WorldWideScience

Sample records for radiation technological modeling

  1. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Kim, Ingyu; Kim, Enhan; Keum, Dongkwon

    2012-04-01

    To develop the comprehensive environmental radiation management technology, - An urban atmospheric dispersion model and decision-aiding model have been developed. - The technologies for assessing the radiation impact to non-human biota and the environmental medium contamination have developed. - The analytical techniques of the indicator radionuclides related to decommissioning of nuclear facilities and nuclear waste repository have been developed. - The national environmental radiation impact has been assessed, and the optimum management system of natural radiation has been established

  2. Analysis of methodology for designing education and training model for professional development in the field of radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kon Wuk; Lee, Jae Hun; Park, Tai Jin; Song, Myung Jae [Korean Association for Radiation Application, Seoul (Korea, Republic of)

    2015-02-15

    The domestic Radiation Technology is integrated into and utilized in various areas and is closely related to the industrial growth in Korea. The domestic use of radiation and RI (Radioisotope) increases in quantity every year, however the level of technology is poor when compared to other developed countries. Manpower training is essential for the development of Radiation Technology. Therefore, this study aimed to propose a methodology for designing systemic education and training model in the field of measurement and analysis of radiation. A survey was conducted to design education and training model and the training program for measurement and analysis of radiation was developed based on the survey results. The education and training program designed in this study will be utilized as a model for evaluating the professional development and effective recruitment of the professional workforce, and can be further applied to other radiation-related fields.

  3. Analysis of methodology for designing education and training model for professional development in the field of radiation technology

    International Nuclear Information System (INIS)

    Kim, Kon Wuk; Lee, Jae Hun; Park, Tai Jin; Song, Myung Jae

    2015-01-01

    The domestic Radiation Technology is integrated into and utilized in various areas and is closely related to the industrial growth in Korea. The domestic use of radiation and RI (Radioisotope) increases in quantity every year, however the level of technology is poor when compared to other developed countries. Manpower training is essential for the development of Radiation Technology. Therefore, this study aimed to propose a methodology for designing systemic education and training model in the field of measurement and analysis of radiation. A survey was conducted to design education and training model and the training program for measurement and analysis of radiation was developed based on the survey results. The education and training program designed in this study will be utilized as a model for evaluating the professional development and effective recruitment of the professional workforce, and can be further applied to other radiation-related fields

  4. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  5. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  6. Applications of radiation technology and isotopes in industry

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [International Atomic Energy Agency, Vienna (Austria)

    1994-12-31

    This paper reports the current status of applications of radiation technology and radioisotopes in industries, environmental conservation and medical products. The topics discussed are radiation processing - features and advantages, radiation sources, polymeric products, radiation cross-linking and grafting of polymers, radiation curing of surface coating, new developments; sterilization of medical products, applications for environmental protection i.e. cleaning the flue gases, disinfection of sewage and its recycling; nucleonic control system (NCS); major mechanisms of implementation of the Agency`s programme for technology transfer - research contract programme, model projects and technical cooperation projects.

  7. Applications of radiation technology and isotopes in industry

    International Nuclear Information System (INIS)

    Sueo Machi

    1994-01-01

    This paper reports the current status of applications of radiation technology and radioisotopes in industries, environmental conservation and medical products. The topics discussed are radiation processing - features and advantages, radiation sources, polymeric products, radiation cross-linking and grafting of polymers, radiation curing of surface coating, new developments; sterilization of medical products, applications for environmental protection i.e. cleaning the flue gases, disinfection of sewage and its recycling; nucleonic control system (NCS); major mechanisms of implementation of the Agency's programme for technology transfer - research contract programme, model projects and technical cooperation projects

  8. Radiation technology in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Vo Van Thuan [Institute for Nuclear Science and Technique, VAEC, Hanoi (Viet Nam)

    2001-03-01

    Most of researches and developments in the field of radiation technology that have completed in a decade before 1995 were concentrated to sterilization and food irradiation. A series of medical devices and products were the main commodities for research and application trials. Also, many kind of food have attracted the scientists and technologists to investigate the application and commercialization of irradiated food. In addition, the radiation technology also was utilized for processing of non-food items including herbs, medicinal produces, and tobacco material. Since 1996 VAEC and INST has realized the important role of radiation processing on natural polymers. Hence, along with the commercialization of radiation technology, three research teams were established for the target. This report reviews the recent activities and achievements on radiation technology in the country emphasizing on the radiation processing of polysaccharides. A number of polysaccharides, which originated from bio-/agro-wastes such as seaweed, shrimp shells, lignocelluloses, was modified or degraded by irradiation to prepare hydrogel and bio-active material using for health-care and crop production. (author)

  9. Radiation technology in Vietnam

    International Nuclear Information System (INIS)

    Vo Van Thuan

    2001-01-01

    Most of researches and developments in the field of radiation technology that have completed in a decade before 1995 were concentrated to sterilization and food irradiation. A series of medical devices and products were the main commodities for research and application trials. Also, many kind of food have attracted the scientists and technologists to investigate the application and commercialization of irradiated food. In addition, the radiation technology also was utilized for processing of non-food items including herbs, medicinal produces, and tobacco material. Since 1996 VAEC and INST has realized the important role of radiation processing on natural polymers. Hence, along with the commercialization of radiation technology, three research teams were established for the target. This report reviews the recent activities and achievements on radiation technology in the country emphasizing on the radiation processing of polysaccharides. A number of polysaccharides, which originated from bio-/agro-wastes such as seaweed, shrimp shells, lignocelluloses, was modified or degraded by irradiation to prepare hydrogel and bio-active material using for health-care and crop production. (author)

  10. Methods of computer experiment in gamma-radiation technologies using new radiation sources

    CERN Document Server

    Bratchenko, M I; Rozhkov, V V

    2001-01-01

    Presented id the methodology of computer modeling application for physical substantiation of new irradiation technologies and irradiators design work flow. Modeling tasks for irradiation technologies are structured along with computerized methods of their solution and appropriate types of software. Comparative analysis of available packages for Monte-Carlo modeling of electromagnetic processes in media is done concerning their application to irradiation technologies problems. The results of codes approbation and preliminary data on gamma-radiation absorbed dose distributions for nuclides of conventional sources and prospective Europium-based gamma-sources are presented.

  11. Development of modulators against degenerative aging using radiation fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Jo, S. K.; Park, H. R.; Jang, B. S.; Roh, C. H.; Eom, H. S.; Choi, N. H.; Seol, M. A.; Kim, S. H.; Choi, H. M.; Park, M. K.; Shin, H. J.; Ryu, D. K.; Oh, W. J.; Kim, S. H; Yee, S. T.

    2012-04-15

    1. Objectives Establishment of modelling of degenerative aging using radiation technology Development of aging modulators using radiation degenerative aging model 2. Project results Establishment of the modeling of degenerative aging using radiation technology - The systematic study on the comparison of radiation-induced degeneration and natural aging process in animals and cells confirmed the biological similarity between these two degeneration models - The effective biomarkers were selected for the modelling of degenerative aging using radiation (10 biomarkers for immune/hematopoiesis, 1 for oxidative stress, 6 for molecular signaling, 3 for lipid metabolism) - The optimal irradiation condition was established for the modelling of degerative aging (total 5Gy with fractionation by over 10 times, lapse of over 4 months) - The molecular mechanisms of radiation-induced degeneration were studied including chronic inflammation (lung), inflammation-related lipid metabolism disturbance, mitochondria biogenesis and dynamics - The radiation degenerative model was evaluated with previously known natural substances (resveratrol, EGCG, etc) Development of aging modulators using radiation degenerative aging model - After the screening of about 800 natural herb extracts, 5 effective substances were selected for aging modulation. - 3 candidate compositions were selected from 20 compositions made from effective substances by in vitro evaluation (WAH2, WAH6, WAH7) - 1 composition (WAH6) was selected as the best aging modulator by in vivo evaluation in radiation-induced aging models and degenerative disease models. 3. Expected benefits and plan of application The modelling of degenerative aging using radiation can facilitate the aging research by providing the useful cell/animal models for aging research A large economic benefits are expected by the commercialization of developed aging modulators (over 10 billion KW in 2015.

  12. Development of modulators against degenerative aging using radiation fusion technology

    International Nuclear Information System (INIS)

    Jo, S. K.; Park, H. R.; Jang, B. S.; Roh, C. H.; Eom, H. S.; Choi, N. H.; Seol, M. A.; Kim, S. H.; Choi, H. M.; Park, M. K.; Shin, H. J.; Ryu, D. K.; Oh, W. J.; Kim, S. H; Yee, S. T.

    2012-04-01

    1. Objectives Establishment of modelling of degenerative aging using radiation technology Development of aging modulators using radiation degenerative aging model 2. Project results Establishment of the modeling of degenerative aging using radiation technology - The systematic study on the comparison of radiation-induced degeneration and natural aging process in animals and cells confirmed the biological similarity between these two degeneration models - The effective biomarkers were selected for the modelling of degenerative aging using radiation (10 biomarkers for immune/hematopoiesis, 1 for oxidative stress, 6 for molecular signaling, 3 for lipid metabolism) - The optimal irradiation condition was established for the modelling of degerative aging (total 5Gy with fractionation by over 10 times, lapse of over 4 months) - The molecular mechanisms of radiation-induced degeneration were studied including chronic inflammation (lung), inflammation-related lipid metabolism disturbance, mitochondria biogenesis and dynamics - The radiation degenerative model was evaluated with previously known natural substances (resveratrol, EGCG, etc) Development of aging modulators using radiation degenerative aging model - After the screening of about 800 natural herb extracts, 5 effective substances were selected for aging modulation. - 3 candidate compositions were selected from 20 compositions made from effective substances by in vitro evaluation (WAH2, WAH6, WAH7) - 1 composition (WAH6) was selected as the best aging modulator by in vivo evaluation in radiation-induced aging models and degenerative disease models. 3. Expected benefits and plan of application The modelling of degenerative aging using radiation can facilitate the aging research by providing the useful cell/animal models for aging research A large economic benefits are expected by the commercialization of developed aging modulators (over 10 billion KW in 2015

  13. Philippine country report on radiation technology

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1993-01-01

    This report was presented during the First National Coordinators Meeting for Radiation Technology, held in Takasaki, Japan, 6-9 September 1993. The report was about the active involvement of Philippine Nuclear Research Institute (PNRI) in research and development on the application of radiation technology. Activities were on mutation breeding, food irradiation, radiation sterilization, wood-plastic combinations and radiation chemistry. The transfer of technology in the Philippines was supported and assisted by the UNDP/IAEA Industrial Project. With these technologies, many industries were interested in radiation processing

  14. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Han, M. H.; Kim, E. H.; Keum, D. K.; Kang, M. J.; Jang, B. W.

    2010-04-01

    The objectives of the study are to development of an urban atmospheric dispersion model and data assimilation technique for improving the reliability, to develop the technology for assessing the radiation impact to biota and the surface water transport model, to develop the analytical techniques for the indicator radionuclides on decommissioning of nuclear facilities and nuclear waste disposal sites and to assess of the national environmental radiation impact and establish the optimum management bases of natural radiation. The obtained results might be used; for assessing the radiological effects due to and radiological incident in an urban area, for assessing radiation doses on biota for the environmental protection from ionizing radiation with the application of new concept of the ICP new recommendation, for analyzing the indicator radionuclides on decommissioning of nuclear facilities and nuclear waste disposal sites, and for providing the natural radionuclide database of Korea to international organizations such as UNSCEAR. It can be used for emphasizing relative nuclear safety

  15. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  16. Radiation Technology

    International Nuclear Information System (INIS)

    1990-01-01

    The conference was organized to evaluate the application directions of radiation technology in Vietnam and to utilize the Irradiation Centre in Hanoi with the Co-60 source of 110 kCi. The investigation and study of technico-economic feasibility for technology development to various items of food and non-food objects was reported. (N.H.A)

  17. Radiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Machi, Sueo; Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji

    1991-01-01

    This paper reviews research and development of radiation technology application for environmental conservation. Our group in cooperation with Ebara Mfg. co., Ltd. first found and studied removals of sulfur dioxide and nitrogen oxides from flue gases by electron beam irradiation. Most of sulfer dioxide and nitrogen oxides are converted to ammonium sulfate and nitrate by radiation with the addition of ammonia. Feasibility studies of this technology by pilot scale experiments have been carried out in Japan, USA and Germany for flue gases from iron-ore sintering furnace and coal fire power station. About 90 % of CO 2 and NO X are removed with 15 kGy. Organic pollutants in wastewater, drinking water and ground water have been found to be reduced by radiation technology. Synergetic effect of radiation and ozone to remove pollutants was also found. Disinfection of water effluent from sewage water treatment plant by radiation instead of using chlorine to avoid formation of chlorinated organic compounds has been studied by our group. Efficient composting of sewage sludge using radiation disinfection followed by fermentation has been developed and produced compost can be used as fertilizer. In conclusion, radiation technology can provide new efficient treatment method for wastes. (author)

  18. Radiation technology in the Philippines

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1994-01-01

    This report was presented during the Second National Coordinators Meeting for radiation technology, held in Vietnam, 21-25 November 1994. The report was about the research and development work in the field of radiation technology at the Philippine Nuclear Research Institute. Transfer of technology in the Philippines can be very difficult without the technical assistance of the IAEA. A multipurpose irradiation facility was set up that encouraged the interest of local industry in radiation sterilization and food irradiation. Also research and development on radiation vulcanization of natural rubber latex has been initiated and the interest in wood plastic combinations has been revived. 1 tab

  19. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  20. Technology for Innovation in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Martel, Mary K., E-mail: mmartel@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jaffray, David A. [Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Hospital, Toronto, Ontario (Canada); Benedict, Stanley H. [Department of Radiation Oncology, University of California – Davis Cancer Center, Sacramento, California (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Deye, James [Radiation Research Programs, National Cancer Institute, Bethesda, Maryland (United States); Jeraj, Robert [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin (United States); Kavanagh, Brian [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Krishnan, Sunil [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, Nancy [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Low, Daniel A. [Department of Radiation Oncology, University of California – Los Angeles, Los Angeles, California (United States); Mankoff, David [Department of Radiology, University of Washington Medical School, Seattle, Washington (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States); Ollendorf, Daniel [Institute for Clinical and Economic Review, Boston, Massachusetts (United States); and others

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

  1. Technology for Innovation in Radiation Oncology

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Martel, Mary K.; Jaffray, David A.; Benedict, Stanley H.; Hahn, Stephen M.; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A.; Mankoff, David; Marks, Lawrence B.; Ollendorf, Daniel

    2015-01-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

  2. Radiation technology for environmental conservation

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo; Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1991-01-01

    This paper reviews research and development of radiation technology application for environmental conservation. Our group in cooperation with Ebara Mfg. co., Ltd. first found and studied removals of sulfur dioxide and nitrogen oxides from flue gases by electron beam irradiation. Most of sulfer dioxide and nitrogen oxides are converted to ammonium sulfate and nitrate by radiation with the addition of ammonia. Feasibility studies of this technology by pilot scale experiments have been carried out in Japan, USA and Germany for flue gases from iron-ore sintering furnace and coal fire power station. About 90 % of CO{sub 2} and NO{sub X} are removed with 15 kGy. Organic pollutants in wastewater, drinking water and ground water have been found to be reduced by radiation technology. Synergetic effect of radiation and ozone to remove pollutants was also found. Disinfection of water effluent from sewage water treatment plant by radiation instead of using chlorine to avoid formation of chlorinated organic compounds has been studied by our group. Efficient composting of sewage sludge using radiation disinfection followed by fermentation has been developed and produced compost can be used as fertilizer. In conclusion, radiation technology can provide new efficient treatment method for wastes. (author).

  3. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  4. Technology for Innovation in Radiation Oncology.

    Science.gov (United States)

    Chetty, Indrin J; Martel, Mary K; Jaffray, David A; Benedict, Stanley H; Hahn, Stephen M; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A; Mankoff, David; Marks, Lawrence B; Ollendorf, Daniel; Paganetti, Harald; Ross, Brian; Siochi, Ramon Alfredo C; Timmerman, Robert D; Wong, John W

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Radiation technology and feed production

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1986-01-01

    The use of radiation technology to prepare feeds and feed additions for cattle of non-feed vegetable blends is considered.Physicochemical foundations of radiation-chemical processes, possibilities of the use of various radiation devices are given. Data on practical realization of the technology are presented and prospects of its introduction to solve the tasks put forward by the USSR program on feed production are analyzed

  6. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  7. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM MEASURED AIR TEMPERATURE AND ... Nigerian Journal of Technology ... Solar radiation measurement is not sufficient in Nigeria for various reasons such as maintenance and ...

  8. Industrial applications of radiation technology

    International Nuclear Information System (INIS)

    Sabharwal, Sunil

    2005-01-01

    In recent years, radiation processing has emerged as an alternative to conventional technologies such as thermal and chemical processing for many industrial applications. The industry is expanding at a fast rate all over the world. The actual industrial benefits on commercial basis, however, depends on the need of the individual society and may vary from country to country. In India, the applications of radiation technology have been found in areas of health care, agriculture, food preservation, industry and environment. Both gamma radiation and electron beam accelerators are being utilized for this purpose. Presently, 6 commercial gamma irradiators housing about 1.5 million curie 60 Co and an annual turnover of over US$ 2 million and 3 commercial electron beam (EB) accelerators with installed capacity of 185 kW are commercially operating in India. The new areas being explored include use of electron beam irradiation for surface treatment, radiation processed membranes for a variety of applications and radiation processing of natural polymers. In the present paper, the current status of this program, especially the recent developments and future direction of radiation processing technology is reviewed. (author)

  9. Implications of scientific and technological developments for radiation protection in the next decade

    International Nuclear Information System (INIS)

    Johnson, J.R.; Stansbury, P.S.; Paretzke, H.

    1993-01-01

    There are scientific and technological developments taking place that will affect the understanding of the interaction of ionizing radiation with matter, the ability to measure the important parameters of ionizing radiation, and the ability to model radioactivity transport, both in the human body and in the environment. This paper focuses on emerging scientific and technological developments that will impact radiation protection in the next decade. Emerging scientific developments included in this paper are new methods and better analytic capabilities in epidemiology, a better understanding of the interactions between ionizing radiation and the various cellular components and more realistic models to describe the uptake, distribution, retention and excretion of radionuclides in humans. Technological developments include instruments to measure radioactivity in the humans and the environment, and better software to calculate doses from these previously measured quantities

  10. Radiation technology in emerging industrial applications. Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    In many industrial applications radiation processing has proven to be a technology of choice either because of its economic competitiveness or its technical superiority. Although the chemical effects of ionizing radiation have been known for more than a century, its industrial applications became possible only after the availability of reliable gamma sources and powerful electron accelerators during the last couple of decades.The programmes of the International Atomic Energy Agency (IAEA) in radiation processing are implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Co-operation. The IAEA has been active in this field for many years, contributing to new developments, training, promotion and transfer of technology. In September 1997, the IAEA held an international symposium in Zakopane, Poland on the 'Use of radiation technology for the conservation of environment' where the status of current developments and of applications of radiation processing in the control of environmental pollution was reviewed (IAEA-TECDOC-1023, 1998). Recent developments and achievements in various aspects of radiation processing have been assessed continuously through the organization of consultants meetings, advisory group meetings and research co-ordination meetings. Worldwide growing interest in the use of radiation technology in various new industrial applications, as exemplified by the reports and presentations made at these meetings, has led the IAEA to organize a symposium to cover every aspect of radiation processing and, exclusively, the emerging industrial applications of radiation technology. The International Symposium on Radiation Technology in Emerging Industrial Applications was convened in November 2000 in Beijing, China. Its main purpose was to bring scientists,technologists, industrialists and regulatory authorities together with a view of exchanging information and reviewing the status of current developments and

  11. Radiation technology in emerging industrial applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    In many industrial applications radiation processing has proven to be a technology of choice either because of its economic competitiveness or its technical superiority. Although the chemical effects of ionizing radiation have been known for more than a century, its industrial applications became possible only after the availability of reliable gamma sources and powerful electron accelerators during the last couple of decades.The programmes of the International Atomic Energy Agency (IAEA) in radiation processing are implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Co-operation. The IAEA has been active in this field for many years, contributing to new developments, training, promotion and transfer of technology. In September 1997, the IAEA held an international symposium in Zakopane, Poland on the 'Use of radiation technology for the conservation of environment' where the status of current developments and of applications of radiation processing in the control of environmental pollution was reviewed (IAEA-TECDOC-1023, 1998). Recent developments and achievements in various aspects of radiation processing have been assessed continuously through the organization of consultants meetings, advisory group meetings and research co-ordination meetings. Worldwide growing interest in the use of radiation technology in various new industrial applications, as exemplified by the reports and presentations made at these meetings, has led the IAEA to organize a symposium to cover every aspect of radiation processing and, exclusively, the emerging industrial applications of radiation technology. The International Symposium on Radiation Technology in Emerging Industrial Applications was convened in November 2000 in Beijing, China. Its main purpose was to bring scientists,technologists, industrialists and regulatory authorities together with a view of exchanging information and reviewing the status of current developments and

  12. Technology development for radiation shielding analysis

    International Nuclear Information System (INIS)

    Ha, Jung Woo; Lee, Jae Kee; Kim, Jong Kyung

    1986-12-01

    Radiation shielding analysis in nuclear engineering fields is an important technology which is needed for the calculation of reactor shielding as well as radiation related safety problems in nuclear facilities. Moreover, the design technology required in high level radioactive waste management and disposal facilities is faced on serious problems with rapidly glowing nuclear industry development, and more advanced technology has to be developed for tomorrow. The main purpose of this study is therefore to build up the self supporting ability of technology development for the radiation shielding analysis in order to achieve successive development of nuclear industry. It is concluded that basic shielding calculations are possible to handle and analyze by using our current technology, but more advanced technology is still needed and has to be learned for the degree of accuracy in two-dimensional shielding calculation. (Author)

  13. Status of radiation-based measurement technology

    International Nuclear Information System (INIS)

    Moon, B. S.; Lee, J. W.; Chung, C. E.; Hong, S. B.; Kim, J. T.; Park, W. M.; Kim, J. Y.

    1999-03-01

    This report describes the status of measurement equipment using radiation source and new technologies in this field. This report includes the development status in Korea together with a brief description of the technology development and application status in ten countries including France, America, and Japan. Also this report describes technical factors related to radiation-based measurement and trends of new technologies. Measurement principles are also described for the equipment that is widely used among radiation-based measurement, such as level measurement, density measurement, basis weight measurement, moisture measurement, and thickness measurement. (author). 7 refs., 2 tabs., 21 figs

  14. Development of clean environment conservation technology by radiation

    International Nuclear Information System (INIS)

    Lee, Myunjoo; Kim, Tak Hyun; Jung, In Ha

    2012-04-01

    This report is aim to develop the technology for environmental conservation by radiation. It is consisted of two research parts. One is development of wastewater disinfection technology by radiation and the other is development of livestock waste treatment technology by radiation. For the development of wastewater disinfection technology disinfect ion process, technology for treatment of toxic organic chemicals and assessment of ecological toxicity, technology for treatment of endocrine disrupting chemicals and assessment of genetic safety were developed. For the development of livestock waste treatment technology, process for simultaneous removal of nutrients, technology for disinfection and quality enhancement of livestock waste compost, technology for reduction of composting periods, monitoring of toxic organic compounds, pretreatment technology for organic toxic chemicals and enhancement of biological treatment efficiencies were developed. Based on basic research, advanced livestock wastewater treatment process using radiation was established

  15. Radiation curing: Science and technology

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1992-01-01

    The science and technology of radiation curing have progressed substantially within the last 20 years. Nevertheless, radiation-curable compositions typically command relatively small shares in many of their competitive markets. This situation signifies that potential advantages of radiation curing are not generally perceived to overcome their limitations. An important objective of this book is to address this issue, within the scope of the subjects offered, by providing the present state of knowledge and by identifying the directions and challenges for future studies. The first chapter introduces radiation curing. Chapter 2 offers the first systematic presentation of inorganic and organometallic photoinitiators. Chapters 3 and 4 present the analytical techniques of photocalorimetry and real-time infrared spectroscopy, respectively. Recent advances in resin technology are offered in Chapters 5 and 6, which constitute the first comprehensive accounts of (meth)acrylated silicones and vinyl ethers, respectively. Radiation-curable coatings, printing inks, and adhesives are discussed in Chapters 7-9, respectively. Chapter 10 offers a discussion on photopolymer imaging systems

  16. Creation of new growth engine through proliferating radiation fusion technology

    International Nuclear Information System (INIS)

    Byun, Myung Woo

    2008-01-01

    Radiation technology is being used for the decontamination of foods, the breeding of crops and flowers, the sterilization of medical devices, recycling and conservation of wastes and the development of advanced functional materials. The economical scales of radiational industries were higher than 148 billion $ in United States and 64.5 billion $ in Japan, but only 0.15 billion $ in Korea. To promote the radiation industry, the Korean government has legislated the general plans for the promotion of atomic energy and established the Advanced Radiation Technology Institute in Jeongeup. Radiation Fusion Technology (RFT) is an advanced technology which integrates Information Technology, Nano Technology, Bio Technology, Environmental Technology, Space Technology, based on Radiation Technology. RFT is developing highly value-added products and theses outcomes will be industrialized in RFT business valley

  17. Radiation technology of improved quality materials production

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Nadirov, N.K.; Zajkina, R.F.

    1997-01-01

    The technology of materials production from metals and alloys with high operational properties is developed. The technology is based on use of radiation methods in powder metallurgy. Use of radiation processing allows to improve technological conditions of sintering. It is established, that in certain regimes the sintering temperature is decreasing from 1200 deg C up to 950 deg C in the result of radiation processing of stainless steel powders . According to the processing regimes it is possible load reduction by powder pressing on 15-20 % and sintering time in to 1,5 - 2 times . The radiation methods give possibility to produce high qualitative goods from cheap powder materials without use energy-intensive processes and prolonged processing of finished products

  18. Political and social aspects of radiation technology

    International Nuclear Information System (INIS)

    Smith, S.L.

    1990-01-01

    The political and social aspects of radiation technology are presented. The importance of radiation processing to economies dependent on the storage, transportation and sale of produce is emphasised. Efforts by pressure groups in Canada, to discredit food irradiation processes are discussed. Methods used to overcome objections to food irradiation and radiation technology by public information and education through the media are presented. (U.K.)

  19. Development of Food Preservation and Processing Technologies by Radiation Technology

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun

    2007-07-01

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  20. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun [and others

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  1. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun (and others)

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  2. Environmental radiation sensing technologies

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inomata, Kenji; Tamuro, Masaru; Fujita, Kazuhiko

    2013-01-01

    After the Fukushima nuclear accident, environmental radiation monitoring and radioactivity measurement of contamination of wastes, soils, food and drinking water were needed in accurate and reliable way. Based on radiation sensing technologies and radiation and light coupled analysis method, new environmental radiation measurement system for simple monitoring post without exclusive house and also portable monitoring post for temporary use were developed with low cost. Measurement accuracy was improved by real-time processing of detected pulses and corrected non-linearity of low-energy range by analysis. Environmental performance was upgraded to assure detector gain with compensated against temperature change and aging. Inspection and maintenance were also simplified using touch panel display with standardized application menu and data format. (T. Tanaka)

  3. IAEA programme in the field of radiation technology

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-01-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e - /X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on 'Emerging Applications of Radiation Technology for the 21st Century' at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: 'Advances in Radiation Chemistry of Polymers' (Notre Dame, USA

  4. IAEA programme in the field of radiation technology

    Science.gov (United States)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-07-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e-/X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on "Emerging Applications of Radiation Technology for the 21st Century" at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: "Advances in Radiation Chemistry of Polymers" (Notre Dame, USA

  5. Radiation technology in South Africa

    International Nuclear Information System (INIS)

    Du Plessis, T.A.

    1976-01-01

    A review is given of the relatively new field of radiation technology in South Africa. Attention is drawn particularly to the role which radioactive radiation can play in the spheres of medicine, polymer chemistry and agriculture. The possibilities inherent in ionizing radiation in the synthesis of chemicals and new synthetic materials, are dealt with briefly, and the promising results already achieved in the manufacture of polymer-wood are considered [af

  6. Radiation technologies at INR NASU

    International Nuclear Information System (INIS)

    Vishnevs'kij, Yi.M.; Sakhno, V.Yi.; Tomchaj, S.P.

    2011-01-01

    The results of Institute for Nuclear Research of National Academy of Sciences of Ukraine in the development and use of nuclear and radiation technologies applied for a number of scientific, technical and technological projects in the framework of state budget themes, research programs, innovation and scientific and technological national and international programs and projects are presented.

  7. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  8. Development of radiation fusion technology with food technology by the application of high dose irradiation

    International Nuclear Information System (INIS)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil

    2012-04-01

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  9. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    International Nuclear Information System (INIS)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-01

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  10. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-15

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  11. Development of radiation fusion technology with food technology by the application of high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil; and others

    2012-04-15

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  12. Radiation therapy technology (radiation therapists) manpower needs 1992 comparison of radiation therapeutic technology education in Europe and the United States 1994

    International Nuclear Information System (INIS)

    Rominger, C. Jules; Owen, Jean; Thompson, Phyllis; Giordano, Patricia; Buck, Beverly; Hanks, Gerald

    1995-01-01

    The shortage of radiation therapists (radiation therapy technologists) has existed in the United States for many years. It now appears the supply may be matching the demand. This report analyzes the data from the most recent manpower study from ACR/ASTRO carried out in 1990 using the Patterns of Care Master Facility list. The report is a comparison of these figures with similar figures published in IJROBP in December, 1983. Between 1980 and 1990 the number of radiation therapists rose from 3096 to 5353, an increase of 72%. During this period of time, the number of radiation therapy machines increased 47%, and the number of patients being treated increased 30%. The total number of educational programs in radiation therapy technology increased from 101 in 1989 to 123 in 1993. The total enrollment in these programs grew from 806 in 1989 to 1591 in 1993. The number of first time examinees in radiation therapy technology by ARRT in 1983 was 387 and increased to 943 in 1994. It is apparent that as a result of the increase in the number of radiation therapy educational programs and the more effective recruitment into these program, the supply of graduating radiation therapists has reached the demand. The future needs for entry level radiation therapists should be based on current data as well as new Blue Book standards that are being developed

  13. Application of Java technology in radiation image processing

    International Nuclear Information System (INIS)

    Cheng Weifeng; Li Zheng; Chen Zhiqiang; Zhang Li; Gao Wenhuan

    2002-01-01

    The acquisition and processing of radiation image plays an important role in modern application of civil nuclear technology. The author analyzes the rationale of Java image processing technology which includes Java AWT, Java 2D and JAI. In order to demonstrate applicability of Java technology in field of image processing, examples of application of JAI technology in processing of radiation images of large container have been given

  14. The advances in radiation processing technology and some suggestion

    International Nuclear Information System (INIS)

    Wu Jilan; Wei Genshuan; Ha Hongfei

    1992-01-01

    Radiation processing technology has been made great advances in the last decade especially in the developed countries. According to the conservative evaluation, the total sales of radiation processing products approached about 2-3 billion U.S. dollar in 1981, there after, the processing capacity at least doubles. Now, the intensities of 60 Co in use for radiation processing are (5.55-7.40) x 10 18 Bq and there are about 600 sets of electron accelerators for radiation processing. The total sales of radiation processing products are supposed to be over 10 billion U.S. dollar in 1989. However, there are only several fields commercialized. In great scale, such as radiation crosslinked heat shrinkable materials, radiation crosslinked electric cables and wires, and radiation sterilization of medical articles. In China, the radiation processing technology has been developed rapidly in the past years, but the processing capacity is still lower in comparing with developed countries. We suggest that much attention should be devoted to the training of the workers, technicians and managers. The basic theoretical and new technological researches are the keys for developing radiation processing technology at high speed in our country

  15. Radiation processing: a versatile technology for industry

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1996-01-01

    Soon after the discovery of x-ray in 1895 and radioactivity in 1896, it was recognized that ionizing radiation can modify the chemical, physical and/or biological properties of materials. However, it was only in the late 50's, when large radiation sources become available, has this unique property of radiation found industrial applications in radiation processing. Today, radiation processing has been used by industry in such diverse applications, such as radiation sterilization/decontamination of medical products, pharmaceuticals, cosmetics and their raw materials; radiation cross-linking of wire and cable insulation; production of heat shrinkable materials and polymer foam; and radiation curing of coatings, adhesives and inks on a wide variety of substrates. In addition to being a clean environment-friendly technology, radiation processing can also be used for the conservation of the environment by such processes as radiation treatment of flue gases to remove SO 2 and NO x and disinfection of sewage sludge. Because of the many advantages offered by radiation processing, industry is showing strong interest in the technology as evidenced by the growing number of industrial radiation facilities in many countries. (author)

  16. Basic radiation effects in nuclear power electronics technology

    International Nuclear Information System (INIS)

    Gover, J.E.; Srour, J.R.

    1985-05-01

    An overview is presented of the effects of radiation in microelectronics technology. The approach taken throughout these notes is to review microscopic phenomena associated with radiation effects and to show how these lead to macroscopic effects in semiconductor devices and integrated circuits. Bipolar integrated circuits technology is reviewed in Appendix A. Appendix B gives present and future applications of radiation-tolerant microelectronics in nuclear power applications as well as the radiation tolerance requirements of these applications

  17. Radiation processing technology in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan

    2004-01-01

    Radiation processing technology is widely used in industry to enhance efficiency and productivity, improve product quality and competitiveness. Efforts have been made by MINT to expand the application of radiation processing technology for modification of indigenous materials such as natural rubber and rubber based products, palm oil and palm oil based products and polysaccharide into new and high value added products. This paper described MINT experiences on developing products through R and D from the laboratory to the pilot plant stage and commercialization. The paper also explained some issues and challenges that MINT encountered in the process of commercialization of its R and D results. (author)

  18. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  19. Use of radiation technologies in agriculture and medicine

    International Nuclear Information System (INIS)

    Petukhov, V.K.; Chekushin, A.I.

    1994-01-01

    The most important directions of radiation and radiation biological technologies in the agriculture and medicine are elucidated. Kazakstan have possibility for application radiation technologies. There is powerful irradiation plant on the base of WWR-K reactor such could use for medicine materials sterilization. Has been proposed gamma-radiation plant with following technical characteristics: sources activity - 100-120 Ku; effective energy of radiation - 0,6-0,7 MeV; gamma-radiation use coefficient - 35 %; irradiation dose rate - 30-40 R/c; nonuniform irradiation rate - 12 %. Processing tools have being situated to hermetically sealed cylindrical container (height - 2 m; diameter - 1,2 m) and then have being put down under water towards gamma-irradiators

  20. High technology for radiation application

    International Nuclear Information System (INIS)

    Iida, Toshiyuki

    2005-03-01

    Fundamentals of radiations, radioactivity, and their applications in recent industrial, medical, agricultural and various research fields are reviewed. The book begins with historical description regarding to discovery of radiation at the end of 19th century and the exploration into the inside of an atom utilizing the radiation discovered, discovery of the neutron which finally leaded to nuclear energy liberation. Developments of radiation sources, including nuclear reactors, and charged-particle accelerators follow with simultaneous description on radiation measurement or detection technology. In medical fields, X-ray diagnosis, interventional radiology (IVR), nuclear medicine (PET and others), and radiation therapy are introduced. In pharmaceutical field, synthesis of labeled compounds and tracer techniques are explained. In industrial application, radiation-reinforced wires and heat-resistant cables whose economic effect can be estimated to amount to more than 10 12 yen, radiation mutation, food irradiation, and applied accelerators such as polymer modifications, decomposition of environmentally harmful substances, and ion-implantations important in semiconductor device fabrication. Finally, problems relating to general public such as radiation education and safety concept are also discussed. (S. Ohno)

  1. Technologically modified exposures to natural radiation. Annex C

    International Nuclear Information System (INIS)

    1982-01-01

    This Annex deals with some examples of technologically modified exposures to natural radiation. Radiation exposures due to coal-fired power plants, geothermal energy production, exploitation of phosphate rock, aircraft travel, and consumer products are discussed. The present state of knowledge does not allow an accurate estimate of the collective effective dose equivalent from technologically modified exposures to natural radiation to be made. This annex has an extensive bibliography with at least 200 references.

  2. The preliminary research for biosynthetic engineering by radiation fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Jung, U Hee; Park, Hae Ran [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    The purpose of this project is to elucidate the solution to the production of bioactive substance using biotransformation process from core technology of biosynthetic engineering by radiation fusion technology. And, this strategy will provide core technology for development of drugs as new concept and category. Research scopes and contents of project include 1) The development of mutant for biosynthetic engineering by radiation fusion technology 2) The development of host for biosynthetic engineering by radiation fusion technology 3) The preliminary study for biosynthetic engineering of isoflavone by radiation fusion technology. The results are as follows. Isoflavone compounds(daidzein, hydroxylated isoflavone) were analyzed by GC-MS. The study of radiation doses and p-NCA high-throughput screening for mutant development were elucidated. And, it was carried out the study of radiation doses for host development. Furthermore, the study of redox partner and construction of recombinant strain for region-specific hydroxylation(P450, redox partner). In addition, the biological effect of 6,7,4'-trihydroxyisoflavone as an anti-obesity agent was elucidated in this study.

  3. Megavoltage radiation therapy: Meeting the technological needs

    International Nuclear Information System (INIS)

    Van Dyk, J.

    2002-01-01

    Full text: In its simplest description, the purpose of radiation therapy is to hit the target and to miss all other parts of the patient. While there are multiple technological methods available for doing this, the actual radiation treatment needs to be considered in the broader context of the total radiation treatment process. This process contains multiple steps, each of which has an impact on the quality of the treatment and on the possible clinical outcome. One crucial step in this process is the determination of the location and extent of the disease relative to the adjacent normal tissues. This can be done in a variety of ways, ranging from simple clinical examination to the use of complex 3-D imaging, sometimes aided by contrast agents. As part of this localization process, it is very important that patient immobilization procedures be implemented to ensure that the same patient position will be used during both the planning and the daily treatment stages. With the knowledge of the location of the target and the critical tissues, decisions can be made about the appropriate beam arrangements to provide adequate tumour coverage while sparing the healthy tissues. This beam arrangement may have to be confirmed on a therapy simulator prior to actual implementation of the radiation treatment. In summary, the treatment process includes diagnosis, patient immobilization, target and normal tissue localization, beam selection, beam shaping, dose calculation, technique optimization, simulation, prescription, treatment verification and, finally, treatment. Dependent on the type of disease, it is not necessary that every patient undergoes all of the steps in the process; however, it is necessary that each step of the process used for a particular patient be carried out with the greatest accuracy. Uncertainties at any stage of the process will be carried through to subsequent stages and have an impact on clinical outcome. It is, therefore, important to recognize, when

  4. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  5. Some novel concepts in radiation processing technology applications

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2014-01-01

    Search for better materials and processes has been a part of the evolution of mankind and it still continues to be so as it is being realized that earth's resources are not everlasting and effect of rapid growth on environment may adversely affect the future development. Sustainable development is the only choice for today for long term survival. Better quality and high functional materials, made by superior technologies are being demanded by the society. Radiation processing technology has significantly contributed to meet the expectation of the people in providing superior products and processes while preserving the environment. Processes are being developed where resources are fully utilized with maximum advantages and little disturbance to the environment. More than 1500 electron beam accelerators and about 500 Gamma Irradiators are presently in use and many are being deployed for radiation processing of medical supplies, pharmaceuticals and herbal materials, treat effluents and preserve food and agricultural products and several industrial products. DAE has an ambitious plan to deploy radiation technology for societal benefits in India. In the presentations some interesting applications of Radiation Processing Technology will be discussed which includes (1) Radiation Processing of Cashew Apple fruit for bio-ethanol production (2) High Energy Battery separators (3) Plant Growth Promoters and (4) Tunable biodegradability. The discussion would reveal how a waste product like cashew apple can be converted to useful materials and advanced materials like HEB separators and Tunable Biodegradable films can be made using radiation technology. Use of radiation de-polymerized polysaccharides in some experiments have shown unexpected increase in agriculture output giving new concepts to increase the productivity. (author)

  6. Planning and Programming of Education and Training Courses on the Radiation Fusion Technologies for Next Generations

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Nam, Y. M.; Choi, P. H.

    2009-06-01

    In order to program education and training courses on the radiation technologies and to have the WNU RT School to be held in Korea, this project was carried out. It was also done to make a strategy for running the programmed courses, and to build and knit a global network among radiation specialists such as international advisory board, domestic advisory board and steering committee. A plan for the WNU RT School in Korea was made under this project. Curricula in all subjects related to radiation technology and the lecture materials were prepared, which are essential for education and training courses on radiation technologies for next generations. Lecturers were selected among global CEOs and professionals in radiation industries and university professors and radiation specialists. In addition, a global network among radiation specialists such as international advisory board, domestic advisory board and steering committee was built and organized. As a model for the international education and training courses in RT field as well as the other fields, it can be used for making fundamentals of technology exports and promoting Korea's national image in science and technology

  7. Radiation processing technology in the 21st century

    International Nuclear Information System (INIS)

    Miyuki Hagiwara

    1997-01-01

    The address discusses the following issue - towards the 21st century, we are required more and more to create innovative technologies to solve problems about environment, energy, natural resources, materials, health care, food and others which are the great concern to human beings. For the radiation processing technology to survive, it will be required to provide answers to those problems. The use of radiation of polymer modification will remain as an important field of the radiation application. Some other promising polymer processing can be cited as those which will grow in near future; for environment technology - polymeric fibers grafted with ion exchange residues to remove toxic metals for cleaning industrial waste water; For health care technology - crosslinked polyvinylalcohol hydrogel for wound dressing (irradiation of hydrogel); For high performance materials technology - less toxic crosslinked natural rubber latex (irradiation of emulsion), abrasion resistant crosslinked PTFE (irradiation at high temperature)

  8. Radioisotopes and radiation technology

    International Nuclear Information System (INIS)

    Ramamoorthy, N.

