-free inkjet printable materials suitable for thick-textured patterning and printing, all conducted in open air with no radiation or atmospheric control. These examples demonstrate that this simple "bucket chemistry" can create intriguing degrees of freedom for polymerization, cross-linking and covalent macromolecular assembly with controllable structure and properties, suggesting further opportunities for both fundamental mechanistic investigation and application to a range of old and new materials assembly problems across length scales.

  14. The planning, construction, and operation of a radioactive waste storage facility for an Australian state radiation regulatory authority

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.D.; Kleinschmidt, R.; Veevers, P. [Radiation Health, Queensland (Australia)

    1995-12-31

    Radiation regulatory authorities have a responsibility for the management of radioactive waste. This, more often than not, includes the collection and safe storage of radioactive sources in disused radiation devices and devices seized by the regulatory authority following an accident, abandonment or unauthorised use. The public aversion to all things radioactive, regardless of the safety controls, together with the Not In My Back Yard (NIMBY) syndrome combine to make the establishment of a radioactive materials store a near impossible task, despite the fact that such a facility is a fundamental tool for regulatory authorities to provide for the radiation safety of the public. In Queensland the successful completion and operational use of such a storage facility has taken a total of 8 years of concerted effort by the staff of the regulatory authority, the expenditure of over $2 million (AUS) not including regulatory staff costs and the cost of construction of an earlier separate facility. This paper is a summary of the major developments in the planning, construction and eventual operation of the facility including technical and administrative details, together with the lessons learned from the perspective of the overall project.

  15. Power Burst Facility (PBF) severe fuel damage test 1-4 test results report

    Energy Technology Data Exchange (ETDEWEB)

    Petti, D.A.; Martinson, Z.R.; Hobbins, R.R.; Allison, C.M.; Carlson, E.R.; Hagrman, D.L.; Cheng, T.C.; Hartwell, J.K.; Vinjamuri, K.; Seifken, L.J.

    1989-04-01

    A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1-4 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1-4 was the fourth and final test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel and control rod behavior, aerosol and hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (36,000 MWd/MtU) pressurized water-reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 silver-indium-cadmium control rods, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1.3-h transient at a coolant pressure of 6.95 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy and control rod absorber alloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 2100-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of on-line instrumentation, analysis of fission product and aerosol data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 40 refs., 160 figs., 31 tabs.

  16. 40 CFR 792.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    ... other test systems. (1) In tests with plants or aquatic animals, proper separation of species can be... the protocol. (g) For freshwater organisms, an adequate supply of clean water of the appropriate... shall be available as specified in the protocol. (h) For plants, an adequate supply of soil of the...

  17. DITCM roadside facilities for cooperative systems testing and evaluation

    NARCIS (Netherlands)

    Passchier, I.; Netten, B.D.; Wedemeijer, H.; Maas, S.M.P.; Leeuwen, C.J. van; Schackmann, P.P.M.

    2013-01-01

    Cooperative systems are being developed for large scale deployment in the near future. Validation of the performance of cooperative systems, and evaluation of the impact of cooperative applications is crucial before large scale deployment can proceed. The DITCM test site facilitates testing,

  18. X-point target divertor concept and the Alcator DX high power divertor test facility

    Science.gov (United States)

    Labombard, B.; Marmar, E.; Irby, J.; Vieria, R.; Wolfe, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as `Super X' and `X-point target' have the potential to solve all three challenges by producing a stable, fully detached, low temperature plasma in the divertor while maintaining a hot boundary layer around a clean plasma core. The X-point target divertor may be particularly effective. It places a second X-point in the pathway of the peak parallel heat flux with the intention of forming an X-point MARFE in the divertor volume, well away from the primary X-point that defines the last closed flux surface and at larger major radius, providing detachment front stability. Divertor heat dissipation is via volumetric processes (radiation, ion-neutral collisions), virtually eliminating erosion by ion bombardment and reducing peak heat flux and neutron fluence on remote divertor target components. Alcator DX is conceived as a national facility to test these ideas. It employs the high magnetic field technology of Alcator combined with high-power ICRH to investigate advanced divertors at reactor-level parallel heat flux densities.

  19. Solar Total Energy Test Facility Project. Semiannual report, October 1976--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Petterson, B. Jr. (ed.)

    1977-08-01

    The Solar Total Energy System will operate as follows: A heat transfer fluid (Therminol 66) is heated in the receiver tubes of the solar collectors by reflected and focused solar radiation. This fluid is pumped to the high-temperature storage subsystem. Fluid is extracted from this storage on a demand basis and pumped to the heat exchanger which produces superheated toluene vapor to power the turbine/generator. The boiler can also be operated from a fossil fuel-fired heater to insure continuity of operation during extended cloudy periods. Turbine condenser coolant is pumped to the low-temperature storage tank and becomes the energy source for heating and air-conditioning components of the system. Progress is reported on the design, fabrication, installation, and checkout of the first 200 m/sup 2/ collector field quadrant, a high-temperature stratified storage tank, a 32-kW turbine/generator and Therminol-to-toluene heat exchanger, an instrumentation and control subsystem, a cooling tower, the turbine and control building, and all necessary pumps and fluid loops to interconnect these subsystems. Also, experience with operating the facility in accordance with a detailed test plan to provide performance data on all subsystems and to accumulate operating and maintenance experience which can provide a basis for the design of large-scale experimental plants and future solar energy systems is described. (WHK)

  20. Recent Radiation Test Results for Trench Power MOSFETs

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak S.; Topper, Alyson D.; Ladbury, Raymond L.; Label, Kenneth A.

    2017-01-01

    Single-event effect (SEE) radiation test results are presented for various trench-gate power MOSFETs. The heavy-ion response of the first (and only) radiation-hardened trench-gate power MOSFET is evaluated: the manufacturer SEE response curve is verified and importantly, no localized dosing effects are measured, distinguishing it from other, non-hardened trench-gate power MOSFETs. Evaluations are made of n-type commercial and both n- and p-type automotive grade trench-gate device using ions comparable to of those on the low linear energy transfer (LET) side of the iron knee of the galactic cosmic ray spectrum, to explore suitability of these parts for missions with higher risk tolerance and shorter duration, such as CubeSats. Part-to-part variability of SEE threshold suggests testing with larger sample sizes and applying more aggressive derating to avoid on-orbit failures. The n-type devices yielded expected localized dosing effects including when irradiated in an unbiased (0-V) configuration, adding to the challenge of inserting these parts into space flight missions.

