WorldWideScience

Sample records for radiation safety guide

  1. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  2. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  3. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  4. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  5. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  6. Radiation protection and safety guide no. GRPB-G-4: inspection

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    The use of ionizing radiation and radiation sources in Ghana is on the increase due to national developmental efforts in Health Care, Food and Agriculture, Industry, Science and Technology. This regulatory Guide has been developed to assist both the Regulatory Body (Radiation Protection Board) and operating organizations to perform systematic inspections commensurate with the level of hazard associated with the application of radiation sources and radioactive materials. The present Guide applies to the Radiation Protection and Safety inspection and/or audit conducted by the Radiation Protection Board or Radiation Safety Officer. The present Guide is applicable in Ghana and to foreign suppliers of radiation sources. The present Guide applies to notifying person, licensee, or registrant and unauthorized practice

  7. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  8. Radiation Safety in Industrial Radiography. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  9. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  10. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  11. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  12. Radiation protection programmes for the transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators

  13. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  14. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  15. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in … shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  16. Radiation Safety in Industrial Radiography. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  17. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained. The requirements for education, training and experience for each category. The processes of qualification and authorization of persons. A national strategy for building competence

  18. Radiation protection aspects of design for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    . The IAEA takes seriously the enduring challenge for users and regulators everywhere: that of ensuring a high level of safety in the use of nuclear materials and radiation sources around the world. Their continuing utilization for the benefit of humankind must be managed in a safe manner, and the IAEA safety standards are designed to facilitate the achievement of that goal. This Safety Guide has been prepared as a part of the IAEA programme on safety standards for nuclear power plants. It includes recommendations on how to satisfy the requirements established in the Safety Requirements publication on the Safety of Nuclear Power Plants: Design. It addresses the provisions that should be made in the design of nuclear power plants in order to protect site personnel, the public and the environment against radiological hazards for operational states, decommissioning and accident conditions. The recommendations on radiation protection provided in this Safety Guide are consistent with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which were jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the IAEA, the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO). This Safety Guide supersedes Safety Series No. 50-SG-D9, Design Aspects of Radiation Protection for Nuclear Power Plants, published in 1985. Effective radiation protection is a combination of good design, high quality construction and proper operation. Procedures that address the radiation protection aspects of operation are covered in the Safety Guide on Radiation Protection and Radioactive Waste Management in the operation of Nuclear Power Plants

  19. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework. 1. ed.

    International Nuclear Information System (INIS)

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  20. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework; 1. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  1. Radiation protection aspects in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    . The IAEA takes seriously the enduring challenge for users and regulators everywhere: that of ensuring a high level of safety in the use of nuclear materials and radiation sources around the world. Their continuing utilization for the benefit of humankind must be managed in a safe manner, and the IAEA safety standards are designed to facilitate the achievement of that goal. This Safety Guide has been prepared as a part of the IAEA programme on safety standards for nuclear power plants. It includes recommendations on how to satisfy the requirements established in the Safety Requirements publication on the Safety of Nuclear Power Plants: Design. It addresses the provisions that should be made in the design of nuclear power plants in order to protect site personnel, the public and the environment against radiological hazards for operational states, decommissioning and accident conditions. The recommendations on radiation protection provided in this Safety Guide are consistent with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which were jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the IAEA, the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO). This Safety Guide supersedes Safety Series No. 50-SG-D9, Design Aspects of Radiation Protection for Nuclear Power Plants, published in 1985. Effective radiation protection is a combination of good design, high quality construction and proper operation. Procedures that address the radiation protection aspects of operation are covered in the Safety Guide on Radiation Protection and Radioactive Waste Management in the operation of Nuclear Power Plants

  2. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The objective of this Safety Guide is to provide recommendations on how to meet the requirements of the BSS with regard to irradiation facilities. This Safety Guide provides specific, practical recommendations on the safe design and operation of gamma, electron and X ray irradiators for use by operating organizations and the designers of these facilities, and by regulatory bodies. SCOPE. The facilities considered in this publication include five types of irradiator, whether operated on a commercial basis or for research and development purposes. This publication is concerned with radiation safety issues and not with the uses of irradiators, nor does it cover the irradiation of product or its quality management. The five types of irradiator are: - Panoramic dry source storage irradiators; - Underwater irradiators, in which both the source and the product being irradiated are under water; - Panoramic wet source storage irradiators; - Electron beam irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process; - X ray irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process. Consideration of non-radiation-related risks and of the benefits resulting from the operation of irradiators is outside the scope of this Safety Guide. The practices of radiotherapy and radiography are also outside the scope of this Safety Guide. Category I gamma irradiators (i.e. 'self-shielded' irradiators) are outside the scope of this Safety Guide

  3. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  4. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Arabic ed.)

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  5. Radiation protection and safety guide no. GRPB-G-1: qualification and certification of radiation protection personnel

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    A number of accidents with radiation sources are invariably due to human factors. The achievement and maintenance of proficiency in protection and safety in working with radiation devices is a necessary prerequisite. This guide specifies the national scheme and minimum requirements for qualification and certification of radiation protection personnel. The objective is to ensure adequate level of skilled personnel by continuous upgrading of knowledge and skill of personnel. The following sectors are covered by this guide: medicine, industry, research and training, nuclear facility operations, miscellaneous activities

  6. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    radiotherapy owing to an ageing population. In addition, further growth in medical radiology can be expected in developing States, where at present facilities and services are often lacking. The risks associated with these expected increases in medical exposures should be outweighed by the benefits. For the purposes of radiation protection, ionizing radiation exposures are divided into three types: Medical exposure, which is mainly the exposure of patients as part of their diagnosis or treatment (see below); Occupational exposure, which is the exposure of workers incurred in the course of their work, with some specific exclusions; and Public exposure, which comprises all other exposures of members of the public that are susceptible to human control. Medical exposure is defined in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS, the Standards) as: 'Exposure incurred by patients as part of their own medical or dental diagnosis or treatment; by persons, other than those occupationally exposed, knowingly while voluntarily helping in the support and comfort of patients; and by volunteers in a programme of biomedical research involving their exposure.' This Safety Guide covers all of the medical exposures defined above, with emphasis on the radiological protection of patients, but does not cover exposures of workers or the public derived from the application of medical radiation sources. Guidance relating to these exposures can be found in the Safety Guide on Occupational Radiation Protection. In addition to the IAEA, several intergovernmental and international organizations, among them the European Commission, the International Commission on Radiological Protection (ICRP), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), have already published numerous recommendations, guides and codes of practice relevant to this subject area. National authorities should therefore

  7. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    radiotherapy owing to an ageing population. In addition, further growth in medical radiology can be expected in developing States, where at present facilities and services are often lacking. The risks associated with these expected increases in medical exposures should be outweighed by the benefits. For the purposes of radiation protection, ionizing radiation exposures are divided into three types: Medical exposure, which is mainly the exposure of patients as part of their diagnosis or treatment (see below). Occupational exposure, which is the exposure of workers incurred in the course of their work, with some specific exclusions. And Public exposure, which comprises all other exposures of members of the public that are susceptible to human control. Medical exposure is defined in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS, the Standards) as: 'Exposure incurred by patients as part of their own medical or dental diagnosis or treatment. By persons, other than those occupationally exposed, knowingly while voluntarily helping in the support and comfort of patients. And by volunteers in a programme of biomedical research involving their exposure.' This Safety Guide covers all of the medical exposures defined above, with emphasis on the radiological protection of patients, but does not cover exposures of workers or the public derived from the application of medical radiation sources. Guidance relating to these exposures can be found in the Safety Guide on Occupational Radiation Protection. In addition to the IAEA, several intergovernmental and international organizations, among them the European Commission, the International Commission on Radiological Protection (ICRP), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), have already published numerous recommendations, guides and codes of practice relevant to this subject area. National authorities should therefore

  8. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition); Surete radiologique en radiographie industrielle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in Horizontal-Ellipsis shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  9. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition); Seguridad radiologica en la radiografia industrial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  10. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    Severitt, S.; Oehm, J.; Sobetzko, T.; Kloth, M.

    2012-01-01

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  11. Radiation safety in X-ray facilities

    International Nuclear Information System (INIS)

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2

  12. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  13. Environmental and Source Monitoring for Purposes of Radiation Protection. Safety Guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Safety Guide is to provide international guidance, coherent with contemporary radiation protection principles and IAEA safety requirements, on the strategy of monitoring in relation to: (a) control of radionuclide discharges under practice conditions, and (b) intervention, such as in cases of nuclear or radiological emergencies or past contamination of areas with long lived radionuclides. Three categories of monitoring are discussed: monitoring at the source of the discharge (source monitoring), monitoring in the environment (environmental monitoring) and monitoring of individual exposure in emergencies (individual monitoring). The Safety Guide also provides general guidance on assessment of the doses to critical groups of the population due to the presence of radioactive materials or radiation fields in the environment both from routine operation of nuclear and other related facilities (practice) and from nuclear or radiological emergencies and past contamination of areas with long lived radionuclides (intervention). The dose assessments are based on the results of source monitoring, environmental monitoring, individual monitoring or their combinations. This Safety Guide is primarily intended for use by national regulatory bodies and other agencies involved in national systems of radiation monitoring, as well as by operators of nuclear installations and other facilities where natural or human made radionuclides are treated and monitored. Contents: 1. Introduction; 2. Meeting regulatory requirements for monitoring in practices and interventions; 3. Responsibilities for monitoring; 4. Generic aspects of monitoring programmes; 5. Programmes for monitoring in practices and interventions; 6. Technical conditions for monitoring procedures; 7. Considerations in dose assessment; 8. Interpretation of monitoring results; 9. Quality assurance; 10. Recording of results; 11. Education and training; Glossary.

  14. Radiation Protection and Radioactive Waste Management in the Operation of Nuclear Power Plants. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Safety Guide is to provide recommendations to the regulatory body, focused on the operational aspects of radiation protection and radioactive waste management in nuclear power plants, and on how to ensure the fulfilment of the requirements established in the relevant Safety Requirements publications. It will also be useful for senior managers in licensee or contractor organizations who are responsible for establishing and managing programmes for radiation protection and for the management of radioactive waste. This Safety Guide gives general recommendations for the development of radiation protection programmes at nuclear power plants. The issues are then elaborated by defining the main elements of a radiation protection programme. Particular attention is paid to area classification, workplace monitoring and supervision, application of the principle of optimization of protection (also termed the 'as low as reasonably achievable' (ALARA) principle), and facilities and equipment. This Safety Guide covers all the safety related aspects of a programme for the management of radioactive waste at a nuclear power plant. Emphasis is placed on the minimization of waste in terms of both activity and volume. The various steps in predisposal waste management are covered, namely processing (pretreatment, treatment and conditioning), storage and transport. Releases of effluents, the application of authorized limits and reference levels are discussed, together with the main elements of an environmental monitoring programme

  15. Radiation: a guide for the layman

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    A brief non-technical guide to ionizing and non-ionizing radiations including sources of these radiations, particularly at work, and their biological effects; radiological protection measures, standards and regulations; the nuclear power industry and safety organization in Britain. (author)

  16. Protection of the patient in medical exposure - the related IAEA safety guide

    International Nuclear Information System (INIS)

    Turai, I.

    1999-01-01

    The Radiation Safety Section of the Agency has recently completed the draft Safety Guide on Radiation Protection in Medical Exposures' for submission to the Publication Committee of the IAEA. The author as served as one of the scientific secretaries responsible for the preparation and review of this document in the last two years. The drafts of this IAEA Safety Guide have undergone a detailed review process by specialists of 14 Member States and the co-sponsoring organizations, the Pan American Health Organization and the World Health Organization (WHO). The last draft is the primary source of this paper. The Safety Guide will be part of the Safety Standards Series. It is addressed to Regulatory Authorities and other National Institutions to provide them with guidance at the national level on the practical implementation of Appendix II (Medical Exposure) of the International Basic Safety Standards for the Protection against Ionizing Radiation and for the Safety of Radiation Sources

  17. Safety guide data on radiation shielding in a reprocessing facility

    International Nuclear Information System (INIS)

    Sekiguchi, Noboru; Naito, Yoshitaka

    1986-04-01

    In a reprocessing facility, various radiation sources are handled and have many geometrical conditions. To aim drawing up a safety guidebook on radiation shielding in order to evaluate shielding safety in a reprocessing facility with high reliability and reasonableness, JAERI trusted investigation on safety evaluation techniques of radiation shielding in a reprocessing facility to Nuclear Safety Research Association. This report is the collection of investigation results, and describes concept of shielding safety design principle, radiation sources in reprocessing facility and estimation of its strength, techniques of shielding calculations, and definite examples of shielding calculation in reprocessing facility. (author)

  18. Radiation safety in aviation

    International Nuclear Information System (INIS)

    2005-06-01

    The guide presents the requirements governing radiation safety of aircrews exposed to cosmic radiation and monitoring of such exposure. It applies to enterprises engaged in aviation under a Finnish operating licence and to Finnish military aviation at altitudes exceeding 8,000 metres. The radiation exposure of aircrews at altitudes of less than 8,000 metres is so minimal that no special measures are generally required to investigate or limit exposure to radiation

  19. Application of the management system for facilities and activities. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide supports the Safety Requirements publication on The Management System for Facilities and Activities. It provides generic guidance to aid in establishing, implementing, assessing and continually improving a management system that complies with the requirements established. In addition to this Safety Guide, there are a number of Safety Guides for specific technical areas. Together these provide all the guidance necessary for implementing these requirements. This publication supersedes Safety Series No. 50-SG-Q1-Q7 (1996). The guidance provided here may be used by organizations in the following ways: - To assist in the development of the management systems of organizations directly responsible for operating facilities and activities and providing services for: Nuclear facilities; Activities using sources of ionizing radiation; Radioactive waste management; The transport of radioactive material; Radiation protection activities; Any other practices or circumstances in which people may be exposed to radiation from naturally occurring or artificial sources; The regulation of such facilities and activities; - To assist in the development of the management systems of the relevant regulatory bodies; - By the operator, to specify to a supplier, via contractual documentation, any guidance of this Safety Guide that should be included in the supplier's management system for the supply and delivery of products

  20. Application of the concepts of exclusion, exemption and clearance. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    The objective of this Safety Guide is to provide guidance to national authorities, including regulatory bodies, and operating organizations on the application of the concepts of exclusion, exemption and clearance as established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The Safety Guide includes specific values of activity concentration for both radionuclides of natural origin and those of artificial origin that may be used for bulk amounts of material for the purpose of applying exclusion or exemption. It also elaborates on the possible application of these values to clearance

  1. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    1993-01-01

    In accordance with the section 26 of the Finnish Radiation Act (592/91) the safety requirements to be taken into account in planning laboratories and other premises, which affect safety in the use of radioactive materials, are confirmed by the Finnish Centre for Radiation and Nuclear Safety. The guide specifies the requirements for laboratories and storage rooms in which radioactive materials are used or stored as unsealed sources. There are also some general instructions concerning work procedures in a radionuclide laboratory

  2. Standard Guide for Radiation Protection Program for Decommissioning Operations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  3. Radiation protection training of radiation safety officers in Finland in 2008

    International Nuclear Information System (INIS)

    Havukainen, R.; Bly, R.; Markkanen, M.

    2009-11-01

    The Radiation and Nuclear Safety Authority (STUK) carried out a survey on the radiation protection training of radiation safety officers (RSO) in Finland in 2008. The aim of the survey was to obtain information on the conformity and uniformity of the training provided in different training organisations. A previous survey concerning radiation protection training was carried out in 2003. That survey determined the training needs of radiation users and radiation safety officers as well the radiation protection training included in vocational training and supplementary training. This report presents the execution and results of the survey in 2008. According to the responses, the total amount of RSO training fulfilled the requirements presented in Guide ST 1.8 in the most fields of competence. The emphasis of the RSO training differed between organisations, even for training in the same field of competence. Certain issues in Guide ST 1.8 were dealt quite superficially or even not at all in some training programmes. In some fields of competence, certain matters were entirely left to individual study. No practical training with radiation equipment or sources was included in the RSO training programme of some organisations. Practical training also varied considerably between organisations, even within the same field of competence. The duties in the use of radiation were often considered as practical training with radiation equipment and sources. Practical training from the point of view of a radiation safety officer was brought up in the responses of only one organisation. The number of questions and criteria for passing RSO exams also varied between organisations. Trainers who provided RSO training for the use of radiation in health care sectors had reached a higher vocational training level and received more supplementary training in radiation protection in the previous 5 years than trainers who provided RSO training for the use of radiation in industry, research, and

  4. Exemption of the use of radiation from the safety licence and reporting obligation

    International Nuclear Information System (INIS)

    1999-07-01

    The primary means of controlling the use of radiation is the safety licence procedure. The safety licence, and the granting of the licence, are regulated in the section 16 of the Finnish Radiation Act (592/1991). In section 17 of the act, certain practices are exempted from the safety licence. In addition to these practices, the Radiation and Nuclear Safety (STUK) may (on the basis of the same legal clause) exempt other types of radiation use from the safety licence, if it is possible to ascertain with sufficient reliability that the use of the radiation will not cause damage or danger to health. This guide presents the conditions applying to exemption from the safety licence for the use of radiation and reporting obligation, and also the exemption values for radioactive substances which, if exceeded, will entail the application of the safety licence and notification procedure for the use of radiation in question. The guide also presents exemptions in the use of exemption values, and requirements associated with the exemption of radiation appliances. However, the guide does not apply to the use of nuclear energy

  5. Exemption of the use of radiation from the safety licence and reporting obligation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The primary means of controlling the use of radiation is the safety licence procedure. The safety licence, and the granting of the licence, are regulated in the section 16 of the Finnish Radiation Act (592/1991). In section 17 of the act, certain practices are exempted from the safety licence. In addition to these practices, the Radiation and Nuclear Safety (STUK) may (on the basis of the same legal clause) exempt other types of radiation use from the safety licence, if it is possible to ascertain with sufficient reliability that the use of the radiation will not cause damage or danger to health. This guide presents the conditions applying to exemption from the safety licence for the use of radiation and reporting obligation, and also the exemption values for radioactive substances which, if exceeded, will entail the application of the safety licence and notification procedure for the use of radiation in question. The guide also presents exemptions in the use of exemption values, and requirements associated with the exemption of radiation appliances. However, the guide does not apply to the use of nuclear energy.

  6. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  7. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  8. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  9. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  10. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  11. Operational radiation protection: A guide to optimization

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs

  12. The practice of safety culture construction in radiation processing enterprise

    International Nuclear Information System (INIS)

    Kong Xiangshan; Zhang Yue; Yang Bin; Xu Tao; Liu Wei; Hao Jiangang

    2014-01-01

    Security is an integral part of the process of business operations. The radiation processing enterprises due to their own particularity, more need to focus on the operation of the safety factors, the construction of corporate safety culture is of great significance in guiding carry out the work of the Radiation Protection. Radiation processing enterprises should proceed from their own characteristics, the common attitude of security systems and security construction, and constantly improved to ensure the personal safety of radiation workers in the area of safety performance. (authors)

  13. REPOSITORY RADIATION SHIELDING DESIGN GUIDE

    International Nuclear Information System (INIS)

    M. Haas; E.M. Fortsch

    1997-01-01

    The scope of this document includes radiation safety considerations used in the design of facilities for the Yucca Mountain Site Characterization Project (YMP). The purpose of the Repository Radiation Shielding Design Guide is to document the approach used in the radiological design of the Mined Geologic Disposal System (MGDS) surface and subsurface facilities for the protection of workers, the public, and the environment. This document is intended to ensure that a common methodology is used by all groups that may be involved with Radiological Design. This document will also assist in ensuring the long term survivability of the information basis used for radiological safety design and will assist in satisfying the documentation requirements of the licensing body, the Nuclear Regulatory Commission (NRC). This design guide provides referenceable information that is current and maintained under the YMP Quality Assurance (QA) Program. Furthermore, this approach is consistent with maintaining continuity in spite of a changing design environment. This approach also serves to ensure common inter-disciplinary interpretation and application of data

  14. REPOSITORY RADIATION SHIELDING DESIGN GUIDE

    Energy Technology Data Exchange (ETDEWEB)

    M. Haas; E.M. Fortsch

    1997-09-12

    The scope of this document includes radiation safety considerations used in the design of facilities for the Yucca Mountain Site Characterization Project (YMP). The purpose of the Repository Radiation Shielding Design Guide is to document the approach used in the radiological design of the Mined Geologic Disposal System (MGDS) surface and subsurface facilities for the protection of workers, the public, and the environment. This document is intended to ensure that a common methodology is used by all groups that may be involved with Radiological Design. This document will also assist in ensuring the long term survivability of the information basis used for radiological safety design and will assist in satisfying the documentation requirements of the licensing body, the Nuclear Regulatory Commission (NRC). This design guide provides referenceable information that is current and maintained under the YMP Quality Assurance (QA) Program. Furthermore, this approach is consistent with maintaining continuity in spite of a changing design environment. This approach also serves to ensure common inter-disciplinary interpretation and application of data.

  15. The safety evaluation guide for laboratories and plants a tool for enhancing safety

    International Nuclear Information System (INIS)

    Lhomme, Veronique; Daubard, Jean-Paul

    2013-01-01

    The Institute for Radioprotection and Nuclear Safety (IRSN) acts as technical support for the French government Authorities competent in nuclear safety and radiation protection for civil and defence activities. In this frame, the Institute's performs safety assessments of the safety cases submitted by operators to these Authorities for each stage in the life cycle of a nuclear facility, including dismantling operations, which is subjected to a licensing procedure. In the fuel cycle field, this concerns a large variety of facilities. Very often, depending on facilities and on safety cases, safety assessment to be performed is multidisciplinary and involves the supervisor in charge of the facility and several safety experts, particularly to cover the whole set of risks (criticality, exposure to radiation, fire, handling, containment, human and organisational factors...) encountered during facility's operations. Taking these into account, and in order to formalize the assessment process of the fuel cycle facilities, laboratories, irradiators, particle accelerators, under-decommissioning reactors and radioactive waste management, the 'Plants, Laboratories, Transports and Waste Safety' Division of IRSN has developed an internal guide, as a tool: - To present the methodological framework, and possible specificities, for the assessment according to the 'Defence in Depth Concept' (Part 1); - To provide key questions associated to the necessary contradictory technical review of the safety cases (Part 2); - To capitalise on experience on the basis of technical examples (coming from incident reports, previous safety assessments...) demonstrating the questioning (Part 3). The guide is divided in chapters, each dedicated to a type of risk (dissemination of radioactive material, external or internal exposure from ionising radiation, criticality, radiolysis mechanisms, handling operations, earthquake, human or organisational factors...) or to a type

  16. Instrumentation and control systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    principles should be applied, on the basis of a method of classifying systems by their importance to safety. I and C systems important to safety are I and C systems that are part of a safety group and I and C systems whose malfunction or failure could lead to radiation exposure of site personnel or members of the public. Examples of such systems are: the reactor protection system, reactor control systems, systems to monitor and control normal reactor cooling, systems to monitor and control emergency power supplies, containment isolation systems. The IAEA's Technical Reports Series No. 387 presents an overview of concepts and examples of systems discussed in this Safety Guide and may provide useful background material for some users

  17. Radiation dose reduction in CT-guided periradicular injections in lumbar spine: Feasibility of a new institutional protocol for improved patient safety

    Directory of Open Access Journals (Sweden)

    Artner Juraj

    2012-08-01

    Full Text Available Abstract Background Image guided spinal injections are successfully used in the management of low back pain and sciatica. The main benefit of CT-guided injections is the safe, fast and precise needle placement, but the radiation exposure remains a serious concern. The purpose of the study was to test a new institutional low-dose protocol for CT-guided periradicular injections in lumbar spine to reduce radiation exposure while increasing accuracy and safety for the patients. Methods We performed a retrospective analysis of a prospective database during a 4-month period (Oct-Dec 2011 at a German University hospital using a newly established low-dose-CT-protocol for periradicular injections in patients suffering from lumbar disc herniation and nerve root entrapment. Inclusion criteria were acute or chronic nerve root irritation due to lumbar disc hernia, age over 18, compliance and informed consent. Excluded were patients suffering from severe obesity (BMI > 30, coagulopathy, allergy to injected substances, infection and non-compliant patients. Outcome parameters consisted of the measured dose length product (mGycm2, the amount of scans, age, gender, BMI and the peri-interventional complications. The results were compared to 50 patients, treated in the standard-interventional CT-protocol for spinal injections, performed in June-Oct 2011, who met the above mentioned inclusion criteria. Results A total amount of 100 patients were enrolled in the study. A significant radiation dose reduction (average 85.31% was achieved using the institutional low-dose protocol compared to standard intervention mode in CT-guided periradicular injections in lumbar spine. Using the low-dose protocol did not increase the complications rate in the analyzed cohort. Conclusions Low-dose-CT-protocols for lumbar perineural injections significantly reduce the exposure to radiation of non-obese patients without an increase of complications. This increases long-time patient

  18. The role of the International Atomic Energy Agency in radiation and waste safety

    International Nuclear Information System (INIS)

    Wrixon, A.D.; Ortiz-Lopez, P.

    1999-01-01

    The International Atomic Energy Agency is specifically required by its Statute 'to establish or adopt ... standards of safety for protection of health and minimization of danger to life and property ... and to provide for the application of these standards ...'. Standards encompass three main elements: legally binding international undertakings among States; globally agreed international safety standards; and the provision for facilitating the application of those standards. Radiation safety standards are national responsibilities, but there is considerable value in formulating harmonized approaches throughout the world. The Agency has attempted to do this by establishing internationally agreed safety standards and by prompting their application. Of prime importance are the Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. These deal with the basic requirements that must be met in order to ensure an adequate standard of safety. More detailed guidance on the application of these requirements is given in Safety Guides established under them. Fuller technical support is given in a series of Safety Reports. A number of Safety Guides are relevant to this meeting. An existing Safety Guide on exemption is being revised to cover related topics such as exclusion and clearance, and this is the subject of a separate presentation. As part of the programme to combat illicit trafficking in radioactive materials, a new Safety Guide on the topic is being developed. Both are near completion. Another Safety Guide is being produced to elaborate the requirements in the Basic Safety Standards on the safety of radioactive sources. The topics of illicit trafficking in radioactive materials and the safety of radioactive sources were given added impetus by resolutions of the last General Conference of the Agency. This paper provides an overview of these activities of the Agency. (author)

  19. Implementation of radiation safety program in a medical institution

    International Nuclear Information System (INIS)

    Palanca, Elena D.

    1999-01-01

    A medical institution that utilizes radiation for the diagnosis and treatment of diseases of malignancies develops and implements a radiation safety program to keep occupational exposures of radiation workers and exposures of non-radiation workers and the public to the achievable and a more achievable minimum, to optimize the use of radiation, and to prevent misadministration. The hospital radiation safety program is established by a core medical radiation committee composed of trained radiation safety officers and head of authorized users of radioactive materials and radiation machines from the different departments. The radiation safety program sets up procedural guidelines of the safe use of radioactive material and of radiation equipment. It offers regular training to radiation workers and radiation safety awareness courses to hospital staff. The program has a comprehensive radiation safety information system or radsis that circularizes the radiation safety program in the hospital. The radsis keeps the drafted and updated records of safety guides and policies, radioactive material and equipment inventory, personnel dosimetry reports, administrative, regulatory and licensing activity document, laboratory procedures, emergency procedures, quality assurance and quality control program process, physics and dosimetry procedures and reports, personnel and hospital staff training program. The medical radiation protection committee is tasked to oversee the actual implementation of the radiation safety guidelines in the different radiation facilities in the hospital, to review personnel exposures, incident reports and ALARA actions, operating procedures, facility inspections and audit reports, to evaluate the existing radiation safety procedures, to make necessary changes to these procedures, and make modifications of course content of the training program. The effective implementation of the radiation safety program provides increased confidence that the physician and

  20. Radiation safety and regulatory aspects in Medical Facilities

    International Nuclear Information System (INIS)

    Banerjee, Sharmila

    2017-01-01

    Radiation safety and regulatory aspect of medical facilities are relevant in the context where radiation is used in providing healthcare to human patients. These include facilities, which carry out radiological procedures in diagnostic radiology, including dentistry, image-guided interventional procedures, nuclear medicine, and radiation therapy. The safety regulations provide recommendations and guidance on meeting the requirements for the safe use of radiation in medicine. The different safety aspects which come under its purview are the personnel involved in medical facilities where radiological procedures are performed which include the medical practitioners, radiation technologists, medical physicists, radiopharmacists, radiation protection and over and above all the patients. Regulatory aspects cover the guidelines provided by ethics committees, which regulate the administration of radioactive formulation in human patients. Nuclear medicine is a modality that utilizes radiopharmaceuticals either for diagnosis of physiological disorders related to anatomy, physiology and patho-physiology and for diagnosis and treatment of cancer

  1. Predisposal management of low and intermediate level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power reactors and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of LLW. This Safety Guide deals with the safety issues associated with the predisposal management of LLW from nuclear fuel cycle facilities, large research and development installations and radioisotope production facilities. This includes all steps and activities in the management of waste, from its initial generation to its final acceptance at a waste disposal facility or the removal of regulatory control. The predisposal management of radioactive waste includes decommissioning. The term 'decommissioning' encompasses both the process of decommissioning a facility and the management of the waste that results (prior to its disposal). Recommendations on the process of decommissioning are provided in Refs. Recommendations on the management of the waste resulting from decommissioning are included in this Safety Guide. Although the mining and milling of uranium and thorium ores is part of the nuclear fuel cycle, the management of the operational waste (e.g. waste rock, tailings and effluent treatment waste) from these activities is not within the scope of this Safety Guide. The LLW that is

  2. Radiation safety of sealed sources and equipment containing them

    International Nuclear Information System (INIS)

    1993-01-01

    The guide gives information and requirements concerning the technical construction, installation, use and licensing of devices containing sealed radioactive sources in order to ensure the operational safety. The requirements are in accordance with the international standards ISO 1677, ISO 2919, ISO 7205 and Nordic Recommendations on radiation protection for radionuclide gauges in permanent installation. The guide explains also the practical measures that must be taken into account when a radiation device is repaired, maintained or removed from the use. (8 refs.)

  3. Radiation safety

    International Nuclear Information System (INIS)

    Jain, Priyanka

    2014-01-01

    The use of radiation sources is a privilege; in order to retain the privilege, all persons who use sources of radiation must follow policies and procedures for their safe and legal use. The purpose of this poster is to describe the policies and procedures of the Radiation Protection Program. Specific conditions of radiation safety require the establishment of peer committees to evaluate proposals for the use of radionuclides, the appointment of a radiation safety officer, and the implementation of a radiation safety program. In addition, the University and Medical Centre administrations have determined that the use of radiation producing machines and non-ionizing radiation sources shall be included in the radiation safety program. These Radiation Safety policies are intended to ensure that such use is in accordance with applicable State and Federal regulations and accepted standards as directed towards the protection of health and the minimization of hazard to life or property. It is the policy that all activities involving ionizing radiation or radiation emitting devices be conducted so as to keep hazards from radiation to a minimum. Persons involved in these activities are expected to comply fully with the Canadian Nuclear Safety Act and all it. The risk of prosecution by the Department of Health and Community Services exists if compliance with all applicable legislation is not fulfilled. (author)

  4. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, and those of Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Framework for planning and preparing for response to accidents in the transport of radioactive material; 3. Responsibilities for planning and preparing for response to accidents in the transport of radioactive material; 4. Planning for response to accidents in the transport of radioactive material; 5. Preparing for response to accidents in the transport of radioactive material; Appendix I: Features of the transport regulations influencing emergency response to transport accidents; Appendix II: Preliminary emergency response reference matrix; Appendix III: Guide to suitable instrumentation; Appendix IV: Overview of emergency management for a transport accident involving radioactive material; Appendix V: Examples of response to transport accidents; Appendix VI: Example equipment kit for a radiation protection team; Annex I: Example of guidance on emergency response to carriers; Annex II: Emergency response guide.

  5. Communication and Consultation with Interested Parties by the Regulatory Body. General Safety Guide

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Guide provides recommendations on meeting the safety requirements concerning communication and consultation with the public and other interested parties by the regulatory body about the possible radiation risks associated with facilities and activities, and about processes and decisions of the regulatory body. The Safety Guide can be used by authorized parties in circumstances where there are regulatory requirements placed on them for communication and consultation. It may also be used by other organizations or individuals considering their responsibilities for communication and consultation with interested parties.

  6. Radiation safety audit

    International Nuclear Information System (INIS)

    Kadadunna, K.P.I.K.; Mod Ali, Noriah

    2008-01-01

    Audit has been seen as one of the effective methods to ensure harmonization in radiation protection. A radiation safety audit is a formal safety performance examination of existing or future work activities by an independent team. Regular audit will assist the management in its mission to maintain the facilities environment that is inherently safe for its employees. The audits review the adequacy of facilities for the type of use, training, and competency of workers, supervision by authorized users, availability of survey instruments, security of radioactive materials, minimization of personnel exposure to radiation, safety equipment, and the required record keeping. All approved areas of use are included in these periodic audits. Any deficiency found in the audit shall be corrected as soon as possible after they are reported. Radiation safety audit is a proactive approach to improve radiation safety practices and identify and prevent any potential radiation accident. It is an excellent tool to identify potential problem to radiation users and to assure that safety measures to eliminate or reduce the problems are fully considered. Radiation safety audit will help to develop safety culture of the facility. It is intended to be the cornerstone of a safety program designed to aid the facility, staff and management in maintaining a safe environment in which activities are carried out. The initiative of this work is to evaluate the need of having a proper audit as one of the mechanism to manage the safety using ionizing radiation. This study is focused on the need of having a proper radiation safety audit to identify deviations and deficiencies of radiation protection programmes. It will be based on studies conducted on several institutes/radiation facilities in Malaysia in 2006. Steps will then be formulated towards strengthening radiation safety through proper audit. This will result in a better working situation and confidence in the radiation protection community

  7. Radiation safety in educational, medical and research institutions. Regulatory guide G-121

    International Nuclear Information System (INIS)

    2000-05-01

    This regulatory guide is intended to help educational, medical and research institutions design and implement radiation protection programs that meed regulatory requirements. This guide applied to educational, medical or research institutions that require a licence from the CNSC to posses or use radioactive materials. It describes programs to assure that radioactive materials are used safely during licensed activities. (author)

  8. School Chemistry Laboratory Safety Guide

    Science.gov (United States)

    Brundage, Patricia; Palassis, John

    2006-01-01

    The guide presents information about ordering, using, storing, and maintaining chemicals in the high school laboratory. The guide also provides information about chemical waste, safety and emergency equipment, assessing chemical hazards, common safety symbols and signs, and fundamental resources relating to chemical safety, such as Material…

  9. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  10. Safety guides development process in Spain

    International Nuclear Information System (INIS)

    Butragueno, J.L.; Perello, M.

    1979-01-01

    Safety guides have become a major factor in the licensing process of nuclear power plants and related nuclear facilities of the fuel cycle. As far as the experience corroborates better and better engineering methodologies and procedures, the results of these are settled down in form of standards, guides, and similar issues. This paper presents the actual Spanish experience in nuclear standards and safety guides development. The process to develop a standard or safety guide is shown. Up to date list of issued and on development nuclear safety guides is included and comments on the future role of nuclear standards in the licensing process are made. (author)

  11. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1985-01-01

    The Seismic Safety Guide provides facilities managers with practical guidelines for administering a comprehensive earthquake safety program. Most facilities managers, unfamiliar with earthquake engineering, tend to look for answers in techniques more sophisticated than required to solve the actual problems in earthquake safety. Often the approach to solutions to these problems is so academic, legalistic, and financially overwhelming that mitigation of actual seismic hazards simply does not get done in a timely, cost-effective way. The objective of the Guide is to provide practical advice about earthquake safety so that managers and engineers can get the job done without falling into common pitfalls, prolonged diagnosis, and unnecessary costs. It is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, non-structural elements, life lines, and risk management. 5 references

  12. Design of reactor containment systems for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It is a revision of the Safety Guide on Design of the Reactor Containment Systems in Nuclear Power Plants (Safety Series No. 50-Sg-D1) issued in 1985 and supplements the Safety Requirements publication on Safety of Nuclear Power Plants: Design. The present Safety Guide was prepared on the basis of a systematic review of the relevant publications, including the Safety of Nuclear Power Plants: Design, the Safety fundamentals publication on The Safety of Nuclear Installations, Safety Guides, INSAG Reports, a Technical Report and other publications covering the safety of nuclear power plants. 1.2. The confinement of radioactive material in a nuclear plant, including the control of discharges and the minimization of releases, is a fundamental safety function to be ensured in normal operational modes, for anticipated operational occurrences, in design basis accidents and, to the extent practicable, in selected beyond design basis accidents. In accordance with the concept of defence in depth, this fundamental safety function is achieved by means of several barriers and levels of defence. In most designs, the third and fourth levels of defence are achieved mainly by means of a strong structure enveloping the nuclear reactor. This structure is called the 'containment structure' or simply the 'containment'. This definition also applies to double wall containments. 1.3. The containment structure also protects the reactor against external events and provides radiation shielding in operational states and accident conditions. The containment structure and its associated systems with the functions of isolation, energy management, and control of radionuclides and combustible gases are referred to as the containment systems

  13. Design of reactor containment systems for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It is a revision of the Safety Guide on Design of the Reactor Containment Systems in Nuclear Power Plants (Safety Series No. 50-Sg-D1) issued in 1985 and supplements the Safety Requirements publication on Safety of Nuclear Power Plants: Design. The present Safety Guide was prepared on the basis of a systematic review of the relevant publications, including the Safety of Nuclear Power Plants: Design, the Safety fundamentals publication on The Safety of Nuclear Installations, Safety Guides, INSAG Reports, a Technical Report and other publications covering the safety of nuclear power plants. 1.2. The confinement of radioactive material in a nuclear plant, including the control of discharges and the minimization of releases, is a fundamental safety function to be ensured in normal operational modes, for anticipated operational occurrences, in design basis accidents and, to the extent practicable, in selected beyond design basis accidents. In accordance with the concept of defence in depth, this fundamental safety function is achieved by means of several barriers and levels of defence. In most designs, the third and fourth levels of defence are achieved mainly by means of a strong structure enveloping the nuclear reactor. This structure is called the 'containment structure' or simply the 'containment'. This definition also applies to double wall containments. 1.3. The containment structure also protects the reactor against external events and provides radiation shielding in operational states and accident conditions. The containment structure and its associated systems with the functions of isolation, energy management, and control of radionuclides and combustible gases are referred to as the containment systems

  14. Safety and Efficacy of Ultrasound-Guided Fiducial Marker Implantation for CyberKnife Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyun; Hong, Seong; Sook; Kim, Jung Hoon; Park, Hyun Jeong; Chang, Yun Woo; Chang, A Ram [Soonchunhyang University Seoul Hospital, Seoul (Korea, Republic of); Kwon, Seok Beom [Hallym University College of Medicine, Chuncheon (Korea, Republic of)

    2012-06-15

    To evaluate the safety and technical success rate of an ultrasound-guided fiducial marker implantation in preparation for CyberKnife radiation therapy. We retrospectively reviewed 270 percutaneous ultrasound-guided fiducial marker implantations in 77 patients, which were performed from June 2008 through March 2011. Of 270 implantations, 104 were implanted in metastatic lymph nodes, 96 were in the liver, 39 were in the pancreas, and 31 were in the prostate. During and after the implantation, major and minor procedure-related complications were documented. We defined technical success as the implantation enabling adequate treatment planning and CT simulation. The major and minor complication rates were 1% and 21%, respectively. One patient who had an implantation in the liver suffered severe abdominal pain, biloma, and pleural effusion, which were considered as major complication. Abdominal pain was the most common complication in 11 patients (14%). Among nine patients who had markers inserted in the prostate, one had transient hematuria for less than 24 hours, and the other experienced transient voiding difficulty. Of the 270 implantations, 261 were successful (97%). The reasons for unsuccessful implantations included migration of fiducial markers (five implantations, 2%) and failure to discriminate the fiducial markers (three implantations, 1%). Among the unsuccessful implantation cases, six patients required additional procedures (8%). The symptomatic complications following ultrasound-guided percutaneous implantation of fiducial markers are relatively low. However, careful consideration of the relatively higher rate of migration and discrimination failure is needed when performing ultrasound-guided percutaneous implantations of fiducial markers.