    2011-01-01

    The field of radioisotopes and radiation processing has grown enormously all over the world with India being no exception. The chemistry and radiochemistry related inputs to the overall technology development and achievements have been, and will continue to be, of considerable value and importance in this multi-disciplinary and multi-specialty field. Harnessing further benefits as well as sustaining proven applications should be the goal in planning for the future. An objective analysis of the socio-economic impact and benefits from this field to the society at large will undoubtedly justify assigning continued high priority, and providing adequate resources and support, to relevant new projects and programmes on the anvil in the area of radioisotopes and radiation technology. It is necessary to nurture and strengthen inter-disciplinary and multi-specialty collaborations and cooperation - at both national and international level as a rule (not as exception) - for greater efficiency, cost-effectiveness and success of ongoing endeavors and future developments in this important field

  9. Radiation technologies and techniques friendly for environment and men

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Walis, L.

    1995-01-01

    Development of radiation technologies and techniques in Poland has been shown. Especially thermoshrinkable olefins with shape memory, fast thermistors and radiation sterilization have been presented. Also the radiometric gages produced in the Institute of Nuclear Chemistry and Technology, Warsaw for air monitoring have been described. A broad group of radiotracer techniques being used for environmental study have been presented as well. Radiation technologies with electron beam use for flue gas purification, sewage sludge hygienization and food processing have been shown and their development has been discussed

  10. Radiation Tolerant Design with 0.18-micron CMOS Technology

    CERN Document Server

    Chen, Li; Durdle , Nelson G.

    This thesis discusse s th e issues r elated to the us e of enclosed-gate layou t trans isto rs and guard rings in a 0.18 μ m CMOS technology in order to im prove the radiation tolerance of ASICs. The thin gate oxides of subm icron technologies ar e inherently m ore radiation tole rant tha n the thick er oxides present in less advanced technologies. Using a commercial deep subm icron technology to bu ild up radiation-ha rdened circuits introduces several advantages com pared to a dedicated radiation-ha rd technology, such as speed, power, area, stability, and expense. Som e novel aspects related to the use of encl osed-gate layout transist ors are presented in this th esis. A m odel to calculate the aspect ratio is introduced and verified. Some im portant electrica l par ameters of the tran sistors such as threshold voltage, leakage current, subthreshold slope, and transconducta nce are studied before and afte...

  11. Technological aspects of the radiation chemistry

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2006-01-01

    Main technological aspects of the radiation chemistry are reviewed: network formation in polymers and caoutchouc, production of the sterile hydrogels, sterilisation of the expendable medical equipment and the environmental protection technologies (e.g. purification of the combustion gases from the sulfur oxides). Achievements of the are reviewed Institute of Nuclear Chemistry and Technology, Warsaw (Poland) in these fields are presented

  12. Fundamental Technology Development for Radiation Damage in Nuclear Materials

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kwon, J. H.; Kim, E. S. and others

    2005-04-01

    This project was performed to achieve technologies for the evaluation of radiation effects at materials irradiated at HANARO and nuclear power plants, to establish measurement equipment and software for the analysis of radiation defects and to set up facilities for the measurements of radiation damage with non-destructive methods. Major targets were 1) establishment of hot laboratories and remote handling facilities/ technologies for the radioactive material tests, 2) irradiation test for the simulation of nuclear power plant environment and measurement/calculation of physical radiation damage, 3) evaluation and analysis of nano-scale radiation damage, 4) evaluation of radiation embrittlement with ultrasonic resonance spectrum measurement and electromagnetic measurement and 5) basic research of radiation embrittlement and radiation damage mechanism. Through the performance of 3 years, preliminary basics were established for the application research to evaluation of irradiated materials of present nuclear power plants and GEN-IV systems. Particularly the results of SANS, PAS and TEM analyses were the first output in Korea. And computer simulations of radiation damage were tried for the first time in Korea. The technologies will be developed for the design of GEN-IV material

  13. Status and prospect of radiation processing technology in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Khairul Zaman Hj. Mohd Dahlan; Nahrul Khair Alang Md Rashid [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Selangor Darul Ehsan (Malaysia)

    2001-03-01

    Radiation processing technology in Malaysia is gaining acceptance by the local industry. The technology has proven to enhance the industrial efficiency, productivity and improve product quality and competitiveness. For many years, variety of radiation crosslinkable materials based on synthetic polymers have been produced either in the form of thermoplastic resins, polymer blends or composites. Today, effort is being focused towards producing environmentally friendly and biodegradable materials using natural polymers. The government of Malaysia through the Malaysian Institute for Nuclear Technology Research (MINT) has developed research program to utilize indigenous materials such as natural rubber, palm oil and polysaccharide. Radiation processing technology is used to process (crosslink/grafting/curing) the materials at a competitive cost. This technology can be applied in several industrial sectors such as automobile, aerospace, construction and healthcare. (author)

  14. Status and prospect of radiation processing technology in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan; Nahrul Khair Alang Md Rashid

    2001-01-01

    Radiation processing technology in Malaysia is gaining acceptance by the local industry. The technology has proven to enhance the industrial efficiency, productivity and improve product quality and competitiveness. For many years, variety of radiation crosslinkable materials based on synthetic polymers have been produced either in the form of thermoplastic resins, polymer blends or composites. Today, effort is being focused towards producing environmentally friendly and biodegradable materials using natural polymers. The government of Malaysia through the Malaysian Institute for Nuclear Technology Research (MINT) has developed research program to utilize indigenous materials such as natural rubber, palm oil and polysaccharide. Radiation processing technology is used to process (crosslink/grafting/curing) the materials at a competitive cost. This technology can be applied in several industrial sectors such as automobile, aerospace, construction and healthcare. (author)

  15. Open Source Radiation Hardened by Design Technology

    Science.gov (United States)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  16. Industrial applications of radiation technology

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2012-01-01

    During the past one decade, Radiation Technology applications utilizing gamma radiation and high energy electrons have made a big way into the Indian industry bringing quality and value-added products in a more environment-friendly way. While radiation sterilization of health care products, hygienization of food materials, modification of polymer materials etc. are established as successful processes world wide including India, new applications are emerging especially in the field of environmental remediation. Two types of installations viz. gamma irradiators and high energy electron accelerators are in use right now to carry out such applications. The aim of the talk is to put forward before the audience about the potential applications developed in India and abroad, role of Department of Atomic Energy and current status of radiation processing for industrial utilization

  17. Radiation chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    2006-01-01

    The importance of radiation chemistry in the field of nuclear technology including reactor chemistry, spent fuel reprocessing and radioactive high level waste repository, is summarized and, in parallel, our research activity will be briefly presented. (author)

  18. Development of advanced natural polymer using radiation technology

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeon, Jun Pyo

    2012-01-01

    This project was performed to develop the environment-friendly and higher value-added materials using natural polymers derivatives from biotic-resources by radiation technology. To study for structural change of natural polymer by radiation, the effect of electron beam and Gamma ray into four kinds of plants such as Kenaf core, kenaf bast, ock and cornhusk was investigated. As results of analysis about structural change of natural polymer by radiation, efficiently separating process of Lignin was developed by improved decomposition of Lignin with increasing power of radiation. Environ-friendly separating process of Cellulose and Lignin using radiation and water-cook was developed without toxically chemical treatment. Papers were fabricated by cellulose and tensile strength of pulp fabricated by radiation was invested properties of pulp depending on power of radiation. High purity cellulose was fabricated by reduced chemical ratio between hemi-cellulose and Lignin with control of radiative power. Manufacturing process of natural paper highly containing cellulose content was developed using efficient separation of cellulose from ock tree, kenaf core and kenaf bast through radiation technique. Cellulose fiber was fabricated using separated cellulose by radiation through the drying and wetting spinning with methanol and water. Also nano-fiber with Lignin was made by electro-spinning with different ratio between PAN and Lignin. Effect of thermal treatment and carbonization of fabricated nano-fiber was invested. Carbon fiber with Lignin was applied to high value-added a secondary battery used as a cathode in half cell type. The secondary battery with carbon fiber with Lignin used as a cathode showed very efficient performance, which revealed capacity-preservation with 100% during 100 cycles. This project could significantly contribute to national competitiveness with radiation technology and Low-carbon and green-growth industrial technology, based on securement of

  19. Radiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Machi, S.

    1983-01-01

    The use of radiation technology for environmental conservation is becoming increasingly important. Commercial plants for the radiation treatment of sewage sludge to reduce pathogenic micro-organisms have been operating in the Federal Republic of Germany for the past ten years and their technical and economical feasibility has been demonstrated. Irradiation of dried sludge has been developed at the Sandia National Laboratory (USA) using Cs-137, and the construction of a commercial plant is planned in Albuquerque. At the Japan Atomic Energy Research Institute (JAERI), efforts are under way to increase the rate of composting of sludge by radiation. Regarding waste water treatment, a significant synergistic effect of radiation and ozone was found in the reduction of TOC. The construction of a gamma irradiation plant is in the planning stage in Canada, for the disinfection of virus-contaminated waste effluents from the Canadian Animal Disease Research Institute. The treatment of exhaust gases by electron beam has been studied in Japan using a large pilot plant which demonstrated that 90% of SO 2 and 80% of NOsub(x) can be removed from the flue gas of iron ore sintering furnaces. The US Department of Energy is assisting in projects for the further development of this technology for combined removal of SO 2 and NOsub(x) in flue gas from coal burning power stations. (author)

  20. Radiation treatment of materials - elaboration bases of radiation technology; Obrobka radiacyjna materialow - zasady opracowywania technologii

    Energy Technology Data Exchange (ETDEWEB)

    Panta, P P [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The basic rules in design of radiation technologies have been presented and discussed. The recommendations for achieving of assigned goal in respect of obliged regulations have been done and explained on the example of radiation technology of adhesive materials and glue production.

  1. Development of Radiation Breeding Technology of Macroalgae

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongil; Park, J. H.; Song, B. S.; Kim, J. K.; Kim, J. H.; Lee, H. J.; Yang, H. Y.

    2013-01-15

    Macroalgae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the macroalgae is just beginning and the study on radiation effect and radiation breeding technology was not reported. In this study, the effect of radiation on the macroalgae Porphyra was investigated for the development of new mutant strains. Prphyra was successively cultivated in the laboratory chamber with optimized growth condition. Also, the radiation sensitivity of Porphyra was determined. To develop the mutant strain, irradiated Porphyra strains were screened for better growth and higher resistance against oxidative stress. The selected Porphyra was further cultivated in ocean site. Also, several genes from mutant Porphyra was heterologous expressed and studied for its dunctionality. This results can provide mutation technology of macroalgae and further contribute in the activation of fishery industry and national health enhancement.

  2. Development of Radiation Breeding Technology of Macroalgae

    International Nuclear Information System (INIS)

    Choi, Jongil; Park, J. H.; Song, B. S.; Kim, J. K.; Kim, J. H.; Lee, H. J.; Yang, H. Y.

    2013-01-01

    Macroalgae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the macroalgae is just beginning and the study on radiation effect and radiation breeding technology was not reported. In this study, the effect of radiation on the macroalgae Porphyra was investigated for the development of new mutant strains. Prphyra was successively cultivated in the laboratory chamber with optimized growth condition. Also, the radiation sensitivity of Porphyra was determined. To develop the mutant strain, irradiated Porphyra strains were screened for better growth and higher resistance against oxidative stress. The selected Porphyra was further cultivated in ocean site. Also, several genes from mutant Porphyra was heterologous expressed and studied for its dunctionality. This results can provide mutation technology of macroalgae and further contribute in the activation of fishery industry and national health enhancement

  3. Optical Tracking Technology in Stereotactic Radiation Therapy

    International Nuclear Information System (INIS)

    Wagner, Thomas H.; Meeks, Sanford L.; Bova, Frank J.; Friedman, William A.; Willoughby, Twyla R.; Kupelian, Patrick A.; Tome, Wolfgang

    2007-01-01

    The last decade has seen the introduction of advanced technologies that have enabled much more precise application of therapeutic radiation. These relatively new technologies include multileaf collimators, 3-dimensional conformal radiotherapy planning, and intensity modulated radiotherapy in radiotherapy. Therapeutic dose distributions have become more conformal to volumes of disease, sometimes utilizing sharp dose gradients to deliver high doses to target volumes while sparing nearby radiosensitive structures. Thus, accurate patient positioning has become even more important, so that the treatment delivered to the patient matches the virtual treatment plan in the computer treatment planning system. Optical and image-guided radiation therapy systems offer the potential to improve the precision of patient treatment by providing a more robust fiducial system than is typically used in conventional radiotherapy. The ability to accurately position internal targets relative to the linac isocenter and to provide real-time patient tracking theoretically enables significant reductions in the amount of normal tissue irradiated. This report reviews the concepts, technology, and clinical applications of optical tracking systems currently in use for stereotactic radiation therapy. Applications of radiotherapy optical tracking technology to respiratory gating and the monitoring of implanted fiducial markers are also discussed

  4. Six-Tube Freezable Radiator Testing and Model Correlation

    Science.gov (United States)

    Lilibridge, Sean T.; Navarro, Moses

    2012-01-01

    Freezable Radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft?s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recov ering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TM) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested: MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.

  5. Application of radiation technology for industry and environmental protection

    International Nuclear Information System (INIS)

    Sueo Machi

    1996-01-01

    The world population today is 5.7 billion and increasing by 94 million per year. In order to meet the increasing consumption of food and energy due to the tremendous population growth, unproved technologies which are environmentally friendly, are indispensable. In this context. a number of advanced technologies have been brought about by the LISC of radiation and isotopes. This paper highlights radiation technology, applications in industry, environmental conservation, and agriculture

  6. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1990-01-01

    The present report is prepared for planners of radiation processing of any material. Sources with cobalt-60 are treated marginally, because most probably, there will be no installation of technically meaningful activity in Poland before the year 2000. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV and accelerators of lower energy, below 2 MeV, of better energetical yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of twenty years of exploitation of the machine. One has to realize that from the 150 kV input power from the mains, only 5 kV of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, sometimes only a few percent, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of losses at the edges of the scanned area and in the spaces between boxes, and of losses during the dead time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical in case of objects of optimum type. At the first stage, that is of the conversion of electrical power into that of the low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating bremsstrahlung similar to gamma radiation. The advantages of these technologies, which make it possible to control the shape of the processed object are stressed. Ten parameters necessary for a proper calculation of technological yields of radiation processing are listed. Additional conditions which must be taken into account in the comparison of the cost of radiation processing with the cost of other technologies are also

  7. Radiation protection in newer imaging technologies

    International Nuclear Information System (INIS)

    Rehani, M. M.

    2010-01-01

    Not even a week passes without a paper getting published in peer reviewed journals on radiation protection in newer imaging technologies that either did not exist 10 y ago or were not established for routine use. Computed tomography (CT) happens to be a common element in most of these technologies. Radiation protection is high on the agenda of manufacturers and researchers and that is becoming a driving force for users and international organisations. The media and thus the public have their own share in increasing the momentum. The slice war seems to be shifting to dose war. Manufacturers are now chasing the target of sub-mSv CT. The era of two digit mSv effective dose for a CT procedure is far from losing ground, although cardiac CT within 5 mSv seems possible. A few years ago the change in technology was faster than adoption of dose management but currently even the development of dose reduction techniques is faster than its adoption. There is dearth of large scale surveys of practice and lack of surveys with change in technology. (authors)

  8. Radiation curing technology progress and its industrial applications in Japan

    International Nuclear Information System (INIS)

    Ukachi, Takashi

    2003-01-01

    Optics, electronics and display industries are now the driving forces for the Japanese radiation curing technology. The purpose of this paper is to overview the newly developed radiation curing technology in Japan, in particular, its industrial applications, and to present the market figures in radiation curing applications, which were surveyed by RadTech Japan in 2002 afresh. (author)

  9. Overcoming the fear of radiation: the key to the golden age of nuclear technology

    International Nuclear Information System (INIS)

    Cuttler, J.M.

    1996-01-01

    Canadian nuclear technology is threatened by radiophobia. It stems from the misuse of the linear dose-response model to label radiation as a carcinogen and to predict the number of excess fatal cancers to be expected from exposures to low-level radiation. Ironically, the actual response seems to be a beneficial effect due to the stimulation of the defense mechanisms that deal with both spontaneous and externally-induced cell damage. The scientific community should act to discourage improper use of the linear model and to inform Canadians of the safety of low-level radiation, to safeguard our nuclear heritage. (author)

  10. Overview of radiation effects on emerging non-volatile memory technologies

    Directory of Open Access Journals (Sweden)

    Fetahović Irfan S.

    2017-01-01

    Full Text Available In this paper we give an overview of radiation effects in emergent, non-volatile memory technologies. Investigations into radiation hardness of resistive random access memory, ferroelectric random access memory, magneto-resistive random access memory, and phase change memory are presented in cases where these memory devices were subjected to different types of radiation. The obtained results proved high radiation tolerance of studied devices making them good candidates for application in radiation-intensive environments. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 171007

  11. New radiation technologies and methods for control of technological processes in metallurgy

    International Nuclear Information System (INIS)

    Zaykin, Yu.

    1996-01-01

    Radiation Technology of Metal and Ceramic Production with Enhanced Service Properties. Based on application of radiation technique in powder metallurgy the new technology for obtaining metals, alloys and ceramic materials with high service properties is worked out. Radiation processing of powder materials at the certain stage of the process leads to profound structure alterations at all further stages and eventually effects the properties of the resulting product. Theoretical calculation and experimental studies of electron-positron annihilation in powder-pressed samples showed that irradiation caused powder particles surface state changes favorable for further sintering and crystallization processes development. It is shown that irradiation of metal powders and powder-pressed samples by high energy electrons is technologically most efficient. The right choice of the type-and the mode of the radiation processing makes it possible to obtain metals, alloys and ceramic materials (Mo,Fe, W, Al, Ni, Cu, stainless steels, ceramics, etc.) with homogeneous structure and stable enhanced service properties. The project on radiation technology application to powder metallurgy represented by a group of authors was awarded with the diploma and the gold medal at the 22 International Exhibition of Inventions (Geneva, 1994). New Technologic Opportunities of the Chromium-Nickel Alloys Processing To obtain the required phase-structure state special methods of the chromium-nickel alloy processing for sensitive elastic devices production were worked out combining plastic deformation, thermal and radiation processing. It is shown that h-gbb phase transfer not observed before is possible in extremely non-equilibrium conditions under electron irradiation. It is established that the complex reaction of recrystallization and gb-phase deposition proceeds under electron irradiation at the room temperature when the certain threshold plastic deformation degree is reached that leads to the same

  12. Technology development for evaluation of operational quantities in radiation protection

    International Nuclear Information System (INIS)

    Jang, Si Young; Lee, T. Y.; Kim, B. H.

    2003-03-01

    Korean government recently published a national regulation on the internal exposure monitoring and dose evaluation (internal dosimetry) based on the most recent ICRP recommendation 60 and subsequent publications, which supercede the former ICRP recommendation 26 and publication 30, on which the internal dosimetry practice in Korea had been based so far. Consequently, this project, according to the demand from both government and nuclear industry, had been launched to develop a user-friendly computer code on internal dosimetry adopting the most up to date ICRP biokinetic and dosimetric model to resolve the difficulties and problems faced to nuclear industry and to develop related technology. The reliability of this code, named as BiDAS, as a result of several benchmark calculations for self assurance appeared to be excellent comparing with the foreign computer code. This computer code is expected to be successfully utilized in nuclear industry and related fields in complying with the national regulation on internal dosimetry program started from late 2003. Reference low level gamma(γ) radiation field for calibration of environmental radiation(γ) monitor and reference neutron field for calibration of n monitoring equipment have been established and characterized. International cross comparison of these reference radiation fields have been performed and radiation response of various radiation monitoring instrument has been tested by using these reference radiation fields. A technology which can directly measure the radiation quality factor and tissue absorbed dose has been established to evaluate the neutron dose in terms of operational quantity in the unknown mixed n-γ radiation field. Spherical and cylindrical TEPC systems have been designed and manufactured and a portable TEPC system to measure the neutron quality and dose in the real work field has been developed and tested in accelerator laboratory

  13. Proceedings: 2003 Radiation Protection Technology Conference

    International Nuclear Information System (INIS)

    2004-01-01

    Health physics professionals within the nuclear industry are continually upgrading their programs with new methods and technologies. The Third Annual EPRI Radiation Protection Technology Conference facilitated this effort by communicating technical developments, program improvements, and experience throughout the nuclear power industry. When viewed from the perspective of shorter outages, diminishing numbers of contract RP technicians and demanding emergent work, this information flow is critical for the industry

  14. System-Level Model for OFDM WiMAX Transceiver in Radiation Environment

    International Nuclear Information System (INIS)

    Abdel Alim, O.; Elboghdadly, N.; Ashour, M.M.; Elaskary, A.M.

    2008-01-01

    WiMAX (Worldwide Inter operability for Microwave Access), an evolving standard for point-to-multipoint wireless networking, works for the l ast mile c onnections for replacing optical fiber technology network but with no need for adding more infra structure within crowded areas. Optical fiber technology is seriously considered for communication and monitoring applications in space and around nuclear reactors. Space and nuclear environments are characterized, in particular, by the presence of ionizing radiation fields. Therefore the influence of radiation on such networks needs to be investigated. This paper has the objective of building a System level model for a WiMAX OFDM (Orthogonal Frequency Division Multiplexing) based transceiver. Modeling irradiation noise as an external effect added to the Additive White Gaussian noise (AWGN). Then analyze, discuss the results based on qualitatively performance evaluation using BER calculations for radiation environment

  15. Radiation effects in technologies of semiconductor materials and devises

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Bogatyrev, Yu.V.; Lastovskij, S.B.; Marchenko, I.G.; Zhdanovich, N.E.

    2003-01-01

    In the paper were considered the physical basics and practical results of using of penetrating radiations in technologies of nuclear transmutation of semiconductor materials (Si, GaAs) as well as in production of semiconductor devices including high-power silicon diodes, thyristors and transistors. It is shown the high efficiency of radiation technology for increasing of electronic device speed, exclusion of technological operations such as gold or platinum diffusions, increase of quality, decrease of prime cost and increase of good-to-bad device ratio yield

  16. Current status of the radiation technology and quality control for radiation processing in Latin America

    International Nuclear Information System (INIS)

    Miranda, Enrique Francisco Prietro

    2013-01-01

    The use of the radiation technology has gained acceptance in various regions of the world, where studies estimated that the installed capacity increases at a rate of 6 % per year and Latin America is part of this increase, due the advantages of this process when it is employed for the food preservation, sterilization of medical pharmaceutical material and to control the insect pests. This paper shows the art state of the application of Radiation Technology in Latin America, as well as the technological characteristics of the most gamma irradiation facilities and minor number the electron beam accelerator facilities, the types of irradiated products, state of the Quality Management System and the Dosimetric Systems used in the Radiation Processing Control in the Region. (author)

  17. Radiation tolerance of NPN bipolar technology with 30 GHz Ft

    International Nuclear Information System (INIS)

    Flament, O.; Synold, S.; Pontcharra, J. de; Niel, S.

    1999-01-01

    The ionizing dose and neutron radiation tolerance of Si QSA bipolar technology has been investigated. The transistors exhibit good radiation tolerance up to 100 krad and 5 10 13 n/cm 2 without any special fabrication steps to harden the technology to the studied effects. (authors)

  18. Semiconductor radiation detectors technology and applications

    CERN Document Server

    2018-01-01

    The aim of this book is to educate the reader on radiation detectors, from sensor to read-out electronics to application. Relatively new detector materials, such as CdZTe and Cr compensated GaAs, are introduced, along with emerging applications of radiation detectors. This X-ray technology has practical applications in medical, industrial, and security applications. It identifies materials based on their molecular composition, not densities as the traditional transmission equipment does. With chapters written by an international selection of authors from both academia and industry, the book covers a wide range of topics on radiation detectors, which will satisfy the needs of both beginners and experts in the field.

  19. Review of radiation effects on ReRAM devices and technology

    Science.gov (United States)

    Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.

    2017-08-01

    A review of the ionizing radiation effects on resistive random access memory (ReRAM) technology and devices is presented in this article. The review focuses on vertical devices exhibiting bipolar resistance switching, devices that have already exhibited interesting properties and characteristics for memory applications and, in particular, for non-volatile memory applications. Non-volatile memories are important devices for any type of electronic and embedded system, as they are for space applications. In such applications, specific environmental issues related to the existence of cosmic rays and Van Allen radiation belts around the Earth contribute to specific failure mechanisms related to the energy deposition induced by such ionizing radiation. Such effects are important in non-volatile memory as the current leading technology, i.e. flash-based technology, is sensitive to the total ionizing dose (TID) and single-event effects. New technologies such as ReRAM, if competing with or complementing the existing non-volatile area of memories from the point of view of performance, also have to exhibit great reliability for use in radiation environments such as space. This has driven research on the radiation effects of such ReRAM technology, on both the conductive-bridge RAM as well as the valence-change memories, or OxRAM variants of the technology. Initial characterizations of ReRAM technology showed a high degree of resilience to TID, developing researchers’ interest in characterizing such resilience as well as investigating the cause of such behavior. The state of the art of such research is reviewed in this article.

  20. Isotopes and radiation technology - Indian scene

    International Nuclear Information System (INIS)

    Rao, S.M.

    1996-01-01

    India's isotope programme is today largely self-sustaining both in terms of availability of isotope products and the range of their applications in medicine, industry, hydrology, agriculture and research. Nuclear medicine is practised by over 200 medical institutions whereas 300 organisations offer radioimmunoassay service. Tracer technology, nucleonic gauging and isotope radiography are fairly well accepted by the Indian industry for troubleshooting, NDT and process control. There are three large radiation plants for sterilisation of medical products. Radiation chemical processing with both gamma and EB shows good promise. In agriculture, sixteen mutants of various crops have been produced using gamma-radiation and distributed for commercial cultivation. A strong programme of research on radiation preservation of food has finally resulted in the clearance of some irradiated foods by the Government of India. (author). 20 refs., 2 tabs

  1. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1984-01-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technology or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented. (author)

  2. Radiation protection technology. Specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). 2. rev. ed.

    International Nuclear Information System (INIS)

    Rahn, Hans-Joachim

    2012-01-01

    The specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). Covers the following issues: radiation protection - generally; licenses and notifications; scientific fundamentals; dosimetry, surveillance, control, documentation; technical radiation protection; radiation protection calculations.

  3. Industrial Applications of radioisotopes and radiation technology and Agency's role

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Haji-Saeid, M.

    2004-01-01

    Applications of radioisotopes and radiation technology are contributing significantly in many areas of science and technology, industry and environment, towards sustainable development, improving the quality of life and cleaner and safer national industries. There are three major classes impacting industrial scale operations, namely, (a) radiation processing/treatment, (b) radiotracer and sealed source techniques to monitor industrial processes/columns/vessels and (c) industrial gamma radiography and tomography. Radiation processing applying gamma sources and electron accelerators for material treatment/modification is an established technology. There are over 160 gamma industrial irradiators and 1300 industrial electron accelerators in operation worldwide. Development of new materials, especially for health care and environment protection, and advanced products (for electronics, solar energy systems, biotechnology etc) are the main objectives of R and D activity in radiation processing technology. The International Atomic Energy Agency (IAEA, Agency) is involved in supporting both the development and transfer of radiation technology. Thanks to Agency's efforts, advanced radiation processing centres have been established in many Member States (MS), e.g. Malaysia, Egypt, Iran, Poland, Brazil, Hungary. Hydrogel dressing for wounds, radiation vulcanised latex, degraded natural polymer are examples of useful product outcomes. Demonstration of effective treatment of flue gas in pilot plant as well as industrial scale and industrial wastewater in pilot plant scale has shown promise for tackling industrial emissions/effluents using electron beam machines. Industrial radiotracer and gamma sealed source techniques are largely used for analyzing industrial process systems. Initially used as trouble-shooting measures, they play a vital role in process parameter optimization, improved productivity, on-line monitoring and could lead to even pre-commissioning benchmarking. Gamma

  4. Industrial Applications of radioisotopes and radiation technology and Agency's role

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Haji-Saeid, M.

    2004-01-01

    Full text: Applications of radioisotopes and radiation technology are contributing significantly in many areas of science and technology, industry and environment, towards sustainable development, improving the quality of life and cleaner and safer national industries. There are three major classes impacting industrial scale operations, namely, (a) radiation processing/treatment, (b) radiotracer and sealed source techniques to monitor industrial processes/columns/vessels and (c) industrial gamma radiography and tomography. Radiation processing applying gamma sources and electron accelerators for material treatment/modification is an established technology. There are over 160 gamma industrial irradiators and 1300 industrial electron accelerators in operation worldwide. Development of new materials, especially for health care and environment protection, and advanced products (for electronics, solar energy systems, biotechnology etc) are the main objectives of R and D activity in radiation processing technology. The International Atomic Energy Agency (IAEA, Agency) is involved in supporting both the development and transfer of radiation technology. Thanks to Agency's efforts, advanced radiation processing centres have been established in many Member States (MS), e.g. Malaysia, Egypt, Iran, Poland, Brazil, Hungary. Hydrogel dressing for wounds, radiation vulcanised latex, degraded natural polymer are examples of useful product outcomes. Demonstration of effective treatment of flue gas in pilot plant as well as industrial scale and industrial wastewater in pilot plant scale has shown promise for tackling industrial emissions/effluents using electron beam machines. Industrial radiotracer and gamma sealed source techniques are largely used for analyzing industrial process systems. Initially used as trouble-shooting measures, they play a vital role in process parameter optimization, improved productivity, on-line monitoring and could lead to even pre

  5. Potential applications of radiation technology in meat industry

    International Nuclear Information System (INIS)

    Chawla, S.P.; Kanatt, S.R.; Rao, M.S.; Sharma, Arun

    2009-01-01

    Microbial load determines shelf-life and safety of meat products. Radiation technology is an effective tool in eliminating spoilage and pathogenic microbes in meat products. Radiation processing of meat can work in synergy with traditional preservation methods to enhance shelf-life and safety of meat products. (author)

  6. Radiation cure technology used in inks and coatings

    International Nuclear Information System (INIS)

    Ravijst, J.-P.

    1995-01-01

    The radiation cure technology in inks and coatings by ultraviolet light (UV) and electron beam (EB) was introduced. The technology is the only one which meets the 3-E rules. An advantage of this technology is that a wide range of substrates can be printed such as paper, card, metal and even heat sensitive plastics

  7. Application of radiation technology in vaccines development.

    Science.gov (United States)

    Seo, Ho Seong

    2015-07-01

    One of the earliest methods used in the manufacture of stable and safe vaccines is the use of chemical and physical treatments to produce inactivated forms of pathogens. Although these types of vaccines have been successful in eliciting specific humoral immune responses to pathogen-associated immunogens, there is a large demand for the development of fast, safe, and effective vaccine manufacturing strategies. Radiation sterilization has been used to develop a variety of vaccine types, because it can eradicate chemical contaminants and penetrate pathogens to destroy nucleic acids without damaging the pathogen surface antigens. Nevertheless, irradiated vaccines have not widely been used at an industrial level because of difficulties obtaining the necessary equipment. Recent successful clinical trials of irradiated vaccines against pathogens and tumors have led to a reevaluation of radiation technology as an alternative method to produce vaccines. In the present article, we review the challenges associated with creating irradiated vaccines and discuss potential strategies for developing vaccines using radiation technology.

  8. Shape Morphing Adaptive Radiator Technology (SMART) Updates to Techport Entry

    Science.gov (United States)

    Erickson, Lisa; Bertagne, Christopher; Hartl, Darren; Witcomb, John; Cognata, Thomas

    2017-01-01

    The Shape-Morphing Adaptive Radiator Technology (SMART) project builds off the FY16 research effort that developed a flexible composite radiator panel and demonstrated its ability to actuate from SMA's attached to it. The proposed FY17 Shape-Morphing Adaptive Radiator Technology (SMART) project's goal is to 1) develop a practical radiator design with shape memory alloys (SMAs) bonded to the radiator's panel, and 2) build a multi-panel radiator prototype for subsequent system level thermal vacuum tests. The morphing radiator employs SMA materials to passively change its shape to adapt its rate of heat rejection to vehicle requirements. Conceptually, the radiator panel has a naturally closed position (like a cylinder) in a cold environment. Whenever the radiator's temperature gradually rises, SMA's affixed to the face sheet will pull the face sheet open a commensurate amount - increasing the radiators view to space and causing it to reject more heat. In a vehicle, the radiator's variable heat rejection capabilities would reduce the number of additional heat rejection devices in a vehicle's thermal control system. This technology aims to help achieve the required maximum to minimum heat rejection ratio required for manned space vehicles to adopt a lighter, simpler, single loop thermal control architecture (ATCS). Single loop architectures are viewed as an attractive means to reduce mass and complexity over traditional dual-loop solutions. However, fluids generally considered safe enough to flow within crewed cabins (e.g. propylene glycol-water mixtures) have much higher freezing points and viscosities than those used in the external sides of dual loop ATCSs (e.g. Ammonia and HFE7000).

  9. 0.25μm radiation tolerant technology for space applications

    International Nuclear Information System (INIS)

    Haddad, N.; Brady, F.; Scott, T.; Yoder, J.

    1999-01-01

    Lockheed Martin federal systems has developed a state-of-the-art radiation tolerant 0,25 μm CMOS capability that is compatible with commercial foundries as well as radiation hardened fabrication. A technology test chip was designed, fabricated and evaluated for performance, power and radiation hardness in order to validate the methodology and evaluate the technology. Testing results show that -) the active transistor threshold shift is negligible for 0.25 μm CMOS, -) the hardened STI (shallow trench isolation) can support Mega-rad applications, and -) the holding voltage is well beyond the operating voltage of 2.5 V. This technology is intended to support high density, high performance and low power space applications

  10. Development of Sensor Technology and Its Application for Nuclear Radiation Detection

    International Nuclear Information System (INIS)

    Hiskia

    2007-01-01

    Radiation is energy in the form of waves or moving subatomic particles. Radiation can be ionizing or nonionizing radiation, depending on its effect on atomic matter. Because radiation cannot be seen, felt, tasted, heard or smelled, even at lethal levels, radiations detection devices must be used to alert those exposed to radiation. The measurement of radioactivity in the environment is a regulatory requirement around sites where significant amounts of radioactive materials are used or stored. Recently, advent in microelectronics and material technology has enabled to produce small sensor or microsensor, sensitive, accurate, and integrated in a chip or substrate. Development of radiation sensor technology using thin/thick film and micromachining technique was described in this paper. Indonesian capabilities in radiation sensor research and development and opportunities for commercialization also given. (author)

  11. The Development of Sensor Technology and Application to Detect Nuclear Radiation

    International Nuclear Information System (INIS)

    Hiskia

    2007-01-01

    Radiation is energy in the form of waves or moving subatomic particles. Radiation can be ionizing or non-ionizing radiation, depending on its effect on atomic matter. Because radiation cannot be seen, felt, tasted, heard or smelled, even at lethal levels, radiations detection devices must be used to alert those exposed to radiation. The measurement of radioactivity in the environment is a regulatory requirement around sites where significant amounts of radioactive materials are used or stored. Recently, advent in microelectronics and material technology has enabled to produce small sensor or microsensor, sensitive, accurate, and integrated in a chip or substrate. Development of radiation sensor technology using thin/thick film and micromachining technique was described in this paper. Indonesian capabilities in radiation sensor research and development and opportunities for commercialization also given. (author)

  12. Nuclear and radiation technologies in Ukraine: opportunities, status and problems of implementation

    International Nuclear Information System (INIS)

    Gorbulyin, V.P.

    2011-01-01

    The collection contains research materials and information presented at the Scientific Conference 'Nuclear and radiation technologies in Ukraine' (September 17, 2009, Kyiv). The articles offered specific ways to address a number of issues relevant to nuclear energy, science, technology, medicine and related to the radiation and environmental safety, the use of radiation technologies in medicine, development of uranium and uranium processing industry, safety on factories of NFC, nuclear physical instrumentation, behaviour with radioactive wastes.

  13. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  14. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1983-09-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technologie or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented

  15. The development of advanced robotics technology in high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs.

  16. The development of advanced robotics technology in high radiation environment

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo.

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs

  17. Current status of utilization of radioisotopes and radiation technology in Malaysia

    International Nuclear Information System (INIS)

    Ahmad Tajuddin Ali

    1985-01-01

    The utilization of isotope and radiation technology in Malaysia dates back to the early sixties. However it was confined to the field of medicine. Today, the use of this technology has widen up, covering the agricultural and industrial areas. The increasing use of the technology has prompted the government to establish the Nuclear Energy Unit whose one of its main functions is to ensure the safe application of radioisotopes and radiations. For this purpose, facilities for training, calibration, waste treatment, etc. were provided by this unit to cater the need of radioisotope and radiation users throughout the country. (author)

  18. Radiation technology in agriculture

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2013-01-01

    The Department of Atomic Energy through its research, development and deployment activities in nuclear science and technology, has been contributing towards enhancing the production of agricultural commodities and their preservation. Radiations and radioisotopes are used in agricultural research to induce genetic variability in crop plants to develop improved varieties, to manage insect pests, monitor fate and persistence of pesticides, to study fertilizer use efficiency and plant micronutrient uptake and also to preserve agricultural produce. Use of radiation and radioisotopes in agriculture which is often referred to as nuclear agriculture is one of the important fields of peaceful applications of atomic energy for societal benefit and BARC has contributed significantly in this area. 41 new crop varieties developed at BARC have been released and Gazette notified by the MoA, GOI for commercial cultivation and are popular among the farming community and grown through out the country

  19. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    Chen Huiyuan; Peng Zhigang; Ding Zhongmin; Lu Jiajiu

    2007-01-01

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60 Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  20. Application of radiation technology to sewage sludge processing: A review

    International Nuclear Information System (INIS)

    Wang Jianlong; Wang Jiazhuo

    2007-01-01

    Sewage sludge is unwanted residual solid wastes generated in wastewater treatment and its management is one of the most critical environmental issues of today. The treatment and disposal of sludge contribute a considerable proportion of the cost for running a wastewater treatment plant. The increasing amount of swage sludge and more and more legislative regulation of its disposal have stimulated the need for developing new technologies to process sewage sludge efficiently and economically. One ideal consideration is to recycle it after proper treatment. Radiation technology is regarded to be a promising alternative for its high efficiency in pathogen inactivation, organic pollutants oxidation, odor nuisance elimination and some other characteristics enhancement, which will facilitate the down-stream process of sludge treatment and disposal. Here we present a brief review of application of radiation technology on sewage sludge processing. Some basic information of two currently available irradiation systems and fundamental radiation chemistry are introduced firstly; then the world-wide application of this promising technology is reviewed; various effects of radiation on sludge is discussed in detail; and some concluding remarks are given and some future directions are also proposed

  1. Update application and development of radiation sterilization technology on pharmacy eutical industry

    International Nuclear Information System (INIS)

    Zhao Yongfu; Nanjing Univ., Nanjing; Wang Changbao; Wang Chao

    2006-01-01

    Since 'Standard of Radiation Sterilization by 60 Co Irradiator on Chinese Medicine' has been cleared, radiation sterilization technology obtains the widespread application on pharmacy. In this paper, the newest application and development of this technology on pharmacy are introduced from several aspects, such as dose control, drugs packing, the influence of radiation on functional ingredients and so on. Aimed at the current problem of radiation sterilization on pharmacy of our country, concrete measure is proposed. And the application of radiation sterilization on health food, enzyme preparation and controlled-release capsule is specially introduced. (authors)

  2. Dose loading mathematical modelling of moving through heterogeneous radiation fields

    International Nuclear Information System (INIS)

    Batyij, Je.V.; Kotlyarov, V.T.

    2006-01-01

    Software component for management of data on gamma exposition dose spatial distribution was created in the frameworks of the Ukryttya information model creation. Availability of state-of-the-art programming technologies (NET., ObjectARX) for integration of different models of radiation-hazardous condition to digital engineer documentation system (AutoCAD) was shown on the basis of the component example

  3. Radiation processing technology for industrial waste water treatment

    International Nuclear Information System (INIS)

    2011-01-01

    Radiation sterilization technology, cross-linked polymers and curing, food and environmental applications of the radiation is widely used for many years. At the same time, drinking water and wastewater treatment are the part of the radiation technology applications. For this purpose, drinking water and wastewater treatment plants in various countries has been established. In this project, gamma / electron beam radiation treatment is intended to be used for the treatment of alkaloid, textiles and polychlorinated biphenyls (PCBs) wastewater. In this regard, the chemical characterization of wastewater, the interaction with radiation, biological treatment and determination of toxicological properties are the laboratory studies milestones. After laboratory studies, the establishment of a pilot scale treatment plant has been planned. Within the framework of the project a series of dye used in textile industry were examined. Besides the irradiation, the changes in treatment efficiency were investigated by using of oxygen and hydrogen peroxide in conjunction with the irradiation. Same working methods were implemented in the wastewater treatment of Bolvadin Opium Alkaloid Factory as well. In addition to chemical analysis in this study, aerobic and anaerobic biological treatment process also have been applied. Standard reference materials has been used for the marine sediment study contaminated with polychlorinated biphenyls.

  4. Model study of radiation effects on the gastrointestinal cell system

    International Nuclear Information System (INIS)

    Kicherer, G.

    1983-03-01

    Since it is now possible to calculate the radiation fields used for medicinal purposes by means of radiation transport programs it was started to determine with mathematical models of radioeffects not only the physical effects or irradiation, but also the resulting biological radioresponses. This supplementary biologic information is not only of large general importance, but particularly valuable for the medicinal application of the biologically highly effective neutron radiation. With support by the Institute for Medicinal Radiophysics and Radiobiology of Essen University Hospital, and of two biomathematical working groups of Ulm University and Cologne University Hospital, who are experienced in the field of establishing mathematical models of the hematogenic cellular system, we developed out of experimental fundamental findings a cellkinetic, kybernetic model of the intestinal mucosa, which is highly sensitive to radiation. With this newly established model we succeeded for the first time in simulating comprehensively and quantitatively the time-dependent acute radioresponse of such a radiosensitive cellular system. For the first time we successfully used the computer simulation languages DARE-P and GASP, which are principally employed for solving problems in automatic control technology, and set up a radioresponse model. (orig.) [de

  5. Future Prospects: Ionization Radiation Processing Technology. Chapter 12

    International Nuclear Information System (INIS)

    Rida Tajau

    2017-01-01

    This final chapter concluded that the ionizing radiation processing technology was potentially used to develop new and advanced products. The new advanced products which been discussed was HBPUA, printing ink, PSA, hydrogel, bioplastic, SWA, CNT, RVNRL and others. With this new innovative technology, it will develop the country's economy and increase the productivity of manufacturing industry, medical, science and technology and also strenghten the social science field.