  1. Validity and Utilization of the Out-Pile Testing Facilities at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Kee-Nam; Cho, Man-Soon; Yang, Sung-Woo; Shin, Yoon-Taek; Park, Seng-Jae; Jun, Byung-Hyuk; Kim, Myong-Seop [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Various neutron irradiation facilities such as rabbit irradiation facilities, loop facilities and the capsule irradiation facilities for irradiation tests of nuclear materials, fuels and radioisotope products have been developed at HANARO. Among these irradiation facilities, the capsule is the most useful device for coping with the various test requirements at HANARO. To support the national research and development programs on nuclear reactors and the nuclear fuel cycle technology in Korea, new irradiation capsules have been developed and actively utilized for the irradiation tests requested by numerous users. The environmental conditions for these reactors are generally beyond present day reactor technology, especially regarding the higher neutron fluence and higher operating temperature. To effectively support the national R and Ds relevant to the future nuclear systems, the development of advanced irradiation technologies concerning higher neutron fluence and irradiation temperature are being preferentially developed at HANARO. The utilization of the out-pile testing facilities to satisfy the criteria of safety evaluation for a new device installed in the core of HANARO was summarized. In addition, the validity of the out-pile testing facilities was evaluated and proved to be effective for verifying the integrity of irradiation capsule.

  2. TASKA, a fusion engineering test facility for the 1990's

    Science.gov (United States)

    Kulcinski, G. L.; Emmert, G. A.; Maynard, C. W.; Santarius, J. F.; Sawan, M. E.; Heinz, W.; Komarek, P.; Maurer, W.; Suppan, A.; Opperman, E. K.

    The preliminary performance of a new Engineering Testing Reactor based on the tandem mirror confinement principle is described. This device, called TASKA, is based on near term (mid 1980's) technology and is designed to test reactor relevant technologies (superconducting magnets, blankets, materials, etc.) for the Demonstration Power Reactor envisioned for the turn of the century. The key operating parameters are a DT power level of 86 MW, a neutron wall loading of 1.5 MW/m 2, and an overall tritium breeding ratio of 1.0. Details of the materials testing program reveal that damage levels approaching 100 dpa can be achieved in less than 15 years of irradiation time. TASKA appears to be an attractive, cost effective way of achieving the near term technology testing goals for the world fusion program.

  3. Locating, quantifying and characterising radiation hazards in contaminated nuclear facilities using a novel passive non-electrical polymer based radiation imaging device.

    Science.gov (United States)

    Stanley, S J; Lennox, K; Farfán, E B; Coleman, J R; Adamovics, J; Thomas, A; Oldham, M

    2012-06-01

    This paper provides a summary of recent trials which took place at the US Department of Energy Oak Ridge National Laboratory (ORNL) during December 2010. The overall objective for the trials was to demonstrate that a newly developed technology could be used to locate, quantify and characterise the radiological hazards within two separate ORNL hot cells (B and C). The technology used, known as RadBall(®), is a novel, passive, non-electrical polymer based radiation detection device which provides a 3D visualisation of radiation from areas where effective measurements have not been previously possible due to lack of access. This is particularly useful in the nuclear industry prior to the decommissioning of facilities where the quantity, location and type of contamination are often unknown. For hot cell B, the primary objective of demonstrating that the technology could be used to locate, quantify and characterise three radiological sources was met with 100% success. Despite more challenging conditions in hot cell C, two sources were detected and accurately located. To summarise, the technology performed extremely well with regards to detecting and locating radiation sources and, despite the challenging conditions, moderately well when assessing the relative energy and intensity of those sources. Due to the technology's unique deployability, non-electrical nature and its directional awareness the technology shows significant promise for the future characterisation of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities.

  4. Development of CFD Approaches for Modeling Advanced Concepts of Nuclear Thermal Propulsion Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will be developing a CFD approach that can handle the additional complexities needed in a NTP testing facility when modeling the combustion processes in...

  5. JOINT INTELLIGENCE, SURVEILLANCE, & RECONNAISSANCE (ISR) TEST & EVALUATION (JISR-TE) FACILITY

    Data.gov (United States)

    Federal Laboratory Consortium — To meet the needs of the Warfighter, the JISR-TE facility provides the US, NATO, and Coalition members standards conformance testing of imagery capabilities across...

  6. Design, construction and performance of the current lead test facility CuLTKa

    Science.gov (United States)

    Richter, T.; Bobien, S.; Fietz, W. H.; Heiduk, M.; Heller, R.; Hollik, M.; Lange, C.; Lietzow, R.; Rohr, P.

    2017-09-01

    The Karlsruhe Institute of Technology (KIT) has a longtime experience in the development of High Temperature Superconductor (HTS) Current Leads (CLs) for high currents leading to several contracts with national and international partners. Within these contracts series production and cold acceptance tests of such CLs were required. The cold test of a large number of CLs requires the availability of a flexible facility which allows fast and reproducible testing. With the Current Lead Test Facility Karlsruhe (CuLTKa) a versatile and flexible test bed for CLs was designed and constructed. The facility consists of five cryostats including two test boxes and is directly connected by a transfer line to a refrigerator with a capacity of 2 kW at 4.4 K. The refrigerator supplies supercritical helium at two different temperature levels simultaneously. Each of the two test cryostats can be equipped with a pair of CLs which is short-circuited at the low temperature level via a superconducting bus bar. For current tests a power supply can provide DC currents up to 30 kA. If required, the facility design offers the potential of withstanding high voltages of up to 50 kV on the test objects. The commissioning of the facility started in July 2014. In total a series of acceptance tests of the CLs for the Japanese JT-60SA will be carried out until second half of 2017 to qualify six CLs with a current of 26 kA and 20 CLs with a current of 20 kA. In the meantime, six CLs@26 kA and 16 CLs@20 kA have been tested in CuLTKa which demonstrates the very effective operation of the facility. This paper describes the setup of the facility from cryogenic, electrical and process control point of view and will highlight the design of particular technical aspects. Furthermore, an overview of the performance during the commissioning phase will be given.

  7. Radiation pressure calibration and test mass reflectivities for LISA Pathfinder

    Science.gov (United States)

    Korsakova, Natalia; Kaune, Brigitte; LPF Collaboration

    2017-05-01

    This paper describes a series of experiments which were carried out during the main operations of LISA Pathfinder. These experiments were performed by modulating the power of the measurement and reference beams. In one series of experiments the beams were sequentially switched on and off. In the other series of experiments the powers of the beams were modulated within 0.1% and 1% of the constant power. These experiments use recordings of the total power measured on the photodiodes to infer the properties of the Optical Metrology System (OMS), such as reflectivities of the test masses and change of the photodiode efficiencies with time. In the first case the powers are back propagated from the different photodiodes to the same place on the optical bench to express the unknown quantities in the measurement with the complimentary photodiode measurements. They are combined in the way that the only unknown left is the test mass reflectivities. The second experiment compared two estimates of the force applied to the test masses due to the radiation pressure that appears because of the beam modulations. One estimate of the force is inferred from the measurements of the powers on the photodiodes and propagation of this measurement to the test masses. The other estimation of the force is done by calculating it from the change in the main scientific output of the instrument - differential displacement of the two test masses.