  15. A proposal for an international convention on radiation safety

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1998-01-01

    One century has passed since harmful effects of radiation on living tissues were recognized. Organized efforts to reduce radiation hazards began in early 1920s. Major efforts by the ICRP since 1928, aided by ICRU, greatly helped in formulating principles, policies and guidance for radiation protection. The WHO formally recognized ICRP in 1956 and began implementing ICRP recommendations and guidance throughout the world. The IAEA, after it took office in 1957, began to establish or adopt standards of safety based on ICRP recommendations and provide for application of these standards in the field of atomic energy. Later on, other pertinent international organizations joined IAEA in establishing the Basic Safety Standards on radiation safety. The IAEA has issued, until now, nearly couple of hundred safety related documents on radiation safety and waste management. However, in spite of all such international efforts for three quarter of a century, there has been no effective universal control in radiation safety. Problems exist at the user, national, international and manufacturers and suppliers levels. Other problems are management of spent sources and smuggling of sources across international borders. Although, radiation and radionuclides are used by all countries of the world, regulatory and technical control measures in many countries are either lacking or inadequate. The recommendations and technical guidance provided by the international organizations are only advisory and carry no mandatory force to oblige countries to apply them. Member States approve IAEA safety standards and guides at the technical meetings and General Conference, but many of them do not apply these. An International Convention is, therefore, essential to establish international instrument to ensure universal application of radiation safety. (author)

  16. Radiation safety

    International Nuclear Information System (INIS)

    Van Riessen, A.

    2002-01-01

    Full text: Experience has shown that modem, fully enclosed, XRF and XRD units are generally safe. This experience may lead to complacency and ultimately a lowering of standards which may lead to accidents. Maintaining awareness of radiation safety issues is thus an important role for all radiation safety officers. With the ongoing progress in technology, a greater number of radiation workers are more likely to use a range of instruments/techniques - eg portable XRF, neutron beam analysis, and synchrotron radiation analysis. The source for each of these types of analyses is different and necessitates an understanding of the associated dangers as well as use of specific radiation badges. The trend of 'suitcase science' is resulting in scientists receiving doses from a range of instruments and facilities with no coordinated approach to obtain an integrated dose reading for an individual. This aspect of radiation safety needs urgent attention. Within Australia a divide is springing up between those who work on Commonwealth property and those who work on State property. For example a university staff member may operate irradiating equipment on a University campus and then go to a CSIRO laboratory to operate similar equipment. While at the University State regulations apply and while at CSIRO Commonwealth regulations apply. Does this individual require two badges? Is there a need to obtain two licences? The application of two sets of regulations causes unnecessary confusion and increases the workload of radiation safety officers. Radiation safety officers need to introduce risk management strategies to ensure that both existing and new procedures result in risk minimisation. A component of this strategy includes ongoing education and revising of regulations. AXAA may choose to contribute to both of these activities as a service to its members as well as raising the level of radiation safety for all radiation workers. Copyright (2002) Australian X-ray Analytical

  17. Safety Information System Guide

    International Nuclear Information System (INIS)

    Bullock, M.G.

    1977-03-01

    This Guide provides guidelines for the design and evaluation of a working safety information system. For the relatively few safety professionals who have already adopted computer-based programs, this Guide may aid them in the evaluation of their present system. To those who intend to develop an information system, it will, hopefully, inspire new thinking and encourage steps towards systems safety management. For the line manager who is working where the action is, this Guide may provide insight on the importance of accident facts as a tool for moving ideas up the communication ladder where they will be heard and acted upon; where what he has to say will influence beneficial changes among those who plan and control his operations. In the design of a safety information system, it is suggested that the safety manager make friends with a computer expert or someone on the management team who has some feeling for, and understanding of, the art of information storage and retrieval as a new and better means for communication

  18. Predisposal management of high level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power plants and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of HLW. This Safety Guide applies to the predisposal management of HLW. For liquid HLW arising from the reprocessing of spent fuel the recommendations of this Safety Guide apply from when liquid waste from the first extraction process is collected for storage and subsequent processing. Recommendations and guidance on the storage of spent fuel, whether or not declared as waste, subsequent to its removal from the storage facility of a reactor are provided in Refs. For spent fuel declared as waste this Safety Guide applies to all activities subsequent to its removal from the storage facility of a reactor and prior to its disposal. Requirements pertaining to the transport of spent fuel, whether or not declared as waste, and of all forms of HLW are established. This Safety Guide provides recommendations on the safety aspects of managing HLW, including the planning, design, construction, commissioning, operation and decommissioning of equipment or facilities for the predisposal management of HLW. It addresses the following elements: (a) The characterization and processing (i.e. pretreatment

  19. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  20. Experience in the development and practical use of working control levels for radiation safety

    International Nuclear Information System (INIS)

    Epishin, A.V.

    1981-01-01

    The experience of development and practical use of working control levels (WCL) of radiation safety in the Gorky region, is discussed. WCL are introduced by ''Radiation Safety Guides'' (RSG-76) and have great practical importance. Regional control levels of radiation safety are determined for certain types of operations implying radioactive hazard and differentiated according to the types of sources applied and types of operation. Dose rates, radioactive contamination of operating surfaces, skin, air and waste water are subject to normalization. Limits of individual radiation doses specified according to operation categories are included. 10 tables of regional WCL indices are developed [ru

  1. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls

  2. Seismic Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Eagling, D.G. (ed.)

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  3. For safety in procurement, follow the guide!

    CERN Multimedia

    HSE Unit

    2014-01-01

    At one time or another, whether as part of a project or for an activity or service, you may find that you have to write a technical specification before placing an order for equipment or machinery. In all cases, when specifying what you need, you must make sure that aspects linked to safety and, in some cases, radiation protection and the protection of the environment, are taken into account in your invitation to tender/price enquiry.   In order to help you with this, the HSE Unit has just published Safety Guideline GS 0-0-1: “27 Key Questions to Ensure that Safety Aspects are Integrated into Invitations to Tender". This guide, available on EDMS under document number 1334815, has been drawn up after the verification of safety aspects of over 300 invitations to tender recently issued by CERN. It collates the most commonly received comments and remarks concerning safety in a question-and-answer format, so you will find plenty of explanations and points to include in your doc...

  4. Activities of ARCAL XX for the development of guidelines for the safety of radiation sources

    International Nuclear Information System (INIS)

    Velasques de Oliveira, S.M.; Betancourt, L.A.

    2001-01-01

    This report presents the contribution of the ARCAL XX project 'Guidelines for the Control of Radiation Sources' for the development and harmonization of the safety of radiation sources in Latin America. The project began in 1997 with the participation of nine countries. The methodology adopted has enabled all experts from the nine countries involved in the project to participate in discussions on the development of guidelines based on regional experience. Three common documents for all practices and six safety guides for the main practices have been revised for publication. For the next two years, the project co-ordinators are proposing regional and national workshops for the application of the safety guides approved by the ARCAL programme. (author)

  5. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  6. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  7. Evaluation of a Radiation Worker Safety Training Program at a nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, J.E.

    1993-05-01

    A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements.

  8. Evaluation of a Radiation Worker Safety Training Program at a nuclear facility

    International Nuclear Information System (INIS)

    Lindsey, J.E.

    1993-05-01

    A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements

  9. Probabilistic safety analysis procedures guide

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Bari, R.A.; Buslik, A.J.

    1984-01-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of tissues affecting reactor safety. This guide addresses the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant and from loss of offsite electric power. The scope includes analyses of problem-solving (cognitive) human errors, a determination of importance of the various core damage accident sequences, and an explicit treatment and display of uncertainties for the key accident sequences. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance) and the risk associated with external accident initiators, as consensus is developed regarding suitable methodologies in these areas. This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are essential for regulatory decision making. Methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study

  10. Reporting nuclear power plant operation to the Finnish Centre for Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    1997-01-01

    The Finnish Centre for Radiation and Nuclear safety (STUK) is the authority in Finland responsible for controlling the safety of the use of nuclear energy. The control includes, among other things, inspection of documents, reports and other clarification submitted to the STUK, and also independent safety analyses and inspections at the plant site. The guide presents what reports and notifications of the operation of the nuclear facilities are required and how they shall be submitted to the STUK. The guide does not cover reports to be submitted on nuclear material safeguards addressed in the guide YVL 6.10. Guide YVL 6.11 presents reporting related to the physical protection of nuclear power plants. Monitoring and reporting of occupational exposure at nuclear power plants is presented in the guide YVL 7.10 and reporting on radiological control in the environment of nuclear power plants in the guide YVL 7.8

  11. Resolution no. 15/2012 Safety Guide for the practice of nuclear meters

    International Nuclear Information System (INIS)

    2012-01-01

    1. This guide is Intended to complement the requirements for practice Nuclear meters out in September: • Joint Resolution CITMA-MINSAP Regulation Basic Standards Radiation safety of November 30, 2001, hereinafter NBS. • CITMA Resolution 121/2000, Regulations for the Safe Transport Radioactive Materials; hereinafter transport regulations. • Resolution 35/2003 of CITMA Regulation for the safe management of Radioactive waste of March 7, 2003, hereinafter Regulation waste. • Joint Resolution CITMA-MINSAP Regulations for the Selection, Training Authorization and Associated Personnel performing Employment Practices of Ionizing Radiation of December 19, 2003, hereinafter Staff Rules. 2. The requirements of this guide are applicable to entities and performing practice-related activities Nuclear Meters throughout the national territory.

  12. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Ro, Seong Ki; Shin, Hee Seong; Park, Seong Won; Shin, Young Joon.

    1997-06-01

    Nuclear criticality safety guide was described for handling, transportation and storage of nuclear fissile materials in this report. The major part of the report was excerpted frp, TID-7016(revision 2) and nuclear criticality safety written by Knief. (author). 16 tabs., 44 figs., 5 refs

  13. Nuclear safety guide TID-7016 Revision 2

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1980-01-01

    The present revision of TID-7016 Nuclear Safety Guide is discussed. This Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams, experienced in the field. The reader will find a significant change in the character of information presented in this version. Nuclear Criticality Safety has matured in the past twelve years. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available, information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the former Guides by employing appropriate safety factors. In fact, it becomes incumbent on the Criticality Safety Specialist to necessarily impose safety factors consistent with the possible normal and abnormal credible contingencies of an operation as revealed by his evaluation. In its present form the Guide easily becomes a suitable module in any compendium or handbook tailored for internal use by organizations. It is hoped the Guide will continue to serve immediate needs and will encourage continuing and more comprehensive efforts toward organizing nuclear criticality safety information

  14. Criticality safety basics, a study guide

    Energy Technology Data Exchange (ETDEWEB)

    V. L. Putman

    1999-09-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

  15. Criticality safety basics, a study guide

    International Nuclear Information System (INIS)

    Putman, V.L.

    1999-01-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates

  16. Nuclear safety guide. TID-7016, Revision 2

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1978-01-01

    The Nuclear Safety Guide was first issued in 1956 as classified AEC report LA-2063 and was reprinted the next year, unclassified, as TID-7016. Revision 1, published in 1961, extended the scope and refined the guiding information. The present revision of the Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams, experienced in the field. The reader will find a significant change in the character of information presented in this version. Nuclear Criticality Safety has matured in the past twelve years. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the formerGuides by employing appropriate safety factors. In fact, it becomes incumbent on the Criticality Safety Specialist to necessarily impose safety factors consistent with the possible normal and abnormal credible contingencies of an operation as revealed by his evaluation. In its present form the Guide easily becomes a suitable module in any compendium or handbook tailored for internal use by organizations. It is hoped the Guide will continue to serve immediate needs and will encourage continuing and more comprehensive efforts toward organizing nuclear criticality safety information

  17. Nuclear safety guide. TID-7016, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J T [ed.

    1978-05-01

    The Nuclear Safety Guide was first issued in 1956 as classified AEC report LA-2063 and was reprinted the next year, unclassified, as TID-7016. Revision 1, published in 1961, extended the scope and refined the guiding information. The present revision of the Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams, experienced in the field. The reader will find a significant change in the character of information presented in this version. Nuclear Criticality Safety has matured in the past twelve years. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the formerGuides by employing appropriate safety factors. In fact, it becomes incumbent on the Criticality Safety Specialist to necessarily impose safety factors consistent with the possible normal and abnormal credible contingencies of an operation as revealed by his evaluation. In its present form the Guide easily becomes a suitable module in any compendium or handbook tailored for internal use by organizations. It is hoped the Guide will continue to serve immediate needs and will encourage continuing and more comprehensive efforts toward organizing nuclear criticality safety information.

  18. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  19. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  20. Radiation safety. Handbook for laboratory workers in the USA

    International Nuclear Information System (INIS)

    Hotte, E.D.; Krueger, D.J.; Connor, K.

    2000-01-01

    The aim of the Handbook is to provide a source of information on radiation safety for those who are involved in the use of ionizing radiation in the laboratory. The potential reader may be a laboratory worker in the university or biomedical setting or the safety professional who desires a basic understanding of radiation protection within the research environment. The Handbook may be used as a reference by the radiation protection specialist or Radiation Safety Officer. To this end, liberal use is made of Appendices to make the Handbook a source of reference for a wide spectrum of readership while avoiding complicating the main body of the text. Each chapter or appendix is designed to stand alone. A complete reading of the Handbook will show that topics may be covered more than once. For example, one may read about the hazards and protective measures on handling radioiodine in Chapter 5 on Practical Radiation Protection as well as in Appendix 19 on Safe Handling of 125 I. Extensive use of figures, rather than tables has been made to present data, in the belief that these produce a good visual representation to a level of precision which is sufficient for most purposes of radiation protection in laboratories. The reader must remember that this Handbook should be taken as a guide only to the applicable regulations. You must consult the appropriate state or federal regulation directly or receive advice of a qualified radiation safety professional. Also, some information in the Appendices, such as commercially available training institutions or radioactive waste brokers, may change with time. Telephone numbers are given for the reader to call directly and check the services provided

  1. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  2. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  3. Promoting safety culture in radiation industry through radiation audit

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2007-01-01

    This paper illustrates the Malaysian experience in implementing and promoting effective radiation safety program. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. This program is known as radiation safety audit and is able to reveal where and when action is needed to make improvements to the systems of controls. A structured and proper radiation self-auditing system is seen as the sole requirement to meet the current and future needs in sustainability of radiation safety. As a result safety culture, which has been a vital element on safety in many industries can be improved and promote changes, leading to good safety performance and excellence. (author)

  4. Radiation resistivity of pure-silica core image guide

    International Nuclear Information System (INIS)

    Hayami, H.; Ishitani, T.; Kishihara, O.; Suzuki, K.

    1988-01-01

    Radiation resistivity of pure-silica core image guides were investigated in terms of incremental spectral loss and quality of pictures transmitted through the image guides. Radiation-induced spectral losses were measured so as to clarify the dependences of radiation resistivity on such parameters as core materials (OH and Cl contents), picture element dimensions, (core packing density and cladding thickness), number of picture elements and drawing conditions. As the results, an image guide with OH-and Cl-free pure-silica core, 30-45% in core packing density, and 1.8 ∼ 2.2 μm in cladding thickness showed the lowest loss. The parameters to design this image guide were almost the same as those to obtain a image guide with good picture quality. Radiation resistivity of the image guide was not dependent on drawing conditions and number of picture elements, indicating that the image guide has large allowable in production conditions and that reliable quality is constantly obtained in production. Radiation resistivity under high total doses was evaluated using the image guide with the lowest radiation-induced loss. Maximum usable lengths of the image guide for practical use under specific high total doses and maximum allowable total doses for the image guide in specific lengths were extrapolated. Picture quality in terms of radiation-induced degradation in color fidelity in the pictures transmitted through image guides was quantitatively evaluated in the chromaticity diagram based on the CIE standard colorimetric system and in the color specification charts according to three attributes of colors. The image guide with the least spectral incremental loss gives the least radiation-induced degradation in color fidelity in the pictures as well. (author)

  5. WE-FG-BRA-07: Theranostic Nanoparticles Improve Clinical MR-Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Detappe, A [Dana-Farber Cancer Institute, Boston, MA (United States); Institut Lumiere-Matiere, Lyon, FR (France); Kunjachan, S; Berbeco, R [Dana-Farber Cancer Institute, Boston, MA (United States); Sancey, L; Motto-Ros, V; Tillement, O [Institut Lumiere-Matiere, Lyon, FR (France)

    2016-06-15

    Purpose: MR-guided radiation therapy is a current and emerging clinical reality. We have designed and tested a silica-based gadolinium chelates nanoparticle (AGuIX) for integration with MR-guided radiation therapy. The AGuIX nanoparticles used in this study are a dual-modality probe with radiosensitization properties and better MRI contrast than current FDA-approved gadolinium chelates. In advance of an approved Phase I clinical trial, we report on the efficacy and safety in multiple animal models and clinically relevant radiation conditions. By modeling our study on current clinic workflows, we show compatibility with modern patient care, thus heightening the translational significance of this research. Methods: The dual imaging and therapy functionality of AGuIX was investigated in mice with clinical radiation beams while safety was evaluated in mice, and nonhuman primates after systemic injection of 0.25 mg/g of nanoparticles. MRI/ICP-MS were used to measure tumor uptake and biodistribution. Due to their small size (2–3 nm), AGuIX have good renal clearance (t1/2=19min). We performed in vitro cell uptake quantification and radiosensitization studies (clonogenic assays and DNA damage quantification). In vivo radiation therapy studies were performed with both 6MV and 6MV-FFF clinical radiation beams. Histology was performed to measure the increase in DNA damage in the tumor and to evaluate the toxicity in healthy tissues. Results: In vitro and in vivo results demonstrate statistically significant increase (P < 0.01) in DNA damage, tumor growth supression and survival (+100 days) compared to radiation alone. Negligible toxicity was observed in all of the animal models. The combination of 6MV-FFF/AGuIX demonstrated a substantial dose enhancement compared to 6MV/AGuIX (DEF = 1.36 vs. 1.22) due to the higher proportion of low energy photons. Conclusion: With demonstrated efficacy and negligible toxicity in mice and non-human primates, AGuIX is a biocompatible

  6. WE-FG-BRA-07: Theranostic Nanoparticles Improve Clinical MR-Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Detappe, A; Kunjachan, S; Berbeco, R; Sancey, L; Motto-Ros, V; Tillement, O

    2016-01-01

    Purpose: MR-guided radiation therapy is a current and emerging clinical reality. We have designed and tested a silica-based gadolinium chelates nanoparticle (AGuIX) for integration with MR-guided radiation therapy. The AGuIX nanoparticles used in this study are a dual-modality probe with radiosensitization properties and better MRI contrast than current FDA-approved gadolinium chelates. In advance of an approved Phase I clinical trial, we report on the efficacy and safety in multiple animal models and clinically relevant radiation conditions. By modeling our study on current clinic workflows, we show compatibility with modern patient care, thus heightening the translational significance of this research. Methods: The dual imaging and therapy functionality of AGuIX was investigated in mice with clinical radiation beams while safety was evaluated in mice, and nonhuman primates after systemic injection of 0.25 mg/g of nanoparticles. MRI/ICP-MS were used to measure tumor uptake and biodistribution. Due to their small size (2–3 nm), AGuIX have good renal clearance (t1/2=19min). We performed in vitro cell uptake quantification and radiosensitization studies (clonogenic assays and DNA damage quantification). In vivo radiation therapy studies were performed with both 6MV and 6MV-FFF clinical radiation beams. Histology was performed to measure the increase in DNA damage in the tumor and to evaluate the toxicity in healthy tissues. Results: In vitro and in vivo results demonstrate statistically significant increase (P < 0.01) in DNA damage, tumor growth supression and survival (+100 days) compared to radiation alone. Negligible toxicity was observed in all of the animal models. The combination of 6MV-FFF/AGuIX demonstrated a substantial dose enhancement compared to 6MV/AGuIX (DEF = 1.36 vs. 1.22) due to the higher proportion of low energy photons. Conclusion: With demonstrated efficacy and negligible toxicity in mice and non-human primates, AGuIX is a biocompatible

  7. Guide to good practice in radiation protection training

    International Nuclear Information System (INIS)

    Johnson, N.; Schenley, C.; Smith, A.; Weseman, M.

    1988-10-01

    This set of guidelines applies to radiation protection training programs for all Department of Energy (DOE) contractors, subcontractors, and visitors to DOE contractor facilities. It is to be used as a self-evaluation tool by DOE contractors as they develop and evaluate their training programs. This document is based on good practice guidelines used by a variety of different facilities both within and outside of the DOE contractor system. Good practices are not requirements; they are guidelines that contractors should use as they develop and conduct training programs. The applicability of the contents of the Guide to Good Practice in Radiation Protection Training depends upon each DOE facility's scope and need for radiation safety training. Although the focus of this document is radiation protection training, it is important that the process by which training is developed and implemented be discussed. Therefore, the first section presents guidelines for performance-based training and ideas to be considered regarding the structure and documentation of the training function

  8. A guide to practical radiation protection in medicine. X-Ray Ordinance. Radiation Protection Ordinance. Practice-oriented hints, comments, text compilation

    International Nuclear Information System (INIS)

    Fiebich, M.; Nischelsky, J.E.; Pfeiff, H.; Westermann, K.

    2003-01-01

    This loose-leaf collection has been compiled for users who have to implement the X-ray Ordinance and the Radiation Protection Ordinance at their place of work. It presents all acts, ordinances, safety guides, regulations and recommendations of relevance in connection with the above two ordinances, as well as practical instructions and the full text of technical codes. Radiation protection officers and other persons in charge of radiation protection will find the references, information and advice needed to solve problems encountered. (orig.) [de

  9. Commissioning of research reactors. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    The objective of this Safety Guide is to provide recommendations on meeting the requirements for the commissioning of research reactors on the basis of international best practices. Specifically, it provides recommendations on fulfilling the requirements established in paras 6.44 and 7.42-7.50 of International Atomic Energy Agency, Safety of Research Reactors, IAEA Safety Standards Series No. NS-R-4, IAEA, Vienna (2005) and guidance and specific and consequential recommendations relating to the recommendations presented in paras 615-621 of International Atomic Energy Agency, Safety in the Utilization and Modification of Research Reactors, Safety Series No. 35-G2, IAEA, Vienna (1994) and paras 228-229 of International Atomic Energy Agency, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, Safety Series No. 35-G1, IAEA, Vienna (1994). This Safety Guide is intended for use by all organizations involved in commissioning for a research reactor, including the operating organization, the regulatory body and other organizations involved in the research reactor project

  10. Radiation safety

    International Nuclear Information System (INIS)

    Auxier, J.A.

    1977-01-01

    Data available on the biological effects of radiation on man are reviewed, with emphasis on dose response to low LET and high LET radiation sources, and the effects of dose rate. Existing guides for radiation protection were formulated largely on the basis of tumor induction in the bone of radium dial painters, but the ICRP/NCRP annual dose guides of 5 rem/yr are of the same general magnitude as the doses received in several parts of the world from the natural radiation environment. Because of the greater sensitivity of rapidly dividing cells and the assumption that radiation occupations would not begin before the age of eighteen, maximum exposure levels were set as 5 (N-18) rem/yr, where N is the exposed worker's age in years. However, in the case of the natural radiation environment, exposure commences, in a sense, with the exposure of the ovum of the individual's mother; and the ovum is formed during the fetal development of the mother. In occupational exposures, the professional health physicist has always practiced the as low as practical philosophy, and exposures have generally averaged far below the guidelines. The average annual exposure of the radiation worker in modern plants and laboratories is approximately equal to the average natural radiation environment exposure rate and far lower than the natural radiation environment in many parts of the world. There are numerous complications and uncertainties in quantifying radiation effects on humans, however, the greatest is that due to having to extrapolate from high dose levels at which effects have been measured and quantified, to low levels at which most exposures occur but at which no effects have been observed

  11. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  12. Radiation protection and safety guide no. GRPB-G-5: safe use of x-rays

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1998-01-01

    If properly utilized, the use of x-rays can be instrumental in the improvement of the health and welfare of the public. This regulatory guide was developed to assist and encourage registrants in the safe and constructive use of x-rays and to prohibit and prevent exposure to ionizing radiation in amounts which are or may be detrimental to health. The present guide applies to the use of x-rays for diagnostic, therapeutic, and non medical purposes

  13. The Management System for Nuclear Installations Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  14. Compliance assurance for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2009-01-01

    The objectives of this Safety Guide are to assist competent authorities in the development and maintenance of compliance assurance programmes in connection with the transport of radioactive material, and to assist applicants, licensees and organizations in their interactions with competent authorities. In order to increase cooperation between competent authorities and to promote the uniform application of international regulations and recommendations, it is desirable to adopt a common approach to regulatory activities. This Safety Guide is intended to assist in accomplishing such a uniform application by recommending most of the actions for which competent authorities need to provide in their programmes for ensuring compliance with the Transport Regulations. This Safety Guide addresses radiation safety aspects of the transport of radioactive material; that is, the subjects that are covered by the Transport Regulations. Radioactive material may have other dangerous properties, however, such as explosiveness, flammability, pyrophoricity, chemical toxicity and corrosiveness; these properties are required to be taken into account in the regulatory control of the design and transport of packages. Physical protection and systems for accounting for and control of nuclear material are also discussed in this Safety Guide. These subjects are not within the scope of the Transport Regulations, but information on them is included here because they must be taken into account in the overall regulatory control of transport, especially when the regulatory framework is being established. Section 1 informs about the background, the objective, the scope and the structure of this publication. Section 2 provides recommendations on the responsibilities and functions of the competent authority. Section 3 provides information on the various national and international regulations and guides for the transport of radioactive material. Section 4 provides recommendations on carrying out

  15. Nuclear safety guide: TID--7016, Revision 2

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1978-01-01

    The Nuclear Safety Guide was first issued in 1956 as classified AEC report LA-2063 and was reprinted the next year, unclassified, as TID-7016. Revision 1, published in 1961, extended the scope and refined the guiding information. Revision 2 of the Guide differs significantly from its predecessor in that the latter was intentionally conservative in its recommendations. Firmly based on experimental evidence of criticality, the original Guide and the first revision were considered to be of most value to organizations whose activities with fissionable materials were not extensive and, secondarily, that it would serve as a point of departure for members of established nuclear safety teams experienced in the field. The advance of calculational capability has permitted validated calculations to extend and substitute for experimental data. The broadened data base has enabled better interpolation, extension, and understanding of available information, especially in areas previously addressed by undefined but adequate factors of safety. The content has been thereby enriched in qualitative guidance. The information inherently contains, and the user can recapture, the quantitative guidance characteristic of the former Guides by employing appropriate safety factors

  16. The first symposium of Research Center for Radiation Safety, NIRS. Perspective of future studies of radiation safety

    International Nuclear Information System (INIS)

    Shimo, Michikuni

    2002-03-01

    This paper summarizes presentations given in the title symposium, held at the Conference Room of National Institute of Radiological Sciences (NIRS) on November 29 and 30, 2001. Contained are Introductory remarks: Basic presentations concerning exposure dose in man; Environmental levels of radiation and radioactivity, environmental radon level and exposure dose, and radiation levels in the specific environment (like in the aircraft): Special lecture (biological effects given by space environment) concerning various needs for studies of radiation safety; Requirement for open investigations, from the view of utilization, research and development of atomic energy, from the clinical aspect, and from the epidemiological aspect: Special lecture (safety in utilization of atomic energy and radiation-Activities of Nuclear Safety Commission of Japan) concerning present state and perspective of studies of radiation safety; Safety of radiation and studies of biological effects of radiation-perspective, and radiation protection and radiation safety studies: Studies in the Research Center for Radiation Safety; Summary of studies in the center, studies of the biological effects of neutron beam, carcinogenesis by radiation and living environmental factors-complicated effects, and studies of hereditary effects: Panel discussion (future direction of studies of radiation safety for the purpose of the center's direction): and concluding remarks. (N.I.)

  17. Radiation safety among cardiology fellows.

    Science.gov (United States)

    Kim, Candice; Vasaiwala, Samip; Haque, Faizul; Pratap, Kiran; Vidovich, Mladen I

    2010-07-01

    Cardiology fellows can be exposed to high radiation levels during procedures. Proper radiation training and implementation of safety procedures is of critical importance in lowering physician health risks associated with radiation exposure. Participants were cardiology fellows in the United States (n = 2,545) who were contacted by e-mail to complete an anonymous survey regarding the knowledge and practice of radiation protection during catheterization laboratory procedures. An on-line survey engine, SurveyMonkey, was used to distribute and collect the results of the 10-question survey. The response rate was 10.5%. Of the 267 respondents, 82% had undergone formal radiation safety training. Only 58% of the fellows were aware of their hospital's pregnancy radiation policy and 60% knew how to contact the hospital's radiation safety officer. Although 52% of the fellows always wore a dosimeter, 81% did not know their level of radiation exposure in the previous year and only 74% of fellows knew the safe levels of radiation exposure. The fellows who had received formal training were more likely to be aware of their pregnancy policy, to know the contact information of their radiation safety officer, to be aware of the safe levels of radiation exposure, to use dosimeters and RadPad consistently, and to know their own level of radiation exposure in the previous year. In conclusion, cardiology fellows have not been adequately educated about radiation safety. A concerted effort directed at physician safety in the workplace from the regulatory committees overseeing cardiology fellowships should be encouraged. Published by Elsevier Inc.

  18. Safety design guides for fire protection for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide establishes design requirements to ensure the radiological risk to the public due to fire is acceptable and operating personnel are adequately protected from the hazards of fires. This safety design guide also specifies the safety criteria for fire protection to be applied to mitigate fires and recommends the fire protection program to be established to initiate, coordinate and document the design activities associated with fire protection. The requirements for fire protection outlined in this safety design guide shall be satisfied in the design stage and the change status of the regulatory requirements, code and standards should be traced and incorporated into this safety design guide accordingly. 1 fig., (Author) .new

  19. Categorization of Radioactive Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  20. Personalized Feedback on Staff Dose in Fluoroscopy-Guided Interventions: A New Era in Radiation Dose Monitoring.

    Science.gov (United States)

    Sailer, Anna M; Vergoossen, Laura; Paulis, Leonie; van Zwam, Willem H; Das, Marco; Wildberger, Joachim E; Jeukens, Cécile R L P N

    2017-11-01

    Radiation safety and protection are a key component of fluoroscopy-guided interventions. We hypothesize that providing weekly personal dose feedback will increase radiation awareness and ultimately will lead to optimized behavior. Therefore, we designed and implemented a personalized feedback of procedure and personal doses for medical staff involved in fluoroscopy-guided interventions. Medical staff (physicians and technicians, n = 27) involved in fluoroscopy-guided interventions were equipped with electronic personal dose meters (PDMs). Procedure dose data including the dose area product and effective doses from PDMs were prospectively monitored for each consecutive procedure over an 8-month period (n = 1082). A personalized feedback form was designed displaying for each staff individually the personal dose per procedure, as well as relative and cumulative doses. This study consisted of two phases: (1) 1-5th months: Staff did not receive feedback (n = 701) and (2) 6-8th months: Staff received weekly individual dose feedback (n = 381). An anonymous evaluation was performed on the feedback and occupational dose. Personalized feedback was scored valuable by 76% of the staff and increased radiation dose awareness for 71%. 57 and 52% reported an increased feeling of occupational safety and changing their behavior because of personalized feedback, respectively. For technicians, the normalized dose was significantly lower in the feedback phase compared to the prefeedback phase: [median (IQR) normalized dose (phase 1) 0.12 (0.04-0.50) µSv/Gy cm 2 versus (phase 2) 0.08 (0.02-0.24) µSv/Gy cm 2 , p = 0.002]. Personalized dose feedback increases radiation awareness and safety and can be provided to staff involved in fluoroscopy-guided interventions.

  1. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References

  2. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  3. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2002-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  4. Guide for preparing annual reports on radiation-safety testing of electronic products (general)

    International Nuclear Information System (INIS)

    1987-10-01

    For manufacturers of electronic products other than those for which a specific guide has been issued, the guide replaces the Guide for the Filing of Annual Reports (21 CFR Subchapter J, Section 1002.11), HHS Publication FDA 82-8127. The electronic product (general) annual reporting guide is applicable to the following products: products intended to produce x radiation (accelerators, analytical devices, therapy x-ray machines); microwave diathermy machines; cold-cathode discharge tubes; and vacuum switches and tubes operating at or above 15,000 volts. To carry out its responsibilities under Public Law 90-602, the Food and Drug Administration's Center for Devices and Radiological Health (CDRH) has issued a series of regulations contained in Title 21 of the Code of Federal Regulations (CFR). Part 1002 of 21 CFR deals with records and reports. Section 1002.61 categorizes electronic products into Groups A through C. Section 1002.30 requires manufacturers of products in Groups B and C to establish and maintain certain records, while Section 1002.11 requires such manufacturers to submit an Annual Report summarizing the contents of the required records. Section 1002.7 requires that reports conform to reporting guides issued by CDRH unless an acceptable justification for an alternate format is provided

  5. Radiation Safety for Sustainable Development

    International Nuclear Information System (INIS)

    2015-10-01

    The objective of radiation safety is Assessments of Natural Radioactivity and its Radiological. The following topics were discussed during the conference: AFROSAFE Championing Radiation Safety in Africa, Radiation Calibration, and Development and Validation of a Laser Induced Breakdown Spectrometry Method for Cancer Detection and Characterization. Young Generation in NUCLEAR Initiative to Promote Nuclear Science and Technology, Radiation Protection Safety Culture and Application of Nuclear Techniques in Industry and the Environment were discuss. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles. Fundamental role of medical physics in Radiation Therapy

  6. Radiation and waste safety

    International Nuclear Information System (INIS)

    1997-01-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. Nuclear radiation is a powerful source of benefit to mankind, whether applied in the field of medicine, agriculture, environmental management or elsewhere. The health effects of radiation - both natural and artificial - are relatively well understood and can be minimized through careful safety measures and practices. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Safety Department aiming at establishing Basic Safety Standard requirements in all Member States. (IAEA)

  7. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  8. Radiation Safety (Qualifications) Regulations 1980

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations, promulgated pursuant to the provisions of the Radiation Safety Act, 1975-1979, require persons engaged in activities involving radiation to pass a radiation safety examination or to possess an approved qualification in radiation. The National Health and Medical Research Council is authorised to exempt persons from compliance with these requirements or, conversely, to impose such requirements on persons other than those designated. (NEA) [fr

  9. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  10. Criticality Safety in the Handling of Fissile Material. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-05-15

    This Safety Guide provides guidance and recommendations on how to meet the relevant requirements for ensuring subcriticality when dealing with fissile material and for planning the response to criticality accidents. The guidance and recommendations are applicable to both regulatory bodies and operating organizations. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences of this if it were to occur. The Safety Guide makes recommendations on how to ensure subcriticality in systems involving fissile materials during normal operation, anticipated operational occurrences, and, in the case of accident conditions, within design basis accidents, from initial design through commissioning, operation, and decommissioning and disposal.

  11. International movement on radiation safety related to the ICRP and the IAEA-RADWASS

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    1994-01-01

    Nowadays discussion on Radiation Safety has a spread of world wide range. The main framework on radiation safety was constructed by ICRP (International Commission on Radiological Protection), which was established in 1928. This term of the committee was from June 1993 to May 1997 and the first plenary meeting was held at the Queen's hotel in Bournemouth of the United Kingdom on September 1993. The outline of this meeting, especially related items to the Committee 4, were summarized in this paper. The second point of our workshop considerations is radioactive waste problems, which are now under discussion in RADWASS (Radioactive Waste Safety Standards) project of IAEA (International Atomic Energy Agency). This IAEA-RADWASS will last nearly 10 years to cover whole subjects. These discussed items are arranged into various international standards; the safety fundamental, the safety standards, the safety guides and the safety practices. These systematic approach, if we could summarize, would be effective not only to the specialists but also to a general public to get an acceptance of radioactive waste problem. Here, this IAEA-RADWASS project is reviewed. (author)

  12. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  13. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  14. Manual on brachytherapy. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to brachytherapy: its application and procedures guides

  15. Meteorological events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide provides recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. It is of interest to safety assessors and regulators involved in the licensing process as well as to designers of nuclear power plants. This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It supplements the IAEA Safety Requirements publication on Site Evaluation for Nuclear Facilities which is to supersede the Code on the Safety of Nuclear Power Plants: Siting, Safety Series No. 50-C-S (Rev. 1), IAEA, Vienna (1988). The present Safety Guide supersedes two earlier Safety Guides: Safety Series No. 50-SG-S11A (1981) on Extreme Meteorological Events in Nuclear Power Plant Siting, Excluding Tropical Cyclones and Safety Series No. 50-SG-S11B (1984) on Design Basis Tropical Cyclone for Nuclear Power Plants. The purpose of this Safety Guide is to provide recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. This Safety Guide provides interpretation of the Safety Requirements publication on Site Evaluation for Nuclear Facilities and guidance on how to fulfil these requirements. It is aimed at safety assessors or regulators involved in the licensing process as well as designers of nuclear power plants, and provides them with guidance on the methods and procedures for analyses that support the assessment of the hazards associated with extreme and rare meteorological events. This Safety Guide discusses the extreme values of meteorological variables and rare meteorological phenomena, as well as their rates of occurrence, according to the following definitions: (a) Extreme values of meteorological variables such as air temperature and wind speed characterize the meteorological or climatological environment. And (b) Rare meteorological phenomena

  16. Ageing Management for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  17. Ageing Management for Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  18. Occupational radiation safety in mining

    International Nuclear Information System (INIS)

    Stocker, H.

    1985-01-01

    The first International Conference on Occupational Radiation Safety in Mining was held three years ago in Golden, Colorado, U.S.A., and it provided an excellent forum for an exchange of information on the many scientific, technical and operational aspects of radiation safety in mining. I am aware of the broad spectrum of epidemiological, engineering and related studies which have been pursued during the past three years with a view to achieving further improvements in radiation protection and I expect that the information on these studies will contribute significantly to a wider understanding of subject, and in particular, the means by which radiation safety measures in mining can be optimized

  19. AFROSAFE Championing Radiation Safety in Africa

    International Nuclear Information System (INIS)

    Nyabanda, R.