  6. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    Science.gov (United States)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  7. The development and current status of the technology of isotope and radiation in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhifu, Luo [Dept. of Isotope, China Inst. of Atomic Energy, Beijing, BJ (China)

    1998-10-01

    The research and application of the technology of isotopes and radiation have been reviewed. Since the setup of the China`s first nuclear reactor at China Institute of Nuclear Energy in 1958, the technology of isotopes and radiation has been developed significantly. A research and application system has formed a considerable state. The technology of isotopes and radiation has been taken into the fields of industry, agriculture, medicine, and scientific research. The main achievements are on radiopharmaceuticals, radiation source, radiation process, and radioactive tracers. (author)

  8. Reducing radiation exposure in an electrophysiology lab with introduction of newer fluoroscopic technology

    Directory of Open Access Journals (Sweden)

    Munish Sharma

    2017-09-01

    Full Text Available The use of fluoroscopic devices exposes patients and operators to harmful effects of ionizing radiation in an electrophysiology (EP lab. We sought to know if the newer fluoroscopic technology (Allura Clarity installed in a hybrid EP helps to reduce prescribed radiation dose. We performed radiation dose analysis of 90 patients who underwent various procedures in the EP lab at a community teaching hospital after the introduction of newer fluoroscopic technology in June of 2016.Watchman device insertion, radiofrequency ablation procedures, permanent pacemaker (PPM/implantable cardioverter defibrillator (ICD placement and battery changes were included in the study to compare radiation exposure during different procedures performed commonly in an EP lab. In all cases of watchman device placement, radiofrequency ablation procedures, PPM/ICD placement and battery changes, there was a statistically significant difference (<0.05 in radiation dose exposure. Significant reduction in radiation exposure during various procedures performed in an EP lab was achieved with aid of newer fluoroscopic technology and better image detection technology.

  9. Cerebral radiation necrosis: limits and prospects of experimental models

    International Nuclear Information System (INIS)

    Lefaix, J.L.

    1992-01-01

    Cerebral radiation necrosis is the major CNS hazard of clinical treatment therapy involving delivery of high doses of radiation to the brain. It is generally irreversible and frequently leads to death from brain necrosis. Necrosis has been reported with total doses of 60 Gy, delivered in conventional fractions. Symptoms depend upon the volume of brain irradiated and are frequently those of an intracranial mass and may be present as an area of gliosis or frank necrosis. Possible causes include some direct effect of radiation on glial cells, vascular changes and the action of an immunological mechanism. The weight of evidence suggests that demyelination is important in the early delayed reaction, and that vascular changes gradually become more important in the late delayed reactions, from several months to years after treatment. The advent of sophisticated radiographic technologies such as computed tomography, magnetic resonance imaging and spectroscopy, and positron emission tomography have facilitated serial non invasive examination of morphologic or physiologic parameters within the brain after irradiation. Limits and prospects of these technologies are reviewed in experimental animal models of late radiation injuries of the brain, which were carried out in many species ranging from mouse to monkey

  10. Development of public health assurance technology by radiation

    International Nuclear Information System (INIS)

    Kim, Dong Ho; Lim, Sang Yong; Yang, Jae Seung

    2007-07-01

    This project was performed to develop the radiation sterilization process of public health products and RT/BT fusion technology and to secure a detection and quarantine system of irradiated food. To establish the radiation sterilization of public health goods, current status of radiation sterilization of disposable medical equipment was investigated and the manufacturing process of disposable media for microbial cultivation were developed using a gamma sterilization. In addition, microbial contamination of disposable kitchen utensils was surveyed and pathogen-free organic compost was developed by radiation sterilization. The radiation responses of bacteria including Salmonella, Vibrio, E. coli, and D. radiodurans were analyzed by DNA chip and 2-D electrophoresis. To validate the safety of surviving bacteria after irradiation, the expressions of virulence genes of pathogenic bacteria were monitored using real-time PCR, and the growth of mycotoxin-producing funguses was studied after irradiation. And also, quantitative detection methods of irradiated and inactivated Salmonella using a real-time PCR and a immuno assay. To establish the quarantine and quality assurance of irradiated food and public health products, radiation technology was applied to the fermented foods, minimally processed food and dried vegetables. Radiation effects on insects was examined and the corresponding data base was constructed. We also collaborated on the preliminary test of international trade of sea food with USA or India. To establish the official detection method of irradiated food, physical, chemical and biological detection methods for irradiated food were verified. Finally, multiple range test of irradiated food was performed

  11. Development of public health assurance technology by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Lim, Sang Yong; Yang, Jae Seung (and others)

    2007-07-15

    This project was performed to develop the radiation sterilization process of public health products and RT/BT fusion technology and to secure a detection and quarantine system of irradiated food. To establish the radiation sterilization of public health goods, current status of radiation sterilization of disposable medical equipment was investigated and the manufacturing process of disposable media for microbial cultivation were developed using a gamma sterilization. In addition, microbial contamination of disposable kitchen utensils was surveyed and pathogen-free organic compost was developed by radiation sterilization. The radiation responses of bacteria including Salmonella, Vibrio, E. coli, and D. radiodurans were analyzed by DNA chip and 2-D electrophoresis. To validate the safety of surviving bacteria after irradiation, the expressions of virulence genes of pathogenic bacteria were monitored using real-time PCR, and the growth of mycotoxin-producing funguses was studied after irradiation. And also, quantitative detection methods of irradiated and inactivated Salmonella using a real-time PCR and a immuno assay. To establish the quarantine and quality assurance of irradiated food and public health products, radiation technology was applied to the fermented foods, minimally processed food and dried vegetables. Radiation effects on insects was examined and the corresponding data base was constructed. We also collaborated on the preliminary test of international trade of sea food with USA or India. To establish the official detection method of irradiated food, physical, chemical and biological detection methods for irradiated food were verified. Finally, multiple range test of irradiated food was performed.

  12. Single-flux-quantum circuit technology for superconducting radiation detectors

    International Nuclear Information System (INIS)

    Fujimaki, Akira; Onogi, Masashi; Matsumoto, Tomohiro; Tanaka, Masamitsu; Sekiya, Akito; Hayakawa, Hisao; Yorozu, Shinichi; Terai, Hirotaka; Yoshikawa, Nobuyuki

    2003-01-01

    We discuss the application of the single-flux-quantum (SFQ) logic circuits to multi superconducting radiation detectors system. The SFQ-based analog-to-digital converters (ADCs) have the advantage in current sensitivity, which can reach less than 10 nA in a well-tuned ADC. We have also developed the design technology of the SFQ circuits. We demonstrate high-speed operation of large-scale integrated circuits such as a 2x2 cross/bar switch, arithmetic logic unit, indicating that our present SFQ technology is applicable to the multi radiation detectors system. (author)

  13. Radiation therapy for children: evolving technologies in the era of ALARA

    International Nuclear Information System (INIS)

    Kun, Larry E.; Beltran, Chris

    2009-01-01

    The evolution of ever more sophisticated oncologic imaging and technologies providing far more precise radiation therapy have combined to increase the utilization of sophisticated radiation therapy in childhood cancer. For a majority of children with common central nervous system, soft tissue, bone, and dysontogenic neoplasms, local irradiation is fundamental to successful multi-disciplinary management. Along with more precise target volume definition and radiation delivery, new technologies provide added certainty of patient positioning (electronic portal imaging, cone beam CT) and conformality of dose delivery (3-D conformal irradiation, intensity modulated radiation therapy, proton beam therapy). Each of the major areas of technology development are able to better confine the high-dose region to the intended target, but they are also associated with the potential for larger volumes of uninvolved tissues being exposed to low radiation doses. The latter issue plays a role in documented levels of secondary carcinogenesis, sometimes with greater anticipated incidence than that seen in conventional radiation therapy. Parameters related to carcinogenesis, such as dose-volume relationships and neutron contamination that accompanies high-energy photon irradiation and proton therapy, can be identified, sometimes modulated, and accepted as part of the clinical decision process in fine tuning radiation therapy in this more vulnerable age group. (orig.)

  14. IAEA Conference on Large Radiation Sources in Industry (Warsaw 1959): Which technologies of radiation processing survived and why?

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1999-01-01

    The IAEA has organized in Warsaw an International Conference on Large Radiation Sources in Industry from 8 to 12 September 1959. Proceedings of the Conference have been published in two volumes of summary amount of 925 pages. This report presents analysis, which technologies presented at the Conference have survived and why. The analysis is interesting because already in the fifties practically full range of possibilities of radiation processing was explored, and partially implemented. Not many new technologies were presented at the next IAEA Conferences on the same theme. Already at the time of the Warsaw Conference an important role of economy of the technology has recognized. The present report selects the achievements of the Conference into two groups: the first concerns technologies which have not been implemented in the next decades and the second group which is the basis of highly profitable, unsubsidized commercial production. The criterion of belonging of the technology to the second group, is the value of the quotient of the cost of the ready, saleable product diminished by the cost of a raw material before processing, to the expense of radiation processing, being the sum of irradiation cost and such operations as transportation of the object to and from the irradiation facility. Low value of the quotient, as compared to successful technologies is prophesying badly as concerns the future of the commercial proposal. A special position among objects of radiation processing is occupied by radiation processing technologies direct towards the protection or improving of the environment. Market economy does not apply here and the implementation has to be subsidized. (author)

  15. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  16. Advisory group meeting on new trends and developments in radiation technology

    International Nuclear Information System (INIS)

    1993-02-01

    High energy, ionizing radiation (gamma and electron beams) has been used by industry for many years and for different applications. Well established applications include: industrial sterilization of health care products (medical products and medicinals), radiation modification of plastics (crosslinking of wire and cable insulation, heat shrinkable materials, etc.) and radiation curing of adhesives and coatings on different substrates. The main purpose of the Advisory Group Meeting was to provide a forum for an exchange of information about the new developments in radiation technology, to review the status of these developments and to discuss potential for commercial applications. A further objective was to discuss the role of the International Atomic Energy Agency in promoting new technologies, research and transfer of technology to developing countries. The meeting was expected to prepare recommendations to the Agency for future activities and programmes in this field. Refs, figs and tabs

  17. Radiation processing applications in the Czechoslovak water treatment technologies

    Science.gov (United States)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  18. Radiation processing applications in the Czechoslovak water treatment technologies

    International Nuclear Information System (INIS)

    Vacek, K.; Pastuszek, F.; Sedlacek, M.

    1986-01-01

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone, or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation. (author)

  19. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  20. Radiation technology enabled market access to Indian mango

    International Nuclear Information System (INIS)

    Sharma, Arun

    2009-01-01

    International trade in agricultural produce is subject to quarantine barriers imposed by importing countries to limit the entry of exotic pests and pathogens. Radiation technology provides an effective alternative to fumigants which are being gradually phased out. The technology has enabled market access to Indian mangoes in the US market after a gap of 18 years. The technology provides opportunity for export of other fruits and vegetables as well to countries like US, Australia and New Zealand. (author)

  1. Use of radiation processing technology gradually expands in industry

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The use of radioisotopes and radiation is expanding in the fields of industries and medicine with a high potentiality of the application to environmental protection. The technology transfer on the use of isotopes and radiation is progressing in the framework of international cooperation. But the industry has maintained wait and see attitude on the commercialization of food irradiation. Such present features were the highlight in the 19th Japan Conference on Radiation and Radioisotopes held on November 14-16. 72 papers from 19 countries were presented and discussed in 13 sessions. The progress of accelerator technology has contributed to the expansion of radiation processing market. The importance of the application of isotopes and radiation to environmental protection has been gradually acknowledged, and the electron beam treatment of flue gas for acid rain abatement and the elimination of chlorinated ethylene from drinking water were discussed. Drastic change has not been seen in the climate of food irradiation, however there are several positive indicators which support the prediction of slow but steady progress in the commercialization of the process and the trade of irradiated foods. (K.I.)

  2. Development of system technology for radiation cancer therapy with the dexterous auto lesions tracking

    International Nuclear Information System (INIS)

    Kim, Seungho; Jeong, Kyungmin; Jung, Seungho; Lee, Namho

    2013-01-01

    The project objectives are to establish the fundamental core technologies for precise auto lesions tracking radiation cancer therapy and developing related system technology as well. Radiation cancer therapy apparatus should be domestically produced to reduce medical expenses, hence advanced technologies are suggested and developed to make cost down medical expenses and save expenditure for importing 10 million dollars/set from overseas. To achieve these targets, we have carried out reviewing of domestic and foreign technology trend. Based on review of state-of-the-art technology, radiation sensory system is studied. 3m high precise image processing technique and intelligent therapy planning software are developed. Also precedent study on the redundant robot for dexterous motion control system has been performed for developing of radiation cancel therapy robot system

  3. IAEA education and training programs in radiation technology

    International Nuclear Information System (INIS)

    Ma Zueteh

    1995-01-01

    In order to assist the promotion of the industrial application of isotopes and radiation in Southeast Asia and Pacific region, the regional IAEA/UNDP/RCA project was formed in 1982. Phase 1 was 1982-1986, Phase 2 was 1987-1991, and now it entered Phase 3, 1993-1997. 15 countries joined the project, and now the donor countries expanded to five or more including Japan, Australia, China, ROK and India. Radiation technology is one of the subprojects of the regional project, aiming at transferring this technology from developed countries to developing countries and promoting to industrialize this technology. For the purpose, technical personnel and their skill are essential, and IAEA supports and supplements the educational and training program in developing countries. Executive management seminar (EMS), national workshop (NW), regional training course (RTC) and national training courses (NTCs) are the main components of this education program. The contents of these components are explained, and the activities which were carried out so far under them are reported. (K.I.)

  4. The status and prospects of radiation application technology in Korea

    International Nuclear Information System (INIS)

    Sung-Kee, Jo

    2010-01-01

    Full text : This article describes the Nuclear age in Korea which began in 1959 when Korea Atomic Energy Research Institute (KAERI) was first established. Since then, Korea became one of the leading countries in the world nuclear technology and industry. In Korea, 20 nuclear power plants are currently in operation, which produced 34.1% of total electricity in 2009. Furthermore, 8 nuclear power plants are under construction. Eventually, Korea succeeded in exporting nuclear power plant to United Arab Emirates and research reactor to Jordan in 2009. The nuclear application can be divided into two fields. The first one is nuclear power production, and the other is radiation application. Due to the governmental promotion policy, the research activity on radiation and RI application is greatly rising in Korea. Korea Atomic Energy Research Institute (KAERI) and Korea Institute of Radiological and Medical Sciences (KIRAMS) are two leading research institutes in this field. KAERI is conducting RI production and neutron research by using research reactor, and radiation application research such as radiation processing, biotechnological and agricultural application, and cyclotron application. KIRAMS is dedicated to the research on the medical application of radiation. Advanced Radiation Technology Institute (ARTI), constructed in 2006 as a sub organization of KAERI, is a major research institute for radiation application to material engineering, agriculture, biotechnology, environmental technology, and cyclotron beam application. ARTI is equipped with various radiation facilities such as Co-60 irradiation facility (490 kCi and 3 kCi), gamma phytotron, gamma cell, electron beam irradiator, ion implanter, and 30 MeV cyclotron. In material engineering field, new industrial and biomedical materials (carbon fiber filament, composite electrolyte, fuel cell membrane, hydrogels) are developed by radiation processing of polymer materials. In agricultural area, new plant varieties

  5. Radiation-beam technologies of structural materials treatment

    International Nuclear Information System (INIS)

    Kalin, B.A.

    2001-01-01

    Considered in the paper are the most advanced and prospective radiation-beam technologies (RBT) for treatment of structural materials, as applied to modifying the structural-phase state in the surface layers of half-finished products and articles with the purpose to improve their service properties. Ion-beam, plasma, and ion-plasma, as well as the technologies based on the use of concentrated fluxes of energy, generated by laser radiation, high-power pulsed electron and ion beams, and high-temperature pulsed plasma fluxes are analysed. As applied to improvement of the corrosion and erosion resistance, breaking strength, friction and wear resistance, and crack resistance, the directions of the choice and the use of RBT have been considered for changes of the surface layer state by applying covers and films, and by a change of the surface topography (relief), surface structure and defects, and the element composition and phase state of materials [ru

  6. Development of natural radiation model for evaluation of background radiation in radiation portal monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, Jin Hyung; Moon, Myung Kook [Radioisotope Research and Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-15

    In ports and airports, radiation portal monitors (RPM) are deployed to detect illicit radioactive materials. Detected gamma rays in a RPM include background radiation and radiation from a freight. As a vehicle moves through the RPM, the vehicle causes the fluctuations in the natural background radiation signal, which ranges of up to 30%. The fluctuation increases the uncertainty of detection signal and can be a cause of RPM false alarm. Therefore, it is important to evaluate background radiation as well as radiation from a container. In this paper, a natural background radiation model was developed to evaluate RPM. To develop natural background radiation model, a Monte Carlo simulation was performed and compared with experimental measurements from a RPM for {sup 40}K, {sup 232}Th series, and {sup 235}U series, which are major sources of natural background radiation. For a natural radiation source, we considered a cylindrical soil volume with 300 m radius and 1 m depth, which was estimated as the maximum range affecting the RPM by MCNP6 simulation. The volume source model was converted to surface source by using MCNP SSW card for computational efficiency. The computational efficiency of the surface source model was improved to approximately 200 times better than that of the volume source model. The surface source model is composed of a hemisphere with 20 m radius in which the RPM and container are modelled. The natural radiation spectrum from the simulation was best fitted to the experimental measurement when portions of {sup 40}K, {sup 232}Th series, and {sup 235}U series were 0.75, 0.0636, and 0.0552 Bq·g{sup -1}, respectively. For gross counting results, the difference between simulation and experiment was around 5%. The background radiation model was used to evaluate background suppression from a 40 ft container with 7.2 m·s{sup -1} speed. In further study, background models and freight models for RPM in real container ports will be developed and applied to

  7. Mental models of radiation

    International Nuclear Information System (INIS)

    Saito, Kiyoko

    2005-01-01

    Laymen and experts participated in interviews designed to reveal their 'mental models' of the processes potentially causing the miscommunications between experts and the public. We analyzed their responses in terms of an 'expert model' circumscribing scientifically relevant information. From results, there are gaps even between experts. Experts on internal exposure focused mainly on artificial radiation and high level of radiation. Experts on radiation biology focused on medical radiation, level of risk, environmental radiation, and hot springs. Experts on dosimetric performance focused on atomic power generation and needs of radiological protection. It means that even experts, they have interests only on their own specialized field. (author)

  8. Planning report for establishment of research infrastructure for national advanced radiation technology

    International Nuclear Information System (INIS)

    Kuk, Il Hyun; Byun, Myung Woo; Lee, Ju Woon

    2005-04-01

    Establishment of research infrastructure and assistant of industry renovation is needed to achieve technology level-up in the all industry areas including plant engineering, material engineering, polymers, nondestructive tests, radioisotope tracer application, environment engineering, medical science, agriculture, sterilization, sprouting, biotechnology and aerospace, which would be the core motivation of our future industry. Especially for early settlement of research environment for the new RT-specialized national institute, Advanced Radiation Technology Institute (ARTI) in Jeongup, Chonbuk, Korea is essential. For this purpose, an intensive system construction is demanded including: 1) Area of establishment of the system assisting radiation technology advancement: It is expected that radioisotope production for industrial or medical uses and activation of the related researches and training of experts by manufacture, installation, and operation of 30 MeV cyclotron. It also can be contributed in the promotion of national radiation related science and technology by establishment of a basic and advanced analysis system. 2) Area of establishment of training and education system of RT experts. 3) Area of establishment of a system for technological assistance for industry and industry-university-institute network. Contribution to balanced regional development and promotion of national RT-based science through establishment of RT industry cluster with Advanced Radiation Technology Institute (ARTi) at Jeongup as the center figure

  9. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  10. Better health care: Ghana uses radiation technology to sterilize medical items

    International Nuclear Information System (INIS)

    Dixit, Aabha

    2015-01-01

    Infections acquired from improperly sterilized equipment are recognized as a major impediment to safe health care delivery, with consequences that are often deadly for patients. Radiation technology plays a major role in many countries in making medical equipment safer. “The use of nuclear applications, such as exposing medical items to gamma radiation, helps Ghana protect its people from avoidable sicknesses that can occur if items like syringes are not properly sterilized,” said Abraham Adu-Gyamfi, Manager of the Radiation Technology Centre of the Ghana Atomic Energy Commission’s Biotechnology and Nuclear Agriculture Research Institute in Accra.

  11. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--radiation research and radiation technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  12. Role of BRIT in promoting radiation processing technology in India

    International Nuclear Information System (INIS)

    Bandi, L.N.

    2014-01-01

    Some of the major applications of radiation processing include: the sterilization of products such as medical devices to kill bacteria or in the case of food, hygienize the product; the treatment of export bulk commodities such as tropical fruits to extend shelf life by slowing the ripening process and inhibiting sprouting and to kill quarantine pests such as fruit flies. Radiation processing is a value addition process. Taking note of these benefits, Department of Atomic Energy, Government of India constituted Board of Radiation and Isotope Technology (BRIT) in March 1989 by carving it out from Bhabha Atomic Research Centre, Mumbai. The mandate given to BRIT was to extend commercial applications of radioisotopes and radiation in the areas of Health, Agriculture, Industry and Research without losing sight of societal obligations. So far Department of Atomic Energy has set up three demonstration plants, namely, Isomed, RPP, Vashi and Krushak for high, medium and low dose applications of radiation respectively. The safe and business like operation of these facilities amply demonstrated the embedded safety and commercial viability of this technology

  13. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    International Nuclear Information System (INIS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-01-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date 'Program Supporting Y2K Readiness at Ukrainian NPPs' initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ('Improved Zirconium-Based Elements for Nuclear Reactors'), information technologies for nuclear industries ('Ukrainian Nuclear Data Bank in Slavutich'), and radiation health science ('Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers').

  14. Innovation Priorities in Nuclear and Radiation Technologies in Russia. View from Skolkovo

    International Nuclear Information System (INIS)

    Fertman, A.; Kovalevich, D.; Turtikov, V.; Zaytseva, N.

    2012-01-01

    The direction for the modernization and technological development of 'Nuclear Technologies' sector of the Russian economy comprises a group of scientific and engineering subjects (atomic engineering, technologies on the basis of radiation, change of properties of materials, radiation resistant microelectronics, etc.), and serves as the foundation of one of the most high-tech industries. The innovative development of nuclear technologies is an integral condition for the strengthening (and in some directions of conquering) a country's position as a global technological leader and preservation of defensive capability of the nation. For this reason, nuclear technologies became one of the priority areas for the activity of the Skolkovo Center. The wide opportunities offered by the application of nuclear technologies were already clear at the deployment stage of the 'Nuclear Project - 1'. In 1958, at the 2nd International conference on the peaceful use of nuclear energy in Geneva, the USSR presented more than 200 reports and communiques in all civil use of atomic energy directions.One of the major results of the development of the nuclear branch have become the developments in the sphere of control of radiation and magnetic fields (radiation technologies). This group of technologies have actively developed in collaboration with design and manufacturing of different types of equipment, including accelerators, neutron generators, lasers, HF-systems, detectors of particles and radiation, microscopes and telescopes, microwave microelectronics, etc. Today these technologies and equipment are used in a variety of other (non-power and not military) markets - and the list of these markets grows constantly. Among the fastest growing ones, we can list the markets of nuclear medicine, sterilization and disinfection, safety and non-destructive testing, ecology and water processing, extraction and the processing of minerals. Historically, the development of nuclear technologies

  15. Liquid droplet radiator technology issues

    International Nuclear Information System (INIS)

    Mattick, A.T.; Hertzberg, A.

    1985-01-01

    The operation of the liquid droplet radiator (LDR) is analyzed to establish design constraints for the LDR components and to predict the performance of an integrated LDR system. The design constraints largely result from mass loss considerations: fluid choice is governed by evaporation loss; droplet generation techniques must be capable of precise aiming of >10 5 droplet streams; and collection losses must be less than 1 droplet in 10 7 . Concepts for droplet generation and collection components are discussed and incorporated into a mass model for an LDR system. This model predicts that LDR's using lithium, Dow 705 silicone fluid, or NaK may be several times lighter than heat pipe radiators. 13 refs

  16. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.; Kukhto, V. A.; Tarasyuk, V. T.; Filippovich, V. P. [All-Russia Research Institute of Preservation Technology (Russian Federation); Egorkin, A. V.; Chasovskikh, A. V. [Research Institute of Technical Physics and Automation (Russian Federation); Pavlov, Yu. S., E-mail: rad05@bk.ru [Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (Russian Federation); Prokopenko, A. V., E-mail: pav14@mail.ru [National Research Nuclear University (Moscow Engineering Physics Institute) (Russian Federation); Strokova, N. E. [Moscow State University (Russian Federation); Artem’ev, S. A. [Russian Research Institute of Baking Industry (Russian Federation); Polyakova, S. P. [Russian Research Institute of Confectionery Industry (Russian Federation)

    2016-12-15

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  17. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    International Nuclear Information System (INIS)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.; Kukhto, V. A.; Tarasyuk, V. T.; Filippovich, V. P.; Egorkin, A. V.; Chasovskikh, A. V.; Pavlov, Yu. S.; Prokopenko, A. V.; Strokova, N. E.; Artem’ev, S. A.; Polyakova, S. P.

    2016-01-01

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  18. A simplified model exploration research of new anisotropic diffuse radiation model

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Xiao; Zhao, Qun; Zhang, Zhigang; Lin, Lin

    2016-01-01

    Graphical abstract: The specific process of measured diffuse radiation data. - Highlights: • Simplified diffuse radiation model is extremely important for solar radiation simulation and energy simulation. • A new simplified anisotropic diffuse radiation model (NSADR model) is proposed. • The accuracy of existing models and NSADR model is compared based on the measured values. • The accuracy of the NSADR model is higher than that of the existing models, and suitable for calculating diffuse radiation. - Abstract: More accurate new anisotropic diffuse radiation model (NADR model) has been proposed, but the parameters and calculation process of NADR model used in the process are complex. So it is difficult to widely used in the simulation software and engineering calculation. Based on analysis of the diffuse radiation model and measured diffuse radiation data, this paper put forward three hypotheses: (1) diffuse radiation from sky horizontal region is concentrated in a very thin layer which is close to the line source; (2) diffuse radiation from circumsolar region is concentrated in the point of the sun; (3) diffuse radiation from orthogonal region is concentrated in the point located at 90 degree angles with the Sun. Based on these hypotheses, NADR model is simplified to a new simplified anisotropic diffuse radiation model (NSADR model). Then the accuracy of NADR model and its simplified model (NSADR model) are compared with existing models based on the measured values, and the result shows that Perez model and its simplified model are relatively accurate among existing models. However, the accuracy of these two models is lower than the NADR model and NSADR model due to neglect the influence of the orthogonal diffuse radiation. The accuracy of the NSADR model is higher than that of the existing models, meanwhile, another advantage is that the NSADR model simplifies the process of solution parameters and calculation. Therefore it is more suitable for

  19. Irradiation technology Pt. 2. Research devices. Glossary on radiation technology. Besugarzastechnika 2. resz. Kiserleti berendezesek, sugartechnikai kislexikon

    Energy Technology Data Exchange (ETDEWEB)

    Foeldiak, G; Stenger, V

    1982-01-01

    It is a textbook and manual of a training course held at the Budapest Technical University for operators of irradiation devices. Calculation methods of radiation technology (estimation of activity variation, space dependence of dose rates, shielding, efficiency) are presented. Instructions for laboratory exercises (dose and dose rate measurements, sterilization by irradiation, handling of irradiation devices) involved in the course given. Two laboratory irradiation devices (RH-GAMMA-30, produced in the Soviet Union and the K-120-type semi-large scale device of the Isotope Institute of the Hungarian Academy of Sciences are described in detail. Handling instructions for the two devices and radiation protection regulations are given. A brief glossary in the field of radiation technology is added.

  20. Development of drugs and technology for radiation theragnosis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwan Jeong [Dept. of Nuclear Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of); Lee, Byung Chul [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Ahn, Byeong Cheol [Dept. of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu (Korea, Republic of); Kang, Keon Wook [Dept. of Nuclear Medicine and Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-06-15

    Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

  1. Radiation curing--new technology of green industries facing 21st century

    International Nuclear Information System (INIS)

    Wang Jianguo; Teng Renrui

    2000-01-01

    The development of radiation curing was simply reviewed and the mechanism of UV curing and EB curing, the equipment and materials used in the radiation curing were also introduced. Compared with ordinary curing, the radiation curing has advantages of energy saving, high effectiveness and little pollution. It is a new technology of green industries facing the 21st century

  2. Conference Proceedings of RADTECH ASIA '99. Radiation Curing: the technology for the next millenium

    International Nuclear Information System (INIS)

    1999-01-01

    Radiation curing (i.e. ultraviolet radiation, electron beams, etc) technology were discussed. All aspects of this technology included equipment , applications, chemistry, performance characterization and measurement, market and economic, new breakthrough were discussed and presented in details

  3. Conference Proceedings of RADTECH ASIA '99. Radiation Curing: the technology for the next millenium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Radiation curing (i.e. ultraviolet radiation, electron beams, etc) technology were discussed. All aspects of this technology included equipment , applications, chemistry, performance characterization and measurement, market and economic, new breakthrough were discussed and presented in details.

  4. A-State-of-the-Art Report on Application of Radiation Technology to Environmental Pollution Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Kwang; Lee, Myun Joo

    2004-06-15

    Radiation technology has been rapidly developed for decades and its applicability also enlarged to many fields such as environmental protection, medical care, manufacturing industry, agriculture, and bio technology. In this report, we focused on the present situation of the development of radiation facilities and state-of-the-art on application of radiation to environmental pollution control including purification of flue gas, waste water treatment, and recycling of biological waste. We especially discussed the radiation technology for environmental pollution control and described the capability of its application to the industrial plants in Korea.

  5. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, L. E-mail: lyubov@stcu.kiev.ua; Janouch, F.; Owsiacki, L

    2001-06-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date 'Program Supporting Y2K Readiness at Ukrainian NPPs' initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ('Improved Zirconium-Based Elements for Nuclear Reactors'), information technologies for nuclear industries ('Ukrainian Nuclear Data Bank in Slavutich'), and radiation health science ('Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers')

  6. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1993-01-01

    The present report is prepared for planners of radiation processing of any material. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV, and accelerators of lower energy, below 2 MeV, of better energy yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of 25 years of exploitation of the machine. One has to realize that from the 200 kW input power from the mains, only 5 kW of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of edges of the scanned area and in the spaces between boxes, and of loses during the idle time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical than that of linacs in case of objects of specific type. At the first stage already, that is of the conversion of electrical power into that of low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating Bremsstrahlung similar to gamma radiation. The advantages of technologies, which make possible a control of the shape of the processed object are stressed. Special attention is focused to the relation between the yield of processing and the ratio between the maximum to the minimum dose in the object under the irradiation. (author). 14 refs, 14 figs

  7. The application of computer and automatic technology in dose measurement of neutron radiation

    International Nuclear Information System (INIS)

    Zhou Yu; Li Chenglin; Luo Yisheng; Guo Yong; Chen Di; Xiaojiang

    1999-01-01

    Generally the dose measurement of neutron radiation requires three electrometers, two bias, three workers in the same time. To improve the accuracy and efficiency of measurement, a Model 6517A electrometer that accommodate Model 6521 scanner cards and a portable computer are used to make up of a automatic measurement system. Corresponding software is developed and used to control it. Because of the application of computer and automatic technology, this system can not only measure dose rate automatically, but also make data's calculating, saving, querying, printing and comparing ease

  8. Radiation technology for conservation of the environment. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1998-06-01

    In September 1997 the IAEA held an International Symposium in Zakopane, Poland, on the applications of radiation technology in conservation of environment. The symposium attended 110 participants representing 38 Member States. The objective was to review the status of current developments and applications of radiation processing in the control of environment pollution and to discuss future developments. The scientific programme covered a wide range of different applications of radiation technology, such as purification of exhaust gases, decontamination of wastewater from industrial and municipal sources, sewage sludge treatment, disinfection and detoxication of solid waste, recycling and the treatment of plastic and solid waste. The document contains full presentations. The symposium (56 papers) was held in 10 sessions as follows: Purification of Exhaust Gases (8 papers); Radiation Chemistry and the Environment (5 papers); Purification and Decontamination of Water (10 papers); Sewage Sludge Treatment (6 papers); Biomedical Applications (5 papers); Recycling and Treatment of Plastic and Solid Wastes (4 papers); Facilities (4 papers); Quality Assurance, Quality Control (4 papers); Transfer of Technology through Technical Co-Operation (5 papers); Curing, Cross-Linking and Grafting (5 papers). A separate abstract and indexing were provided for each paper

  9. Radiation technology for conservation of the environment. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    In September 1997 the IAEA held an International Symposium in Zakopane, Poland, on the applications of radiation technology in conservation of environment. The symposium attended 110 participants representing 38 Member States. The objective was to review the status of current developments and applications of radiation processing in the control of environment pollution and to discuss future developments. The scientific programme covered a wide range of different applications of radiation technology, such as purification of exhaust gases, decontamination of wastewater from industrial and municipal sources, sewage sludge treatment, disinfection and detoxication of solid waste, recycling and the treatment of plastic and solid waste. The document contains full presentations. The symposium (56 papers) was held in 10 sessions as follows: Purification of Exhaust Gases (8 papers); Radiation Chemistry and the Environment (5 papers); Purification and Decontamination of Water (10 papers); Sewage Sludge Treatment (6 papers); Biomedical Applications (5 papers); Recycling and Treatment of Plastic and Solid Wastes (4 papers); Facilities (4 papers); Quality Assurance, Quality Control (4 papers); Transfer of Technology through Technical Co-Operation (5 papers); Curing, Cross-Linking and Grafting (5 papers). A separate abstract and indexing were provided for each paper Refs, figs, tabs

  10. Empirical investigation on modeling solar radiation series with ARMA–GARCH models

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Yan, Dong; Zhao, Na; Zhou, Jianzhong

    2015-01-01

    Highlights: • Apply 6 ARMA–GARCH(-M) models to model and forecast solar radiation. • The ARMA–GARCH(-M) models produce more accurate radiation forecasting than conventional methods. • Show that ARMA–GARCH-M models are more effective for forecasting solar radiation mean and volatility. • The ARMA–EGARCH-M is robust and the ARMA–sGARCH-M is very competitive. - Abstract: Simulation of radiation is one of the most important issues in solar utilization. Time series models are useful tools in the estimation and forecasting of solar radiation series and their changes. In this paper, the effectiveness of autoregressive moving average (ARMA) models with various generalized autoregressive conditional heteroskedasticity (GARCH) processes, namely ARMA–GARCH models are evaluated for their effectiveness in radiation series. Six different GARCH approaches, which contain three different ARMA–GARCH models and corresponded GARCH in mean (ARMA–GARCH-M) models, are applied in radiation data sets from two representative climate stations in China. Multiple evaluation metrics of modeling sufficiency are used for evaluating the performances of models. The results show that the ARMA–GARCH(-M) models are effective in radiation series estimation. Both in fitting and prediction of radiation series, the ARMA–GARCH(-M) models show better modeling sufficiency than traditional models, while ARMA–EGARCH-M models are robustness in two sites and the ARMA–sGARCH-M models appear very competitive. Comparisons of statistical diagnostics and model performance clearly show that the ARMA–GARCH-M models make the mean radiation equations become more sufficient. It is recommended the ARMA–GARCH(-M) models to be the preferred method to use in the modeling of solar radiation series

  11. Proceedings: Radiation Protection Technology Conference: Providence, RI, November 2001

    International Nuclear Information System (INIS)

    2002-01-01

    Health physics (HP) professionals within the nuclear industry are continually upgrading their respective programs with new methods and technologies. The move to shorter outages combined with a diminishing group of contract HP technicians and demanding emergent work makes such changes even more important. The EPRI Radiation Protection Technology Conference focused on a number of key health physics issues and developments

  12. New environmental applications of radiation technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1998-01-01

    The paper is a brief review of recent data on environmental applications of radiation technology obtained with participation of the author. It includes the results of the study on combined electron-beam and ozone treatment of municipal wastewater in the aerosol flow and electron-beam purification of water from heavy metals (lead, cadmium, mercury, chromium) by two methods (in the presence of formate as an OH radical scavenger or sorbents of inorganic and plant origins)

  13. ATHENA radiation model

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1987-10-01

    The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs

  14. Development of Drugs and Technology for Radiation Theragnosis

    Directory of Open Access Journals (Sweden)

    Hwan-Jeong Jeong

    2016-06-01

    Full Text Available Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

  15. A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology

    CERN Multimedia

    2002-01-01

    % RD-9 A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology \\\\ \\\\Radiation hardened SOI-CMOS (Silicon-On-Insulator, Complementary Metal-Oxide- \\linebreak Semiconductor planar microelectronic circuit technology) was a likely candidate technology for mixed analog-digital signal processing electronics in experiments at the future high luminosity hadron colliders. We have studied the analog characteristics of circuit designs realized in the Thomson TCS radiation hard technologies HSOI3-HD. The feature size of this technology was 1.2 $\\mu$m. We have irradiated several devices up to 25~Mrad and 3.10$^{14}$ neutrons cm$^{-2}$. Gain, noise characteristics and speed have been measured. Irradiation introduces a degradation which in the interesting bandwidth of 0.01~MHz~-~1~MHz is less than 40\\%. \\\\ \\\\Some specific SOI phenomena have been studied in detail, like the influence on the noise spectrum of series resistence in the thin silicon film that constitutes the body of the transistor...

  16. Simulation and modeling for the stand-off radiation detection system (SORDS) using GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Andrew S [Los Alamos National Laboratory; Wallace, Mark [Los Alamos National Laboratory; Galassi, Mark [Los Alamos National Laboratory; Mocko, Michal [Los Alamos National Laboratory; Palmer, David [Los Alamos National Laboratory; Schultz, Larry [Los Alamos National Laboratory; Tornga, Shawn [Los Alamos National Laboratory

    2009-01-01

    A Stand-Off Radiation Detection System (SORDS) is being developed through a joint effort by Raytheon, Los Alamos National Laboratory, Bubble Technology Industries, Radiation Monitoring Devices, and the Massachusetts Institute of Technology, for the Domestic Nuclear Detection Office (DNDO). The system is a mobile truck-based platform performing detection, imaging, and spectroscopic identification of gamma-ray sources. A Tri-Modal Imaging (TMI) approach combines active-mask coded aperture imaging, Compton imaging, and shadow imaging techniques. Monte Carlo simulation and modeling using the GEANT4 toolkit was used to generate realistic data for the development of imaging algorithms and associated software code.

  17. Radiation dose reduction during transjugular intrahepatic portosystemic shunt implantation using a new imaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Spink, C., E-mail: c.spink@uke.de [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany); Avanesov, M. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany); Schmidt, T. [Philips Healthcare, Hamburg (Germany); Grass, M. [Philips Research, Hamburg (Germany); Schoen, G. [Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany); Adam, G.; Bannas, P.; Koops, A. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany)

    2017-01-15

    Highlights: • The new imaging technology halved the radiation exposure. • DSA image quality observed was not decreased after technology upgrade. • Radiation time and contrast consumption not significantly increased using the new technology. - Abstract: Objective: To compare patient radiation dose in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) implantation before and after an imaging-processing technology upgrade. Methods: In our retrospective single-center-study, cumulative air kerma (AK), cumulative dose area product (DAP), total fluoroscopy time and contrast agent were collected from an age- and BMI-matched collective of 108 patients undergoing TIPS implantation. 54 procedures were performed before and 54 after the technology upgrade. Mean values were calculated and compared using two-tailed t-tests. Two blinded, independent readers assessed DSA image quality using a four-rank likert scale and the Wilcoxcon test. Results: The new technology demonstrated a significant reduction of 57% of mean DAP (402.8 vs. 173.3 Gycm{sup 2}, p < 0.001) and a significant reduction of 58% of mean AK (1.7 vs. 0.7 Gy, p < 0.001) compared to the precursor technology. Time of fluoroscopy (26.4 vs. 27.8 min, p = 0.45) and amount of contrast agent (109.4 vs. 114.9 ml, p = 0.62) did not differ significantly between the two groups. The DSA image quality of the new technology was not inferior (2.66 vs. 2.77, p = 0.56). Conclusions: In our study the new imaging technology halved radiation dose in patients undergoing TIPS maintaining sufficient image quality without a significant increase in radiation time or contrast consumption.

  18. The Role of IAEA in Coordinating Research and Transferring Technology in Radiation Chemistry and Processing of Polymers

    International Nuclear Information System (INIS)

    Haji Saeid, M.

    2006-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through Technical Cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The CRP brings together typically 10 - 15 groups of participants to share and complement core competencies and work on specific areas of development needed to benefit from an emerging radiation technique and its applications. The technical cooperation (TC) programme helps Member States realize their development priorities through the application of appropriate radiation technology. TC builds national capacities through training, expert advice and delivery of equipment. The impact of the IAEA's efforts is visible by the progress noticeable in adoption of radiation technology and/or growth in the range of activities in several MS in different regions. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. A number of technical cooperation projects have been implemented in this field to strengthen the capability of developing Member States and to create awareness in the industries about the technical

  19. Proceedings of national executive management seminar on surface finishing by radiation curing technology: radiation curing for better finishing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This book compiled the paper presented at this seminar. The papers discussed are 1. Incentives for investment in the manufacturing sector (in Malaysia) 2.Trends and prospect of surface finishing by radiation curing technology in Malaysia 3. Industrial application of radiation curing.

