WorldWideScience

Sample records for radiation resistant structural

  1. Heat resistant/radiation resistant cable and incore structure test device for FBR type reactor

    International Nuclear Information System (INIS)

    Tanimoto, Hajime; Shiono, Takeo; Sato, Yoshimi; Ito, Kazumi; Sudo, Shigeaki; Saito, Shin-ichi; Mitsui, Hisayasu.

    1995-01-01

    A heat resistant/radiation resistant coaxial cable of the present invention comprises an insulation layer, an outer conductor and a protection cover in this order on an inner conductor, in which the insulation layer comprises thermoplastic polyimide. In the same manner, a heat resistant/radiation resistant power cable has an insulation layer comprising thermoplastic polyimide on a conductor, and is provided with a protection cover comprising braid of alamide fibers at the outer circumference of the insulation layer. An incore structure test device for an FBR type reactor comprises the heat resistant/radiation resistant coaxial cable and/or the power cable. The thermoplastic polyimide can be extrusion molded, and has excellent radiation resistant by the extrusion, as well as has high dielectric withstand voltage, good flexibility and electric characteristics at high temperature. The incore structure test device for the FBR type reactor of the present invention comprising such a cable has excellent reliability and durability. (T.M.)

  2. Influence of mutations in some structural genes of heat-shock proteins on radiation resistance of Escherichia coli

    International Nuclear Information System (INIS)

    Verbenko, V.N.; Kuznetsova, L.V.; Bikineeva, E.G.; Kalinin, V.L.

    1992-01-01

    Lethal effects of γ-irradiation were studied in Escherichia coli strains with normal repair genotype and in radiation-resistant Gam r strains, both carrying additional mutations in the structural genes dnaK, grpE, groES or groEL. The null mutation ΔdnaK52::Cm r enhanced radiation sensitivity of wild-type cells and abolished the effect of heat induced rediation-resistance (ETIRR) and elevated radiation resistance of the Gam r strains

  3. Structural Component Fabrication and Characterization of Advanced Radiation Resistant ODS Steel for Next Generation Nuclear Systems

    International Nuclear Information System (INIS)

    Noh, Sang Hoon; Kim, Young Chun; Jin, Hyun Ju; Choi, Byoung Kwon; Kang, Suk Hoon; Kim, Tae Kyu

    2016-01-01

    In a sodium-cooled fast reactor (SFR), the coolant outlet temperature and peak temperature of the fuel cladding tube will be about 545 .deg. C and 700 .deg. C with 250 dpa of a very high neutron dose rate. To realize this system, it is necessary to develop an advanced structural material having high creep and irradiation resistance at high temperatures. Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling severely occurred to 120dpa at high temperatures and this eventually leads to a decrease of the mechanical properties and dimensional stability. Advanced radiation resistant ODS steel (ARROS) has been newly developed for the in-core structural components in SFR, which has very attractive microstructures to achieve both superior creep and radiation resistances at high temperatures [4]. Nevertheless, the use of ARROS as a structural material essentially requires the fabrication technology development for component parts such as sheet, plate and tube. In this study, plates and tubes were tentatively fabricated with a newly developed alloy, ARROS. Microstructures as well as mechanical properties were also investigated to determine the optimized condition of the fabrication processes.

  4. Radiation resistant modified polypropylene

    International Nuclear Information System (INIS)

    Bojarski, J.; Zimek, Z.

    1997-01-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs

  5. Development of radiation resistant structural materials utilizing fission research reactors in Japan (Role of research reactors)

    International Nuclear Information System (INIS)

    Shikama, T.; Tanigawa, H.; Nozawa, T.; Muroga, T.; Aoyama, T.; Kawamura, H.; Ishihara, M.; Ito, C.; Kaneda, S.; Mimura, S.

    2009-01-01

    Structural materials for next-generation nuclear power systems should have a good radiation resistance, where the expected accumulation dose will largely exceed 10 dpa. Among several candidate materials, materials of five categories, 1. Austenitic steels, including high nickel alloys, 2. Low activation ferritic martensitic steels, 3. ODS steels (austenitic and ferritic), 4. Vanadium based alloys, 5. Silicon carbide composites (SiC/SiCf). All have been most extensively studied in Japan, in collaboration among industries, national institutes such as Japan Atomic Energy Agency (JAEA), National Institute for Fusion Science (NIFS) and National Institute for Materials Science (NIMS), and universities. The high nickel base alloys were studied for their low swelling behaviors mainly by the NIMS and the austenitic steels are studied for their reliable engineering data base and their reliable performance in irradiation environments mainly by the JAEA, mainly for their application in the near-term projects such as the ITER and the Sodium Cooled Fast Reactors. The most extensive studies are now concentrated on the Low Activation Ferritic Marsensitic steels and ODS steels, for their application in a demonstration fusion reactor and prototype sodium cooled fast reactors. Fundamental studies on radiation effects are carried out, mainly utilizing Japan Materials Testing Rector (JMTR) with its flexible irradiation ability, up to a few dpa. For higher dpa irradiation, a fast test reactor, JOYO is utilized up to several 10s dpa. Some international collaborations such as Japan/USA and Japan/France are effective to utilize reactors abroad, such as High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory, and sodium cooled high flux fast reactors in France. Silicon carbide based composites are extensively studied by university groups led by Kyoto University and the JAEA. For their performance in heavy irradiation environments, the Japan/USA collaboration plays an important role

  6. Biological improvement of radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K J; Lee, Y K; Kim, J S; Kim, J K; Lee, S J

    2000-08-01

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes.

  7. Biological improvement of radiation resistance

    International Nuclear Information System (INIS)

    Chun, K. J.; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.

    2000-08-01

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes

  8. Radiation resistance and molecular structure of poly(arylene ether sulphone)s

    International Nuclear Information System (INIS)

    Hill, D.J.T.; Lewis, D.A.; O'Donnell, J.H.; Pomery, P.J.; Hedrick, J.L.; McGrath, J.E.

    1991-01-01

    The radiation resistance of a series of aromatic polysulfones comprising alternating units of diphenyl sulfone and various aromatic diols has been investigated by measuring volatile products, soluble fractions and electron spin resonance (ESR) spectra. The yields of radicals at 77 K observed by ESR and of SO 2 at 423 K have indicated that biphenol gives enhanced resistance to γ radiation, and tetramethyl bisphenol-A decreased resistance, relative to bisphenol-A, bisphenol-S and hydroquinone. The protective effect of biphenol was confirmed by lower scission and crosslinking yields determined from the soluble fractions after high doses. (author)

  9. Operation and radiation resistance of a FOXFET biasing structure for silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinski (Finland); Singh, P; Engels, E Jr; Shepard, J; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-03-01

    AC-coupled strip detectors biased with a FOXFET transistor structure have been studied. Measurement results for the basic operational characteristics of the FOXFET are presented together with a brief description of the physics underlying its operation. Radiation effects were studied using photons from a [sup 137]Cs source. Changes in the FOXFET characteristics as a function of radiation dose up to 1 Mrad are reported. Results about the effect of radiation on the noise from a FOXFET biased detector are discribed. (orig.).

  10. Operation and radiation resistance of a FOXFET biasing structure for silicon strip detectors

    International Nuclear Information System (INIS)

    Laakso, M.; Helsinki Univ.; Singh, P.; Engels, E. Jr.; Shepard, P.

    1992-02-01

    AC-coupled strip detectors biased with a FOXFET transistor structure have been studied. Measurement results for the basic operational characteristics of the FOXFET are presented together with a brief description of the physics underlying its operation. Radiation effects were studied using photons from a 137 Cs source. Changes in the FOXFET characteristics as a function of radiation dose up to 1 MRad are reported. Results about the effect of radiation on the noise from a FOXFET biased detector are described. 13 refs

  11. NEW RADIATION RESISTANT GREASES

    Energy Technology Data Exchange (ETDEWEB)

    DasGupta, Sharda; Slobodian, J. T.

    1962-11-20

    New radiation resistant greases were prepared from commercially available greases by carrying out radioinduced reactions with styrene. The radiation tolerances of the products were 250-1000 fold more than the starting materials and any product of similar properties now available. The various properties of the new products initially and after exposure to large radiation doses were in no case inferior to the original greases and in some respects improvements were observed. Radiation tolerance of commercial greases could be enhanced by the addition of polystyrene to form a physical mixture rather than copolymers. The reaction mechanisms involved at all stages were studied using infrared spectroscopic techniques. (P.C.H.)

  12. Radiation resistance of polymer materials for space

    International Nuclear Information System (INIS)

    Miyauchi, Masahiko; Iwata, Minoru; Yokota, Rikio

    2011-01-01

    The thin film of thermoplastic polyimide with a new asymmetric structure is used in the solar sail 'IKAROS'. Here, the relation of its chemical structure to its thermodynamic properties and radiation resistance is introduced. (M.H.)