    2015-01-01

    AFRASAFE is a campaign that was formed by Pan African congress of Radiology and imaging (PACOR) and other radiation health workers in Africa in Feb 2015. Its main objective is to unite with a common goal to identify and address issues arising from radiation protection in medicine in Africa. Through this campaign, we state that we shall promote adherence to policies, strategies and activities for the promotion of radiation safety and for maximization of benefits from radiological medical procedures. The campaign strengthens the overall radiation protection of patients, health workers and public. It promotes safe and appropriate use of ionizing radiation in medicine and enhances global information to help improve the benefit/risk dialogue with patients and the public. It enhances the safety and quality of radiological procedures in medicine, and encourages safety in diagnostic and therapeutic equipment and facilities. The issue of research in radiation protection and safety needs to be promoted. This presentation will outline the six strategic objectives and the implementation tools for radiation safety in medicine in Kenya, the challenges and way forward to achieve our goal. (Author)

  20. Manual on gamma radiography. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to gamma radiography: its application and procedures guides

  1. Manual on shielded enclosures. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to shielding enclosures: their application and procedures guides

  2. Manual on nuclear gauges. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to nuclear gauges: their application and procedures guides

  3. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  4. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  5. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  6. Safety guide on fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    1976-01-01

    The purpose of the Safety Guide is to give specific design and operational guidance for protection from fire and explosion in nuclear power plants, based on the general guidance given in the relevant sections of the 'Safety Code of Practice - Design' and the 'Safety Code of Practice - Operation' of the International Atomic Energy Agency. The guide will confine itself to fire protection of safety systems and items important to safety, leaving the non-safety matters of fire protection in nuclear power plants to be decided upon the basis of the various available national and international practices and regulations. (HP) [de

  7. PET/CT-guided Interventions: Personnel Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, E. Ronan, E-mail: ronan@ronanryan.com; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Quinn, Brian; Dauer, Lawrence T. [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States)

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  8. Preclosure Safety Analysis Guide

    International Nuclear Information System (INIS)

    D.D. Orvis

    2003-01-01

    A preclosure safety analysis (PSA) is a required element of the License Application (LA) for the high- level radioactive waste repository at Yucca Mountain. This guide provides analysts and other Yucca Mountain Repository Project (the Project) personnel with standardized methods for developing and documenting the PSA. The definition of the PSA is provided in 10 CFR 63.2, while more specific requirements for the PSA are provided in 10 CFR 63.112, as described in Sections 1.2 and 2. The PSA requirements described in 10 CFR Part 63 were developed as risk-informed performance-based regulations. These requirements must be met for the LA. The PSA addresses the safety of the Geologic Repository Operations Area (GROA) for the preclosure period (the time up to permanent closure) in accordance with the radiological performance objectives of 10 CFR 63.111. Performance objectives for the repository after permanent closure (described in 10 CFR 63.113) are not mentioned in the requirements for the PSA and they are not considered in this guide. The LA will be comprised of two phases: the LA for construction authorization (CA) and the LA amendment to receive and possess (R and P) high-level radioactive waste (HLW). PSA methods must support the safety analyses that will be based on the differing degrees of design detail in the two phases. The methods described herein combine elements of probabilistic risk assessment (PRA) and deterministic analyses that comprise a risk-informed performance-based safety analysis. This revision to the PSA guide was prepared for the following objectives: (1) To correct factual and typographical errors. (2) To provide additional material suggested from reviews by the Project, the U.S. Department of Energy (DOE), and U.S. Nuclear Regulatory Commission (NRC) Staffs. (3) To update material in accordance with approaches and/or strategies adopted by the Project. In addition, a principal objective for the planned revision was to ensure that the methods and

  9. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  10. Radiation exposure in CT-guided interventions

    Energy Technology Data Exchange (ETDEWEB)

    Kloeckner, Roman, E-mail: Roman.Kloeckner@unimedizin-mainz.de [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany); Santos, Daniel Pinto dos; Schneider, Jens [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany); Kara, Levent [Department of Radiology, Inselspital Bern, Freiburgstraße 18, 3010 Bern (Switzerland); Dueber, Christoph; Pitton, Michael B. [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany)

    2013-12-01

    Purpose: To investigate radiation exposure in computed tomography (CT)-guided interventions, to establish reference levels for exposure, and to discuss strategies for dose reduction. Materials and methods: We analyzed 1576 consecutive CT-guided procedures in 1284 patients performed over 4.5 years, including drainage placements; biopsies of different organs; radiofrequency and microwave ablations (RFA/MWA) of liver, bone, and lung tumors; pain blockages, and vertebroplasties. Data were analyzed with respect to scanner settings, overall radiation doses, and individual doses of planning CT series, CT intervention, and control CT series. Results: Eighy-five percent of the total radiation dose was applied during the pre- and post-interventional CT series, leaving only 15% applied by the CT-guided intervention itself. Single slice acquisition was associated with lower doses than continuous CT-fluoroscopy (37 mGy cm vs. 153 mGy cm, p < 0.001). The third quartile of radiation doses varied considerably for different interventions. The highest doses were observed in complex interventions like RFA/MWA of the liver, followed by vertebroplasty and RFA/MWA of the lung. Conclusions: This paper suggests preliminary reference levels for various intervention types and discusses strategies for dose reduction. A multicenter registry of radiation exposure including a broader spectrum of scanners and intervention types is needed to develop definitive reference levels.

  11. Manual on panoramic gamma irradiators (categories 2 and 4). Incorporating: Applications guide, procedures guide, basics guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The document is the first revision of a previous one published in 1993 to provide guidance on the safe use and regulation of self-contained gamma irradiators (Co-60 or Cs-137 sources) in different fields of application. It includes three parts: Applications Guide, which describes the main applications of self-contained gamma irradiators, the type of equipment, including safety systems, operation and maintenance, and how to deal with incidents. Procedures Guide, which gives step by step instructions on how to carry out the practice. Basics Guide, which explains the fundamentals of radiation, the system of units, interaction of radiation with matter radiation detection, etc. The manual is aimed primarily at persons handling such radiation sources on a daily routine basis, as well as at the competent authorities for training of workers in radiation protection or for setting up local radiation protection rules.

  12. Manual on panoramic gamma irradiators (categories 2 and 4). Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    The document is the first revision of a previous one published in 1993 to provide guidance on the safe use and regulation of self-contained gamma irradiators (Co-60 or Cs-137 sources) in different fields of application. It includes three parts: Applications Guide, which describes the main applications of self-contained gamma irradiators, the type of equipment, including safety systems, operation and maintenance, and how to deal with incidents. Procedures Guide, which gives step by step instructions on how to carry out the practice. Basics Guide, which explains the fundamentals of radiation, the system of units, interaction of radiation with matter radiation detection, etc. The manual is aimed primarily at persons handling such radiation sources on a daily routine basis, as well as at the competent authorities for training of workers in radiation protection or for setting up local radiation protection rules

  13. The Management System for Nuclear Installations. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a) To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b) As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c) To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a) Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b) Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c) Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d) Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e) Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear

  14. Proceeding of Radiation Safety and Environment

    International Nuclear Information System (INIS)

    1996-01-01

    Scientific Presentation of Radiation Safety and Environment was held on 20-21 august 1996 at Center of Research Atomic Energy Pasar Jum'at, Jakarta, Indonesia. Have presented 50 papers about Radiation Safety, dosimetry and standardization, environment protection and radiation effect

  15. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  16. Radiation safety: New international standards

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    This article highlights an important result of this work for the international harmonization of radiation safety: specifically, it present an overview of the forthcoming International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources - the so-called BSS. They have been jointly developed by six organizations - the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (NEA/OECD), the Pan American Health Organization (PAHO), and the World Health Organization (WHO)

  17. Radiation safety of Takasaki ion accelerators for advanced radiation in JAERI

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Tanaka, Susumu; Anazawa, Yutaka

    1991-01-01

    Building layout of Takasaki ion accelerator facility has been started since 1987, with the propulsion of research development of (1) cosmetic environment materials, (2) nuclear fusion reactors, (3) biotechnology, and (4) new functional materials. This paper deals with an AVF cyclotron and a tandem type accelerator, focusing on safety design, radiation safety management, and radioactive waste management. Safety design is discussed in view of radiation shielding and activation countermeasures. Radiation safety management covers radiation monitoring in the workplace, exhaust radioactivity, environment outside the facility, and the other equipments; personal monitoring; and protective management of exposure. For radiation waste management, basic concept and management methods are commented on. (N.K.)

  18. A guide to radiation and radioactivity levels near high energy particle accelerators

    International Nuclear Information System (INIS)

    Sullivan, A.H.

    1992-01-01

    An estimate of likely radiation and radioactivity levels is needed at the design stage of an accelerator for deciding the radiation safety features to be incorporated in the infrastructure of the machine and for predicting where radiation damage possibilities will have to be taken into account. Both these aspects can have a significant influence on the machine layout and cost. Failure to make a reasonable assessment at the right time may have far reaching consequences for future costs. The purpose of this guide is to bring together basic data and methods that have been found useful in assessing radiation situations around accelerators and to provide a practical means of arriving at the radiation and induced radioactivity levels that could occur under a wide variety of circumstances. An attempt is made to present the information in a direct and unambiguous way with sufficient confidence that the necessity for large safety factors is avoided. In many cases assumptions and simplifications have been made and reliance placed on extrapolating from experimental data into regions where the basic physics is too complicated to make meaningful absolute calculations. Wherever possible such extrapolations have been tied to real or otherwise acceptable data originating from independent sources. (Author)

  19. Development of Safety Review Guide for the Periodic Safety Review of Reactor Vessel Internals

    International Nuclear Information System (INIS)

    Park, Jeongsoon; Ko, Hanok; Kim, Seonjae; Jhung, Myungjo

    2013-01-01

    Aging management of the reactor vessel internals (RVIs) is one of the important issues for long-term operation of nuclear power plants (NPPs). Safety review on the assessment and management of the RVI aging is conducted through the process of a periodic safety review (PSR). The regulatory body should check that reactor facilities sustain safety functions in light of degradation due to aging and that the operator of a nuclear power reactor establishes and implements management program to deal with degradation due to aging in order to guarantee the safety functions and the safety margin as a result of PSR. KINS(Korea Institute of Nuclear Safety) has utilized safety review guides (SRG) which provide guidance to KINS staffs in performing safety reviews in order to assure the quality and uniformity of staff safety reviews. The KINS SRGs for the continued operation of pressurized water reactors (PWRs) published in 2006 contain areas of review regarding aging management of RVIs in chapter 2 (III.2.15, Appendix 2.0.1). However unlike the SRGs for the continued operation, KINS has not officially published the SRGs for the PSR of PWRs, but published them as a form of the research report. In addition to that, the report provides almost same review procedures for aging assessment and management of RVIs with the ones provided in the SRGs for the continued operation, it cannot provide review guidance specific to PSRs. Therefore, a PSR safety review guide should be developed for RVIs in PWRs. In this study, a draft PSR safety review guide for reactor vessel internals in PWRs is developed and provided. In this paper, a draft PSR safety review guide for reactor vessel internals (PSR SRG-RVIs) in PWRs is introduced and main contents of the draft are provided. However, since the PSR safety review guides for areas other than RVIs in the pressurized water reactors (PWRs) are expected to be developed in the near future, the draft PSR SRG-RVIs should be revisited to be compatible with

  20. Occupational radiation protection in the mining and processing of raw materials

    International Nuclear Information System (INIS)

    2004-01-01

    The mining and processing of uranium ore, thorium ore and other raw materials containing natural radionuclides are carried out in a number of Member States. There is a clear need to update the guidance on the radiation protection of the workers involved, and this Safety Guide provides such updated guidance. Material from two previous publications has been adapted for inclusion in this Safety Guide. These previous publications - Radiation Monitoring in the Mining and Milling of Radioactive Ores (Safety Series No. 95) and Radiation Protection of Workers in the Mining and Milling of Radioactive Ores (Safety Series No. 26, hereby superseded) - dealt principally with activities involving uranium ore and thorium ore. Activity concentrations of naturally occurring radionuclides are elevated in other mineral deposits such as heavy mineral sands and phosphate rock. Furthermore, high radon levels may be found in mines, irrespective of the activity concentrations of natural radionuclides in the raw material being extracted. In recognition of these circumstances, this Safety Guide is intended to apply also to the mining and processing of any raw material for which radiation protection measures need to be considered. The IAEA Safety Fundamentals publication on Radiation Protection and the Safety of Radiation Sources presents the principles, concepts and objectives of protection and safety. Safety requirements based on the objectives and principles specified in these Safety Fundamentals, including requirements for the protection of workers exposed to ionizing radiation, are established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or Bss). These requirements also reflect the recommendations of the International Commission on Radiological Protection (ICRP). Safety Guides provide recommendations on the basis of international experience on the fulfilment of the requirements

  1. Radiation practices and radiation measurements

    International Nuclear Information System (INIS)

    2008-03-01

    The guide presents the principal requirements on accuracy of radiation measurements and on the approval, calibration and operating condition inspections of radiation meters, together with requirements for dosimetric services measuring the individual radiation doses of workers engaged in radiation work (approved dosimetric services). The Guide also sets out the definitions of quantities and units used in radiation measurements. The radiation protection quantities used for assessing the harmful effects of radiation and for expressing the maximum values for radiation exposure (equivalent dose and effective dose) are set out in Guide ST 7.2. This Guide concerns measurements of ionizing radiation involved in radiation practices, the results of which are used for determining the radiation exposure of workers engaged in radiation work and members of the public, and of patients subject to the use of radiation in health services, or upon the basis of which compliance with safety requirements of appliances currently in use and of their premises of use or of the workplaces of workers is ensured. The Guide also concerns measurements of the radon concentration of inhaled air in both workplaces and dwellings. The Guide does not apply to determining the radiation exposure of aircrews, determination of exposure caused by internal radiation, or measurements made to protect the public in the event of, or in preparation for abnormal radiation conditions

  2. PET/CT-guided Interventions: Personnel Radiation Dose

    International Nuclear Information System (INIS)

    Ryan, E. Ronan; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-01-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0–0.13) mSv for the primary operator, 0.01 (range 0–0.05) mSv for the nurse anesthetist, and 0.02 (range 0–0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0–0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient

  3. Safety design guide for safety related systems for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new

  4. Safety design guide for safety related systems for CANDU 9

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Wright, A.C.D. [Atomic Energy of Canada Ltd., Toronto (Canada)

    1996-03-01

    In general, two types of safety related systems and structures exist in the nuclear plant; The one is a systems and structures which perform safety functions during the normal operation of the plant, and the other is a systems and structures which perform safety functions to mitigate events caused by failure of the normally operating systems or by naturally occurring phenomena. In this safety design guide, these systems are identified in detail, and the major events for which the safety functions are required and the major safety requirements are identified in the list. As the probabilistic safety assessments are completed during the course of the project, additions or deletions to the list may be justified. 3 tabs. (Author) .new.

  5. Laboratory Safety Guide for Arkansas K-12 Schools.

    Science.gov (United States)

    Arkansas State Dept. of Education, Little Rock.

    This document presents laboratory safety rules for Arkansas K-12 schools which were developed by the Arkansas Science Teachers Association (ASTA) and the Arkansas Department of Education (ADE). Contents include: (1) "Laboratory Safety Guide for Arkansas K-12 Schools"; (2) "Safety Considerations"; (3) "Safety Standards for Science Laboratories";…

  6. Radiation safety without borders initiative

    International Nuclear Information System (INIS)

    Dibblee, Martha; Dickson, Howard; Krieger, Ken; Lopez, Jose; Waite, David; Weaver, Ken

    2008-01-01

    The Radiation Safety Without Borders (RSWB) initiative provides peer support to radiation safety professionals in developing countries, which bolsters the country's infrastructure and may lead the way for IRPA Associate membership. The Health Physics Society (HPS) recognizes that many nations do not possess the infrastructure to adequately control and beneficially use ionizing radiation. In a substantial number of countries, organized radiation protection programs are minimal. The RSWB initiative relies on HPS volunteers to assist their counterparts in developing countries with emerging health physics and radiation safety programs, but whose resources are limited, to provide tools that promote and support infrastructure and help these professionals help themselves. RSWB experience to date has shown that by providing refurbished instruments, promoting visits to a HPS venue, or visiting a country just to look provide valuable technical and social infrastructure experiences often missing in the developing nation's cadre of radiation safety professionals. HPS/RSWB with the assistance of the International Atomic Energy Agency (IAEA) pairs chapters with a country, with the expectation that the country's professional radiation safety personnel will form a foreign HPS chapter, and the country eventually will become an IRPA Associate. Although still in its formative stage, RSWB nonetheless has gotten valuable information in spite of the small number of missions. The RSWB initiative continues to have significant beneficial impacts, including: Improving the radiation safety infrastructure of the countries that participate; Assisting those countries without professional radiation safety societies to form one; Strengthening the humanitarian efforts of the United States; Enhancing Homeland Security efforts through improved control of radioactive material internationally. Developing countries, including those in Latin America, underwritten by IAEA, may take advantage of resources

  7. Manual on high energy teletherapy. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to high energy radiotherapy: its application and procedures guides

  8. Radiation safety and gynaecological brachytherapy

    International Nuclear Information System (INIS)

    Crawford, L.

    1985-01-01

    In 1983, the Radiation Control Section of the South Australian Health Commission conducted an investigation into radiation safety practices in gynaecological brachytherapy. Part of the investigation included a study of the transportation of radioactive sources between hospitals. Several deficiences in radiation safety were found in the way these sources were being transported. New transport regulations came into force in South Australia in July 1984 and since then there have been many changes in the transportation procedure

  9. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  10. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  11. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  12. Radiation Safety Aspects of Nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, David; Cash, Leigh Jackson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guilmette, Raymond [Ray Guilmette & Associates, LLC, Perry, ME (United States); Kreyling, Wolfgang [Helmholtz-Zentrum Munchen, (Germany); Oberdorster, Gunter [Univ. of Rochester, NY (United States); Smith, Rachel [Public Health England, Oxfordshire (United Kingdom). Centre for Radiation, Chemical and Environmental Hazards

    2017-03-27

    This Report is intended primarily for operational health physicists, radiation safety officers, and internal dosimetrists who are responsible for establishing and implementing radiation safety programs involving radioactive nanomaterials. It should also provide useful information for workers, managers and regulators who are either working directly with or have other responsibilities related to work with radioactive nanomaterials.

  13. Organization for the use of radiation

    International Nuclear Information System (INIS)

    1993-01-01

    In Finland according to section 18 of the Finnish Radiation Act (592/91), organizations running a radiation practice are required to give a description how the work is arranged when applying for a safety licence, naming the radiation safety officer and providing information about qualifications, tasks and responsibilities of persons involved in the use of radiation, and about other related arrangements. In this guide the organisatory arrangements required for the permission of the use of radiation in Finland are specified. The guide also includes instructions for measures which has to be taken care of in different kinds of use of radiation and the competence requirements for the persons in charge of the radiation safety

  14. Manual on self-contained gamma irradiators (categories 1 and 3). Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    The document is the first revision of a previous one published in 1993 to provide guidance on the safe use and regulation of panoramic gamma irradiators (Co-60 or Cs-137 sources) in different fields of application. It includes three parts: Applications Guide, which describes the main applications of panoramic gamma irradiators, the type of equipment, including safety systems, operation and maintenance, and how to deal with incidents. Procedures Guide, which gives step by step instructions on how to carry out the practice. Basics Guide, which explains the fundamentals of radiation, the system of units, interaction of radiation with matter radiation detection, etc. and which is common to all documents in the series. The manual is aimed primarily at persons handling such radiation sources on a daily routine basis, as well as at the competent authorities for training of workers in radiation protection or for setting up local radiation protection rules

  15. Radiation safety - an IAEA perspective

    International Nuclear Information System (INIS)

    Persson, L.

    1993-01-01

    The activities of the IAEA relating to radiation safety cover: The preparation of International Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - it is expected that the new Basic Safety Standards will be adopted by the sponsoring organizations in 1994. The radiological consequences of the Chernobyl accident: the thyroid cancer controversy - the hypothesis that must be tested is whether the reported increased incidence of thyroid cancer due to exposure to radioactive iodine released in the Chernobyl accident, and there are several questions that must be answered before a firm conclusion can be reached. Emergency Response Services (ERS): In March 1993, at the request of Viet Nam, which invoked the Energency Assistance Convention, a medical team organized by the IAEA went to Hanoi and assisted in arranging for an overexposed person to be transferred from Viet Nam to Paris for specialized medical treatment. In April 1993, the ERS was used to inform Member States of the consequences of an explosion at the Tomsk 7 fuel reprocessing plant in Siberia, Russia, which caused a radiation leak. Reassessing the long range transport of radioactive material through the environment: Data from the Chernobyl accident have been used for model validation in the Atmospheric Transport Model Evaluation Study (ATMES). A follow-up programme, the European Tracer Experiment (ETEX) with experimental studies of long range atmospheric movements over Europe has been established in order to increase knowledge and prediction capability. As part of the programme, a non-toxic atmospheric tracer will be released under suitable conditions in 1994. The Radiation Protection Advisory Teams Service (RAPAT): In many of the developing countries visited, the lack of an adequate infrastructure for radiation protection is the main obstacle to improved radiation protection. Strengthening radiation and nuclear safety infrastructures in successor states of the USSR: The

  16. Image-guided radiation therapy: physician's perspectives

    International Nuclear Information System (INIS)

    Gupta, T.; Anand Narayan, C.

    2012-01-01

    The evolution of radiotherapy has been ontogenetically linked to medical imaging. Over the years, major technological innovations have resulted in substantial improvements in radiotherapy planning, delivery, and verification. The increasing use of computed tomography imaging for target volume delineation coupled with availability of computer-controlled treatment planning and delivery systems have progressively led to conformation of radiation dose to the target tissues while sparing surrounding normal tissues. Recent advances in imaging technology coupled with improved treatment delivery allow near-simultaneous soft-tissue localization of tumor and repositioning of patient. The integration of various imaging modalities within the treatment room for guiding radiation delivery has vastly improved the management of geometric uncertainties in contemporary radiotherapy practice ushering in the paradigm of image-guided radiation therapy (IGRT). Image-guidance should be considered a necessary and natural corollary to high-precision radiotherapy that was long overdue. Image-guided radiation therapy not only provides accurate information on patient and tumor position on a quantitative scale, it also gives an opportunity to verify consistency of planned and actual treatment geometry including adaptation to daily variations resulting in improved dose delivery. The two main concerns with IGRT are resource-intensive nature of delivery and increasing dose from additional imaging. However, increasing the precision and accuracy of radiation delivery through IGRT is likely to reduce toxicity with potential for dose escalation and improved tumor control resulting in favourable therapeutic index. The radiation oncology community needs to leverage this technology to generate high-quality evidence to support widespread adoption of IGRT in contemporary radiotherapy practice. (author)

  17. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  18. Effective education in radiation safety for nurses

    International Nuclear Information System (INIS)

    Ohno, K.; Kaori, T.

    2011-01-01

    In order to establish an efficient training program of radiation safety for nurses, studies have been carried out on the basis of questionnaires. Collaboration of nurses, who are usually standing closest to the patient, is necessary in order to offer safe radiological diagnostics/treatment. The authors distributed the questionnaire to 134 nurses in five polyclinic hospitals in Japan. Important questions were: fear of radiation exposure, knowledge on the radiation treatment, understanding the impact on pregnancy, and so on. Most of the nurses feel themselves uneasy against exposure to radiation. They do not have enough knowledge of radiological treatment. They do not know exactly what is the impact of the radiation on pregnant women. Such tendency is more pronounced, when nurses spend less time working in the radiological department. Nurses play important roles in radiological diagnostics/treatment. Therefore, a well-developed education system for radiation safety is essential. The training for the radiation safety in medicine should be done in the context of general safety in medicine. Education programs in undergraduate school and at the working place should be coordinated efficiently in order to ensure that both nurses and patients are informed about the meaning of radiation safety. (authors)

  19. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  20. Safety design guides for seismic requirements for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for seismic requirements for CANDU 9 describes the seismic design philosophy, defines the applicable earthquakes and identifies the structures and systems requiring seismic qualification to ensure that the essential safety function can be adequately satisfied following earthquake. The detailed requirements for structures, systems and components which must be seismically qualified are specified in the Appendix. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 1 fig., (Author) .new

  1. The increased use of radiation requires enhanced activities regarding radiation safety control

    International Nuclear Information System (INIS)

    Lee, Yun Jong; Lee, Jin Woo; Jeong, Gyo Seong

    2015-01-01

    More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience

  2. The increased use of radiation requires enhanced activities regarding radiation safety control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Jong; Lee, Jin Woo; Jeong, Gyo Seong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-05-15

    More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience.

  3. Guide for understanding and evaluation of safety culture

    International Nuclear Information System (INIS)

    2008-01-01

    This report was the guide of understanding and evaluation of safety culture. Operator's activities for enhancement of safety culture in nuclear installations became an object of safety regulation in the management system. Evaluation of operator's activities (including top management's involvement) to prevent degradation of safety culture and organization climate in daily works needed understanding of safety culture and diversity of operator's activities. This guide was prepared to check indications of degradation of safety culture and organization climate in operator's activities in daily works and encourage operator's activities to enhance safety culture improvement and good practice. Comprehensive evaluation of operator's activities to prevent degradation of safety culture and organization climate would be performed from the standpoints of 14 safety culture elements such as top management commitment, clear plan and implementation of upper manager, measures to avoid wrong decision making, questioning attitude, reporting culture, good communications, accountability and openness, compliance, learning system, activities to prevent accidents or incidents beforehand, self-assessment or third party evaluation, work management, change management and attitudes/motivation. Element-wise examples and targets for evaluation were attached with evaluation check tables. (T. Tanaka)

  4. Improving patient safety in radiation oncology

    International Nuclear Information System (INIS)

    Hendee, William R.; Herman, Michael G.

    2011-01-01

    Beginning in the 1990s, and emphasized in 2000 with the release of an Institute of Medicine report, healthcare providers and institutions have dedicated time and resources to reducing errors that impact the safety and well-being of patients. But in January 2010 the first of a series of articles appeared in the New York Times that described errors in radiation oncology that grievously impacted patients. In response, the American Association of Physicists in Medicine and the American Society of Radiation Oncology sponsored a working meeting entitled ''Safety in Radiation Therapy: A Call to Action''. The meeting attracted 400 attendees, including medical physicists, radiation oncologists, medical dosimetrists, radiation therapists, hospital administrators, regulators, and representatives of equipment manufacturers. The meeting was cohosted by 14 organizations in the United States and Canada. The meeting yielded 20 recommendations that provide a pathway to reducing errors and improving patient safety in radiation therapy facilities everywhere.

  5. Manual on therapeutic uses of iodine-131. Incorporating: Applications guide, procedures guide, basics guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to therapeutic uses of Iodine-131: its application and procedures guides.

  6. Manual on therapeutic uses of iodine-131. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to therapeutic uses of Iodine-131: its application and procedures guides

  7. Safety inspection guide, Mod III (a systematic approach to conducting a safety inspection)

    International Nuclear Information System (INIS)

    Davidson, J.E.

    1977-06-01

    This guide was developed as a comprehensive/systematic approach to the problem of performing a safety inspection. Five basic sections (categories) are considered in the guide: physical work place; machines/mechanical equipment; hazardous materials/processes/environments; energy sources; and management hazard . control factors. The basic concept is that one starts evaluating hazard potentials from the physical work place and continues considering other elements as they are added to the physical work place. This approach provides a better understanding of the interfaces of each section to the entire group. The guide is supported by an Area Safety Inspection Result form to record defects or conditions found, the evaluation (best estimate) of the urgency or priority for correcting deficiencies or areas of noncompliance, and the status of corrective action. Additionally, the guide serves as an educational tool in accident prevention for supervisors and employees

  8. Radiation and waste safety: Strengthening national capabilities

    International Nuclear Information System (INIS)

    Barretto, P.; Webb, G.; Mrabit, K.

    1997-01-01

    For many years, the IAEA has been collecting information on national infrastructures for assuring safety in applications of nuclear and radiation technologies. For more than a decade, from 1984-95, information relevant to radiation safety particularly was obtained through more than 60 expert missions undertaken by Radiation Protection Advisory Teams (RAPATs) and follow-up technical visits and expert missions. The RAPAT programme documented major weaknesses and the reports provided useful background for preparation of national requests for IAEA technical assistance. Building on this experience and subsequent policy reviews, the IAEA took steps to more systematically evaluate the needs for technical assistance in areas of nuclear and radiation safety. The outcome was the development of an integrated system designed to more closely assess national priorities and needs for upgrading their infrastructures for radiation and waste safety

  9. Ultrasound-guided lumbar puncture in pediatric patients: technical success and safety.

    Science.gov (United States)

    Pierce, David B; Shivaram, Giri; Koo, Kevin S H; Shaw, Dennis W W; Meyer, Kirby F; Monroe, Eric J

    2018-06-01

    Disadvantages of fluoroscopically guided lumbar puncture include delivery of ionizing radiation and limited resolution of incompletely ossified posterior elements. Ultrasound (US) allows visualization of critical soft tissues and the cerebrospinal fluid (CSF) space without ionizing radiation. To determine the technical success and safety of US-guided lumbar puncture in pediatric patients. A retrospective review identified all patients referred to interventional radiology for lumbar puncture between June 2010 and June 2017. Patients who underwent lumbar puncture with fluoroscopic guidance alone were excluded. For the remaining procedures, technical success and procedural complications were assessed. Two hundred and one image-guided lumbar punctures in 161 patients were included. Eighty patients (43%) had previously failed landmark-based attempts. One hundred ninety-six (97.5%) patients underwent lumbar puncture. Five procedures (2.5%) were not attempted after US assessment, either due to a paucity of CSF or unsafe window for needle placement. Technical success was achieved in 187 (95.4%) of lumbar punctures attempted with US guidance. One hundred seventy-seven (90.3%) were technically successful with US alone (age range: 2 days-15 years, weight range: 1.9-53.1 kg) and an additional 10 (5.1%) were successful with US-guided thecal access and subsequent fluoroscopic confirmation. Three (1.5%) cases were unsuccessful with US guidance but were subsequently successful with fluoroscopic guidance. Of the 80 previously failed landmark-based lumbar punctures, 77 (96.3%) were successful with US guidance alone. There were no reported complications. US guidance is safe and effective for lumbar punctures and has specific advantages over fluoroscopy in pediatric patients.

  10. Operational limits and conditions and operating procedures for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared as part of the Agency's programme for establishing safety standards relating to nuclear power plants. The present Safety Guide supersedes the IAEA Safety Guide on Operational Limits and Conditions for Nuclear Power Plants which was issued in 1979 as Safety Series No. 50-SG-O3. For a nuclear power plant to be operated in a safe manner, the provisions made in the final design and subsequent modifications shall be reflected in limitations on plant operating parameters and in the requirements on plant equipment and personnel. Under the responsibility of the operating organization, these shall be developed during the design safety evaluation as a set of operational limits and conditions (OLCs). A major contribution to compliance with the OLCs is made by the development and utilization of operating procedures (OPs) that are consistent with and fully implement the OLCs. The requirements for the OLCs and OPs are established in Section 5 of the IAEA Safety Requirements publication Safety of Nuclear Power Plants: Operation, which this Safety Guide supplements. The purpose of this Safety Guide is to provide guidance on the development, content and implementation of OLCs and OPs. The Safety Guide is directed at both regulators and owners/operators. This Safety Guide covers the concept of OLCs, their content as applicable to land based stationary power plants with thermal neutron reactors, and the responsibilities of the operating organization regarding their establishment, modification, compliance and documentation. The OPs to support the implementation of the OLCs and to ensure their observance are also within the scope of this Safety Guide. The particular aspects of the procedures for maintenance, surveillance, in-service inspection and other safety related activities in connection with the safe operation of nuclear power plants are outside the scope of this Safety Guide but can be found in other IAEA Safety Guides. Section 2 indicates the

  11. Operational limits and conditions and operating procedures for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    This Safety Guide was prepared as part of the Agency's programme for establishing safety standards relating to nuclear power plants. The present Safety Guide supersedes the IAEA Safety Guide on Operational Limits and Conditions for Nuclear Power Plants which was issued in 1979 as Safety Series No. 50-SG-O3. For a nuclear power plant to be operated in a safe manner, the provisions made in the final design and subsequent modifications shall be reflected in limitations on plant operating parameters and in the requirements on plant equipment and personnel. Under the responsibility of the operating organization, these shall be developed during the design safety evaluation as a set of operational limits and conditions (OLCs). A major contribution to compliance with the OLCs is made by the development and utilization of operating procedures (OPs) that are consistent with and fully implement the OLCs. The requirements for the OLCs and OPs are established in Section 5 of the IAEA Safety Requirements publication Safety of Nuclear Power Plants: Operation, which this Safety Guide supplements. The purpose of this Safety Guide is to provide guidance on the development, content and implementation of OLCs and OPs. The Safety Guide is directed at both regulators and owners/operators. This Safety Guide covers the concept of OLCs, their content as applicable to land based stationary power plants with thermal neutron reactors, and the responsibilities of the operating organization regarding their establishment, modification, compliance and documentation. The OPs to support the implementation of the OLCs and to ensure their observance are also within the scope of this Safety Guide. The particular aspects of the procedures for maintenance, surveillance, in-service inspection and other safety related activities in connection with the safe operation of nuclear power plants are outside the scope of this Safety Guide but can be found in other IAEA Safety Guides. Section 2 indicates the

  12. Safety study application guide

    International Nuclear Information System (INIS)

    1993-07-01

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly open-quotes lowclose quotes) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, open-quotes Technical Safety Requirements,close quotes and 5480.23, open-quotes Nuclear Safety Analysis Reports.close quotes A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis

  13. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  14. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  15. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  16. Radiation safety at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [CERN, Geneva (Switzerland)

    1995-09-01

    CERN, the European Laboratory for Particle Physics, operates proton accelerators up to an energy of 450 GeV and an electron-positron storage ring in the 50 GeV energy range for fundamental high-energy particle physics. A strong radiation protection group assures the radiation safety of these machines both during their operation and in periods of maintenance and repair. Particular radiation problems in an accelerator laboratory are presented and recent developments in radiation protection at CERN discussed. (author)

  17. Decommissioning of Medical, Industrial and Research Facilities. Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of medical, industrial and research facilities where radioactive materials and sources are produced, received, used and stored. It is intended to provide guidance to national authorities and operating organizations, particularly to those in developing countries (as such facilities are predominant in these countries), for the planning and safe management of the decommissioning of such facilities. The Safety Guide has been prepared through a series of Consultants meetings and a Technical Committee meeting

  18. Decommissioning of medical, industrial and research facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of medical, industrial and research facilities where radioactive materials and sources are produced, received, used and stored. It is intended to provide guidance to national authorities and operating organizations, particularly to those in developing countries (as such facilities are predominant in these countries), for the planning and safe management of the decommissioning of such facilities. The Safety Guide has been prepared through a series of Consultants meetings and a Technical Committee meeting

  19. Innovation research on the safety supervision system of nuclear and radiation safety in Jiangsu province

    International Nuclear Information System (INIS)

    Zhang Qihong; Lu Jigen; Zhang Ping; Wang Wanping; Dai Xia

    2012-01-01

    As the rapid development of nuclear technology, the safety supervision of nuclear and radiation becomes very important. The safety radiation frame system should be constructed, the safety super- vision ability for nuclear and radiation should be improved. How to implement effectively above mission should be a new subject of Provincial environmental protection department. Through investigating the innovation of nuclear and radiation supervision system, innovation of mechanism, innovation of capacity, innovation of informatization and so on, the provincial nuclear and radiation safety supervision model is proposed, and the safety framework of nuclear and radiation in Jiangsu is elementally established in the paper. (authors)

  20. Health effects of radiation and the implications for radiation safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1991-01-01

    In this Paper two elements of a multiphase analysis of radiation exposures in the living environment - the human health effects of ionizing radiation and the implications for radiation safety policy and practices - are presented. Part 1 draws together the current state of scientific knowledge and insight about the human health effects of radiation, describing these in terms of known cause-related deterministic effects and of the estimated incidence of stochastic effects as defined by biostatistics and biological models. The 1988 UNSCEAR report provides an authoritative basis for such an examination. Part 2 explores some of the major implications that the state-of-the-art of radiation biology has - or should have - for radiation safety policy and practices. (author)

  1. Challenges in promoting radiation safety culture

    International Nuclear Information System (INIS)

    Mod Ali, Noriah

    2008-01-01

    Safety has quickly become an industry performance measure, and the emphasis on its reliability has always been part of a strategic commitment. This paper presents an approach taken by Malaysian Nuclear Agency (Nuclear Malaysia) and authority to develop and implement safety culture for industries that uses radioactive material and radiation sources. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. Proper safety audit will help to identify the non-compliance of safety culture as well as the deviation of management, individual and policy level commitment; review of radiation protection program and activities should be preceded. (author)

  2. Qualifications of persons working in radiation user's organization and radiation protection training required for competence

    International Nuclear Information System (INIS)

    2004-04-01

    The Guide sets out the requirements governing the qualifications of persons working in userAes organizations and the radiation protection training required for such competence. It also sets out the requirements for training organizations arranging radiation safety officer training and exams. The Guide applies only to uses of radiation requiring a afety licence. The requirements for userAes organizations are set out in Guide ST 1.4

  3. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  4. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  5. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  6. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  7. Radiation Safety of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Hussein, A.Z.

    2009-01-01

    The wide spread of Electromagnetic Waves (EMW) through the power lines, multimedia, communications, devices, appliances, etc., are well known. The probable health hazards associated with EMW and the radiation safety criteria are to be reviewed. However, the principles of the regulatory safety are based on radiation protection procedure, intervention to combat the relevant risk and to mitigate consequences. The oscillating electric magnetic fields (EMF) of the electromagnetic radiation (EMR) induce electrical hazards. The extremely high power EMR can cause fire hazards and explosions of pyrotechnic (Rad Haz). Biological hazards of EMF result as dielectric heat, severe burn, as well as the hazards of eyes. Shielding is among the technical protective measures against EMR hazards. Others are limitation of time of exposure and separation distance apart of the EMR source. Understanding and safe handling of the EMR sources are required to feel safety.

  8. Radiological design guide

    International Nuclear Information System (INIS)

    Evans, R.A.

    1994-01-01

    The purpose of this design guide is to provide radiological safety requirements, standards, and information necessary for designing facilities that will operate without unacceptable risk to personnel, the public, or the environment as required by the US Department of Energy (DOE). This design guide, together with WHC-CM-4-29, Nuclear Criticality Safety, WHC-CM-4-46, Nonreactor Facility Safety Analysis, and WHC-CM-7-5, Environmental Compliance, covers the radiation safety design requirements at Westinghouse Hanford Company (WHC). This design guide applies to the design of all new facilities. The WHC organization with line responsibility for design shall determine to what extent this design guide shall apply to the modifications to existing facilities. In making this determination, consideration shall include a cost versus benefit study. Specifically, facilities that store, handle, or process radioactive materials will be covered. This design guide replaces WHC-CM-4-9 and is designated a living document. This design guide is intended for design purposes only. Design criteria are different from operational criteria and often more stringent. Criteria that might be acceptable for operations might not be adequate for design

  9. Safety design guides for containment extension for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for containment extension describes the containment isolation philosophy and containment extension requirements. The metal extensions and components falling within the scope of ASME Section III are classified in accordance with the CAN/CSA-N285.0 and CAN/CSA-N285.3. The special consideration for the leak monitoring capability, seismic qualification and inspection requirements for containment extensions, etc., are defined in this design guide. In addition, the containment isolation systems are defined and summarized schematically in appendix A. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. (Author) .new

  10. Radiation safety in welding and testing

    International Nuclear Information System (INIS)

    King, B.E.; Malaxos, M.; Hartley, B.M.

    1985-01-01

    There are a number of ways of achieving radiation safety in the workplace. The first is by engineering radiation safety into the equipment, providing shielded rooms and safety interlocks. The second is by following safe working procedures. The National Health and Medical Research Council's Code of practice for the control and safe handling of sealed radioactive sources used in industrial radiography (1968) sets out the standards which must be met by equipment to be used in industrial radiography

  11. IAEA code and safety guides on quality assurance

    International Nuclear Information System (INIS)

    Raisic, N.

    1980-01-01

    In the framework of its programme in safety standards development, the IAEA has recently published a Code of Practice on Quality Assurance for Safety in Nuclear Power Plants. The Code establishes minimum requirements for quality assurance which Member States should use in the context of their own nuclear safety requirements. A series of 10 Safety Guides which describe acceptable methods of implementing the requirements of specific sections of the Code are in preparation. (orig.)