  20. Proceedings of national executive management seminar on surface finishing by radiation curing technology: radiation curing for better finishing

    International Nuclear Information System (INIS)

    1993-01-01

    This book compiled the paper presented at this seminar. The papers discussed are 1. Incentives for investment in the manufacturing sector (in Malaysia) 2.Trends and prospect of surface finishing by radiation curing technology in Malaysia 3. Industrial application of radiation curing

  1. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  2. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  3. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong

    2010-08-01

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  4. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  5. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  6. Information technology resource management in radiation oncology.

    Science.gov (United States)

    Siochi, R Alfredo; Balter, Peter; Bloch, Charles D; Bushe, Harry S; Mayo, Charles S; Curran, Bruce H; Feng, Wenzheng; Kagadis, George C; Kirby, Thomas H; Stern, Robin L

    2009-09-02

    The ever-increasing data demands in a radiation oncology (RO) clinic require medical physicists to have a clearer understanding of the information technology (IT) resource management issues. Clear lines of collaboration and communication among administrators, medical physicists, IT staff, equipment service engineers and vendors need to be established. In order to develop a better understanding of the clinical needs and responsibilities of these various groups, an overview of the role of IT in RO is provided. This is followed by a list of IT related tasks and a resource map. The skill set and knowledge required to implement these tasks are described for the various RO professionals. Finally, various models for assessing one's IT resource needs are described. The exposition of ideas in this white paper is intended to be broad, in order to raise the level of awareness of the RO community; the details behind these concepts will not be given here and are best left to future task group reports.

  7. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Haji-Saeid, M. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, A-1400 Vienna (Austria)], E-mail: M.Haji-Saeid@iaea.org; Sampa, M.H.; Ramamoorthy, N. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, A-1400 Vienna (Austria); Gueven, O. [Hacettepe University, Department of Chemistry, Ankara (Turkey); Chmielewski, A.G. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw (Poland)

    2007-12-15

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information.

  8. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    International Nuclear Information System (INIS)

    Haji-Saeid, M.; Sampa, M.H.; Ramamoorthy, N.; Gueven, O.; Chmielewski, A.G.

    2007-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information

  9. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    Science.gov (United States)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan

    2010-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  10. Micro-Mini & Nano-Dosimetry & Innovative Technologies in Radiation Therapy (MMND&ITRO2016)

    Science.gov (United States)

    2017-01-01

    The biennial MMND (formerly MMD) - IPCT workshops, founded in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC) in 2001, has become an important international multidisciplinary forum for the discussion of advanced dosimetric technology for radiation therapy quality assurance (QA) and space science, as well as advanced technologies for prostate cancer treatment. In more recent years, the interests of participants and the scope of the workshops have extended far beyond prostate cancer treatment alone to include all aspects of radiation therapy, radiation science and technology. We therefore decided to change the name in 2016 to Innovative Technologies in Radiation Oncology (ITRO). MMND ITRO 2016 was held on 26-31 January, 2016 at the beautiful Wrest Point Hotel in Hobart, Tasmania and attracted an outstanding international faculty and nearly 200 delegates from 18 countries (http://mmnditro2016.com/) The MMND 2016 program continued to cover advanced medical physics aspects of IMRT, IGRT, VMAT, SBRT, MRI LINAC, innovative brachytherapy, and synchrotron MRT. The demand for sophisticated real time and high temporal and spatial resolution (down to the submillimetre scale) dosimetry methods and instrumentation for end-to-end QA for these radiotherapy technologies is increasing. Special attention was paid to the contribution of advanced imaging and the application of nanoscience to the recent improvements in imaging and radiotherapy. The last decade has seen great progress in charged particle therapy technology which has spread throughout the world and attracted strong current interest in Australia. This demands a better understanding of the fundamental aspects of ion interactions with biological tissue and the relative biological effectiveness (RBE) of protons and heavy ions. The further development of computational and experimental micro-and nano-dosimetry for ions has important application in radiobiology based treatment planning and space radiation

  11. Radioactivity levels in Indian coal and some technologically enhanced exposure to natural radiation environment of India

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Mishra, U.C.

    1988-01-01

    The summary of results of gamma-spectrometric measurements of natural radioactivity levels in coal from mines, coal, fly-ash, slag and soil samples from thermal power plants in India are presented. These constitute the sources of technologic ally enhanced exposures to natural radiation. Brief description of sampling and measurement procedure is given. Radiation dose to the population from coal fired power plants for electricity generation have been calculated using the model developed by UNSCEAR and ORNL reports with correction for local population density. (author). 13 refs., 7 tabs., 8 figs

  12. Technical Report on the Development of Novel Technology for Reducing the Toxicity of Mistletoe Lectin by using Radiation Fusion Technology

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Jung, Pil Mun; Sung, Nak Yun

    2009-10-01

    The aim of this study was conducted to investigate the effect of irradiation on detoxification, structural change, and physiological change of Mistletoe lectin. Optimal irradiation dose was determined from the result of having maximum detoxification and remaining the immunological activity Irradiation technology could be effective method for detoxification of Mistletoe lectin containing the immunological activity. The results indicate the feasibility of novel technology for reduction of the toxicity of Mistletoe lectin by using radiation technology. Practical state though clinical test is needed to extend biomedicine field using radiation technology and improve of public health by the control of the disease that gradually increase every year

  13. Contribution to the study of ionizing radiation effects on bipolar technologies: application to the hardening of integrated circuits

    International Nuclear Information System (INIS)

    Briand, R.

    2001-01-01

    The use of analog integrated circuits in radiation environments raises the problem of their behaviour with respect to the different effects induced by particles and radiations. The first chapter of this thesis presents the origins of radiations and the different topologies of bipolar transistors. The effects of ionizing radiations on bipolar components, like cumulative dose, dose rates, and single events, are detailed in three distinct chapters with the same scientifical approach. The simulation of the physical degradation phenomena of the components allows to establish original electrical models coming from the understanding of the induced mechanisms. These models are used to evaluate the degradations occurring in linear analogic circuits. Common and original hardening methods are presented, some of which are applied to bipolar integrated circuit technologies. Finally, experimental laser beam test techniques are presented, which are used to reproduce the dose rate and the single events. (J.S.)

  14. Development of application technology of radiation-resistant microorganism

    International Nuclear Information System (INIS)

    Kim, Dong Ho; Lim, Sang Yong; Joe, Min Ho; Jung, Jin Woo; Jung, Sun Wook; Song, Du Sup; Choi, Young Ji

    2009-02-01

    The scope of the project is divided into of three parts; (i) to define the survival strategy of radiation-resistant microbes, especially Deinococcus (ii) acquisition of gene resources encoding the novel protein and related with the production of functional materials (iii) development of control technology against radiation-resistant microbes. To this aim, first, the whole transcriptional response of the D. radiodurans strain haboring pprI mutation, which plays an important role in radiation resistance, was analyzed by cDNA microarray. The anti-oxidant activity of the major carotenoid of D. radiodurans, deinoxanthin, was analyzed and the strain was constructed, in which the gene necessary for bio- synthesis of deinoxanthin is deleted. The response to cadmium of D. radiodurans was also investigated through cDNA microarray analysis. Radiogenic therapy, one of the cancer treatments, is designed to use radiation-inducible gene for the treatment. To develop the gene-transfer vehicle for radiogenic therapy, we have investigated the virulence mechanism of Salmonella, which is tumor-targeting bacteria and studied the synergistic effect of some anti-cancer agents on radiation treatment for cancer. Finally, we confirmed that irradiation could decompose a fungus toxin, patulin, into various harmless by-products

  15. Development of application technology of radiation-resistant microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Lim, Sang Yong; Joe, Min Ho; Jung, Jin Woo; Jung, Sun Wook; Song, Du Sup; Choi, Young Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-02-15

    The scope of the project is divided into of three parts; (i) to define the survival strategy of radiation-resistant microbes, especially Deinococcus (ii) acquisition of gene resources encoding the novel protein and related with the production of functional materials (iii) development of control technology against radiation-resistant microbes. To this aim, first, the whole transcriptional response of the D. radiodurans strain haboring pprI mutation, which plays an important role in radiation resistance, was analyzed by cDNA microarray. The anti-oxidant activity of the major carotenoid of D. radiodurans, deinoxanthin, was analyzed and the strain was constructed, in which the gene necessary for bio- synthesis of deinoxanthin is deleted. The response to cadmium of D. radiodurans was also investigated through cDNA microarray analysis. Radiogenic therapy, one of the cancer treatments, is designed to use radiation-inducible gene for the treatment. To develop the gene-transfer vehicle for radiogenic therapy, we have investigated the virulence mechanism of Salmonella, which is tumor-targeting bacteria and studied the synergistic effect of some anti-cancer agents on radiation treatment for cancer. Finally, we confirmed that irradiation could decompose a fungus toxin, patulin, into various harmless by-products.

  16. Survey of advanced radiation technologies used at designated cancer care hospitals in Japan

    International Nuclear Information System (INIS)

    Shikama, Naoto; Tsujino, Kayoko; Nakamura, Katsumasa; Ishikura, Satoshi

    2014-01-01

    Our survey assessed the use of advanced radiotherapy technologies at the designated cancer care hospitals in Japan, and we identified several issues to be addressed. We collected the data of 397 designated cancer care hospitals, including information on staffing in the department of radiation oncology (e.g. radiation oncologists, medical physicists and radiation therapists), the number of linear accelerators and the implementation of advanced radiotherapy technologies from the Center for Cancer Control and Information Services of the National Cancer Center, Japan. Only 53% prefectural designated cancer care hospitals and 16% regional designated cancer care hospitals have implemented intensity-modulated radiotherapy for head and neck cancers, and 62% prefectural designated cancer care hospitals and 23% regional designated cancer care hospitals use intensity-modulated radiotherapy for prostate cancer. Seventy-four percent prefectural designated cancer care hospitals and 40% regional designated cancer care hospitals employ stereotactic body radiotherapy for lung cancer. Our multivariate analysis of prefectural designated cancer care hospitals which satisfy the institute's qualifications for advanced technologies revealed the number of radiation oncologists (P=0.01) and that of radiation therapists (P=0.003) were significantly correlated with the implementation of intensity-modulated radiotherapy for prostate cancer, and the number of radiation oncologists (P=0.02) was correlated with the implementation of stereotactic body radiotherapy. There was a trend to correlate the number of medical physicists with the implementation of stereotactic body radiotherapy (P=0.07). Only 175 (51%) regional designated cancer care hospitals satisfy the institute's qualification of stereotactic body radiotherapy and 76 (22%) satisfy that of intensity-modulated radiotherapy. Seventeen percent prefectural designated cancer care hospitals and 13% regional designated cancer care hospitals

  17. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  18. Radiation chemistry - extravaganza or an integral component of radiation processing of food

    International Nuclear Information System (INIS)

    Simic, M.G.; DeGraff, E.

    1983-01-01

    The role of radiation chemistry in radiation processing of foods is discussed in detail. A few examples demonstrating the relevance of the radiation chemistry of model systems to food-irradiation technology are given. The importance of irradiation parameters such as dose, dose rate, temperature, atmosphere, physical state and additives in achieving acceptable and high quality of irradiated foods are emphasized. A few examples of radiation-induced free radical reactions in model compounds relevant to foods are also discussed. (author)

  19. Ionizing radiations in aseptic bottling: a comparison between technologies and safety requirements [beverages

    International Nuclear Information System (INIS)

    Bottani, E.; Rizzo, R.; Vignali, G.

    2006-01-01

    Ionizing radiations, commonly adopted in the medical field, are recently experiencing a wide diffusion in industrials applications. One of the most widespread uses of ionizing radiations refers to foodstuffs and packaging sterilization. In the aseptic bottling area, the application of this technology on polymeric caps is quickly developing. In such application, sterilization could be obtained with beta-rays, generated by an electron beam, or with gamma-rays, emitted by a radioactive source. After a brief explanation of physical properties of ionizing radiations, the aim of this paper is to discuss the use of radiations in aseptic bottling. Based on results available in literature, radiations effects on treated materials are discussed, as well as safety requirements aiming at reducing risks related to radiation exposure. Finally, sterilization plants with gamma and beta radiation are compared, with the aim of examining functioning principles and management complexity. As a result of the comparison between the two technologies, the electron beam (beta-rays) adoption for caps sterilization process proves to be preferable [it

  20. Radiation technology for immobilization of bioactive materials

    International Nuclear Information System (INIS)

    1988-12-01

    Within the framework of the Agency's coordinated research programme on ''Application of Radiation Technology in Immobilization of Bioactive Materials'', the third and final research coordination meeting was held at Beijing University, Beijing, People's Republic of China, 15-18 June 1987. The present publication compiles all presentations made at the meeting. Fundamental processes for the immobilization of enzymes, antibodies, cells and drugs were developed and established using gamma radiation, electron beams and plasma discharge. Applications of various biofunctional components, immobilized by radiation techniques in different processes, were studied. A range of backbone polymers has been examined together with various monomers. Coupling procedures have been developed which are relevant to our particular requirements. Enzymes of various types and characteristics have been immobilized with considerable efficiency. The immobilized biocatalysts have been shown to possess significant activity and retention of activity on storage. There appears to be a high degree of specificity associated with the properties of the immobilised biocatalysts, their activity and the ease of their preparation. Novel additives which lower the total radiation dose in grafting have been discovered and their value in immobilization processes assessed. Potential applications include: medical (diagnostic, therapeutic), and industrial processes (fermentation, bioseparation, etc.). Refs, figs and tabs

  1. Radiation therapy patient education using VERT: combination of technology with human care.

    Science.gov (United States)

    Jimenez, Yobelli A; Lewis, Sarah J

    2018-05-13

    The Virtual Environment for Radiotherapy Training (VERT) system is a recently available tool for radiation therapy education. The majority of research regarding VERT-based education is focused on students, with a growing area of research being VERT's role in patient education. Because large differences in educational requirements exist between students and patients, focused resources and subsequent evaluations are necessary to provide solid justification for the unique benefits and challenges posed by VERT in a patient education context. This commentary article examines VERT's role in patient education, with a focus on salient visual features, VERT's ability to address some of the spatial challenges associated with RT patient education and how to combine technology with human care. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  2. Radiation shielding technology development for proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Lee, Y. O.; Cho, Y. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, M. H.; Sin, M. W.; Park, B. I. [Kyunghee Univ., Seoul (Korea, Republic of)] [and others

    2005-09-01

    This report was presented as an output of 2-year project of the first phase Proton Engineering Frontier Project(PEFP) on 'Radiation Shielding Technology Development for Proton Linear Accelerator' for 20/100 MeV accelerator beam line and facility. It describes a general design concept, provision and update of basic design data, and establishment of computer code system. It also includes results of conceptual and preliminary designs of beam line, beam dump and beam facilities as well as an analysis of air-activation inside the accelerator equipment. This report will guides the detailed shielding design and production of radiation safety analysis report scheduled in the second phase project.

  3. Preclinical models in radiation oncology

    Directory of Open Access Journals (Sweden)

    Kahn Jenna

    2012-12-01

    Full Text Available Abstract As the incidence of cancer continues to rise, the use of radiotherapy has emerged as a leading treatment modality. Preclinical models in radiation oncology are essential tools for cancer research and therapeutics. Various model systems have been used to test radiation therapy, including in vitro cell culture assays as well as in vivo ectopic and orthotopic xenograft models. This review aims to describe such models, their advantages and disadvantages, particularly as they have been employed in the discovery of molecular targets for tumor radiosensitization. Ultimately, any model system must be judged by its utility in developing more effective cancer therapies, which is in turn dependent on its ability to simulate the biology of tumors as they exist in situ. Although every model has its limitations, each has played a significant role in preclinical testing. Continued advances in preclinical models will allow for the identification and application of targets for radiation in the clinic.

  4. Radiation processing of polymers and semiconductors at the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Kaluska, I.

    2006-01-01

    R(and)D studies in the field of radiation technology in Poland are mostly concentrated at the Institute of Nuclear Chemistry and Technology (INCT). The results of the INCT works on polymer and semiconductor modification have been implemented in various branches of national economy, particularly in industry and medicine. Radiation technology for polymer modification was implemented in the middle of the 1970-ties. Among others, the processes of irradiation and heat shrinkable products expansion have been developed. The transfer of this technology to Polish industry was performed in the middle of the 1980-ties. The present study aims at the formulation of new PE composites better suited to new generation of heat shrinkable products, for example, a new generation of hot-melt adhesives has been developed to meet specific requirements of customers. Modified polypropylene was used for the production of medical devices sterilized by radiation, especially disposable syringes, to overcome the low radiation resistance of the basic material. Modified polypropylene (PP-M) has been formulated at the INCT to provide material suitable for medical application and radiation sterilization process. Modification of semiconductor devices by EB was applied on an industrial scale since 1978 when the INCT and the LAMINA semiconductor factory successfully adopted that technology to improve specific semiconductor devices. This activity is continued on commercial basis where the INCT facilities served to contract irradiation of certain semiconductor devices according to the manufacturing program of the Polish factory and customers from abroad. (author)

  5. SCROLL, a superconfiguration collisional radiative model with external radiation

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Klapisch, M.

    2000-01-01

    A collisional radiative model for calculating non-local thermodynamical-equilibrium (non-LTE) spectra of heavy atoms in hot plasmas has been developed. It takes into account the numerous excited an autoionizing states by using superconfigurations. These are split systematically until the populations converge. The influence of an impinging radiation field has recently been added to the model. The effect can be very important. (author)

  6. Radiation and nuclear technologies in the Institute for Nuclear Research NAS of Ukraine

    International Nuclear Information System (INIS)

    Vishnevs'kij, Yi.M.; Gajdar, G.P.; Kovalenko, O.V.; Kovalyins'ka, T.V.; Kolomyijets', M.F.; Lips'ka, A.Yi.; Litovchenko, P.G.; Sakhno, V.Yi.; Shevel', V.M.

    2014-01-01

    The monograph describes some of the important developments of radiation and nuclear technology, made in INR NAS Ukraine. The first section describes radiation producing new materials and services using electrons with energies up to 5 MeV and Bremsstrahlung X-rays. We describe the original technology using ion emissions of the low and very low energies. In the second section the nuclear technologies, where ions, neutrons and other high-energy particles with energies are used, provide modification of the structure of matter nuclei in particular - radioactive isotopes for industrial and medical supplies and devices based on them.

  7. Modification of biomolecules and combined actions by radiation

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, J. W.; Kim, J. H.; Choi, J. I.; Song, B. S.; Kim, J. K.; Park, J. H.; Lee, Y. J.; Ryu, S. H.; Sung, N. Y.; Cha, M. K.; Nam, J. Y.; Park, J. Y.; Cho, E. R.; Ryu, T. H.

    2011-12-01

    Advanced Radiation Technology Institute is a government-supported institute for radiation research and application. It has focused on development of fundamentals for radiation applications based on the existing radiation technology, and on enhancement of biological effectiveness of radiation through theoretical approach to the combined actions of radiation with another factor. Application of radiation technology together with the existing technologies to enhance the physical, chemical, biological characteristics through modification of biomolecules resulted in creation of de novo materials of scientific and industrial values. A theoretical model for combined action of radiation with another physico-chemical factor has been established. Conclusively the results of this study can provide scientific bases for maximizing the efficacy of ionizing radiation in relation to industrial applications

  8. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  9. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  10. Application of laser cutting technology to high radiation environments

    International Nuclear Information System (INIS)

    Pauley, K.A.; Mitchell, M.R.; Saget, S.N.

    1996-01-01

    A 2 kW Nd:YAG laser system manufactured by the Lumonics Corporation will be used to cut various metals during the fall of 1996 as part of a United States Department of Energy (DOE)-funded technology demonstration at the Hanford Site. The laser cutting demonstration will focus on an evaluation of two issues as the technology applies to the decontamination and decommissioning (D ampersand D) of aging nuclear facilities. An assessment will be made as to the ability of laser end effectors to be operated using electromechanical remote manipulators and the ability of both end effector and fiber optics to withstand the damage created by a high radiation field. The laser cutting demonstration will be conducted in two phases. The first phase will be a non-radioactive test to ensure the ability of hot cell remote manipulators to use the laser end effector to successfully cut the types of materials and geometries found in the hot cell. The second phase will introduce the laser end effector and the associated fiber optic cable into the hot cell radiation environment. The testing in the hot cell will investigate the degradation of the optical portions of the end effector and transmission cable in the high radiation field. The objective of the demonstration is to assess the cutting efficiency and life limitations of a laser cutting system for radioactive D ampersand D operations. A successful demonstration will, therefore, allow the laser cutting technology to be integrated into the baseline planning for the D ampersand D of DOE facilities throughout the nation

  11. Technologically enhanced natural radiation (TENR II). Proceedings of an international symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Natural radiation is ubiquitous. In recent decades, there has been a developing interest in fully documenting exposure of human beings to radiation of natural origin. Radiation experts have recognized that natural sources of radiation can cause exposure of members of the general public and workers to levels that warrant consideration of whether controls should be applied. The second International Symposium on Technologically Enhanced Natural Radiation (TENR II) was held in Rio de Janeiro from 12 to 17 September 1999. The objective of the symposium was to provide a forum for the international exchange of information on the scientific and technical aspects of those components of exposure to natural radiation that warrant consideration. These components were examined under the headings: the technological enhancement of natural radiation in mining and non-nuclear industries; radon indoors and outdoors; mobility and transfer of natural radionuclides; natural radiation and health effects; analytical techniques and methodologies; the remediation of contaminated sites; and regulatory and legal aspects. The symposium found that exposures to natural sources of radiation should be considered from the point of view of their amenability to control. This approach is reflected in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) and the associated IAEA documents on occupational exposure and rehabilitation of contaminated lands. The concepts of exclusion and intervention are particularly relevant to the amenability to control of natural sources of radiation. Indeed, the BSS specify that any exposure whose magnitude is essentially unamenable to control through the requirements of the BSS is out of the scope of the BSS. The BSS further indicate that protective or remedial actions shall be undertaken whenever they are justified in terms of the benefit to be obtained. Following their deliberations, the

  12. Radiation effects in advanced microelectronics technologies

    Science.gov (United States)

    Johnston, A. H.

    1998-06-01

    The pace of device scaling has increased rapidly in recent years. Experimental CMOS devices have been produced with feature sizes below 0.1 /spl mu/m, demonstrating that devices with feature sizes between 0.1 and 0.25 /spl mu/m will likely be available in mainstream technologies after the year 2000. This paper discusses how the anticipated changes in device dimensions and design are likely to affect their radiation response in space environments. Traditional problems, such as total dose effects, SEU and latchup are discussed, along with new phenomena. The latter include hard errors from heavy ions (microdose and gate-rupture errors), and complex failure modes related to advanced circuit architecture. The main focus of the paper is on commercial devices, which are displacing hardened device technologies in many space applications. However, the impact of device scaling on hardened devices is also discussed.

  13. [Induced thymus aging: radiation model and application perspective for low intensive laser radiation].

    Science.gov (United States)

    Sevost'ianova, N N; Trofimov, A V; Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The influence of gamma-radiation on morphofunctional state of thymus is rather like as natural thymus aging. However gamma-radiation model of thymus aging widely used to investigate geroprotectors has many shortcomings and limitations. Gamma-radiation can induce irreversible changes in thymus very often. These changes are more intensive in comparison with changes, which can be observed at natural thymus aging. Low intensive laser radiation can not destroy structure of thymus and its effects are rather like as natural thymus aging in comparison with gamma-radiation effects. There are many parameters of low intensive laser radiation, which can be changed to improve morphofunctional thymus characteristics in aging model. Using low intensive laser radiation in thymus aging model can be very perspective for investigations of aging immune system.

  14. Computer modelling of radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Khvostunov, Igor K.; Nikjoo, Hooshang

    2002-01-01

    Radiation-induced genomic instability and bystander effects are now well established consequences of exposure of living cells to ionising radiation. It has been observed that cells not directly hit by radiation tracks may still exhibit radiation effects. We present a quantitative modelling of the radiation-induced bystander effect based on a diffusion model of spreading the bystander signal. The model assumes the bystander factor to be a protein of low molecular weight, given out by the hit cell, diffusing in the medium and reacting with non-hit cells. The model calculations successfully predict the results of cell survival in an irradiated conditioned medium. The model predicts the shape of dose-effect relationship for cell survival and oncogenic transformation induced by broad-beam and micro-beam irradiation by alpha-particles. (author)

  15. The application of radiation technology in the field of medical biomaterials

    International Nuclear Information System (INIS)

    Jin Huanyu; An Yan; Yin Hua

    2011-01-01

    The radiation technology has been applied extensively in the fields of biological engineering, tissue engineering, medical industry and so on. It also plays an important role in the sterilization and modification of biomaterials. This work reviews the development of irradiation technology and absorbed doses for the sterilization and modification of medical biomaterials. (authors)

  16. Analytical modeling of worldwide medical radiation use

    International Nuclear Information System (INIS)

    Mettler, F.A. Jr.; Davis, M.; Kelsey, C.A.; Rosenberg, R.; Williams, A.

    1987-01-01

    An analytical model was developed to estimate the availability and frequency of medical radiation use on a worldwide basis. This model includes medical and dental x-ray, nuclear medicine, and radiation therapy. The development of an analytical model is necessary as the first step in estimating the radiation dose to the world's population from this source. Since there is no data about the frequency of medical radiation use in more than half the countries in the world and only fragmentary data in an additional one-fourth of the world's countries, such a model can be used to predict the uses of medical radiation in these countries. The model indicates that there are approximately 400,000 medical x-ray machines worldwide and that approximately 1.2 billion diagnostic medical x-ray examinations are performed annually. Dental x-ray examinations are estimated at 315 million annually and approximately 22 million in-vivo diagnostic nuclear medicine examinations. Approximately 4 million radiation therapy procedures or courses of treatment are undertaken annually

  17. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  18. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    International Nuclear Information System (INIS)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-01-01

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology

  19. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of

  20. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    Science.gov (United States)

    Page, Arthur T.

    2001-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  1. A 3D radiative transfer model based on lidar data and its application on hydrological and ecosystem modeling

    Science.gov (United States)

    Li, W.; Su, Y.; Harmon, T. C.; Guo, Q.

    2013-12-01

    Light Detection and Ranging (lidar) is an optical remote sensing technology that measures properties of scattered light to find range and/or other information of a distant object. Due to its ability to generate 3-dimensional data with high spatial resolution and accuracy, lidar technology is being increasingly used in ecology, geography, geology, geomorphology, seismology, remote sensing, and atmospheric physics. In this study we construct a 3-dimentional (3D) radiative transfer model (RTM) using lidar data to simulate the spatial distribution of solar radiation (direct and diffuse) on the surface of water and mountain forests. The model includes three sub-models: a light model simulating the light source, a sensor model simulating the camera, and a scene model simulating the landscape. We use ground-based and airborne lidar data to characterize the 3D structure of the study area, and generate a detailed 3D scene model. The interactions between light and object are simulated using the Monte Carlo Ray Tracing (MCRT) method. A large number of rays are generated from the light source. For each individual ray, the full traveling path is traced until it is absorbed or escapes from the scene boundary. By locating the sensor at different positions and directions, we can simulate the spatial distribution of solar energy at the ground, vegetation and water surfaces. These outputs can then be incorporated into meteorological drivers for hydrologic and energy balance models to improve our understanding of hydrologic processes and ecosystem functions.

  2. Radiative models for the evaluation of the UV radiation at the ground

    International Nuclear Information System (INIS)

    Koepke, P.

    2009-01-01

    The variety of radiative models for solar UV radiation is discussed. For the evaluation of measured UV radiation at the ground the basic problem is the availability of actual values of the atmospheric parameters that influence the UV radiation. The largest uncertainties are due to clouds and aerosol, which are highly variable. In the case of tilted receivers, like the human skin for most orientations, and for conditions like a street canyon or tree shadow, besides the classical radiative transfer in the atmosphere additional modelling is necessary. (authors)

  3. Survey of current situation in radiation belt modeling

    Science.gov (United States)

    Fung, Shing F.

    2004-01-01

    The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.

  4. Reducing Radiation Dose in Coronary Angiography and Angioplasty Using Image Noise Reduction Technology.

    Science.gov (United States)

    Kastrati, Mirlind; Langenbrink, Lukas; Piatkowski, Michal; Michaelsen, Jochen; Reimann, Doris; Hoffmann, Rainer

    2016-08-01

    This study sought to quantitatively evaluate the reduction of radiation dose in coronary angiography and angioplasty with the use of image noise reduction technology in a routine clinical setting. Radiation dose data from consecutive 605 coronary procedures (397 consecutive coronary angiograms and 208 consecutive coronary interventions) performed from October 2014 to April 2015 on a coronary angiography system with noise reduction technology (Allura Clarity IQ) were collected. For comparison, radiation dose data from consecutive 695 coronary procedures (435 coronary angiograms and 260 coronary interventions) performed on a conventional coronary angiography system from October 2013 to April 2014 were evaluated. Patient radiation dosage was evaluated based on the cumulative dose area product. Operators and operator practice did not change between the 2 evaluated periods. Patient characteristics were collected to evaluate similarity of patient groups. Image quality was evaluated on a 5-grade scale in 30 patients of each group. There were no significant differences between the 2 evaluated groups in gender, age, weight, and fluoroscopy time (6.8 ± 6.1 vs 6.9 ± 6.3 minutes, not significant). The dose area product was reduced from 3195 ± 2359 to 983 ± 972 cGycm(2) (65%, p technology. Image quality was graded as similar between the evaluated systems (4.0 ± 0.7 vs 4.2 ± 0.6, not significant). In conclusion, a new x-ray technology with image noise reduction algorithm provides a substantial reduction in radiation exposure without the need to prolong the procedure or fluoroscopy time. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Radiation immune RAM semiconductor technology for the 80's. [Random Access Memory

    Science.gov (United States)

    Hanna, W. A.; Panagos, P.

    1983-01-01

    This paper presents current and short term future characteristics of RAM semiconductor technologies which were obtained by literature survey and discussions with cognizant Government and industry personnel. In particular, total ionizing dose tolerance and high energy particle susceptibility of the technologies are addressed. Technologies judged compatible with spacecraft applications are ranked to determine the best current and future technology for fast access (less than 60 ns), radiation tolerant RAM.

  6. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gunja, Ateka; Pandey, Yagya [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Xie, Hui [Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL (United States); Faculty of Health Sciences, Simon Fraser University, Burnaby, BC (Canada); Wolska, Beata M. [Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL (United States); Shroff, Adhir R.; Ardati, Amer K. [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States)

    2017-04-15

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm{sup 2}). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm{sup 2} ± 74.0 vs. 41.9 mGy cm{sup 2} ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image

  7. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Gunja, Ateka; Pandey, Yagya; Xie, Hui; Wolska, Beata M.; Shroff, Adhir R.; Ardati, Amer K.; Vidovich, Mladen I.

    2017-01-01

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm"2). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm"2 ± 74.0 vs. 41.9 mGy cm"2 ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image-noise compared to

  8. Recent developments in radiation field control technology

    International Nuclear Information System (INIS)

    Wood, C.J.

    1995-01-01

    The U.S. nuclear power industry has been remarkably successful in reducing worker radiation exposures over the past ten years. There has been over a fourfold reduction in the person-rem incurred for each MW.year of electric power generated: from 1.8 in 1980, to only 0.39 person-rems in 1991 and 1992. Preliminary data for 1993 are even lower: approximately 0.37 person-rem.MW.year. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in ICRP 60 and there will be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts with be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the industry goals for 1995. Reducing out-of-core radiation fields offer the best chance of continuing the downward trend in exposures. To assist utilities select the most economic technology for their specific plants, EPRI has published a manual capturing worldwide operating experience with radiation-field control techniques (TR-100265). No one method will suffice, but implementing suitable combinations from this collection will enable utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: outages are shorter, manpower requirements are reduced and work quality is improved. Despite the up front costs, the benefits over the following 1-3 years typically outweigh the expenses

  9. Recent developments in radiation field control technology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.J. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-03-01

    The U.S. nuclear power industry has been remarkably successful in reducing worker radiation exposures over the past ten years. There has been over a fourfold reduction in the person-rem incurred for each MW.year of electric power generated: from 1.8 in 1980, to only 0.39 person-rems in 1991 and 1992. Preliminary data for 1993 are even lower: approximately 0.37 person-rem.MW.year. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in ICRP 60 and there will be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts with be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the industry goals for 1995. Reducing out-of-core radiation fields offer the best chance of continuing the downward trend in exposures. To assist utilities select the most economic technology for their specific plants, EPRI has published a manual capturing worldwide operating experience with radiation-field control techniques (TR-100265). No one method will suffice, but implementing suitable combinations from this collection will enable utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: outages are shorter, manpower requirements are reduced and work quality is improved. Despite the up front costs, the benefits over the following 1-3 years typically outweigh the expenses.

  10. Current status and prospect of radiation technology for the safety and security of food

    International Nuclear Information System (INIS)

    Byun, Myung Woo

    2009-01-01

    Since 1960, radiation technology (RT), which had been known as the method eliminating the biologically hazardous factors of the products in the food, medical, pharmaceutical and cosmetic industries, was comprehensively investigated. The safety of food irradiation has been throughout evaluated with scientific experiments. Recently, RT has been associated with other high technologies such as biotechnology and nanotechnology, and resulted in the innovative products. Through these fusion technology with RT, the new items with high functionality and value will be shown. But, until now, consumers' acceptance on radiation is still the problem to be solved for further development. To make the consumer correctly understand RT, the benefits and defects of RT should be informed and there should be the legislated policy for the industrialization of RT by government. Therefore, this review will introduce the current status of food irradiation in the world, the safety and national agreements and the recent results from radiation fusion technology, and suggest the further work

  11. Technologies pioneered by LHC. Superconducting magnet and radiation-tolerant tracking detector

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Unno, Yoshinobu

    2007-01-01

    In the LHC project of proton-proton collisions exploring the energy frontier, superconducting magnets and radiation-tolerant tracking detector play fundamental roles as key technologies. The superconducting magnets contribute to bending and focusing particle beam by using high magnetic field created with the NbTi superconductor cooled to the superfluid temperature of He (1.9 K). In order to overcome the unprecedented radiation damage and to capture the particles emerging with high energy and high density, the large area and highly radiation-tolerant silicon semiconductor tracking detector has been developed for the LHC experiment. (author)

  12. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    . The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...

  13. Design and characterization of radiation resistant integrated circuits for the LHC particle detectors using deep sub-micron CMOS technologies

    International Nuclear Information System (INIS)

    Anelli, Giovanni Maria

    2000-01-01

    The electronic circuits associated with the particle detectors of the CERN Large Hadron Collider (LHC) have to work in a highly radioactive environment. This work proposes a methodology allowing the design of radiation resistant integrated circuits using the commercial sub-micron CMOS technology. This method uses the intrinsic radiation resistance of ultra-thin grid oxides, the technology of enclosed layout transistors (ELT), and the protection rings to avoid the radio-induced creation of leakage currents. In order to check the radiation tolerance level, several test structures have been designed and tested with different radiation sources. These tests have permitted to study the physical phenomena responsible for the damages induced by the radiations and the possible remedies. Then, the particular characteristics of ELT transistors and their influence on the design of complex integrated circuits has been explored. The modeling of the W/L ratio, the asymmetries (for instance in the output conductance) and the performance of ELT couplings have never been studied yet. The noise performance of the 0.25 μ CMOS technology, used in the design of several integrated circuits of the LHC detectors, has been characterized before and after irradiation. Finally, two integrated circuits designed using the proposed method are presented. The first one is an analogic memory and the other is a circuit used for the reading of the signals of one of the LHC detectors. Both circuits were irradiated and have endured very high doses practically without any sign of performance degradation. (J.S.)

  14. Proceedings of Scientific Meeting on Research and Development of Isotopes and Radiation Technology

    International Nuclear Information System (INIS)

    Hilmy, Nazly; Ismachin, Moch; Suhadi, F.

    2002-01-01

    Proceedings of Scientific Meeting On Research and Development of Isotopes and Radiation Technology has been presented On Nopember 6-7, 2000 this activity that was held by Centre for Research and Development of Isotopes and Radiation Technolgy. The Scientific meeting is an information exchange facility among Researcher Industrialist for using isotope Technology in Industry Environment, Health, Agriculture and Farming. The proceedings Consist of 3 articles from keynotes speaker and 54 articles from BATAN participants as well outside. The articles is indexing separately

  15. Combined Treatment Effects of Radiation and Immunotherapy: Studies in an Autochthonous Prostate Cancer Model

    International Nuclear Information System (INIS)

    Wada, Satoshi; Harris, Timothy J.; Tryggestad, Erik; Yoshimura, Kiyoshi; Zeng, Jing; Yen, Hung-Rong; Getnet, Derese; Grosso, Joseph F.; Bruno, Tullia C.; De Marzo, Angelo M.

    2013-01-01

    Purpose: To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Methods and Materials: Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. Results: The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Conclusions: Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting

  16. Combined Treatment Effects of Radiation and Immunotherapy: Studies in an Autochthonous Prostate Cancer Model

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Satoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Harris, Timothy J.; Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yoshimura, Kiyoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yen, Hung-Rong; Getnet, Derese; Grosso, Joseph F.; Bruno, Tullia C. [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); De Marzo, Angelo M. [Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others

    2013-11-15

    Purpose: To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Methods and Materials: Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. Results: The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Conclusions: Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting.

  17. The fundamentals of the radiation thermal technology for cement production

    International Nuclear Information System (INIS)

    Abramson, I.G.; Kapralova, R.M.; Nikiforov, Yu.V.; Egorov, G.B.; Vaisman, A.F.

    1995-01-01

    The fundamentals of principally new radiation thermal way of cement production are presented. The peculiarities of qualities and structure of clinker obtained by this way are given. The technical economic advantages of the new technology are shown

  18. Perspectives on micropole undulators in synchrotron radiation technology

    International Nuclear Information System (INIS)

    Tatchyn, R.; Csonka, P.; Toor, A.

    1989-01-01

    Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized

  19. Perspectives on micropole undulators in synchrotron radiation technology

    Science.gov (United States)

    Tatchyn, Roman; Csonka, Paul; Toor, Arthur

    1989-07-01

    Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized.

  20. Proceedings of the First Seminar on Radiation Safety Technology and Nuclear Biomedicine

    International Nuclear Information System (INIS)

    Suprihadi, Topo

    2003-01-01

    The First Seminar on Radiation Safety Technology and Nuclear Biomedicine was held on 10-11 April 2001 at the Center for Research and Development of Radiation Safety and Nuclear Biomedicine have presented 19 papers about upgrading manpower resources, researcher, investigator, manager, and user of nuclear facilities, to go out against free market era

  1. Technological challenges of third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Cornacchia, M.; Winick, H.

    1990-01-01

    New ''third generation'' synchrotron radiation research facilities are now in construction in France, Italy, Japan, Taiwan and the USA. Designs for such facilities are being developed in several other countries. Third generation facilities are based on storage rings with low electron beam emittance and space for many undulator magnets to produce radiation with extremely high brightness and coherent power. Photon beam from these rings will greatly extend present research capabilities and open up new opportunities in imaging, spectroscopy, structural and dynamic studies and other applications. The technological problems of the third generation of synchrotron radiation facilities are reviewed. These machines are designed to emit radiation of very high intensity, extreme brightness, very short pulses, and partial coherence. These performance goals put severe requirements on the quality of the electron or positron beams. Phenomena affecting the injection process and the beam lifetime are discussed. Gas desorption by synchrotron radiation and collective effects play an important role. Low emittance lattices are more sensitive to quadrupole movements and at the same time, in order not to lose the benefits of high brilliance, require tighter tolerances on the allowed movement of the photon beam source. We discuss some of the ways that should be considered to extend the performance capabilities of the facilities in the future. 14 refs., 1 fig

  2. Characterization and radiation studies of diode test structures in LFoundry CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    In order to prepare for the High Luminosity upgrade of the LHC, all subdetector systems of the ATLAS experiment will be upgraded. In preparation for this process, different possibilities for new radiation-hard and cost-efficient silicon sensor technologies to be used as part of hybrid pixel detectors in the ATLAS inner tracker are being investigated. One promising way to optimize the cost-efficiency of silicon-based pixel detectors is to use commercially available CMOS technologies such as the 150 nm process by LFoundry. In this talk, several CMOS pixel test structures, such as simple diodes and small pixel arrays, that were manufactured in this technology are characterized regarding general performance and radiation hardness and compared to each other as well as to the current ATLAS pixel detector.

  3. The strategic value of industrial radiation manufacturing and processing technologies

    International Nuclear Information System (INIS)

    Chappas, W.J.; Silverman, J.

    1993-01-01

    Planned and projected budget cuts over the next many years will reduce the number of Department of Defense (DoD) personnel and the diversity and quantity of their armaments and systems. Consequently, there is a requirement for the deployment of more effective defense equipment and their more efficient operation. Concomitant with this challenge is an opportunity for innovative technologies that can, at a lower cost, produce new, stronger, more durable materials-and do so with less environmental impact. Radiation processing offers this potential for (a) creating significant cost savings and performance advantages in a broad range of defense materials; (b) destroying and detoxifying dangerous chemicals, ordnance, and rocket propellants; (c) cleaning noxious gaseous effluents; and (d) purifying contaminated water. Radiation technology has the potential to immediately affect defense materials and, in the short and long terms, US industrial international competitiveness

  4. Radiation technology helps China’s industries make water cleaner

    International Nuclear Information System (INIS)

    Jawerth, Nicole

    2015-01-01

    China is pursuing the use of radiation technology as part of its wastewater treatment methods to further efforts to manage industrial waste in an environmentally friendly way. “Treating the water that comes from our industries is very important, so we have been doing this for a long time. Now we want to become better at making our water cleaner,” said Jianlong Wang, Vice-President of the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University in Beijing. “We are receiving a lot of support from the IAEA to use electron beam based technologies to help us get rid of various water pollutants that the other methods cannot do on their own.”