  8. The Test Facility for the Short Prototypes of the LHC Superconducting Magnets

    CERN Document Server

    Arn, A; Giloux, C; Mompo, R; Siemko, A; Venturini-Delsolaro, W; Walckiers, L

    2002-01-01

    The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come.

  9. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, M.K.

    2013-03-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  10. Report on the symposium and workshop on the 5 MWt solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Design concepts and applications for the 5 MWt Solar Thermal Test Facility at Albuquerque are discussed in 43 papers. Session topics include central receivers, solar collectors, solar energy storage, high temperature materials and chemistry. A program overview and individual contractor reports for the test facility project are included, along with reports on conference workshop sessions and users group recommendations. A list of conference attendees is appended. Separate abstracts are prepared for 39 papers.

  11. Design of 500kW grate fired test facility using CFD

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup; Kær, Søren Knudsen; Jørgensen, K.

    2005-01-01

    A 500kW vibrating grate fired test facility for solid biomass fuels has been designed using numerical models including CFD. The CFD modelling has focussed on the nozzle layout and flowpatterns in the lower part of the furnace, and the results have established confidence in the chosen design......, indicating that the test facility will adequately provide conditions resembling those found in full-scale industrial plants....

  12. Helium mass flow measurement in the International Fusion Superconducting Magnet Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R.

    1986-08-01

    The measurement of helium mass flow in the International Fusion Superconducting Magnet Test Facility (IFSMTF) is an important aspect in the operation of the facility's cryogenic system. Data interpretation methods that lead to inaccurate results can cause severe difficulty in controlling the experimental superconducting coils being tested in the facility. This technical memorandum documents the methods of helium mass flow measurement used in the IFSMTF for all participants of the Large Coil Program and for other cryogenic experimentalists needing information on mass flow measurements. Examples of experimental data taken and calculations made are included to illustrate the applicability of the methods used.

  13. A numerical optimization of high altitude testing facility for wind tunnel experiments

    Directory of Open Access Journals (Sweden)

    Bruce Ralphin Rose J

    2015-06-01

    Full Text Available High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pressure equal or less than the nozzle exit pressure. On average, air/GN2 is used as active gas for ejector system that is stored in the high pressure cylinders. The wind tunnel facilities are used for conducting aerodynamic simulation experiments at/under various flow velocities and operating conditions. However, constructing both of these facilities require more laboratory space and expensive instruments. Because of this demerit, a novel scheme is implemented for conducting wind tunnel experiments by using the existing infrastructure available in the high altitude testing (HAT facility. This article presents the details about the methods implemented for suitably modifying the sub-scale HAT facility to conduct wind tunnel experiments. Hence, the design of nozzle for required area ratio A/A∗, realization of test section and the optimized configuration are focused in the present analysis. Specific insights into various rocket models including high thrust cryogenic engines and their holding mechanisms to conduct wind tunnel experiments in the HAT facility are analyzed. A detailed CFD analysis is done to propose this conversion without affecting the existing functional requirements of the HAT facility.

  14. Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-17

    A comprehensive test program has been envisioned by ERDA to accomplish the OTEC program objectives of developing an industrial and technological base that will lead to the commercial capability to successfully construct and economically operate OTEC plants. This study was performed to develop alternative non-site specific OTEC test facilities/platform requirements for an integrated OTEC test program including both land and floating test facilities. A progression of tests was established in which OTEC power cycle component designs proceed through advanced research and technology, component, and systems test phases. This progression leads to the first OTEC pilot plant and provides support for following developments which potentially reduce the cost of OTEC energy. It also includes provisions for feedback of results from all test phases to enhance modifications to existing designs or development of new concepts. The tests described should be considered as representative of generic types since specifics can be expected to change as the OTEC plant design evolves. Emphasis is placed on defining the test facility which is capable of supporting the spectrum of tests envisioned. All test support facilities and equipment have been identified and included in terms of space, utilities, cost, schedule, and constraints or risks. A highly integrated data acquisition and control system has been included to improve test operations and facility effectiveness through a centralized computer system capable of automatic test control, real-time data analysis, engineering analyses, and selected facility control including safety alarms. Electrical power, hydrogen, and ammonia are shown to be technically feasible as means for transmitting OTEC power to a land-based distribution point. (WHK)

  15. Recommendations for Improving Consistency in the Radiation Fields Used During Testing of Radiation Detection Instruments for Homeland Security Applications

    OpenAIRE

    Pibida, L.; Mille, M; Norman, B.

    2013-01-01

    Several measurements and calculations were performed to illustrate the differences that can be observed in the determination of exposure rate or ambient dose equivalent rate used for testing radiation detection systems against consensus standards. The large variations observed support our recommendation that better consistency in the test radiation fields can be achieved by specifying the source activity and testing distance instead of the field strength.

  16. Recommendations for Improving Consistency in the Radiation Fields Used During Testing of Radiation Detection Instruments for Homeland Security Applications.

    Science.gov (United States)

    Pibida, L; Mille, M; Norman, B

    2013-01-01

    Several measurements and calculations were performed to illustrate the differences that can be observed in the determination of exposure rate or ambient dose equivalent rate used for testing radiation detection systems against consensus standards. The large variations observed support our recommendation that better consistency in the test radiation fields can be achieved by specifying the source activity and testing distance instead of the field strength.

  17. 40 CFR 160.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    .... (1) In tests with plants or aquatic animals, proper separation of species can be accomplished within...) shall be available. The ranges of composition shall be as specified in the protocol. (g) For freshwater... protocol. (h) For plants, an adequate supply of soil of the appropriate composition, as specified in the...

  18. 21 CFR 58.15 - Inspection of a testing facility.

    Science.gov (United States)

    2010-04-01

    ... case of records also to copy) all records and specimens required to be maintained regarding studies... laboratory study will not be considered in support of an application for a research or marketing permit does... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES General Provisions § 58.15 Inspection of a testing...

  19. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a comprehensive understanding of requirements for a facility that could safely conduct effluent treatment for a Nuclear Thermal Propulsion (NTP) rocket...