  13. Radiation resistant lining material

    International Nuclear Information System (INIS)

    Ouchi, Koki; Okagawa, Seigo; Tamaki, Hidehiro.

    1990-01-01

    Rigidity, viscoelasticity, flexibility, radiation resistance, leaching resistance, rust-proofness, endurance, etc. are required for the lining materials to wall surfaces and floor surfaces of facilities used under the effect of radiation rays and for the inner surface protection of vessels for radioactive wastes. The present invention provides radiation resistant lining material capable of satisfying such various requirements in a well-balanced manner. That is, the material contains (A) 100 parts by weight of rapidly curing cement, (B) 50 to 300 % by weight of aggregate, and (C) 80 to 120 parts by weight of polymer emulsion. As the specific example, the ingredient (A) is commercially available under the trade name of Jet Cement. The aggregate of the ingredient (B) has preferably from about 0.6 to 0.2 mm of size and is made of material, preferably, silicon or iron grains. As the ingredient (C), acrylic resin emulsion is preferred. As a result of example, these ingredient constitutions can satisfy each of the required performance described above. (I.S.)

  14. Enhanced radiation resistance through interface modification of nano-structured steels for Gen IV in-core applications

    International Nuclear Information System (INIS)

    Jang, Jinsung; Kang, Suk Hoon; Kim, Min Chul

    2013-06-01

    This project is to increase radiation tolerance of candidate alloys for Gen IV core component through the optimization of grain size and grain boundary characteristics. The focus is on nanocrystalline metal alloys with a fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via grain boundary engineering. An austenitic stainless steel, HT-UPS (high temperature ultra-fine precipitates strengthened) was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometer-sized carbides. Reducing the grain size and increasing the fraction-induced point defects (due to the increased sink area of the grain boundaries), to make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and to improve the strength and ductility under radiation by producing a higher density of nanometer sized carbides on the boundaries

  15. Communication equipment radiation resistance ensurance

    International Nuclear Information System (INIS)

    Myrova, L.O.; Chelizhenko, A.Z.

    1983-01-01

    A review of works on radiation resistance of electronic equipment (epsilon epsilon) for 15 years is presented. The effect of ionizing radiation appearing as a result of nuclear explosions in nuclear facilities and in outerspace on epsilon epsilon has been considered. Types of radiation effects in epsilon epsilon, radiation effect on semiconductor devices and integrated circUits, types of epsilon epsilon failures, as well as the procass of radiation-resistant epsilon epsilon designing and selection of its main parameters have been described. The methods of epsilon epsilon flowsheet optimization, application of mathematical simulation and peculiarities of ensurance of epsilon epsilon radiation resistance of communication systems are considered. Peculiarities of designing of radiation-resistant quartz generators, secondary power supply sources and amplifiers are discussed

  16. Radiation resistance of elastomers

    International Nuclear Information System (INIS)

    Hourquebie, P.; Bigarre, J.; Forveille, J.L.; Raby, J.; Lazare, L.

    2002-01-01

    The COMOR group is a network of laboratories from both the CEA and the CNRS. This network is particularly involved in fundamental and applied studies on the ageing of polymers under irradiation. COMOR has studied the ageing of EPDM (ethylene-propylene-diene-monomer) because this elastomer is often used in nuclear environment (in cable coating for instance). In this study, we have prepared materials with different formulations and we have characterised their use-condition properties (dielectric and mechanical) before and after γ irradiation. The dielectric measurements are well adapted to study the oxidation and the crosslinking phenomena which appear during the irradiation ageing. We have shown that after a short time, the oxidation is limited by the diffusion of oxygen. A phenolic antioxidant is not able to protect the polymer against the oxidation. However, we used a concentration typical of a purely thermal stabilisation case (0,1%). On the other hand, a diamine type additive with a concentration of 1% showed efficient stabilisation. The mechanical properties of the regular EPDM are strongly affected by the irradiation but there is little difference with regard to radiation resistance between both types of raw materials. Nevertheless, the NORDEL IP 3725 stabilised with the amine has better initial mechanical properties whereas the NORDEL 2722 offers higher strength above 300 kGy. Our results emphasize the stake of a proper stabilisation of polymers with respect to ionising radiation. (authors)

  17. Structure of single-chain single crystals of isotactic polystyrene and their radiation resistance

    International Nuclear Information System (INIS)

    Bu Haishan; Cao Jie; Xu Shengyong; Zhang Ze

    1997-01-01

    The structure of the single-chain single crystals of isotactic polystyrene (i-PS) was investigated by electron diffraction (ED) and high resolution electron microscopy (HREM). The nano-scale single-chain single crystals were found to be very stable to electron irradiation. According to the unit cell of i-PS crystals, the reflection rings in ED pattern and the lattice fringes in HREM images could be indexed, but the lower-index diffractions were not found. It is proposed that the single-chain single crystals are very small, thus secondary electrons may be allowed to escape and radiation damage is highly reduced, and that there are less lower-index lattice planes in the single-chain single crystals to provide sufficient diffraction intensity for recording. HREM images can be achieved at room temperature in the case of single-chain single crystals because of its stability to electron irradiation, therefore, this might be a novel experimental approach to the study of crystal structure of macromolecules

  18. Radiation-resistant asporogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K [Tokyo Univ. (Japan). Faculty of Agriculture

    1975-09-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned.

  19. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    Yano, Keiji

    1975-01-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  20. Radiation resistance of Rhizopus stolonifer

    International Nuclear Information System (INIS)

    Robbertse, P.J.; Du Toit, T.L.; Van der Merwe, L.J.; Koekemoer, M.L.; Eilers, I.M.I.

    1983-01-01

    A problem encountered with the irradiation of food is that certain micro-organisms are highly resistant to gamma rays. This includes the fungus, Rhizopus stolonifer, associated with most fruits. The Nuclear Development Corporation of South Africa (NUCOR) has found that a combination of radiation and mild heat treatment reduces the radiation dose necessary to kill 90% of R. stolonifer by approximately half. Treatment at 50 degrees Celsius for 10 minutes or at 55 degrees Celsius for five minutes is sufficient. The article discusses the mechanism of radiation resistance in R. stolonifer and the way in which heating affects this resistance

  1. Optimum structures for gamma-ray radiation resistant SiC-MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Mitomo, Satoshi; Matsuda, Takuma; Murata, Koichi; Yokoseki, Takashi [Saitama University, Sakuraku (Japan); National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki (Japan); Makino, Takahiro; Takeyama, Akinori; Onoda, Shinobu; Ohshima, Takeshi [National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki (Japan); Okubo, Shuichi; Tanaka, Yuki; Kandori, Mikio; Yoshie, Toru [Sanken Electric Co., Ltd., Niiza, Saitama (Japan); Hijikata, Yasuto [Saitama University, Sakuraku (Japan)

    2017-04-15

    In order to develop highly radiation-tolerant SiC MOSFETs, we investigated the dependence of the gamma-ray radiation response on the gate oxide thickness and nitridation processes, used for oxide growth and p-well implantation. SiC MOSFETs with a thick gate oxide (60 nm) showed a rapid decrease in the threshold voltage shift ΔV{sub th} of more than 400 kGy, and transitioned to the normally-on state at lower doses than those with a thin gate oxide (35 nm). The MOSFETs with gate oxides treated with lower concentrations of N{sub 2}O (10%) demonstrated a higher radiation tolerance (ΔV{sub th}, channel mobility, and subthreshold swing) than with a 100% N{sub 2}O treatment. The MOSFETs with more p-well implantation steps (three steps) showed a smaller negative shift of the threshold voltage relative to those implanted with two steps. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Radiation-resistant camera tube

    International Nuclear Information System (INIS)

    Kuwahata, Takao; Manabe, Sohei; Makishima, Yasuhiro

    1982-01-01

    It was a long time ago that Toshiba launched on manufacturing black-and-white radiation-resistant camera tubes employing nonbrowning face-plate glass for ITV cameras used in nuclear power plants. Now in compliance with the increasing demand in nuclear power field, the Company is at grips with the development of radiation-resistant single color-camera tubes incorporating a color-stripe filter for color ITV cameras used under radiation environment. Herein represented are the results of experiments on characteristics of materials for single color-camera tubes and prospects for commercialization of the tubes. (author)

  3. Radiation-resistant control system

    International Nuclear Information System (INIS)

    Cable, T.C.; Jones, S.