  5. Development of sterilized porridge for patients by combined treatment of food technology with radiation technology

    International Nuclear Information System (INIS)

    Kim, Jaehun; Choi, Jongil; Song, Beomseok

    2010-09-01

    This research was conducted to develop patient foods of high quality using a radiation fusion technology with food processing. Radiation technique to increase calorie of porridge was established, and it was investigated that radiation effects on functional materials, which can could be added to increase functionality of patient foods. Moreover, sterilized semi-fluid meal (milk porridge) for patients with higher calorie was developed by a sterilization process by gamma irradiation, combined treatments to improve the sensory qualities, and fortification with various nutrients. Also, sensory survey on irradiated commercial patient foods was performed to find the problems and improvement points of the developed products. Optimal packaging material was selected by evaluation of effect of irradiation in packaging materials and a convenient package for consuming by patients was decided. Safety of the irradiated milk porridge was confirmed by in-vivo genotoxicological test, and its nutritional composition for patients was evaluated by nutritional analysis. Finally, the milk porridge was developed as liquid, dried, powdered, and pellet type products. This research may contribute to improve life quality of patients by supplement of various foods with high quality to immuno-compromised patients. Furthermore, economic profits and technological advances are expected by commercialization of the patient foods

  6. Development of sterilized porridge for patients by combined treatment of food technology with radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Choi, Jongil; Song, Beomseok; and others

    2010-09-15

    This research was conducted to develop patient foods of high quality using a radiation fusion technology with food processing. Radiation technique to increase calorie of porridge was established, and it was investigated that radiation effects on functional materials, which can could be added to increase functionality of patient foods. Moreover, sterilized semi-fluid meal (milk porridge) for patients with higher calorie was developed by a sterilization process by gamma irradiation, combined treatments to improve the sensory qualities, and fortification with various nutrients. Also, sensory survey on irradiated commercial patient foods was performed to find the problems and improvement points of the developed products. Optimal packaging material was selected by evaluation of effect of irradiation in packaging materials and a convenient package for consuming by patients was decided. Safety of the irradiated milk porridge was confirmed by in-vivo genotoxicological test, and its nutritional composition for patients was evaluated by nutritional analysis. Finally, the milk porridge was developed as liquid, dried, powdered, and pellet type products. This research may contribute to improve life quality of patients by supplement of various foods with high quality to immuno-compromised patients. Furthermore, economic profits and technological advances are expected by commercialization of the patient foods.

  7. Comparison of conventional technology and radiation technology. Final report for the period 1 June 1988 - 31 May 1989

    Energy Technology Data Exchange (ETDEWEB)

    Czvikovszky, T [Research Inst. for the Plastic Industry, Budapest (Hungary)

    1990-12-31

    The project consisted of three parts in which comparison of conventional technology and radiation technology of composite materials was aimed, in the field of impregnated wood-plastics, wood fiber reinforced/filled plastics and UV and EB coated wood products. The report includes 4 papers presented at different meetings. Refs, figs and tabs.

  8. Comparison of conventional technology and radiation technology. Final report for the period 1 June 1988 - 31 May 1989

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1989-01-01

    The project consisted of three parts in which comparison of conventional technology and radiation technology of composite materials was aimed, in the field of impregnated wood-plastics, wood fiber reinforced/filled plastics and UV and EB coated wood products. The report includes 4 papers presented at different meetings. Refs, figs and tabs

  9. Some technologically enhanced exposures to natural radiation environment in India

    International Nuclear Information System (INIS)

    Lalit, B.Y.; Shukla, V.K.; Ramachandran, T.V.; Mishra, U.C.

    1982-01-01

    A summary of results of gamma spectrometric measurements of natural radioactivity in a number of coal and flyash samples from thermal power plants and phosphatic fertilizer samples collected from various fertilizer plants in India are presented. These constitute the sources of technologically enhanced exposures to natural radiation. A brief description of sampling and measurement procedures is given. The radiation doses to the population from coal burning for electricity generation have been calculated using the method outlined in UNSCEAR report of 1979 with corrections for local population density. The external radiation dose to the farmers has been calculated on the basis of usage of phosphatic fertilizers for rice, wheat, millets and sugarcane crops for the normal agricultural practices

  10. Development of Radiation Fusion Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Lee, Ju Woon; Park, Sang Hyun

    2010-04-15

    {center_dot} Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation - To develop fundamental technology using high dose irradiation, effects of high dose irradiation on food components, combined effects of irradiation with food engineering, irradiation condition to destroy radiation resistant foodborne bacteria were studied. - To develop E-beam irradiation technology, irradiation conditions for E-beam and domination effects of E-beam irradiation were determined. The physical marker for E-beam irradiated foods or not was developed. - To develop purposed foods to extreme environmental, ready-to-eat foods and low toxic animal feeds were developed. Through the fundamental researches, the legislation for new irradiated foods and application of E-beam was introduced. {center_dot} Development of modulators against degenerative aging using radiation fusion technology - Confirmation of similarity of radiation-induced aging and normal aging by comparative analysis study - Selection of degenerative aging biomarkers related to immune/hematopoiesis, oxidative damage, molecular signaling, lipid metabolism - Establishment of optimal radiation application conditions for aging modeling - Validation of biomarkers and models using substances {center_dot} Development of biochips and kits using RI detection technology for life science - Establishment of kinase-substrate interaction analysis using RI detection technique (More than 30 times detection sensitivity compared to conventional fluorescence detection techniques). - The RI detection technique reduces the overall experiment time, as the use of blocking agent can be avoided, offer minimum non-specific binding, and facilitates a rapid data analysis with a simplify the process of chip manufacturing

  11. Development of Radiation Fusion Biotechnology

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Lee, Ju Woon; Park, Sang Hyun

    2010-04-01

    · Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation - To develop fundamental technology using high dose irradiation, effects of high dose irradiation on food components, combined effects of irradiation with food engineering, irradiation condition to destroy radiation resistant foodborne bacteria were studied. - To develop E-beam irradiation technology, irradiation conditions for E-beam and domination effects of E-beam irradiation were determined. The physical marker for E-beam irradiated foods or not was developed. - To develop purposed foods to extreme environmental, ready-to-eat foods and low toxic animal feeds were developed. Through the fundamental researches, the legislation for new irradiated foods and application of E-beam was introduced. · Development of modulators against degenerative aging using radiation fusion technology - Confirmation of similarity of radiation-induced aging and normal aging by comparative analysis study - Selection of degenerative aging biomarkers related to immune/hematopoiesis, oxidative damage, molecular signaling, lipid metabolism - Establishment of optimal radiation application conditions for aging modeling - Validation of biomarkers and models using substances · Development of biochips and kits using RI detection technology for life science - Establishment of kinase-substrate interaction analysis using RI detection technique (More than 30 times detection sensitivity compared to conventional fluorescence detection techniques). - The RI detection technique reduces the overall experiment time, as the use of blocking agent can be avoided, offer minimum non-specific binding, and facilitates a rapid data analysis with a simplify the process of chip manufacturing

  12. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  13. An improved bipolar junction transistor model for electrical and radiation effects

    International Nuclear Information System (INIS)

    Kleiner, C.T.; Messenger, G.C.

    1982-01-01

    The use of bipolar technology in hardened electronic design requires an in-depth understanding of how the Bipolar Junction Transistor (BJT) behaves under normal electrical and radiation environments. Significant improvements in BJT process technology have been reported, and the successful use of sophisticated Computer Aided Design (CAD) tools has aided implementation with respect to specific families of hardened devices. The most advanced BJT model used to date is the Improved Gummel-Poon (IGP) model which is used in CAA programs such as the SPICE II and SLICE programs. The earlier Ebers-Moll model (ref 1 and 2) has also been updated to compare with the older Gummel-Poon model. This paper describes an adaptation of an existing computer model which incorporates the best features of both models into a new, more accurate model called the Improved Bipolar Junction Transistor model. This paper also describes a unique approach to data reduction for the B(I /SUB c/) and V /SUB BE/(ACT) vs I /SUB c/characterizations which has been successfully programmed in Basic using a Commodore PET computer. This model is described in the following sections

  14. Societal applications of isotope/radiation technology in industry and hydrology

    International Nuclear Information System (INIS)

    Singh, Gurusharan

    2012-01-01

    Besides generation of electricity from nuclear fuels, one of the objectives of the Atomic Energy Programme in India is development and promotion of applications of radioisotopes and radiation technology in all major fields of human endeavor. The applications of isotopes both as stable and as radioactive and electronic radiation sources is increasing at a rapid pace in all major fields of human endeavor. These applications expanded greatly when it became possible to produce a variety of radioisotopes artificially in nuclear reactors and by bombardment of the targets with high energy particles. With the recent developments in the supporting technologies such as compact electronics, high resolution detectors, fast computers, small reliable neutron tubes, dedicated computer modeling codes and better data interpretation, one can now satisfy the longstanding demand for immediate, accurate and detailed information about the test specimen. As a result of the radioisotope programme, the country has a strong infrastructure in various fields including applications in industry. One major area of industrial applications of radioisotopes is their use as sealed radioactive sources and as radioactive tracers for troubleshooting, process control and process vessel design modification. These applications are mostly online, nondestructive and noninvasive. Radioisotope techniques can perform many tasks better, easier, quicker, relatively simply, cost effectively than alternative methods and have no substitutes in many applications, and are used extensively in all areas of industry, research, medicine and agriculture. Sealed source techniques of radioisotope applications provide valuable, non destructive and noninvasive insight to the process and plant problems. These are either supplementary to or more convenient than tracer techniques. These applications do not require much preparation time and hence can be carried out at short notice. The use of these techniques is growing steadily

  15. The dynamic radiation environment assimilation model (DREAM)

    International Nuclear Information System (INIS)

    Reeves, Geoffrey D.; Koller, Josef; Tokar, Robert L.; Chen, Yue; Henderson, Michael G.; Friedel, Reiner H.

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  16. RadBall Technology Testing and MCNP Modeling of the Tungsten Collimator.

    Science.gov (United States)

    Farfán, Eduardo B; Foley, Trevor Q; Coleman, J Rusty; Jannik, G Timothy; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J

    2010-01-01

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall(™), which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall(™) consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall(™) has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall(™) testing and modeling accomplished at SRNL.

  17. RadBall™ Technology Testing and MCNP Modeling of the Tungsten Collimator

    Science.gov (United States)

    Farfán, Eduardo B.; Foley, Trevor Q.; Coleman, J. Rusty; Jannik, G. Timothy; Holmes, Christopher J.; Oldham, Mark; Adamovics, John; Stanley, Steven J.

    2010-01-01

    The United Kingdom’s National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall™, which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall™ consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall™ has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall™ technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall™ testing and modeling accomplished at SRNL. PMID:21617740

  18. Shelf stable intermediate moisture fruit cubes using radiation technology

    International Nuclear Information System (INIS)

    Mishra, Bibhuti B.; Saxena, Sudhanshu; Gautam, Satyendra; Chander, Ramesh; Sharma, Arun

    2009-01-01

    A process has been developed to prepare shelf stable ready-to-eat (RTE) intermediate moisture pineapple slices and papaya cubes using radiation technology. The combination of hurdles including osmotic dehydration, blanching, infrared drying, and gamma radiation dose of 1 kGy successfully reduced the microbial load to below detectable limit. The shelf life of the intermediate moisture pineapple slices and papaya cubes was found to be 40 days at ambient temperature (28 ± 2 deg C). The control samples spoiled within 6 days. The RTE intermediate moisture fruit products were found to have good texture, colour and sensory acceptability during this 40 days storage. (author)

  19. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  20. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  1. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  2. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  3. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    2005-07-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data. (author)

  4. The radiation accident at Institute for Energy Technology Sept. 1982

    International Nuclear Information System (INIS)

    Berteig, L.; Flatby, J.

    1983-01-01

    On September 2, 1982 a radiation accident with overexposure of one person happened at the gamma irradiation plant at Institute for Energy Technology, Kjeller, Norway. This person died from the radiation injury 13 days later. In the report reference is made to the work of different groups and bodies in connection with the accident. An analysis of the causes of the accident is given. For admittance control to the irradiation area there were generally two independent door interlock systems, one irradiation source position related and the other radiation related. The latter was dismantled for repair at the time of the accident. A micro-switch failure left the source in an ushielded position, initiated a green light on the control panel and released the interlock system of the door. According to working instructions a mobile radiation monitor should have been checked for proper function and carried by anyone entering the irradiation room. This seems not to have been carried out correctly. The conditions set forth by the Norwegian Institute of Radiation Hygiene for the restarting of the irradiation plant are presented. (RF)

  5. Predictive modeling of terrestrial radiation exposure from geologic materials

    Science.gov (United States)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  6. Overview Of Research And Development On Radiation Technology In Vietnam During The Period Of 2005 - 2007

    International Nuclear Information System (INIS)

    Tran Khac An; Nguyen Quoc Hien

    2008-01-01

    Radiation technology is increasingly applied in may countries including Vietnam. This paper reviews R and D works, manpower, irradiation facilities and service irradiation in the period of 2005-2007. The orientation of development for radiation technology in the country and international co-operation programs are also briefly discussed in this paper as well. (author)

  7. Anticipated development of radiation safety corresponding to utilization of nuclear technology in Vietnam

    International Nuclear Information System (INIS)

    Tran, Toan Ngoc; Le, Thiem Ngoc

    2010-01-01

    In the past, due to the limited application of radiation and radioisotope in the national economic branches, radiation safety was not paid much attention to in Vietnam. However, according to the Strategy for Peaceful Utilization of Atomic Energy up to 2020 approved by the Prime Minister on January 3, 2006 the application of radiation and radioisotopes as well as nuclear power in Vietnam is expected increasing strongly and widely, then radiation safety should be developed correspondingly. This paper presents the history of radiation protection, the current status and prospect of utilization of atomic energy and the anticipated development of the national radiation safety system to meet the demand of utilization of nuclear technology in Vietnam. (author)

  8. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  9. The JPL Uranian Radiation Model (UMOD)

    Science.gov (United States)

    Garrett, Henry; Martinez-Sierra, Luz Maria; Evans, Robin

    2015-01-01

    The objective of this study is the development of a comprehensive radiation model (UMOD) of the Uranian environment for JPL mission planning. The ultimate goal is to provide a description of the high energy electron and proton environments and the magnetic field at Uranus that can be used for engineering design. Currently no model exists at JPL. A preliminary electron radiation model employing Voyager 2 data was developed by Selesnick and Stone in 1991. The JPL Uranian Radiation Model extends that analysis, which modeled electrons between 0.7 MeV and 2.5 MeV based on the Voyager Cosmic Ray Subsystem electron telescope, down to an energy of 0.022 MeV for electrons and from 0.028 MeV to 3.5 MeV for protons. These latter energy ranges are based on measurements by the Applied Physics Laboratory Low Energy Charged Particle Detector on Voyager 2. As in previous JPL radiation models, the form of the Uranian model is based on magnetic field coordinates and requires a conversion from spacecraft coordinates to Uranian-centered magnetic "B-L" coordinates. Two magnetic field models have been developed for Uranus: 1) a simple "offset, tilted dipole" (OTD), and 2) a complex, multi-pole expansion model ("Q3"). A review of the existing data on Uranus and a search of the NASA Planetary Data System (PDS) were completed to obtain the latest, up to date descriptions of the Uranian high energy particle environment. These data were fit in terms of the Q3 B-L coordinates to extend and update the original Selesnick and Stone electron model in energy and to develop the companion proton flux model. The flux predictions of the new model were used to estimate the total ionizing dose for the Voyager 2 flyby, and a movie illustrating the complex radiation belt variations was produced to document the uses of the model for planning purposes.

  10. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  11. Report on our activities to spread knowledge about radiation in Musashi Institute of Technology

    International Nuclear Information System (INIS)

    Okada, Yukiko

    2007-01-01

    In Musashi Institute of Technology, radiation knowledge spread activities are performed twice per year. One is 'the science experience classroom which children enjoy.' Another is 'the open school which studies atomic power'. The writer participated in the 'life and radiation' project as a WEN member, and has performed the radiation knowledge spread activities to a citizen. In this paper, these activities are introduced and the necessity and problem of radiation knowledge spread activities are considered. (author)

  12. Research of radiation technology in keeping pet feed fresh

    International Nuclear Information System (INIS)

    Lin Qin; Zhang Tongcheng; Liu Qingfang; Wang Chunlei

    2002-01-01

    Objective: To find a effective, simple, quick method of radiation keeping fresh technology. Method: To detect the number of bacterium colony and pathogen and D 10 in Raschide dog chews firstly, then calculate them with the formulate of S D = D 10 log N 0 /SAL. Result: The total number of bacterium colony and pathogen in Raschide dog chews, a kind of pet feed, were detected. The mean total number of colony forming units was 3980 every gram and G + bacilli predominant, cocci less. The D 10 value of G + bacilli was 1.51 KGy. Conclusion: According to the certain formula method, the product SAL can be kept at 10 -6 level with 14.50 KGy radiation dose

  13. Modeling Solar Radiation in the Forest Using Remote Sensing Data: A Review of Approaches and Opportunities

    Directory of Open Access Journals (Sweden)

    Alex S. Olpenda

    2018-05-01

    Full Text Available Solar radiation, the radiant energy from the sun, is a driving variable for numerous ecological, physiological, and other life-sustaining processes in the environment. Traditional methods to quantify solar radiation are done either directly (e.g., quantum sensors, or indirectly (e.g., hemispherical photography. This study, however, evaluates literature which utilized remote sensing (RS technologies to estimate various forms of solar radiation or components, thereof under or within forest canopies. Based on the review, light detection and ranging (LiDAR has, so far, been preferably used for modeling light under tree canopies. Laser system’s capability of generating 3D canopy structure at high spatial resolution makes it a reasonable choice as a source of spatial information about light condition in various parts of forest ecosystem. The majority of those using airborne laser system (ALS commonly adopted the volumetric-pixel (voxel method or the laser penetration index (LPI for modeling the radiation, while terrestrial laser system (TLS is preferred for canopy reconstruction and simulation. Furthermore, most of the studies focused only on global radiation, and very few on the diffuse fraction. It was also found out that most of these analyses were performed in the temperate zone, with a smaller number of studies made in tropical areas. Nonetheless, with the continuous advancement of technology and the RS datasets becoming more accessible and less expensive, these shortcomings and other difficulties of estimating the spatial variation of light in the forest are expected to diminish.

  14. Gamma radiation influence on technological characteristics of wheat flour

    International Nuclear Information System (INIS)

    Teixeira, Christian A.H.M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L.d.

    2012-01-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it. - Highlights: ► We study the influence of gamma radiation on wheat flour and properties of breads. ► Falling number decreased with radiation remaining almost constant up to one month. ► Ionizing radiation may confer an increase in texture parameters, weight and height on the bread.

  15. Effects of radiation on model plant rice - OMICS: Recent progress and future prospects

    International Nuclear Information System (INIS)

    Rakwal, Randeep; Shibato, Junko; Agrawal, Ganesh Kumar; Imanaka, Tetsuji; Fukutani, Satoshi; Tamogami, Shigeru; Endo, Satoru; Sahoo, Sarat Kumar; Kimura, Shinzo

    2011-01-01

    This is the age of functional genomics, where genomes to high-throughput technologies and to the phenotype are making inroads into various biological questions and problems. In this report, I along with my co-workers will present an outline into the omics approaches, focusing on the global gene expression profiling (DNA microarray technique), plants and the environment, and culminating in the use of genomics to analyze the effects of radiation on plant life. For this, rice (Oryza sativa L.) geonome model and monocot cereal crop plant will be used as an example. It is our hope that use of both model and non-model plants in conjunction with high-throughput transcriptomics approaches will lead the way for unraveling radiation responses in plants, setting the stage for further research on this important aspect of our environment with direct and indirect impact on human life and civilization. (author)

  16. Development and application of isotopes and radiation technology in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Djaloeis, A. [DDG, Batan, Jakarta (Indonesia)

    1997-10-01

    The National Atomic Energy Agency (BATAN) of the Republic of Indonesia is the highest agency in the country, charged amongst others with the development and application of Isotopes and Radiation Technology as a tool in the search for the optimal solution of various national development problems, such as those encountered in the fields of Agriculture, Livestock, health/medicine, Industry, Environment and Energy. The acquisition and development of the scientific and technical expertise, R and D facilities/instruments and infrastructure have been achieved primarily through bilateral and multilateral collaborative activities with domestic, foreign and international institutions. On the basis of the achieved R and D results, the acquired techniques have been progressively transferred to the end-users and applied in solving scientific-technical problems in the aforementioned fields. This paper gives a brief overview of the present status and future trend of activities in the development and applications of isotopes and radiation technology in Agriculture, Livestock and Industry in Indonesia. In the field of Agriculture the research activities are focussed on obtaining and disseminating new crop varieties with desired specific characteristics and on increasing soil fertilizer efficiency. These research results and those on livestock feed supplementation formula and disease prevention have been applied in helping farmers in various parts of Indonesia to increase their productivity. In industry, irradiation technology for food preservation and sterilization has been successfully transferred to the commercial companies. The same is also true for Non-Destructive Examination, Radioactive Tracer and Radiation Based Process Monitoring Techniques. Natural and radioactive isotopes have been widely used also in hydrology, sedimentology and geothermal studies. Highlights of the results are presented and discussed

  17. Development and application of isotopes and radiation technology in Indonesia

    International Nuclear Information System (INIS)

    Djaloeis, A.

    1997-01-01

    The National Atomic Energy Agency (BATAN) of the Republic of Indonesia is the highest agency in the country, charged amongst others with the development and application of Isotopes and Radiation Technology as a tool in the search for the optimal solution of various national development problems, such as those encountered in the fields of Agriculture, Livestock, health/medicine, Industry, Environment and Energy. The acquisition and development of the scientific and technical expertise, R and D facilities/instruments and infrastructure have been achieved primarily through bilateral and multilateral collaborative activities with domestic, foreign and international institutions. On the basis of the achieved R and D results, the acquired techniques have been progressively transferred to the end-users and applied in solving scientific-technical problems in the aforementioned fields. This paper gives a brief overview of the present status and future trend of activities in the development and applications of isotopes and radiation technology in Agriculture, Livestock and Industry in Indonesia. In the field of Agriculture the research activities are focussed on obtaining and disseminating new crop varieties with desired specific characteristics and on increasing soil fertilizer efficiency. These research results and those on livestock feed supplementation formula and disease prevention have been applied in helping farmers in various parts of Indonesia to increase their productivity. In industry, irradiation technology for food preservation and sterilization has been successfully transferred to the commercial companies. The same is also true for Non-Destructive Examination, Radioactive Tracer and Radiation Based Process Monitoring Techniques. Natural and radioactive isotopes have been widely used also in hydrology, sedimentology and geothermal studies. Highlights of the results are presented and discussed

  18. Micro-Mini and Nano-Dosimetry and Innovative Technologies in Radiation Therapy (MMND and ITRO2016)

    International Nuclear Information System (INIS)

    2017-01-01

    The biennial MMND (formerly MMD) - IPCT workshops, founded in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC) in 2001, has become an important international multidisciplinary forum for the discussion of advanced dosimetric technology for radiation therapy quality assurance (QA) and space science, as well as advanced technologies for prostate cancer treatment. In more recent years, the interests of participants and the scope of the workshops have extended far beyond prostate cancer treatment alone to include all aspects of radiation therapy, radiation science and technology. We therefore decided to change the name in 2016 to Innovative Technologies in Radiation Oncology (ITRO). MMND ITRO 2016 was held on 26-31 January, 2016 at the beautiful Wrest Point Hotel in Hobart, Tasmania and attracted an outstanding international faculty and nearly 200 delegates from 18 countries (http://mmnditro2016.com/) The MMND 2016 program continued to cover advanced medical physics aspects of IMRT, IGRT, VMAT, SBRT, MRI LINAC, innovative brachytherapy, and synchrotron MRT. The demand for sophisticated real time and high temporal and spatial resolution (down to the submillimetre scale) dosimetry methods and instrumentation for end–to-end QA for these radiotherapy technologies is increasing. Special attention was paid to the contribution of advanced imaging and the application of nanoscience to the recent improvements in imaging and radiotherapy. The last decade has seen great progress in charged particle therapy technology which has spread throughout the world and attracted strong current interest in Australia. This demands a better understanding of the fundamental aspects of ion interactions with biological tissue and the relative biological effectiveness (RBE) of protons and heavy ions. The further development of computational and experimental micro-and nano-dosimetry for ions has important application in radiobiology based treatment planning and space radiation

  19. 'Catch them young strategy' for the ethical education on radiation technology: A concept of 7 'Es'

    International Nuclear Information System (INIS)

    Bhatia, A.L.

    2005-01-01

    It is the ethics which makes human to make the justifiable use of radiation; there are always two sides of coin; the benefits in the use of ionising radiation and radionuclide should weigh with the risk. Radiation technology has both, the advantages and disadvantages with certain shortcomings; however abandonment of any technology at this juncture may be threat to human civilization. There should always be a rapid evolving process in the development of technology-and so in radiation techniques for the sustenance of human welfare. Hence a ''strategy'' is intended to be proposed and formulated through this Conference; some in-depth and deep rooted engravings on the young minds are proposed which are going to be the part of an enlightened citizens and policy makers of tomorrow who could justifiably implement the right and better use of radiation technology. Thus nowhere it could be taken as the liberal use of double-edged sword. The proposed strategy in the presentation will emphasize on educational policy from light learning activities in the classroom to a short term and long-lasting impact for the young children through planned lessons which could make a mind-etching luminous part of their curriculum. Ethics is an engrave on the minds which are formed after prolonged exposure of stimuli to brain through receptor organs by various ways like by a regular 'dinner table chats', company chat on playground' and 'off-hour chat by teacher' or by self-experience. Radiation education leading to ethics certainly can not be by self-experiences - however the narration, pictures and movies on some of incidences like that of Hiroshima and Nagasaki should be very often and religiously given and shown to them world wide. An impressive and sugar-coated' informal ways of radiation education is needed. The principle of 7 Es i.e. how exposure to experiences, education, enrichment of knowledge, elimination of fear and engravings in mind lead to ethics for radiation which will give us

  20. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  1. Synchrotron radiation generation: Technological considerations, feasibility of practical realization with available way in the Country

    International Nuclear Information System (INIS)

    Moreira, A.F.O.

    1983-01-01

    Technological aspects linked to the synchrotron radiation generation in laboratory are discussed. A feasibility study for the implantation of a machine for such a radiation in a laboratory in Brazil is also discussed. (L.C.) [pt

  2. Near-Earth Space Radiation Models

    Science.gov (United States)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  3. Proceedings of a Scientific Meeting on Research and Development of Isotopes and Radiation Technology. 1999/2000

    International Nuclear Information System (INIS)

    Suhadi, F.; Ismachin, Moch; Manurung, Simon

    2000-01-01

    Proceedings of scientific meeting on research and Development of Isotopes and Radiation Technology has been presented on Feb 23-24 2000. This activity for a routine activity that was held by Centre for Research and Development of Isotopes and Radiation Technology to disseminate research and development results of BATAN activity. The Scientific meeting is an information exchange facility among researcher manager and industrialist for using isotope technology in industry efficiency. The proceeding consist of 6 article from keynotes' speaker and 39 articles from BATAN participant as well as outside. The articles is indexing separately

  4. Qualitative dosimetric system for radiation processing. Technology for pilot scale preparation

    International Nuclear Information System (INIS)

    Moraru, R.

    1998-01-01

    Good manufacturing practice for radiation processing requires a very strictly tracking of the processed products. A method of labelling and identification of the irradiated and nonirradiated products is required. The qualitative dosimetric system provides a fast method for monitoring the product flow. Such dosimeters are attached on each product box, usually as labels, and offer a YES/NO information about the passing of products through the radiation field. Usually, this information consists in a change of colour. The qualitative dosimetric system that we realised is based on the degradation of polyvinylchloride (PVC) under radiation field. An amount of hydrochloric acid is released in this reaction. A pH indicator, included in the system, changes its colour at different absorbed dose. The changes of colour happened in a certain pH interval called turning range. We used as pH indicator the RED CONGO colorant with turning range of pH = 3 to 5 (from blue to red). A schematic view of the qualitative dosimeter is given. The initial colour is red and it continuously changes to brown, at 1 kGy absorbed dose, and to blue-green, for 5-100 kGy. The main features of this qualitative dosimetric system are: - Quick and easy to read information about product passing through radiation field; - Absorbed dose range, 1-300 kGy; - Independence of absorbed dose rate in the interval 5-100 kGy/h; - Stability, 3 year in the dark and 1 year in sun light; - Good reproducibility. The preparation technology consists in the following steps: 1. Preparation of the solutions: a) PVC in cyclohexanone solution b) RED CONGO in water solution; 2. Preparation of the system support consisting in dropping the PVC solution on adhesive labels; 3. Sample preparation consists in dropping the colorant solution on the system support; 4. Batch trial tests. The trial test was performed at IETI 10000 irradiation plant belonging to IFIN-HH and the reference absorbed dose was determined by Fricke dosimetry. The

  5. Small compact pulsed electron source for radiation technologies

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The small compact pulsed electron source for radiation technologies is considered in the report. The electron source consists of pulsed high voltage Marx generator and vacuum diode with explosive emission cathode. The main parameters of electron source are next: kinetic energy is 100-150 keV, beam current is 5-200 A and pulse duration is 100-400 nsec. The distribution of absorbed doses in irradiated materials is considered. The physical feasibility of pulsed low energy electron beam for applications is considered

  6. Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bahruddin, N. A.; Ang, W. C.; Salehhon, N.

    2016-03-01

    In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p < 0.05) in mean scores of CT technology knowledge detected between the two groups, with the medical professions producing a mean score of (26.7 ± 2.7) and the allied health professions a mean score of (25.2 ± 4.3). This study points to considerable variation among the respondents concerning their understanding of knowledge and awareness of risks of radiation and CT optimization techniques.

  7. Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose

    International Nuclear Information System (INIS)

    Karim, M K A; Hashim, S; Bahruddin, N A; Ang, W C; Salehhon, N; Bradley, D A

    2016-01-01

    In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p < 0.05) in mean scores of CT technology knowledge detected between the two groups, with the medical professions producing a mean score of (26.7 ± 2.7) and the allied health professions a mean score of (25.2 ± 4.3). This study points to considerable variation among the respondents concerning their understanding of knowledge and awareness of risks of radiation and CT optimization techniques. (paper)

  8. Some progress on radiation chemistry of substances of biological interests and biological applications of radiation technology in China

    International Nuclear Information System (INIS)

    Wu Jilan; Fang Xingwang

    1995-01-01

    Studies in China on the detection method of irradiated food, mechanism of DNA damage induced by peroxidation, radiolysis of natural products and herbs are reviewed on the update open literature, and some progress on applications of radiation technology is summarized. (author)

  9. Radiation detection technology assessment program (RADTAP)

    International Nuclear Information System (INIS)

    Smith, D.E.

    1998-01-01

    The U.S. Customs Service and the U.S. Department of Energy (DOE) conducted a technical and operational assessment of gamma ray radiation detection equipment during the period May 5-16, 1997 at a testing facility in North Carolina. The effort was entitled, ''Radiation Detection Technology Assessment Program (RADTAP)'', and was conducted for the purpose of assessing the applicability, sensitivity and robustness of a diverse suite of gamma ray detection and identification equipment for possible use by Customs and other law enforcement agencies. Thirteen companies entered 25 instruments into the assessment program. All detection equipment entered had to exhibit a minimum sensitivity of 20 micro-R per hour (background included) from a Cesium-137 point source. Isotope identifying spectrometers entered were man portable and operable at room temperature with read-out that could be interpreted by non-technical personnel. Radioactive sources used in the assessment included special nuclear material, industrial and health isotopes. Evaluators included Customs inspectors and technical experts from DOE and Customs. No conclusions or recommendations were issued based on the quantitative and qualitative test results, however, the results of the program provided law enforcement agencies with the necessary data to select equipment that best meets their operational needs and budgets. (author)

  10. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-01-01

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution

  11. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    Energy Technology Data Exchange (ETDEWEB)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  12. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Biophysical models for the induction of cancer by radiation. Final report

    International Nuclear Information System (INIS)

    Paretzke, H.G.; Ballarini, F.; Brugmans, M.

    2000-01-01

    The overall project is organised into seven work packages. WP1 concentrates on the development of mechanistic, quantitative models for radiation oncogenesis using selected data sets from radiation epidemiology and from experimental animal studies. WP2 concentrates on the development of mechanistic, mathematical models for the induction of chromosome aberrations. WP3 develops mechanistic models for radiation mutagenesis, particularly using the HPRT-mutation as a paradigm. WP4 will develop mechanistic models for damage and repair of DNA, and compare these with experimentally derived data. WP5 concentrates on the improvement of our knowledge on the chemical reaction pathways of initial radiation chemical species in particular those that migrate to react with the DNA and on their simulation in track structure codes. WP6 models by track structure simulation codes the production of initial physical and chemical species, within DNA, water and other components of mammalian cells, in the tracks of charged particles following the physical processes of energy transfer, migration, absorption, and decay of excited states. WP7 concentrates on the determination of the start spectra of those tracks considered in WP6 for different impinging radiation fields and different irradiated biological objects. (orig.)

  13. International symposium on radiation technology in emerging industrial applications. Book of extended synopses

    International Nuclear Information System (INIS)

    2000-11-01

    The book contains 116 extended synopses of the oral and poster presentations delivered at the symposium. They present advances in radiation processing technology including radiosterilization and radiolysis of toxic wastes; radiosterilization of food, cosmetics and medical supplies; radiation assisted synthesis of polymer materials; design of gamma irradiation devices and accelerators for electron beam processing. Each of the papers was indexed separately

  14. International symposium on radiation technology in emerging industrial applications. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    The book contains 116 extended synopses of the oral and poster presentations delivered at the symposium. They present advances in radiation processing technology including radiosterilization and radiolysis of toxic wastes; radiosterilization of food, cosmetics and medical supplies; radiation assisted synthesis of polymer materials; design of gamma irradiation devices and accelerators for electron beam processing. Each of the papers was indexed separately.

  15. Radiation and life: Proceedings of the 8. Nuclear Science and Technology Conference (NST8)

    International Nuclear Information System (INIS)

    2001-06-01

    The 8th conference on nuclear science and technology was held on 21-22 June 2001 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestration tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  16. Radiation and life: Proceedings of the 8. Nuclear Science and Technology Conference (NST8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The 8th conference on nuclear science and technology was held on 21-22 June 2001 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestration tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed.

  17. Planning research on the next strategical project through the trend analysis on radiation fusion technology, industry and policy

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Choi, Jae Hak; Kim, Tak Hyun

    2013-01-01

    Ο The planning research for establish a detailed implementation strategy to serve as small, but a strong institution leading national radiation research and resolving the pending issues related to using radiation - Now is a time when it needs a implementation strategy to achieve it's unique mission as the sole radiation-specialized research institute leading to promote the radiation industry. Ο The main background of this study is to build the planning of a new paradigm for research and development to cope with the changing domestic and international environment for sustainable growth - As the domestic regional radiation field is getting more competitive and the cooperative group expands, it needs to adapt to the global trend such as technology convergence and acceleration etc.. - The need for establish basic database to make a new strategy in order to narrow the technology gap in the radiation fusion technology comparing to the developed country and cope with emerging country's advancement in technology Ο The use to build basic database to spearhead the project and set aside a budget effectively - It's to be used as a reference to set aside a budget through planning strategy industry field to forecast the industrial demand and variation of the future policy and create blue ocean and niche markets

  18. A rapid radiative transfer model for reflection of solar radiation

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  19. Radiation Belt Test Model

    Science.gov (United States)

    Freeman, John W.

    2000-10-01

    Rice University has developed a dynamic model of the Earth's radiation belts based on real-time data driven boundary conditions and full adiabaticity. The Radiation Belt Test Model (RBTM) successfully replicates the major features of storm-time behavior of energetic electrons: sudden commencement induced main phase dropout and recovery phase enhancement. It is the only known model to accomplish the latter. The RBTM shows the extent to which new energetic electrons introduced to the magnetosphere near the geostationary orbit drift inward due to relaxation of the magnetic field. It also shows the effects of substorm related rapid motion of magnetotail field lines for which the 3rd adiabatic invariant is violated. The radial extent of this violation is seen to be sharply delineated to a region outside of 5Re, although this distance is determined by the Hilmer-Voigt magnetic field model used by the RBTM. The RBTM appears to provide an excellent platform on which to build parameterized refinements to compensate for unknown acceleration processes inside 5Re where adiabaticity is seen to hold. Moreover, built within the framework of the MSFM, it offers the prospect of an operational forecast model for MeV electrons.

  20. Ionizing radiation effect on different types of flours used in bakery technology

    International Nuclear Information System (INIS)

    Teixeira, Christian Alexandre Heinz Melsheimer

    2011-01-01

    In this work, an evaluation of the changes caused by ionizing radiation in different types and quantities of products rich in starch (wheat flour, cassava, rye, whole wheat, green banana pulp and maize) on rheological, technological, physical and texture characteristics was studied. The samples were irradiated in a 60 Co source with doses up to 10kGy, and dose rate about 2kGy/h. It was studied the force and the extensibility of strong and weak wheat flours and the rheological behavior was observed for one, five and thirty days after irradiation. The technological characteristic studied for up to 1 month after irradiation, was the enzymatic activity of the irradiated, weak and strong flours. The physical characteristics: height, weight and moisture loss and texture of loaves made with a partial replacement (30%) of wheat flour by different irradiated flours was established. The results showed that with the increase of radiation dose there was an increase of enzymatic activity, especially for higher doses (9kGy). These results corroborate for the understanding that there would be no need of addition of enzymatic improvers for the bread confection. The height, weight, and loss of moisture from the products developed with different substitutions of flours used in the formulations, showed different behaviors. With an increasing of the radiation dose applied, there was an increase in the height of the loaves, as well as a reduced loss of moisture on the products developed with substitution of 30% of the wheat flour with irradiated wheat flour and pulp of green banana flour. From a technological standpoint, the enzymatic activity was not adversely affected by radiation. Considering the characteristics studied, the dose of 9kGy would be recommended seeking the production of loaves. Although the irradiation process is generally applied in the preservation of hygienic quality of food products, its use on different kinds of flours used in bread production may induce some

  1. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  2. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    International Nuclear Information System (INIS)

    Hahn, S; Jaffray, D; Chetty, I; Benedict, S

    2014-01-01

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologies in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their

  3. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, S [University of Pennsylvania, Philadelphia, PA (United States); Jaffray, D [Princess Margaret Hospital, Toronto, ON (Canada); Chetty, I [Henry Ford Health System, Detroit, MI (United States); Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States)

    2014-06-15

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologies in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their

  4. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  5. Application of GIS technologies to model radiation situation at Degelen site of the former STS

    International Nuclear Information System (INIS)

    Berezin, S.A.; Baranov, S.A.; Sadvakasov, M.O.

    2005-01-01

    Full text: Degelen site was used to conduct nuclear tests at STS. From 1961 to 1989, 295 underground nuclear explosions have been conducted in 163 tunnels at the Degelen Mountain Massif. The radioactive substances concentrate mainly within the cavities formed after the explosions but there - are streams flowing from some tunnels where significant radionuclide content has been detected. Pastures, hayfields, ponds for wild and domestic animals are located along the streams. Thus, the processes which form a radiation contamination should be clarified. To implement modeling tasks, a Degelen GIS database was created, which includes information about the tests conducted in tunnels as well as data on radiological survey of the area and water basin of the Degelen Mountain Massif. The monitoring is held by the Institute of Radiation Safety and Ecology and Institute of Geophysical Research of NNC. The model of radionuclide transfer from the tunnels of the Degelen Massif is performed as an individual block comprised into the Degelen GIS project. The modeling is realized directly using the ArcGIS program at that tunnels characteristics and parameters of the nuclear tests conducted are considered. As a result, the forecasting evaluations. for the tunnels with water inflows were performed and compared with experimental data. During the evaluation, sorption and leaching processes during the radionuclide transfer into the water were considered. The results obtained are performed in the form of diagrams and maps

  6. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  7. Basic radiation knowledge for school education course. Nuclear technology seminar 2014 (Contract program)

    International Nuclear Information System (INIS)

    Watanabe, Yoko; Arai, Nobuyoshi; Sawada, Makoto; Kanaizuka, Seiichi; Shimada, Mayuka; Ishikawa, Tomomi; Nakamura, Kazuyuki

    2015-11-01

    Japan Atomic Energy Agency has conducted Nuclear Technology Seminar for Asian countries which plan to introduce nuclear power plant in future, in order to increase the number of engineers and specialists in nuclear related field. The Nuclear Technology Seminar on the Basic Radiation Knowledge for School Education Course was launched in 2012 due to increased recognition of the dissemination of the basic knowledge of radiation in public and education sectors as an important issue in the aftermath of the Fukushima Daiichi Nuclear Power Station Accident in 2011. It was the third time to conduct this course and fifteen trainees from eight Asian countries participated in 2014. In response to the requests of past participants, a new exercise 'Joint experiment with high school students' was introduced from 2014 to provide an international learning experience for the course participants and the local Japanese students by jointly conducting radiation related exercises. A new learning material was also developed in 2014 to help participants to study the basics of radiation in English. All the course activities including the details of preparatory process and course evaluation were described in this report. (author)

  8. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    Science.gov (United States)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At GOMAC 2007, we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art memory technologies. This included FLASH non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs). In this presentation, we extend this discussion in device packaging and complexity as well as single event upset (SEU) mechanisms using several technology areas as examples including: system-on-a-chip (SOC) devices and photonic or fiber optic systems. The underlying goal is intended to provoke thought for understanding the limitations and interpretation of radiation testing results.

  9. Mutiple simultaneous event model for radiation carcinogenesis

    International Nuclear Information System (INIS)

    Baum, J.W.