  20. Radiation safety during remediation of the SevRAO facilities: 10 years of regulatory experience.

    Science.gov (United States)

    Sneve, M K; Shandala, N; Kiselev, S; Simakov, A; Titov, A; Seregin, V; Kryuchkov, V; Shcheblanov, V; Bogdanova, L; Grachev, M; Smith, G M

    2015-09-01

    In compliance with the fundamentals of the government's policy in the field of nuclear and radiation safety approved by the President of the Russian Federation, Russia has developed a national program for decommissioning of its nuclear legacy. Under this program, the State Atomic Energy Corporation 'Rosatom' is carrying out remediation of a Site for Temporary Storage of spent nuclear fuel (SNF) and radioactive waste (RW) at Andreeva Bay located in Northwest Russia. The short term plan includes implementation of the most critical stage of remediation, which involves the recovery of SNF from what have historically been poorly maintained storage facilities. SNF and RW are stored in non-standard conditions in tanks designed in some cases for other purposes. It is planned to transport recovered SNF to PA 'Mayak' in the southern Urals. This article analyses the current state of the radiation safety supervision of workers and the public in terms of the regulatory preparedness to implement effective supervision of radiation safety during radiation-hazardous operations. It presents the results of long-term radiation monitoring, which serve as informative indicators of the effectiveness of the site remediation and describes the evolving radiation situation. The state of radiation protection and health care service support for emergency preparedness is characterized by the need to further study the issues of the regulator-operator interactions to prevent and mitigate consequences of a radiological accident at the facility. Having in mind the continuing intensification of practical management activities related to SNF and RW in the whole of northwest Russia, it is reasonable to coordinate the activities of the supervision bodies within a strategic master plan. Arrangements for this master plan are discussed, including a proposed programme of actions to enhance the regulatory supervision in order to support accelerated mitigation of threats related to the nuclear legacy in the

  1. Advanced Electronics Technologies: Challenges for Radiation Effects Testing, Modeling, and Mitigation

    Science.gov (United States)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    Emerging Electronics Technologies include: 1) Changes in the commercial semiconductor world; 2) Radiation Effects Sources (A sample test constraint); and 3) Challenges to Radiation Testing and Modeling: a) IC Attributes-Radiation Effects Implication b) Fault Isolation c) Scaled Geometry d) Speed e) Modeling Shortfall f) Knowledge Status

  2. Fermilab Test Beam Facility Annual Report FY17

    Energy Technology Data Exchange (ETDEWEB)

    Rominsky, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schmidt, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rivera, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Uplegger, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Asaadi, J. [Univ. of Texas, Arlington, TX (United States); Raaf, J. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Freeman, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Price, J. [Univ. of Liverpool (United Kingdom); Casey, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ehrlich, R. [Univ. of Virginia, Charlottesville, VA (United States); Belmont, R. [Univ. of Colorado, Boulder, CO (United States); Boose, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Conners, M. [Georgia State Univ., Atlanta, GA (United States); Haggerty, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, K. [Univ. of Colorado, Boulder, CO (United States); Hodges, A. [Georgia State Univ., Atlanta, GA (United States); Huang, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kistenev, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lajoie, J. [Iowa State Univ., Ames, IA (United States); Mannel, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Osborn, J. [Univ. of Michigan, Ann Arbor, MI (United States); Pontieri, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Purschke, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sarsour, M. [Georgia State Univ., Atlanta, GA (United States); Sen, A. [Iowa State Univ., Ames, IA (United States); Skoby, M. [Univ. of Michigan, Ann Arbor, MI (United States); Stoll, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Toldo, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ujvari, B. [Debrecen Univ., Debrecen (Hungary); Woody, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ronzhin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hanagaki, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Apresyan, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bose, T. [Boston Univ., MA (United States); Canepa, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Demina, R. [Univ. of Rochester, NY (United States); Gershtein, Y. [Rutgers Univ., Piscataway, NJ (United States); Halkiadakis, E. [Rutgers Univ., Piscataway, NJ (United States); Haytmyradov, M. [Univ. of Iowa, Iowa City, IA (United States); Hazen, E. [Boston Univ., MA (United States); Hindrichs, O. [Univ. of Rochester, NY (United States); Korjenevski, S. [Univ. of Rochester, NY (United States); Nachtman, J. [Univ. of Iowa, Iowa City, IA (United States); Narain, M. [Brown Univ., Providence, RI (United States); Nash, K. [Rutgers Univ., Piscataway, NJ (United States); Onel, Y. [Univ. of Iowa, Iowa City, IA (United States); Osherson, M. [Rutgers Univ., Piscataway, NJ (United States); Rankin, D. [Boston Univ., MA (United States); Schneider, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stone, B. [Rutgers Univ., Piscataway, NJ (United States); Metcalfe, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Benoit, M. [Univ. of Geneva (Switzerland); Vicente, M. [Univ. of Geneva (Switzerland); di Bello, F. [Univ. of Geneva (Switzerland); Cavallaro, E. [Univ. Autonoma de Barcelona (Spain); Chakanov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Frizzell, D. [Univ. of Oklahoma, Norman, OK (United States); Kiehn, M. [Univ. of Geneva (Switzerland); Meng, L. [Univ. of Geneva (Switzerland); Miucci, A. [Univ. of Bern, Bern (Switzerland); Nodulman, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Terzo, S. [Univ. Autonoma de Barcelona (Spain); Wang, Rui [Argonne National Lab. (ANL), Argonne, IL (United States); Weston, T. [Univ. of Oklahoma, Norman, OK (United States); Xie, Junqie [Argonne National Lab. (ANL), Argonne, IL (United States); Xu, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaffaroni, E. [Univ. of Geneva (Switzerland); Zhang, M. [Univ. of Illinois, Urbana, IL (United States); Argelles, C. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Axani, S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Katori, T. [Queen Mary Univ. of London (United Kingdom); Noulai, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mandalia, S. [Queen Mary Univ. of London (United Kingdom); Sandstrom, P. [Univ. of Wisconsin, Madison, WI (United States); Kryemadhi, A. [Messiah College, Mechanicsburg, PA (United States); Barner, L. [Messiah College, Mechanicsburg, PA (United States); Grove, A. [Messiah College, Mechanicsburg, PA (United States); Mohler, J. [Messiah College, Mechanicsburg, PA (United States); Roth, A. [Messiah College, Mechanicsburg, PA (United States); Beuzekom, M. van [Nikhef National Inst. for Subatomic Physics, Amsterdam (Netherlands); Dall' Occo, E. [Nikhef National Inst. for Subatomic Physics, Amsterdam (Netherlands); Schindler, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Paley, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Badgett, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Denisov, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lukic, S. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia); Ujic, P. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia); Lebrun, P. L.G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Fields, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Christian, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zaki, R. [Radboud Univ., Nijmegen (Netherlands)