  12. Radiation protection and safety guide no. GRPB-G-2: notification and authorization by registration or licensing, exemption and exclusion

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    The obligatory requirement for the notification of the Radiation Protection Board and application for authorization by registration or licensing are important elements of the national system for controlling radiation sources and practices which may be potentially harmful to people. The present document provides guidance for Notification and Authorization by Registration or Licensing. In pursuance of the provision of the Radiation Protection Instrument, 1993, L I 1559, Part II C ontrol and Use of Radiation Sources , the present Guide specifies the Radiation Protection Board (RPB) scheme of notification and authorization by registration of licensing. Criteria for exempting and excluding sources and practices from regulatory control are highlighted

  13. IAEA codes and guides for safety of nuclear power plants

    International Nuclear Information System (INIS)

    Raisic, N.

    1980-01-01

    The objectives and scope of the Agency's programme of nuclear safety standards are described and the role of these documents in regulation of nuclear power im Member States is discussed. For each of the five areas of safety standards development, i.e. siting, design, operation, quality assurance and governmental organization, a set of principles underlying requirements and recommendations contained in the Code of Practice and Safety Guides will be presented. Safety Guides in each of the five areas will be reviewed in respect of the scope and content. A consideration will be given to the future development of the safety standards and to the revision and updating of the published documents. (orig./RW)

  14. Radiation safety aspects in the use of radiation sources in industrial and heath-care applications

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    2001-01-01

    The principle underlying the philosophy of radiation protection and safety is to ensure that there exists an appropriate standard of protection and safety for humans, without unduly limiting the benefits of the practices giving rise to exposure or incurring disproportionate costs in interventions. To realise these objectives, the International Commission on Radiation Protection (ICRP-60) and IAEA's Safety Series (IAEA Safety Series 120, 1996) have enunciated the following criteria for the application and use of radiation: (1) justification of practices; (2) optimisation of protection; (3) dose limitation and (4) safety of sources. Though these criteria are the basic tenets of radiation protection, the radiation hazard potentials of individual applications vary and the methods to achieve the above mentioned objectives principles are different. This paper gives a brief overview of the various applications of radiation and radioactive sources in India, their radiation hazard perspective and the radiation safety measures provided to achieve the basic radiation protection philosophy. (author)

  15. Decommissioning of nuclear power plants and research reactors. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of nuclear power plants and research reactors. It is intended to provide guidance to national authorities and operating organizations for the planning and safe management of the decommissioning of such installations. This Safety Guide has been prepared through a series of Consultants and Technical Committee meetings. It supersedes former Safety Series publications Nos 52, 74 and 105

  16. Decommissioning of nuclear power plants and research reactors. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of nuclear power plants and research reactors. It is intended to provide guidance to national authorities and operating organizations for the planning and safe management of the decommissioning of such installations. This Safety Guide has been prepared through a series of Consultants and Technical Committee meetings. It supersedes former Safety Series publications Nos 52, 74 and 105

  17. Decommissioning of nuclear power plants and research reactors. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of nuclear power plants and research reactors. It is intended to provide guidance to national authorities and operating organizations for the planning and safe management of the decommissioning of such installations. This Safety Guide has been prepared through a series of Consultants and Technical Committee meetings. It supersedes former Safety Series publications Nos 52, 74 and 105

  18. Data survey about radiation protection and safety of radiation sources in research laboratories

    International Nuclear Information System (INIS)

    Paura, Clayton L.; Dantas, Ana Leticia A.; Dantas, Bernardo M.

    2005-01-01

    In Brazil, different types of research using unsealed sources are developed with a variety of radioisotopes. In such activities, professionals and students involved are potentially exposed to internal contamination by 14 C, 45 Ca, 51 Cr, 3 H, 125 I, 32 P, 33 P, 35 S, 90 Sr and 99m Tc. The general objective of this work is to evaluate radiological risks associated to these practices in order to supply information for planning actions aimed to improve radiation protection conditions in research laboratories. The criteria for risk evaluation and the safety aspects adopted in this work were based on CNEN Regulation 6.02 and in IAEA and NRPB publications. The survey of data was carried out during visits to laboratories in public Universities located in the city of Rio de Janeiro where unsealed radioactive sources are used in biochemistry, biophysics and genetic studies. According to the criteria adopted in this work, some practices developed in the laboratories require evaluation of risk of internal contamination depending on the conditions of source manipulation. It was verified the need for training of users of radioactive materials in this type of laboratory. This can be facilitated by the use of basic guides for the classification of areas, radiation protection, safety and source security in research laboratories. It was also observed the need for optimization of such practices in order to minimize the contact with sources. It is recommended to implement more effective source and access controls as a way to reduce risks of individual radiation exposure and loss of radioactive materials (author)

  19. Guide for use of radiation-sensitive indicators. 2. ed.

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the use of radiation-sensitive indicators in radiation processing. These indicators may be labels, papers, inks or packaging materials which undergo a color change or become colored when exposed to ionizing radiation. The purpose of these indicators is to determine visually whether or not a product has been irradiated, rather than to measure different dose levels. Such materials are not dosimeters and should not be used as a substitute for proper dosimetry. Information about dosimetry systems for ionizing radiation is provided in other ASTM and ISO/ASTM documents (see ISO/ASTM Guide 51261

  20. Radiation protection and safety culture for cyclotron workers

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    1998-01-01

    The main aim of the present study is to review radiation protection and safety culture measures to be applied to cyclotron workers. The radiation protection (measures are based on Basic Safety standards for the protection) of the health of workers and the general public against the dangers arising from ionizing radiation, while the safety culture are based on IAEA publications

  1. IAEA Safety Standards

    International Nuclear Information System (INIS)

    2016-09-01

    The IAEA Safety Standards Series comprises publications of a regulatory nature covering nuclear safety, radiation protection, radioactive waste management, the transport of radioactive material, the safety of nuclear fuel cycle facilities and management systems. These publications are issued under the terms of Article III of the IAEA’s Statute, which authorizes the IAEA to establish “standards of safety for protection of health and minimization of danger to life and property”. Safety standards are categorized into: • Safety Fundamentals, stating the basic objective, concepts and principles of safety; • Safety Requirements, establishing the requirements that must be fulfilled to ensure safety; and • Safety Guides, recommending measures for complying with these requirements for safety. For numbering purposes, the IAEA Safety Standards Series is subdivided into General Safety Requirements and General Safety Guides (GSR and GSG), which are applicable to all types of facilities and activities, and Specific Safety Requirements and Specific Safety Guides (SSR and SSG), which are for application in particular thematic areas. This booklet lists all current IAEA Safety Standards, including those forthcoming

  2. Bioluminescence Tomography–Guided Radiation Therapy for Preclinical Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Wang, Ken Kang-Hsin, E-mail: kwang27@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Yu, Jingjing [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); School of Physics and Information Technology, Shaanxi Normal University, Shaanxi (China); Eslami, Sohrab; Iordachita, Iulian [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland (United States); Reyes, Juvenal; Malek, Reem [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Department of Oncology and Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland (United States); Patterson, Michael S. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario (Canada); Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States)

    2016-04-01

    Purpose: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials: The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationary charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results: Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions: The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or

  3. Bioluminescence Tomography–Guided Radiation Therapy for Preclinical Research

    International Nuclear Information System (INIS)

    Zhang, Bin; Wang, Ken Kang-Hsin; Yu, Jingjing; Eslami, Sohrab; Iordachita, Iulian; Reyes, Juvenal; Malek, Reem; Tran, Phuoc T.; Patterson, Michael S.; Wong, John W.

    2016-01-01

    Purpose: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials: The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationary charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results: Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions: The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or

  4. Radiation safety for the emergency situation of the power plant accident. Radiation safety in society and its education

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    2012-01-01

    Great East Japan Earthquake and Tsunamis, and following Fukushima Daiichi Nuclear Power Accident brought about great impact on society in Japan. Accident analysis of inside reactor was studied by reactor physics or reactor engineering knowledge, while dissipation of a large amount of radioactive materials outside reactor facilities, and radiation and radioactivity effects on people by way of atmosphere, water and soil were dealt with radiation safety or radiation protection. Due to extremely low frequency and experience of an emergency, there occurred a great confusion in the response of electric power company concerned, relevant regulating competent authorities, local government and media, and related scholars and researchers, which caused great anxieties amount affected residents and people. This article described radiation safety in the society and its education. Referring to actual examples, how radiation safety or radiation protection knowledge should be dealt with emergency risk management in the society was discussed as well as problem of education related with nuclear power, radiation and prevention of disaster and fostering of personnel for relevant people. (T. Tanaka)

  5. Radiation safety management system in a radioactive facility

    International Nuclear Information System (INIS)

    Amador, Zayda H.

    2008-01-01

    Full text: This paper illustrates the Cuban experience in implementing and promoting an effective radiation safety system for the Centre of Isotopes, the biggest radioactive facility of our country. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. All those areas of the radiation protection program are considered (e.g. licensing and training of the staff, occupational exposure, authorization of the practices, control of the radioactive material, radiological occurrences, monitoring equipment, radioactive waste management, public exposure due to airborne effluents, audits and safety costs). A set of indicators designed to monitor key aspects of operational safety performance are used. Their trends over a period of time are analyzed with the modern information technologies, because this can provide an early warning to plant management for searching causes behind the observed changes. In addition to analyze the changes and trends, these indicators are compared against identified targets and goals to evaluate performance strengths and weaknesses. A structured and proper radiation self-auditing system is seen as a basic requirement to meet the current and future needs in sustainability of radiation safety. The integrated safety management system establishment has been identified as a goal and way for the continuous improvement. (author)

  6. Interactive software automates personalized radiation safety plans for Na131I therapy.

    Science.gov (United States)

    Friedman, Marvin I; Ghesani, Munir

    2002-11-01

    NRC regulations have liberalized the criteria for release from control of patients administered radioactive materials but require written radiation safety instruction if another individual is expected to receive more than 1 mSv. This necessitates calculation of expected doses, even when the calculated maximum likely dose is well below the 5 mSv release criterion. NRC interpretations of the regulation provide the biokinetic model to be used to evaluate the release criterion for patients administered Na131I, but do not provide guidance as to either the specifics of minimizing the dose of others or the length of time restrictions should remain in effect. Interactive software has been developed to facilitate creation of radiation safety plans tailored to patients' expected interactions. Day-by-day and cumulative effective exposures at several separation distances, including sleeping, are presented in grid format in a graphic interface. In an interview session, the patient proposes daily contacts, which are entered separately for each individual by point-and-click operation. Total dose estimates are accumulated and modified while negotiating contact schedules, guided by suggested age-specific limits. The software produces printed radiation safety recommendations specific to the clinical, dosing, and social situations and reflective of the patient's choice of combinations of close contact with others. It has been used in treating more than 100 patients and has been found to be very useful and well received.

  7. Field Test of the World Health Organization Multi-Professional Patient Safety Curriculum Guide

    Science.gov (United States)

    Farley, Donna; Zheng, Hao; Rousi, Eirini; Leotsakos, Agnès

    2015-01-01

    Introduction Although the importance of training in patient safety has been acknowledged for over a decade, it remains under-utilized and under-valued in most countries. WHO developed the Multi-professional Patient Safety Curriculum Guide to provide schools with the requirements and tools for incorporating patient safety in education. It was field tested with 12 participating schools across the six WHO regions, to assess its effectiveness for teaching patient safety to undergraduate and graduate students in a global variety of settings. Methods The evaluation used a combined prospective/retrospective design to generate formative information on the experiences of working with the Guide and summative information on the impacts of the Guide. Using stakeholder interviews and student surveys, data were gathered from each participating school at three times: the start of the field test (baseline), soon after each school started teaching, and soon after each school finished teaching. Results Stakeholders interviewed were strongly positive about the Guide, noting that it emphasized universally important patient safety topics, was culturally appropriate for their countries, and gave credibility and created a focus on patient safety at their schools. Student perceptions and attitudes regarding patient safety improved substantially during the field test, and their knowledge of the topics they were taught doubled, from 10.7% to 20.8% of correct answers on the student survey. Discussion This evaluation documented the effectiveness of the Curriculum Guide, for both ease of use by schools and its impacts on improving the patient safety knowledge of healthcare students. WHO should be well positioned to refine the contents of the Guide and move forward in encouraging broader use of the Guide globally for teaching patient safety. PMID:26406893

  8. Field Test of the World Health Organization Multi-Professional Patient Safety Curriculum Guide.

    Science.gov (United States)

    Farley, Donna; Zheng, Hao; Rousi, Eirini; Leotsakos, Agnès

    2015-01-01

    Although the importance of training in patient safety has been acknowledged for over a decade, it remains under-utilized and under-valued in most countries. WHO developed the Multi-professional Patient Safety Curriculum Guide to provide schools with the requirements and tools for incorporating patient safety in education. It was field tested with 12 participating schools across the six WHO regions, to assess its effectiveness for teaching patient safety to undergraduate and graduate students in a global variety of settings. The evaluation used a combined prospective/retrospective design to generate formative information on the experiences of working with the Guide and summative information on the impacts of the Guide. Using stakeholder interviews and student surveys, data were gathered from each participating school at three times: the start of the field test (baseline), soon after each school started teaching, and soon after each school finished teaching. Stakeholders interviewed were strongly positive about the Guide, noting that it emphasized universally important patient safety topics, was culturally appropriate for their countries, and gave credibility and created a focus on patient safety at their schools. Student perceptions and attitudes regarding patient safety improved substantially during the field test, and their knowledge of the topics they were taught doubled, from 10.7% to 20.8% of correct answers on the student survey. This evaluation documented the effectiveness of the Curriculum Guide, for both ease of use by schools and its impacts on improving the patient safety knowledge of healthcare students. WHO should be well positioned to refine the contents of the Guide and move forward in encouraging broader use of the Guide globally for teaching patient safety.

  9. Integration of radiation and physical safety in large radiator facilities

    International Nuclear Information System (INIS)

    Lima, P.P.M.; Benedito, A.M.; Lima, C.M.A.; Silva, F.C.A. da

    2017-01-01

    Growing international concern about radioactive sources after the Sept. 11, 2001 event has led to a strengthening of physical safety. There is evidence that the illicit use of radioactive sources is a real possibility and may result in harmful radiological consequences for the population and the environment. In Brazil there are about 2000 medical, industrial and research facilities with radioactive sources, of which 400 are Category 1 and 2 classified by the - International Atomic Energy Agency - AIEA, where large irradiators occupy a prominent position due to the very high cobalt-60 activities. The radiological safety is well established in these facilities, due to the intense work of the authorities in the Country. In the paper the main aspects on radiological and physical safety applied in the large radiators are presented, in order to integrate both concepts for the benefit of the safety as a whole. The research showed that the items related to radiation safety are well defined, for example, the tests on the access control devices to the irradiation room. On the other hand, items related to physical security, such as effective control of access to the company, use of safety cameras throughout the company, are not yet fully incorporated. Integration of radiation and physical safety is fundamental for total safety. The elaboration of a Brazilian regulation on the subject is of extreme importance

  10. Safety, Health, and Environmental Auditing A Practical Guide

    CERN Document Server

    Pain, Simon Watson

    2010-01-01

    A practical guide to environmental, safety, and occupational health audits. It allows organizations and business to avoid expensive external auditors and retain the knowledge and learning 'in-house'. It allows any competent manager or safety/environmental officer to undertake in-house audits in a competent and reproducible fashion.

  11. WE-F-209-02: Radiation Safety Surveys of Linear Accelerators

    International Nuclear Information System (INIS)

    Martin, M.

    2016-01-01

    Over the past few years, numerous Accreditation Bodies, Regulatory Agencies, and State Regulations have implemented requirements for Radiation Safety Surveys following installation or modification to x-ray rooms. The objective of this session is to review best practices in performing radiation safety surveys for both Therapy and Diagnostic installations, as well as a review of appropriate survey instruments. This session will be appropriate for both therapy and imaging physicists who are looking to increase their working knowledge of radiation safety surveys. Learning Objectives: Identify Appropriate Survey Meters for Radiation Safety Surveys Develop best practices for Radiation Safety Surveys for Therapy units that include common areas of concern. Develop best practices for Radiation Safety Surveys of Diagnostic and Nuclear Medicine rooms. Identify acceptable dose levels and the factors that affect the calculations associated with performing Radiation Safety Surveys.

  12. Nuclear Malaysia. Towards being a certification body for radiation safety auditors

    International Nuclear Information System (INIS)

    Nik Ali, Nik Arlina; Mudri, Nurul Huda; Mod Ali, Noriah

    2012-01-01

    Current management practice demands that an organisation inculcate safety culture in preventing radiation hazard. Radiation safety audit is known as a step in ensuring radiation safety compliance at all times. The purpose of Radiation Safety Auditing is to ensure that the radiation safety protection system is implemented in accordance to Malaysia Atomic Energy Licensing Act 1984, or Act 304, and International Standards. Competent radiation safety auditors are the main element that contributes to the effectiveness of the audit. To realise this need, Innovation Management Centre (IMC) is now in progress to be a certification body for safety auditor in collaboration with Nuclear Malaysia Training Centre (NMTC). NMTC will offer Radiation Safety Management Auditor (RSMA) course, which provide in depth knowledge and understanding on requirement on radiation safety audit that comply with the ISO/IEC 17024 General Requirements for Bodies Operating Certification Systems of Persons. Candidates who pass the exam will be certified as Radiation Safety Management Auditor, whose competency will be evaluated every three years. (author)

  13. Investigation of radiation safety and safety culture of medical sanitation vocation in Suzhou

    International Nuclear Information System (INIS)

    Tang Bo; Tu Yu; Zhang Yin

    2009-01-01

    Objective: To investigate the construction of radiation safety and safety culture of medical sanitation vocation in Suzhou. Methods: All medical units registered in administration center of Suzhou were included. The above selected medical units were completely investigated, district and county under the same condition of quality control. Results: The radiation safety and safety culture are existing differences among different property and grade hospitals of medicai sanitation vocation in Suzhou. Conclusion: The construction of radiation safety and safety culture is generally occupying in good level in suhzou, but there are obvious differences among different property and grade hospitals. The main reason for the differences in the importance attached to by the hospital decision-making and department management officials as well as the staff personal. (authors)

  14. Radiation shielding and safety design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Gil, C. S.; Cho, Y. S.; Kim, D. H.; Kim, H. I.; Kim, J. W.; Lee, C. W.; Kim, K. Y.; Kim, B. H. [KAERI, Daejeon (Korea, Republic of)

    2011-07-15

    A benchmarking for the test facility, evaluations of the prompt radiation fields, evaluation of the induced activities in the facility, and estimation of the radiological impact on the environment were performed in this study. and the radiation safety analysis report for nuclear licensing was written based on this study. In the benchmark calculation, the neutron spectra was measured in the 20 Mev test facility and the measurements were compared with the computational results to verify the calculation system. In the evaluation of the prompt radiation fields, the shielding design for 100 MeV target rooms, evaluations of the leakage doses from the accidents and skyshine analysis were performed. The evaluation of the induced activities were performed for the coolant, inside air, structural materials, soil and ground-water. At last, the radiation safety analysis report was written based on results from these studies

  15. Research on crisis communication of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cao Yali; Zhang Ying

    2013-01-01

    Insufficient public cognition of nuclear and radiation safety and absence of effective method to handle crisis lead to common crisis events of nuclear and radiation safety, which brings about unfavorable impact on the sound development of nuclear energy exploring and application of nuclear technology. This paper, based on crisis communication theory, analyzed the effect of current situation on nuclear and radiation safety crisis, discussed how to handle crisis, and tried to explore the effective strategies for nuclear and radiation safety crisis handling. (authors)

  16. Regulation on the organizatjon of radiation safety control bodies

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document on matters of structure, organization, objectives, rights, and responsibilities of agencies enforcing compliance with radiation safety standards set up in Bulgaria. Under Public Health Law and Ministerial Council Decree No. 117, the organization and management of radiation safety in Bulgaria is entrusted to the Ministry of Public Health (MPH). Within its agency, the State Sanitary Control, authorities specialized in the area of radiation safety are as follows: the Radiation Hygiene Division (RHD) of the MPH Hygiene-and Epidemiology Bureau (HEB); the Specialized Radiation Safety Inspectorate of the Research Institute of Radiobiology and Radiation Hygiene (RIRRH); the Radiation Hygiene Sections of country HEBs; and State sanitary Inspectors assigned to large establishments in the country. (G.G.)

  17. The Australian radiation protection and Nuclear Safety Agency

    International Nuclear Information System (INIS)

    Macnab, D.; Burn, P.; Rubendra, R.

    1998-01-01

    The author talks about the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), the new regulatory authority which will combine the existing resources of the Australian Radiation Laboratory and the Nuclear Safety Bureau. Most uses of radiation in Australia are regulated by State or Territory authorities, but there is presently no regulatory authority for Commonwealth uses of radiation. To provide for regulation of the radiation practices of the Commonwealth, the Australian Government has decided to establish the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and a Bill has passed through the House of Representatives and will go to the Spring sitting of the Senate. The new agency will subsume the resources and functions of the Nuclear Safety Bureau and the Australian Radiation Laboratory, with additional functions including the regulation of radiation protection and nuclear safety of Commonwealth practices. Another function of ARPANSA will be the promotion of uniform regulatory requirements for radiation protection across Australia. This will be done by developing, in consultation with the States and Territories, radiation health policies and practices for adoption by the Commonwealth, States and Territories. ARPANSA will also provide research and services for radiation health, and in support of the regulatory and uniformity functions. The establishment of ARPANSA will ensure that the proposed replacement research reactor, the future low level radioactive waste repository and other Commonwealth nuclear facilities and radiation practices are subject to a regulatory regime which reflects the accumulated experience of the States and Territories and best international practice, and meets public expectations

  18. Radiation safety aspects at Indus accelerator complex

    International Nuclear Information System (INIS)

    Marathe, R.G.

    2011-01-01

    Indus Accelerator Complex at Raja Ramanna Center for Advanced Technology houses two synchrotron radiation sources Indus-1 and Indus-2 that are being operated round-the-clock to cater to the needs of the research community. Indus-1 is a 450 MeV electron storage ring and Indus-2 is presently being operated with electrons stored at 2 GeV. Bremsstrahlung radiation and photo-neutrons form the major radiation environment in Indus Accelerator Complex. They are produced due to loss of electron-beam occurring at different stages of operation of various accelerators located in the complex. The synchrotron radiation (SR) also contributes as a potential hazard. In order to ensure safety of synchrotron radiation users and operation and maintenance staff working in the complex from this radiation, an elaborate radiation safety system is in place. The system comprises a Personnel Protection System (PPS) and a Radiation Monitoring System (RMS). The PPS includes zoning, radiation shielding, door interlocks, a search and scram system and machine operation trip-interlocks. The RMS consists of area radiation monitors and beam loss monitors, whose data is available online in the Indus control room. Historical data of radiation levels is also available for data analysis. Synchrotron radiation beamlines at Indus-2 are handled in a special manner owing to the possibility of exposure to synchrotron radiation. Shielding hutches with SR monitors are installed at each beamline of Indus-2. Health Physics Unit also carries out regular radiological surveillance for photons and neutrons during various modes of operation and data is logged shift wise. The operation staff is appropriately trained and qualified as per the recommendations of Atomic Energy Regulatory Board (AERB). Safety training is also imparted to the beamline users. Safe operation procedures and operation checklists are being followed strictly. A radiation instrument calibration facility is also being set-up at RRCAT. The radiation

  19. Contribution of the ARCAL XX/IAEA project to improvement of radiation safety in medical practices

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    2001-01-01

    The objectives of the ARCAL XX Project: 'Guidelines on Control of Radiation Sources' (1997-2000) are to promote an effective control of the radiation sources used in medicine, industrial and research applications, harmonising and updating existing procedures within Latin American, adopting the International Basic Safety Standards, in order to avoid unnecessary expositions limiting the probability of accidents occurrence. Nine countries participate with experts in the development of guidelines based in the regional experience. The guidelines contain Radiological Safety Requirements, Guide for Authorisation Application and Inspections Procedures. At this moment, there are guidelines for Radiotherapy, Nuclear Medicine and Diagnostic Radiology. The implementation of these guidelines will improve the effectiveness of regulatory control of radiation sources in Latin American and the radiological protection in aspects of occupational, medical, public and potential exposure. This document presents the experience in the development of these guidelines and their contribution for elaborating national regulations in medical practices. (author) [es

  20. Safety design guides for environmental qualification for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide describes the safety philosophy and requirements for the environmental qualification of safety related systems and components for CANDU 9. The environmental qualification program identifies the equipments to be qualified and conditions to be used for qualification and provides comprehensive set of documentation to ensure that the qualification is complete and can be maintained for the life of the plant. A summary of the system, components and structures requiring environmental qualification is provided in the table for the guidance of the system design, and this table will be subject to change or confirmation by the environmental qualification program. Also, plant ares subject to harsh environment is provided in the figure. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 1 tab., 5 figs. (Author) .new

  1. Environment, health and safety guiding principles

    International Nuclear Information System (INIS)

    1997-06-01

    The Canadian Energy Pipeline Association (CEPA) has taken a leadership role in promoting responsible planning, management and work practices that meet the pipeline industry's environment, health and safety objectives. This brochure contains CEPA's environment, health and safety statement. It lists the guiding principles developed and endorsed by CEPA and its member companies in support of protecting the environment and the health and safety of its employees and the public. The 11 CEPA member companies are: Alberta Natural Gas Company Ltd., ATCO Gas Services Ltd., Foothills Pipe Lines Ltd., Interprovincial Pipe Line Inc., NOVA Gas Transmission Limited, TransGas Limited, Trans Mountain Pipe Line Company Ltd., Trans-Northern Pipelines Inc., Trans Quebec and Maritimes Pipeline Inc., and Westcoast Energy Inc

  2. Radiation safety standards and regulations

    International Nuclear Information System (INIS)

    Ermolina, E.P.; Ivanov, S.I.

    1993-01-01

    Radiation protection laws of Russia concerning medical application of ionizing radiation are considered. Main concepts of the documents and recommendations are presented. Attention was paid to the ALARA principle, safety standrds for paietients, personnel and population, radiation protection. Specific feature of the standardization of radiation factors is the establishment of two classes of norms: main dose limits and permissible levels. Maximum dose commitment is the main standard. Three groups of critical organs and three categories of the persons exposed to radiation are stated. Main requirements for radiation protection are shown

  3. 10 CFR 34.42 - Radiation Safety Officer for industrial radiography.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation Safety Officer for industrial radiography. 34.42 Section 34.42 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION... Radiation Safety Officer for industrial radiography. The RSO shall ensure that radiation safety activities...

  4. Organization and staffing of the regulatory body for nuclear facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this safety guide is to provide recommendations for national authorities on the appropriate management system, organization and staffing for the regulatory body responsible for the regulation of nuclear facilities in order to achieve compliance with the applicable safety requirements. This safety guide covers the organization and staffing in relation to nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And radioactive waste management facilities such as treatment, storage and disposal facilities. This safety guide also covers issues related to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation

  5. Interface between radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    Bengtsson, G.; Hoegberg, L.

    1991-01-01

    Interface issues concern the character and management of overlaps between radiation protection and nuclear safety in nuclear power plants. Typical examples include the selection of inspection and maintenance volumes in order to balance occupational radiation doses versus the safety status of the plant, and the intentional release to the environment in the course of an accident in order to secure better plant control. The paper discusses whether it is desirable and possible to employ a consistent management of interface issues with trade-offs between nuclear safety and radiation protection. Illustrative examples are quoted from a major Nordic research programme on risk analysis and safety rationale. These concern for instance in-service inspections, modifications of plant systems and constructions after the plant has been taken into operation, and studies on the limitations of probabilistic safety assessment. They indicate that in general there are no simple rules for such trade-offs

  6. Evaluation of seismic hazards for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The main objective of this Safety Guide is to provide recommendations on how to determine the ground motion hazards for a plant at a particular site and the potential for surface faulting, which could affect the feasibility of construction and safe operation of a plant at that site. The guidelines and procedures presented in this Safety Guide can appropriately be used in evaluations of site suitability and seismic hazards for nuclear power plants in any seismotectonic environment. The probabilistic seismic hazard analysis recommended in this Safety Guide also addresses the needs for seismic hazard analysis of external event PSAs conducted for nuclear power plants. Many of the methods and processes described may also be applicable to nuclear facilities other than power plants. Other phenomena of permanent ground displacement (liquefaction, slope instability, subsidence and collapse) as well as the topic of seismically induced flooding are treated in Safety Guides relating to foundation safety and coastal flooding. Recommendations of a general nature are given in Section 2. Section 3 discusses the acquisition of a database containing the information needed to evaluate and address all hazards associated with earthquakes. Section 4 covers the use of this database for construction of a seismotectonic model. Sections 5 and 6 review ground motion hazards and evaluations of the potential for surface faulting, respectively. Section 7 addresses quality assurance in the evaluation of seismic hazards for nuclear power plants

  7. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  8. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  9. Development and Application of Level 2 Probabilistic Safety Assessment for Nuclear Power Plants. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this Safety Guide is to provide recommendations for meeting the IAEA safety requirements in performing or managing a level 2 probabilistic safety assessment (PSA) project for a nuclear power plant; thus it complements the Safety Guide on level 1 PSA. One of the aims of this Safety Guide is to promote a standard framework, standard terms and a standard set of documents for level 2 PSAs to facilitate regulatory and external peer review of their results. It describes all elements of the level 2 PSA that need to be carried out if the starting point is a fully comprehensive level 1 PSA. Contents: 1. Introduction; 2. PSA project management and organization; 3. Identification of design aspects important to severe accidents and acquisition of information; 4. Interface with level 1 PSA: Grouping of sequences; 5. Accident progression and containment analysis; 6. Source terms for severe accidents; 7. Documentation of the analysis: Presentation and interpretation of results; 8. Use and applications of the PSA; Annex I: Example of a typical schedule for a level 2 PSA; Annex II: Computer codes for simulation of severe accidents; Annex III: Sample outline of documentation for a level 2 PSA study.

  10. Radiation protection and nuclear safety - achievements and the way ahead for ARPANSA

    International Nuclear Information System (INIS)

    Loy, J.

    2001-01-01

    Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), a fully independent legislative and regulatory agency, was announced in 1997, but formally came into existence in 1999. The first stage of its development as a regulator was guiding Commonwealth users of radiation sources and nuclear facilities through making licence applications. Assessing licences was complex, including because of the need to work with the public submission process for nuclear facilities. This presentation will briefly outline the legislative framework and the regulatory arrangements that were instrumental in the creation of ARPANSA and discusses at length the implementation phase and achievements to date. The Commonwealth jurisdiction differs from the States - ARPANSA's challenge is now to learn how to move to the surveillance and audit stage of licensing

  11. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  12. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  13. Radiation Safety Culture in Medicine AFROSAFE_R_A_D

    International Nuclear Information System (INIS)

    Nyabanda, R.

    2017-01-01

    Ionizing radiation that include X-rays and Gamma rays Radio waves, infrared and visible light carries sufficient energy to free electrons from atoms or molecules. Becquerel first person to discover evidence of radioactivity, who shared a Nobel Prize for physics in 1903 with Marie and Pierre Curie. Prof Sievert and Louis Harold Gray are the Medical physicists who had major contribution in the study of the biological effects of radiation. Ionizing radiation causes displacement of an electron which can inflict damage on DNA either directly or indirectly. A radiation-safety campaign developed by the radiation health workers in Africa. Radiosensitive organs is highest in cells which are highly mitotic or undifferentiated. E.g basal epidermis, bone marrow, thymus, gonads, and lens cells. Relatively low radiosensitivity in muscle, bones, and nervous system tissues. A radiation-safety campaign developed by the radiation health workers in Africa. AFROSAFE Strategies Strengthen radiation protection of patients, health workers and public, Promote safe and appropriate use of ionizing radiation in medicine. Foster improvement of the benefit-risk dialogue with patients and the public. Enhance the safety and quality of radiological procedures in medicine, Promote safety in radiological equipment and facilities and Promote research in radiation protection and safety

  14. Radiation and Your Patient: A Guide for Medical Practitioners

    International Nuclear Information System (INIS)

    Cosset, J.M.; Liniecki, J.; Ortiz-Lopez, P.; Ringertz, H.; Sharp, C.; Mettler, F.A. Jr.; Harding, L.K.; Nakamura, H.; Rehani, M.M.; Sasaki, Y.; Ussov, W.Y.; Guiberteau, M.J.; Hiraoka, M.; Vafio, E.; Gusev, L.A.; Pinillos-Ashton, L.V.; Rosenstein, M.; Yin, W.; Mattsson, S.; Cousins, C.

    2004-01-01

    The medical exposures are the first cause of irradiation of populations. The benefit/risk ratio must be taken into consideration. Progress margin exists to reduce the radiation doses delivered to patients. The British people have noticed a reduction of 30% in the doses received by the patients during the last years. A better radiation protection needs a better dialogue between physicians and patients. This is the object of this ICRP guide which is a French translation of the original title 'Supporting guidance 2. Radiation and Your Patient: A Guide for Medical Practitioners', published by Pergamon (2002)

  15. Use of ionising radiation in the teaching of physics and chemistry

    International Nuclear Information System (INIS)

    2000-01-01

    The guide lays down the safety requirements for the use of radiation in school education, as well as the principles regulating the use of radiation sources without the safety licence referred to in section 16 of the Finnish Radiation Act (592/1991). The guide covers the use of radiation sources emitting ionising radiation in elementary schools and high schools, as well as the use of radiation in the teaching of physics and chemistry in vocational training institutions and corresponding educational institutions

  16. Use of ionizing radiation in the teaching of physics and chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The guide specifies the safety requirements for the use of radiation in school education as well as the principles regulating the use of radiation sources without the safety license referred to the Section 16 of the Finnish Radiation Act (592/91). The guide covers the use of radiation sources emitting ionizing radiation in elementary schools and high schools, as well as the use of radiation in the teaching of physics and chemistry in vocational training institutions and corresponding educational institutions. (3 refs.)

  17. Design of Instrumentation and Control Systems for Nuclear Power Plants. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is a revision and combination of two Safety Guides, IAEA Safety Standards Series No. NS-G-1.1 and No. NS-G-1.3. The revision takes into account developments in instrumentation and control (I&C) systems since the publication of the earlier Safety Guides. The main changes relate to the continuing development of computer applications and the evolution of the methods necessary for their safe, secure and practical use. In addition, account is taken of developments in human factors engineering and the need for computer security. This Safety Guide references and takes into account other IAEA Safety Standards and Nuclear Security Series publications that provide guidance relating to I&C design

  18. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    2002-05-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  19. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    1999-09-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  20. The radiation safety self-assessment program of Ontario Hydro

    International Nuclear Information System (INIS)

    Armitage, G.; Chase, W.J.

    1987-01-01

    Ontario Hydro has developed a self-assessment program to ensure that high quality in its radiation safety program is maintained. The self-assessment program has three major components: routine ongoing assessment, accident/incident investigation, and detailed assessments of particular radiation safety subsystems or of the total radiation safety program. The operation of each of these components is described

  1. The radiation safety standards programme

    International Nuclear Information System (INIS)

    Bilbao, A.A.

    2000-01-01

    In this lecture the development of radiation safety standards by the IAEA which is a statutory function of the IAEA is presented. The latest editions of the basic safety standards published by the IAEA in cooperation with ICRP, FAO, ILO, NEA/OECD, PAHO and WHO are reviewed

  2. radiation safety culture for developing country: Basis for s minimum operational radiation protection programme

    International Nuclear Information System (INIS)

    Rozental, J. J.

    1997-01-01

    The purpose of this document is to present a methodology for an integrated strategy aiming at establishing an adequate radiation Safety infrastructure for developing countries, non major power reactor programme. Its implementation will allow these countries, about 50% of the IAEA's Member States, to improve marginal radiation safety, specially to those recipients of technical assistance and do not meet the Minimum radiation Safety Requirements of the IAEA's Basic Safety Standards for radiation protection Progress in the implementation of safety regulations depends on the priority of the government and its understanding and conviction about the basic requirements for protection against the risks associated with exposure to ionizing radiation. There is no doubt to conclude that the reasons for the deficiency of sources control and dose limitation are related to the lack of an appropriate legal and regulatory framework, specially considering the establishment of an adequate legislation; A minimum legal infrastructure; A minimum operational radiation safety programme; Alternatives for a Point of Optimum Contact, to avoid overlap and conflict, that is: A 'Memorandum of Understanding' among Regulatory Authorities in the Country, dealing with similar type of licensing and inspection

  3. Department of Energy Construction Safety Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    DOE has adopted the Occupational Safety and Health Administration (OSHA) regulations Title 29 Code of Federal Regulations (CFR) 1926 ``Safety and Health Regulations for Construction,`` and related parts of 29 CFR 1910, ``Occupational Safety and Health Standards.`` This nonmandatory reference guide is based on these OSHA regulations and, where appropriate, incorporates additional standards, codes, directives, and work practices that are recognized and accepted by DOE and the construction industry. It covers excavation, scaffolding, electricity, fire, signs/barricades, cranes/hoists/conveyors, hand and power tools, concrete/masonry, stairways/ladders, welding/cutting, motor vehicles/mechanical equipment, demolition, materials, blasting, steel erection, etc.

  4. Radiation protection. A guide for scientists and physicians

    International Nuclear Information System (INIS)

    Shapiro, J.

    1972-01-01

    This manual was written for individuals who wish to become qualified in radiation protection as an adjunct to working with sources of ionizing radiation or using radionuclides in the field of medicine. It provides the radiation user with information needed to protect himself and others and to understand and comply with governmental and institutional regulations regarding the use of radionuclides and radiation machines. It is designed for a wide spectrum of users, including physicians, research scientists, engineers, and technicians. It should be useful also to radiation safety officers, members of radiation safety committees, and others who are responsible for the proper use of radiation sources, although they may not be working with the sources directly. The presentation in this manual is designed to obviate the need for reviews of atomic and radiation physics, and the mathematics has been limited to elementary arithmetical and algebraic operations

  5. Recent trends in particle accelerator radiation safety

    International Nuclear Information System (INIS)

    Ohnesorge, W.F.; Butler, H.M.

    1974-01-01

    The use of particle accelerators in applied and research activities continues to expand, bringing new machines with higher energy and current capabilities which create radiation safety problems not commonly encountered before. An overview is given of these increased ionizing radiation hazards, along with a discussion of some of the new techniques required in evaluating and controlling them. A computer search of the literature provided a relatively comprehensive list of publications describing accelerator radiation safety problems and related subjects

  6. Guide to the safety design examination about light water reactor facilities for power generation

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This guide was compiled to evaluate the validity of the design policy when the safety design is examined at the time of the application for approval of the installation of nuclear reactors. About 7 years has elapsed since the existing guide was established, and the more appropriate guide to evaluate the safety should be made on the basis of the knowledge and experience accumulated thereafter. The range of application of this guide is limited to the above described evaluation, and it is not intended as the general standard for the design of nuclear reactors. First, the definition of the words used in this guide is given. Then, the guide to the safety examination is described about the general matters of reactor facilities, nuclear reactors and the measuring and controlling system, reactor-stopping system, reactivity-controlling system and safety protection system, reactor-cooling system, reactor containment vessels, fuel handling and waste treatment system. Several matters which require attention in the application of this guide or the clarification of the significance and interpretation of the guide itself were found, therefore the explanation about them was added at the end of this guide. (Kako, I.)