    1979-01-01

    Theoretical Radiobiology and Risk Estimates includes reports on: Multiple Simultaneous Event Model for Radiation Carcinogenesis; Cancer Risk Estimates and Neutron RBE Based on Human Exposures; A Rationale for Nonlinear Dose Response Functions of Power Greater or Less Than One; and Rationale for One Double Event in Model for Radiation Carcinogenesis

  10. Comparison of curricula in radiation technology in the field of radiotherapy in selected European Union countries

    International Nuclear Information System (INIS)

    Janaszczyk, A.; Bogusz-Czerniewicz, M.

    2011-01-01

    Background: Radiation technology is a discipline of medical science which deals with diagnostics, imaging and radiotherapy, that is treatment by ionizing radiation. Aim: To present and compare the existing curricula of radiation technology in selected EU countries. Materials and methods: The research work done for the purpose of the comparative analysis was based on the methods of diagnostic test and document analysis. Results: The comparison of curricula in selected countries, namely Austria, France, the Netherlands and Poland, showed that admission criteria to radiation technology courses are varied and depend on regulations of respective Ministries of Health. The most restrictive conditions, including written tests in biology, chemistry and physics, and psychometric test, are those in France. Contents of basic and specialist subject groups are very similar in all the countries. The difference is in the number of ECT points assigned to particular subjects and the number of course hours offered. The longest practical training is provided in the Netherlands and the shortest one in Poland. The duration of studies in the Netherlands is 4 years, while in Poland it is 3 years. Austria is the only country to offer extra practical training in quality management. Conclusion: Graduates in the compared EU countries have similar level of qualifications in the fields of operation of radiological equipment, radiotherapy, nuclear medicine, foreign language and specialist terminology in the field of medical and physical sciences, general knowledge of medical and physical sciences, and detailed knowledge of radiation technology. (authors)

  11. Dictionary of terms and definitions used in radiation protection technology

    International Nuclear Information System (INIS)

    1975-01-01

    The dictionary contains terms and definitions used in radiation protection technology. This document is developed by the Section of CMEA Secretariat on peaceful atomic energy application on the basis of materials provided by member states. The dictionary contains versions of terms and definitions in the languages of member states. Total number of terms is 94. (I.T.)

  12. Business and technology integrated model

    OpenAIRE

    Noce, Irapuan; Carvalho, João Álvaro

    2011-01-01

    There is a growing interest in business modeling and architecture in the areas of management and information systems. One of the issues in the area is the lack of integration between the modeling techniques that are employed to support business development and those used for technology modeling. This paper proposes a modeling approach that is capable of integrating the modeling of the business and of the technology. By depicting the business model, the organization structure and the technolog...

  13. Stochastic radiative transfer model for mixture of discontinuous vegetation canopies

    International Nuclear Information System (INIS)

    Shabanov, Nikolay V.; Huang, D.; Knjazikhin, Y.; Dickinson, R.E.; Myneni, Ranga B.

    2007-01-01

    Modeling of the radiation regime of a mixture of vegetation species is a fundamental problem of the Earth's land remote sensing and climate applications. The major existing approaches, including the linear mixture model and the turbid medium (TM) mixture radiative transfer model, provide only an approximate solution to this problem. In this study, we developed the stochastic mixture radiative transfer (SMRT) model, a mathematically exact tool to evaluate radiation regime in a natural canopy with spatially varying optical properties, that is, canopy, which exhibits a structured mixture of vegetation species and gaps. The model solves for the radiation quantities, direct input to the remote sensing/climate applications: mean radiation fluxes over whole mixture and over individual species. The canopy structure is parameterized in the SMRT model in terms of two stochastic moments: the probability of finding species and the conditional pair-correlation of species. The second moment is responsible for the 3D radiation effects, namely, radiation streaming through gaps without interaction with vegetation and variation of the radiation fluxes between different species. We performed analytical and numerical analysis of the radiation effects, simulated with the SMRT model for the three cases of canopy structure: (a) non-ordered mixture of species and gaps (TM); (b) ordered mixture of species without gaps; and (c) ordered mixture of species with gaps. The analysis indicates that the variation of radiation fluxes between different species is proportional to the variation of species optical properties (leaf albedo, density of foliage, etc.) Gaps introduce significant disturbance to the radiation regime in the canopy as their optical properties constitute major contrast to those of any vegetation species. The SMRT model resolves deficiencies of the major existing mixture models: ignorance of species radiation coupling via multiple scattering of photons (the linear mixture model

  14. A survey of clinical performance skills requirements in medical radiation technology

    International Nuclear Information System (INIS)

    Rowntree, P.A.; Veitch, J.D.

    1993-01-01

    This paper outlines the reasons behind carry out a study of clinical performance skills requirements and the method being used to gather data. It describes the changes which have occurred in radiographer education in Queensland, the broader impact brought about by changes in professional body requirements and the development of a Competency based Standards Document for the profession. The paper provides examples of the survey design and layout being developed for distribution to third year students in the Medical Imaging Technology major of the Bachelor of Applied Science (Medical Radiation Technology) Queensland University of Technology, graduates and clinical departments in Queensland. 1 tab., 1 fig

  15. SRADLIB: A C Library for Solar Radiation Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui, J. L. [Ciemat. Madrid (Spain)

    2000-07-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As results of this study and revision, a C library (SRADLIB) is presented as a key for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs.

  16. SRADLIB: A C Library for Solar Radiation Modelling

    International Nuclear Information System (INIS)

    Balenzategui, J. L.

    1999-01-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As result of this study and revision, a C library (SRADLIB) is presented as a key tool for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. Some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs

  17. The key network communication technology in large radiation image cooperative process system

    International Nuclear Information System (INIS)

    Li Zheng; Kang Kejun; Gao Wenhuan; Wang Jingjin

    1998-01-01

    Large container inspection system (LCIS) based on radiation imaging technology is a powerful tool for the customs to check the contents inside a large container without opening it. An image distributed network system is composed of operation manager station, image acquisition station, environment control station, inspection processing station, check-in station, check-out station, database station by using advanced network technology. Mass data, such as container image data, container general information, manifest scanning data, commands and status, must be on-line transferred between different stations. Advanced network communication technology is presented

  18. Status of the Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). 10-minute averages of these data formed an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and 2002. These data were then averaged to provide a differential flux spectrum at 0.174, 0.304, 0.527, 1.5, 2.0, 11.0, and 31 MeV in the jovian equatorial plane as a function of radial distance. This omni-directional, equatorial model was combined with the original Divine model of jovian electron radiation to yield estimates of the out-of-plane radiation environment. That model, referred to here as the Galileo Interim Radiation Electron (or GIRE) model, was then used to calculate the Europa mission dose for an average and a 1-sigma worst-case situation. The prediction of the GIRE model is about a factor of 2 lower than the Divine model estimate over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeds the Divine model by about 50% for thicker shielding. The model, the steps leading to its creation, and relevant issues and concerns are discussed. While work remains to be done, the GIRE model clearly represents a significant step forward in the study of the jovian radiation environment, and it is a useful and valuable tool for estimating that environment for future space missions.

  19. Infrared radiation models for atmospheric ozone

    Science.gov (United States)

    Kratz, David P.; Ces, Robert D.

    1988-01-01

    A hierarchy of line-by-line, narrow-band, and broadband infrared radiation models are discussed for ozone, a radiatively important atmospheric trace gas. It is shown that the narrow-band (Malkmus) model is in near-precise agreement with the line-by-line model, thus providing a means of testing narrow-band Curtis-Godson scaling, and it is found that this scaling procedure leads to errors in atmospheric fluxes of up to 10 percent. Moreover, this is a direct consequence of the altitude dependence of the ozone mixing ratio. Somewhat greater flux errors arise with use of the broadband model, due to both a lesser accuracy of the broadband scaling procedure and to inherent errors within the broadband model, despite the fact that this model has been tuned to the line-by-line model.

  20. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  1. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  2. Material Protection, Accounting, and Control Technologies (MPACT): Modeling and Simulation Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dunn, Timothy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Durbin, Samual [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); England, Jeff [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lindgren, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meier, David [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-05

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal. This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling. To aid in framing its long-term goal, during FY16, a modeling and simulation roadmap is being developed for three major areas of investigation: (1) radiation transport and sensors, (2) process and chemical models, and (3) shock physics and assessments. For each area, current modeling approaches are described, and gaps and needs are identified.

  3. Future Directions in Medical Physics: Models, Technology, and Translation to Medicine

    Science.gov (United States)

    Siewerdsen, Jeffrey

    The application of physics in medicine has been integral to major advances in diagnostic and therapeutic medicine. Two primary areas represent the mainstay of medical physics research in the last century: in radiation therapy, physicists have propelled advances in conformal radiation treatment and high-precision image guidance; and in diagnostic imaging, physicists have advanced an arsenal of multi-modality imaging that includes CT, MRI, ultrasound, and PET as indispensible tools for noninvasive screening, diagnosis, and assessment of treatment response. In addition to their role in building such technologically rich fields of medicine, physicists have also become integral to daily clinical practice in these areas. The future suggests new opportunities for multi-disciplinary research bridging physics, biology, engineering, and computer science, and collaboration in medical physics carries a strong capacity for identification of significant clinical needs, access to clinical data, and translation of technologies to clinical studies. In radiation therapy, for example, the extraction of knowledge from large datasets on treatment delivery, image-based phenotypes, genomic profile, and treatment outcome will require innovation in computational modeling and connection with medical physics for the curation of large datasets. Similarly in imaging physics, the demand for new imaging technology capable of measuring physical and biological processes over orders of magnitude in scale (from molecules to whole organ systems) and exploiting new contrast mechanisms for greater sensitivity to molecular agents and subtle functional / morphological change will benefit from multi-disciplinary collaboration in physics, biology, and engineering. Also in surgery and interventional radiology, where needs for increased precision and patient safety meet constraints in cost and workflow, development of new technologies for imaging, image registration, and robotic assistance can leverage

  4. Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling

    Science.gov (United States)

    Mölg, Thomas; Cullen, Nicolas J.; Kaser, Georg

    Broadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G) and incoming longwave radiation (L↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff, so G or L↓ can be modelled based on neff derived from measured L↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L↓ increases by 45-65% (depending on altitude) relative to clear-sky L↓. Validation for a 1 year dataset of G and L↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L↓ is measured.

  5. Radiation arteriopathy in the transgenic arteriovenous fistula model.

    Science.gov (United States)

    Lawton, Michael T; Arnold, Christine M; Kim, Yung J; Bogarin, Ernesto A; Stewart, Campbell L; Wulfstat, Amanda A; Derugin, Nikita; Deen, Dennis; Young, William L

    2008-05-01

    The transgenic arteriovenous fistula model, surgically constructed with transgenic mouse aorta interposed in common carotid artery-to-external jugular vein fistulae in nude rats, has a 4-month experimental window because patency and transgenic phenotype are lost over time. We adapted this model to investigate occlusive arteriopathy in brain arteriovenous malformations after radiosurgery by radiating grafted aorta before insertion in the fistula. We hypothesized that high-dose radiation would reproduce the arteriopathy observed clinically within the experimental time window and that deletions of endoglin (ENG) and endothelial nitric oxide synthase (eNOS) genes would modify the radiation response. Radiation arteriopathy in the common carotid arteries of 171 wild-type mice was examined with doses of 25, 80, 120, or 200 Gy (Experiment 1). Radiation arteriopathy in 68 wild-type arteriovenous fistulae was examined histologically and morphometrically with preoperative radiation doses of 0, 25, or 200 Gy (Experiment 2). Radiation arteriopathy in 51 transgenic arteriovenous fistulae (36 ENG and 15 eNOS knock-out fistulae) was examined using preoperative radiation doses of 0, 25, or 200 Gy (Experiment 3). High-dose radiation (200 Gy) of mouse common carotid arteries induced only mild arteriopathy (mean score, 0.66) without intimal hyperplasia and with high mortality (68%). Radiation arteriopathy in wild-type arteriovenous fistulae was severe (mean score, 3.5 at 200 Gy), with intimal hyperplasia and medial disruption at 3 months, decreasing luminal areas with increasing dose, and no mortality. Arteriopathy was robust in transgenic arteriovenous fistulae with ENG +/- and with eNOS +/-, with thick intimal hyperplasia in the former and distinct smooth muscle cell proliferation in the latter. The transgenic arteriovenous fistula model can be adapted to rapidly reproduce radiation arteriopathy observed in resected brain arteriovenous malformations after radiosurgery. High

  6. Radiation processing technology for preparation of fine shaped biomedical materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M.; Yoshida, M.; Asano, M. (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Yamanaka, H. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-06-01

    Radiation processing technology for the preparation of fine shaped biomedical materials was studied from the aspect of a development of the technology and its application. Electron beam irradiation technology was applied to the preparation of fine shaped biomedical materials such as thin polymer films in diagnosis, in which enzyme and antibody were used as a bioactive substance. Electron beam cast-polymerization and electron beam repeat surface-polymerization, that are surface irradiation techniques of homogeneous hydrophilic monomer solution containing enzymes made it possible to form the immobilized antibody films. In this technique, the films with various thicknesses (50-500 [mu]m) were obtained by regulating the electron beam energy. The thin polymer films immobilizing anti-[alpha]-fetoprotein were evaluated from the aspect of immunoagents for diagnosis of liver cancer. (Author).

  7. European dimension of the implementation of the IAEA TC model project 'Upgrading radiation protection infrastructure'

    International Nuclear Information System (INIS)

    Sabol, J.

    2001-01-01

    A comprehensive evaluation carried out by the IAEA during the period 1984-1995 showed that eleven countries in Europe -- Albania, Armenia, Belarus, Bosnia and Herzegovina, Cyprus, Estonia, Georgia, Latvia, Lithuania, the Republic of Moldova, The Former Yugoslav Republic (TFYR) of Macedonia -- did not have a satisfactory system for radiation protection and the safety of radiation sources in accordance with the recommended international requirements. During the past four years, these countries have been participating in a Model Project aimed at upgrading radiation protection infrastructure in the Europe region with special emphasis on the establishment of an effective legal framework for adequate regulatory control of radiation sources and facilities. This paper analyses the results accomplished in the implementation of this project. It presents the main objectives, based on the present achievements for a follow-up programme to be carried out in participating and also in some other Member States with insufficient national infrastructures for assuring adequate safety in nuclear and radiation technologies. (author)

  8. Technology development of p-type microstrip detectors with radiation hard p-spray isolation

    International Nuclear Information System (INIS)

    Pellegrini, G.; Fleta, C.; Campabadal, F.; Diez, S.; Lozano, M.; Rafi, J.M.; Ullan, M.

    2006-01-01

    A technology for the fabrication of p-type microstrip silicon radiation detectors using p-spray implant isolation has been developed at CNM-IMB. The p-spray isolation has been optimized in order to withstand a gamma irradiation dose up to 50 Mrad (Si), which represents the ionization radiation dose expected in the middle region of the SCT-Atlas detector of the future Super-LHC during 10 years of operation. The best technological options for the p-spray implant were found by using a simulation software package and dedicated calibration runs. Using the optimized technology, detectors have been fabricated in the Clean Room facility of CNM-IMB, and characterized by reverse current and capacitance measurements before and after irradiation. The average full depletion voltage measured on the non-irradiated detectors was V FD =41±3 V, while the leakage current density for the microstrip devices at V FD +20 V was 400 nA/cm 2

  9. Automated 3-D Radiation Mapping

    International Nuclear Information System (INIS)

    Tarpinian, J. E.

    1991-01-01

    This work describes an automated radiation detection and imaging system which combines several state-of-the-art technologies to produce a portable but very powerful visualization tool for planning work in radiation environments. The system combines a radiation detection system, a computerized radiation imaging program, and computerized 3-D modeling to automatically locate and measurements are automatically collected and imaging techniques are used to produce colored, 'isodose' images of the measured radiation fields. The isodose lines from the images are then superimposed over the 3-D model of the area. The final display shows the various components in a room and their associated radiation fields. The use of an automated radiation detection system increases the quality of radiation survey obtained measurements. The additional use of a three-dimensional display allows easier visualization of the area and associated radiological conditions than two-dimensional sketches

  10. Individual-based model for radiation risk assessment

    Science.gov (United States)

    Smirnova, O.

    A mathematical model is developed which enables one to predict the life span probability for mammals exposed to radiation. It relates statistical biometric functions with statistical and dynamic characteristics of an organism's critical system. To calculate the dynamics of the latter, the respective mathematical model is used too. This approach is applied to describe the effects of low level chronic irradiation on mice when the hematopoietic system (namely, thrombocytopoiesis) is the critical one. For identification of the joint model, experimental data on hematopoiesis in nonirradiated and irradiated mice, as well as on mortality dynamics of those in the absence of radiation are utilized. The life span probability and life span shortening predicted by the model agree with corresponding experimental data. Modeling results show the significance of ac- counting the variability of the individual radiosensitivity of critical system cells when estimating the radiation risk. These findings are corroborated by clinical data on persons involved in the elimination of the Chernobyl catastrophe after- effects. All this makes it feasible to use the model for radiation risk assessments for cosmonauts and astronauts on long-term missions such as a voyage to Mars or a lunar colony. In this case the model coefficients have to be determined by making use of the available data for humans. Scenarios for the dynamics of dose accumulation during space flights should also be taken into account.

  11. [Technological innovations in radiation oncology require specific quality controls].

    Science.gov (United States)

    Lenaerts, E; Mathot, M

    2014-01-01

    During the last decade, the field of radiotherapy has benefited from major technological innovations and continuously improving treatment efficacy, comfort and safety of patients. This mainly concerns the imaging techniques that allow 4D CT scan recording the respiratory phases, on-board imaging on linear accelerators that ensure perfect positioning of the patient for treatment and irradiation techniques that reduce very significantly the duration of treatment sessions without compromising quality of the treatment plan, including IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc therapy). In this context of rapid technological change, it is the responsibility of medical physicists to regularly and precisely monitor the perfect functioning of new techniques to ensure patient safety. This requires the use of specific quality control equipment best suited to these new techniques. We will briefly describe the measurement system Delta4 used to control individualized treatment plan for each patient treated with VMAT technology.

  12. Study on technology for minimizing radiation risk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Kim, Jin Kyu; Lee, Kang Suk; Kim, Kug Chan; Chun, Ki Chung

    1997-01-01

    Apoptosis, also called programmed cell death to discriminate it from necrosis, is characterized by : chromatin condensation, apoptotic body formation, fragmentation of DNA into oligonucleosome sized pieces, swelling and progressive cell degradation. We examined morphological and biochemical changes of T-lymphocytes following gamma irradiation exposure. The results are followings. (1) Murine lymphocytes have several characteristics : The irradiated cells undergo morphological and biochemical changes characteristic of apoptosis, causing growth delay. (0.01, 0.1, 1.0 Gy) (2) The onset of DNA fragmentation in cells occurs after one more cell divisions. (3) DNA fragmentation in cells occurs in all irradiated group (0.1, 1.0, 2.0, 4.0 Gy, 24 hours following gamma radiation exposure) (4) Apoptotic bodies were detected by confocal microscope with ease when compared with electron microscope. For the developing technology for minimizing radiation damage, the following experimental works have been done. (1) Establishment of experimental system for pre-screening of radioprotectants - Screening of protective substances using TSH bioindicator - Efficacy test of some radioprotective materials (2) TSH bioindicator system can make a scientific role in screening unknown materials for their possible radioprotective effect. (author). 42 refs., 3 tabs., 9 figs.

  13. Study on technology for minimizing radiation risk

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Kim, In Gyu; Kim, Jin Kyu; Lee, Kang Suk; Kim, Kug Chan; Chun, Ki Chung.

    1997-01-01

    Apoptosis, also called programmed cell death to discriminate it from necrosis, is characterized by : chromatin condensation, apoptotic body formation, fragmentation of DNA into oligonucleosome sized pieces, swelling and progressive cell degradation. We examined morphological and biochemical changes of T-lymphocytes following gamma irradiation exposure. The results are followings. 1) Murine lymphocytes have several characteristics : The irradiated cells undergo morphological and biochemical changes characteristic of apoptosis, causing growth delay. (0.01, 0.1, 1.0 Gy) 2) The onset of DNA fragmentation in cells occurs after one more cell divisions. 3) DNA fragmentation in cells occurs in all irradiated group (0.1, 1.0, 2.0, 4.0 Gy, 24 hours following gamma radiation exposure) 4) Apoptotic bodies were detected by confocal microscope with ease when compared with electron microscope. For the developing technology for minimizing radiation damage, the following experimental works have been done. 1) Establishment of experimental system for pre-screening of radioprotectants - Screening of protective substances using TSH bioindicator - Efficacy test of some radioprotective materials 2) TSH bioindicator system can make a scientific role in screening unknown materials for their possible radioprotective effect. (author). 42 refs., 3 tabs., 9 figs

  14. Radiation heat transfer model for the SCDAP code

    International Nuclear Information System (INIS)

    Sohal, M.S.

    1984-01-01

    A radiation heat transfer model has been developed for severe fuel damage analysis which accounts for anisotropic effects of reflected radiation. The model simplifies the view factor calculation which results in significant savings in computational cost with little loss of accuracy. Radiation heat transfer rates calculated by the isotropic and anisotropic models compare reasonably well with those calculated by other models. The model is applied to an experimental nuclear rod bundle during a slow boiloff of the coolant liquid, a situation encountered during a loss of coolant accident with severe fuel damage. At lower temperatures and also lower temperature gradients in the core, the anisotropic effect was not found to be significant

  15. Modeling of the Martian environment for radiation analysis

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Clowdsley, M.S.; Qualls, G.D.; Singleterry, R.C.

    2006-01-01

    A model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) has been developed. Solar modulated primary particles rescaled for conditions at Mars are transported through the Martian atmosphere down to the surface, with altitude and backscattering patterns taken into account. The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g. CO 2 and H 2 O ices) along with its time variations throughout the Martian year. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. This site has been developed to provide the scientific and engineering communities with an interactive site containing a variety of environmental models, shield evaluation codes, and radiation response models to allow a thorough assessment of ionizing radiation risk for current and future space missions

  16. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar trademark wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task

  17. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  18. Proceedings of the national seminar and awareness programme on applications of radioisotopes and radiation technology in industry and health care

    International Nuclear Information System (INIS)

    Durairaj, S.; Madan, V. K.

    2012-01-01

    The National Seminar and Awareness Program on Applications of Radioisotopes and Radiation Technology in Industry and Health care is an important national event to learn about the challenges in the development and proliferation of application of radioisotopes and radiation technologies, and in appreciation of the role of these technologies to the benefit of public at large. This program endeavors to disseminate knowledge about lesser known and widely applied technologies and send the right message to the people for their greater acceptance. Applications of radioisotopes and radiation technology in industry such as oil, gas, chemical, petrochemical, steel, mining, paper, mineral and automobile and health care such as non-invasive diagnosis and treatment of a range of important and common conditions like cancer and cardiovascular diseases and radiation processed polymer containing hydrogel for use for bum dressing, and medical and agricultural products sterilization, have seen a significant growth in our country in the last fifty years. The indigenous capacity for the development and utilization of these technologies must be further strengthened. Papers relevant to INIS are indexed separately

  19. The fourth UNDP/RCA/IAEA/meeting of national co-ordinators for radiation technology. Report

    International Nuclear Information System (INIS)

    1996-01-01

    The objectives of the Meeting were to provide information for the Terminal Report of the joint UNDP/RCA/IAEA project RAS/92/073 and to look into future activities under the Radiation Technology project. The main achievements of this Meeting are: The Meeting reviewed the implementation of all radiation technology sub-projects and agreed that all of them were successful but not yet equally developed among RCA Member States. The Meeting recommended to have three projects carried out in the form of Co-ordinated Research Programs and requested the IAEA to find new ways to implement the organized in RCA Member States to carry these CRPs out. Figs, tabs

  20. Atmospheric radiative transfer modeling: a summary of the AER codes

    Energy Technology Data Exchange (ETDEWEB)

    Clough, S.A. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Shephard, M.W. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)]. E-mail: mshephar@aer.com; Mlawer, E.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Delamere, J.S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Iacono, M.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Cady-Pereira, K. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Boukabara, S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Brown, P.D. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)

    2005-03-01

    The radiative transfer models developed at AER are being used extensively for a wide range of applications in the atmospheric sciences. This communication is intended to provide a coherent summary of the various radiative transfer models and associated databases publicly available from AER (http://www.rtweb.aer.com). Among the communities using the models are the remote sensing community (e.g. TES, IASI), the numerical weather prediction community (e.g. ECMWF, NCEP GFS, WRF, MM5), and the climate community (e.g. ECHAM5). Included in this communication is a description of the central features and recent updates for the following models: the line-by-line radiative transfer model (LBLRTM); the line file creation program (LNFL); the longwave and shortwave rapid radiative transfer models, RRTM{sub L}W and RRTM{sub S}W; the Monochromatic Radiative Transfer Model (MonoRTM); the MT{sub C}KD Continuum; and the Kurucz Solar Source Function. LBLRTM and the associated line parameter database (e.g. HITRAN 2000 with 2001 updates) play a central role in the suite of models. The physics adopted for LBLRTM has been extensively analyzed in the context of closure experiments involving the evaluation of the model inputs (e.g. atmospheric state), spectral radiative measurements and the spectral model output. The rapid radiative transfer models are then developed and evaluated using the validated LBLRTM model.

  1. First Results of Modeling Radiation Belt Electron Dynamics with the SAMI3 Plasmasphere Model

    Science.gov (United States)

    Komar, C. M.; Glocer, A.; Huba, J.; Fok, M. C. H.; Kang, S. B.; Buzulukova, N.

    2017-12-01

    The radiation belts were one of the first discoveries of the Space Age some sixty years ago and radiation belt models have been improving since the discovery of the radiation belts. The plasmasphere is one region that has been critically important to determining the dynamics of radiation belt populations. This region of space plays a critical role in describing the distribution of chorus and magnetospheric hiss waves throughout the inner magnetosphere. Both of these waves have been shown to interact with energetic electrons in the radiation belts and can result in the energization or loss of radiation belt electrons. However, radiation belt models have been historically limited in describing the distribution of cold plasmaspheric plasma and have relied on empirically determined plasmasphere models. Some plasmasphere models use an azimuthally symmetric distribution of the plasmasphere which can fail to capture important plasmaspheric dynamics such as the development of plasmaspheric drainage plumes. Previous work have coupled the kinetic bounce-averaged Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model used to model ring current and radiation belt populations with the Block-adaptive Tree Solar wind Roe-type Upwind Scheme (BATSRUS) global magnetohydrodynamic model to self-consistently obtain the magnetospheric magnetic field and ionospheric potential. The present work will utilize this previous coupling and will additionally couple the SAMI3 plasmasphere model to better represent the dynamics on the plasmasphere and its role in determining the distribution of waves throughout the inner magnetosphere. First results on the relevance of chorus, hiss, and ultralow frequency waves on radiation belt electron dynamics will be discussed in context of the June 1st, 2013 storm-time dropout event.

  2. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...

  3. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  4. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  5. Data driven modelling of vertical atmospheric radiation

    International Nuclear Information System (INIS)

    Antoch, Jaromir; Hlubinka, Daniel

    2011-01-01

    In the Czech Hydrometeorological Institute (CHMI) there exists a unique set of meteorological measurements consisting of the values of vertical atmospheric levels of beta and gamma radiation. In this paper a stochastic data-driven model based on nonlinear regression and on nonhomogeneous Poisson process is suggested. In the first part of the paper, growth curves were used to establish an appropriate nonlinear regression model. For comparison we considered a nonhomogeneous Poisson process with its intensity based on growth curves. In the second part both approaches were applied to the real data and compared. Computational aspects are briefly discussed as well. The primary goal of this paper is to present an improved understanding of the distribution of environmental radiation as obtained from the measurements of the vertical radioactivity profiles by the radioactivity sonde system. - Highlights: → We model vertical atmospheric levels of beta and gamma radiation. → We suggest appropriate nonlinear regression model based on growth curves. → We compare nonlinear regression modelling with Poisson process based modeling. → We apply both models to the real data.

  6. Non-food radiation technology applications of food commodities

    International Nuclear Information System (INIS)

    Mastro, N.L. Del

    2004-01-01

    At present food irradiation is considered an effective, broad-spectrum, residue-free, mature technology. Expertise in irradiation processing exists in a network of centers around the world, some of them in developing countries like Brazil and Argentina South American region. The use of renewable resources coming from crops products is becoming attractive also for non-food applications. In this sense, a complete new approach of higher aggregated value of some commodities like soy and maize, for example, is as renewable resources to create functional polymers, mainly for innovative biodegradable packaging solutions. There is a need of innovative approaches to produce edible/biodegradable materials from natural polymeric macromolecules with adequate properties. Incipient researches pointed to the successful use of irradiation processing to obtain or modify different types of biodegradable/edible plastic materials. This new radiation technology application is particularly important for countries that are leading producers of soybean and other commodities. (Author)

  7. Non-food radiation technology applications of food commodities

    Energy Technology Data Exchange (ETDEWEB)

    Mastro, N.L. Del . [Center of Radiation Technology, Energy and Nuclear Research Institute (IPEN-CNEN/SP), Travessa R, 400 Cidade Universitaria, 05508-900 Sao Paulo (Brazil)

    2004-07-01

    At present food irradiation is considered an effective, broad-spectrum, residue-free, mature technology. Expertise in irradiation processing exists in a network of centers around the world, some of them in developing countries like Brazil and Argentina South American region. The use of renewable resources coming from crops products is becoming attractive also for non-food applications. In this sense, a complete new approach of higher aggregated value of some commodities like soy and maize, for example, is as renewable resources to create functional polymers, mainly for innovative biodegradable packaging solutions. There is a need of innovative approaches to produce edible/biodegradable materials from natural polymeric macromolecules with adequate properties. Incipient researches pointed to the successful use of irradiation processing to obtain or modify different types of biodegradable/edible plastic materials. This new radiation technology application is particularly important for countries that are leading producers of soybean and other commodities. (Author)

  8. International symposium on radiation technology for conservation of the environment. Extended synopses

    International Nuclear Information System (INIS)

    1997-09-01

    This document includes extended synopses of 54 presentations given at the International Symposium on Radiation Technology for the conservation of the Environment held in Zakopane near Cracow), Poland, 8-12 September 1997. Each presentation is separately indexed. Refs, figs, tabs

  9. International symposium on radiation technology for conservation of the environment. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This document includes extended synopses of 54 presentations given at the International Symposium on Radiation Technology for the conservation of the Environment held in Zakopane (near Cracow), Poland, 8-12 September 1997. Each presentation is separately indexed. Refs, figs, tabs.

  10. Development of optical thin film technology for lasers and synchrotron radiation

    International Nuclear Information System (INIS)

    Apparao, K.V.S.R.; Bagchi, T.C.; Sahoo, N.K.

    1985-01-01

    Dielectric multilayer optical thin film devices play an important role not only in the working of lasers but also in different front line research activities using high power lasers and high intensity synchrotron radiation sources. Facilities are set up recently in the Spectroscopy Division to develop the optical thin film design and fabrication technologies indigeneously. Using the facilities thin film devices for different laser applications working in the wavelength range from 300 nm to 1064 nm were developed. Different technical aspects involved in the technology development are briefly described. (author)

  11. Rise of radiation protection: science, medicine and technology in society, 1896--1935

    International Nuclear Information System (INIS)

    Serwer, D.P.

    1976-12-01

    The history of radiation protection before World War II is treated as a case study of interactions between science, medicine, and technology. The fundamental concerns include the following: are how medical and technical decisions with social impacts are made under conditions of uncertainty; how social pressures are brought to bear on the development of science, medicine, and technology; what it means for medicine or technology to be scientific; why professional groups seek international cooperation; and the roles various professionals and organizations play in controlling the harmful side effects of science, medicine, and technology. These questions are addressed in the specific context of protection from the biological effects of x-rays and radium in medical use

  12. Rise of radiation protection: science, medicine and technology in society, 1896--1935

    Energy Technology Data Exchange (ETDEWEB)

    Serwer, D.P.

    1976-12-01

    The history of radiation protection before World War II is treated as a case study of interactions between science, medicine, and technology. The fundamental concerns include the following: are how medical and technical decisions with social impacts are made under conditions of uncertainty; how social pressures are brought to bear on the development of science, medicine, and technology; what it means for medicine or technology to be scientific; why professional groups seek international cooperation; and the roles various professionals and organizations play in controlling the harmful side effects of science, medicine, and technology. These questions are addressed in the specific context of protection from the biological effects of x-rays and radium in medical use.

  13. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Potter, G.L.; Corsetti, L.; Slingo, J.M.

    1993-02-01

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  14. Radiation budget measurement/model interface research

    Science.gov (United States)

    Vonderhaar, T. H.

    1981-01-01

    The NIMBUS 6 data were analyzed to form an up to date climatology of the Earth radiation budget as a basis for numerical model definition studies. Global maps depicting infrared emitted flux, net flux and albedo from processed NIMBUS 6 data for July, 1977, are presented. Zonal averages of net radiation flux for April, May, and June and zonal mean emitted flux and net flux for the December to January period are also presented. The development of two models is reported. The first is a statistical dynamical model with vertical and horizontal resolution. The second model is a two level global linear balance model. The results of time integration of the model up to 120 days, to simulate the January circulation, are discussed. Average zonal wind, meridonal wind component, vertical velocity, and moisture budget are among the parameters addressed.

  15. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Demirhan, Haydar

    2014-01-01

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has

  16. Summary of the Manufacture, Testing and Model Validation of a Full-Scale Radiator for Fission Surface Power Applications

    Science.gov (United States)

    Ellis, David L.; Calder, James; Siamidis, John

    2011-01-01

    A full-scale radiator for a lunar fission surface power application was manufactured by Material innovations, Inc., for the NASA Glenn Research Center. The radiator was designed to reject 6 kWt with an inlet water temperature of 400 K and a water mass flow rate of 0.5 kg/s. While not flight hardware, the radiator incorporated many potential design features and manufacturing techniques for future flight hardware. The radiator was tested at NASA Glenn Research Center for heat rejection performance. The results showed that the radiator design was capable of rejecting over 6 kWt when operating at the design conditions. The actual performance of the radiator as a function of operational manifolds, inlet water temperature and facility sink temperature was compared to the predictive model developed by NASA Glenn Research Center. The results showed excellent agreement with the model with the actual average face sheet temperature being within 1% of the predicted value. The results will be used in the design and production of NASA s next generation fission power heat rejection systems. The NASA Glenn Research Center s Technology Demonstration Unit will be the first project to take advantage of the newly developed manufacturing techniques and analytical models.

  17. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  18. Gamma radiation influence on technological characteristics of wheat flour

    Science.gov (United States)

    Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.

    2012-08-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.

  19. Emerging Radiation Health-Risk Mitigation Technologies

    International Nuclear Information System (INIS)

    Wilson, J.W.; Cucinotta, F.A.; Schimmerling, W.

    2004-01-01

    Past space missions beyond the confines of the Earth's protective magnetic field have been of short duration and protection from the effects of solar particle events was of primary concern. The extension of operational infrastructure beyond low-Earth orbit to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of Galactic Cosmic Rays (GCR). There are significant challenges in providing protection from the long-duration exposure to GCR: the human risks to the exposures are highly uncertain and safety requirements places unreasonable demands in supplying sufficient shielding materials in the design. A vigorous approach to future radiation health-risk mitigation requires a triage of techniques (using biological and technical factors) and reduction of the uncertainty in radiation risk models. The present paper discusses the triage of factors for risk mitigation with associated materials issues and engineering design methods

  20. Current External Beam Radiation Therapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Liu, Chihray; Li, Jonathan G.

    2008-01-01

    The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this 'one-size-fits-all' prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes

  1. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  2. Design and Modeling of a Variable Heat Rejection Radiator

    Science.gov (United States)

    Miller, Jennifer R.; Birur, Gajanana C.; Ganapathi, Gani B.; Sunada, Eric T.; Berisford, Daniel F.; Stephan, Ryan

    2011-01-01

    Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads

  3. Modeling Internal Radiation Therapy

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Theo E.; Pellegrini, M.; Fred, A.; Filipe, J.; Gamboa, H.

    2011-01-01

    A new technique is described to model (internal) radiation therapy. It is founded on morphological processing, in particular distance transforms. Its formal basis is presented as well as its implementation via the Fast Exact Euclidean Distance (FEED) transform. Its use for all variations of internal

  4. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    International Nuclear Information System (INIS)

    FJELDLY, T.A.; DENG, Y.; SHUR, M.S.; HJALMARSON, HAROLD P.; MUYSHONDT, ARNOLDO

    2000-01-01

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p

  5. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    2000-01-01

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  6. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  7. Radiation oncology - Linking technology and biology in the treatment of cancer

    International Nuclear Information System (INIS)

    Coleman, C. Norman

    2002-01-01

    Technical advances in radiation oncology including CT-simulation, 3D-conformal and intensity-modulated radiation therapy (IMRT) delivery techniques, and brachytherapy have allowed greater treatment precision and dose escalation. The ability to intensify treatment requires the identification of the critical targets within the treatment field, recognizing the unique biology of tumor, stroma and normal tissue. Precision is technology based while accuracy is biologically based. Therefore, the intensity of IMRT will undoubtedly mean an increase in both irradiation dose and the use of biological agents, the latter considered in the broadest sense. Radiation oncology has the potential and the opportunity to provide major contributions to the linkage between molecular and functional imaging, molecular profiling and novel therapeutics for the emerging molecular targets for cancer treatment. This process of 'credentialing' of molecular targets will require multi disciplinary imaging teams, clinicians and basic scientists. Future advances will depend on the appropriate integration of biology into the training of residents, continuing post graduate education, participation in innovative clinical research and commitment to the support of basic research as an essential component of the practice of radiation oncology

  8. On a model-based approach to radiation protection

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    2002-01-01

    There is a preoccupation with linearity and absorbed dose as the basic quantifiers of radiation hazard. An alternative is the fluence approach, whereby radiation hazard may be evaluated, at least in principle, via an appropriate action cross section. In order to compare these approaches, it may be useful to discuss them as quantitative descriptors of survival and transformation-like endpoints in cell cultures in vitro - a system thought to be relevant to modelling radiation hazard. If absorbed dose is used to quantify these biological endpoints, then non-linear dose-effect relations have to be described, and, e.g. after doses of densely ionising radiation, dose-correction factors as high as 20 are required. In the fluence approach only exponential effect-fluence relationships can be readily described. Neither approach alone exhausts the scope of experimentally observed dependencies of effect on dose or fluence. Two-component models, incorporating a suitable mixture of the two approaches, are required. An example of such a model is the cellular track structure theory developed by Katz over thirty years ago. The practical consequences of modelling radiation hazard using this mixed two-component approach are discussed. (author)

  9. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    Science.gov (United States)

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  10. Environmental Radiation Effects on Mammals A Dynamical Modeling Approach

    CERN Document Server

    Smirnova, Olga A

    2010-01-01

    This text is devoted to the theoretical studies of radiation effects on mammals. It uses the framework of developed deterministic mathematical models to investigate the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems including hematopoiesis, small intestine and humoral immunity, as well as on the development of autoimmune diseases. Thus, these models can contribute to the development of the system and quantitative approaches in radiation biology and ecology. This text is also of practical use. Its modeling studies of the dynamics of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employment of the developed models in the investigation and prediction of radiation effects on these hematopoietic lines. These models, as well as the properly identified models of other vital body systems, could provide a better understanding of the radiation risks to health. The modeling predictions will enable the implementation of more ef...

  11. Radiation therapy physics

    CERN Document Server

    1995-01-01

    The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.

  12. The analysis on the basic technology and radiation induced voltaic mechanism for nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, B. O.; Min, B. T.; Kang, H. Y.; Kim, B. H.; Park, J. H.; Seo, H. S

    2000-12-01

    Present study is for nuclear battery technology directly converting radiation energy to electricity among various nuclear energy, and it is anticipated that an interest in direct conversion of nuclear energy into electricity shall be increased as the conversion efficiency enhances. The battery should promise cheap, reliable power from a package small and light enough to be mobile, and with energy density great enough for use as a space based power supply. Various radiation-electricity conversion mechanism so far have been reported since G.J. Moseley reported the operation of a high-voltage nuclear battery using radium. The most important conversion mechanisms are RTG (Radioisotope Thermoelectric Generator) converting the heat produced from radioisotope to electricity using the temperature difference, and NRG (Nuclear Resonance Generator) using free electrons from the collision between {alpha}, {beta}rays and copper coil. It is well known that RTG and NRG mechanisms are most practical way because their efficiencies high. The basic technology on radiation-electricity conversion mechanism, interaction mechanism between {beta} ray and material, shielding for {beta} ray, and technical backgrounds and a state of the art for RTG and NRG technologies, are analyzed in this report. Basic data on the conceptual design for the prototype of nuclear battery are prepared.

  13. The analysis on the basic technology and radiation induced voltaic mechanism for nuclear battery

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B. O.; Min, B. T.; Kang, H. Y.; Kim, B. H.; Park, J. H.; Seo, H. S.

    2000-12-01

    Present study is for nuclear battery technology directly converting radiation energy to electricity among various nuclear energy, and it is anticipated that an interest in direct conversion of nuclear energy into electricity shall be increased as the conversion efficiency enhances. The battery should promise cheap, reliable power from a package small and light enough to be mobile, and with energy density great enough for use as a space based power supply. Various radiation-electricity conversion mechanism so far have been reported since G.J. Moseley reported the operation of a high-voltage nuclear battery using radium. The most important conversion mechanisms are RTG (Radioisotope Thermoelectric Generator) converting the heat produced from radioisotope to electricity using the temperature difference, and NRG (Nuclear Resonance Generator) using free electrons from the collision between α, βrays and copper coil. It is well known that RTG and NRG mechanisms are most practical way because their efficiencies high. The basic technology on radiation-electricity conversion mechanism, interaction mechanism between β ray and material, shielding for β ray, and technical backgrounds and a state of the art for RTG and NRG technologies, are analyzed in this report. Basic data on the conceptual design for the prototype of nuclear battery are prepared

  14. Risk Management of New Microelectronics for NASA: Radiation Knowledge-base

    Science.gov (United States)

    LaBel, Kenneth A.

    2004-01-01

    Contents include the following: NASA Missions - implications to reliability and radiation constraints. Approach to Insertion of New Technologies Technology Knowledge-base development. Technology model/tool development and validation. Summary comments.