    2018-01-23

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY2017. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF and are listed in Table 1. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  3. Data Validation in the AEDC Engine Test Facility

    Science.gov (United States)

    2010-02-01

    processing systems in the ETF in the 1960 time frame. The first engine tests at AEDC (Ref 1.) used manometer banks to measure steady-state pressure...validation environment. An ETF Analysis Capability Upgrade Project replaced the Central Computer as a data source for data validation and analysis with...to change in the data validation culture, and the lack of a champion for the DVM among the ETF analysts. In addition, ETF analysts began to rely on

  4. Development and performances of a high statistics PMT test facility

    Directory of Open Access Journals (Sweden)

    Mollo Carlos Maximiliano

    2016-01-01

    Full Text Available Since almost a century photomultipliers have been the main sensors for photon detection in nuclear and astro-particle physics experiments. In recent years the search for cosmic neutrinos gave birth to enormous size experiments (Antares, Kamiokande, Super-Kamiokande, etc. and even kilometric scale experiments as ICECUBE and the future KM3NeT. A very large volume neutrino telescope like KM3NeT requires several hundreds of thousands photomultipliers. The performance of the telescope strictly depends on the performance of each PMT. For this reason, it is mandatory to measure the characteristics of each single sensor. The characterization of a PMT normally requires more than 8 hours mostly due to the darkening step. This means that it is not feasible to measure the parameters of each PMT of a neutrino telescope without a system able to test more than one PMT simultaneously. For this application, we have designed, developed and realized a system able to measure the main characteristics of 62 3-inch photomultipliers simultaneously. Two measurement sessions per day are possible. In this work, we describe the design constraints and how they have been satisfied. Finally, we show the performance of the system and the first results coming from the test of few thousand tested PMTs.

  5. Space Station Freedom solar array panels plasma interaction test facility

    Science.gov (United States)

    Martin, Donald F.; Mellott, Kenneth D.

    1989-01-01

    The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

  6. CARS temperature measurements in a hypersonic propulsion test facility

    Science.gov (United States)

    Jarrett, O., Jr.; Smith, M. W.; Antcliff, R. R.; Northam, G. B.; Cutler, A. D.

    1990-01-01

    Static-temperature measurements performed in a reacting vitiated air-hydrogen Mach-2 flow in a duct in Test Cell 2 at NASA LaRC by using a coherent anti-Stokes Raman spectroscopy (CARS) system are discussed. The hypersonic propulsion Test Cell 2 hardware is outlined with emphasis on optical access ports and safety features in the design of the Test Cell. Such design considerations as vibration, noise, contamination from flow field or atmospheric-borne dust, unwanted laser- and electrically-induced combustion, and movement of the sampling volume in the flow are presented. The CARS system is described, and focus is placed on the principle and components of system-to-monochromator signal coupling. Contour plots of scramjet combustor static temperature in a reacting-flow region are presented for three stations, and it is noted that the measurements reveal such features in the flow as maximum temperature near the model wall in the region of the injector footprint.

  7. Background Radiation Survey of the Radiological/Nuclear Countermeasures Test and Evaluation Center

    Energy Technology Data Exchange (ETDEWEB)

    Colin Okada

    2010-09-16

    In preparation for operations at the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC), the Department of Homeland Security Domestic Nuclear Detection Office (DHS/DNDO) requested that personnel from the Remote Sensing Laboratory (RSL) conduct a survey of the present radiological conditions at the facility. The measurements consist of the exposure rate from a high-pressure ion chamber (HPIC), high-resolution spectra from a high-purity germanium (HPGe) system in an in situ configuration, and low-resolution spectra from a sodium iodide (NaI) detector in a radiation detection backpack. Measurements with these systems were collected at discrete locations within the facility. Measurements were also collected by carrying the VECTOR backpack throughout the complex to generate a map of the entire area. The area was also to be surveyed with the Kiwi (an array of eight-2-inch x 4-inch x 16-inch NaI detectors) from the Aerial Measuring Systems; however, conflicts with test preparation activities at the site prevented this from being accomplished.

  8. One year update - Chevron's horizontal steam injection test facility

    Energy Technology Data Exchange (ETDEWEB)

    Sims, J.C.; Fram, J.H. [Chevron Energy Technology Company (Canada)

    2011-07-01

    In the heavy oil industry, control of the steam injection profile constitutes an important challenge when using a thermal recovery system in horizontal wells. In general, the measurement of two flow mixtures is complex and to date there is no reliable method for controlling two-phase steam distribution. The purpose of this paper is to provide an update on the results of testing flow splitting and liner isolation devices. These tests have been conducted by Chevron over the last year in a horizontal steam injection test facility built at the Kern River Field close to Bakersfield. This facility also allows Chevron to develop their own equipment for improving steam injection profile. Results show that none of the commercially available devices tested are able to provide consistent steam control. This paper highlighted the results of Chevron's horizontal steam injection test facility and the need for improvement of steam control equipment.

  9. SOLIDIFICATION TESTING FOR A HIGH ACTIVITY WASTESTREAM FROM THE SAVANNAH RIVER SITE USING GROUT AND GAMMA RADIATION SHEILDING MATERIALS - 10017

    Energy Technology Data Exchange (ETDEWEB)

    Burns, H.

    2009-11-10

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) with evaluating grouts that include gamma radiation shielding materials to solidify surrogates of liquid aqueous radioactive wastes from across the DOE Complex. The Savannah River Site (SRS) identified a High Activity Waste (HAW) that will be treated and solidified at the Waste Solidification Building (WSB) for surrogate grout testing. The HAW, which is produced at the Mixed Oxide Fuel Fabrication Facility (MFFF), is an acidic aqueous wastestream generated by the alkaline treatment process and the aqueous purification process. The HAW surrogate was solidified using Portland cement with and without the inclusion of different gamma radiation shielding materials to determine the shielding material that is the most effective to attenuate gamma radiation for this application.

  10. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  11. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, Kavin; et al.

    2017-05-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples for various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.

  12. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    Science.gov (United States)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  13. Testing of a Liquid Oxygen/Liquid Methane Reaction Control Thruster in a New Altitude Rocket Engine Test Facility

    Science.gov (United States)

    Meyer, Michael L.; Arrington, Lynn A.; Kleinhenz, Julie E.; Marshall, William M.