    1995-01-01

    REMOTEC has developed a open-quotes radiation resistanceclose quotes control system under a U.S. Department of Energy Small Business Innovative Research (SBIR) contract with assistance from the University of Florida. The SBIR goal was to develop a radiation resistant mobile robot from the ANDROS family of hazardous duty mobile robots that REMOTEC manufactures. See Refs. 1 and 2 for additional SBIR results. The control system, as well as the entire ANDROS robot, was redesigned, where necessary, to withstand radiation doses in excess of 10 6 rad. Those components of the robot that could not be purchased as open-quotes radiation hardenedclose quotes were tested under standard operating conditions for determination of their open-quotes radiation resistance.close quotes The entire ANDROS robot was then assembled with these new components and tested to > 10 6 rad

  4. Enhanced radiation resistant fiber optics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures

  5. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  6. Resistive Memory Devices for Radiation Resistant Non-Volatile Memory

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionizing radiation in space can damage electronic equipment, corrupting data and even disabling computers. Radiation resistant (rad hard) strategies must be employed...

  7. Radiation-resistant plastic insulators

    International Nuclear Information System (INIS)

    Sturm, B.J.; Parkinson, W.W.

    1975-01-01

    A high molecular weight organic composition useful as an electric insulator in radiation fields is provided and comprises normally a solid polymer of an organic compound having a specific resistance greater than 10 19 ohm-cm and containing phenyl groups and 1 to 7.5 weight percent of a high molecular weight organic phosphite. In one embodiment the composition comprises normally solid polystyrene having 7.5 weight percent tris-β-chloroethyl phosphite as an additive; the composition exhibited an increase in the post-irradiation resistivity of over an order of magnitude over the post-irradiation resistivity of pure polystyrene. (Patent Office Record)

  8. Adriamycin resistance and radiation response

    International Nuclear Information System (INIS)

    Belli, J.A.; Harris, J.R.

    1979-01-01

    Mammalian cells (V79) in culture developed resistance to Adriamycin during continuous exposure to low levels of drug. This resistance was accompanied by change in x-ray survival properties which, in turn, depended upon the isolation of subpopulations from resistant sub lines. These changes in x-ray survival properties were characterized by reduced D/sub Q/ values and a decrease in the D/sub O/. However, these changes were not observed together in the same cell sub line. Adriamycin-resistant cells did not appear to be radiation damage repair deficient. Other phenotypic changes (cell morphology, DNA content and chromosome number) suggested mutational events coincident with the development of Adriamycin resistance

  9. Radiation resistance of Candida parapsilosis

    International Nuclear Information System (INIS)

    Kristensen, H.

    1982-01-01

    The radiation resistance of 30 strains classified as Candida parapsilosis was examined. The strains originated partly from environments where ionizing radiation was used for research or routine purposes, partly from environments with no known possibility for selection of strains with unusually high radiation resistance. D-6 values between 1.5 and 2.4 Megarads were found when the cells were irradiated in the dried state, a D-6 value being the dose necessary to reduce the initial number of colony-forming units with a factor of 10 6 . The majority of D-6 values were between 1.9 and 2.1 Megarads. D-6 values for the cells irradiated in liquid media were about 2/3 of tose in the dried state. No difference in resistance was revealed depending on the origin of the strains examined. For radiation sterilization of medical products the demonstrated resistance of Candida parapsilosis might be of importance of routine use of minimum doses below 2.5 Megarads were to be accepted. (author)

  10. Radiation resistant ducted superconductive coil

    International Nuclear Information System (INIS)

    Schleich, A.

    1976-01-01

    The radiation-resistant ducted superconductive coil consists of a helically wound electrical conductor constituted by an electrically conductive core of superconductive material provided with a longitudinally extending cooling duct. The core is covered with a layer of inorganic insulating material and the duct is covered by an electrically conductive metallic gas-tight sheath. The metallic sheaths on adjacent turns of the coil are secured together. 2 Claims, 4 Drawing Figures

  11. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  12. Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria.

    Science.gov (United States)

    Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor

    2017-04-01

    A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compensate for the genome-destabilizing effect of environmental DNA damage and may be expected to result in a more conserved gene order in radiation-resistant species. However, here we show that rates of genome rearrangements, measured as loss of gene order conservation with time, are higher in radiation-resistant species in multiple, phylogenetically independent groups of bacteria. Comparison of indicators of selection for genome organization between radiation-resistant and phylogenetically matched, nonresistant species argues against tolerance to disruption of genome structure as a strategy for radiation resistance. Interestingly, an important mechanism affecting genome rearrangements in prokaryotes, the symmetrical inversions around the origin of DNA replication, shapes genome structure of both radiation-resistant and nonresistant species. In conclusion, the opposing effects of environmental DNA damage and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria. Copyright © 2017 Repar et al.

  13. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  14. Radiation shielding wall structure

    International Nuclear Information System (INIS)

    Nishimura, Yoshitaka; Oka, Shinji; Kan, Toshihiko; Misato, Takeshi.

    1990-01-01

    A space between a pair of vertical steel plates laterally disposed in parallel at an optional distance has a structure of a plurality of vertically extending tranks partitioned laterally by vertically placed steel plates. Then, cements are grouted to the tranks. Strip-like steel plates each having a thickness greater than the gap between the each of the vertically placed steel plates and the cement are bonded each at the surface for each of the vertically placed steel plates opposing to the cements. A protrusion of a strip width having radiation shielding performance substantially identical with that by the thickness of the cement is disposed in the strip-like steel plates. With such a constitution, a safety radiation shielding wall structure with no worry of radiation intrusion to gaps, if formed, between the steel plates and the grouted cements due to shrinkage of the cements. (I.N.)

  15. Intrinsic radiation resistance in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A.

    2006-01-01

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16 ink4a , one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16 ink4a contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16 ink4a expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16 ink4a expression on chondrosarcoma cell resistance to low-dose γ-irradiation (1-5 Gy). p16 ink4a expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16 ink4a transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16 ink4a plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas

  16. Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria

    OpenAIRE

    Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor

    2017-01-01

    A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compen...

  17. Gravitational radiation resistance, radiation damping and field fluctuations

    International Nuclear Information System (INIS)

    Schaefer, G.

    1981-01-01

    Application is made of two different generalised fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler (Gravitation (San Francisco: Freeman) ch 36,37 (1973)) and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalisations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance. (author)

  18. Archway for Radiation and Micrometeorite Occurrence Resistance

    Science.gov (United States)

    Giersch, Louis R.

    2012-01-01

    The environmental conditions of the Moon require mitigation if a long-term human presence is to be achieved for extended periods of time. Radiation, micrometeoroid impacts, high-velocity debris, and thermal cycling represent threats to crew, equipment, and facilities. For decades, local regolith has been suggested as a candidate material to use in the construction of protective barriers. A thickness of roughly 3m is sufficient protection from both direct and secondary radiation from cosmic rays and solar protons; this thickness is sufficient to reduce radiation exposure even during solar flares. NASA has previously identified a need for innovations that will support lunar habitats using lightweight structures because the reduction of structural mass translates directly into additional up and down mass capability that would facilitate additional logistics capacity and increased science return for all mission phases. The development of non-pressurized primary structures that have synergy with the development of pressurized structures is also of interest. The use of indigenous or in situ materials is also a well-known and active area of research that could drastically improve the practicality of human exploration beyond low-Earth orbit. The Archway for Radiation and Micrometeorite Occurrence Resistance (ARMOR) concept is a new, multifunctional structure that acts as radiation shielding and micrometeorite impact shielding for long-duration lunar surface protection of humans and equipment. ARMOR uses a combination of native regolith and a deployed membrane jacket to yield a multifunctional structure. ARMOR is a robust and modular system that can be autonomously assembled on-site prior to the first human surface arrival. The system provides protection by holding a sufficiently thick (3 m) archshaped shell of local regolith around a central cavity. The regolith is held in shape by an arch-shaped jacket made of strong but deployable material. No regolith processing is

  19. CERN selects Fujikura's radiation resistant fiber

    CERN Multimedia

    2007-01-01

    "Fujikura Europe Ltd. (search for Fujikura Europe) today announced that its radiation resistant singlemode optical fiber has been selected by CERN to provide communicaton links within the world's largest particle accelerator..."(2/3 page)

  20. Radiation-resistant composite for biological shield of personnel

    Science.gov (United States)

    Barabash, D. E.; Barabash, A. D.; Potapov, Yu B.; Panfilov, D. V.; Perekalskiy, O. E.

    2017-10-01

    This article presents the results of theoretical and practical justification for the use of polymer concrete based on nonisocyanate polyurethanes in biological shield structures. We have identified the impact of ratio: polymer - radiation-resistant filling compound on the durability and protection properties of polymer concrete. The article expounds regression dependence of the change of basic properties of the aforementioned polymer concrete on the absorbed radiation dose rate. Synergy effect in attenuation of radioactivity release in case of conjoint use of hydrogenous polymer base and radiation-resistant powder is also addressed herein.

  1. Physiological and genetics studies of highly radiation-resistant bacteria

    International Nuclear Information System (INIS)

    Keller, L.C.