  15. Supporting project on international education and training in cooperated program for Radiation Technology with World Nuclear University

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Nam, Y. M.; Noh, S. P.; Shin, J. Y.

    2010-08-01

    The objective is promote national status and potential of Nuclear radiation industry, and take a world-wide leading role in radiation industry, by developing and hosting the first WNU Radiation Technology School. RI School (World Nuclear University Radioisotope School) is the three-week program designed to develop and inspire future international leaders in the field of radioisotope for the first time. The project would enable promote abilities of radioactive isotopes professions, and to build the human network with future leaders in the world-wide nuclear and radiation field. Especially by offering opportunity to construct human networks between worldwide radiation field leaders of next generation, intangible assets and pro-Korean human networks are secured among international radiation industry personnel. This might enhance the power and the status of Korean radiation industries, and establish the fundamental base for exporting of radiation technology and its products. We developed the performance measurement method for the school. This shows that 2010 WNU RI School was the first training program focusing on the radioisotope and very useful program for the participants in view of knowledge management and strengthening personal abilities. Especially, the experiences and a human network with world-wide future-leaders in radiation field are most valuable asset. It is expected that the participants could this experience and network developed in the program as a stepping stone toward the development of Korea's nuclear and radiation industry

  16. Perspectives and problems of application of the effects of ionizing radiation in water treatment technology in Czechoslovakia

    International Nuclear Information System (INIS)

    Vacek, K.

    1978-01-01

    Investigations of the possibilities of the utilization of physico-chemical and biological effects of ionizing radiation in water treatment technology has been carried out in Czechoslovakia since 1976. In the area of water sources the radiation recovery of wells clogged with Fe(III) hydroxyoxides as a result of activity of some microorganism begins to be used. Other possible methods of the application of ionizing radiation as increase of disinfection efficiency of chlorination during irradiation, radiation deodorization and discoloration of drinking water are not utilized for economic reasons. In the area of waste water the radiation destruction of solution of some dyestuffs in the presence of charcoal was investigated. This process is complicated and cannot compete with current technologies. Radiation hygienization of sewage sludge with their perspective utilization as fertilizers was also investigated. At present a part of sewage sludge is agrotechnically used, yet with various restrictions. Technical and economic analysis showed that hygienization using electron accelerators would be very desirable as soon as renewed hygienic regulations of sludge depositions become valid. (Auth.)

  17. Report on identification of federal radiation issues: To the Federal Coordinating Council for Science, Engineering and Technology

    International Nuclear Information System (INIS)

    1986-03-01

    The Committee on Interagency Radiation Research and Policy Coordination (CIRRPC) was established on April 9, 1984 by the Office of Science and Technology Policy (OSTP) under the authority of the Federal Coordinating Council for Science, Engineering and Technology (FCCSET). It is chaired by OSTP. CIRRPC membership consists of those agencies having specific responsibilities or interest in radiation research and/or policy. CIRRPC has two elements: The Committee itself, consisting of subcabinet and senior policy level representatives, and a Science Panel, consisting of senior radiation scientists from the respective member agencies. The structure and membership of CIRRPC is shown in Figure 2. It was decided at the inception of CIRRPC to identify the radiation issues of concern to the Federal agencies, Congress, and professional societies faced with radiation policy or scientific issues. It was felt that a current list of national radiation issues should be assembled so that CIRRPC could concentrate on these issues and the dividends from CIRRPC's resources could be maximized at the earliest possible time. These issues are listed

  18. Radiation repair models for clinical application.

    Science.gov (United States)

    Dale, Roger G

    2018-02-28

    A number of newly emerging clinical techniques involve non-conventional patterns of radiation delivery which require an appreciation of the role played by radiation repair phenomena. This review outlines the main models of radiation repair, focussing on those which are of greatest clinical usefulness and which may be incorporated into biologically effective dose assessments. The need to account for the apparent "slowing-down" of repair rates observed in some normal tissues is also examined, along with a comparison of the relative merits of the formulations which can be used to account for such phenomena. Jack Fowler brought valuable insight to the understanding of radiation repair processes and this article includes reference to his important contributions in this area.

  19. Computer models for optimizing radiation therapy

    International Nuclear Information System (INIS)

    Duechting, W.

    1998-01-01

    The aim of this contribution is to outline how methods of system analysis, control therapy and modelling can be applied to simulate normal and malignant cell growth and to optimize cancer treatment as for instance radiation therapy. Based on biological observations and cell kinetic data, several types of models have been developed describing the growth of tumor spheroids and the cell renewal of normal tissue. The irradiation model is represented by the so-called linear-quadratic model describing the survival fraction as a function of the dose. Based thereon, numerous simulation runs for different treatment schemes can be performed. Thus, it is possible to study the radiation effect on tumor and normal tissue separately. Finally, this method enables a computer-assisted recommendation for an optimal patient-specific treatment schedule prior to clinical therapy. (orig.) [de

  20. History of International Workshop on Mini-Micro- and Nano- Dosimetry (MMND) and Innovation Technologies in Radiation Oncology (ITRO)

    Science.gov (United States)

    Rosenfeld, Anatoly B.; Zaider, Marco; Yamada, Josh; Zelefsky, Michael J.

    2017-01-01

    The biannual MMND (former MMD) - IPCT workshops was founded in collaboration between the Centre for Medical Radiation Physics, University of Wollongong and the Memorial Sloan Kettering Cancer Center (MSKCC) in 2001 and has become an important international multidisciplinary forum for the discussion of advanced quality assurance (QA) dosimetry technology for radiation therapy and space science, as well as advanced technologies for clinical cancer treatment.

  1. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    OpenAIRE

    Zhou J; Zamdborg L; Sebastian E

    2015-01-01

    Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy ...

  2. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites

  3. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  4. Developing a new solar radiation estimation model based on Buckingham theorem

    Science.gov (United States)

    Ekici, Can; Teke, Ismail

    2018-06-01

    While the value of solar radiation can be expressed physically in the days without clouds, this expression becomes difficult in cloudy and complicated weather conditions. In addition, solar radiation measurements are often not taken in developing countries. In such cases, solar radiation estimation models are used. Solar radiation prediction models estimate solar radiation using other measured meteorological parameters those are available in the stations. In this study, a solar radiation estimation model was obtained using Buckingham theorem. This theory has been shown to be useful in predicting solar radiation. In this study, Buckingham theorem is used to express the solar radiation by derivation of dimensionless pi parameters. This derived model is compared with temperature based models in the literature. MPE, RMSE, MBE and NSE error analysis methods are used in this comparison. Allen, Hargreaves, Chen and Bristow-Campbell models in the literature are used for comparison. North Dakota's meteorological data were used to compare the models. Error analysis were applied through the comparisons between the models in the literature and the model that is derived in the study. These comparisons were made using data obtained from North Dakota's agricultural climate network. In these applications, the model obtained within the scope of the study gives better results. Especially, in terms of short-term performance, it has been found that the obtained model gives satisfactory results. It has been seen that this model gives better accuracy in comparison with other models. It is possible in RMSE analysis results. Buckingham theorem was found useful in estimating solar radiation. In terms of long term performances and percentage errors, the model has given good results.

  5. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  6. Models for Total-Dose Radiation Effects in Non-Volatile Memory

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Philip Montgomery; Wix, Steven D.

    2017-04-01

    The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models and compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.

  7. Knowledge Management in the Development and Use of Radiation Technologies

    International Nuclear Information System (INIS)

    Egorkin, A.V.; Kartashev, E.R.; Sumina, N.A.; Kheteev, M.V.

    2014-01-01

    Preservation and Transfer of Knowledge: Preservation of critical knowledge in institute takes place in three ways: - First, by digitization of scientific, technical, patent and design documentation. This work has already been done by more than 3,000 documents: technical reports, patents, articles and monographs of the Institute employees, periodic collections - works of the Institute ('''Radiation Technology'' and ''Problems of Atomic Science and Technology'', a series of ''Radiation Technology'' and ''Technical Physics and Automation''), scientific-technical and design documentation for virtually the entire period of the Institute activity. - Secondly, the knowledge and experience of individual specialists transferred to successors (in addition to the reports and publications in scientific and technical literature ), the most effectively – through working together on themes on research and development of methods and technical devices, by preparation of theses and dissertations. In such a way, Knowledge is transferred, for example, in the development in the Institute of gamma-therapeutic complex. - Third, one of the modern methods of preserving knowledge is to create a multimedia product, when expert, the carrier of knowledge, records the information on progress, successes and challenges in the work, methods of its overcoming, information on scientific and methodological and technical achievements throughout his creative life, the necessary data on scientific and technical reference books, which can later help followers to create new methods and devices. Such multimedia product was prepared in the institute on the base of the experience of the development of gamma irradiation installations, in particular for sterilization of medical products

  8. Infrared radiation models for atmospheric methane

    Science.gov (United States)

    Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.

    1986-01-01

    Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.

  9. Modeling of clouds and radiation for development of parameterizations for general circulation models

    International Nuclear Information System (INIS)

    Westphal, D.; Toon, B.; Jensen, E.; Kinne, S.; Ackerman, A.; Bergstrom, R.; Walker, A.

    1994-01-01

    Atmospheric Radiation Measurement (ARM) Program research at NASA Ames Research Center (ARC) includes radiative transfer modeling, cirrus cloud microphysics, and stratus cloud modeling. These efforts are designed to provide the basis for improving cloud and radiation parameterizations in our main effort: mesoscale cloud modeling. The range of non-convective cloud models used by the ARM modeling community can be crudely categorized based on the number of predicted hydrometers such as cloud water, ice water, rain, snow, graupel, etc. The simplest model has no predicted hydrometers and diagnoses the presence of clouds based on the predicted relative humidity. The vast majority of cloud models have two or more predictive bulk hydrometers and are termed either bulk water (BW) or size-resolving (SR) schemes. This study compares the various cloud models within the same dynamical framework, and compares results with observations rather than climate statistics

  10. Impact of state-specific flowfield modeling on atomic nitrogen radiation

    Science.gov (United States)

    Johnston, Christopher O.; Panesi, Marco

    2018-01-01

    A hypersonic flowfield model that treats electronic levels of the dominant afterbody radiator N as individual species is presented. This model allows electron-ion recombination rate and two-temperature modeling improvements, the latter which are shown to decrease afterbody radiative heating by up to 30%. This decrease is primarily due to the addition of the electron-impact excitation energy-exchange term to the energy equation governing the vibrational-electronic electron temperature. This model also allows the validity of the often applied quasi-steady-state (QSS) approximation to be assessed. The QSS approximation is shown to fail throughout most of the afterbody region for lower electronic states, although this impacts the radiative intensity reaching the surface by less than 15%. By computing the electronic-state populations of N within the flowfield solver, instead of through the QSS approximation in the radiation solver, the coupling of nonlocal radiative transition rates to the species continuity equations becomes feasible. Implementation of this higher-fidelity level of coupling between the flowfield and radiation solvers is shown to increase the afterbody radiation by up to 50% relative to the conventional model.

  11. Business Model Discovery by Technology Entrepreneurs

    Directory of Open Access Journals (Sweden)

    Steven Muegge

    2012-04-01

    Full Text Available Value creation and value capture are central to technology entrepreneurship. The ways in which a particular firm creates and captures value are the foundation of that firm's business model, which is an explanation of how the business delivers value to a set of customers at attractive profits. Despite the deep conceptual link between business models and technology entrepreneurship, little is known about the processes by which technology entrepreneurs produce successful business models. This article makes three contributions to partially address this knowledge gap. First, it argues that business model discovery by technology entrepreneurs can be, and often should be, disciplined by both intention and structure. Second, it provides a tool for disciplined business model discovery that includes an actionable process and a worksheet for describing a business model in a form that is both concise and explicit. Third, it shares preliminary results and lessons learned from six technology entrepreneurs applying a disciplined process to strengthen or reinvent the business models of their own nascent technology businesses.

  12. Experimental model of the device for detection of nuclear cycle materials by photoneutron technology

    International Nuclear Information System (INIS)

    Bakalyarov, A.M.; Karetnikov, M.D.; Kozlov, K.N.; Lebedev, V.I.; Meleshko, E.A.; Obinyakov, B.A.; Ostashev, I.E.; Tupikin, N.A.; Yakovlev, G.V.

    2007-01-01

    The inherent complexity of sea container control makes them potentially dangerous for smuggling nuclear materials. The experts believe that only active technologies based on recording the products of induced radiation from sensitive materials might solve the problem. The paper reports on the experimental model of the device on the basis of the electron LINAC U-28 for detection of nuclear materials by photonuclear technology. The preliminary numerical optimization of output units (converter, filter, collimator) for shaping the bremsstrahlung was carried out. The setup of experimental device and initial results of recording the prompt and delayed fission products are discussed

  13. Development of radiation protection and measurement technology -A study on the radiation and environmental safety-

    International Nuclear Information System (INIS)

    Chang, Si Young; Seo, Kyeong Won; Yoon, Seok Cheol; Lee, Tae Yeong; Kim, Bong Hwan; Chung, Deok Yeon; Lee, Ki Chang; Kim, Jong Soo; Yoon, Yeo Chang; Kim, Jang Ryeol; Lee, Sang Yoon

    1994-07-01

    Reference radiation fields which can meet the national and international standard and criteria such as the ANSI N13.11 have been designed, produced and evaluated to maintain the national traceability and reliability of the radiation measurement and to provide precise calibration of the various radiation measuring instruments as well as standard irradiation of the personal dosimeters for the performance evaluation. Existing dose calculation algorithm has been improved to correctly evaluate the shallow dose from the β(Ti-204) + γ(Cs-137) mixed radiation exposure by applying the TLD response correction function newly derived in this study. A mathematical algorithm to calculate the internal dose from inhalation of the uranium isotopes has been developed on the basis of the ICRP-30 respiratory tract model. Detailed performance analysis of the KAERI lung counter has been carried out to participate in the intercomparison of lung dosimetry. A preliminary and basic study on the quantitative method of optimal dose reduction based on the ALARA concept has been performed to technically support and strengthen the national radiation protection infrastructure. (Author)

  14. The main steps on implementation of radiation processing technology - portuguese experience

    International Nuclear Information System (INIS)

    Luisa Botelho, M.

    2010-11-01

    The development of applications of ionizing radiation for Industrial purposes in Portugal began near of 1982 with the support of IAEA under the program of Cooperation and Technical Assistance - project POR/8/002. The IAEA program of Cooperation and Technical Assistance permitted that POR/08/002 took place between 1983 up to 1988. The collaboration of the International Experts and the personnel of National Laboratory of Industrial Engineering and Technology, nowadays Nuclear and Technologic Institute (ITN), allowed the construction of a Co-60 irradiation plant, designed by Tecnabexport (Russia). This facility is located in the ITN campus in Sacavem, Portugal. The main parameters studied prior to the implementation (sitting, design, construction, commissioning, operation, maintenance and foreseen decommission) were planned and executed according with the Portuguese legislation which is based on the International rules (IAEA Safety series) and Directive EURATOM 836/80, nowadays EURATOM 1493/93. A study of the geological stability of the site for future placement of the irradiation facility was done preceding the construction. The facility was constructed under Portuguese responsibility but designed and loaded with Co-60 by the Russian business rganization: Technabexport between 1987 and 1988. The whole process was supervised and approved by the ITN's Nuclear Protection and Safety Department. The Cobalt-60 irradiation facility was initially named GammaPi and later on Radiation Technologies Unit (UTR) and its management was under ITN's authority until 2003. Once established a quality system for the gamma facility, the following phase is to develop, validate and control the sterilization/disinfection process. In this step, a multidisciplinary approach and a continuous dialog with product managers and personnel must be taken into consideration in the experimental design for the correct and effective establishment of irradiation process. The knowledge of product's elements

  15. A passive and active microwave-vector radiative transfer (PAM-VRT) model

    International Nuclear Information System (INIS)

    Yang, Jun; Min, Qilong

    2015-01-01

    A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors. - Highlights: • A novel microwave vector radiative transfer model is developed. • It can simulate passive and active microwave radiative transfer simultaneously. • It can be applied to simulate measurements for different types of viewing geometry. • The accuracy of this model has been validated against other existing models

  16. A Model for Hourly Solar Radiation Data Generation from Daily Solar Radiation Data Using a Generalized Regression Artificial Neural Network

    OpenAIRE

    Khatib, Tamer; Elmenreich, Wilfried

    2015-01-01

    This paper presents a model for predicting hourly solar radiation data using daily solar radiation averages. The proposed model is a generalized regression artificial neural network. This model has three inputs, namely, mean daily solar radiation, hour angle, and sunset hour angle. The output layer has one node which is mean hourly solar radiation. The training and development of the proposed model are done using MATLAB and 43800 records of hourly global solar radiation. The results show that...

  17. Operation of commercially-based microcomputer technology in a space radiation environment

    Science.gov (United States)

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  18. [Comparison of three daily global solar radiation models].

    Science.gov (United States)

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  19. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  20. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  1. Structural Change of Biomolecules and Application of Synergistic Interaction by Radiation

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, J. H.; Yang, J. S.

    2008-12-01

    It is expected that motivation and basic technologies for the future R and D plans can be provided from the results of this study. This study has been done to develop fundamentals for radiation applications based on the existing radiation technology, and to establish technical basis for enhancing efficacy of radiation utilization by studying the simultaneous application of ionizing radiation with another factor. Application of radiation technology together with the existing technologies to enhance the physical, chemical, biological characteristics through structural changes of biomolecules will exert a favorable influence on the creation of de novo scientific and industrial values. A theoretical model for the combined action of ionizing radiation with another factor can make it possible to predict a prior the maximum value of synergistic interaction and the conditions for it. Furthermore, the results of this study give a clues for establishment of fundamental theories associated with positive efficacy of radiation applications

  2. Structural Change of Biomolecules and Application of Synergistic Interaction by Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Kim, J. H.; Yang, J. S.

    2008-12-15

    It is expected that motivation and basic technologies for the future R and D plans can be provided from the results of this study. This study has been done to develop fundamentals for radiation applications based on the existing radiation technology, and to establish technical basis for enhancing efficacy of radiation utilization by studying the simultaneous application of ionizing radiation with another factor. Application of radiation technology together with the existing technologies to enhance the physical, chemical, biological characteristics through structural changes of biomolecules will exert a favorable influence on the creation of de novo scientific and industrial values. A theoretical model for the combined action of ionizing radiation with another factor can make it possible to predict a prior the maximum value of synergistic interaction and the conditions for it. Furthermore, the results of this study give a clues for establishment of fundamental theories associated with positive efficacy of radiation applications

  3. Supporting project on international education and training in cooperated program for Radiation Technology with World Nuclear University

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Duk; Nam, Y. M.; Noh, S. P.; Shin, J. Y. [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    The objective is promote national status and potential of Nuclear radiation industry, and take a world-wide leading role in radiation industry, by developing and hosting the first WNU Radiation Technology School. RI School (World Nuclear University Radioisotope School) is the three-week program designed to develop and inspire future international leaders in the field of radioisotope for the first time. The project would enable promote abilities of radioactive isotopes professions, and to build the human network with future leaders in the world-wide nuclear and radiation field. Especially by offering opportunity to construct human networks between worldwide radiation field leaders of next generation, intangible assets and pro-Korean human networks are secured among international radiation industry personnel. This might enhance the power and the status of Korean radiation industries, and establish the fundamental base for exporting of radiation technology and its products. We developed the performance measurement method for the school. This shows that 2010 WNU RI School was the first training program focusing on the radioisotope and very useful program for the participants in view of knowledge management and strengthening personal abilities. Especially, the experiences and a human network with world-wide future-leaders in radiation field are most valuable asset. It is expected that the participants could this experience and network developed in the program as a stepping stone toward the development of Korea's nuclear and radiation industry.

  4. Prediction of hourly solar radiation with multi-model framework

    International Nuclear Information System (INIS)

    Wu, Ji; Chan, Chee Keong

    2013-01-01

    Highlights: • A novel approach to predict solar radiation through the use of clustering paradigms. • Development of prediction models based on the intrinsic pattern observed in each cluster. • Prediction based on proper clustering and selection of model on current time provides better results than other methods. • Experiments were conducted on actual solar radiation data obtained from a weather station in Singapore. - Abstract: In this paper, a novel multi-model prediction framework for prediction of solar radiation is proposed. The framework started with the assumption that there are several patterns embedded in the solar radiation series. To extract the underlying pattern, the solar radiation series is first segmented into smaller subsequences, and the subsequences are further grouped into different clusters. For each cluster, an appropriate prediction model is trained. Hence a procedure for pattern identification is developed to identify the proper pattern that fits the current period. Based on this pattern, the corresponding prediction model is applied to obtain the prediction value. The prediction result of the proposed framework is then compared to other techniques. It is shown that the proposed framework provides superior performance as compared to others

  5. Results of the activities of the Scientific and Technical Coordination Council for Radiation Technique and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Sille, A K [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow

    1977-03-01

    It is reported on the activities of the Scientific and Technical Coordination Council for Radiation Technique and Technology (STCC-RTT) of the CMEA Permanent Commission for the Peaceful Uses of Atomic Energy according to the programme 1971 to 1975. The STCC-RTT is concerned with technical applications such as radiation sterilization, food irradiation, radiation-induced chemical processes etc. The main tasks which have to be solved within the period from 1976 to 1980 are outlined.

  6. Business Models and Technological Innovation

    OpenAIRE

    Baden-Fuller, Charles; Haefliger, Stefan

    2013-01-01

    Business models are fundamentally linked with technological innovation, yet the business model construct is essentially separable from technology. We define the business model as a system that solves the problem of identifying who is (or are) the customer(s), engaging with their needs, delivering satisfaction, and monetizing the value. The framework depicts the business model system as a model containing cause and effect relationships, and it provides a basis for classification. We formulate ...

  7. Radiation source states on-line supervision system design and implementation based on RFID technology

    International Nuclear Information System (INIS)

    Yang Binhua; Ling Qiu; Yin Guoli; Yang Kun; Wan Xueping; Wang Kan

    2011-01-01

    It puts forward radiation source states on-line monitoring resolution based on RFID technology. Firstly, the system uses RFID in real-time transmission of the radiation dose rate, and monitors the radiation source states and dose rate of the surrounding environment on-line. Then it adopts regional wireless networking mode to construct enterprise level monitoring network, which resolves long-distance wiring problems. And then it uses GPRS wireless to transport the real-time data to the monitoring center and the government supervision department, By adopting randomly dynamic cording in display update every day, it strengthens the supervision of the radiation source. At last this system has been successful applied to a thickness gauge project, which verifies the feasibility and practicality is good. (authors)

  8. Testing the assessment of new radiation oncology technology and treatments framework using the evaluation of post-prostatectomy radiotherapy techniques

    International Nuclear Information System (INIS)

    Duchesne, Gillian M.; Haworth, Annette; Hornby, Colin; Bone, Eric; Carter, Hannah; Martin, Andrew; Ebert, Martin A.; Gagliardi, Frank; Gibbs, Adrian; Sidhom, Mark; Wood, Maree; Jackson, Michael

    2016-01-01

    We tested the ability of the Assessment of New Radiation Oncology Technology and Treatments framework to determine the clinical efficacy and safety of intensity-modulated radiation therapy (IMRT) compared with 3-dimensional radiation therapy (3DCRT) for post-prostatectomy radiation therapy (PPRT) to support its timely health economic evaluation. Treatment plans produced using FROGG guidelines provided dosimetry parameters for both techniques at 64 Gy and 70 Gy and were also used to model early and late outcome probabilities. Clinical parameters were derived from early toxicity and quality of life patient data, systematic literature review and expert opinion. Dosimetry parameters were correlated with the measures of clinical efficacy and safety. Data from two patient cohorts (29 and 27 respectively) were collected within the project timeframe, providing evidence for acute toxicity and quality of life, and dosimetric comparisons. Relative rates of tumour control probability (TCP) and normal tissue control probability (NTCP) modelling were readily derived from the planning exercise and demonstrated advantages in uncomplicated TCP for IMRT over 3DCRT, predominantly due to normal tissue sparing. The safety of IMRT delivery was demonstrated with TCP uncompromised by IMRT protocol violations, which achieved rectal sparing only by reducing minimum target dose and coverage. Sources of desk-top and patient-based evidence were successfully used to demonstrate potential improved clinical efficacy and safety of applying dose escalation using IMRT instead of 3DCRT in PPRT.

  9. In-vivo models for radiation mitigator agents

    International Nuclear Information System (INIS)

    Macchiarini, Francesca

    2014-01-01

    The US Department of Health and Human Services assigned the National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), with the responsibility to identify, characterize and develop new medical countermeasure (MCM) products against radiological and nuclear attacks that may cause-a public health emergency. MCMs must be developed within the criteria of the U.S. Food and Drug Administration's (FDA) 'animal rule' (AR) which requires the design and conduct of validated animal models to define the major sequelae of the Acute Radiation Syndrome (ARS) and Delayed Effects of Acute Radiation Exposure (DEARE). To this end, the NIAID-funded Product Development Support Services Program has established an ARS/DEARE animal model research platform which includes several basic animal models for hematopoietic and gastrointestinal ARS in the mouse and nonhuman primate (NHP) using total-body irradiation (TBI), whole-thorax lung irradiation (WTLI), or a multi-organ dysfunction model defined by partial-body irradiation with 5% bone marrow sparing (PBI/ BM5). These specific models will be discussed as well as ongoing observational studies NIAID is funding to assess the long-term effects of radiation in NHPs and A-Bomb survivors. (author)

  10. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  11. Perspectives of radiological protection facing the development of new medical technologies with ionizing radiations

    International Nuclear Information System (INIS)

    Arranz, L.

    1993-01-01

    The development of medical technologies with ionizing radiations is always showing a parallel effort on risks control. These technologies are a safe tool for accurate diagnosis and the elaboration of effective treatments. However it is not foreseen to achieve a decrease of the equivalent effective annual dose person due to medical irradiation (1.06 m Sv for OECD countries), because of the population growing and aging

  12. Sigmoidal response model for radiation risk

    International Nuclear Information System (INIS)

    Kondo, Sohei

    1995-01-01

    From epidemiologic studies, we find no measurable increase in the incidences of birth defects and cancer after low-level exposure to radiation. Based on modern understanding of the molecular basis of teratogenesis and cancer, I attempt to explain thresholds observed in atomic bomb survivors, radium painters, uranium workers and patients injected with Thorotrast. Teratogenic injury induced by doses below threshold will be completely eliminated as a result of altruistic death (apoptosis) of injured cells. Various lines of evidence obtained show that oncomutations produced in cancerous cells after exposure to radiation are of spontaneous origin and that ionizing radiation acts not as an oncomutation inducer but as a tumor promoter by induction of chronic wound-healing activity. The tissue damage induced by radiation has to be repaired by cell growth and this creates opportunity for clonal expansion of a spontaneously occurring preneoplastic cell. If the wound-healing error model is correct, there must be a threshold dose range of radiation giving no increase in cancer risk. (author)

  13. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    International Nuclear Information System (INIS)

    Miucci, A; Gonzalez-Sevilla, S; Ferrere, D; Iacobucci, G; Rosa, A La; Muenstermann, D; Gonella, L; Hemperek, T; Hügging, F; Krüger, H; Obermann, T; Wermes, N; Garcia-Sciveres, M; Backhaus, M; Capeans, M; Feigl, S; Nessi, M; Pernegger, H; Ristic, B; George, M

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown

  14. Radiation disinfestation: A viable technology for developing countries

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1985-01-01

    Increasing food production in many countries is often offset by spoilage losses that occur at different stages after harvesting, slaughtering, or catching. The situation becomes critical in developing countries as more food is needed to feed the ever-increasing population. One of the major problems of losses of food and agricultural products during storage is insect infestation. This paper reviews some insect infestation problems of valuable crops in developing countries such as cereals, pulses, dried fish and meat, fresh and dried fruits, coffee and cocoa beans, spices, and cured tobacco leaves. Present practices of chemical fumigation to eliminate insect problems in these crops give rise to concern from the points of view of both public health and occupational safety. Irradiation technology has been shown to be as effective as other insect disinfestation methods and could provide a viable alternative for this purpose. Insects do not develop resistance to physical techniques such as heat or irradiation as they do to chemical treatments. Applications of radiation for disinfestation of food and agricultural products of importance to developing countries are discussed. The economics of radiation disinfestation of cereals and pulses, dried fish, and fresh fruits are also discussed

  15. Application of advanced model of radiative heat transfer in a rod geometry to QUENCH and PARAMETER tests

    International Nuclear Information System (INIS)

    Vasiliev, A.D.; Kobelev, G.V.; Astafieva, V.O.

    2007-01-01

    Radiative heat transfer is very important in different fields of mechanical engineering and related technologies including nuclear reactors, heat transfer in furnaces, aerospace, different high-temperature assemblies. In particular, in the course of a hypothetical severe accident at PWR-type nuclear reactor the temperatures inside the reactor vessel reach high values at which taking into account of radiative heat exchange between the structures of reactor (including core and other reactor vessel elements) gets important. Radiative heat transfer dominates the late phase of severe accident because radiative heat fluxes (proportional to T4, where T is the temperature) are generally considerably higher than convective and conductive heat fluxes in a system. In particular, heat transfer due to radiation determines the heating and degradation of the core and surrounding steel in-vessel structures and finally influences the composition, temperature and mass of materials pouring out of the reactor vessel after its loss of integrity. Existing models of radiative heat exchange use many limitations and approximations: approximate estimation of view factors and beam lengths; the geometry change in the course of the accident is neglected; the database for emissivities of materials is not complete; absorption/emission by steam-noncondensable medium is taken into account approximately. The module MRAD was developed in this paper to model the radiative heat exchange in rod-like geometry typical of PWR-type reactor. Radiative heat exchange is computed using dividing on zones (zonal method) as in existing radiation models implemented to severe accident numerical codes such as ICARE, SCDAP/RELAP, MELCOR but improved in following aspects: new approach to evaluation of view factors and mean beam length; detailed evaluation of gas absorptivity and emissivity; account of effective radiative thermal conductivity for the large core; account of geometry modification in the course of severe

  16. 11th International Conference of Radiation Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

  17. Validation of elastic cross section models for space radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center (United States); Xu, X. [National Institute of Aerospace (United States); Norman, R.B. [NASA Langley Research Center (United States); Ford, W.P. [The University of Tennessee (United States); Maung, K.M. [The University of Southern Mississippi (United States)

    2017-02-01

    The space radiation field is composed of energetic particles that pose both acute and long-term risks for astronauts in low earth orbit and beyond. In order to estimate radiation risk to crew members, the fluence of particles and biological response to the radiation must be known at tissue sites. Given that the spectral fluence at the boundary of the shielding material is characterized, radiation transport algorithms may be used to find the fluence of particles inside the shield and body, and the radio-biological response is estimated from experiments and models. The fidelity of the radiation spectrum inside the shield and body depends on radiation transport algorithms and the accuracy of the nuclear cross sections. In a recent study, self-consistent nuclear models based on multiple scattering theory that include the option to study relativistic kinematics were developed for the prediction of nuclear cross sections for space radiation applications. The aim of the current work is to use uncertainty quantification to ascertain the validity of the models as compared to a nuclear reaction database and to identify components of the models that can be improved in future efforts.

  18. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  19. Radiation protection perspectives in developing new medical technologies with ionizing radiations

    International Nuclear Information System (INIS)

    Arranz, L.

    1993-01-01

    The medical technical development with ionizing radiation is and will be followed by an effort to control and reduce their inherent risks and make it a safe tool that offers more exact diagnoses and more effective treatments. However, it is not foreseeable to achieve a decrease on the annual effective dose equivalent per capita due to medical irradiation (1.06 mSv in OECD countries), since the general population will go on increasing, and the same will happen to the elder population (with greater morbidity). The turn of the century will bring a time of major cost savings, but also a higher demand on the quality of life. The high cost technologies help the diagnostic and therapeutic procedures and therefore their use and spread are absolutely justified, according to health policy objectives. However, their diffusion should be spread out under efficiency and equity criteria. (author). 32 refs

  20. Role of radiation technology in preservation of food and agricultural commodities

    International Nuclear Information System (INIS)

    Rajput, Sanjay

    2016-01-01

    Several technological benefits can be achieved by gamma radiation processing of agricultural commodities and food include: inhibition of sprouting in tubers, bulbs and rhizomes; disinfestation of insect pests in stored products; disinfestation of quarantine pests in fresh produce; delay in ripening and senescence in fruits and vegetables; destruction of microbes responsible for spoilage of food; elimination of parasites and pathogens of public health importance in food

  1. Structural defects in monocrystalline silicon: from radiation ones to growing and technological

    International Nuclear Information System (INIS)

    Gerasimenko, N.N.; Pavlyuchenko, M.N.; Dzhamanbalin, K.K.

    2001-01-01

    The systematical review of properties and conditions of radiation structures in monocrystalline silicon including own defects (elementary and complex, disordered fields) as well as defect-impurity formations is presented. The most typical examples of principle effects influence of known defects on radiation-induced processes (phase transformations, diffusion and heteration and others are considered. Experimental facts and models of silicon radiation amorphization have been analyzed in comparison of state of the radiation amorphization radiation problem of metals and alloys. The up-to-date status of the problem of the radiation defects physics are discussed, including end-of-range -, n+-, rod-like- defects. The phenomenon self-organization in crystals with defects has been considered. The examples of directed using radiation defects merged in independent trend - defects engineering - are given

  2. Mechanistic issues for modeling radiation-induced segregation

    International Nuclear Information System (INIS)

    Simonen, E.P.; Bruemmer, S.M.

    1993-03-01

    Model calculations of radiation-induced chromium depletion and radiation-induced nickel enrichment at grain boundaries are compared to measured depletions and enrichments. The model is calibrated to fit chromium depletion in commercial purity 304 stainless steel irradiated in boiling water reactor (BWR) environments. Predicted chromium depletion profiles and the dose dependence of chromium concentration at grain boundaries are in accord with measured trends. Evaluation of chromium and nickel profiles in three neutron, and two ion, irradiation environments reveal significant inconsistencies between measurements and predictions

  3. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    Directory of Open Access Journals (Sweden)

    Alexandre Bryan Heinemann

    2012-01-01

    Full Text Available Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, biomass, leaf area (LAI and total accumulated solar radiation (SRA during the crop cycle. The accuracy of the 5 models for estimated daily solar radiation was similar, and it was not substantially different among sites. For water limited environments (no irrigation, crop model outputs yield, biomass and LAI was not sensitive for the uncertainties in radiation models studied here.

  4. Methods and technologies for creation of register for exposed to radiation population

    International Nuclear Information System (INIS)

    Apsalikov, K.; Madieva, M.; Gusev, B.; Chajzunusova, N.; Isadilova, M.; Bejsenova, Sh.; Argembaeva, R.

    2005-01-01

    For the last 60 years, some huge radioecological accidents and catastrophes have taken place, connected with nuclear weapon use in war, nuclear weapon tests on the nuclear test sites of Nevada, Semipalatinsk, Loob-Nor and the disturbance of the technological cycle at the enterprises of atomic industry and NPP. The scientific-technical program is being carried out at the Scientific research Institute of Radiation medicine and Ecology. The one of the its major task is to create the Scientific Automated Medical Register for the Kazakhstan population exposed to radiation. The aim of this program is a long-term automated personnel registering of population exposed to radiation in consequences of on nuclear testing on the Semipalatinsk Test Site, evolution of health condition and its changes, prediction for taken optimal decisions upon minimization of post-radiation consequences. Thus, main tendencies of Register creation are registration of the extent and characteristics of concrete man-caused factor (including radioactive), the number and age-sexual peculiarities of the risk group, medical information according to qualitative and quantitative parameters of different nosological forms of radiation induced diseases, and the duration of stay of definite patient under risk. After formatting of effective equivalent doses the information allows not only containing radiation risk, but also working out medical-social activities, directed to decrease the risk up to the level of average Republican standards. (author)

  5. Linearized vector radiative transfer model MCC++ for a spherical atmosphere

    International Nuclear Information System (INIS)

    Postylyakov, O.V.

    2004-01-01

    Application of radiative transfer models has shown that optical remote sensing requires extra characteristics of radiance field in addition to the radiance intensity itself. Simulation of spectral measurements, analysis of retrieval errors and development of retrieval algorithms are in need of derivatives of radiance with respect to atmospheric constituents under investigation. The presented vector spherical radiative transfer model MCC++ was linearized, which allows the calculation of derivatives of all elements of the Stokes vector with respect to the volume absorption coefficient simultaneously with radiance calculation. The model MCC++ employs Monte Carlo algorithm for radiative transfer simulation and takes into account aerosol and molecular scattering, gas and aerosol absorption, and Lambertian surface albedo. The model treats a spherically symmetrical atmosphere. Relation of the estimated derivatives with other forms of radiance derivatives: the weighting functions used in gas retrieval and the air mass factors used in the DOAS retrieval algorithms, is obtained. Validation of the model against other radiative models is overviewed. The computing time of the intensity for the MCC++ model is about that for radiative models treating sphericity of the atmosphere approximately and is significantly shorter than that for the full spherical models used in the comparisons. The simultaneous calculation of all derivatives (i.e. with respect to absorption in all model atmosphere layers) and the intensity is only 1.2-2 times longer than the calculation of the intensity only

  6. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  7. The virtual enhancements - solar proton event radiation (VESPER) model

    Science.gov (United States)

    Aminalragia-Giamini, Sigiava; Sandberg, Ingmar; Papadimitriou, Constantinos; Daglis, Ioannis A.; Jiggens, Piers

    2018-02-01

    A new probabilistic model introducing a novel paradigm for the modelling of the solar proton environment at 1 AU is presented. The virtual enhancements - solar proton event radiation model (VESPER) uses the European space agency's solar energetic particle environment modelling (SEPEM) Reference Dataset and produces virtual time-series of proton differential fluxes. In this regard it fundamentally diverges from the approach of existing SPE models that are based on probabilistic descriptions of SPE macroscopic characteristics such as peak flux and cumulative fluence. It is shown that VESPER reproduces well the dataset characteristics it uses, and further comparisons with existing models are made with respect to their results. The production of time-series as the main output of the model opens a straightforward way for the calculation of solar proton radiation effects in terms of time-series and the pairing with effects caused by trapped radiation and galactic cosmic rays.

  8. Pulsed electron accelerator for radiation technologies in the enviromental applications

    Science.gov (United States)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  9. Modelling radiation fields of ion beams in tissue-like materials

    International Nuclear Information System (INIS)

    Burigo, Lucas Norberto

    2014-01-01

    Fast nuclei are ionizing radiation which can cause deleterious effects to irradiated cells. The modelling of the interactions of such ions with matter and the related effects are very important to physics, radiobiology, medicine and space science and technology. A powerful method to study the interactions of ionizing radiation with biological systems was developed in the field of microdosimetry. Microdosimetry spectra characterize the energy deposition to objects of cellular size, i.e., a few micrometers. In the present thesis the interaction of ions with tissue-like media was investigated using the Monte Carlo model for Heavy-Ion Therapy (MCHIT) developed at the Frankfurt Institute for Advanced Studies. MCHIT is a Geant4-based application intended to benchmark the physical models of Geant4 and investigate the physical properties of therapeutic ion beams. We have implemented new features in MCHIT in order to calculate microdosimetric quantities characterizing the radiation fields of accelerated nucleons and nuclei. The results of our Monte Carlo simulations were compared with recent experimental microdosimetry data. In addition to microdosimetry calculations with MCHIT, we also investigated the biological properties of ion beams, e.g. their relative biological effectiveness (RBE), by means of the modified Microdosimetric-Kinetic model (MKM). The MKM uses microdosimetry spectra in describing cell response to radiation. MCHIT+MKM allowed us to study the physical and biological properties of ion beams. The main results of the thesis are as follows: MCHIT is able to describe the spatial distribution of the physical dose in tissue-like media and microdosimetry spectra for ions with energies relevant to space research and ion-beam cancer therapy; MCHIT+MKM predicts a reduction of the biological effectiveness of ions propagating in extended medium due to nuclear fragmentation reactions; We predicted favourable biological dose-depth profiles for monoenergetic helium and

  10. Report of research and investigation committee for infrared radiation heating technology. Sekigai hosha kanetsu gijutsu kenkyu chosa iinkai hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M. (Fukuyama Univ., Hiroshima (Japan). Faculty of Engineering)

    1994-07-01

    The committee was established in July 1990 for research and investigation of infrared (IR) heating technology and finished its activity in March 1993. This report describes the committee members and the results of research and investigation. (1) Application of IR radiation (sensing): the research and investigation results were reported on the following items; the recognition of letters and patterns on cultural properties by IR radiation, the passive sensor (detecting the IR radiated from the object without emitting from the sensor), the IR image system, and the diagnosis of outer wail of buildings. (2) The following were researched on the IR radiation source and IR emitting material; multi-functional heating element having far infrared radiation function and deodorant function, the emissivity of far IR radiation, and the evaluation of the functions by the difference in emissivity. (3) The IR heating technology was described on the following: drying the persimmon using far IR radiation, the present situation of research on IR heating done by foreign power supply companies, and the feature and the application of far IR heater. In addition to these, the following were also reported; (4) measurement of IR radiation and (5) effect of living body and organism.

  11. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    CERN Document Server

    Miucci, A; Hemperek, T.; Hügging, F.; Krüger, H.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Backhaus, M.; Capeans, M.; Feigl, S.; Nessi, M.; Pernegger, H.; Ristic, B.; Gonzalez-Sevilla, S.; Ferrere, D.; Iacobucci, G.; Rosa, A.La; Muenstermann, D.; George, M.; Grosse-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.; Kreidl, C.; Peric, I.; Breugnon, P.; Pangaud, P.; Godiot-Basolo, S.; Fougeron, D.; Bompard, F.; Clemens, J.C.; Liu, J; Barbero, M.; Rozanov, A

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. 1Corresponding author. c CERN 2014, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation and DOI. doi:10.1088/1748-0221/9/05/C050642014 JINST 9 C05064 A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation a...