    2012-01-01

    A relocated rocket engine test facility, the Altitude Combustion Stand (ACS), was activated in 2009 at the NASA Glenn Research Center. This facility has the capability to test with a variety of propellants and up to a thrust level of 2000 lbf (8.9 kN) with precise measurement of propellant conditions, propellant flow rates, thrust and altitude conditions. These measurements enable accurate determination of a thruster and/or nozzle s altitude performance for both technology development and flight qualification purposes. In addition the facility was designed to enable efficient test operations to control costs for technology and advanced development projects. A liquid oxygen-liquid methane technology development test program was conducted in the ACS from the fall of 2009 to the fall of 2010. Three test phases were conducted investigating different operational modes and in addition, the project required the complexity of controlling propellant inlet temperatures over an extremely wide range. Despite the challenges of a unique propellant (liquid methane) and wide operating conditions, the facility performed well and delivered up to 24 hot fire tests in a single test day. The resulting data validated the feasibility of utilizing this propellant combination for future deep space applications.

  14. Recommendations for Improving Consistency in the Radiation Fields Used During Testing of Radiation Detection Instruments for Homeland Security Applications

    National Research Council Canada - National Science Library

    Pibida, L; Mille, M; Norman, B

    2013-01-01

    Several measurements and calculations were performed to illustrate the differences that can be observed in the determination of exposure rate or ambient dose equivalent rate used for testing radiation...

  15. Design of Test Facility to Evaluate Boric Acid Precipitation Following a LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong-Kwan; Song, Yong-Jae [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The U.S.NRC has identified a concern that debris associated with generic safety issue (GSI) - 191 may affect the potential precipitation of boric acid due to one or more of the following phenomena: - Reducing mass transport (i.e. mixing) between the core and the lower plenum (should debris accumulate at the core inlet) - Reduced lower plenum volume (should debris settle in the lower plenum), and, - Increased potential for boric acid precipitation (BAP) in the core (should debris accumulate in suspension in the core) To address these BAP issues, KHNP is planning to conduct validation tests by constructing a BAP test facility. This paper describes the design of test facility to evaluate BAP following a LOCA. The design of BAP test facility has been developed by KHNP. To design the test facility, test requirements and success criteria were established, and scaling analysis of power-to-volume method, Ishii-Kataoka method, and hierarchical two-tiered method were investigated. The test section is composed of two fuel assemblies with half of full of prototypic FA height. All the fuel rods are heated by the electric power supplier. The BAP tests in the presence of debris, buffering agents, and boron will be performed following the test matrix.

  16. A unique high heat flux facility for testing hypersonic engine components

    Science.gov (United States)

    Melis, Matthew E.; Gladden, Herbert J.

    1990-01-01

    This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-heat-flux facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing heat fluxes ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and heat fluxes similar to those expected during hypersonic flights were achieved.

  17. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  18. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  19. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing

    Science.gov (United States)

    Yim, John T.; Burt, Jonathan M.

    2015-01-01

    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  20. Development of boron concentration analysis system and techniques for testing performance of BNCT facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Dong; Kim, Chang Shuk; Byun, Soo Hyun; Lee, Jae Yun; Sun, Gwang Min; Kim, Suk Kwon [Seoul National University, (Korea)

    2000-04-01

    I. Objectives and Necessity of the Project. Development of a boron concentration analysis system used for BNCT. Development of test techniques for BNCT facility. II. Contents and Scopes of the Project. (1) Design of a boron concentration analysis system at HANARO. (2) Component machining and instruments purchase, performance test. (3) Calculation and measurement of diffracted polychromatic beam quality. (4) Test procedures for boron concentration analysis system and BNCT facility. III. Result of the Project (1) Diffracted neutron beam quality for boron concentration analysis. (neutron flux: 1.2 * 10{sup 8} n/cm{sup 2}s, Cd-ratio : 1,600) (2) Components and instruments of the boron concentration analysis system. (3) Diffracted neutron spectrum and flux. (4) Test procedures for boron concentration analysis system and BNCT facility. 69 refs., 44 figs., 14 tabs. (Author)

  1. Thermal shock tests with beryllium coupons in the electron beam facility JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M.; Duwe, R.; Schuster, J.L.A. [Forschungszentrum Juelich GmbH (Germany)] [and others

    1995-09-01

    Several grades of American and Russian beryllium have been tested in high heat flux tests by means of an electron beam facility. For safety reasons, major modifications of the facility had to be fulfilled in advance to the tests. The influence of energy densities has been investigated in the range between 1 and 7 MJ/m{sup 2}. In addition the influence of an increasing number of shots at constant energy density has been studied. For all samples, surface profiles have been measured before and after the experiments. Additional information has been gained from scanning electron microscopy, and from metallography.

  2. Summary of the Manufacture, Testing and Model Validation of a Full-Scale Radiator for Fission Surface Power Applications

    Science.gov (United States)

    Ellis, David L.; Calder, James; Siamidis, John

    2011-01-01

    A full-scale radiator for a lunar fission surface power application was manufactured by Material innovations, Inc., for the NASA Glenn Research Center. The radiator was designed to reject 6 kWt with an inlet water temperature of 400 K and a water mass flow rate of 0.5 kg/s. While not flight hardware, the radiator incorporated many potential design features and manufacturing techniques for future flight hardware. The radiator was tested at NASA Glenn Research Center for heat rejection performance. The results showed that the radiator design was capable of rejecting over 6 kWt when operating at the design conditions. The actual performance of the radiator as a function of operational manifolds, inlet water temperature and facility sink temperature was compared to the predictive model developed by NASA Glenn Research Center. The results showed excellent agreement with the model with the actual average face sheet temperature being within 1% of the predicted value. The results will be used in the design and production of NASA s next generation fission power heat rejection systems. The NASA Glenn Research Center s Technology Demonstration Unit will be the first project to take advantage of the newly developed manufacturing techniques and analytical models.

  3. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities - A General Overview

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Hughes, Mark S.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Marshall, PeggL.; Duncan, Michael E.; Morris, Jon A.; Franzl, Richard W.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition system (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis' development and deployment.

  4. Barriers and facilitators associated with HIV testing uptake in South African health facilities offering HIV Counselling and Testing

    Directory of Open Access Journals (Sweden)

    Neo Mohlabane

    2016-10-01

    Objective: An HCT survey was carried out to ascertain barriers and facilitators for HIV testing in South Africa. Methods: A cross-sectional survey of 67 HCT-offering health facilities in 8 South African provinces was undertaken. Individuals (n = 489 who had not tested for HIV on the day of the site visit were interviewed on awareness of HCT services, HIV testing history and barriers to HIV testing. Frequencies were run to describe the sample characteristics, barriers and facilitators to HIV testing. Bivariate and multivariate logistic regression was usedt o identify the association between never tested for HIV with socio-demographics, awareness of HCT services and type of HCT facilities. Results: In all 18.1% participants never had an HIV test. Major barriers to HCT uptake comprise being scared of finding out one's HIV test result or what people may say, shyness or embarrassment, avoidance of divulging personal information to health workers and fear of death. In multivariate analysis the age group 55 years and older, and not being recommended to have an HIV test were associated with never had an HIV test. Potential facilitators for HIV testing include community or household HIV testing, providing incentives for those who test for HIV, mandatory HIV testing and disclosure of HIV status by those who test HIV positive. Conclusion: The benefits of HCT which include the reduction of HIV transmission, the availability of HIV care and treatment needs to be emphasized to enhance HCT uptake.