    1981-01-01

    The phenomenon of radiation resistance was studied using micrococci and Moraxella-Acinetobacter capable of surviving very high doses of gamma radiation which were isolated from foods. Physiological age, or growth phase, was found to be an important factor in making comparisons of radiation-resistance among different bacteria and their mutants. Radiation-resistant bacteria were highly resistant to the lethal effect of nitrosoguanidine used for mutagenesis. Studies of relative resistance of radiation-resistant bacteria, radiation-sensitive mutants, and nonradiation-resistant bacteria to killing by different chemical mutagens did not reveal a correlation between the traits of radiation resistance and mutagen resistance among different strains. Comparisons of plasmid profiles of radiation-resistant bacteria and selected radiation-sensitive mutants suggested the possibility that plasmids may carry genes involved in radiation resistance

  2. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  3. Final Report for Radiation Resistant Magnets II

    International Nuclear Information System (INIS)

    A. F. Zeller

    2005-01-01

    Report on techniques for the fabrication of radiation resistant magnets for the RIA Fragment Separator. The development of magnet designs capable of reasonable life times in high-radiation environments and having reasonable performance is of paramount importance for RIA as well as other high-intensity projects under consideration, such as the Neutrino Factory and FAIR project at GSI. Several approaches were evaluated for radiation resistant superconducting magnets. One approach was to simply use a more radiation resistant epoxy for the coil fabrication. Another approach for cryostable magnets, like the S800 Spectrograph dipole, is the use of all-inorganic materials. The final approach was the development of radiation resistant Cable-In-Conduit-Conductor (CICC) like that used in fusion magnets; though these are not radiation resistant because an organic insulator is used. Simulations have shown that the nuclear radiation heating of the first quadrupoles in the RIA Fragment Separator will be so large that cold mass minimization will be necessary with the magnet iron being at room temperature. Three different types of conductor for radiation resistant superconducting magnets have been built and successfully tested. The cyanate ester potted coils will work nicely for magnets where the lifetime dose is a factor of 20 less than the end of life of the superconductor and the rate of energy deposition is below the heat-removal limit of the coil. The all-inorganic cryostable coil and the metal oxide insulated CICC will provide conductor that will work up to the life of the superconductor and have the ability to remove large quantities of nuclear heating. Obviously, more work needs to be done on the CICC to increase the current density and to develop different insulations; and on the cyanate esters to increase the heat transfer

  4. Physiologic mechanisms in radiation resistance

    International Nuclear Information System (INIS)

    Reichard, S.M.

    1976-01-01

    Some topics discussed are as follows: role of the reticuloendothelial system in the regeneration of the hematopoietic system; uptake of colloidal agents by liver and spleen cells following graded doses of x radiation; effects of x radiation on peritoneal macrophages of rats; stimulation of phagocytic activity of the reticuloendothelial system by estrogens, serum albumin, and bacterial endotoxins; and sequestration of particulate material within the reticuloendothelial organs following x irradiation

  5. Development of radiation resistant PEEK insulation cable

    International Nuclear Information System (INIS)

    Mio, Keigo; Ogiwara, Norio; Hikichi, Yusuke; Furukori, Hisayoshi; Arai, Hideyuki; Nishizawa, Daiji; Nishidono, Toshiro

    2009-04-01

    Material characterization and development has been carried out for cable insulation suitable for use in the J-PARC 3-GeV RCS radiation environment. In spite of its high cost, PEEK (polyether-ether-ketone) has emerged as the leading candidate satisfying requirements of being non-halogen based, highly incombustible and with radiation resistant at least 10 MGy, along with the usual mechanical characteristics such as good elongation at break, which are needed in a cable insulation. Gamma-ray irradiation tests have been done in order to study radiation resistance of PEEK cable. Further, mechanical, electrical and fire retardant characteristics of a complete cable such as would be used at the J-PARC RCS were investigated. As a result, PEEK cables were shown to be not degraded by radiation up to at least 10 MGy, and thus could be expected to operate stably under the 3-GeV RCS radiation environment. (author)

  6. Research of radiation-resistant microbial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-15

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA{sub 0}279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project.

  7. Research of radiation-resistant microbial organisms

    International Nuclear Information System (INIS)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-01

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA 0 279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project

  8. Radiation resistance of plastic solid

    International Nuclear Information System (INIS)

    Moriyama, Noboru; Dojiri, Shigeru; Wadachi, Yoshiki

    1985-01-01

    The radiation from nucleides contained in solidified wates have some effects on the degradation of the solidification materials. This report deals with effects of such radiation on the mechanical strength of waste-plastics composites and on the generation of gasses. It is shown that the mechanical strength of polyethylene and polyester solids will not decrease at a total absorbed dose of 10 6 rad, a dose which a low-level waste composite is expected to receive during an infinite period of time. Rather, it increases in the case of polyethylene. The amount of gas generated from degraded polyethylene is about three times as large as that from polyester, namely, about 6 l per 200 l drum can at 10 6 rad. Hydrogen accounts for about 80 % of the total gas generated from polyethylene. On the other hand, the gas from polyester solid mainly contains hydrogen, carbon dioxide, carbon monoxide and methane, with a composition greatly dependent on the type of the waste contained. It is concluded from these results that plastic materials can serve satisfactorily as for as the effects of radiation on their mechanical strength and gas generation are concerned. A more important problem still remaining to be solved is the effects of radiation on the leaching of radioactive nuclides. (Nogami, K.)

  9. Radiation resistance of ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Matsumoto, Kaoru; Ikeda, Masaaki; Ohki, Yoshimichi; Kusama, Yasuo; Harashige, Masahiro; Yazaki, Fumihiko.

    1988-01-01

    In this paper, the radiation resistance of ethylene-styrene copolymer, a polymeric resin developed newly by the authors, is reported. Resin examined were five kinds of ethylene-styrene copolymers: three random and two graft copolymers with different styrene contents. Low-density polyethylene was used as a reference. The samples were irradiated by 60 Co γ-rays to total absorbed doses up to 10 MGy. The mechanical properties of the smaples were examined. Infrared spectroscopy, differential scanning calorimetry and X-ray scattering techniques were used to examine the morphology of the samples. The random copolymers are soft and easy to extend, because benzene rings which exisist highly at random hinder the crystallization. As for the radiation resistance, they are highly resistant to γ-rays in the aspects of carbonyl group formation, gel formation, and elongation. Further, they show even better radiation resistance when proper additives were compounded in. The graft copolymers are hard to extend, because they consist of segregated polystyrene and polyethylene regions which are connected with each other. The tensile strength of irradiated graft copolymers does not decrease below that of unirradiated copolymers, up to a total dose of 10 MGy. As a consequence, it can be said that ethylene-styrene copolymers have good radiation resistance owing to the so-called 'sponge' effect of benzene rings. (author)

  10. Radiation therapy for resistant sternal hydatid disease

    International Nuclear Information System (INIS)

    Ulger, S.; Barut, H.; Tunc, M.; Aydinkarahaliloglu, E.; Aydin, E.; Karaoglanoglu, N.; Gokcek, A.

    2013-01-01

    Hydatid disease is a zoonotic infectious disease for which there are known treatment procedures and effective antibiotics; however, there are resistant cases that do not respond to medication or surgery. We report a case diagnosed as hydatid disease of the chest wall and treated with radiation therapy (RT) after medical and surgical therapy had failed. In conclusion, RT represents an alternative treatment modality in resistant cases. (orig.)

  11. On the honeybee resistance to gamma radiation

    International Nuclear Information System (INIS)

    Courtois, G.; Lecomte, J.

    1960-01-01

    The honeybee, when irradiated by gamma radiations from a cobalt-60 source can stand a 18000 r dose without any apparent harm. Noticeable harm is observed for 90000 r. while immediate death of 100% of the individuals is obtained with a 200000 r dose. The physiological condition of the honeybee plays an important role in its resistance to gamma radiation. Reprint of a paper published in Annales de l'abeille, IV, 1959, p. 285-290 [fr

  12. Compact Radiative Control Structures for Millimeter Astronomy

    Science.gov (United States)

    Brown, Ari D.; Chuss, David T.; Chervenak, James A.; Henry, Ross M.; Moseley, s. Harvey; Wollack, Edward J.

    2010-01-01

    We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays.