  7. Design of the reactor coolant system and associated systems in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. The basic requirements for the design of safety systems for nuclear power plants are established in the Safety Requirements publication, Safety Standards Series No. NS-R-1 on Safety of Nuclear Power Plants: Design, which it supplements. This Safety Guide describes how the requirements for the design of the reactor coolant system (RCS) and associated systems in nuclear power plants should be met. 1.2. This publication is a revision and combination of two previous Safety Guides, Safety Series No. 50-SG-D6 on Ultimate Heat Sink and Directly Associated Heat Transport Systems for Nuclear Power Plants (1981), and Safety Series No. 50-SG-D13 on Reactor Coolant and Associated Systems in Nuclear Power Plants (1986), which are superseded by this new Safety Guide. 1.3. The revision takes account of developments in the design of the RCS and associated systems in nuclear power plants since the earlier Safety Guides were published in 1981 and 1986, respectively. The other objectives of the revision are to ensure consistency with Ref., issued in 2000, and to update the technical content. In addition, an appendix on pressurized heavy water reactors (PHWRs) has been included

  8. Consenting process for radiation facilities. V. 4

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  9. Consenting process for radiation facilities. V. 3

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  10. Consenting process for radiation facilities. V. 1

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  11. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    International Nuclear Information System (INIS)

    Ichikawa, M.

    1994-01-01

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs

  12. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, M [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1994-12-31

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs.

  13. Protection against internal fires and explosions in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. This Safety Guide supplements the requirements established in Safety of Nuclear Power Plants: Design. It supersedes Safety Series No. 50-SG-D2 (Rev. 1), Fire Protection in Nuclear Power Plants: A Safety Guide, issued in 1992.The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice

  14. Measuring safety culture: Application of the Hospital Survey on Patient Safety Culture to radiation therapy departments worldwide.

    Science.gov (United States)

    Leonard, Sarah; O'Donovan, Anita

    Minimizing errors and improving patient safety has gained prominence worldwide in high-risk disciplines such as radiation therapy. Patient safety culture has been identified as an important factor in reducing the incidence of adverse events and improving patient safety in the health care setting. The aim of distributing the Hospital Survey on Patient Safety Culture (HSPSC) to radiation therapy departments worldwide was to assess the current status of safety culture, identify areas for improvement and areas that excel, examine factors that influence safety culture, and raise staff awareness. The safety culture in radiation therapy departments worldwide was evaluated by distributing the HSPSC. A total of 266 participants were recruited from radiation therapy departments and included radiation oncologists, radiation therapists, physicists, and dosimetrists. The positive percent scores for the 12 dimensions of the HSPSC varied from 50% to 79%. The highest composite score among the 12 dimensions was teamwork within units; the lowest composite score was handoffs and transitions. The results indicated that health care professionals in radiation therapy departments felt positively toward patient safety. The HSPSC was successfully applied to radiation therapy departments and provided valuable insight into areas of potential improvement such as teamwork across units, staffing, and handoffs and transitions. Managers and policy makers in radiation therapy may use this assessment tool for focused improvement efforts toward patient safety culture. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  15. Storage of Spent Nuclear Fuel. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. The Safety Guide is not intended to cover the storage of spent fuel if this is part of the operation of a nuclear power plant or spent fuel reprocessing facility. Guidance is provided on all stages for spent fuel storage facilities, from planning through siting and design to operation and decommissioning, and in particular retrieval of spent fuel. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. Management system; 5. Safety case and safety assessment; 6. General safety considerations for storage of spent fuel. Appendix I: Specific safety considerations for wet or dry storage of spent fuel; Appendix II: Conditions for specific types of fuel and additional considerations; Annex: I: Short term and long term storage; Annex II: Operational and safety considerations for wet and dry spent fuel storage facilities; Annex III: Examples of sections of operating procedures for a spent fuel storage facility; Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex VI: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex VII: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  16. A Study on Enhancement of Understanding of Radiation and Safety Management

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations.

  17. A Study on Enhancement of Understanding of Radiation and Safety Management

    International Nuclear Information System (INIS)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung

    2014-01-01

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations

  18. A survey of radiation safety training among South African interventionalists

    Directory of Open Access Journals (Sweden)

    A Rose

    2018-04-01

    Full Text Available Background. Ionising radiation is increasingly being used in modern medicine for diagnostic, interventional and therapeutic purposes. There has been an improvement in technology, resulting in lower doses being emitted. However, an increase in the number of procedures has led to a greater cumulative dose for patients and operators, which places them at increased risk of the effects of ionising radiation. Radiation safety training is key to optimising medical practice.Objective. To present the perceptions of South African interventionalists on the radiation safety training they received and to offer insights into the importance of developing and promoting such training programmes for all interventionalists.Methods. In this cross-sectional study, we collected data from interventionalists (N=108 using a structured questionnaire.Results. All groups indicated that radiation exposure in the workplace is important (97.2%. Of the participants, the radiologists received the most training (65.7%. Some participants (44.1% thought that their radiation safety training was adequate. Most participants (95.4% indicated that radiation safety should be part of their training curriculum. Few (34.3% had received instruction on radiation safety when they commenced work. Only 62% had been trained on how to protect patients from ionising radiation exposure.Conclusion. Radiation safety training should be formalised in the curriculum of interventionalists’ training programmes, as this will assist in stimulating a culture of radiation protection, which in turn will improve patient safety and improve quality of care.

  19. IAEA safety guides in the light of recent developments in earthquake engineering

    International Nuclear Information System (INIS)

    Gurpinar, A.

    1988-11-01

    The IAEA safety guides 50-SG-S1 and 50-SG-S2 emphasize on the determination of the design basis earthquake ground motion and earthquake resistant design considerations for nuclear power plants, respectively. Since the elaboration of these safety guides years have elapsed and a review of some of these concepts is necessary, taking into account the information collected and the technical developments. In this article, topics within the scope of these safety guides are discussed. In particular, the results of some recent research which may have a bearing on the nuclear industry are highlighted. Conclusions and recommendations are presented. 6 fig., 19 refs. (F.M.)

  20. Radiation Safety Professional Certification Process in a Multi-Disciplinary Association

    International Nuclear Information System (INIS)

    Wilson, G.; Jones, P.; Ilson, R.

    2004-01-01

    There is no one set of criteria that defines the radiation safety professional in Canada. The many varied positions, from university and medical to industry and mining, define different qualifications to manage radiation safety programs. The national regulatory body has to assess many different qualifications when determining if an individual is acceptable to be approved for the role of radiation safety officer under any given licence. Some professional organizations specify education requirements and work experience as a prerequisite to certification. The education component specifies a degree of some type but does not identify specific courses or competencies within that degree. This could result in individuals with varying levels of radiation safety experience and training. The Canadian Radiation Protection Association (CRPA), responding to a need identified by the membership of the association, has initiated a process where the varying levels of knowledge of radiation safety can be addressed for radiation safety professionals. By identifying a core level set of radiation safety competencies, the basic level of radiation safety officer for smaller organizations can be met. By adding specialty areas, education can be pursued to define the more complex needs of larger organizations. This competency based process meets the needs of licensees who do not require highly trained health physicists in order to meet the licensing requirements and at the same time provides a stepping stone for those who wish to pursue a more specialized health physics option. (Author) 8 refs

  1. Dental Radiology I Student Guide [and Instructor Guide].

    Science.gov (United States)

    Fox Valley Technical Coll., Appleton, WI.

    The dental radiology student and instructor guides provide instruction in the following units: (1) x-ray physics; (2) x-ray production; (3) radiation health and safety; (4) radiographic anatomy and pathology; (5) darkroom setup and chemistry; (6) bisecting angle technique; (7) paralleling technique; (8) full mouth survey technique--composition and…

  2. Generic radiation safety design for SSRL synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C. [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)]. E-mail: james@slac.stanford.edu; Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)

    2006-12-15

    To allow for a conservative, simple, uniform, consistent, efficient radiation safety design for all SSRL beamlines, a generic approach has been developed, considering both synchrotron radiation (SR) and gas bremsstrahlung (GB) hazards. To develop the methodology and rules needed for generic beamline design, analytic models, the STAC8 code, and the FLUKA Monte Carlo code were used to pre-calculate sets of curves and tables that can be looked up for each beamline safety design. Conservative beam parameters and standard targets and geometries were used in the calculations. This paper presents the SPEAR3 beamline parameters that were considered in the design, the safety design considerations, and the main pre-calculated results that are needed for generic shielding design. In the end, the rules and practices for generic SSRL beamline design are summarized.

  3. Radiation safety systems at the NSLS

    International Nuclear Information System (INIS)

    Dickinson, T.

    1987-04-01

    This report describes design principles that were used to establish the radiation safety systems at the National Synchrotron Light Source. The author described existing safety systems and the history of partial system failures. 1 fig

  4. Towards an international regime on radiation and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2000-01-01

    The 1990s have seen the de facto emergence of what might be called an 'international regime on nuclear and radiation safety'. It may be construed to encompass three key elements: legally binding international undertakings among States; globally agreed international safety standards; and provisions for facilitating the application of those standards. While nuclear and radiation safety are national responsibilities, governments have long been interested in formulating harmonised approaches to radiation and nuclear safety. A principal mechanism for achieving harmonisation has been the establishment of internationally agreed safety standards and the promotion of their global application. The development of nuclear and radiation safety standards is a statutory function of the IAEA, which is unique in the United Nations system. The IAEA Statute expressly authorises the Agency 'to establish standards of safety' and 'to provide for the application of these standards'. As the following articles and supplement in this edition of the IAEA Bulletin point out, facilitating international conventions; developing safety standards; and providing mechanisms for their application are high priorities for the IAEA. (author)

  5. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    International Nuclear Information System (INIS)

    Yoon, Yong Su; Kim, Jung Min; Kim, Ji Hyun; Choi, In Seok; Sung, Dong Wook; Do, Kyung Hyun; Jung, Seung Eun; Kim, Hyung Soo

    2013-01-01

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012

  6. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Su; Kim, Jung Min; Kim, Ji Hyun; Choi, In Seok [Dept. of Radiologic Science, Korea University, Seoul (Korea, Republic of); Sung, Dong Wook [Dept. of Radiology, Kyunghee University Hospital, Seoul (Korea, Republic of); Do, Kyung Hyun [Dept. of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Jung, Seung Eun [Dept. of Radiology, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, Hyung Soo [Dept. of Radiation Safety, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2013-09-15

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012.

  7. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 32 of the Radiation Act (592/91) the Finnish Centre for Radiation and Nuclear Safety gives instructions concerning the monitoring of the radiation exposure and the application of the dose limits in Finland. The principles to be applied to calculating the equivalent and the effective doses are presented in the guide. Also the detailed instructions on the application of the maximum exposure values for the radiation work and for the natural radiation as well as the instructions on the monitoring of the exposures are given. Quantities and units for assessing radiation exposure are presented in the appendix of the guide

  8. Model Regulations for the Use of Radiation Sources and for the Management of the Associated Radioactive Waste. Supplement to IAEA Safety Standards Series No. GS-G-1.5

    International Nuclear Information System (INIS)

    2015-01-01

    IAEA Safety Standards Series No. GSR Part 1, Governmental, Legal and Regulatory Framework for Safety, requires that governments establish laws and statutes to make provisions for an effective governmental, legal and regulatory framework for safety. The framework for safety includes the establishment of a regulatory body. The regulatory body has the authority and responsibility for promulgating regulations, and for preparing their implementation. This publication provides advice on an appropriate set of regulations covering all aspects of the use of radiation sources and the safe management of the associated radioactive waste. The regulations provide the framework for the regulatory requirements and conditions to be incorporated into individual authorizations for the use of radiation sources in industry, medical facilities, research and education and agriculture. The regulations also establish criteria to be used for assessing compliance. This publication allows States to appraise the adequacy of their existing regulations and regulatory guides, and can be used as a reference for those States developing regulations for the first time. The regulations set out in this publication will need to be adapted to take account of local conditions, technical resources and the scale of facilities and activities in the State. The set of regulations in this publication is based on the requirements established in the IAEA safety standards series, in particular in IAEA Safety Standards Series No. GSR Part 3 (Interim), Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, in IAEA Safety Standards Series No. GSR Part 5, Predisposal Management of Radioactive Waste, and in IAEA Safety Standards Series No. SSR-5, Disposal of Radioactive Waste. They are also derived from the Code of Conduct of the Safety and Security of Radiation Sources and the Guidance on the Import and Export of Radioactive Sources. This publication allows States to appraise the

  9. Model Regulations for the Use of Radiation Sources and for the Management of the Associated Radioactive Waste. Supplement to IAEA Safety Standards Series No. GS-G-1.5

    International Nuclear Information System (INIS)

    2013-12-01

    IAEA Safety Standards Series No. GSR Part 1, Governmental, Legal and Regulatory Framework for Safety, requires that governments establish laws and statutes to make provisions for an effective governmental, legal and regulatory framework for safety. The framework for safety includes the establishment of a regulatory body. The regulatory body has the authority and responsibility for promulgating regulations, and for preparing their implementation. This publication provides advice on an appropriate set of regulations covering all aspects of the use of radiation sources and the safe management of the associated radioactive waste. The regulations provide the framework for the regulatory requirements and conditions to be incorporated into individual authorizations for the use of radiation sources in industry, medical facilities, research and education and agriculture. The regulations also establish criteria to be used for assessing compliance. This publication allows States to appraise the adequacy of their existing regulations and regulatory guides, and can be used as a reference for those States developing regulations for the first time. The regulations set out in this publication will need to be adapted to take account of local conditions, technical resources and the scale of facilities and activities in the State. The set of regulations in this publication is based on the requirements established in the IAEA safety standards series, in particular in IAEA Safety Standards Series No. GSR Part 3 (Interim), Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, in IAEA Safety Standards Series No. GSR Part 5, Predisposal Management of Radioactive Waste, and in IAEA Safety Standards Series No. SSR-5, Disposal of Radioactive Waste. They are also derived from the Code of Conduct of the Safety and Security of Radiation Sources and the Guidance on the Import and Export of Radioactive Sources. This publication allows States to appraise the

  10. New Radiation Safety Standards of the Russian Federation

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    2001-01-01

    Full text: The new Radiation Safety Standards of the Russian Federation are a first step in an implementation of the 1990 Recommendations of the ICRP into the existing national system of providing a radiation safety of the public. In new System the radiation source is examined as a source of harm and danger for the public. So the System shall include not only the measures for limitation of actual exposures, but also an assessment of efficiency of radiation protection in the practical activity, based on the analysis of a distribution of doses received and on the assessment of actions initiated to restrict the probability of potential exposures. The occupational and public exposure doses are only the indices of the quality of management of the source. In this System a radiation monitoring is a feedback for assessing the stability of the source and how it is controllable. It is a tool for predicting the levels of potential exposure and the relevant danger associated with the source. It is important to underline that the System of Providing a Radiation Safety is an interrelated system. None of its parts may be individually used. In particular, the mere conformity with dose limits is not yet a sufficient evidence of the successful operation of the safety system, because the normal exposure doses reflect only a source-related harm. The problems of implementation of this System of radiation protection and safety into the contemporary practice in the Russia is discussed. (author)

  11. A National Institute of Radiation Protection and Nuclear Safety?

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    The practice of radiation protection within Australia is fragmented on a number of different levels. Each state has its own radiation protection organisation. Within the Commonwealth there is also a large number of bodies which deal with different aspects of radiation protection or nuclear safety. There is also an interest in occupational radiation protection by Departments responsible for Occupational Health and Safety. It is estimated that this fragmentation affects the practice of radiation protection at a State level and also the role which Australia can play internationally. The establishment of a National Institute of Radiation Protection and Nuclear Safety is therefore proposed. Possible structures and organizational arrangements for such an institute are discussed. 4 refs., 4 tabs., 3 figs

  12. Challenges in strengthening radiation safety and security programme in Malaysia

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2010-01-01

    This paper illustrates the Malaysian experience in implementing steps in strengthening radiation safety and security through certification of radiation safety personnel, which is dedicated to meet the current and future needs in sustainability of radiation safety and security systems. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important in implementing the radiation safety policy efficiently. Through this effort, we are able to create a basis for adequate protection of workers, the public and the environment and encourage licensees to manage radiation safety and security based on performance, and not on compliance culture, with the final objective of professing a safety culture through self regulation. This will certainly benefit an organisation with ultimate goals are to continuously strive for a healthy, accident free and environmentally sound workplace and community, while providing the technical support needed to meet the national mission. This will strengthen the radiation safety and security programme and could be used to assist in manpower development once Malaysia makes the decision to embark on a nuclear power programme. (author)

  13. Management of a comprehensive radiation safety program in a major American University and affiliated academic medical center

    International Nuclear Information System (INIS)

    Yoshizumi, T.T.; Reiman, R.E.; Vylet, V.; Clapp, J.R.; Thomann, W.R.; Lyles, K.W.

    2000-01-01

    lectures, and instituting a seminar series. Progress made at the institutional level includes; (a) implementing training programs; (b) developing an in-house TLD program; (c) initiating in-house diagnostic x-ray machine testing for units outside the Radiology Department; (d) centralizing radioactive package distribution; (e) simplifying the radiation licensing application process; (f) implementing written lab operating procedures in individual labs; (g) developing radioactive package order and receipt software; (h) implementing special shielding design and radioiodine patient waste management projects. We conclude: (1) involvement of executive management is critical for radiation protection management in multidisciplinary institutions; (2) consultant review is useful in guiding management support of RSO initiatives; (3) increased visibility of the radiation safety program, through training sessions and grand rounds, increases cooperation from users and subsequently improves regulatory compliance; (4) radiation safety division quality assurance meetings help identify weaknesses and provide motivation for improvement; (5) a clear chain of authority is critical in program oversight; (6) open participation in division projects by staff members fosters an intellectually stimulating environment in the group; (7) participation of senior administrators from Occupational and Environmental Safety Office (OESO) in the radiation safety staff meetings helps maintain a professional working relationship between the Radiation Safety Officer and the Director of OESO. (author)

  14. Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)

    International Nuclear Information System (INIS)

    VINCENT, Andrew

    2005-01-01

    In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the

  15. INSAG's ongoing work on nuclear, radiation and waste safety

    International Nuclear Information System (INIS)

    Baer, A.J.

    1999-01-01

    The International Nuclear Safety Advisory Group (INSAG) is an advisory group to the Director General of the IAEA. It identifies current nuclear safety issues, draws conclusions from its analyses and gives advice on those issues. INSAG is currently working on four documents: a complete revision of INSAG-3, the classical paper on safety principles for nuclear plants, published in 1988; 'Safety Management', the effective system for the management of operational strategy; 'Safe Management of the Life Cycle of Nuclear Power Plants'; and the fourth document in preparation entitled 'The Safe Management of Sources of Radiation: Principles and Strategies'. The fourth document is aimed primarily at political decision makers who have no knowledge of radiation safety or of nuclear matters generally but are called upon to make important decisions in this field. INSAG has attempted to present them with a 'unified doctrine' of the management of all radiation sources, even though, for historical reasons radiation protection and nuclear safety have evolved largely independently of each other. The major conclusion to be drawn from the paper is that a systematic application of protection and safety principles, and of appropriate strategies, goes a long way towards ensuring the safe management of technologies involving radiation. Furthermore, the management of sources of radiation could benefit from the experience accumulated in other industries facing comparable challenges

  16. Guide for selection and calibration of dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the basis for selecting and calibrating dosimetry systems used to measure absorbed dose in gamma ray or X-ray fields and in electron beams used for radiation processing. It discusses the types of dosimetry systems that may be employed during calibration or on a routine basis as part of quality assurance in commercial radiation processing of products. This guide also discusses interpretation of absorbed dose and briefly outlines measurements of the uncertainties associated with the dosimetry. The details of the calibration of the analytical instrumentation are addressed in individual dosimetry system standard practices. The absorbed-dose range covered is up to 1 MGy (100 Mrad). Source energies covered are from 0.1 to 50 MeV photons and electrons. This guide should be used along with standard practices and guides for specific dosimetry systems and applications covered in other standards. Dosimetry for radiation processing with neutrons or heavy charged particles is not covered in this guide

  17. Radiation protection and safety in industrial radiography

    International Nuclear Information System (INIS)

    1999-01-01

    The use of ionizing radiation, particularly in medicine and industry, is growing throughout the world, with further expansion likely as technical developments result from research. One of the longest established applications of ionizing radiation is industrial radiography, which uses both X radiation and gamma radiation to investigate the integrity of equipment and structures. Industrial radiography is widespread in almost all Member States. It is indispensable to the quality assurance required in modern engineering practice and features in the work of multinational companies and small businesses alike. Industrial radiography is extremely versatile. The equipment required is relatively inexpensive and simple to operate. It may be highly portable and capable of being operated by a single worker in a wide range of different conditions, such as at remote construction sites, offshore locations and cross-country pipelines as well as in complex fabrication facilities. The associated hazards demand that safe working practices be developed in order to minimize the potential exposure of radiographers and other persons who may be in the vicinity of the work. The use of shielded enclosures (fixed facilities), with effective safety devices, significantly reduces any radiation exposures arising from the work. This Safety Report summarizes good and current state of the art practices in industrial radiography and provides technical advice on radiation protection and safety. It contains information for Regulatory Authorities, operating organizations, workers, equipment manufacturers and client organizations, with the intention of explaining their responsibilities and means to enhance radiation protection and safety in industrial radiography

  18. Survey and analysis of radiation safety management systems at medical institutions. Initial report. Radiation protection supervisor, radiation safety organization, and education and training

    International Nuclear Information System (INIS)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2005-01-01

    In this study, a questionnaire survey was carried out to determine the actual situation of radiation safety management systems in Japanese medical institutions with nuclear medicine facilities. The questionnaire consisted of questions concerning the Radiation Protection Supervisor license, safety management organizations, and problems related to education and training in safety management. Analysis was conducted according to region, type of establishment, and number of beds. The overall response rate was 60%, and no significant difference in response rate was found among regions. Medical institutions that performed nuclear medicine practices without a radiologist participating accounted for 10% of the total. Medical institutions where nurses gave patients intravenous injections of radiopharmaceuticals as part of the nuclear medicine practices accounted for 28% of the total. Of these medical institutions, 59% provided education and training in safety management for nurses. The rate of acquisition of Radiation Protection Supervisor licenses was approximately 70% for radiological technologists and approximately 20% for physicians (regional difference, p=0.02). The rate of medical institutions with safety management organizations was 71% of the total. Among the medical institutions (n=208) without safety management organizations, approximately 56% had 300 beds or fewer. In addition, it became clear that 35% of quasi-public organizations and 44% of private organizations did not provide education and training in safety management (p<0.001, according to establishment). (author)

  19. The international standard for protection from ionizing radiation and safety of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1995-06-01

    This document is a review in hebrew of the new 1994 international standard of the IAEA. The new standard title is `Basic safety standards for radiation protection and for the safety of radiation sources`, which were published in the ICRP Pub. 9.

  20. Countermeasures that work : a highway safety countermeasure guide for state highway safety offices : eighth edition : 2015

    Science.gov (United States)

    2015-11-01

    The guide is a basic reference to assist State Highway Safety Offices in selecting effective, evidence- based : countermeasures for traffic safety problem areas. These areas include: : - Alcohol-and Drug-Impaired Driving; : - Seat Belts and Child Res...

  1. Radiation safety and radiation protection problems on the TESLA Accelerator Installation

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.; Orlic, M.

    1997-01-01

    As we can see from the examples of many accelerator facilities installed throughout the world with ion beam energy, mass and charge characteristics and design similar to the TESLA Accelerator Installation, there is a great diversity among them, and each radiation protection and safety programme must be designed to facilitate the safe and effective operation of the accelerator according to the needs of the operating installation. Although there is no standard radiation protection and safety organization suitable for all institutions, experience suggests some general principles that should be integrated with all the disciplines involved in a comprehensive safety programme. (author)

  2. Guide for dosimetry in radiation research on food and agricultural products

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the minimum requirements for dosimetry and absorbed-dose validation needed to conduct research on the irradiation of food and agricultural products. Such research includes establishment of the quantitative relationship between the absorbed dose and the relevant effects in these products. This guide also describes the overall need for dosimetry in such research, and in reporting of the results. This guide is intended for use by research scientists in the food and agricultural communities, and not just scientists conducting irradiation research. It, therefore, includes more tutorial information than most other ASTM and ISO/ASTM dosimetry standards for radiation processing. This guide is in no way intended to limit the flexibility of the experimenter in the experimental design. However, the radiation source and experimental set up should be chosen such that the results of the experiment will be beneficial and understandable to other scientists, regulatory agencies, and the food and agricultural communities. The effects produced by ionizing radiation in biological systems depend on a large number of factors which may be physical, physiological, or chemical. Although not treated in detail in this guide, quantitative data of environmental factors that may affect the absorbed-dose response of dosimeters, such as temperature and moisture content in the food or agricultural products should be reported. The overall uncertainty in the absorbed-dose measurement and the inherent absorbed-dose range within the specimen should be taken into account in the design of an experiment. The guide covers research conducted using the following types of ionizing radiation: gamma rays, bremsstrahlung X-rays, and electron beams. This guide does not include other aspects of radiation processing research, such as planning of the experimental design. Dosimetry must be considered as an integral part of the experimental design. The guide does not include dosimetry for irradiator

  3. Safety design guides for grouping and separation for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for grouping and separation describes the philosophy of physical and functional separation for systems, structures and components in CANDU 9 plants and provides the requirements for the implementation of the philosophy in the detailed plant design. The separation of the safety systems is to ensure that common cause events and functional interconnections between systems do not impair the capability to perform the required safety functions for accident conditions. The separation requirements are also applied to the design by grouping the plant systems into two basic groups. Group 1 includes the power production systems and Group 2 includes the safety related systems required for the mitigation of serious process failure. The Group 2 is further separated into subgroups to ensure that events that could cause failure of a special safety system in one subgroup can be mitigated by the other subgroup. The change status for the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 2 tabs., 6 figs. (Author) .new

  4. Safety design guides for grouping and separation for CANDU 9

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Wright, A C.D. [Atomic Energy of Canada Ltd., Toronto (Canada)

    1996-03-01

    This safety design guide for grouping and separation describes the philosophy of physical and functional separation for systems, structures and components in CANDU 9 plants and provides the requirements for the implementation of the philosophy in the detailed plant design. The separation of the safety systems is to ensure that common cause events and functional interconnections between systems do not impair the capability to perform the required safety functions for accident conditions. The separation requirements are also applied to the design by grouping the plant systems into two basic groups. Group 1 includes the power production systems and Group 2 includes the safety related systems required for the mitigation of serious process failure. The Group 2 is further separated into subgroups to ensure that events that could cause failure of a special safety system in one subgroup can be mitigated by the other subgroup. The change status for the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 2 tabs., 6 figs. (Author) .new.

  5. Ionising radiation: a guide to the Regulations

    International Nuclear Information System (INIS)

    Hughes, Donald.

    1986-01-01

    The author explains the basic requirements on health and safety personnel in relation to the Ionising Radiations Regulations 1985. The outline paper is presented under the following headings: Dose assessment, Interpretation and general regulations 1-5, Dose limitation regulations 6 and 7, Regulation of work - regulations 8-12, Dosimetry and medical surveillance - regulations 13-17, summary of records to be kept, entry to controlled areas, Control of radioactive substances -regulations 18-23, Monitoring of radiation regulation 24, Assessments and notifications - regulations 25-31, Safety of articles and equipment - regulations 32-34, Other guidance. (U.K.)

  6. Radiation safety and protection on the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Bogorad, V.I.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Litvinskaya, T.V.; Slepchenko, A.Yu.

    2008-01-01

    The main issues of the radiation safety and protection provision on the nuclear power plants are considered in this monograph. The description of the basic sources of the radiation danger on NPPs, the principles, the methods and the means of the safety and radiation monitoring provision are shown. The special attention is paid to the issues of the ionizing radiation regulation

  7. Nuclear safety and radiation protection in France in 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The first part of this voluminous report describe the different ASN (Nuclear Safety Authority) actions: nuclear activities (ionising radiation and health and environmental risks), principles and stakeholders in nuclear safety regulation, radiation protection and protection of the environment, regulation, regulation of nuclear activities and exposure to ionizing radiation, radiological emergencies, public information and transparency, international relations. It also gives an overview of nuclear safety and radiation protection activities in the different French regions. The second part addresses activities regulated by the ASN: medical uses of ionizing radiation, non-medical uses of ionizing radiation, transport of radioactive materials, nuclear power plants, nuclear fuel cycle installations, nuclear research facilities and various nuclear installations, safe decommissioning of basic nuclear installations, radioactive waste and contaminated sites and soils

  8. Education of radiation safety specialists at Faculty of Medicine of Vilnius University

    International Nuclear Information System (INIS)

    Urbelis, A.; Surkiene, G.

    2004-01-01

    Vilnius University is the first institution of higher education in Lithuania that began to teach students on radiation safety. The special course of radiation hygiene was delivered to students in 1962-1992. In 1992 it was introduced residency of radiation hygiene and graduated students qualified for title of radiation hygiene specialist. The residency lasted one year and included six cycles: fundamentals of nuclear physics, statistics and noninfectious epidemiology, radiobiology, radiological research methods, controls of radiation safety and hygienic analysis of radiation safety. From 1994 Vilnius University has been educating and training professionals of public health. The specialists of radiation safety aren't been training as isolated branch. All courses is divided into two parts. The first one is included into bachelor, the second part - into master study. The bachelor study consists of 2 credits (16 hours for lectures and 32 hours for practical studies). The future bachelors study introduction of radiation safety, elements of nuclear physics, dose limit values, fundamentals of radiological protection, natural radiation. The master study consists of 2 credits (8 hours for lectures and 48 hours for practical studies). The future masters study specific problems of radiation safety in medicine and industry, the safety problems of nuclear power - stations, the problems of radioactive wastes, radiation biology, radiation risk. Radiation safety study model in Faculty of medicine of Vilnius University differs from study model in most European countries as it makes great play of radiation safety while usual model includes radiation safety as insignificant part of environmental health. (author)

  9. Construction for Nuclear Installations. Specific Safety Guide

    International Nuclear Information System (INIS)

    2015-01-01

    This Safety Guide provides recommendations and guidance based on international good practices in the construction of nuclear installations, which will enable construction to proceed with high quality. It can be applied to support the development, implementation and assessment of construction methods and procedures and the identification of good practices for ensuring the quality of the construction to meet the design intent and ensure safety. It will be a useful tool for regulatory bodies, licensees and new entrant countries for nuclear power plants and other nuclear installations

  10. Radiation resistivity of pure silica core image guides for industrial fiberscopes

    International Nuclear Information System (INIS)

    Okamoto, Shinichi; Ohnishi, Tokuhiro; Kanazawa, Tamotsu; Tsuji, Yukio; Hayami, Hiroyuki; Ishitani, Tadayoshi; Akutsu, Takeji; Suzuki, Koichi.

    1991-01-01

    Industrial fiberscopes incorporating pure silica core image guides have been extensively used for remote visual inspection in radiation fields including nuclear power plants, owing to their superior radiation resistivity. The authors have been intensively conducting R and D on improving radiation resistivity of pure silica core image guides. This paper reports the results of experiments to compare the effects of core materials on radiation resistivity and to investigate the dependence of radiation resistivity on total dose, does rate, and support pipe material. The results confirmed the superior radiation resistivity of the core material containing fluorine at any irradiation condition and indicated the existence of a critical dose rate at which radiation-induced deterioration was stabilized. No difference in radiation resistivity attributable to support layer material was observed. (author)

  11. Progress report: 1996 Radiation Safety Systems Division

    International Nuclear Information System (INIS)

    Bhagwat, A.M.; Sharma, D.N.; Abani, M.C.; Mehta, S.K.

    1997-01-01

    The activities of Radiation Safety Systems Division include (i) development of specialised monitoring systems and radiation safety information network, (ii) radiation hazards control at the nuclear fuel cycle facilities, the radioisotope programmes at Bhabha Atomic Research Centre (BARC) and for the accelerators programme at BARC and Centre for Advanced Technology (CAT), Indore. The systems on which development and upgradation work was carried out during the year included aerial gamma spectrometer, automated environment monitor using railway network, radioisotope package monitor and air monitors for tritium and alpha active aerosols. Other R and D efforts at the division included assessment of risk for radiation exposures and evaluation of ICRP 60 recommendations in the Indian context, shielding evaluation and dosimetry for the new upcoming accelerator facilities and solid state nuclear track detector techniques for neutron measurements. The expertise of the divisional members was provided for 36 safety committees of BARC and Atomic Energy Regulatory Board (AERB). Twenty three publications were brought out during the year 1996. (author)

  12. Radiation safety in nuclear industry in retrospect and perspective

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1993-01-01

    More than 30 years have passed since the starting up of nuclear industry in China from the early 1950's. Over the past 30-odd years, nuclear industry has always kept a good record in China thanks to the policy of 'quality first, safety first' clearly put forward for nuclear industry from the outset and a lot of suitable effective measures taken over that period. Internationally, there is rapid progress in radiation protection and nuclear safety (hereafter refereed to as radiation safety) and a number of new concepts in the field of radiation protection have been advanced. Nuclear industry is developing based on the international standardization. To ensure the further development of nuclear utility, radiation safety needs to be further strengthened

  13. Towards a radiation safety culture at Universidad Nacional de Colombia

    International Nuclear Information System (INIS)

    Poveda, Jairo F.; Munera, Hector A.

    2008-01-01

    Full text: During the 20th century, nuclear and radiation techniques for research, teaching, and medical and engineering practice slowly appeared at the National University of Colombia, mainly at the Bogota, Medellin and Manizales branches. Each individual laboratory or researcher obtained the license for the use of the radioactive source, or radiation emitting apparatus. However, the University as a whole does not have as yet a Radiation Safety Manual, nor an inventory of laboratories using radiation. From the viewpoint of radiation safety and culture, this situation is undesirable, and may easily lead to inappropriate waste management practices, including the possibility of orphan sources (one such source has been already found). As part of the program of environmental management of dangerous wastes promoted by the National Division of Laboratories of our University, an office of radiation safety was created in the year 2006. This paper describes the situation that was found, the activities that have been carried out, some of the difficulties that we have met, and the plans that we have to help shape a safety culture at our institution. Currently we are pursuing an inventory of laboratories using radioactive sources and radiation emitting apparatuses, starting with the branches in Bogota and Manizales which are perceived as the most urgent to deal with. Fortunately, the branch in Medellin has been for about a decade under the care of a former radiation safety officer of our national Institute of Nuclear Affairs, who presently teaches there. During 2006 and 2007, 13 laboratories using radioactive sources were visited in the Bogota branch. Safety procedures and waste handling protocols were checked, safety manuals prepared and/or revised, and recommendations for safety culture provided. During 2008 we will visit Manizales, and will continue visiting a number of X-ray machines used in the Bogota branch for engineering, veterinary, and diagnostic, and surgery medical

  14. Recruitment, qualification and training of personnel for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this Safety Guide is to outline the various factors that should to be considered in order to ensure that the operating organization has a sufficient number of qualified personnel for safe operation of a nuclear power plant. In particular, the objective of this publication is to provide general recommendations on the recruitment and selection of plant personnel and on the training and qualification practices that have been adopted in the nuclear industry since the predecessor Safety Guide was published in 1991. In addition, this Safety Guide seeks to establish a framework for ensuring that all managers and staff employed at a nuclear power plant demonstrate their commitment to the management of safety to high professional standards. This Safety Guide deals specifically with those aspects of qualification and training that are important to the safe operation of nuclear power plants. It provides recommendations on the recruitment, selection, qualification, training and authorization of plant personnel. That is, of all personnel in all safety related functions and at all levels of the plant. Some parts or all of this Safety Guide may also be used, with due adaptation, as a guide to the recruitment, selection, training and qualification of staff for other nuclear installations (such as research reactors or nuclear fuel cycle facilities). Section 2 gives guidance on the recruitment and selection of suitable personnel for a nuclear power plant. Section 3 gives guidance on the establishment of personnel qualification, explains the relationship between qualification and competence, and identifies how competence may be developed through education, experience and training. Section 4 deals with general aspects of the training policy for nuclear power plant personnel: the systematic approach, training settings and methods, initial and continuing training, and the keeping of training records. Section 5 provides guidance on the main aspects of training programmes

  15. Recruitment, qualification and training of personnel for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this Safety Guide is to outline the various factors that should to be considered in order to ensure that the operating organization has a sufficient number of qualified personnel for safe operation of a nuclear power plant. In particular, the objective of this publication is to provide general recommendations on the recruitment and selection of plant personnel and on the training and qualification practices that have been adopted in the nuclear industry since the predecessor Safety Guide was published in 1991. In addition, this Safety Guide seeks to establish a framework for ensuring that all managers and staff employed at a nuclear power plant demonstrate their commitment to the management of safety to high professional standards. This Safety Guide deals specifically with those aspects of qualification and training that are important to the safe operation of nuclear power plants. It provides recommendations on the recruitment, selection, qualification, training and authorization of plant personnel; that is, of all personnel in all safety related functions and at all levels of the plant. Some parts or all of this Safety Guide may also be used, with due adaptation, as a guide to the recruitment, selection, training and qualification of staff for other nuclear installations (such as research reactors or nuclear fuel cycle facilities). Section 2 gives guidance on the recruitment and selection of suitable personnel for a nuclear power plant. Section 3 gives guidance on the establishment of personnel qualification, explains the relationship between qualification and competence, and identifies how competence may be developed through education, experience and training. Section 4 deals with general aspects of the training policy for nuclear power plant personnel: the systematic approach, training settings and methods, initial and continuing training, and the keeping of training records. Section 5 provides guidance on the main aspects of training programmes

  16. An introduction to a new IAEA safety guide: 'ageing management for nuclear power plants'

    International Nuclear Information System (INIS)

    Pachner, J.; Inagaki, T.; Kang, K.S.

    2008-01-01

    This paper reports on a new IAEA Safety Guide entitled 'Ageing Management for Nuclear Power Plants' which is currently in an advanced draft form, awaiting approval of publication. The new Safety Guide will be an umbrella document for a comprehensive set of guidance documents on ageing management which have been issued by the IAEA. The Safety Guide first presents basic concepts of ageing management as a common basis for the recommendations on: proactive management of ageing throughout the life cycle of a nuclear power plant (NPP); systematic approach to managing ageing in the operation of NPPs; managing obsolescence; and review of ageing management for long term operation (life extension). The Safety Guide is intended to assist operators in establishing, implementing and improving systematic ageing management programs in NPPs and may be used by regulators in preparing regulatory standards and guides, and in verifying that ageing in nuclear power plants is being effectively managed. (author)

  17. Radiation safety and inventory of sealed radiation sources in Pakistan

    International Nuclear Information System (INIS)

    Ali, M.; Mannan, A.

    2001-01-01

    Sealed radiation sources (SRS) of various types and activities are widely used in industry, medicine, agriculture, research and teaching in Pakistan. The proper maintenance of records of SRS is mandatory for users/licensees. Since 1956, more than 2000 radiation sources of different isotopes having activities of Bq to TBq have been imported. Of these, several hundred sources have been disposed of and some have been exported/returned to the suppliers. To ensure the safety and security of the sources and to control and regulate the safe use of radiation sources in various disciplines, the Directorate of Nuclear Safety and Radiation Protection (DNSRP), the implementing arm of the regulatory authority in the country, has introduced a system for notifying, registering and licensing the use of all types of SRS. In order to update the inventory of SRS used throughout the country, the DNSRP has developed a database. (author)

  18. Current External Beam Radiation Therapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Liu, Chihray; Li, Jonathan G.

    2008-01-01

    The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this 'one-size-fits-all' prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes

  19. Radiation safety and control

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Kim, Gi Sub.