  5. Brayton-Cycle Heat Recovery System Characterization Program. Glass-furnace facility test plan

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-29

    The test plan for development of a system to recover waste heat and produce electricity and preheated combustion air from the exhaust gases of an industrial glass furnace is described. The approach is to use a subatmospheric turbocompressor in a Brayton-cycle system. The operational furnace test requirements, the operational furnace environment, and the facility design approach are discussed. (MCW)

  6. Model Injection System Induced Accelerations in the Rent Test Leg of the 50 Megawatt Facility

    National Research Council Canada - National Science Library

    Walchli, Lawrence

    1973-01-01

    The Re-Entry Nose Tip (RENT) test leg of the 50 Megawatt Facility is used for hyperthermal testing of nose tips under simultaneous conditions as high as 100 atmospheres impact pressure and 18,000 BTU/ft2 sec heat flux...

  7. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-26

    This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

  8. The Inter Facility Testing of a Standard Oscillating Water Column (OWC) Type Wave Energy Converter (WEC)

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt; Thomsen, Jonas Bjerg

    This report describes the behavior and preliminary performance of a simplified standard oscillating water column (OWC) wave energy converter (WEC). The same tests will be conducted at different scales at 6 different test facilities and the results obtained will be used for comparison. This project...

  9. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  10. A New Large Vibration Test Facility Concept for the James Webb Space Telescope

    Science.gov (United States)

    Ross, Brian P.; Johnson, Eric L.; Hoksbergen, Joel; Lund, Doug

    2014-01-01

    The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.

  11. A new test facility for the E-ELT infrared detector program

    Science.gov (United States)

    Lizon, Jean Louis; Amico, Paola; Brinkmann, Martin; Delabre, Bernard; Finger, Gert; Guidolin, Ivan Maria; Guzman, Ronald; Hinterschuster, Renate; Ives, Derek; Klein, Barbara; Quattri, Marco

    2016-08-01

    During the development of the VLT instrumentation program, ESO acquired considerable expertise in the area of infrared detectors, their testing and optimizing their performance. This can mainly be attributed to a very competent team and most importantly to the availability of a very well suited test facility, namely, IRATEC. This test facility was designed more than 15 years ago, specifically for 1K × 1K detectors such as the Aladdin device, with a maximum field of only 30 mm square. Unfortunately, this facility is no longer suited for the testing of the new larger format detectors that are going to be used to equip the future E-ELT instruments. It is projected that over the next 20 years, there will be of the order of 50-100 very large format detectors to be procured and tested for use with E-ELT first and second generation instruments and VLT third generation instruments. For this reason ESO has initiated the in-house design and construction of a dedicated new IR detector arrays test facility: the Facility for Infrared Array Testing (FIAT). It will be possible to mount up to four 60 mm square detectors in the facility, as well as mosaics of smaller detectors. It is being designed to have a very low thermal background such that detectors with 5.3 μm cut-off material can routinely be tested. The paper introduces the most important use cases for which FIAT is designed: they range from performing routine performance measurements on acquired devices, optimization setups for custom applications (like spot scan intra-pixel response, persistence and surface reflectivity measurements), test of new complex operation modes (e.g. high speed subwindowing mode for low order sensing, flexure control, etc.) and the development of new tests and calibration procedures to support the scientific requirements of the E-ELT and to allow troubleshooting the unexpected challenges that arise when a new detector system is brought online. The facility is also being designed to minimize

  12. Molecular Environmental Science: An Assessment of Research Accomplishments, Available Synchrotron Radiation Facilities, and Needs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G

    2004-02-05

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and

  13. Development of a facility using robotics for testing automation of inertial instruments

    Science.gov (United States)

    Greig, Joy Y.; Lamont, Gary B.; Biezad, Daniel J.; Lewantowicz, Zdsislaw H.; Greig, Joy Y.

    1987-01-01

    The Integrated Robotics System Simulation (ROBSIM) was used to evaluate the performance of the PUMA 560 arm as applied to testing of inertial sensors. Results of this effort were used in the design and development of a feasibility test environment using a PUMA 560 arm. The implemented facility demonstrated the ability to perform conventional static inertial instrument tests (rotation and tumble). The facility included an efficient data acquisitions capability along with a precision test servomechanism function resulting in various data presentations which are included in the paper. Analysis of inertial instrument testing accuracy, repeatability and noise characteristics are provided for the PUMA 560 as well as for other possible commercial arm configurations. Another integral aspect of the effort was an in-depth economic analysis and comparison of robot arm testing versus use of contemporary precision test equipment.

  14. High intensity profile monitor for time resolved spectrometry at the CLIC Test Facility 3

    Energy Technology Data Exchange (ETDEWEB)

    Olvegard, M., E-mail: maja.olvegard@physics.uu.se [CERN, CH-1211 Geneva 23 (Switzerland); Uppsala University, P.O. Box 256, SE-751 05 (Sweden); Adli, E. [CERN, CH-1211 Geneva 23 (Switzerland); University of Oslo, Boks 1072 Blindern, NO-0316 Oslo (Norway); Braun, H.H. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Bravin, E.; Chritin, N.; Corsini, R.; Dabrowski, A.E.; Doebert, S.; Dutriat, C. [CERN, CH-1211 Geneva 23 (Switzerland); Egger, D. [CERN, CH-1211 Geneva 23 (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Lefevre, T. [CERN, CH-1211 Geneva 23 (Switzerland); Mete, O. [CERN, CH-1211 Geneva 23 (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Skowronski, P.K.; Tecker, F. [CERN, CH-1211 Geneva 23 (Switzerland)

    2012-08-11

    The power source of the Compact LInear Collider (CLIC) relies on the generation and deceleration of a high-intensity electron drive beam. In order to provide the best radio-frequency (RF) to beam-energy transfer efficiency, the electron beam is accelerated using fully loaded RF cavities, which leads to strong beam loading effects resulting in a high-energy transient. The stability of the RF power produced by the drive beam depends on the stability of the drive beam energy and energy spread along the pulse. The control and the monitoring of the time evolution of the beam energy distribution are therefore crucial for the accelerator performance. For this purpose segmented beam dumps, which are simple and robust devices, have been designed and installed at the CLIC Test Facility 3 (CTF3). These devices are located at the end of spectrometer lines and provide horizontal beam profiles with a time resolution better than 10 ns. The segmented dumps are composed of parallel, vertical, metallic plates, and are based on the same principle as a Faraday cup: the impinging beam current is read by a fast acquisition channel. Both FLUKA and Geant4 simulations were performed to define the optimum detector geometry for beam energies ranging from 5 MeV to 150 MeV. This paper presents a detailed description of the different steps of the design: the optimization of the detector spatial resolution, the minimization of the thermal load and the long-term damage resulting from high radiation doses. Four segmented dumps are currently used in the CTF3 complex. Their measured performance and limitations are presented in this paper. Typical beam spectra as measured in the CTF3 linac are also presented along with a description of the RF manipulations needed for tuning the beam energy spectrum.