  13. Bacterial and archaeal resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Confalonieri, F; Sommer, S, E-mail: fabrice.confalonieri@u-psud.fr, E-mail: suzanne.sommer@u-psud.fr [University Paris-Sud, CNRS UMR8621, Institut de Genetique et Microbiologie, Batiments 400-409, Universite Paris-Sud, 91405 Orsay (France)

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  14. Radiation resistant polymers and coatings for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Mallika, C.; Lawrence, Falix

    2014-01-01

    Polymer based materials are extensively used in the nuclear industry for the reprocessing of spent fuels in highly radioactive and corrosive environment. Hence, these polymer materials are susceptible to damage by ionizing radiation, resulting in the degradation in properties. Polymers containing aromatic molecules generally possess higher resistance to radiation degradation than the aliphatic polymers. For improving the radiation resistance of polymers various methods are reported in the literature. Among the aromatic polymers, polyetheretherketone (PEEK) has the radiation tolerance up to 10 Mega Grey (MGy). To explore the possibility of enhancing the radiation resistance of PEEK, a study was initiated to develop PEEK - ceramic composites and evaluate the effect of radiation on the properties of the composites. PEEK and PEEK - alumina (micron size) composites were irradiated in a gamma chamber using 60 Co source and the degradation in mechanical, structural, electrical and thermal properties, gel fraction, coefficient of friction and morphology were investigated. The degradation in the mechanical properties owing to radiation could be reduced by adding alumina filler to PEEK. Nano alumina filler was observed to be more effective in suppressing the damage caused by radiation on the polymer, when compared to micron alumina filler. For the protection of aluminium components in the manipulators and the rotors and stators of the motors of the centrifugal extractors employed in the plant from the attack by nitric acid vapour, PEEK coating based on liquid dispersion was developed, which has resistance to radiation, chemicals and wear. The effect of radiation and chemical vapour on the properties of the PEEK coating was estimated. The performance of the coating in the plant was evaluated and the coating was found to give adequate protection to the motors of centrifugal extractors against corrosion. (author)

  15. Design of online testing system of material radiation resistance

    International Nuclear Information System (INIS)

    Wan Junsheng; He Shengping; Gao Xinjun

    2014-01-01

    The capability of radiation resistance is important for some material used in some specifically engineering fields. It is the same principal applied in all existing test system that compares the performance parameter after radiation to evaluate material radiation resistance. A kind of new technique on test system of material radiation resistance is put forward in this paper. Experimentation shows that the online test system for material radiation resistance works well and has an extending application outlook. (authors)

  16. CERN selects Fujikura's radiation resistant fiber

    CERN Multimedia

    2007-01-01

    "Fujikura recently announced that its radiation resistant single mode optical fiber has been selected by CERN, the European Laboratory for Particle Physics, to provide communication links within the world's largest particle accelerator - the Large Hadron Collider (LHC) - near Geneva, Switzerland." (1/2 page)

  17. CERN selects Fujikura's radiation resistant fibre

    CERN Multimedia

    2007-01-01

    "Fujikura today announced that its radiation resistant single mode optical fibre has been selected by CERN, the European Laboratory for Particle Physics, to provide communication links within the world's largest particle accelerator - the Large hadron Collider (LHC) - near Genevan, Switzerland. (1/2 page)

  18. Radiation-resistant beamline components at LAMPF

    International Nuclear Information System (INIS)

    Macek, R.J.; Grisham, D.L.; Lambert, J.e.; Werbeck, R.

    1983-01-01

    A variety of highly radiation-resistant beamline components have been successfully developed at LAMPF primarily for use in the target cells and beam stop area of the intense proton beamline. Design features and operating experience are reviewed for magnets, instrumentation, targets, vacuum seals, vacuum windows, collimators, and beam stops

  19. A stunning resistance to radiations

    International Nuclear Information System (INIS)

    Etien, S.

    2010-01-01

    The Deinococus radiodurans bacteria (DRB) can survive extreme radiation doses as high as 100 times the doses that kill other bacteria. The number of DNA breaking due to irradiation is the same as in other bacteria but DRB benefits from a very efficient DNA repairing system. This system relies on the fact that DRB owns 4 to 10 identical copies of its genome and because of this high number of copies the repair process is very likely to find a no-damaged part of the DNA in one copy to reconstitute the DNA. It appears that this process does not involve specific enzymes but enzymes that are present in any other bacteria. The efficiency of the repairing process relies on two things: first, the circular shape of the genome that avoids the spreading in the cell of the DNA breaks, and secondly, the enzymes are protected from irradiation oxidation by a high concentration in manganese and iron. (A.C.)

  20. Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant

    International Nuclear Information System (INIS)

    Keller, L.C.; Maxcy, R.B.

    1984-01-01

    Physiological age-dependent variation in radiation resistance was studied for three bacteria that are highly radiation resistant: Micrococcus radiodurans, Micrococcus sp. isolate C-3, and Moraxella sp. isolate 4. Stationary-phase cultures of M. radiodurans and isolate C-3 were much more resistant to gamma radiation than were log-phase cultures. This pattern of relative resistance was reversed for isolate 4. Resistance of isolate 4 to UV light was also greater during log phase, although heat resistance and NaCl tolerance after heat stresses were greater during stationary phase. Radiation-induced injury of isolate 4 compared with injury of Escherichia coli B suggested that the injury process, as well as the lethal process, was affected by growth phase. The hypothesis that growth rate affects radiation resistance was tested, and results were interpreted in light of the probable confounding effect of methods used to alter growth rates of bacteria. These results indicate that dose-response experiments should be designed to measure survival during the most resistant growth phase of the organism under study. The timing is particularly important when extrapolations of survival results might be made to potential irradiation processes for foods. 17 references

  1. Radiation resistant characteristics of optical fibers

    International Nuclear Information System (INIS)

    Nakasuji, Masaaki; Tanaka, Gotaro; Watanabe, Minoru; Kyodo, Tomohisa; Mukunashi, Hiroaki

    1983-01-01

    It is required to develop the optical fibers with good radiation resistivity because the fibers cause the increase of transmission loss due to glass colouring when they are used under the presence of radiation such as γ-ray. Generally, it is known that SI (step index) fibers are more resistive to radiation than GI (graded index) fibers. However, since a wide band can not be obtained with SI fibers, the development of radiation resistive GI optical fibers is desirable. In this report, the production for trial of the GI fibers of fluorine-doped silica core, the examination of radiation effect on their optical transmission loss by exposing them to γ-ray, thermal and fast neutron beams and also of mechanical strength are described. The GI fibers of fluorine-doped silica core show better radiation resistivity than Ge-doped ones. The B- and F-doped GI fibers show small increase of loss due to γ-ray, but large increase of loss due to thermal neutron beam. This is supposed to be caused by the far greater neutron absorption cross-section of boron than that of other elements. Significant increase of loss was not recognized when 14 MeV fast neutrons (8.6 x 10 4 n/cm 2 .s) were applied by 1.8 x 10 9 n/cm 2 . It was found that ETFE-covered fiber cores generated fluorine-containing gas due to γ irradiation, and the strength was remarkably lowered, but the lowering of strength can be prevented by adding titanium-white to the covering material. (Wakatsuki, Y.)

  2. Radiation resistance of optical fibers, (10)

    International Nuclear Information System (INIS)

    Tsunoda, Tsunemi; Ara, Katsuyuki; Morimoto, Naoki; Sanada, Kazuo; Inada, Koichi.

    1991-01-01

    Optical fibers have many excellent characteristics such as the light weight of the material, insulation, the noninductivity of electromagnetic interference noise, the wide band of signal transmission, and small loss. Also in the field of atomic energy, the utilization of optical fibers is positively expanded, and the research on the method of application and so on has been advanced. However in optical fibers, there is the problem that color centers are formed at the relatively low level of radiation, and they are colored. Accordingly, for effectively utilizing optical fibers in radiation environment, it is indispensable to improve their radiation resistance. For the purpose of solving this problem, the authors have carried out the basic research on the effect that radiation exerts to optical fibers and the development of the optical fibers having excellent radiation resistance. For the purpose of expanding the range of application of GeO 2 -doped silica core fibers including GI type in radiation regions, the transmission characteristics of the fibers during irradiation were examined by using the Cl content as the parameter. Therefore, the results are reported. The fibers put to the test, the testing method and the results are described. (K.I.)

  3. Some resistance mechanisms to ultraviolet radiation

    International Nuclear Information System (INIS)

    Alcantara D, D.

    2002-12-01

    The cyclical exposure of bacterial cells to the ultraviolet light (UV) it has as consequence an increment in the resistance to the lethal effects of this type of radiation, increment that happens as a result of a selection process of favorable genetic mutations induced by the same UV light. With object to study the reproducibility of the genetic changes and the associate mechanisms to the resistance to UV in the bacteria Escherichia coli, was irradiated cyclically with UV light five different derived cultures of a single clone, being obtained five stumps with different resistance grades. The genetic mapping Hfr revealed that so much the mutation events like of selection that took place during the adaptation to the UV irradiation, happened of random manner, that is to say, each one of the resistant stumps it is the result of the unspecified selection of mutations arisen at random in different genes related with the repair and duplication of the DNA. (Author)

  4. Radiation resistant organic composites for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.

    1993-01-01

    Organic composite materials (usually reinforced by glas fibers: GFRP) are to be used in fusion superconducting magnets as insulating and/or structural materials. The fusion superconducting magnets are operated under radiation environments and hence the radiation induced degradation of magnet components is ought to be estimated. Among the components the organic composite materials were evaluated to be the most radiation sensitive. Consequently the development of radiation resistant organic composite materials is thought one of the 'key' technologies for fusion superconducting magnets. The mechanism of radiation-induced degradation was studied and the degradation of interlaminar shear strength (ILSS) was found to be the intrinsic phenomenon which controlled the overall degradation of organic composite materials. The degradation of ILSS was studied changing matrix resin, reinforcement and type of fabrics. The possible combination of the organic composites for the fusion superconducting magnet will be discussed. (orig.)