    1996-12-01

    The principal objective of radiological safety control is intended for achievement and maintenance of appropriately safe condition in environmental control for activities involving exposure from the use of radiation. In order to establish these objective, we should be to prevent deterministic effects and to limit the occurrence stochastic effects to level deemed to be acceptable by the application of general principles of radiation protection and systems of dose limitation based on ICRP recommendations. (author). 22 tabs., 13 figs., 11 refs

  20. Security of radioactive sources in radiation facilities

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and safety standards are formulated on the basis of internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides and guidelines elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Board before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. In India, radiation sources are being widely used for societal benefits in industry, medical practices, research, training and agriculture. It has been reported from all over the world that unsecured radioactive sources caused serious radiological accidents involving radiation injuries and fatalities. Particular concern was expressed regarding radioactive sources that have become orphaned (not under regulatory control) or vulnerable (under weak regulatory control and about to be orphaned). There is a concern about safety and security of radioactive sources and hence the need of stringent regulatory control over the handling of the sources and their security. In view of this, this guide is prepared which gives provisions necessary to safeguard radiation installations against theft of radioactive sources and other malevolent acts that may result in radiological consequences. It is, therefore, required that the radiation sources are used safely and managed securely by only authorised personnel. This guide is intended to be used by users of radiation sources in developing the necessary security plan for

  1. Ordinance on the Implementation of Atomic Safety and Radiation Protection

    International Nuclear Information System (INIS)

    1984-01-01

    In execution of the new Atomic Energy Act the Ordinance on the Implementation of Atomic Safety and Radiation Protection was put into force on 1 February 1985. It takes into account all forms of peaceful nuclear energy and ionizing radiation uses in nuclear installations, irradiation facilities and devices in research, industries, and health services, and in radioactive isotope production and laboratories. It covers all aspects of safety and protection and defines atomic safety as nuclear safety and nuclear safeguards and physical protection of nuclear materials and facilities, whereas radiation protection includes the total of requirements, measures, means and methods necessary to protect man and the environment from the detrimental effects of ionizing radiation. It has been based on ICRP Recommendation No. 26 and the IAEA's Basic Safety Standards and supersedes the Radiation Protection Ordinance of 1969

  2. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite

    International Nuclear Information System (INIS)

    Sheyn, David D.; Racadio, John M.; Patel, Manish N.; Racadio, Judy M.; Johnson, Neil D.; Ying, Jun

    2008-01-01

    The use of ionizing radiation is essential for diagnostic and therapeutic imaging in the interventional radiology (IR) suite. As the complexity of procedures increases, radiation exposure risk increases. We believed that reinforcing staff education and awareness would help optimize radiation safety. To evaluate the effect of a radiation safety education initiative on IR staff radiation safety practices and patient radiation exposure. After each fluoroscopic procedure performed in the IR suite during a 4-month period, dose-area product (DAP), fluoroscopy time, and use of shielding equipment (leaded eyeglasses and hanging lead shield) by IR physicians were recorded. A lecture and article were then given to IR physicians and technologists that reviewed ALARA principles for optimizing radiation dose. During the following 4 months, those same parameters were recorded after each procedure. Before education 432 procedures were performed and after education 616 procedures were performed. Physician use of leaded eyeglasses and hanging shield increased significantly after education. DAP and fluoroscopy time decreased significantly for uncomplicated peripherally inserted central catheters (PICC) procedures and non-PICC procedures after education, but did not change for complicated PICC procedures. Staff radiation safety education can improve IR radiation safety practices and thus decrease exposure to radiation of both staff and patients. (orig.)

  3. A management system integrating radiation protection and safety supporting safety culture in the hospital

    International Nuclear Information System (INIS)

    Almen, A.; Lundh, C.

    2015-01-01

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. (authors)

  4. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  5. Review and assessment of nuclear facilities by the regulatory body. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this Safety Guide is to provide recommendations for regulatory bodies on reviewing and assessing the various safety related submissions made by the operator of a nuclear facility at different stages (siting, design, construction, commissioning, operation and decommissioning or closure) in the facility's lifetime to determine whether the facility complies with the applicable safety objectives and requirements. This Safety Guide covers the review and assessment of submissions in relation to the safety of nuclear facilities such as: enrichment and fuel manufacturing plants. Nuclear power plants. Other reactors such as research reactors and critical assemblies. Spent fuel reprocessing plants. And facilities for radioactive waste management, such as treatment, storage and disposal facilities. This Safety Guide also covers issues relating to the decommissioning of nuclear facilities, the closure of waste disposal facilities and site rehabilitation. Objectives, management, planning and organizational matters relating to the review and assessment process are presented in Section 2. Section 3 deals with the bases for decision making and conduct of the review and assessment process. Section 4 covers aspects relating to the assessment of this process. The Appendix provides a generic list of topics to be covered in the review and assessment process

  6. The safety of radiation sources and radioactive materials in China

    International Nuclear Information System (INIS)

    Liu, H.

    2001-01-01

    The report describes the present infrastructure for the safety of radiation sources in China, where applications of radiation sources have become more and more widespread in the past years. In particular, it refers to the main functions of the National Nuclear Safety Administration of the State Environmental Protection Administration (SEPA), which is acting as the regulatory body for nuclear and radiation safety at nuclear installations, the Ministry of Public Health which issues licences for the use of radiation sources, and the Ministry of Public Security, which deals with the security of radiation sources. The report also refers to the main requirements of the existing regulatory system for radiation safety, i.e. the basic dose limits for radiation workers and the public, the licensing system for nuclear installations and for radioisotope-based and other irradiation devices, and the environmental impact assessment system. Information on the nationwide survey of radiation sources carried out by SEPA in 1991 is provided, and on some accidents that occurred in China due to loss of control of radiation sources and errors in the operation of irradiation facilities. (author)

  7. Safety critical systems handbook a straightforward guide to functional safety : IEC 61508 (2010 edition) and related standards

    CERN Document Server

    Smith, David J

    2010-01-01

    Electrical, electronic and programmable electronic systems increasingly carry out safety functions to guard workers and the public against injury or death and the environment against pollution. The international functional safety standard IEC 61508 was revised in 2010, and this is the first comprehensive guide available to the revised standard. As functional safety is applicable to many industries, this book will have a wide readership beyond the chemical and process sector, including oil and gas, power generation, nuclear, aircraft, and automotive industries, plus project, instrumentation, design, and control engineers. * The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards* Helps readers understand the process required to apply safety critical systems standards* Real-world approach helps users to interpret the standard, with case studies and best practice design examples...

  8. Safety of natural radiation exposure. A meta-analysis of epidemiological studies on natural radiation

    International Nuclear Information System (INIS)

    Osaki, S.

    2000-01-01

    People have been exposed every time and everywhere to natural radiation and ''intuitively'' know the safety of this radiation exposure. On the other hand the theory of no threshold value on radiological carcinogenesis is known widely, and many people feel danger with even a smallest dose of radiation exposure. The safety of natural radiation exposure can be used for the risk communication with the public. For this communication, the safety of natural radiation exposure should be proved ''scientifically''. Safety is often discussed scientifically as the risks of the mortality from many practices, and the absolute risks of safe practices on the public are 1E-5 to 1E-6. The risks based on the difference of natural radiation exposure on carcinogenesis have been analyzed by epidemiological studies. Much of the epidemiological studies have been focused on the relationship between radiation doses and cancer mortalities, and their results have been described as relative risks or correlation factors. In respect to the safety, however, absolute risks are necessary for the discussion. Cancer mortalities depend not only on radiation exposure, but also on ethnic groups, sexes, ages, social classes, foods, smoking, environmental chemicals, medical radiation, etc. In order to control these confounding factors, the data are collected from restricted groups or/and localities, but any these ecological studies can not perfectly compensate the confounding factors. So positive or negative values of relative risks or the meaningful correlation factors can not be confirmed that their values are derived originally from the difference of their exposure doses. The absolute risks on these epidemiological studies are also affected by many factors containing radiation exposure. The absolute risk or the upper value of the confidence limit obtained from the epidemiological study which is well regulated confounding factors is possible to be a maximum risk on the difference of the exposure doses

  9. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    International Nuclear Information System (INIS)

    1999-01-01

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole

  10. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole

  11. Guide On Safety Tests

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-05-15

    This book tells US important things to do safety tests, which includes basic caution for experiment treatment of used materials such as ignition substance inflammables, explosive substance and toxic substance, handling of used equipment like inflammable device, machine, high pressure device, high pressure gas, and high energy device, first aid such as addiction by drug, flame, radiation exposure, and heart massage treatment of waste in laboratory like cautions on general treatment, handling of inorganic waste, organic waste and waste treatment with disposal facilities.

  12. Guide On Safety Tests

    International Nuclear Information System (INIS)

    1987-05-01

    This book tells US important things to do safety tests, which includes basic caution for experiment treatment of used materials such as ignition substance inflammables, explosive substance and toxic substance, handling of used equipment like inflammable device, machine, high pressure device, high pressure gas, and high energy device, first aid such as addiction by drug, flame, radiation exposure, and heart massage treatment of waste in laboratory like cautions on general treatment, handling of inorganic waste, organic waste and waste treatment with disposal facilities.

  13. Ionising radiation safety training in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1998-01-01

    Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation. However, most are designated as radiation protection officers as a secondary duty. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A Training Course, responding to these requirements, has been developed to emphasize, basic radiation theory and protection, operation of radiation monitors available in the ADO, an understanding of the Ionising Radiation Safety Manual, day-to-day radiation safety in units and establishments, and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved successful, both for the students and the ADO generally. To seek national accreditation of the course through the Australian National Training Authority, as a first step, competency standards have been proposed. (authors)

  14. Fire Safety. Managing School Facilities, Guide 6.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This booklet discusses how United Kingdom schools can manage fire safety and minimize the risk of fire. The guide examines what legislation school buildings must comply with and covers the major risks. It also describes training and evacuation procedures and provides guidance on fire precautions, alarm systems, fire fighting equipment, and escape…

  15. Radiation Protection, Safety and Security Issues in Ghana.

    Science.gov (United States)

    Boadu, Mary; Emi-Reynolds, Geoffrey; Amoako, Joseph Kwabena; Akrobortu, Emmanuel; Hasford, Francis

    2016-11-01

    Although the use of radioisotopes in Ghana began in 1952, the Radiation Protection Board of Ghana was established in 1993 and served as the national competent authority for authorization and inspection of practices and activities involving radiation sources until 2015. The law has been superseded by an Act of Parliament, Act 895 of 2015, mandating the Nuclear Regulatory Authority of Ghana to take charge of the regulation of radiation sources and their applications. The Radiation Protection Institute in Ghana provided technical support to the regulatory authority. Regulatory and service activities that were undertaken by the Institute include issuance of permits for handling of a radiation sources, authorization and inspection of radiation sources, radiation safety assessment, safety assessment of cellular signal towers, and calibration of radiation-emitting equipment. Practices and activities involving application of radiation are brought under regulatory control in the country through supervision by the national competent authority.

  16. Radiation protection and safety aspects in the use of radiation in medicine, industry and research

    International Nuclear Information System (INIS)

    Bhatt, B.C.

    1998-01-01

    While ionizing radiations have significant and indispensable uses in several fields, it must be borne in mind that it may be harmful to the radiation workers and public if used indiscriminately and without due caution. Radiation doses received by these individuals should be kept well within the recommended limits through good work practices. It is therefore necessary to ensure safety of radiation workers, patients undergoing radiation diagnosis and treatment, public and environment so that maximum benefit is derived from the use of radiation with minimum and acceptable risk. General principles of radiation protection and safety in various applications of radiations are discussed

  17. Radiation safety research information database

    International Nuclear Information System (INIS)

    Yukawa, Masae; Miyamoto, Kiriko; Takeda, Hiroshi; Kuroda, Noriko; Yamamoto, Kazuhiko

    2004-01-01

    National Institute of Radiological Sciences in Japan began to construct Radiation Safety Research Information Database' in 2001. The research information database is of great service to evaluate the effects of radiation on people by estimating exposure dose by determining radiation and radioactive matters in the environment. The above database (DB) consists of seven DB such as Nirs Air Borne Dust Survey DB, Nirs Environmental Tritium Survey DB, Nirs Environmental Carbon Survey DB, Environmental Radiation Levels, Abe, Metabolic Database for Assessment of Internal Dose, Graphs of Predicted Monitoring Data, and Nirs nuclear installation environment water tritium survey DB. Outline of DB and each DB are explained. (S.Y.)

  18. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Smyshliaiev, A.; Holubiev, V.; Makarovska, O.

    2001-01-01

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M 2 /sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  19. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  20. Sweden's Cooperation with Eastern Europe in Radiation Safety 2010

    International Nuclear Information System (INIS)

    Van Dassen, Lars; Andersson, Sarmite; Bejarano, Gabriela

    2011-09-01

    The Swedish Radiation Safety Authority implemented in 2010 cooperation projects in Russia, Ukraine, Georgia, Armenia, Lithuania and Moldova based on instructions from the Swedish Government and agreements with the European Union and the Swedish International Development Cooperation Agency, SIDA. The projects aim at achieving a net contribution to radiation safety (including nuclear safety, nuclear security and non-proliferation as well as radiation protection and emergency preparedness) for the benefit of the host country as well as Sweden. This report gives an overview of all the projects implemented in 2010

  1. Guide to the declaration procedure and coding system for criteria concerning significant events related to safety, radiation protection or the environment, applicable to basic nuclear installations and the transport of radioactive materials

    International Nuclear Information System (INIS)

    Lacoste, Andre-Claude

    2005-01-01

    This guide notably contains various forms associated with the declaration of significant events, and explanations to fill them in: significant event declaration form for a basic nuclear installation, significant event declaration form for radioactive material transport, significant event report for a basic nuclear installation, significant event report for radioactive material transport, declaration criteria for significant events related to the safety of non-PWR basic nuclear installations, declaration criteria for significant events related to PWR safety, significant events declared further to events resulting in group 1 unavailability and non-compliance with technical operating specifications, declaration criteria for significant events concerning radiation protection for basic nuclear installations, declaration criteria for significant events concerning environmental protection, applicable to basic nuclear installations, and declaration criteria for significant events concerning radioactive material transport

  2. The main goals and principles of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Huseynov, V.

    2015-01-01

    The use of modern radiation technology expands in various fields of human activity. The most advanced approach, methods and technologies and also radiation technologies are of great importance in industrial, medical, agricultural, construction, science, education, and etc. areas of the fastest growing Azerbaijan Republic. Ensuring of nuclear and radiation safety, safety standards, main principles and conception of safety play a crucial role. The following ten principles are taken as a basis to ensure safety measures. 1. Responsible for ensuring safety; 2. The role of government; 3. Leadership and management of security interests; 4. Devices and justification of activity; 5. Optimization of preservation; 6. Limiting of risks for physical persons; 7. The protection of present and future generations; 8. The prevention of accidents; 9. Emergency preparedness and response; 10. Reducing of risks of existing and unregulated radiation protection measures. The safety principles are applied together

  3. Radiation safety standards

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document with which all rules and regulations, etc., concerning protection from ionizing radiations of workers and the general population have to conform. Basic concepts, dimensions, units, and terms used in the area of radiation safety are defined. Radiation exposures are sorted out into three categories: A, to personnel; B, to individual members of the popul;tion; and C, to the general population. Critical organs, furthermore, comprise four groups, the first of them being applicable to the whole-body gonads and bone marrow. Category A maximum permissible dose (MPD) to first group critical organs is 5 rem/year; to second group, 15 rem/year; to thrid group, 3O rem/year; and to fourth group, 75 rem/year. These rate figures include doses from both external and internal radiation exposure. Quality factors needed in computing doses from various types of radiation are provided. Permissible planned exposure levels are specified and guidelines given for accidental exposures. A radiation accident is considered to have occurred if the relevant critical organ dose is 5 times the annual MPD for that organ. For individual members of the population (category B), annual somatic doses to first group critical organs shall not exceed 0,5 rem. Population exposure is controlled in terms of genetically significant dose, which shall not exceed 5 rem/30 years. (G.G.)

  4. Safety practices, perceptions, and behaviors in radiation oncology: A national survey of radiation therapists.

    Science.gov (United States)

    Woodhouse, Kristina Demas; Hashemi, David; Betcher, Kathryn; Doucette, Abigail; Weaver, Allison; Monzon, Brian; Rosenthal, Seth A; Vapiwala, Neha

    Radiation therapy is complex and demands high vigilance and precise coordination. Radiation therapists (RTTs) directly deliver radiation and are often the first to discover an error. Yet, few studies have examined the practices of RTTs regarding patient safety. We conducted a national survey to explore the perspectives of RTTs related to quality and safety. In 2016, an electronic survey was sent to a random sample of 1500 RTTs in the United States. The survey assessed department safety, error reporting, safety knowledge, and culture. Questions were multiple choice or recorded on a Likert scale. Results were summarized using descriptive statistics and analyzed using multivariate logistic regression. A total of 702 RTTs from 49 states (47% response rate) completed the survey. Respondents represented a broad distribution across practice settings. Most RTTs rated department patient safety as excellent (61%) or very good (32%), especially if they had an incident learning system (ILS) (odds ratio, 2.0). Only 21% reported using an ILS despite 58% reporting an accessible ILS in their department. RTTs felt errors were most likely to occur with longer shifts and poor multidisciplinary communication; 40% reported that burnout and anxiety negatively affected their ability to deliver care. Workplace bullying was also reported among 17%. Overall, there was interest (62%) in improving knowledge in patient safety. Although most RTTs reported excellent safety cultures within their facilities, overall, there was limited access to and utilization of ILSs by RTTs. Workplace issues identified may also represent barriers to delivering quality care. RTTs were also interested in additional resources regarding quality and safety. These results will further enhance safety initiatives and inform future innovative educational efforts in radiation oncology. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  5. Radiation dose associated with CT-guided drain placement for pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G. [University of North Carolina at Chapel Hill, Department of Radiology, UNC Health Care, Chapel Hill, NC (United States); Taylor, J.B. [University of North Carolina at Chapel Hill, Environment, Health and Safety, Chapel Hill, NC (United States)

    2017-05-15

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  6. Radiation dose associated with CT-guided drain placement for pediatric patients

    International Nuclear Information System (INIS)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G.; Taylor, J.B.

    2017-01-01

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  7. Review of radiation safety in the cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Johnson, L.W.; Moore, R.J.; Balter, S.

    1992-01-01

    With the increasing use of coronary arteriography and interventional procedures, radiation exposure to patients and personnel working in cardiac catheterization laboratories has increased. Proper technique to minimize both patient and operator exposure is necessary. A practical approach to radiation safety in the cardiac catheterization laboratory is presented. This discussion should be useful to facilities with well-established radiation safety programs as well as facilities that require restructuring to cope with the radiation environment in a modern cardiac catheterization laboratory

  8. Nonreactor nuclear facilities: standards and criteria guide

    International Nuclear Information System (INIS)

    Brynda, W.J.; Junker, L.; Karol, R.C.; Lobner, P.R.; Goldman, L.A.

    1981-09-01

    This guide is a source document that identifies standards, codes, and guides that address the nuclear safety considerations pertinent to nuclear facilities as defined in DOE Order 5480.1, Chapter V, Safety of Nuclear Facilities. The guidance and criteria provided are directed toward areas of safety usually addressed in a Safety Analysis Report. The areas of safety include, but are not limited to, siting, principal design criteria and safety system design guidelines, radiation protection, accident analysis, and quality assurance. The guide is divided into two sections: general guidelines and appendices. Those guidelines that are broadly applicable to most nuclear facilities are presented in the general guidelines. These general guidelines may have limited applicability to subsurface facilities such as waste repositories. Guidelines specific to the various types or categories of nuclear facilities are presented in the appendices. These facility-specific appendices provide guidelines and identify standards and criteria that should be considered in addition to, or in lieu of, the general guidelines

  9. Nonreactor nuclear facilities: Standards and criteria guide

    International Nuclear Information System (INIS)

    Brynda, W.J.; Scarlett, C.H.; Tanguay, G.E.; Lobner, P.R.

    1986-09-01

    This guide is a source document that identifies standards, codes, and guides that address the nuclear safety considerations pertinent to nuclear facilities as defined in DOE 5480.1A, Chapter V, ''Safety of Nuclear Facilities.'' The guidance and criteria provided is directed toward areas of safety usually addressed in a Safety Analysis Report. The areas of safety include, but are not limited to, siting, principal design criteria and safety system design guidelines, radiation protection, accident analysis, conduct of operations, and quality assurance. The guide is divided into two sections: general guidelines and appendices. Those guidelines that are broadly applicable to most nuclear facilities are presented in the general guidelines. Guidelines specific to the various types or categories of nuclear facilities are presented in the appendices. These facility-specific appendices provide guidelines and identify standards and criteria that should be considered in addition to, or in lieu of, the general guidelines. 25 figs., 62 tabs

  10. Design of the reactor coolant system and associated systems in nuclear power plants. Safety guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. The basic requirements for the design of safety systems for nuclear power plants are established in the Safety Requirements publication, Safety Standards Series No. NS-R-1 on Safety of Nuclear Power Plants: Design, which it supplements. This Safety Guide describes how the requirements for the design of the reactor coolant system (RCS) and associated systems in nuclear power plants should be met. This publication is a revision and combination of two previous Safety Guides, Safety Series No. 50-SG-D6 on Ultimate Heat Sink and Directly Associated Heat Transport Systems for Nuclear Power Plants (1982), and Safety Series No. 50-SG-D13 on Reactor Coolant and Associated Systems in Nuclear Power Plants (1987), which are superseded by this new Safety Guide. The revision takes account of developments in the design of the RCS and associated systems in nuclear power plants since the earlier Safety Guides were published in 1982 and 1987, respectively. The other objectives of the revision are to ensure consistency with Ref., issued in 2004, and to update the technical content. In addition, an appendix on pressurized heavy water reactors (PHWRs) has been included.

  11. Ukraine International cooperation in nuclear and radiation safety: public-administrative aspect

    Directory of Open Access Journals (Sweden)

    I. P. Krynychnay

    2017-03-01

    Full Text Available The article examines international cooperation of Ukraine with other States in the sphere of ensuring nuclear and radiation safety and highlights the main directions of development and improvement of nuclear and radiation safety in Ukraine based on international experience, with the aim of preventing the risks of accidents and contamination areas radiological substances. Illuminated that for more than half a century of experience in the use of nuclear energy by the international community under the auspices of the UN, IAEA and other international organizations initiated and monitored the implementation of key national and international programs on nuclear and radiation safety. Of the Convention in the field of nuclear safety and the related independent peer review, effective national regulatory infrastructures, current nuclear safety standards and policy documents, as well as mechanisms of evaluation in the framework of the IAEA constitute important prerequisites for the creation of a world community, the global regime of nuclear and radiation safety. For analysis of the state of international cooperation of Ukraine with other States in the sphere of nuclear and radiation safety, highlighted the legal substance of nuclear and radiation safety of Ukraine, which is enshrined in the domestic Law of Ukraine «On nuclear energy use and radiation safety». Considered the most relevant legal relations. It is established that, despite the current complex international instruments, existing domestic legislation on nuclear and radiation safety, partly there is a threat of emergency nuclear radiation nature, in connection with the failure of fixed rules and programs, lack of funding from the state is not always on time and in full allows you to perform fixed strategy for overcoming the consequences of radiation accidents, the prevention of the threat of environmental pollution. Found that to improve and further ensuring nuclear and radiation safety of

  12. Intervention criteria in a nuclear or radiation emergency

    International Nuclear Information System (INIS)

    1994-01-01

    In September 1993, the IAEA convened a Technical Committee Meeting on intervention and accidents. This technical committee modified the text and values from member states and international organizations, and combined them with the draft revision of Safety Series No. 72. This Safety Guide is the result of that process and represents an international understanding on the principles for intervention and numerical values for generic intervention levels. The recommendations of the present Safety Guide are the basis for the International Basic Safety Standards for Protection against Ionizing Radiations and for the Safety of Radiation Sources of the FAO, the IAEA, the International Labour Organisations, the Nuclear Energy Agency of the Organisation for Economic Cooperation and Development, the Pan American Health Organization and the WHO. Refs, figs and tabs

  13. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Janzekovic, H.; Vokal, B.; Krizman, M.

    2003-01-01

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  14. MO-AB-201-00: Radiation Safety Officer Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatory Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35

  15. MO-AB-201-00: Radiation Safety Officer Update

    International Nuclear Information System (INIS)

    2015-01-01

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatory Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35

  16. IAEA program for the preparation of safety codes and guides for nuclear power plants

    International Nuclear Information System (INIS)

    1975-01-01

    On the 13th of September, 1974, the IAEA Governors' Council has given its consent to the programme for the establishment of safety codes and guides (annex VII to IAEA document G.C. (XVIII/526)). The programme envisages the establishment of one code of practice for each of the issues governmental organization, siting, design, operation and quality assurance and also of about 50 safety guides between 1975 and 1980. These codes will contain the minimum requirements for the safety of the nuclear power stations, their systems and components. The guides will recommend methods to achieve the aims stated in the codes. It is the purpose of these IAEA activities to provide recommendations and guiding rules which may serve as standards for the assessment of the safety of nuclear power stations for all nations which may become participants in the peaceful use of nuclear energy within the next few years. (orig./AK) [de

  17. Ionising radiation safety training in the Australian defence organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1996-01-01

    Full text: Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation, while others may be designated as radiation protection officers in remote units with few duties to perform in this role. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A training course, responding to these requirements, has been developed to emphasise: basic radiation theory and protection; operation of radiation monitors available in the ADO; an understanding of the Safety Manual; day-to-day radiation safety in units and establishments; and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved sufficiently successful, both for the students and the ADO generally, to seek national accreditation through the Australian National Training Authority and, as a first step, competency standards have been identified

  18. Development approach on usage of radiation and inspection of QA according to the change of approval procedure of safety regulatory guides

    International Nuclear Information System (INIS)

    Oh, B. J.; Ahn, H. Z.; Kim, S. W.; Yoo, S. O.; Kang, S. C.; Yang, S. H.; Han, S. J.; Kim, H. S.; Kim, H. J.

    2002-01-01

    In accordance with 2001 amendment of the Atomic Energy Act(AEA), KINS also amended its internal 'Regulation on Implementation of Entrusted AEA-related Work'. Up to now the nuclear safety-specialized institute has used its internally developed guidelines in the safety regulation. From now on, however, the institute will enhance the objectivity and transparency by having the instruments approved by the Ministry of Science ad Technology. In this paper, we introduced the major points and directions to be considered to the development of the safety regulatory guides on Inspection for the quality assurance of the nuclear reactor facilities and the use of radioisotopes, and review and inspection for dosimeter reading

  19. Lean Six-Sigma in Aviation Safety: An implementation guide for measuring aviation system’s safety performance

    OpenAIRE

    Panagopoulos, I.; Atkin, C.J.; Sikora, I.

    2016-01-01

    The paper introduces a conceptual framework that could improve the safety performance measurement process and ultimately the aviation system safety performance. The framework provides an implementation guide on how organisations could design and develop a proactive, measurement tool for assessing and measuring the Acceptable Level of Safety Performance (ALoSP) at sigma (σ) level, a statistical measurement unit. In fact, the methodology adapts and combines quality management tools, a leading i...

  20. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    Oresegun, M.O.

    2000-01-01

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  1. Radiation safety and vascular access: attitudes among cardiologists worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Khan, Asrar A. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Xie, Hui [Division of Epidemiology and Biostatistics and Cancer Center, University of Illinois at Chicago, Chicago, Illinois (United States); Shroff, Adhir R. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States)

    2015-03-15

    Objectives: To determine opinions and perceptions of interventional cardiologists on the topic of radiation and vascular access choice. Background: Transradial approach for cardiac catheterization has been increasing in popularity worldwide. There is evidence that transradial access (TRA) may be associated with increasing radiation doses compared to transfemoral access (TFA). Methods: We distributed a questionnaire to collect opinions of interventional cardiologists around the world. Results: Interventional cardiologists (n = 5332) were contacted by email to complete an on-line survey from September to October 2013. The response rate was 20% (n = 1084). TRA was used in 54% of percutaneous coronary interventions (PCIs). Most TRAs (80%) were performed with right radial access (RRA). Interventionalists perceived that TRA was associated with higher radiation exposure compared to TFA and that RRA was associated with higher radiation exposure that left radial access (LRA). Older interventionalists were more likely to use radiation protection equipment and those who underwent radiation safety training gave more importance to ALARA (as low as reasonably achievable). Nearly half the respondents stated they would perform more TRA if the radiation exposure was similar to TFA. While interventionalists in the United States placed less importance to certain radiation protective equipment, European operators were more concerned with physician and patient radiation. Conclusions: Interventionalists worldwide reported higher perceived radiation doses with TRA compared to TFA and RRA compared to LRA. Efforts should be directed toward encouraging consistent radiation safety training. Major investment and application of novel radiation protection tools and radiation dose reduction strategies should be pursued. - Highlights: • We examined radiation safety and arterial access practices among 1000 cardiologists. • Radial access is perceived as having higher radiation dose compared to

  2. Conception and activity directions of journal ''Nuclear and radiation safety''

    International Nuclear Information System (INIS)

    Olena, M.; Volodymyr, S.

    2000-01-01

    In connection with the State Scientific and Technical Centre onr Nuclear and Radiation Safety (SSTC NRA) and Odessa State Polytechnic University the journal 'Nuclear and Radiation Safety' was established in 1998. In Ukraine many people are interested in nuclear energy problems. The accident in Chernobyl NPP unit 4 touches all Ukrainians and brings about strong and regular attention to nuclear and radiation safety of nuclear installations and nuclear technology, on the other side more than 50 per cent of electric power is produced in 5 NPPs and as following national power supply depends on stability of NPPs work. Main goals of the journal are: Support to Nuclear Regulatory Administration (NRA) of MEPNS of Ukraine, creation of information space for effective exchange of results of scientific, scientific and technical, scientific and analytical work in the field of Nuclear and Radiation Safety, assistance in integrated development of research for Nuclear and Radiation Safety by publication in a single issue of scientific articles, involvement of state scientific potential in resolving actual problems, participation in international collaboration in the framework of agreements, programs and plans. (orig.)

  3. Comparative study of Malaysian and Philippine regulatory infrastructures on radiation and nuclear safety with international standards

    International Nuclear Information System (INIS)

    Cayabo, Lynette B.

    2013-06-01

    This study presents the results of the critical reviews, analysis, and comparison of the regulatory infrastructures for radiation and nuclear safety of Malaysis and the Philippines usi ng the IAEA safety requirements, GSR Part 1, G overnment, Legal and Regulatory Framework for Safety'' as the main basis and in part, the GSR Part 3, R adiation Protection and Safety of Radiation Sources: International Basic Safety Standards . The scope of the comparison includes the elements of the relevant legislations, the regulatory system and processes including the core functions of the regulatory body (authorization, review and assessment, inspection and enforcement, development of regulations and guides); and the staffing and training of regulatory body. The respective availabe data of the Malaysian and Philippine regulatory infrastructures and current practices were gathered and analyzed. Recommendations to fill the gaps and strengthen the existing regulatory infrastructure of each country was given using as bases relevant IAEA safety guides. Based on the analysis made, the main findings are: the legislations of both countries do not contain al the elements of teh national policy and strategy for safety as well as those of teh framework for safety in GR Part I. Among the provision that need to be included in the legislations are: emergency planning and response; decommissioning of facilities safe management of radioactive wastes and spent fuel; competence for safety; and technical sevices. Provisions on coordination of different authorities with safety responsibilities within the regulatory framework for safety as well as liaison with advisory bodies and support organizations need to be enhanced. The Philippines needs to establish an independent regulatory body, ie. separate from organizations charged with promotion of nuclear technologies and responsible for facilitiesand activities. Graded approach on the system of notification and authorization by registration and

  4. Radiation Protection, Nuclear Safety and Security

    International Nuclear Information System (INIS)

    Faye, Ndeye Arame Boye; Ndao, Ababacar Sadikhe; Tall, Moustapha Sadibou

    2014-01-01

    Senegal has put in place a regulatory framework which allows to frame legally the use of radioactive sources. A regulatory authority has been established to ensure its application. It is in the process of carrying out its regulatory functions. It cooperates with appropriate national or international institutions operating in fields related to radiation protection, safety and nuclear safety.

  5. Expanding the scope of practice for radiology managers: radiation safety duties.

    Science.gov (United States)

    Orders, Amy B; Wright, Donna

    2003-01-01

    In addition to financial responsibilities and patient care duties, many medical facilities also expect radiology department managers to wear "safety" hats and complete fundamental quality control/quality assurance, conduct routine safety surveillance in the department, and to meet regulatory demands in the workplace. All managers influence continuous quality improvement initiatives, from effective utilization of resource and staffing allocations, to efficacy of patient scheduling tactics. It is critically important to understand continuous quality improvement (CQI) and its relationship with the radiology manager, specifically quality assurance/quality control in routine work, as these are the fundamentals of institutional safety, including radiation safety. When an institution applies for a registration for radiation-producing devices or a license for the use of radioactive materials, the permit granting body has specific requirements, policies and procedures that must be satisfied in order to be granted a permit and to maintain it continuously. In the 32 U.S. Agreement states, which are states that have radiation safety programs equivalent to the Nuclear Regulatory Commission programs, individual facilities apply for permits through the local governing body of radiation protection. Other states are directly licensed by the Nuclear Regulatory Commission and associated regulatory entities. These regulatory agencies grant permits, set conditions for use in accordance with state and federal laws, monitor and enforce radiation safety activities, and audit facilities for compliance with their regulations. Every radiology department and associated areas of radiation use are subject to inspection and enforcement policies in order to ensure safety of equipment and personnel. In today's business practice, department managers or chief technologists may actively participate in the duties associated with institutional radiation safety, especially in smaller institutions, while

  6. Co-operative development of nuclear safety regulations, guides and standards based on NUSS

    International Nuclear Information System (INIS)

    Pachner, J.; Boyd, F.C.; Yaremy, E.M.

    1985-01-01

    A major need of developing Member States building nuclear power plants (NPPs) of foreign origin is to acquire a capability to regulate such nuclear plants independently. Among other things, this requires the development of national nuclear safety regulations, guides and standards to govern the development and use of nuclear technology. Recognizing the importance and complexity of this task, it seems appropriate that the NPP-exporting Member States share their experience and assist the NPP-importing Member States in the development of their national regulations and guides. In 1983, the Atomic Energy Control Board and Atomic Energy of Canada Ltd. conducted a study of a possible joint programme involving Canada, an NPP-importing Member State and the IAEA for the development of the national nuclear safety regulations and guides based on NUSS documents. During the study, a work plan with manpower estimates for the development of design regulations, safety guides and a guide for regulatory evaluation of design was prepared as an investigatory exercise. The work plan suggests that a successful NUSS implementation in developing Member States will require availability of significant resources at the start of the programme. The study showed that such a joint programme could provide an effective mechanism for transfer of nuclear safety know-how to the developing Member States through NUSS implementation. (author)

  7. Resolution no. 18/2012 Guide for the preparation and emergency response radiological

    International Nuclear Information System (INIS)

    2012-01-01

    This guide aims to establish requirements to ensure an adequate level of entities, for the preparation and response to radiological emergencies and to prepare the Radiation Emergency Plan (PER), asset out in the Basic Safety Standards radiological and authorizations Regulations in force. This guide applies to organizations providing employment practices associated with sources of ionizing radiation, hereinafter sources.

  8. Probabilistic safety analysis procedures guide, Sections 8-12. Volume 2, Rev. 1

    International Nuclear Information System (INIS)

    McCann, M.; Reed, J.; Ruger, C.; Shiu, K.; Teichmann, T.; Unione, A.; Youngblood, R.

    1985-08-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. It will be revised as comments are received, and as experience is gained from its use. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of issues affecting reactor safety. The first volume of the guide describes the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant (i.e., intrinsic to plant operation) and from loss of off-site electric power. The scope includes human reliability analysis, a determination of the importance of various core damage accident sequences, and an explicit treatment and display of uncertainties for key accident sequences. This second volume deals with the treatment of the so-called external events including seismic disturbances, fires, floods, etc. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance). This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are valuable for regulatory decision making. For internal events, methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study. For external events, more explicit guidance is given

  9. [RADIATION SAFETY DURING REMEDIATION OF THE "SEVRAO" FACILITIES].

    Science.gov (United States)

    Shandala, N K; Kiselev, S M; Titov, A V; Simakov, A V; Seregin, V A; Kryuchkov, V P; Bogdanova, L S; Grachev, M I

    2015-01-01

    Within a framework of national program on elimination of nuclear legacy, State Corporation "Rosatom" is working on rehabilitation at the temporary waste storage facility at Andreeva Bay (Northwest Center for radioactive waste "SEVRAO"--the branch of "RosRAO"), located in the North-West of Russia. In the article there is presented an analysis of the current state of supervision for radiation safety of personnel and population in the context of readiness of the regulator to the implementation of an effective oversight of radiation safety in the process of radiation-hazardous work. Presented in the article results of radiation-hygienic monitoring are an informative indicator of the effectiveness of realized rehabilitation measures and characterize the radiation environment in the surveillance zone as a normal, without the tendency to its deterioration.

  10. Communications on nuclear, radiation, transport and waste safety: a practical handbook

    International Nuclear Information System (INIS)

    1999-04-01

    Basic requirements to be met by national infrastructures for radiation protection and safety are stated in the International basic safety Standards for Protection against Ionizing radiation and for safety of radiation Sources. These include a requirement 'to set up appropriate means of informing the public, its representatives and the information media about the health and safety aspects of activities involving exposure to radiation and about regulatory processes.' This publication is intended for national regulatory authorities, to provide them with guidance on the principles and methods that can be applied in communicating nuclear safety to different audiences under different circumstances. This report presumes the existence of adequate national infrastructure including an independent regulatory authority with sufficient powers and resources to meet its responsibilities

  11. Investigation of status of safety management in radiation handle works

    International Nuclear Information System (INIS)

    Amauchi, Hiroshi; Nishimura, Kenji; Izumi, Kokichi

    2007-01-01

    This report describes the investigation in the title concerning the system for safety management and for accident prevention, which was done by a questionnaire in a period of 1.5 months in 2005. The questionnaire including 55 questions for safety management system, 33 for instruments and safety utilization of radiation and 57 for present status of safety management in high-risk radiation works, was performed in 780 hospitals, of which 313 answered. The first 55 questions concerned with the facility, patient identification, information exchange, management of private information, safety management activities, measures to prevent accident, manual preparation, personnel education and safety awareness; the second, with management of instruments, package insert, system for reporting the safety information, management of implants, re-imaging and radiation protection; and the third, with the systems for patients' emergency, in departments of CT/MR, of IVR, of nuclear diagnosis and of radiation therapy. Based on the results obtained, many problems, tasks and advices are presented to various items and further continuation of efforts to improve the present status is mentioned to be necessary. Details are given in the homepage of the Japanese Society of Radiological Technology. (T.I.)

  12. The Argentine Approach to Radiation Safety: Its Ethical Basis

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    The ethical bases of Argentina's radiation safety approach are reviewed. The applied principles are those recommended and established internationally, namely: the principle of justification of decisions that alters the radiation exposure situation; the principle of optimization of protection and safety; the principle of individual protection for restricting possible inequitable outcomes of optimized safety; and the implicit principle of inter generational prudence for protection future generations and the habitat. The principles are compared vis-a-vis the prevalent ethical doctrines: justification vis-a-vis teleology; optimization vis-a-vis utilitarianism; individual protection vis-a-vis de ontology; and, inter generational prudence vis-a-vis aretaicism (or virtuosity). The application of the principles and their ethics in Argentina is analysed. These principles are applied to All exposure to radiation harm; namely, to exposures to actual doses and to exposures to actual risk and potential doses, including those related to the safety of nuclear installations, and they are harmonized and applied in conjunction. It is concluded that building a bridge among all available ethical doctrines and applying it to radiation safety against actual doses and actual risk and potential doses is at the roots of the successful nuclear regulatory experience in Argentina.