  12. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2016-01-01

    Full Text Available This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE digital elevation model (DEM for the actual amount of incident solar radiation according to solar geometry. The surface insolation mapping, by integrating a physical model with the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI image, was performed through a comparative analysis with ground-based observation data (pyranometer. Original and topographically corrected solar radiation maps were created and their characteristics analyzed. Both the original and the topographically corrected solar energy resource maps captured the temporal variations in atmospheric conditions, such as the movement of seasonal rain fronts during summer. In contrast, although the original solar radiation map had a low insolation value over mountain areas with a high rate of cloudiness, the topographically corrected solar radiation map provided a better description of the actual surface geometric characteristics.

  13. Modeling technological learning and its application for clean coal technologies in Japan

    International Nuclear Information System (INIS)

    Nakata, Toshihiko; Sato, Takemi; Wang, Hao; Kusunoki, Tomoya; Furubayashi, Takaaki

    2011-01-01

    Estimating technological progress of emerging technologies such as renewables and clean coal technologies becomes important for designing low carbon energy systems in future and drawing effective energy policies. Learning curve is an analytical approach for describing the decline rate of cost and production caused by technological progress as well as learning. In the study, a bottom-up energy-economic model including an endogenous technological learning function has been designed. The model deals with technological learning in energy conversion technologies and its spillover effect. It is applied as a feasibility study of clean coal technologies such as IGCC (Integrated Coal Gasification Combined Cycle) and IGFC (Integrated Coal Gasification Fuel Cell System) in Japan. As the results of analysis, it is found that technological progress by learning has a positive impact on the penetration of clean coal technologies in the electricity market, and the learning model has a potential for assessing upcoming technologies in future.

  14. Technology, Demographic Characteristics and E-Learning Acceptance: A Conceptual Model Based on Extended Technology Acceptance Model

    Science.gov (United States)

    Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran

    2016-01-01

    The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…

  15. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  16. Enhancing radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    When a new radiotherapy center in Gezira, Sudan, delivers its first therapeutic dose to a cancer patient, two things happen: A young man begins to regain his health and looks forward to being better able to support his family and contribute to his community; and a developing nation realizes an important step toward deriving the social and economic benefits of nuclear science. The strategic application of nuclear technology in particular fields- human health, industry, food and agriculture, energy, water resources and environmental protection - has enormous potential to help shape the future of developing countries. But past radiological incidents, several of which involved high levels of exposure or death (Bolivia, Brazil, Cost Rica, Georgia, Ghana, Morocco, Panama and Thailand), underscore the inherent and very serious risks. For this reason, the IAEA's Departments of Technical Cooperation and Nuclear Safety and Security partner closely, particularly in the area of radiation protection. They strive to consider every minute detail in the equation that brings together radiation sources, modern technologies, people and the environment. Launched in 1996, the Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) aimed to help Member States: achieve capacities that underpin the safe and secure application of nuclear technologies; establish a legislative framework and regulatory infrastructure; develop exposure control mechanisms to protect workers, medical patients, the public and the environment; and achieve preparedness and planned response to radiological emergencies. In fact, the hospital scenario above typically marks several years of intense collaboration amongst scientists, legislators, regulators, politicians and administrators from both Member States and the IAEA, orchestrated and aided by regional managers and technical experts from the IAEA. As radiation protection team members can attest, every application of nuclear technology

  17. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  18. Virtual reality technology used to estimate radiation doses in nuclear installations

    International Nuclear Information System (INIS)

    Augusto, Silas Cordeiro

    2008-03-01

    The physical integrity of people when walking in places subjected to radiation can be preserved by following some rules. Among these rules are safe limits of radiation level, proximity of radiation sources, time of exposition to radiation sources, and a combination of these factors. In this way, previous training and simulations of operation proceedings to be executed in places subjected to radiation help to better prepare the course in such places, minimizing the absorbed dose. On the other hand, virtual reality is a technology applicable in several areas, enabling the training and simulation of real places and hypothetical scenarios, with a good level of realism, but without danger if compared to the same activities in the real world. As a virtual environment does not presents any health risks, it is possible to train workers beforehand to several operation or maintenance scenarios. In this virtual environment, the dose tax distribution can be visualized, and the dose absorbed by the worker, represented and simulated in the virtual environment by a virtual character (avatar) can be shown. Therefore, the tasks to be done can be better planned, evaluating the workers actions and the performance so to reduce failures and health risks. Finally, this work presents a tool to build and navigate in virtual environments, enabling the training of activities in nuclear facilities. To that end is proposed a methodology to modify and adapt a free game engine. (author)

  19. Using multistage models to describe radiation-induced leukaemia

    International Nuclear Information System (INIS)

    Little, M.P.; Muirhead, C.R.; Boice, J.D. Jr.; Kleinerman, R.A.

    1995-01-01

    The Armitage-Doll model of carcinogenesis is fitted to data on leukaemia mortality among the Japanese atomic bomb survivors with the DS86 dosimetry and on leukaemia incidence in the International Radiation Study of Cervical Cancer patients. Two different forms of model are fitted: the first postulates up to two radiation-affected stages and the second additionally allows for the presence at birth of a non-trivial population of cells which have already accumulated the first of the mutations leading to malignancy. Among models of the first form, a model with two adjacent radiation-affected stages appears to fit the data better than other models of the first form, including both models with two affected stages in any order and models with only one affected stage. The best fitting model predicts a linear-quadratic dose-response and reductions of relative risk with increasing time after exposure and age at exposure, in agreement with what has previously been observed in the Japanese and cervical cancer data. However, on the whole it does not provide an adequate fit to either dataset. The second form of model appears to provide a rather better fit, but the optimal models have biologically implausible parameters (the number of initiated cells at birth is negative) so that this model must also be regarded as providing an unsatisfactory description of the data. (author)

  20. Flux-limited diffusion models in radiation hydrodynamics

    International Nuclear Information System (INIS)

    Pomraning, G.C.; Szilard, R.H.

    1993-01-01

    The authors discuss certain flux-limited diffusion theories which approximately describe radiative transfer in the presence of steep spatial gradients. A new formulation is presented which generalizes a flux-limited description currently in widespread use for large radiation hydrodynamic calculations. This new formation allows more than one Case discrete mode to be described by a flux-limited diffusion equation. Such behavior is not extant in existing formulations. Numerical results predicted by these flux-limited diffusion models are presented for radiation penetration into an initially cold halfspace. 37 refs., 5 figs

  1. Development of radiation fusion biotechnology

    International Nuclear Information System (INIS)

    Jung, Uhee; Lee, Ju Woon; Park, Sang Hyun

    2012-04-01

    Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation - To develop fundamental technology using high dose irradiation, effects of high dose irradiation on food components, combined effects of irradiation with food engineering, irradiation condition to destroy radiation resistant foodborne bacteria were studied. - To develop E-beam irradiation technology, irradiation conditions for E-beam and domination effects of E-beam irradiation were determined. The physical marker for E beam irradiated foods or not was developed. - To develop purposed foods to extreme environmental, ready to eat foods and low toxic animal feeds were developed. Through the fundamental researches, the legislation for new irradiated foods and application of E-beam was introduced. Development of modulators against degenerative aging using radiation fusion technology - Selection of 20 kinds of degenerative aging biomarkers related to immune/hematopoiesis, oxidative damage, molecular signaling, lipid metabolism - Establishment of optimal radiation application conditions for aging modeling (fractionated irradiation of total 5Gy, a lapse of 4 months or more - Selection of effective aging modulating substances by screening of 800 natural substances - Development of 1 multi-functional and high-efficacy aging modulator by combination of effective substances and evaluation by in vivo models Development of biochips and kits using RI detection technology for life science - Establishment of kinase substrate interaction analysis using RI detection technique (More than 100 times detection sensitivity compared to conventional fluorescence detection techniques). - The RI detection technique reduces the overall experiment time, as the use of blocking agent can be avoided, offer minimum non specific binding, and facilitates a rapid data analysis with a simplify the process of chip manufacturing. - Establishment of multi-channel type Lab on a chip (LOC) using

  2. Development of radiation fusion biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Uhee; Lee, Ju Woon; Park, Sang Hyun

    2012-04-15

    Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation - To develop fundamental technology using high dose irradiation, effects of high dose irradiation on food components, combined effects of irradiation with food engineering, irradiation condition to destroy radiation resistant foodborne bacteria were studied. - To develop E-beam irradiation technology, irradiation conditions for E-beam and domination effects of E-beam irradiation were determined. The physical marker for E beam irradiated foods or not was developed. - To develop purposed foods to extreme environmental, ready to eat foods and low toxic animal feeds were developed. Through the fundamental researches, the legislation for new irradiated foods and application of E-beam was introduced. Development of modulators against degenerative aging using radiation fusion technology - Selection of 20 kinds of degenerative aging biomarkers related to immune/hematopoiesis, oxidative damage, molecular signaling, lipid metabolism - Establishment of optimal radiation application conditions for aging modeling (fractionated irradiation of total 5Gy, a lapse of 4 months or more - Selection of effective aging modulating substances by screening of 800 natural substances - Development of 1 multi-functional and high-efficacy aging modulator by combination of effective substances and evaluation by in vivo models Development of biochips and kits using RI detection technology for life science - Establishment of kinase substrate interaction analysis using RI detection technique (More than 100 times detection sensitivity compared to conventional fluorescence detection techniques). - The RI detection technique reduces the overall experiment time, as the use of blocking agent can be avoided, offer minimum non specific binding, and facilitates a rapid data analysis with a simplify the process of chip manufacturing. - Establishment of multi-channel type Lab on a chip (LOC) using

  3. Modelling of a holographic interferometry based calorimeter for radiation dosimetry

    Science.gov (United States)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.

    2017-08-01

    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  4. Parameterization of clouds and radiation in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  5. Radiation, ionization, and detection in nuclear medicine

    International Nuclear Information System (INIS)

    Gupta, Tapan K.

    2013-01-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  6. Radiation, ionization, and detection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tapan K. [Radiation Monitoring Devices Research, Nuclear Medicine, Watertown, MA (United States)

    2013-08-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  7. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Science.gov (United States)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  8. Curve fitting methods for solar radiation data modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  9. Curve fitting methods for solar radiation data modeling

    Science.gov (United States)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-10-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  10. Curve fitting methods for solar radiation data modeling

    International Nuclear Information System (INIS)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-01-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R 2 . The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods

  11. Spectral modeling of radiation in combustion systems

    Science.gov (United States)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term

  12. Current technological clinical practice in breast radiotherapy; results of a survey in EORTC-Radiation Oncology Group affiliated institutions

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Hurkmans, Coen W; Kuten, Abraham; Westenberg, Helen A

    PURPOSE: To evaluate the current technological clinical practice of radiation therapy of the breast in institutions participating in the EORTC-Radiation Oncology Group (EORTC-ROG). MATERIALS AND METHODS: A survey was conducted between August 2008 and January 2009 on behalf of the Breast Working

  13. Comparison of radiation parametrizations within the HARMONIE-AROME NWP model

    Science.gov (United States)

    Rontu, Laura; Lindfors, Anders V.

    2018-05-01

    Downwelling shortwave radiation at the surface (SWDS, global solar radiation flux), given by three different parametrization schemes, was compared to observations in the HARMONIE-AROME numerical weather prediction (NWP) model experiments over Finland in spring 2017. Simulated fluxes agreed well with each other and with the observations in the clear-sky cases. In the cloudy-sky conditions, all schemes tended to underestimate SWDS at the daily level, as compared to the measurements. Large local and temporal differences between the model results and observations were seen, related to the variations and uncertainty of the predicted cloud properties. The results suggest a possibility to benefit from the use of different radiative transfer parametrizations in a NWP model to obtain perturbations for the fine-resolution ensemble prediction systems. In addition, we recommend usage of the global radiation observations for the standard validation of the NWP models.

  14. Problems with models of the radiation belts

    International Nuclear Information System (INIS)

    Daly, E.J.; Lemaire, J.; Heynderickx, D.; Rodgers, D.J.

    1996-01-01

    The current standard models of the radiation-belt environment have many shortcomings, not the least of which is their extreme age. Most of the data used for them were acquired in the 1960's and early 1970's. Problems with the present models, and the ways in which data from more recent missions are being or can be used to create new models with improved functionality, are described. The phenomenology of the radiation belts, the effects on space systems, and geomagnetic coordinates and modeling are discussed. Errors found in present models, their functional limitations, and problems with their implementation and use are detailed. New modeling must address problems at low altitudes with the south Atlantic anomaly, east-west asymmetries and solar cycle variations and at high altitudes with the highly dynamic electron environment. The important issues in space environment modeling from the point of view of usability and relationship with effects evaluation are presented. New sources of data are discussed. Future requirements in the data, models, and analysis tools areas are presented

  15. The Impact of Advanced Technologies on Treatment Deviations in Radiation Treatment Delivery

    International Nuclear Information System (INIS)

    Marks, Lawrence B.; Light, Kim L.; Hubbs, Jessica L.; Georgas, Debra L.; Jones, Ellen L.; Wright, Melanie C.; Willett, Christopher G.; Yin Fangfang

    2007-01-01

    Purpose: To assess the impact of new technologies on deviation rates in radiation therapy (RT). Methods and Materials: Treatment delivery deviations in RT were prospectively monitored during a time of technology upgrade. In January 2003, our department had three accelerators, none with 'modern' technologies (e.g., without multileaf collimators [MLC]). In 2003 to 2004, we upgraded to five new accelerators, four with MLC, and associated advanced capabilities. The deviation rates among patients treated on 'high-technology' versus 'low-technology' machines (defined as those with vs. without MLC) were compared over time using the two-tailed Fisher's exact test. Results: In 2003, there was no significant difference between the deviation rate in the 'high-technology' versus 'low-technology' groups (0.16% vs. 0.11%, p = 0.45). In 2005 to 2006, the deviation rate for the 'high-technology' groups was lower than the 'low-technology' (0.083% vs. 0.21%, p = 0.009). This difference was caused by a decline in deviations on the 'high-technology' machines over time (p = 0.053), as well as an unexpected trend toward an increase in deviations over time on the 'low-technology' machines (p = 0.15). Conclusions: Advances in RT delivery systems appear to reduce the rate of treatment deviations. Deviation rates on 'high-technology' machines with MLC decline over time, suggesting a learning curve after the introduction of new technologies. Associated with the adoption of 'high-technology' was an unexpected increase in the deviation rate with 'low-technology' approaches, which may reflect an over-reliance on tools inherent to 'high-technology' machines. With the introduction of new technologies, continued diligence is needed to ensure that staff remain proficient with 'low-technology' approaches

  16. Models for the estimation of diffuse solar radiation for typical cities in Turkey

    International Nuclear Information System (INIS)

    Bakirci, Kadir

    2015-01-01

    In solar energy applications, diffuse solar radiation component is required. Solar radiation data particularly in terms of diffuse component are not readily affordable, because of high price of measurements as well as difficulties in their maintenance and calibration. In this study, new empirical models for predicting the monthly mean diffuse solar radiation on a horizontal surface for typical cities in Turkey are established. Therefore, fifteen empirical models from studies in the literature are used. Also, eighteen diffuse solar radiation models are developed using long term sunshine duration and global solar radiation data. The accuracy of the developed models is evaluated in terms of different statistical indicators. It is found that the best performance is achieved for the third-order polynomial model based on sunshine duration and clearness index. - Highlights: • Diffuse radiation is given as a function of clearness index and sunshine fraction. • The diffuse radiation is an important parameter in solar energy applications. • The diffuse radiation measurement is for limited periods and it is very rare. • The new models can be used to estimate monthly average diffuse solar radiation. • The accuracy of the models is evaluated on the basis of statistical indicators

  17. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  18. Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment

    International Nuclear Information System (INIS)

    Wirth, B.D.; Odette, G.R.; Marian, J.; Ventelon, L.; Young-Vandersall, J.A.; Zepeda-Ruiz, L.A.

    2004-01-01

    Ferritic alloys represent a technologically important class of candidate materials for fusion first wall and blanket structures. A detailed understanding of the mechanisms of defect accumulation and microstructure evolution, and the corresponding effects on mechanical properties is required to predict their in-service structural performance limits. The physical processes involved in radiation damage, and its effects on mechanical properties, are inherently multiscale and hierarchical, spanning length and time scales from the atomic nucleus to meters and picosecond to decades. In this paper, we present a multiscale modeling methodology to describe radiation effects within the fusion energy environment. Selected results from atomic scale investigation are presented, focusing on (i) the mechanisms of self-interstitial dislocation loop formation with Burgers vector of a in iron relative to vanadium, (ii) helium transport and (iii) the interaction between helium and small self-interstitial clusters in iron, and (iv) dislocation-helium bubble interactions in fcc aluminum

  19. The radiation performance standard. A presentation model for ionizing radiation in the living environment

    International Nuclear Information System (INIS)

    Schaap, L.E.J.J.; Bosmans, G.; Van der Graaf, E.R.; Hendriks, Ch.F.

    1998-01-01

    By means of the so-called radiation performance standard (SPN, abbreviated in Dutch) the total radioactivity from building constructions which contributes to the indoor radiation dose can be calculated. The SPN is implemented with related boundary values and is part of the Building Decree ('Bouwbesluit') in the Netherlands. The model, presented in this book, forms the basis of a new Dutch radiation protection standard, to be published by the Dutch Institute for Standardization NEN (formerly NNI). 14 refs

  20. Mathematical Modeling of Optical Radiation Emission as a Function of Welding Power during Gas Shielded Metal Arc Welding.

    Science.gov (United States)

    Bauer, Stefan; Janßen, Marco; Schmitz, Martin; Ott, Günter

    2017-11-01

    Arc welding is accompanied by intense optical radiation emission that can be detrimental not only for the welder himself but also for people working nearby or for passersby. Technological progress advances continuously in the field of joining, so an up-to-date radiation database is necessary. Additionally, many literature irradiance data have been measured for a few welding currents or for parts of the optical spectral region only. Within this paper, a comprehensive study of contemporary metal active gas, metal inert gas, and cold metal transfer welding is presented covering optical radiation emission from 200 up to 2,700 nm by means of (spectro-) radiometric measurements. The investigated welding currents range from 70 to 350 A, reflecting values usually applied in industry. Based upon these new irradiance data, three mathematical models were derived in order to describe optical radiation emission as a function of welding power. The linear, exponential, and sigmoidal emission models depend on the process variant (standard or pulsed) as well as on the welding material (mild and stainless steel, aluminum). In conjunction with the corresponding exposure limit values for incoherent optical radiation maximum permissible exposure durations were calculated as a function of welding power. Typical times are shorter than 1 s for the ultraviolet spectral region and range from 1 to 10 s for visible radiation. For the infrared regime, exposure durations are of the order of minutes to hours. Finally, a validation of the metal active gas emission models was carried out with manual arc welding.

  1. Radiation education in school

    International Nuclear Information System (INIS)

    Shishido, Teruko; Higashijima, Emiko; Hisajima, Michihiro

    2005-01-01

    Part of goals of general education of physics is to provide students for basic knowledge on radiation. This includes understanding of both its risks and benefits. Students should know how to protect and defence from radiation but they should not overwhelm the risk of radiation. Sometimes, students think that atomic power is so terrible and frightening that they keep away from use of atomic power. Basic knowledge about risks of radiation will reduce the excessive reaction or anxiety coming from radiation. It also makes people understand other possible risks and benefits of radiation accompanied by modern scientific technologies such as nuclear technologies. We believe that the radiation education is an essential requisite for the peaceful usage of nuclear energy and radiation technology for the future. (author)

  2. The development and current status of the technology of isotope and radiation in China

    Energy Technology Data Exchange (ETDEWEB)

    Jinrong, Z. [China Institute of Atomic Energy, Beijing, (China). Department of Isotopes

    1997-10-01

    The research and applications of isotope technology and radiation sources in China are presented. Many effort were directed towards production of radiopharmaceuticals, radiation sources, radiation treatment and radioactive tracers. Reactor and accelerator produced radioisotopes contributed to and will further accelerate the development of nuclear medicine in China. Recently, much attention has been paid on tumor therapy mainly with radiolabelled monoclonal antibody, radiolabelled microsphere and colloid, bone-seeking agents, and radiolabelled Octreotide. Radioimmunoassay has been widely used with many convenient kits available. There are above 30 radioimmunoassay kit produces and more than 60 radioimmunoassay centers. Recently the advance is mainly in solid-phase separation process and in radioimmunoassay method, including some nonradioactive immunoassay methods, such as enzyme immunoassay, fluorescence immunoassay, and chemiluminescence immunoassay. Kits for enzyme immunoassay have been put into clinical use. Various radiation sources are produced for medical purposes and for use in nuclear power stations 4 refs., 8 tabs.

  3. The development and current status of the technology of isotope and radiation in China

    International Nuclear Information System (INIS)

    Jinrong, Z.

    1997-01-01

    The research and applications of isotope technology and radiation sources in China are presented. Many effort were directed towards production of radiopharmaceuticals, radiation sources, radiation treatment and radioactive tracers. Reactor and accelerator produced radioisotopes contributed to and will further accelerate the development of nuclear medicine in China. Recently, much attention has been paid on tumor therapy mainly with radiolabelled monoclonal antibody, radiolabelled microsphere and colloid, bone-seeking agents, and radiolabelled Octreotide. Radioimmunoassay has been widely used with many convenient kits available. There are above 30 radioimmunoassay kit produces and more than 60 radioimmunoassay centers. Recently the advance is mainly in solid-phase separation process and in radioimmunoassay method, including some nonradioactive immunoassay methods, such as enzyme immunoassay, fluorescence immunoassay, and chemiluminescence immunoassay. Kits for enzyme immunoassay have been put into clinical use. Various radiation sources are produced for medical purposes and for use in nuclear power stations

  4. Radiation induced peroxidation in model lipid systems

    International Nuclear Information System (INIS)

    Dahlan, K.Z.B.H.M.

    1981-08-01

    In the studies of radiation induced lipid peroxidation, lecithin-liposomes and aqueous micellar solutions of sodium linoleate (or linoleic acid) have been used as models of lipid membrane systems. The liposomes and aqueous linoleate micelles were irradiated in the presence of O 2 and N 2 O/O 2 (80/20 v/v). The peroxidation was initiated using gamma radiation from 60 Co radiation source and was monitored by measuring the increase in absorbance of conjugated diene at 232 nm and by the thiobarbituric acid (TBA) test. The oxidation products were also identified by GLC and GLC-MS analysis. (author)

  5. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Madhlopa, A.

    2014-01-01

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (h r,w-gc ) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of h r,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  6. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-01-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  7. Radiation environmental real-time monitoring and dispersion modeling

    International Nuclear Information System (INIS)

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  8. The radiation accident at Institute for Energy Technology Sept. 1982. Some technical considerations

    International Nuclear Information System (INIS)

    Berteig, L.; Flatby, J.

    1985-01-01

    On September 2, 1982 a radiation accident with overexposure of one person happened at the gamma irradiation plant at Institute for Energy Technology, Kjeller, Norway. This person died from the radiation injury 13 days later. In the report reference is made to the work of different groups and bodies in connection with the accident. An analysis of the causes of the accident is given. For admittance control to the irradiation area there were generally two independent door interlock systems, one irradiation source position related and the other radiation related. The latter was dismantled for repair at the time of the accident. A micro-switch failure left the source in an unshielded position, initiated a green light on the control panel and released the interlock system of the door. According to working instructions a mobile radiation monitor should have been checked for proper function and carried by anyone entering the irradiation room. This seems not to have been carried out correctly. The conditions set forth for the restarting of the irradiation plant are presented. (orig./HP)

  9. Technological yields of sources for radiation processing; Wydajnosci technologiczne zrodel do obrobki radiacyjnej

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, Z.P. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1993-12-31

    The present report is prepared for planners of radiation processing of any material. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV, and accelerators of lower energy, below 2 MeV, of better energy yield but of limited applications. The calculations are connected with the confrontation of the author`s technological expectations during the preparation of the linac project in the late `60s, with the results of 25 years of exploitation of the machine. One has to realize that from the 200 kW input power from the mains, only 5 kW of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of edges of the scanned area and in the spaces between boxes, and of loses during the idle time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical than that of linacs in case of objects of specific type. At the first stage already, that is of the conversion of electrical power into that of low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating Bremsstrahlung similar to gamma radiation. The advantages of technologies, which make possible a control of the shape of the processed object are stressed. Special attention is focused to the relation between the yield of processing and the ratio between the maximum to the minimum dose in the object under the irradiation. (author). 14 refs, 14 figs.

  10. Contribution of modern medical imaging technology to radiation health effects in exposed populations

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1980-11-01

    The introduction of technically-advanced imaging systems in medicine carries with it potential health hazards, particularly from ionizing and nonionizing radiation exposure of human populations. This paper will discuss what we know and what we do not know about the health effects of low-level radiation, how the risks of radiation-induced health effects may be estimated, the sources of the scientific data, the dose-response models used, the uncertainties which limit precision of estimation of excess health risks from low-level radiation, and what the implications might be for radiation protection in medicine and public health policy

  11. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    Science.gov (United States)

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  12. Diffuse solar radiation estimation models for Turkey's big cities

    International Nuclear Information System (INIS)

    Ulgen, Koray; Hepbasli, Arif

    2009-01-01

    A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the

  13. A simple model for determining photoelectron-generated radiation scaling laws

    International Nuclear Information System (INIS)

    Dipp, T.M.

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using a simple model to determine fundamental scaling laws. The model is one-dimensional (small-spot) and uses monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. Simple steady-state radiation, frequency, and maximum orbital distance equations were derived using small-spot radiation equations, a sin 2 type modulation function, and simple photoelectron dynamics. The result is a system of equations for various scaling laws, which, along with model and user constraints, are simultaneously solved using techniques similar to linear programming. Typical conductors illuminated by low-power sources producing photons with energies less than 5.0 eV are readily modeled by this small-spot, steady-state analysis, which shows they generally produce low efficiency (η rsL -10.5 ) pure photoelectron-induced radiation. However, the small-spot theory predicts that the total conversion efficiency for incident photon power to photoelectron-induced radiated power can go higher than 10 -5.5 for typical real conductors if photons having energies of 15 eV and higher are used, and should go even higher still if the small-spot limit of this theory is exceeded as well. Overall, the simple theory equations, model constraint equations, and solution techniques presented provide a foundation for understanding, predicting, and optimizing the generated radiation, and the simple theory equations provide scaling laws to compare with computational and laboratory experimental data

  14. Normal tissue complication probability modeling of radiation-induced hypothyroidism after head-and-neck radiation therapy.

    Science.gov (United States)

    Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan

    2013-02-01

    To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with α/β = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D(50) estimated from the models was approximately 44 Gy. The implemented normal tissue complication probability models showed a parallel architecture for the

  15. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshandeh, Mohsen [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hashemi, Bijan, E-mail: bhashemi@modares.ac.ir [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi Mehdi [Department of Medical Physics, Faculty of Medical Sciences, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nikoofar, Alireza; Vasheghani, Maryam [Department of Radiation Oncology, Hafte-Tir Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Kazemnejad, Anoshirvan [Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2013-02-01

    Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented

  16. Irradiation technology - industrial use

    International Nuclear Information System (INIS)

    Zyball, A.

    1995-01-01

    The most important applications of the radiation technology are the crosslinking of polymers and sterilisation. Although extensive experience about the use of this technology is available and powerful and dependable radiation facilities can be obtained, as yet the radiation technology has not found the acceptance it deserves in the industry. The main reason therefore has to do with how the question of radiation or the term radiation is presented to the industry and among the population. This paper will deal with considerations and ways in which the industrial use of the radiation technology can be expanded. (author)

  17. [Treatment of cloud radiative effects in general circulation models

    International Nuclear Information System (INIS)

    Wang, W.C.

    1993-01-01

    This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment

  18. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  19. Applications of ionizing radiations

    International Nuclear Information System (INIS)

    2014-01-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques

  20. Applications of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques.

  1. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  2. Modern methods in collisional-radiative modeling of plasmas

    CERN Document Server

    2016-01-01

    This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It ...

  3. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gueymard, Christian A. [Solar Consulting Services, P.O. Box 392, Colebrook, NH 03576 (United States); Myers, Daryl R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3305 (United States)

    2009-02-15

    The solar renewable energy community depends on radiometric measurements and instrumentation for data to design and monitor solar energy systems, and develop and validate solar radiation models. This contribution evaluates the impact of instrument uncertainties contributing to data inaccuracies and their effect on short-term and long-term measurement series, and on radiation model validation studies. For the latter part, transposition (horizontal-to-tilt) models are used as an example. Confirming previous studies, it is found that a widely used pyranometer strongly underestimates diffuse and global radiation, particularly in winter, unless appropriate corrective measures are taken. Other types of measurement problems are also discussed, such as those involved in the indirect determination of direct or diffuse irradiance, and in shadowband correction methods. The sensitivity of the predictions from transposition models to inaccuracies in input radiation data is demonstrated. Caution is therefore issued to the whole community regarding drawing detailed conclusions about solar radiation data without due attention to the data quality issues only recently identified. (author)

  4. Linear non-threshold (LNT) radiation hazards model and its evaluation

    International Nuclear Information System (INIS)

    Min Rui

    2011-01-01

    In order to introduce linear non-threshold (LNT) model used in study on the dose effect of radiation hazards and to evaluate its application, the analysis of comprehensive literatures was made. The results show that LNT model is more suitable to describe the biological effects in accuracy for high dose than that for low dose. Repairable-conditionally repairable model of cell radiation effects can be well taken into account on cell survival curve in the all conditions of high, medium and low absorbed dose range. There are still many uncertainties in assessment model of effective dose of internal radiation based on the LNT assumptions and individual mean organ equivalent, and it is necessary to establish gender-specific voxel human model, taking gender differences into account. From above, the advantages and disadvantages of various models coexist. Before the setting of the new theory and new model, LNT model is still the most scientific attitude. (author)

  5. Environmental radiation monitoring technology: Capabilities and needs

    International Nuclear Information System (INIS)

    Hofstetter, K.J.

    1994-01-01

    Radiation monitoring in the Savannah River Site (SRS) environment is conducted by a combination of automated, remote sampling and/or analysis systems, and manual sampling operations. This program provides early detection of radionuclide releases, minimizes the consequences, and assesses the impact on the public. Instrumentation installed at the release points monitor the atmospheric and aqueous releases from SRS operations. Ground water and air monitoring stations are strategically located throughout the site for radionuclide migration studies. The environmental radiological monitoring program at SRS includes: fixed monitoring stations for atmospheric radionuclide concentrations, aqueous monitors for surface water measurements, mobile laboratory operations for real-time, in-field measurements, aerial scanning for wide area contamination surveillance, and hand-held instruments for radionuclide-specific measurements. Rigorous environmentnal sampling surveillance coupled with laboratory analyses provide confirmatory results for all in-field measurements. Gaps in the technologies and development projects at SRS to fill these deficiencies are discussed in the context of customer needs and regulatory requirements

  6. A Method for Improving Reliability of Radiation Detection using Deep Learning Framework

    International Nuclear Information System (INIS)

    Chang, Hojong; Kim, Tae-Ho; Han, Byunghun; Kim, Hyunduk; Kim, Ki-duk

    2017-01-01

    Radiation detection is essential technology for overall field of radiation and nuclear engineering. Previously, technology for radiation detection composes of preparation of the table of the input spectrum to output spectrum in advance, which requires simulation of numerous predicted output spectrum with simulation using parameters modeling the spectrum. In this paper, we propose new technique to improve the performance of radiation detector. The software in the radiation detector has been stagnant for a while with possible intrinsic error of simulation. In the proposed method, to predict the input source using output spectrum measured by radiation detector is performed using deep neural network. With highly complex model, we expect that the complex pattern between data and the label can be captured well. Furthermore, the radiation detector should be calibrated regularly and beforehand. We propose a method to calibrate radiation detector using GAN. We hope that the power of deep learning may also reach to radiation detectors and make huge improvement on the field. Using improved radiation detector, the reliability of detection would be confident, and there are many tasks remaining to solve using deep learning in nuclear engineering society.

  7. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    show a very different response during anisotropic events, leading to variations in aircrew radiation doses that may be significant for dose assessment. To estimate the additional exposure due to solar flares, a model was developed using a Monte-Carlo radiation transport code, MCNPX. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere using the MCNPX analysis. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during Ground Level Enhancements 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis. Keywords: Radiation Dosimetry, Radiation Protection, Space Physics.

  8. Single-Column Modeling, GCM Parameterizations and Atmospheric Radiation Measurement Data

    International Nuclear Information System (INIS)

    Somerville, R.C.J.; Iacobellis, S.F.

    2005-01-01

    Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional

  9. Radiation effects in materials for accelerator-driven neutron technologies. Revision

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.

    1997-01-01

    Accelerator-driven neutron technologies use spallation neutron sources (SNS's) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS's are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS's and under consideration for the 1-5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  10. Radiation protection training programmes Spanish approach

    International Nuclear Information System (INIS)

    Arboli, M. Marco; Suarez, M. Rodriguez; Cabrera, S. Falcon

    2002-01-01

    Radiation Protection Programmes are being considered the best way to promote safety culture and to spread and propagate European basic safety standards. It is widely accepted that training is an important tool to upgrade competence for radiation exposed workers. The Spanish Radiation Protection Education and Training Programmes provide a solid and integrated educational model, which takes into account the variety of applied fields, the different levels of responsibilities, the technological and methodological advances, as well as the international tendencies. The needs for a specialised training on Radiation Protection (RP) for exposed workers appears into the Spanish regulation in 1964. National initial training programmes are well established since 1972. Individual certifications, based on personal licences are required for exposed workers. The Spanish regulation also includes continuous and on the job RP training. The educational programmes are being continuously updating and improving. CIEMAT plays an important role in RP Spanish training, improving and modifying the previous RP courses and developing new programmes in order to complete the RP training levels. To achieve Radiation Protection objectives, new technological media for educational methods and material are taking into account. Nevertheless, Spanish RP education and training model has to be improved in some aspects. The purpose of this paper is to analyse the situation and the future needs to be considered in order to complete the RP training processes

  11. Study on biological response to space radiation and its countermeasure

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Il; Lee, Ju Woon; Kim, Dong Ho; Kim, Jae Hun; Song, Beom Suk; Kim, Jae Kyung; Park, Jong Heum; Kim, Jin Kyu [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    The purpose is to develop the core technologies for the advanced life supporting system based on radiation technology by 2015 and to be a member of G7 in the space technology research field. And it is the final aim that contribution for establishment of the self-supporting technology and national strength by 2020. To simulate the space environment of microgravity and expose to space radiation, denervation model was established in Gamma Phytotron. The changes in microflora population in animal model was shown. The effect of simulated microgravity and long-term exposure to irradiation was investigated. In the experiment of MARS 500, crews for expedition to Mars had been served by Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground.

  12. Study on biological response to space radiation and its countermeasure

    International Nuclear Information System (INIS)

    Choi, Jong Il; Lee, Ju Woon; Kim, Dong Ho; Kim, Jae Hun; Song, Beom Suk; Kim, Jae Kyung; Park, Jong Heum; Kim, Jin Kyu

    2011-12-01

    The purpose is to develop the core technologies for the advanced life supporting system based on radiation technology by 2015 and to be a member of G7 in the space technology research field. And it is the final aim that contribution for establishment of the self-supporting technology and national strength by 2020. To simulate the space environment of microgravity and expose to space radiation, denervation model was established in Gamma Phytotron. The changes in microflora population in animal model was shown. The effect of simulated microgravity and long-term exposure to irradiation was investigated. In the experiment of MARS 500, crews for expedition to Mars had been served by Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground

  13. Reduction of collisional-radiative models for transient, atomic plasmas

    Science.gov (United States)

    Abrantes, Richard June; Karagozian, Ann; Bilyeu, David; Le, Hai

    2017-10-01

    Interactions between plasmas and any radiation field, whether by lasers or plasma emissions, introduce many computational challenges. One of these computational challenges involves resolving the atomic physics, which can influence other physical phenomena in the radiated system. In this work, a collisional-radiative (CR) model with reduction capabilities is developed to capture the atomic physics at a reduced computational cost. Although the model is made with any element in mind, the model is currently supplemented by LANL's argon database, which includes the relevant collisional and radiative processes for all of the ionic stages. Using the detailed data set as the true solution, reduction mechanisms in the form of Boltzmann grouping, uniform grouping, and quasi-steady-state (QSS), are implemented to compare against the true solution. Effects on the transient plasma stemming from the grouping methods are compared. Distribution A: Approved for public release; unlimited distribution, PA (Public Affairs) Clearance Number 17449. This work was supported by the Air Force Office of Scientific Research (AFOSR), Grant Number 17RQCOR463 (Dr. Jason Marshall).

  14. Convenient models of the atmosphere: optics and solar radiation

    Science.gov (United States)

    Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov

    2017-11-01

    Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.

  15. Mathematical models of the theory of the radiative transfer

    International Nuclear Information System (INIS)

    Lin, Ch.

    2007-06-01

    We are interested in various different models arising in radiative transfer, which describe the interactions between the medium and the photons. The radiation is described in terms of energy and energy flux in the macroscopic view, the material being described by the Euler equations (radiative hydrodynamic model). In another way, the radiation can be seen as a collection of photons, in the microscopic view point; the photons can be absorbed or emitted by the material. The absorption and the emission of photons depend on the internal excitation and ionization state of the material. We begin with the local existence (in time) of smooth solutions to a system coupling the Euler equations and the transfer equation. This system describes the exchange of energy and moment between the radiation and the material. Next, we give an asymptotic discussion for this model in the NON-LTE regime and get a simple system: coupling the Euler equations with an elliptic equation. We show the existence of (smooth) shock profiles to this system and the regularity of the shock profile as a function of the strength of the shock. Then we study the asymptotic stability of the shock profile. Finally, we study a system describing the radiation and the internal state of the material, in the microscopic view point. We prove the existence of the solution to this system and study the convergence towards the statistical equilibrium. The theoretical results are illustrated by numerical simulations. (author)

  16. Exploring the Vertical Distribution of Structural Parameters and Light Radiation in Rice Canopies by the Coupling Model and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Yongjiu Guo

    2015-04-01

    Full Text Available Canopy structural parameters and light radiation are important for evaluating the light use efficiency and grain yield of crops. Their spatial variation within canopies and temporal variation over growth stages could be simulated using dynamic models with strong application and predictability. Based on an optimized canopy structure vertical distribution model and the Beer-Lambert law combined with hyperspectral remote sensing (RS technology, we established a new dynamic model for simulating leaf area index (LAI, leaf angle (LA distribution and light radiation at different vertical heights and growth stages. The model was validated by measuring LAI, LA and light radiation in different leaf layers at different growth stages of two different types of rice (Oryza sativa L., i.e., japonica (Wuxiangjing14 and indica (Shanyou63. The results show that the simulated values were in good agreement with the observed values, with an average RRMSE (relative root mean squared error between simulated and observed LAI and LA values of 14.75% and 21.78%, respectively. The RRMSE values for simulated photosynthetic active radiation (PAR transmittance and interception rates were 14.25% and 9.22% for Wuxiangjing14 and 15.71% and 4.40% for Shanyou63, respectively. In addition, the corresponding RRMSE values for red (R, green (G and blue (B radiation transmittance and interception rates were 16.34%, 15.96% and 15.36% for Wuxiangjing14 and 5.75%, 8.23% and 5.03% for Shanyou63, respectively. The results indicate that the model performed well for different rice cultivars and under different cultivation conditions.

  17. Three-dimensional modeling of radiative and convective exchanges in the urban atmosphere

    International Nuclear Information System (INIS)

    Qu, Yongfeng

    2011-01-01

    In many micro-meteorological studies, building resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. In order to take into account atmospheric radiation and the thermal effects of the buildings in simulations of atmospheric flow and pollutant dispersion in urban areas, we have developed a three-dimensional (3D) atmospheric radiative scheme, in the atmospheric module of the Computational Fluid Dynamics model Code-Saturne. The radiative scheme was previously validated with idealized cases, using as a first step, a constant 3D wind field. In this work, the full coupling of the radiative and thermal schemes with the dynamical model is evaluated. The aim of the first part is to validate the full coupling with the measurements of the simple geometry from the 'Mock Urban Setting Test' (MUST) experiment. The second part discusses two different approaches to model the radiative exchanges in urban area with a comparison between Code-Saturne and SOLENE. The third part applies the full coupling scheme to show the contribution of the radiative transfer model on the airflow pattern in low wind speed conditions in a 3D urban canopy. In the last part we use the radiative-dynamics coupling to simulate a real urban environment and validate the modeling approach with field measurements from the 'Canopy and Aerosol Particles Interactions in Toulouse Urban Layer' (CAPITOUL). (author) [fr

  18. Radiation visualization in virtual reality: A comparison of flat and topographic map types, presented on four different display technologies

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia

    2005-08-01

    HWR-734 describes an experiment performed to compare different types of VR display technologies and their effects on learning. In the study, two different ways of presenting radiation information were compared. One was a flat radiation map with different colours for different levels of radiation. The other was a topographic map, where radiation levels were distinguished both by colour and by the elevation of the map. The efficiency of the maps for learning radiation information, and subjective preferences was assessed. The results indicated that the maps were each suited for different kinds of use. It is recommended to follow up this study with further investigation of radiation map efficiency. (Author)

  19. Risk Management Technologies With Logic and Probabilistic Models

    CERN Document Server

    Solozhentsev, E D

    2012-01-01

    This book presents intellectual, innovative, information technologies (I3-technologies) based on logical and probabilistic (LP) risk models. The technologies presented here consider such models for structurally complex systems and processes with logical links and with random events in economics and technology.  The volume describes the following components of risk management technologies: LP-calculus; classes of LP-models of risk and efficiency; procedures for different classes; special software for different classes; examples of applications; methods for the estimation of probabilities of events based on expert information. Also described are a variety of training courses in these topics. The classes of risk models treated here are: LP-modeling, LP-classification, LP-efficiency, and LP-forecasting. Particular attention is paid to LP-models of risk of failure to resolve difficult economic and technical problems. Amongst the  discussed  procedures of I3-technologies  are the construction of  LP-models,...

  20. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...