  5. arXiv Radiation resistant LGAD design

    CERN Document Server

    Ferrero, M.; Boscardin, M.; Cartiglia, N.; Dalla Betta, G.F.; Galloway, Z.; Mandurrino, M.; Mazza, S.; Paternoster, G.; Ficorella, F.; Pancheri, L.; Sadrozinski, H-F W.; Sola, V.; Staiano, A.; Seiden, A.; Zhao, Y.

    In this paper, we report on the radiation resistance of 50-micron thick LGAD detectors manufactured at the Fondazione Bruno Kessler employing several different doping combinations of the gain layer. LGAD detectors with gain layer doping of Boron, Boron low-diffusion, Gallium, Carbonated Boron and Carbonated Gallium have been designed and successfully produced. These sensors have been exposed to neutron fluences up to $\\phi_n \\sim 3 \\cdot 10^{16}\\; n/cm^2$ and to proton fluences up to $\\phi_p \\sim 9\\cdot10^{15}\\; p/cm^2$ to test their radiation resistance. The experimental results show that Gallium-doped LGADs are more heavily affected by initial acceptor removal than Boron-doped LGAD, while the presence of Carbon reduces initial acceptor removal both for Gallium and Boron doping. Boron low-diffusion shows a higher radiation resistance than that of standard Boron implant, indicating a dependence of the initial acceptor removal mechanism upon the implant width. This study also demonstrates that proton irradiati...

  6. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing micro-organisms. Eradi cation techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation-based sterilization processes. Due to their resistance to a variety of perturbations, the nonspore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-sporeforming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/m2), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  7. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  8. Study of decontamination and radiation resistance properties of Indian paints

    International Nuclear Information System (INIS)

    Shah, S.M.; Gopinathan, E.; Bhagwath, A.M.

    1976-01-01

    A brief introduction to the study of contamination and radiation resistance properties of Indian paints used as coating for structural materials in the nuclear industry is given. The general composition of paints such as epoxy, vinyl, alkyd, phenolic, chlesimated rubber, etc. is given. Method of sample preparation, processing and actual evaluation of decontaminability are described. The results have been discussed in terms of decontamination factors. Some recommendations based on the performance of the paints studied are also included. (K.B.)

  9. Radiation resistance of track etched membranes

    International Nuclear Information System (INIS)

    Buczkowski, M.; Sartowska, B.; Wawszczak, D.; Starosta, W.

    2001-01-01

    Track etched membranes (TEMs) obtained by irradiation of polymer films with heavy ions and subsequent etching of latent tracks can be applied in many fields and among others in biomedicine as well. It is important to know radiation resistance of TEMs because of wide use of radiation sterilization in the case of biomedical devices. Tensile properties of TEMs made of PET and PC films with the thickness of 10 μm after electron irradiation at different doses are known from literature. Nowadays TEMs are being manufactured from thicker (20 μm) PET and PC films as well as polyethylene naphthalate (PEN) films are proposed for TEMs. It seems to be important to get data about radiation resistance of new kinds of TEMs. Samples of polymer films made of PET and PEN with the thickness of 19-25 μm and TEMs made of such materials have been irradiated using 10 MeV electron beam with doses up to 990 kGy. Tensile properties and SEM photographs of the samples after irradiation are given in the paper

  10. Radiation resisting features of pure quartz fiber

    International Nuclear Information System (INIS)

    Fujii, Takashi; Nagasawa, Yoshiya; Hoshi, Hiroshi; Tomon, Ryoichi; Ooki, Yoshimichi; Yahagi, Kichinosuke

    1985-01-01

    The control of the generation of color centers is essential for optical fibers used in radiation environment. Even pure quartz which is the best radiation resisting material is not exceptional also elucidarion of the mechanism of the generation of color center is necessary for the development of optical fiber with higher radiation resisting feature. Previously, it was assumed that color centers are distributed uniformly throughout cores. Determination of the distribution of color centers was attempted. Cores were etched with HF after γ-ray irradiation, and the changes of intensity of ESR signals of NBOHC and E'-center were determined. NBOHC were not found in circumferential part, and concentrated in the central part. In other words the tendency of distribution is diametral. Thus, the distribution of precursor is supposed to be affected by certain external cause and the generation of NBOHC was depressed in circumferential area. The distribution of E'-center of high OH sample showed similar tendency and high in the center. Where as the distribution in low OH sample was uniform. The external cause is supposed to be hydrogen derived from silicone clad and silicone buffer. Two kind of precursor is suspected for the explanation of the difference of the E'-center in high OH sample and low OH sample. (Ishimitsu, A.)

  11. Synchrotron radiation and structural proteomics

    CERN Document Server

    Pechkova, Eugenia

    2011-01-01

    This book presents an overview of the current state of research in both synchrotron radiation and structural proteomics from different laboratories worldwide. The book presents recent research results in the most advanced methods of synchrotron radiation analysis, protein micro- and nano crystallography, X-ray scattering and X-ray optics, coherent X-Ray diffraction, and laser cutting and contactless sample manipulation are described in details. The book focuses on biological applications and highlights important aspects such as radiation damage and molecular modeling.

  12. Ultraviolet radiation resistance in Halobacterium salinarium

    International Nuclear Information System (INIS)

    Kristoff, S.R.

    1985-01-01

    An obvious characteristic of wild type H. salinarium is its red pigmentation. A non-pigmented mutant was isolated to test the role of pigmentation in UV radiation resistance. Survival curves of UV-irradiated wild type and mutant cells show that pigmentation does not play a direct role in protecting DNA from UV damage. Pigmentation does play a role, however, in repairing UV damage. UV-irradiated wild type cells show more efficient recovery by photoreactivation with 405 nm light than do UV-irradiated non-pigmented mutants. High internal cation concentrations found in H. salinarium may also be partly responsible for the relative resistance of H. salinarium to UV radiation by causing the DNA to assume a conformation less conducive to the production of pyrimidine dimers. In vitro irradiation of DNA extracted from H. salinarium, dissolved in solutions of different ionic strengths, indicate that pyrimidine dimers may not form as readily in DNA which is in an environment with high salt concentration

  13. Radiation resistance of quartz core fibers, (6)

    International Nuclear Information System (INIS)

    Suzuki, Toshiya; Morisawa, Masaaki; Gozen, Toshikazu; Tanaka, Yukihiro; Shintani, Takeshi; Okamoto, Shin-ichi.

    1988-01-01

    Quatz optical fibers have been used for the communication channels for long distance and large capacity, in addition, their application to the communication system in radiation environment such as nuclear power plants and artificial statellites has been positively examined. In the case of the application to aircrafts and communication satellites, optical fibers are exposed to the temperature variation of wider range than the system on the ground. Particularly, the radiation resistance of optical fibers depends largely on temperature, and at low temperature, the increase of loss is remarkable, therefore, it is important to know the characteristics in low temperature radiation environment. This time, five kinds of the core materials were prepared, and gamma-ray was irradiated at -80degC to evaluate the characteristics of increasing loss and restoration. In this report, based on the results of these evaluation, the wavelength dependence, the effect of impurities in the cores and so on are described. The absorption loss increased remarkably in short wavelength. The increase of loss in high OH fibers became high particularly in the case of low optical power. The effect of Cl was especially conspicuous in the restoration characteristics. Chlorine-free core fibers have the excellent restoration characteristics independent of wavelength and optical power. (K.I.)

  14. Isolation and identification of radiation resistant yeasts from sea water

    International Nuclear Information System (INIS)

    Park, Jong Cheon; Jeong, Yong Uk; Kim, Du Hong; Jo, Eun A

    2011-12-01

    This study was conducted to isolate radiation-resistant yeasts from sea water for development of application technology of radiation-resistant microorganism. · Isolation of 656 yeasts from sea water and selection of 2 radiation-resistant yeasts (D 10 value >3) · Identification of isolated yeasts as Filobasidium elegans sharing 99% sequence similarity · Characterization of isolated yeast with ability to repair of the DNA damage and membrane integrity to irradiation

  15. Radiation resistance of microorganisms on unsterilized infusion sets

    DEFF Research Database (Denmark)

    Christensen, E. Ahrensburg; Kristensen, H.; Hoborn, J.

    1991-01-01

    Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a steriliza......Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor...