  13. Supervisor's experiments on radiation safety trainings in school of engineering

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    2005-01-01

    Radiation safety training courses in School of Engineering, The University of Tokyo, were introduced. The number of radiation workers and the usage of radiation and radioisotopes have been surveyed for past 14 years. The number of radiation workers in School of Engineering has increased due to the treatment of X-ray analysis of materials, recently. It is important for workers to understand the present situation of School of Engineering before the treatment of radiation and radioisotopes. What the supervisor should tell to radiation workers were presented herewith. The basic questionnaires after the lecture are effective for radiation safety trainings. (author)

  14. Neuro-oncology update: radiation safety and nursing care during interstitial brachytherapy

    International Nuclear Information System (INIS)

    Randall, T.M.; Drake, D.K.; Sewchand, W.

    1987-01-01

    Radiation control and safety are major considerations for nursing personnel during the care of patients receiving brachytherapy. Since the theory and practice of radiation applications are not part of the routine curriculum of nursing programs, the education of nurses and other health care professionals in radiation safety procedures is important. Regulatory agencies recommend that an annual safety course be given to all persons frequenting, using, or associated with patients containing radioactive materials. This article presents pertinent aspects of the principles and procedures of radiation safety, the role of personnel dose-monitoring devices, and the value of additional radiation control features, such as a lead cubicle, during interstitial brain implants. One institution's protocol and procedures for the care of high-intensity iridium-192 brain implants are discussed. Preoperative teaching guidelines and nursing interventions included in the protocol focus on radiation control principles

  15. Safety design guide for pipe rupture protection for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for pipe rupture protection identifies high-energy systems in which pipe ruptures must be postulated to occur, as well as systems that must be protected from the dynamic effects of such ruptures. Dynamic effects considered in this SDG consist of pipe whip (including missiles generated by pipe ruptures, if any) and jet impingement, Requirements for protection against the dynamic effects of a postulated pipe rupture and method of protection of essential structures, systems and components are specified for these effects. The change status for the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 2 tabs., 5 refs. (Author) .new

  16. Radiation protection safety in Uganda -- Experience and prospects of the National Radiation Protection Service

    International Nuclear Information System (INIS)

    Kisolo, A.

    2001-01-01

    The Uganda National Radiation Protection Service (NRPS) is a technical body under the Atomic Energy Control Board, established by Law - the Atomic Energy Decree of 1972, Decree No. 12, to oversee and enforce safety of radiation sources, practices and workers; and to protect the patients, members of the public and the environment from the dangers of ionizing radiation and radioactive wastes. The Ionizing Radiation Regulations (Standards) - Statutory Instruments Supplement No. 21 of 1996 -- back up the Law. The Law requires all users, importers and operators of radiation sources and radioactive materials to notify the NRPS for registration and licensing. The NRPS is responsible for licensing and for the regulatory enforcement of compliance to the requirements for the safety of radiation sources and practices. There are about 200 diagnostic X-ray units, two radiotherapy centres, one nuclear medicine unit, several neutron probes, about three level gauges and two non-destructive testing sources and a number of small sealed sources in teaching and research institutions. About 50% of these sources have been entered in our inventory using the RAIS software provided by the IAEA. There are about 500 radiation workers and 250 underground miners. The NRPS covers about 50% of the radiation workers. It is planned that by June 2001, all occupational workers will be monitored, bringing coverage to 100%. The Government of Uganda is making the necessary legal, administrative and technical arrangements aimed at establishing the National Radiation Protection Commission as an autonomous regulatory authority. The Atomic Energy Decree of 1972 and Regulations of 1996 are being revised to provide for the National Radiation Protection Commission and to make it comply with the requirements of the International Basic Safety Standards Safety Series No. 115. (author)

  17. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  18. New radiation protection concept as important safety factor of industrial radiography

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.

    1998-01-01

    Industrial radiography is a method for non destructive testing of homogeneity of various materials based on different absorption of radiation in different material. X and γ radiation are the most often used. Detrimental effects of radiation are observed since its discovery. In order to prevent harmful effects of radiation without unduly limitations of its use, International Commission on Radiological Protection in collaboration with International Atomic Energy Agency have developed International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, Safety Series No 115, adopted in 1996. based on ICRP recommendations from 1991. Besides a lot of changes in radiation protection concept and philosophy, decrement of annual dose limits for occupational exposure from 50 to 20 mSv. (author)

  19. Non-compliance with agrochemical safety guides and associated ...

    African Journals Online (AJOL)

    Although several occupational health hazards are associated with farming, cocoa farmers could be exposed to more health hazards through use of agrochemicals. The objective of this study was to analyze the effect of non-compliance with agrochemical safety guides on health risks of farmers. The data were collected from ...

  20. Report on administrative work for radiation safety from April 2006 to March 2007

    Energy Technology Data Exchange (ETDEWEB)

    Komori, Akio; Kaneko, Osamu; Nishimura, Kiyohiko; Uda, Tatsuhiko; Asakura, Yamato; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi

    2007-10-15

    The National Institute for Fusion Science (NIFS) is proceeding with the research on magnetic confining nuclear fusion both experimentally and theoretically. During the experiment with deals with very hot plasma, X ray is generated. Therefore the experimental devices with their surroundings are administrated in conformity with the Industrial Safety and Health Law to keep workplace safety. The Radiation Control Safety Office of Safety Hygiene Protection Bureau carries out measuring the radiation dose level regularly, registering the employees who are engaged in plasma experiments, and training them. Non-regulated small sealed sources are used in some detectors. The treating of these sources is controlled by the Safety and Environmental Research Center. This report is on administrative works for radiation safety in the last fiscal year 2006. It includes (1) report on the establishment of radiation safety management system, (2) report on the establishment of training and registration system for radiation workers, and (3) results of radiation dose measurement and monitoring in the radiation controlled area and on the site by using Radiation Monitoring System Applicable to Fusion Experiment (RMSAFE). The report has been published annually. We hope that these reports would be helpful for future safety management in NIFS. (author)

  1. Report on administrative work for radiation safety from April 2006 to March 2007

    International Nuclear Information System (INIS)

    Komori, Akio; Kaneko, Osamu; Nishimura, Kiyohiko; Uda, Tatsuhiko; Asakura, Yamato; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi

    2007-10-01

    The National Institute for Fusion Science (NIFS) is proceeding with the research on magnetic confining nuclear fusion both experimentally and theoretically. During the experiment with deals with very hot plasma, X ray is generated. Therefore the experimental devices with their surroundings are administrated in conformity with the Industrial Safety and Health Law to keep workplace safety. The Radiation Control Safety Office of Safety Hygiene Protection Bureau carries out measuring the radiation dose level regularly, registering the employees who are engaged in plasma experiments, and training them. Non-regulated small sealed sources are used in some detectors. The treating of these sources is controlled by the Safety and Environmental Research Center. This report is on administrative works for radiation safety in the last fiscal year 2006. It includes (1) report on the establishment of radiation safety management system, (2) report on the establishment of training and registration system for radiation workers, and (3) results of radiation dose measurement and monitoring in the radiation controlled area and on the site by using Radiation Monitoring System Applicable to Fusion Experiment (RMSAFE). The report has been published annually. We hope that these reports would be helpful for future safety management in NIFS. (author)

  2. Legislation for radiation protection and nuclear safety in the Republic of Croatia

    International Nuclear Information System (INIS)

    Novosel, N.

    1994-01-01

    The main prerequisite of radiation protection and nuclear safety development and improvement in the Republic of Croatia are: national legislation for radiation protection and nuclear safety in accordance with international recommendations; and development of state infrastructure for organization and management of radiation protection and nuclear safety measures. In this paper I the following topics are present: inherited legislation for radiation protection and nuclear safety; modern trends in world nowadays; and what is done and has to be done in the Republic of Croatia to improve this situation

  3. The art of appropriate evaluation : a guide for highway safety program managers

    Science.gov (United States)

    2008-08-01

    The guide, updated from its original release in 1999, is intended for project managers who will oversee the evaluation of traffic safety programs. It describes the benefits of evaluation and provides an overview of the steps involved. The guide inclu...

  4. Systematic approach to training for competence building in radiation safety

    International Nuclear Information System (INIS)

    Asiamah, S.D.; Schandorf, C.; Darko, E.O.

    2003-01-01

    Competence building involves four main attributes, namely, knowledge, skills, operating experience and attitude to radiation safety. These multi-attribute requirements demand a systematic approach to education and training of regulatory staff, licensees/registrants and service providers to ensure commensurate competence in performance of responsibilities and duties to specified standards. In order to address issues of competencies required in radiation safety a national programme for qualification and certification has been initiated for regulatory staff, operators, radiation safety officers and qualified experts. Since the inception of this programme in 1993, 40 training events have been organized involving 423 individuals. This programme is at various levels of implementation due to financial and human resource constraints. A department for Human Resource Development and Research was established in 2000 to enhance and ensure the sustainability of the effectiveness of capacity building in radiation safety. (author)

  5. Environmental, safety, and health engineering

    International Nuclear Information System (INIS)

    Woodside, G.; Kocurek, D.

    1997-01-01

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics

  6. Maintenance, surveillance and in-service inspection in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Effective maintenance, surveillance and in-service inspection (MS and I) are essential for the safe operation of a nuclear power plant. The objective of this Safety Guide is to provide recommendations and guidance for MS and I activities to ensure that SSCs important to safety are available to perform their functions in accordance with the assumptions and intent of the design. This Safety Guide covers the organizational and procedural aspects of MS and I. However, it does not give detailed technical advice in relation to particular items of plant equipment, nor does it cover inspections made for and/or by the regulatory body. This Safety Guide provides recommendations and guidance for preventive and remedial measures, including testing, surveillance and in-service inspection, that are necessary to ensure that all plant structures, systems and components (SSCs) important to safety are capable of performing as intended. This Safety Guide covers measures for fulfilling the organizational and administrative requirements for: establishing and implementing schedules for preventive and predictive maintenance, repairing defective plant items, selecting and training personnel, providing related facilities and equipment, procuring stores and spare parts, and generating, collecting and retaining maintenance records for establishing and implementing an adequate feedback system for information on maintenance. MS and I should be subject to quality assurance in relation to all aspects important to safety. Quality assurance has been dealt with in detail in other IAEA safety standards and is covered here only in specific instances, for emphasis. In Section 2, a concept of MS and I is presented and the interrelationship between maintenance, surveillance and inspection is discussed. Section 3 concerns the functions and responsibilities of different organizations involved in MS and I activities. Section 4 provides recommendations and guidance on such organizational aspects as

  7. Maintenance, surveillance and in-service inspection in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Effective maintenance, surveillance and in-service inspection (MS and I) are essential for the safe operation of a nuclear power plant. The objective of this Safety Guide is to provide recommendations and guidance for MS and I activities to ensure that SSCs important to safety are available to perform their functions in accordance with the assumptions and intent of the design. This Safety Guide covers the organizational and procedural aspects of MS and I. However, it does not give detailed technical advice in relation to particular items of plant equipment, nor does it cover inspections made for and/or by the regulatory body. This Safety Guide provides recommendations and guidance for preventive and remedial measures, including testing, surveillance and in-service inspection, that are necessary to ensure that all plant structures, systems and components (SSCs) important to safety are capable of performing as intended. This Safety Guide covers measures for fulfilling the organizational and administrative requirements for: establishing and implementing schedules for preventive and predictive maintenance, repairing defective plant items, selecting and training personnel, providing related facilities and equipment, procuring stores and spare parts, and generating, collecting and retaining maintenance records for establishing and implementing an adequate feedback system for information on maintenance. MS and I should be subject to quality assurance in relation to all aspects important to safety. Quality assurance has been dealt with in detail in other IAEA safety standards and is covered here only in specific instances, for emphasis. In Section 2, a concept of MS and I is presented and the interrelationship between maintenance, surveillance and inspection is discussed. Section 3 concerns the functions and responsibilities of different organizations involved in MS and I activities. Section 4 provides recommendations and guidance on such organizational aspects as

  8. Promoting radiation protection and safety for X-ray inspection systems

    International Nuclear Information System (INIS)

    Maharaj, Harri P.

    2008-01-01

    This paper aims to present a regulatory perspective on radiation protection and safety relevant to facilities utilizing baggage X-ray inspection systems. Over the past several years there has been rapid growth in the acquisition and utilization of X-ray tube based inspection systems for security screening purposes worldwide. In addition to ensuring compliance with prescribed standards applicable to such X-ray systems, facilities subject to federal jurisdiction in Canada are required to comply with established codes of practice, which, not only are in accordance with occupational health and safety legislation but also are consistent with international guidance. Overall, these measures are aimed at reducing radiation risks and adverse health effects. Data, acquired in the past several years in a number of facilities through various instruments, namely, monitoring and surveillance, radiation safety audits, onsite evaluations, device registration processes and information developed, were considered in conjunction with detrimental traits. Changes are necessary to reduce radiation and safety risks from both an ALARA point of view and an accountability perspective. Establishing, developing, implementing and following a radiation protection program is warranted and advocated. Minimally, such a program shall be managed by a radiation safety officer. It shall promote and sustain a radiation safety culture in the workplace; shall ensure properly qualified individuals operate and service the X-ray systems in accordance with established and authorized procedures; and shall incorporate data recording and life cycle management principles. Such a program should be the norm for a facility that utilizes baggage X-ray inspection systems for security purposes, and it shall be subject to continuous regulatory oversight. (author)

  9. Criteria for Use in Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide presents a coherent set of generic criteria (expressed numerically in terms of radiation dose) that form a basis for developing the operational levels needed for decision making concerning protective and response actions. The set of generic criteria addresses the requirements established in IAEA Safety Standards Series No. GS-R-2 for emergency preparedness and response, including lessons learned from responses to past emergencies, and provides an internally consistent foundation for the application of radiation protection. The publication also proposes a basis for a plain language explanation of the criteria for the public and for public officials. Contents: 1. Introduction; 2. Basic considerations; 3. Framework for emergency response criteria; 4. Guidance values for emergency workers; 5. Operational criteria; Appendix I: Dose concepts and dosimetric quantities; Appendix II: Examples of default oils for deposition, individual monitoring and contamination of food, milk and water; Appendix III: Development of EALs and example EALs for light water reactors; Appendix IV: Observables at the scene of a nuclear or radiological emergency

  10. Criteria for Use in Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Guide (Russian Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide presents a coherent set of generic criteria (expressed numerically in terms of radiation dose) that form a basis for developing the operational levels needed for decision making concerning protective and response actions. The set of generic criteria addresses the requirements established in IAEA Safety Standards Series No. GS-R-2 for emergency preparedness and response, including lessons learned from responses to past emergencies, and provides an internally consistent foundation for the application of radiation protection. The publication also proposes a basis for a plain language explanation of the criteria for the public and for public officials. Contents: 1. Introduction; 2. Basic considerations; 3. Framework for emergency response criteria; 4. Guidance values for emergency workers; 5. Operational criteria; Appendix I: Dose concepts and dosimetric quantities; Appendix II: Examples of default oils for deposition, individual monitoring and contamination of food, milk and water; Appendix III: Development of EALs and example EALs for light water reactors; Appendix IV: Observables at the scene of a nuclear or radiological emergency.

  11. Criteria for Use in Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Guide (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This Safety Guide presents a coherent set of generic criteria (expressed numerically in terms of radiation dose) that form a basis for developing the operational levels needed for decision making concerning protective and response actions. The set of generic criteria addresses the requirements established in IAEA Safety Standards Series No. GS-R-2 for emergency preparedness and response, including lessons learned from responses to past emergencies, and provides an internally consistent foundation for the application of principles of radiation protection. The publication also provides a basis for a plain language explanation of the criteria for the public and for public officials. Contents: 1. Introduction; 2. Basic considerations; 3. Framework for emergency response criteria; 4. Guidance values for emergency workers; 5. Operational criteria; Appendix I: Dose concepts and dosimetric quantities; Appendix II: Examples of default OILs for deposition, individual contamination and contamination of food, milk and water; Appendix III: Development of EALs and example EALs for light water reactors; Appendix IV: Observables on the scene of a radiological emergency.

  12. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  13. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  14. New ICRP recommendations and radiation safety of an NPP

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2007-01-01

    In March 2007 the fundamental radiation protection recommendations used world-widely in nuclear facilities were approved by the ICRP. Implementation of radiation safety standards in an NPP is a challenging issue related to all NPP phases from planning a site and its design to its decommissioning also because if neglected it could be very difficult if not impossible to implement improvement of radiation safety later during operation or decommissioning without a substantial cost. The standards are changing with a period of 15 years which is small regarding a prolonged lifetime of many NPPs and also foreseen lifetime of new NPPs, i.e. 60 years. The new recommendations are actually an upgrading of the ICRP 60. Among other changes new sets of wR and wT are given, as well as an update of around 50 different values related to doses. Two new concepts are also tackled i.e. terrorist attacks and protection of the environment. The influence of the new recommendations on the radiation safety of NPPs can be analysed by a selection of four renewed or new concepts: types of exposure situation, dose constraints, source-related approach and safety and security. Their implementation could lead to upgrading the radiation safety of future or existing NPPs as well as of decommissioning processes. Some of the concepts were already extensively and successfully used by designers of modifications or of new NPPs, as well as by operators. (author)

  15. Developing guidance in the nuclear criticality safety assessment for fuel cycle facilities

    International Nuclear Information System (INIS)

    Galet, C.; Evo, S.

    2012-01-01

    In this poster IRSN (Institute for radiation protection and nuclear safety) presents its safety guides whose purpose is to transmit the safety assessment know-how to any 'junior' staff or even to give a view of the safety approach on the overall risks to any staff member. IRSN has written a first version of such a safety guide for fuel cycle facilities and laboratories. It is organized into several chapters: some refer to types of assessments, others concern the types of risks. Currently, this guide contains 13 chapters and each chapter consists of three parts. In parallel to the development of criticality chapter of this guide, the IRSN criticality department has developed a nuclear criticality safety guide. It follows the structure of the three parts fore-mentioned, but it presents a more detailed first part and integrates, in the third part, the experience feedback collected on nuclear facilities. The nuclear criticality safety guide is online on the IRSN's web site

  16. Safe adventures. An ethnographic study of safety and adventure guides in Arctic Norway

    OpenAIRE

    Johannessen, Mats Hoel

    2016-01-01

    With numerous entrepreneurs already established within the area, adventure tourism is a growing industry within Arctic Norway. The continuously expanding interest for the phenomenon has gained universities’ attention with recent education programs for guides being established. A cultural change involving a more professionalized approach to adventure tourism has also been noticed. At the forefront of ensuring tourists’ safety are the guides, who work in the area. In former research on safety i...

  17. Radiation dose to the operator during fluoroscopically guided spine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Roccatagliata, Luca; Pravata, Emanuele; Cianfoni, Alessandro [Department of Neuroradiology, Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano (Switzerland); Presilla, Stefano [Unita di Fisica Medica, Ente Ospedaliero Cantonale (EOC), Bellinzona (Switzerland)

    2017-09-15

    Fluoroscopy is widely used to guide diagnostic and therapeutic spine procedures. The purpose of this study was to quantify radiation incident on the operator (operator Air Kerma) during a wide range of fluoroscopy-guided spine procedures and its correlation with the amount of radiation incident on the patient (Kerma Area Product - KAP). We retrospectively included 57 consecutive fluoroscopically guided spine procedures. KAP [Gy cm{sup 2}] and total fluoroscopy time were recorded for each procedure. An electronic dosimeter recorded the operator Air Kerma [μGy] for each procedure. Operator Air Kerma for each procedure, correlation between KAP and operator Air Kerma, and between KAP and fluoroscopy time was obtained. Operator Air Kerma was widely variable across procedures, with median value of 6.4 μGy per procedure. Median fluoroscopy time and median KAP per procedure were 2.6 min and 4.7 Gy cm{sup 2}, respectively. There was correlation between operator Air Kerma and KAP (r{sup 2} = 0.60), with a slope of 1.6 μGy Air Kerma per unit Gy cm{sup 2} KAP incident on the patient and between fluoroscopy time and KAP (r{sup 2} = 0.63). Operator Air Kerma during individual fluoroscopy-guided spine procedures can be approximated from the commonly and readily available information of the total amount of radiation incident on the patient, measured as KAP. (orig.)

  18. Standards for radiation protection instrumentation: design of safety standards and testing procedures

    International Nuclear Information System (INIS)

    Meissner, Frank

    2008-01-01

    This paper describes by means of examples the role of safety standards for radiation protection and the testing and qualification procedures. The development and qualification of radiation protection instrumentation is a significant part of the work of TUV NORD SysTec, an independent expert organisation in Germany. The German Nuclear Safety Standards Commission (KTA) establishes regulations in the field of nuclear safety. The examples presented may be of importance for governments and nuclear safety authorities, for nuclear operators and for manufacturers worldwide. They demonstrate the advantage of standards in the design of radiation protection instrumentation for new power plants, in the upgrade of existing instrumentation to nuclear safety standards or in the application of safety standards to newly developed equipment. Furthermore, they show how authorities may proceed when safety standards for radiation protection instrumentation are not yet established or require actualization. (author)

  19. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  20. A prediction model for the radiation safety management behavior of medical cyclotrons

    International Nuclear Information System (INIS)

    Jung, Ji Hye; Han, Eun Ok; Kim, Ssang Tae

    2008-01-01

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 ± 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in radiation safety managements, general

  1. Radiation safety handbook for ionizing and nonionizing radiation

    International Nuclear Information System (INIS)

    Kincaid, C.B.

    1976-10-01

    The Handbook is directed primarily to users of radiation sources throughout the Food and Drug Administration. Specific precautions regarding the possession and use of radiation sources in meeting the Agency's objectives are an inherent responsibility of all employees. In addition, the increased emphasis on occupational safety and health and the responsibilities placed on the Department by Public Law and Executive Order make it mandatory that all organizational levels and activities conform to the intent of this Handbook. The policies and procedures described in this document apply to all Agency operators and activities and are intended to protect employees and the general public

  2. Seismic Hazards in Site Evaluation for Nuclear Installations. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear installations. It supplements the Safety Requirements publication on Site Evaluation for Nuclear Installations. The present publication provides guidance and recommends procedures for the evaluation of seismic hazards for nuclear power plants and other nuclear installations. It supersedes Evaluation of Seismic Hazards for Nuclear Power Plants, IAEA Safety Standards Series No. NS-G-3.3 (2002). In this publication, the following was taken into account: the need for seismic hazard curves and ground motion spectra for the probabilistic safety assessment of external events for new and existing nuclear installations; feedback of information from IAEA reviews of seismic safety studies for nuclear installations performed over the previous decade; collective knowledge gained from recent significant earthquakes; and new approaches in methods of analysis, particularly in the areas of probabilistic seismic hazard analysis and strong motion simulation. In the evaluation of a site for a nuclear installation, engineering solutions will generally be available to mitigate, by means of certain design features, the potential vibratory effects of earthquakes. However, such solutions cannot always be demonstrated to be adequate for mitigating the effects of phenomena of significant permanent ground displacement such as surface faulting, subsidence, ground collapse or fault creep. The objective of this Safety Guide is to provide recommendations and guidance on evaluating seismic hazards at a nuclear installation site and, in particular, on how to determine: (a) the vibratory ground motion hazards, in order to establish the design basis ground motions and other relevant parameters for both new and existing nuclear installations; and (b) the potential for fault displacement and the rate of fault displacement that could affect the feasibility of the site or the safe operation of the installation at

  3. Geotechnical aspects of site evaluation and foundations for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    This publication is a revision of the former safety standards of IAEA Safety Series No. 50-SG-S8. The scope has been extended to cover not only foundations but also design questions related to geotechnical science and engineering, such as the bearing capacity of foundations, design of earth structures and design of buried structures. Seismic aspects also play an important role in this field, and consequently the Safety Guide on Evaluation of Seismic Hazards for Nuclear Power Plants, Safety Standards Series No. NS-G-3.3, which discusses the determination of seismic input motion, is referenced on several occasions. The present Safety Guide provides an interpretation of the Safety Requirements on Site Evaluation for Nuclear Installations and guidance on how to implement them. It is intended for the use of safety assessors or regulators involved in the licensing process as well as the designers of nuclear power plants, and it provides them with guidance on the methods and procedures for analyses to support the assessment of the geotechnical aspects of the safety of nuclear power plants

  4. Geotechnical aspects of site evaluation and foundations for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    This publication is a revision of the former safety standards of IAEA Safety Series No. 50-SG-S8. The scope has been extended to cover not only foundations but also design questions related to geotechnical science and engineering, such as the bearing capacity of foundations, design of earth structures and design of buried structures Seismic aspects also play an important role in this field, and consequently the Safety Guide on Evaluation of Seismic Hazards for Nuclear Power Plants, Safety Standards Series No. NS-G-3.3, which discusses the determination of seismic input motion, is referenced on several occasions. The present Safety Guide provides an interpretation of the Safety Requirements on Site Evaluation for Nuclear Installations and guidance on how to implement them. It is intended for the use of safety assessors or regulators involved in the licensing process as well as the designers of nuclear power plants, and it provides them with guidance on the methods and procedures for analyses to support the assessment of the geotechnical aspects of the safety of nuclear power plants

  5. Registration of radiation doses

    International Nuclear Information System (INIS)

    2000-02-01

    In Finland the Radiation and Nuclear Safety Authority (STUK) is maintaining the register (called Dose Register) of the radiation exposure of occupationally exposed workers in order to ensure compliance with the principles of optimisation and individual protection. The guide contains a description of the Dose Register and specifies the responsibilities of the party running a radiation practice to report the relevant information to the Dose Register

  6. Just-in-time tomography (JiTT): a new concept for image-guided radiation therapy

    International Nuclear Information System (INIS)

    Pang, G; Rowlands, J A

    2005-01-01

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room and guide the radiation therapy treatment. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus it is not adequate for imaging targets with intrafraction motion. In this note, a new approach for image-guided radiation therapy-just-in-time tomography (JiTT)-is proposed. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. (note)

  7. Delivering a radiation protection dividend: systemic capacity-building for the radiation safety profession in Africa

    Directory of Open Access Journals (Sweden)

    Julian Hilton

    2014-12-01

    Full Text Available Many African countries planning to enter the nuclear energy “family” have little or no experience of meeting associated radiation safety demands, whether operational or regulatory. Uses of radiation in medicine in the continent, whether for diagnostic or clinical purposes, are rapidly growing while the costs of equipment, and hence of access to services, are falling fast. In consequence, many patients and healthcare workers are facing a wide array of unfamiliar challenges, both operational and ethical, without any formal regulatory or professional framework for managing them safely. This, combined with heighted awareness of safety issues post Fukushima, means the already intense pressure on radiation safety professionals in such domains as NORM industries and security threatens to reach breaking point. A systematic competency-based capacity-building programme for RP professionals in Africa is required (Resolution of the Third AFRIRPA13 Regional Conference, Nairobi, September 2010. The goal is to meet recruitment and HR needs in the rapidly emerging radiation safety sector, while also addressing stakeholder concerns in respect of promoting and meeting professional and ethical standards. The desired outcome is an RP “dividend” to society as a whole. A curriculum model is presented, aligned to safety procedures and best practices such as Safety Integrity Level and Layer of Protection analysis; it emphasizes proactive risk communication both with direct and indirect stakeholders; and it outlines disciplinary options and procedures for managers and responsible persons for dealing with unsafe or dangerous behavior at work. This paper reports on progress to date. It presents a five-tier development pathway starting from a generic foundation course, suitable for all RP professionals, accompanied by specialist courses by domain, activity or industry. Delivery options are discussed. Part of the content has already been developed and delivered as

  8. Growth of the Female Professional in the Radiation Safety Department

    International Nuclear Information System (INIS)

    Yoon, J.

    2015-01-01

    Currently in Korea’s Nuclear Power Plants (KHNP), the number of the female staffs has been increased as planned construction of new NPPs. However the role of the female staffs in NPPs is still limited as before. Because there is the prejudice which the operating and the maintenance work is unsuitable for female owing to the risk of the radiation exposure and the physical weakness. So female staffs mostly belong to the supporting departments. In particular, the proportion of the female staffs is significantly higher in the radiation safety department among those. The ratio is 15% and is twice higher, whereas the total percentage of the female workers in KHNP is 8%. In the past, the women staffs in the radiation safety department were usually charge of the non-technical duties like the radiation exposure dose management and the education for radiation workers. Although the ratio of the women about that is still higher, nowadays, the role of the female workers tends to diversify to technical supports like the radiation protection and the radioactive waste management while increased the proportion of female employees. This trend is expected to continue for many years to come. Thus, in Korea’s NPPs, it is expected that many women will demonstrate their professionalism especially in the radiation safety department than any other departments. This presentation contains the detailed duty and trend about female staffs in the radiation safety department in Korea’s NPPs. (author)

  9. Classification of Radioactive Waste. General Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste.

  10. Classification of Radioactive Waste. General Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste

  11. Radiation safety and care of patients

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    The objective of this chapter is to acquaint the reader with radiation safety measures which can be pursued to minimize radiation load to the patient and staff. The basic principle is that all unnecessary administration should be avoided and a number of simple techniques be used to reduce radiation dose. For example, the kidney excretes many radionuclides. Drinking plenty of fluid and frequent bladder emptying can minimize absorbed dose to the bladder. Thyroid blocking agents must be used if radioactive iodine is being administered to avoid unnecessary radiation exposure to the thyroid gland. When it is necessary to administer radioactive substances to a female of childbearing age, the radiation exposure should be minimum and information whether the patient is pregnant or not must be obtained. Alternatives techniques, which do not involve ionizing radiation, should also be considered. (author)

  12. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  13. Monitoring System For Improving Radiation Safety Management

    International Nuclear Information System (INIS)

    Osovizky, A.; Paran, J.; Tal, N.; Ankry, N.; Ashkenazi, B.; Tirosh, D.; Marziano, R.; Chisin, R.

    1999-01-01

    Medi SMARTS (Medical Survey Mapping Automatic Radiation Tracing System), a gamma radiation monitoring system, was installed in a nuclear medicine department. In this paper the evaluation of the system's ability to improve radiation safety management is presented. The system is based on a state of the art software that continuously collects on line radiation measurements for display, analysis and logging. Radiation is measured by GM tubes; the signal is transferred to a data processing unit and then via an RS-485 communication line to a computer. The system automatically identifies the detector type and its calibration factor, thus providing compatibility, maintainability and versatility when changing detectors. Radiation levels are displayed on the nuclear medicine department map at six locations. The system has been operating continuously for more than one year, documenting abnormal events caused by routine operation or failure incidents. In cases where abnormal working conditions were encountered, an alarm message was sent automatically to the supervisor via his tele-pager. An interesting issue observed during the system evaluation, was the inability to distinguish between high radiation levels caused by proper routine operation and those caused by safety failure incidents. The solution included examination of two parameters, radiation levels as well as their duration period. A careful analysis of the historical data, applying the appropriated combined parameters determined for each location, verified that such a system can identify abnormal events, provide alarms to warn in case of incidents and improve standard operating procedures

  14. Nuclear and radiation safety in Mongolia

    International Nuclear Information System (INIS)

    Batjargala, Erdev

    2010-01-01

    The main purpose of the paper is to assess legal environment of Mongolia for development of nuclear and radiation safety and security. The Nuclear Energy Agency, regulatory agency of the Government of Mongolia, was founded in the beginning of 2009. Since then, it has formulated the State Policy for Utilization of Radioactive Minerals and Nuclear Energy and the Nuclear Energy Law, regulatory law of the field. The State Great Khural of Mongolia has enacted these acts. By adopting the State Policy and Nuclear Energy Law, which together imported the international standards for nuclear and radiation safety and security, it is possible to conclude that legal environment has formed in Mongolia to explore and process radioactive minerals and utilize nuclear energy and introduce technologies friendly to human health and environment. (author)

  15. A prediction model for the radiation safety management behavior of medical cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ji Hye; Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of); Kim, Ssang Tae [CareCamp Inc., Seoul (Korea, Republic of)

    2008-06-15

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 {+-} 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in

  16. Law on protection against ionising radiation and nuclear safety in Slovenia

    International Nuclear Information System (INIS)

    Breznik, B.; Krizman, M.; Skrk, D.; Tavzes, R.

    2003-01-01

    The existing legislation related to nuclear and radiation safety in Slovenia was introduced in 80's. The necessity for the new law is based on the new radiation safety standards (ICRP 60) and the intention of Slovenia to harmonize the legislation with the European Union. The harmonization means adoption of the basic safety standards and other relevant directives and regulations of Euratom. The nuclear safety section of this law is based on the legally binding international conventions ratified by Slovenia. The general approach is similar to that of some members of Nuclear Energy Agency (OECD). The guidelines of the law were set by the Ministry of the Environment and Spatial Planning, Nuclear Safety Administration, and Ministry of Health. The expert group of the Ministry of Environment and Spatial Planning and the Ministry of Health together with the representatives of the users of the ionising sources and representatives of the nuclear sector, prepared the draft of the subject law. The emphasis in this paper is given to main topics and solutions related to the control of the occupationally exposed workers, radiation safety, licensing, nuclear and waste safety, and radiation protection of people and patients. (authors)

  17. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    International Nuclear Information System (INIS)

    Liu, J.C.

    1993-05-01

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities

  18. The NUSS safety guides in design and the use of computers

    International Nuclear Information System (INIS)

    Fischer, J.

    1986-01-01

    After a brief summary of the NUSS programme, the two design guides are discussed which deal with instrumentation and control circuitry. The potential use of computers is covered differently in these guides because of the historical development and more importantly because of the difference in importance to safety of the I and C systems which are dealt with in these papers. The Agency would consider modifications to the existing guides only when sufficient consensus about the use of computers would warrant a revision of the documents. (author)

  19. Evolution of Radiation Safety Culture in Africa: Impact of the Chernobyl Accident

    International Nuclear Information System (INIS)

    Elegba, S.

    2016-01-01

    The use of ionizing radiation in Africa is more than a century old but the awareness for radiation safety regulation is still a work in progress. The nuclear weapon tests carried out in the Sahara Desert during the early 1960’s and the resultant radiation fallout that drifted into West Africa with the northeasterly winds provided the first organized response to the hazards of ionizing radiation in Nigeria. The Nigerian Government in 1964 established the Federal Radiation Protection Service (FRPS) at the Physics Department of the University of Ibadan but without the force of law. In 1971, draft legislation on Nuclear Safety and Radiation Protection was submitted to Government for consideration and promulgation. It never went beyond a draft until June 1995 only after IAEA intervention! The April 1986 Chernobyl nuclear accident unfortunately did not provoke as much reaction from African countries, probably because of geography and climate: Africa is far from Ukraine and in April the winds blow from SW-NE, unlike if it had happened in December when the wind direction would have been NE-SW and Africa would have been greatly impacted with little or no radiation safety infrastructure to detect the radiation fallout or to respond to it; and weak economic infrastructure to mitigate the economic impact of such radioactive deposits on agriculture and human health. Africa was shielded by both geography and climate; but not for long. By 1988, some unscrupulous businessmen exported to Nigeria and to several African countries radiation contaminated beef and dairy products which were meant for destruction in Europe. This led to the establishment of laboratories in several African countries for the monitoring of radiation contamination of imported foods. Fortunately, the international response to the Chernobyl accident was swift and beneficial to Africa and largely spurred the establishment of radiation safety infrastructure in most if not all African Member States. Notably

  20. Evaluation of safety, an unavoidable requirement in the applications of ionizing radiations

    International Nuclear Information System (INIS)

    Jova Sed, Luis Andres

    2013-01-01

    The safety assessments should be conducted as a means to evaluate compliance with safety requirements (and thus the application of fundamental safety principles) for all facilities and activities in order to determine the measures to be taken to ensure safety. It is an essential tool in decision making. For long time we have linked the safety assessment to nuclear facilities and not to all practices involving the use of ionizing radiation in daily life. However, the main purpose of the safety assessment is to determine if it has reached an appropriate level of safety for an installation or activity and if it has fulfilled the objectives of safety and basic safety criteria set by the designer, operating organization and the regulatory body under the protection and safety requirements set out in the International Basic safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. This paper presents some criteria and personal experiences with the new international recommendations on this subject and its practical application in the region and demonstrates the importance of this requirement. Reflects the need to train personnel of the operator and the regulatory body in the proportional application of this requirement in practice with ionizing radiation

  1. Radiation safety aspects of high energy particle accelerators

    International Nuclear Information System (INIS)

    Subbaiah, K.V.

    2007-01-01

    High-energy accelerators are widely used for various applications in industry, medicine and research. These accelerators are capable of accelerating both ions and electrons over a wide range of energy and subsequently are made to impinge on the target materials. Apart from generating intended reactions in the target, these projectiles can also generate highly penetrating radiations such as gamma rays and neutrons. Over exposure to these radiations will cause deleterious effects on the living beings. Various steps taken to protect workers and general public from these harmful radiations is called radiation safety. The primary objective in establishing permissible values for occupational workers is to keep the radiation worker well below a level at which adverse effects are likely to be observed during one's life time. Another objective is to minimize the incidence of genetic effects for the population as a whole. Today's presentation on radiation safety of accelerators will touch up on the following sub-topics: Types of particle accelerators and their applications; AERB directives on dose limits; Radiation Source term of accelerators; Shielding Design-Use of Transmission curves and Tenth Value layers; Challenges for accelerator health physicists

  2. Conduct of Operations at Nuclear Power Plants. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide identifies the main responsibilities and practices of nuclear power plant (NPP) operations departments in relation to their responsibility for the safe functioning of the plant. The guide presents the factors to be considered in structuring the operations department of an NPP; setting high standards of performance; making safety related decisions in an effective manner; conducting control room and field activities in a thorough and professional manner; and maintaining an NPP within established operational limits and conditions. Contents: 1. Introduction; 2. Management and organization of plant operations; 3. Shift complement and functions; 4. Shift routines and operating practices; 5. Control of equipment and plant status; 6. Operations equipment and operator aids; 7. Work control and authorization.

  3. Radiation damage of light guide fibers in gamma radiation field - on-line monitoring of absorption centers formation

    International Nuclear Information System (INIS)

    Blaha, J.; Simane, C.; Finger, M.; Slunecka, M.; Finger, M. Jr.; Sluneckova, V.; Janata, A.; Vognar, M.; Sulc, M.

    2004-01-01

    The kinetics of radiation-induced changes of absorption coefficient was studied by online transmission spectra measurement for two different Kuraray light guide fibers. The samples were irradiated by bremsstrahlung gamma radiation, dose rates were from 2 Gy/s to 25 Gy/s. The kinetic coefficients both for absorption centers formation and for recovery processes were calculated. Good agreement of experimental data and simple one-short-lived absorption center model were received for radiation-hard light guide Kuraray (KFC). The more complicated process was observed on Kuraray (PSM) clear fiber. It was caused by the reaction of the oxygen dissolved in fiber and created radicals. The results are very useful for prediction of an optical fibers response in conditions of new nuclear and particle physics experiments. (author)

  4. Radiation safety standards : an environmentalist's approach

    International Nuclear Information System (INIS)

    Murthy, M.S.S.S.

    1977-01-01

    An integrated approach to the problem of environmental mutagenic hazards leads to the recommendation of a single dose-limit to the exposure of human beings to all man-made mutagenic agents including chemicals and radiation. However, because of lack of : (1) adequate information on chemical mutagens, (2) sufficient data on their risk estimates and (3) universally accepted dose-limites, control of chemical mutagens in the environment has not reached that advanced stage as that of radiation. In this situation, the radiation safety standards currently in use should be retained at their present levels. (M.G.B.)