  15. Association Between Treatment at a High-Volume Facility and Improved Survival for Radiation-Treated Men With High-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Wei [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts (United States); Mahal, Brandon A. [Department of Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Muralidhar, Vinayak [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Nezolosky, Michelle [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts (United States); Beard, Clair J. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Den, Robert B. [Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Feng, Felix Y. [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Hoffman, Karen E. [Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Martin, Neil E.; Orio, Peter F. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Nguyen, Paul L., E-mail: pnguyen@LROC.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States)

    2016-03-15

    Purpose: Although the association between higher hospital volume and improved outcomes has been well-documented in surgery, there is little data about whether this effect exists for radiation-treated patients. We investigated whether treatment at a radiation facility that treats a high volume of prostate cancer patients is associated with improved survival for men with high-risk prostate cancer. Methods and Materials: We used the National Cancer Database (NCDB) to identity patients diagnosed with prostate cancer from 2004 to 2006. The radiation case volume (RCV) of each hospital was based on its number of radiation-treated prostate cancer patients. We used propensity-score based analysis to compare the overall survival (OS) of high-risk prostate cancer patients in high versus low RCV hospitals. Primary endpoint is overall survival. Covariates adjusted for were tumor characteristics, sociodemographic factors, radiation type, and use of androgen deprivation therapy (ADT). Results: A total of 19,565 radiation-treated high-risk patients were identified. Median follow-up was 81.0 months (range: 1-108 months). When RCV was coded as a continuous variable, each increment of 100 radiation-managed patients was associated with improved OS (adjusted hazard ratio [AHR]: 0.97; 95% confidence interval [CI]: 0.95-0.98; P<.0001) after adjusting for known confounders. For illustrative purposes, when RCV was dichotomized at the 80th percentile (43 patients/year), high RCV was associated with improved OS (7-year overall survival 76% vs 74%, log-rank test P=.0005; AHR: 0.91, 95% CI: 0.86-0.96, P=.0005). This association remained significant when RCV was dichotomized at 75th (37 patients/year), 90th (60 patients/year), and 95th (84 patients/year) percentiles but not the 50th (19 patients/year). Conclusions: Our results suggest that treatment at centers with higher prostate cancer radiation case volume is associated with improved OS for radiation-treated men with high-risk prostate

  16. Commissioning experience and beam physics measurements at the SwissFEL Injector test Facility

    CERN Document Server

    Schietinger, T.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; Ganter, R.; Hauri, C. P.; Ischebeck, R.; Ivanisenko, Y.; Janousch, M.; Kaiser, M.; Keil, B.; Löhl, F.; Orlandi, G. L.; Ozkan Loch, C.; Peier, P.; Prat, E.; Raguin, J.-Y.; Reiche, S.; Schilcher, T.; Wiegand, P.; Zimoch, E.; Anicic, D.; Armstrong, D.; Baldinger, M.; Baldinger, R.; Bertrand, A.; Bitterli, K.; Bopp, M.; Brands, H.; Braun, H. H.; Brönnimann, M.; Brunnenkant, I.; Chevtsov, P.; Chrin, J.; Citterio, A.; Csatari Divall, M.; Dach, M.; Dax, A.; Ditter, R.; Divall, E.; Falone, A.; Fitze, H.; Geiselhart, C.; Guetg, M. W.; Hämmerli, F.; Hauff, A.; Heiniger, M.; Higgs, C.; Hugentobler, W.; Hunziker, S.; Janser, G.; Kalantari, B.; Kalt, R.; Kim, Y.; Koprek, W.; Korhonen, T.; Krempaska, R.; Laznovsky, M.; Lehner, S.; Le Pimpec, F.; Lippuner, T.; Lutz, H.; Mair, S.; Marcellini, F.; Marinkovic, G.; Menzel, R.; Milas, N.; Pal, T.; Pollet, P.; Portmann, W.; Rezaeizadeh, A.; Ritt, S.; Rohrer, M.; Schär, M.; Schebacher, L.; Scherrer, St.; Schlott, V.; Schmidt, T.; Schulz, L.; Smit, B.; Stadler, M.; Steffen, Bernd; Stingelin, L.; Sturzenegger, W.; Treyer, D. M.; Trisorio, A.; Tron, W.; Vicario, C.; Zennaro, R.; Zimoch, D.

    2016-10-26

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including atransverse deflecting rf cavity. It delivered electron bunchesof up to200 pC chargeand up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of a FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measureme...

  17. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal.

  18. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  19. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    Energy Technology Data Exchange (ETDEWEB)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  20. Beam test results of CMS RPCs at high eta region under high-radiation environment

    CERN Document Server

    Park, S; Bahk, S Y; Hong, B; Hong, S J; Kang, D H; Kang, T I; Kim, T J; Kim, Y J; Kim, Y U; Koo, D G; Lee, H W; Lee, K S; Lee, S J; Lim, J K; Moon, D H; Nam, S K; Oh, J K; Park, W J; Rhee, J T; Ryu, M S; Shim, H H; Sim, K S

    2004-01-01

    The Compact Muon Solenoid (CMS) forward resistivity plate chambers (RPCs) at the high eta region must be operated in presence of a radiation-induced rate as high as 1 kHz/cm**2. It is still unknown if the RPCs coated with linseed oil can be operated under such a high- radiation environment over the lifetime of CMS. Non-oiled RPCs may be one of the options since phenolic or melamine-coated bakelite is chemically stabler than linseed oil. We have constructed oiled and non-oiled RPCs at the high eta region of CMS using phenolic bakelite and tested them in the Gamma Irradiation Facility at CERN. While both RPCs show the same characteristics in the efficiency and the strip multiplicity, the non-oiled RPC generates an intrinsic noise rate of 50 Hz/cm**2, compared to only 5 Hz/cm**2 for the oiled RPC, both at 10.0kV which is about 100 V above the 95% knee of the efficiency curve.