  16. Radiation resistant modified polypropylene; Polipropylen modyfikowany odporny radiacyjnie

    Energy Technology Data Exchange (ETDEWEB)

    Bojarski, J; Zimek, Z [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs.

  17. Radiation resistance of organic azo dyes in aqueous solutions

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.

    1987-01-01

    The resistance to the action of the ionizing radiation of aqueous and aqueous-alcoholic solutions of organic mono- and diazo dyes was studied. The radiation chemical yield of decolorization of the dye, determined from the kinetic decolorization curves served as a quantitative criterion of the radiation resistance. The influence of pH, addition of ethanol, hydroquinone, thiourea, glucose and oxygen on the radiation resistance of the azo dyes was studied. An attempt was made to relate the efficiency of radiation decolorization to the chemical nature of the dye

  18. Isolation of radiation-resistant bacteria without exposure to irradiation

    International Nuclear Information System (INIS)

    Sanders, S.W.; Maxcy, R.B.

    1979-01-01

    Resistance to desiccation was utilized in the selection of highly radiation-resistant asporogenous bacteria from nonirradiated sources. A bacterial suspension in phosphate buffer was dried in a thin film at 25 0 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the number of radiation-sensitive bacteria. Further selection for radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, therby avoiding the toxic effect of irradiated media. The similarity of radiation resistance and identifying characteristics in irradiated and non-irradiated isolates should allay some concerns that highly radiation-resistance bacteria have been permanently altered by radiation selection

  19. Radiation resistivity of quartz core fiber, 3

    International Nuclear Information System (INIS)

    Gozen, Toshikazu; Suzuki, Toshiya; Hayashi, Tokuji; Tanaka, Hiroyuki; Okamoto, Shinichi.

    1985-01-01

    Radiation resistance characteristics were evaluated for a multi-mode quartz core fiber in low temperature region together with photobleaching effect depending on the incident light power and dependency on the wavelength of measuring rays. This report describes the results of the abovementioned items and the next step study of trial manufacturing of a pure-quartz single-mode fiber for the employment of longer wavelength rays and greater capacity in light transmission communication system. Quartz core fiber specimens were irradiated by 60 Co γ-ray source at -55 deg C to 80 deg C in a constant temperature bath and light transmission loss was determined under irradiation conditions. Low temperature characteristics were superior in an MRT (modified rod-in tube) pure quartz fiber prepared by the plasma method as compared to VAD quartz and Ge-GI fibers. The MRT fiber showed better quality than the Ge-GI fiber also in the photobleaching effect examination. As for the wavelength dependency, light transmission loss of the MRT fiber was less than that of the Ge-GI fiber. The MRT fiber also showed a superior quality in the wide range of irradiation temperatures. Based on the above-mentioned understandings, a pure-quartz single-mode fiber of both BF 3 -doped and F-doped cladding types were developed for longer wavelengths uses. The fibers could attain low light transmission loss of less than 1.0 dB/km at 1.30 μm of wavelength. At the standpoint of radiation resistivity, the BF 3 -doped fiber was found superior. (Takagi, S.)

  20. Adriamycin resistance, heat resistance and radiation response in Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Wallner, K.; Li, G.

    1985-01-01

    Previous investigators have demonstrated synergistic interaction between hyperthermia and radiation or Adriamycin (ADR), using cell lines that are sensitive to heat or ADR alone. The authors investigated the effect of heat, radiation or ADR on Chinese hamster fibroblasts (HA-1), their heat resistant variants and their ADR resistant variants. Heat for ADR resistance did not confer cross resistance to radiation. Cells resistant to heat did show cross resistance to ADR. While cells selected for ADR resistance were not cross resistant to heat, they did not exhibit drug potentiation by hyperthermia, characteristic of ADR sensitive cells. Cytofluorometric measurement showed decreased ADR uptake in both heat and ADR resistant cells. The possibility of cross resistance between heat and ADR should be considered when designing combined modality trials

  1. Studies on the radiation resistances of bioburden for medical devices

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Tabei, Masae

    1997-01-01

    Radiation resistances of reference bacteria strains and the bioburden obtained from hypodermic needles were estimated with gamma- and electron- irradiators calibrated with NPL (National Physics Laboratory) alanine dosimeter. Radiation resistances of the TSB-bacteria suspension samples dried on glass test tubes showed about two times higher than those of the water-bacteria suspension dried on glass fiber paper or paper filter. Radiation resistances of the dried TSB-bacteria suspension samples irradiated by both gamma rays and electron beams were fluctuated. The overall increase ratio of radiation resistance was estimated by dividing D-values of TSB-bacteria suspension samples by that of water-bacteria suspension samples for individual bacteria. Then, the survival curve of hypodermic needle bioburden revised by the increase ratio was obtained, and which compared with that of standard distribution of radiation resistances of ISO(SDR). (author)

  2. Development of radiation resistant organic composites for cryogenic use

    International Nuclear Information System (INIS)

    Nishijima, S.

    1997-01-01

    The mechanism of the radiation induced degradation of the mechanical properties in composite materials have been studied and based on the mechanism the radiation resistant organic composites for fusion magnet have been developing. It was found that the degradation was brought by the change of the fracture mode from tensile (or flexural) to shear failure. Consequently the intrinsic parameter which control the degradation was concluded to be the interlaminar shear strength. To develop the radiation resistant composites, therefore, means to develop the composites showing the radiation resistant interlaminar shear strength. The mechanism was confirmed using three dimensional fabric reinforced plastics which do not have the interlaminar area. The roles of matrix in the composites were also revealed. The effects of dose quality and irradiated temperature on the radiation induced degradation were also discussed and the selection standards of the components for radiation resistant composites were proposed

  3. Radiation shielding structure for concrete structure

    International Nuclear Information System (INIS)

    Oya, Hiroshi

    1998-01-01

    Crack inducing members for inducing cracks in a predetermined manner are buried in a concrete structure. Namely, a crack-inducing member comprises integrally a shielding plate and extended plates situated at the center of a wall and inducing plates vertically disposed to the boundary portion between them with the inducing plates being disposed each in a direction perforating the wall. There are disposed integrally a pair of the inducing plate spaced at a predetermined horizontal distance on both sides of the shielding plate so as to form a substantially crank-shaped cross section and extended plates formed in the extending direction of the shielding plate, and the inducing plates are disposed each in a direction perforating the wall. Then, cracks generated when stresses are exerted can be controlled, and generation of cracks passing through the concrete structure can be prevented reliably. The reliability of a radiation shielding effect can be enhanced remarkably. (N.H.)

  4. Radiation damage of structural materials

    CERN Document Server

    Koutsky, Jaroslav

    1994-01-01

    Maintaining the integrity of nuclear power plants is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for RPV and Zr-Nb alloys for fuel element cladding. The book is divided into 7 main chapters, with the exception of the opening one and the chapter providing a phenomenological background for the subject of radiation damage. Ch

  5. Synthesis and radiation resistance of fullerenes and fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Shilin, V. A., E-mail: shilin@pnpi.spb.ru; Lebedev, V. T.; Sedov, V. P.; Szhogina, A. A. [St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-07-15

    The parameters of an electric-arc facility for the synthesis of fullerenes and endohedral metallofullerenes are optimized. The resistance of C{sub 60} and C{sub 70} fullerenes and C{sub 60}(OH){sub 30} and C{sub 70}(OH){sub 30} fullerenols against neutron irradiation is studied. It is established that the radiation resistance of the fullerenes is higher than that of the fullerenols, but the radiation resistance of the Gd@C{sub 2n} endometallofullerenes is lower than that of the corresponding Gd@C{sub 2n}(OH){sub 38} fullerenols. The radiation resistance of mixtures of Me@C{sub 2n}(OH){sub 38} (Me = Gd, Tb, Sc, Fe, and Pr) endometallofullerenes with C{sub 60}(OH){sub 30} is determined. The factors affecting the radiation resistance of the fullerenes and fullerenols are discussed.

  6. Effect of radiation resistance additives for insulation materials

    International Nuclear Information System (INIS)

    Yamamoto, Yasuaki; Yagyu, Hideki; Seguchi, Tadao.

    1988-01-01

    For the electric wires and cables used in radiation environment such as nuclear power stations and fuel reprocessing facilities, the properties of excellent radiation resistance are required. For these insulators and sheath materials, ethylene propylene rubber, polyethylene and other polymers have been used, but it cannot be said that they always have good radiation resistance. However, it has been well known that radiation resistance can be improved with small amount of additives, and heat resistance and burning retarding property as well as radiation resistance are given to the insulators of wires and cables for nuclear facilities by mixing various additives. In this research, the measuring method for quantitatively determining the effect of Anti-rad (radiation resistant additive) was examined. Through the measurement of gel fraction, radical formation and decomposed gas generation, the effect of Anti-rad protecting polymers from radiation deterioration was examined from the viewpoint of chemical reaction. The experimental method and the results are reported. The radiation energy for cutting C-H coupling is polymers is dispersed by Anti-rad, and the probability of cutting is lowered. Anti-rad catches and extinguishes radicals that start oxidation reaction. (K.I.)