  5. Basic Safety Standards for Radiation Protection

    International Nuclear Information System (INIS)

    1962-01-01

    Pursuant to the provisions of its Statute relevant to the adoption and application of safety standards for protection against radiation, the Agency convened a panel of experts which formulated the Basic Safety Standards set forth in this publication. The panel met under the chairmanship of Professor L. Bugnard, Director of the French Institut National d'Hygiene, and representatives of the United Nations and of several of its specialized agencies participated in its work. The Basic Safety Standards thus represent the result of a most careful assessment of the variety of complex scientific and administrative problems involved. Nevertheless, of course, they will need to be revised from time to time in the light of advances in scientific knowledge, of comments received from Member States and of the work of other competent international organizations. The Agency's Board of Governors in June 1962 approved the Standards as a first edition, subject to later revision as mentioned above, and authorized Director General Sigvard Eklund to apply the Standards in Agency and Agency-assisted operations and to invite Governments of Member States to take them as a basis in formulating national regulations or recommendations on protection against the dangers arising from ionizing radiations. It is mainly for this last purpose that the Basic Safety Standards are now being published in the Safety Series; but it is hoped that this publication will also interest a much wider circle of readers.

  6. Just-in-time tomography (JiTT): a new concept for image-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pang, G; Rowlands, J A [Toronto-Sunnybrook Regional Cancer Centre, 2075 Bayview Avenue, Toronto M4N 3M5 (Canada); Imaging Research, Sunnybrook and Women' s College Health Sciences Centre, Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto (Canada)

    2005-11-07

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room and guide the radiation therapy treatment. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus it is not adequate for imaging targets with intrafraction motion. In this note, a new approach for image-guided radiation therapy-just-in-time tomography (JiTT)-is proposed. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. (note)

  7. Radiation effects on electronic equipment: a designers'/users' guide for the nuclear power industry

    International Nuclear Information System (INIS)

    Sharp, R.E.; Garlick, D.R.

    1994-01-01

    The Designers'/Users' Guide to the effects of radiation on electronics is published by the Radiation Testing Service of AEA Technology. The aim of the Guide is to document the available information that we have generated and collected over some ten years whilst operating as a radiation effects and design consultancy to the nuclear power industry. We hope that this will enable workers within the industry better to understand the likely effects of radiation on the system or plant being designed and so minimise the problems that can arise. (Author)

  8. Radiation safety program in high dose rate brachytherapy facility at INHS Asvini

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Brachytherapy concerns primarily the use of radioactive sealed sources which are inserted into catheters or applicators and placed directly into tissue either inside or very close to the target volume. The use of radiation in treatment of patients involves both benefits and risks. It has been reported that early radiation workers had developed radiation induced cancers. These incidents lead to continuous work for the improvement of radiation safety of patients and personnel The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. The widespread adoption of high dose rate brachytherapy needs appropriate quality assurance measures to minimize the risks to both patients and medical staff. The radiation safety program covers five major aspects: quality control, quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. This paper will discuss the radiation safety program developedfor a high dose rate brachytherapy facility at our centre which may serve as a guideline for other centres intending to install a similar facility.

  9. Basic safety standards for radiation protection. 1982 ed

    International Nuclear Information System (INIS)

    1982-01-01

    The International Atomic Energy Agency, the World Health Organization, the International Labour Organisation and the Nuclear Energy Agency of the OECD have undertaken to provide jointly a world-wide basis for harmonized and up-to-date radiation protection standards. The new Basic Safety Standards for Radiation Protection are based upon the latest recommendations by the International Commission on Radiological Protection (ICRP) which are essentially contained in its Publication No.26. These new Basic Safety Standards have been elaborated by an Advisory Group of Experts which met in Vienna from 10-14 October 1977, from 23-27 October 1978 and from 1-12 December 1980 under the joint auspices of the IAEA, ILO, WHO and the Nuclear Energy Agency of the OECD. Comments on the draft Basic Safety Standards received from Member States and relevant organizations were taken into account by the Advisory Group in the process of preparation of the revised Basic Safety Standards for Radiation Protection, which are published by the IAEA on behalf of the four sponsoring organizations. One of the main features of this revision is an increased emphasis on the recommendation to keep all exposures to ionizing radiation as low as reasonably achievable, economic and social factors being taken into account; consequently, radiation protection should not only apply the basic dose limits but also comply with this recommendation. Detailed guidance is given to assist those who have to decide on the implementation of this recommendation in particular cases. Another important feature is the recommendation of a more coherent method for achieving consistency in limiting risks to health, irrespective of whether the risk is of uniform or non-uniform exposure of the body.

  10. Radiation in the human environment: health effects, safety and acceptability

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1990-01-01

    This paper reports selectively on three other aspects of radiation (used throughout to mean ionizing radiation) in the human environment: the human health effects of radiation, radiation safety policy and practices, and the acceptability of scientifically justified practices involving radiation exposures. Our argument is that the science of radiation biology, the judgemental techniques of radiation safety, and the social domain of radiation acceptability express different types of expertise that should complement - and not conflict with or substitute for - one another. Unfortunately, communication problems have arisen among these three communities and even between the various disciplines represented within a community. These problems have contributed greatly to the misperceptions many people have about radiation and which are frustrating a constructive dialogue on how radiation can be harnessed to benefit mankind. Our analysis seeks to assist those looking for a strategic perspective from which to reflect on their interaction with practices involving radiation exposures. (author)

  11. Radiation Safety (General) Regulations 1983 (Western Australia)

    International Nuclear Information System (INIS)

    1983-01-01

    The provisions of the Regulations cover, inter alia, the general precautions and requirements relating to radiation safety of the public and radiation workers and registration of irradiating apparatus or premises on which such apparatus is operated. In addition, the Regulations set forth requirements for the operation of such apparatus and for the premises involved. (NEA) [fr

  12. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.; Oldfather, D.; Lindner, A.

    1993-05-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 GeV synchrotron light source facility consisting of a 120 keV electron gun, 50 MeV linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  13. Radiation exposure of the radiologist's eye lens during CT-guided interventions.

    Science.gov (United States)

    Heusch, Philipp; Kröpil, Patric; Buchbender, Christian; Aissa, Joel; Lanzman, Rotem S; Heusner, Till A; Ewen, Klaus; Antoch, Gerald; Fürst, Günther

    2014-02-01

    In the past decade the number of computed tomography (CT)-guided procedures performed by interventional radiologists have increased, leading to a significantly higher radiation exposure of the interventionalist's eye lens. Because of growing concern that there is a stochastic effect for the development of lens opacification, eye lens dose reduction for operators and patients should be of maximal interest. To determine the interventionalist's equivalent eye lens dose during CT-guided interventions and to relate the results to the maximum of the recommended equivalent dose limit. During 89 CT-guided interventions (e.g. biopsies, drainage procedures, etc.) measurements of eye lens' radiation doses were obtained from a dedicated dosimeter system for scattered radiation. The sensor of the personal dosimeter system was clipped onto the side of the lead glasses which was located nearest to the CT gantry. After the procedure, radiation dose (µSv), dose rate (µSv/min) and the total exposure time (s) were recorded. For all 89 interventions, the median total exposure lens dose was 3.3 µSv (range, 0.03-218.9 µSv) for a median exposure time of 26.2 s (range, 1.1-94.0 s). The median dose rate was 13.9 µSv/min (range, 1.1-335.5 µSv/min). Estimating 50-200 CT-guided interventions per year performed by one interventionalist, the median dose of the eye lens of the interventional radiologist does not exceed the maximum of the ICRP-recommended equivalent eye lens dose limit of 20 mSv per year.

  14. Use of a Graded Approach in the Application of the Safety Requirements for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt? standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  15. Radiation protection and radiation safety: CERN and its host states to sign a tripartite agreement.

    CERN Multimedia

    2010-01-01

    On 15 November CERN and its Host States will sign a tripartite agreement that replaces the existing bilateral agreements in matters of radiation protection and radiation safety at CERN. It will provide, for the first time, a single forum where the three parties will discuss how maximum overall safety can best be achieved in the specific CERN context.   CERN has always maintained close collaboration with its Host States in matters of safety. “The aim of this collaboration is especially to ensure best practice in the field of radiation protection and the safe operation of CERN’s facilities”, explains Ralf Trant, Head of the Occupational Health & Safety and Environmental Protection (HSE) Unit. Until today, CERN’s collaboration with its Host States was carried out under two sets of bilateral agreements: depending on which side of the French-Swiss border they were being carried out on, a different framework applied to the same activities. This approach has b...

  16. Construction of data base for radiation safety assessment of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Saigusa, Shin

    2001-01-01

    Data base with an electronic text on the safety assessment of low dose ionizing radiation have been constructed. The contents and the data base system were designed to provide useful information to Japanese citizens, radiation specialists, and decision makers for a scientific and reasonable understanding of radiation health effects, radiation risk assessment, and radiation protection. The data base consists of the following four essential parts, namely, ORIGINAL DESCRIPTION, DETAILED INFORMATION, TOPIC INFORMATION, and RELATED INFORMATION. The first two parts of the data base are further classified into following subbranches: Radiobiological effects, radiation risk assessment, and radiation exposure and protection. (author)

  17. X-ray and nuclear radiation facilities: personnel safety features

    International Nuclear Information System (INIS)

    Mason, W.J.; Pipes, E.W.; Rucker, T.R.; Smith, D.N.; West, C.M.

    1976-10-01

    The Oak Ridge Y-12 Plant is a research and production installation. The nature and versatility of this work require the use of a large number and variety of x-ray and radiographic sources for nondestructive testing and material analyses. Presently, there are over 80 x-ray generators in the plant, which range in size from small, portable units which operate at a less than 50 kilovolts potential and 0.1 milliampere current to an electron linear accelerator which operates at 12-million electron volts and produces a radiation beam of such intensity that it could deliver a lethal dose to man in a fraction of a minute. There are also almost 50 gamma and neutron sources in use in the plant. These units range in size from a few millicuries to several hundred curies. Although the radiation safety at each of these facilities was considered adequate, the administrative and maintenance procedures became unduly complicated. Accordingly, engineering standards and uniform operating procedures were considered necessary to alleviate these complications and, in so doing, provide an improved measure of radiation safety. Development and implementation of these standards are described and the general philosophy and approach to these standards are outlined. Use of a matrix (type of installation versus radiation safety feature) to facilitate equipment classification and personnel safety feature requirements is presented. Included is a set of the standards showing formats, matrices, etc., and the detailed standards for each safety feature

  18. The Radiation Safety Interlock System for Top-Up Mode Operation at NSRRC

    CERN Document Server

    Chen Chien Rong; Kao, Sheau-Ping; Liu, Joseph; Sheu, Rong-Jiun; Wang, Jau-Ping

    2005-01-01

    The radiation safety interlock systems of NSRRC have been operated for more than a decade. Some modification actions have been implemented in the past to perfect the safe operation. The machine and its interlock system were originally designed to operate at the decay mode. Recently some improvement programs to make the machine injection from original decay mode to top-up mode at NSRRC has initiated. For users at experimental area the radiation dose resulted from top-up re-fill injections where safety shutters of beam-lines are opened will dominate. In addition to radiation safety action plans such as upgrading the shielding, enlarging the exclusion zones and improving the injection efficiency, the interlock system for top-up operation is the most important to make sure that injection efficiency is acceptable. To ensure the personnel radiation safety during the top-up mode, the safety interlock upgrade and action plans will be implemented. This paper will summarize the original design logic of the safety inter...

  19. Winning public confidence in radiation safety standards

    International Nuclear Information System (INIS)

    Skelcher, B.W.

    1982-01-01

    Evaluations using cost/benefit analysis and the ALARA principle should take account of psychological as well as material considerations. Safety is a basic human need which has to be met. It is also subjective and therefore has to be understood by the individual. The professional health physicist has a duty to see that radiation safety is understood by the general public. (author)

  20. Radiation safety considerations and compliance within equine veterinary clinics: Results of an Australian survey

    International Nuclear Information System (INIS)

    Surjan, Y.; Ostwald, P.; Milross, C.; Warren-Forward, H.

    2015-01-01

    Objective: To examine current knowledge and the level of compliance of radiation safety principles in equine veterinary clinics within Australia. Method: Surveys were sent to equine veterinary surgeons working in Australia. The survey was delivered both online and in hardcopy format; it comprised 49 questions, 15 of these directly related to radiation safety. The participants were asked about their current and previous use of radiation-producing equipment. Information regarding their level of knowledge and application of radiation safety principles and practice standards was collected and analysed. Results: The use of radiation-producing equipment was evident in 94% of responding clinics (a combination of X-ray, CT and/or Nuclear Medicine Cameras). Of those with radiation-producing equipment, 94% indicated that they hold a radiation licence, 78% had never completed a certified radiation safety course and 19% of participants did not use a personal radiation monitor. In 14% of cases, radiation safety manuals or protocols were not available within clinics. Conclusions: The study has shown that knowledge and application of guidelines as provided by the Code of Practice for Radiation Protection in Veterinary Medicine (2009) is poorly adhered to. The importance of compliance with regulatory requirements is pivotal in minimising occupational exposure to ionising radiation in veterinary medicine, thus there is a need for increased education and training in the area. - Highlights: • Application of the Code of Practice for Veterinary Medicine is poorly adhered to. • Majority of veterinary clinics had not completed certified radiation safety course. • One-fifth of participants did not use personal radiation monitoring. • Increased education and training in area of radiation safety and protection required to generate compliance in clinics

  1. Topical issues in nuclear, radiation and radioactive waste safety. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The IAEA International Conference on Topical Issues in Nuclear, Radiation and Radioactive Waste Safety was held in Vienna, Austria, 30 August - 4 September 1998 with the objective to foster the exchange of information on topical issues in nuclear, radiation and radioactive waste safety, with the aim of consolidating an international consensus on: the present status of these issues; priorities for future work; and needs for strengthening international co-operation, including recommendations for the IAEA`s future activities. The document includes 43 papers presented at the Conference dealing with the following topical issues: Safety Management; Backfitting, Upgrading and Modernization of NPPs; Regulatory Strategies; Occupational Radiation Protection: Trends and Developments; Situations of Chronic Exposure to Residual Radioactive Materials: Decommissioning and Rehabilitation and Reclamation of Land; Radiation Safety in the Far Future: The Issue of Long Term Waste Disposal. A separate abstract and indexing were provided for each paper. Refs, figs, tabs

  2. Topical issues in nuclear, radiation and radioactive waste safety. Contributed papers

    International Nuclear Information System (INIS)

    1998-08-01

    The IAEA International Conference on Topical Issues in Nuclear, Radiation and Radioactive Waste Safety was held in Vienna, Austria, 30 August - 4 September 1998 with the objective to foster the exchange of information on topical issues in nuclear, radiation and radioactive waste safety, with the aim of consolidating an international consensus on: the present status of these issues; priorities for future work; and needs for strengthening international co-operation, including recommendations for the IAEA's future activities. The document includes 43 papers presented at the Conference dealing with the following topical issues: Safety Management; Backfitting, Upgrading and Modernization of NPPs; Regulatory Strategies; Occupational Radiation Protection: Trends and Developments; Situations of Chronic Exposure to Residual Radioactive Materials: Decommissioning and Rehabilitation and Reclamation of Land; Radiation Safety in the Far Future: The Issue of Long Term Waste Disposal. A separate abstract and indexing were provided for each paper

  3. Radiation protection and safety in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.

    1995-01-01

    Very few organisations have to address such a diverse and complex range of radiation safety matters as the Australian Defence Organisation. The Australian Defence Force and the Department of Defence (its military and civilian branches) have to comply with strict regulations in normal peace time activities. The Surgeon-General, to whom responsibility for policy in radiation protection and safety falls, has established a Defence Radiation Safety Committee, which in turn oversees four specialist subcommittees. Their tasks include recommending policy and doctrine in relation to radiation safety, overseeing the implementation of appropriate regulations, monitoring their compliance. generating the relevant documentation (particularly on procedures to be followed), developing and improving any necessary training courses, and providing sound technical advice whenever and to whomever required. The internal Defence regulations do not permit radiation doses to exceed those limits recommended by the Australian National Health and Medical Research Council and precautions are taken to ensure during normal peace time duties that these levels are not exceeded. At times of national emergency, the Surgeon-General provides guidance and advice to military commanders on the consequences of receiving dose levels that would not be permitted during normal peace time activities. The paper describes the methods adopted to implement such arrangements

  4. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    International Nuclear Information System (INIS)

    Yunus, N A; Abdullah, M H R O; Said, M A; Ch'ng, P E

    2014-01-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia

  5. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    Science.gov (United States)

    Yunus, N. A.; Abdullah, M. H. R. O.; Said, M. A.; Ch'ng, P. E.

    2014-11-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia.

  6. ASN guide project. Safety policy and management in INBs (base nuclear installations)

    International Nuclear Information System (INIS)

    2010-01-01

    This guide presents the recommendations of the French Nuclear Safety Authority (ASN) in the field of safety policy and management (PMS) for base nuclear installations (INBs). It gives an overview and comments of some prescriptions of the so-called INB order and PMS decision. These regulatory texts define a framework for provisions any INB operator must implement to establish his safety policy, to define and implement a system which allows the safety to be maintained, the improvement of his INB safety to be permanently looked for. The following issues are addressed: operator's safety policy, identification of elements important for safety, of activities pertaining to safety, and of associated requirements, safety management organization and system, management of activities pertaining to safety, documentation and archiving

  7. Radiation safety training for industrial irradiators: What are we trying to accomplish?

    International Nuclear Information System (INIS)

    Smith, M.A.

    1998-01-01

    Radiation safety training at an industrial irradiator facility takes a different approach than the traditional methods and topics used at other facilities. Where the more routine industrial radiation users focus on standard training topics of contamination control, area surveys, and the traditional dogma of time, distance, and shielding, radiation safety in an industrial irradiation facility must be centered on preventing accidents. Because the primary methods for accomplishing that goal are engineering approaches such as safety system interlocks, training provided to facility personnel should address system operation and emergency actions. This presents challenges in delivering radiation safety training to an audience of varied educational and technical background where little to no commercially available training material specific to this type of operation exists

  8. Sentinel lymph node imaging guided IMRT for prostate cancer: Individualized pelvic radiation therapy versus RTOG guidelines

    Directory of Open Access Journals (Sweden)

    Chien P. Chen, MD, PhD

    2016-01-01

    Conclusions: SLN-guided pelvic radiation therapy can be used to either treat the most critical nodes only or as an addition to RTOG guided pelvic radiation therapy to ensure that the most important nodes are included.

  9. Internet applications in radiation safety

    International Nuclear Information System (INIS)

    Hill, P.; Geisse, C.; Wuest, E.

    1998-01-01

    As a means of effective communication the Internet is presently becoming more and more important in German speaking countries, too. Its possibilities to exchange and to obtain information efficiently and rapidly are excellent. Internet and email access are available now in most institutions for professional use. Internet services of importance to radiation safety professionals are described. (orig.) [de

  10. Nuclear safety and radiation protection report of the nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  11. Nuclear and radiation safety in Kazakhstan

    International Nuclear Information System (INIS)

    Kim, A.A.

    2001-01-01

    Major factors by which the radiation situation in Kazakhstan is formed are: enterprises of nuclear fuel cycle, including uranium mining and milling activity and geological exploration of uranium; nuclear power plant and research reactors; residues of atmospheric and underground nuclear explosions, which were conducted for military and peaceful purposes at different test sites; mining and milling of commercial minerals accompanied by radioactive substances; use of radioactive sources in industry, medicine, agriculture and scientific research. Since 1991, after getting sovereignty, creation was started of an own legislative basis of the country for the field of atomic energy use. It includes laws, regulations and standards for nuclear and radiation safety of nuclear installations, personnel, involved in the activity with using of atomic energy, population and environment. An applicable system of state regulation in this area (including a central regulatory body in the field of atomic energy use) and various ministries, agencies and committees, was created. As a result of these reforms, regulatory activities were improved in the country. This paper presents the current matters of nuclear and radiation safety in Kazakhstan and some difficulties which Kazakhstan encountered during the transition to an independent state. (author)

  12. A concept of radiation safety in radiodiagnosis and radiotherapy

    International Nuclear Information System (INIS)

    Stavitskij, R.V.; Vasil'ev, V.N.; Lebedev, L.A.; Blinov, N.N.

    1991-01-01

    Conceptual problems of up to date radiation safety dosimetric ensurance in radiation diagnostics and radiotherapy of nontumor diseases are as follows: selection of dosimetric criteria of nonequilibrium radiation influence with an account of probable remote radiation aftereffects; determination of dose-response dependence character by low radiation doses; development of optimal technological principles for radiation diagnostics and therapy; development of organizational and methodical approaches to decreasing dose loads by radiation diagnostics and therapy of nontumor diseases; optimization of studies by ALARA principle

  13. Radiation Protection Proclamation

    International Nuclear Information System (INIS)

    1993-01-01

    A proclamation of the Government of Ethiopia, cited as the radiation protection proclamation number 79/1993 was prepared with the objective to establish a national radiation protection authority that formulates policies, controls and supervises activities involving all sources of radiation and lay down laws governing such activities in order to ensure public safety against associated hazards while allowing radiation related activities to be carried out for the benefit of the public . The Authority is guided by an inter-ministerial board and is accountable to the Ethiopian Science and Technology Commission

  14. Operations report 1985 of the Department of Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.; Frenkler, K.L.

    1986-04-01

    Under the heading 'Licensing' the report deals with licensing procedures and the handling of nuclear-fuels and radioactive materials. Operational radiation protection is concerned with operational and personnel monitoring, mathematical methods and safety analyses. Environmental protection deals with emission control, immission monitoring and meteorological measurements, and safety technology with α/β-analysis, dosimetry, equipment servicing and mechanics, nuclear material safeguards. Other subdepartments take care of industrial safety, physical protection, emergency protection and training. Subjects dealt with, too, are dispersion pollutants in atmosphere and environment, further development of radiation protection methods, and the bibliography of radiation protection in KFA. (HK) [de

  15. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  16. A guide to ventilation requirements for uranium mines and mills. Regulatory guide G-221

    International Nuclear Information System (INIS)

    2003-06-01

    The purpose of G-221 is to help persons address the requirements for the submission of ventilation-related information when applying for a Canadian Nuclear Safety Commission (CNSC) licence to site and construct, operate or decommission a uranium mine or mill. This guide is also intended to help applicants for a uranium mine or mill licence understand their operational and maintenance obligations with respect to ventilation systems, and to help CNSC staff evaluate the adequacy of applications for uranium mine and mill licences. This guide is relevant to any application for a CNSC licence to prepare a site for and construct, operate or decommission a uranium mine or mill. In addition to summarizing the ventilation-related obligations or uranium mine and mill licensee, the guide describes and discusses the ventilation-related information that licence applicants should typically submit to meet regulatory requirements. The guide pertains to any ventilation of uranium mines and mills for the purpose of assuring the radiation safety of workers and on-site personnel. This ventilation may be associated with any underground or surface area or premise that is licensable by the CNSC as part of a uranium mine or mill. These areas and premises typically include mine workings, mill buildings, and other areas or premises involving or potentially affected by radiation or radioactive materials. Some examples of the latter include offices, effluent treatment plants, cafeterias, lunch rooms and personnel change-rooms. (author)

  17. Occupational radiation exposure in international recommendations on radiation protection: Basic standards under review

    International Nuclear Information System (INIS)

    Kraus, W.

    1996-01-01

    The ICRP publication 60 contains a number of new recommendations on the radiological protection of occupationally exposed persons. The recommendations have been incorporated to a very large extent in the BSS, the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, a publication elaborated by the IAEA in cooperation with many other international organisations, and in the Euratom Basic Safety Standards (EUR) to be published soon. However, there exist some considerable discrepancies in some aspects of the three publications. The ICRP committee has set up a task group for defining four general principles of occupational radiation protection, and a safety guide is in preparation under the responsibility of the IAEA. ''StrahlenschutzPraxis'' will deal with this subject in greater detail after publication of these two important international publications. The article in hand discusses some essential aspects of the recommendations published so far. (orig.) [de

  18. Probabilistic safety analysis procedures guide. Sections 1-7 and appendices. Volume 1, Revision 1

    International Nuclear Information System (INIS)

    Bari, R.A.; Buslik, A.J.; Cho, N.Z.

    1985-08-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. It will be revised as comments are received, and as experience is gained from its use. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of issues affecting reactor safety. This first volume of the guide describes the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant (i.e., intrinsic to plant operation) and from loss of off-site electric power. The scope includes human reliability analysis, a determination of the importance of various core damage accident sequences, and an explicit treatment and display of uncertainties for key accident sequences. The second volume deals with the treatment of the so-called external events including seismic disturbances, fires, floods, etc. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance). This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are valuable for regulatory decision making. For internal events, methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study. For external events, more explicit guidance is given

  19. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  20. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  1. Review on conformance of JMTR reactor facility to safety design examination guides for water-cooled reactors for test and research

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Naka, Michihiro; Sakuta, Yoshiyuki; Hori, Naohiko; Matsui, Yoshinori; Miyazawa, Masataka

    2009-03-01

    The safety design examination guides for water-cooled reactors for test and research are formulated as fundamental judgements on the basic design validity for licensing from a viewpoint of the safety. Taking the refurbishment opportunity of the JMTR, the conformance of the JMTR reactor facility to current safety design examination guides was reviewed with licensing documents, annexes and related documents. As a result, it was found that licensing documents fully satisfied the requirements of the current guides. Moreover, it was found that the JMTR reactor facility itself also satisfied the guides requirements as well as the safety performance, since the facility with safety function such as structure, systems, devices had been installed based on the licensing documents under the permission by the regulation authority. Important devices for safety have been produced under authorization of regulating authority. Therefore, it was confirmed that the licensing was conformed to guides, and that the JMTR has enough performance. (author)

  2. Documents pertaining to safety control of nuclear facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls the safety of nuclear facilities in Finland. This control encompasses on one hand the evaluation of plant safety on the basis of plans and analyses pertaining to the plant and on the other hand the inspection of plant structures, systems and components as well as of operational activity. STUK also monitors plants operational experience feedback and technical developments in the field, as well as the development of safety research and takes the necessary measures on their basis. Guide YVL 1.1 describes how STUK controls the design, construction and operation of nuclear power plants. The documents to be submitted to STUK are described in the nuclear energy legislation and YVL guides. This guide presents the mode of delivery, quality, contents and number of documents to be submitted to STUK

  3. Forklift safety a practical guide to preventing powered industrial truck incidents and injuries

    CERN Document Server

    Swartz, George

    1999-01-01

    Written for the more than 1.5 million powered industrial truck operators and supervisors in general industry, as well as those in the construction and marine industries, this Second Edition provides an updated guide to training operators in safety and complying with OSHA's 1999 forklift standard. This edition of Forklift Safety includes a new chapter devoted to the new OSHA 1910.178 standard and new information regarding dock safety, narrow aisle trucks, off-dock incidents, tip-over safety, pallet safety, and carbon monoxide.

  4. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  5. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-06-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  6. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  7. Code of practice for safety in laboratory - non ionising radiation

    International Nuclear Information System (INIS)

    Ramli Jaya; Mohd Yusof Mohd Ali; Khoo Boo Huat; Khatijah Hashim

    1995-01-01

    The code identifies the non-ionizing radiation encountered in laboratories and the associated hazards. The code is intended as a laboratory standard reference document for general information on safety requirements relating to the usage of non-ionizing radiations in laboratories. The nonionizing radiations cover in this code, namely, are ultraviolet radiation, visible light, radio-frequency radiation, lasers, sound waves and ultrasonic radiation. (author)

  8. Radiation safety infrastructure in developing countries: a proactive approach for integrated and continuous improvement

    International Nuclear Information System (INIS)

    Mrabit, Khammar

    2008-01-01

    The International Atomic Energy Agency (the Agency) is authorized, by its statute, to establish or adopt safety standards for the protection of health and minimization of danger to life and property, and to provide for their application to its own operations as well as to operations under its control or supervision. The Agency has been assisting, since the mid 1960 's, its Member States through mainly its Technical Cooperation Programme (TCP) to improve their national radiation safety infrastructures. However up to the early nineties, assistance was specific and mostly ad hoc and did not systematically utilize an integrated and harmonized approach to achieving effective and sustainable national radiation safety infrastructures in Member States. An unprecedented and integrated international cooperative effort was launched by the Agency in 1994 to establish and/or upgrade the national radiation safety infrastructure in more than 90 countries within the framework of its TCP through the so-called Model project on upgrading radiation protection infrastructure. In this project proactive co-operation with Member States was used in striving towards achieving an effective and sustainable radiation safety infrastructure, compatible with the International basic safety standards for protection against ionizing radiation and for the safety of radiation sources (the BSS) and related standards. Extension to include compatibility with the guidance of the Code of Conduct on the Safety and Security of Radioactive Sources occurred towards the end of the Model Project in December 2004, and with the more recent ensuing follow up projects that started in 2005. The Model Project started with 5 countries in 1994 and finished with 91 countries in 2004. Up to the end of 2007 more than one hundred Member States had been participating in follow up projects covering six themes - namely: legislative and regulatory infrastructure; occupational radiation protection; radiation protection in

  9. Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses.

    Science.gov (United States)

    Guberina, Nika; Forsting, Michael; Ringelstein, Adrian; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Theysohn, Jens; Wetter, Axel

    2018-03-28

    To examine radiation dose levels of CT-guided interventional procedures of chest, abdomen, spine and extremities on different CT-scanner generations at a large multicentre institute. 1,219 CT-guided interventional biopsies of different organ regions ((A) abdomen (n=516), (B) chest (n=528), (C) spine (n=134) and (D) extremities (n=41)) on different CT-scanners ((I) SOMATOM-Definition-AS+, (II) Volume-Zoom, (III) Emotion6) were included from 2013-2016. Important CT-parameters and standard dose-descriptors were retrospectively examined. Additionally, effective dose and organ doses were calculated using Monte-Carlo simulation, following ICRP103. Overall, radiation doses for CT interventions are highly dependent on CT-scanner generation: the newer the CT scanner, the lower the radiation dose imparted to patients. Mean effective doses for each of four procedures on available scanners are: (A) (I) 9.3mSv versus (II) 13.9mSv (B) (I) 7.3mSv versus (III) 11.4mSv (C) (I) 6.3mSv versus (II) 7.4mSv (D) (I) 4.3mSv versus (II) 10.8mSv. Standard dose descriptors [standard deviation (SD); CT dose index vol (CTDI vol ); dose-length product (DLP body ); size-specific dose estimate (SSDE)] were also compared. Effective dose, organ doses and SSDE for various CT-guided interventional biopsies on different CT-scanner generations following recommendations of the ICRP103 are provided. New CT-scanner generations involve markedly lower radiation doses versus older devices. • Effective dose, organ dose and SSDE are provided for CT-guided interventional examinations. • These data allow identifying organs at risk of higher radiation dose. • Detailed knowledge of radiation dose may contribute to a better individual risk-stratification. • New CT-scanner generations involve markedly lower radiation doses compared to older devices.

  10. Providing current radiation safety according to new version of 'Ukrytie' object regulation

    International Nuclear Information System (INIS)

    Borovoj, A.A.; Vysotskij, E.D.; Krinitsyn, A.P.; Bogatov, S.A.

    1999-01-01

    Main provisions are given of the 'Ukryttia' object's Regulation related to provision of radiation safety during the object's operation. The safety is provided due to the realization by the object's personnel of functions of global monitoring of current radiation conditions, as well as of the measures of operative or preventive suppression of radiation abnormalities sources

  11. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    International Nuclear Information System (INIS)

    1994-01-01

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs

  12. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs.

  13. Proceeding of Radiation Safety and Environment; Prosiding Presentasi Ilmiah Keselamatan Radiasi dan Lingkungan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Scientific Presentation of Radiation Safety and Environment was held on 20-21 august 1996 at Center of Research Atomic Energy Pasar Jum'at, Jakarta, Indonesia. Have presented 50 papers about Radiation Safety, dosimetry and standardization, environment protection and radiation effect.

  14. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  15. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  16. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  17. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    Science.gov (United States)

    Aksenov, A. F.; Burnazyan, A. I.

    1985-01-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  18. IAEA activities to prepare safety codes and guides for thermal neutron nuclear power plants

    International Nuclear Information System (INIS)

    Iansiti, E.

    1977-01-01

    In accordance with the programme presented to, and endorsed by, the eighteenth General Conference in September 1974, the IAEA is now developing a complete set of safety codes and guides that will represent recommendations for the safety of thermal neutron power plants. The safety codes outline the minimum requirements for achieving this safety, and the safety guides set forth the criteria, procedures and methods to implement the safety codes. The whole programme is directed towards the five areas of Governmental Organization, Siting, Design, Operation, and Quality Assurance. One Scientific Secretary from the Agency Secretariat is responsible for each of these areas and a Co-ordinator takes care of common problems. For the development of each of these documents a working group of a few world experts is first convened which prepare a preliminary draft. This draft is then reviewed by a larger, international Technical Review Committee (one for each of the five areas) and a subsequent review by the Senior Advisory Group - with representatives from 20 states - ensures that the document is well coordinated within the programme. At this stage, it is sent to Member States for comments. The Technical Review Committee concerned is reconvened to integrate these comments into the document, and, after a final review by the Senior Advisory Group, the document is ready for transmission to the Director General of the Agency for endorsement and publication. A preliminary to this procedure is the collation by the Secretariat of large amounts of information submitted by Member States so that the first draft is really based on a very complete knowledge of what is done in each area all over the world. This collation frequently reveals differences in approach which are not random but due, rather, to the local conditions and the types of reactors. These differences must be harmonized in the documents produced without detracting from the effectiveness of the code or guide. The whole

  19. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    International Nuclear Information System (INIS)

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  20. Modernization of safety system for the radiation facility for industrial sterilization

    International Nuclear Information System (INIS)

    Drndarevic, V.; Djuric, D.; Koturovic, A.; Arandjelovic, M.; Mikic, R.

    1995-01-01

    Modernization of the existing safety system of the radiation facility for industrial sterilization at the Vinca Institute of nuclear science is done. In order to improve radiation safety of the facility, the latest recommendations and requirements of IAEA have been implemented. Concept and design of the modernized system are presented. The new elements of the safety system are described and the improvements achieved by means of this modernization are pointed out. (author)

  1. The IAEA safety standards for radiation, waste and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    1997-01-01

    This paper presents a brief description of the standards for radiation, waste and nuclear safety established by the International Atomic Energy Agency (IAEA). It provides a historical overview of their development and also summarizes the standards' current preparation and review process. The final paragraphs offer an outlook on future developments. (author)

  2. Anticipated development of radiation safety corresponding to utilization of nuclear technology in Vietnam

    International Nuclear Information System (INIS)

    Tran, Toan Ngoc; Le, Thiem Ngoc

    2010-01-01

    In the past, due to the limited application of radiation and radioisotope in the national economic branches, radiation safety was not paid much attention to in Vietnam. However, according to the Strategy for Peaceful Utilization of Atomic Energy up to 2020 approved by the Prime Minister on January 3, 2006 the application of radiation and radioisotopes as well as nuclear power in Vietnam is expected increasing strongly and widely, then radiation safety should be developed correspondingly. This paper presents the history of radiation protection, the current status and prospect of utilization of atomic energy and the anticipated development of the national radiation safety system to meet the demand of utilization of nuclear technology in Vietnam. (author)

  3. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Han, Eun Ok

    2007-01-01

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76±11.20, 90.55±8.59, 80.58±11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55±9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in married

  4. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of)

    2007-06-15

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76{+-}11.20, 90.55{+-}8.59, 80.58{+-}11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55{+-}9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in

  5. Calculating the cost of research and Development in nuclear and radiation safety

    International Nuclear Information System (INIS)

    Matsulevich, N.Je.; Nosovs'ka, A.A.

    2010-01-01

    Methodological support assessing the cost of research and development in the area of nuclear and radiation safety regulation is considered. Basic methodological recommendations for determining labor expenditures for research and development in nuclear and radiation safety are provided.

  6. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  7. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  8. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  9. Nuclear safety and radiation protection report of Tricastin nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the Tricastin NPPs (INBs no. 87 and 88). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  10. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  11. Nuclear safety and radiation protection report of Cattenom nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  12. Nuclear safety and radiation protection report of Chooz nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  13. Nuclear safety and radiation protection report of Flamanville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  14. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  15. Report on the Uranium Mine Radiation Safety Course

    International Nuclear Information System (INIS)

    1987-06-01

    Since 1981 the Canadian Institute for Radiation Safety (CAIRS) has administered a semi-annual course on radiation safety in uranium mines under contract to and in consultation with the Atomic Energy Control Board (AECB). The course is intended primarily for representatives from mining companies, regulatory agencies, unions, and mine and mill workers. By the terms of its contract with the AECB, CAIRS is required to submit a report on each course it conducts. This is the report on the June 1987 course. It lists the course objectives and the timetable, outlines for each lecture, the lecturers' resumes, and the participants. The students' evaluations of the course are included

  16. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2c, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Europe via the Regional Project RER/9/109 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Greece and Belarus are key partners in the European region.

  17. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2d, June 2013

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Latin America via the Regional Project RLA/9/070 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Argentina and Brazil are key partners in the Latin-American region.

  18. The nuclear safety authority (ASN) presents its report on the status of nuclear safety and radiation protection in France in 2010

    International Nuclear Information System (INIS)

    2011-01-01

    After a presentation of the French nuclear safety authority (ASN) and of some events which occurred in 2010, this report present the actions performed by the ASN in different fields: nuclear activities (ionizing radiations and risks for health and for the environment), principles and actors of control of nuclear safety, radiation protection and environment protection, regulation, control of nuclear activities and of exposures to ionizing radiations, emergency situations, public information and transparency, international relationship. It proposes a regional overview of nuclear safety and radiation protection in France. It addresses the activities controlled by the ASN: medical and non medical usages of ionizing radiations, transportation of radioactive materials, electronuclear power stations, installations involved in the nuclear fuel cycle, research nuclear installations and other nuclear installations, safety in basic nuclear installation dismantling, radioactive wastes and polluted sites

  19. Requirements of radiation and safety protection for NORM in petroleum and gas facilities

    International Nuclear Information System (INIS)

    Machavane, Edna Felicina Lisboa

    2017-01-01

    The work establishes radiation protection and safety requirements for NORM in oil and gas installations, enabling the National Atomic Energy Agency to draw up regulations on NORM. A bibliographic review and measurement of oil sludge activity concentrations was carried out to reach the objective. Significant amounts of NORM originating from reservoir rock are encountered during production, maintenance and decommissioning. The oil and gas industry operates in all climates and environments including the most arduous conditions and is continually challenged to achieve high operating efficiency while maintaining a high standard of safety and control - this includes the need to maintain control over exposure as well as protecting the public and the environment through the proper management of tailings that may be radiologically and chemically hazardous. The main objective of this work was not only to present the main radiological protection and safety requirements for NORM in oil and gas installations, but also to guide the competent governmental authorities of the Republic of Mozambique, that the installation of a radiometry laboratory and elaboration of NORM regulations involve a great control of radiological safety. The regulatory authority is responsible for authorizing facilities for the storage of radioactive waste, including the storage of contaminated tailings. It is recommended that studies of this kind be made to analyze the concentration of naturally occurring radioisotope activity. (author)

  20. Tornadoes: Nature's Most Violent Storms. A Preparedness Guide Including Safety Information for Schools.

    Science.gov (United States)

    American National Red Cross, Washington, DC.

    This preparedness guide explains and describes tornadoes, and includes safety information for schools. A tornado is defined as a violently rotating column of air extending from a thunderstorm to the ground. The guide explains the cause of tornadoes, provides diagrams of how they form, describes variations of tornadoes, and classifies tornadoes by…