  7. Galactic structure and gamma radiation

    International Nuclear Information System (INIS)

    Casse, Michel; Cesarsky, Catherine; Paul Jacques

    1977-01-01

    A model of spiral structure of the Galaxy is outlined from radiosynchrotron and gamma observations. The most interesting observations in the galactic context, obtained by the SAS II American satellite are concerned with the distribution of the γ photoemission at energies higher than 10 8 eV, along the galactic equator. The model proposed is in quantitative agreement with the present ideas on the spiral structure of the Galaxy, the galactic magnetic field, and the confinement of cosmic rays by the magnetic field and of the magnetic field by matter. Following the American era, the European COS-B satellite opens the European phase towards an identification of the discrete gamma radiation sources [fr

  8. Development of radiation-resisting high molecular-weight materials

    International Nuclear Information System (INIS)

    Nakagawa, Tsutomu

    1976-01-01

    The excellent radiation-resisting polyvinyl chloride developed at the opportunity of the research on the relationships between the protection of living body and the polymer-technological protection from radiation is reviewed. The report is divided into four main parts, namely 1) the change in the molecular arrangement of market-available, high molecular-weight materials by gamma-ray irradiation, 2) the protection of high molecular-weight materials from radiation, 3) the relationships between the biological radiation-protective substances and the change to radiation-resisting property of synthesized high molecular-weight substances, and 4) the development of the radiation-resisting high molecular-weight materials as metal-collecting agents. Attention is paid to the polyvinyl chloride having N-methyl-dithio-carbamate radical (PMD), synthesized by the author et. al., that has excellent radiation-resisting property. PMD has some possibility to form thiol- and amino-radicals necessary to protect living things from radiation. It is believed that the protection effects of N-methyl-dithio-carbamate radical are caused by the relatively stable S radical produced by the energy transfer. PMD film is suitable for the irradiation of foods, because it hardly changes the permeability of oxygen and carbon dioxide. PMD produces mercaptide or chelate. A new metal-collecting agent (PSDC) having reactivity with the metallic ions with radiation-resisting property was developed, which is derived from polyvinyl chloride and sodium N-methyl-N-carboxy-methyl-dithio-carbamate. (Iwakiri, K.)

  9. Radiation damage of structural materials

    International Nuclear Information System (INIS)

    Koutsky, J.; Kocik, J.

    1994-01-01

    Maintaining the integrity of nuclear power plants (NPP) is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for reactor pressure vessels (RPV) and Zr-Nb alloys for fuel element cladding. The book is divided into seven main chapters, with the exception of the opening one and the chapter providing phenomenological background for the subject of radiation damage. Chapters 3-6 are devoted to RPV steels and chapters 7-9 to zirconium alloys, analyzing their radiation damage structure, changes of mechanical properties due to neutron irradiation as well as factors influencing the degree of their performance degradation. The recovery of damaged materials is also discussed. Considerable attention is paid to a comparison of VVER-type and western-type light-water materials

  10. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Horsman, Michael Robert; Kassem, Moustapha

    2012-01-01

    Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods....... Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...... the intercellular matrix. These results also indicate that cancer stem cells are more radiation resistant than stem cells of the same origin....

  11. Increased radiation resistance in lithium-counterdoped silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  12. Effect of radiation decontamination on drug-resistant bacteria

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    More than 80% of food poisoning bacteria such as Salmonella are reported as antibiotic-resistant to at least one type antibiotic, and more than 50% as resistant to two or more. For the decontamination of food poisoning bacteria in foods, radiation resistibility on drug-resistant bacteria were investigated compared with drug-sensitive bacteria. Possibility on induction of drug-resistant mutation by radiation treatment was also investigated. For these studies, type strains of Escherichia coli S2, Salmonella enteritidis YK-2 and Staphylococcus aureus H12 were used to induce drug-resistant strains with penicillin G. From the study of radiation sensitivity on the drug-resistant strain induced from E. coli S2, D 10 value was obtained to be 0.20 kGy compared with 0.25 kGy at parent strain. On S. enteritidis YK-2, D 10 value was obtained to be 0.14 kGy at drug-resistant strain compared with 0.16 kGy at parent strain. D 10 value was also obtained to be 0.15 kGy at drug-resistant strain compared with 0.21 kGy at parent strain of St. aureus H12. Many isolates of E. coli 157:H7 or other type of E. coli from meats such as beef were resistant to penicillin G, and looked to be no relationship on radiation resistivities between drug-resistant strains and sensitive strains. On the study of radiation sensitivity on E. coli S2 at plate agars containing antibiotics, higher survival fractions were obtained at higher doses compared with normal plate agar. The reason of higher survival fractions at higher doses on plate agar containing antibiotics should be recovery of high rate of injured cells by the relay of cell division, and drug-resistant strains by mutation are hardly induced by irradiation. (author)

  13. Radiation resistance and injury of Yersinia enterocolitica

    Energy Technology Data Exchange (ETDEWEB)

    El-Zawahry, Y.A.; Rowley, D.B.

    1979-01-01

    The D values of Yersinia enterocolitica strains IP134, IP107, and WA, irradiated at 25/sup 0/C in Trypticase soy broth, ranged from 9.7 to 11.8 krad. When irradiated in ground beef at 25 and -30/sup 0/C, the D value of strain IP107 and 19.5 and 38.8 krad, respectively. Cells suspended in Trypticase soy broth were more sensitive to storage at -20/sup 0/C than those mixed in ground beef. The percentages of inactivation and of injury (inability to form colonies in the presence of 3.0% NaCl) of cells stored in ground beef for 10 days at -20/sup 0/C were 70 and 23%, respectively. Prior irradiation did not alter the cell's sensitivity to storage at -20/sup 0/C, nor did storage at -20/sup 0/C alter the cell's resistance to irradiation at 25/sup 0/C. Added NaCl concentrations of up to 4.0% in Trypticase soy agar (TSA) (which contains 0.5% NaCl) had little effect on colony formation at 36/sup 0/C of unirradiated Y. enterocolitica. With added 4.0% NaCl, 79% of the cells formed colonies at 36/sup 0/C; with 5.0% NaCl added, no colonies were formed. Although 2.5% NaCl added to ground beef did not sensitize Y. enterocolitica cells to irradiation, when added to TSA it reduced the number of apparent radiation survivors. Cells uninjured by irradiation formed colonies on TSA when incubated at either 36 or 5/sup 0/C. More survivors of an exposure to 60 krad were capable of recovery and forming colonies on TSA when incubated at 36/sup 0/C for 1 day than at 5/sup 0/C for 14 days. This difference in count was considered a manifestation of injury to certain survivors of irradiation.

  14. Radiation resistance and injury of Yersinia enterocolitica

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Rowley, D.B.

    1979-01-01

    The D values of Yersinia enterocolitica strains IP134, IP107, and WA, irradiated at 25 0 C in Trypticase soy broth, ranged from 9.7 to 11.8 krad. When irradiated in ground beef at 25 and -30 0 C, the D value of strain IP107 and 19.5 and 38.8 krad, respectively. Cells suspended in Trypticase soy broth were more sensitive to storage at -20 0 C than those mixed in ground beef. The percentages of inactivation and of injury (inability to form colonies in the presence of 3.0% NaCl) of cells stored in ground beef for 10 days at -20 0 C were 70 and 23%, respectively. Prior irradiation did not alter the cell's sensitivity to storage at -20 0 C, nor did storage at -20 0 C alter the cell's resistance to irradiation at 25 0 C. Added NaCl concentrations of up to 4.0% in Trypticase soy agar (TSA) (which contains 0.5% NaCl) had little effect on colony formation at 36 0 C of unirradiated Y. enterocolitica. With added 4.0% NaCl, 79% of the cells formed colonies at 36 0 C; with 5.0% NaCl added, no colonies were formed. Although 2.5% NaCl added to ground beef did not sensitize Y. enterocolitica cells to irradiation, when added to TSA it reduced the number of apparent radiation survivors. Cells uninjured by irradiation formed colonies on TSA when incubated at either 36 or 5 0 C. More survivors of an exposure to 60 krad were capable of recovery and forming colonies on TSA when incubated at 36 0 C for 1 day than at 5 0 C for 14 days. This difference in count was considered a manifestation of injury to certain survivors of irradiation

  15. Radiation-beam technologies of structural materials treatment

    International Nuclear Information System (INIS)

    Kalin, B.A.

    2001-01-01

    Considered in the paper are the most advanced and prospective radiation-beam technologies (RBT) for treatment of structural materials, as applied to modifying the structural-phase state in the surface layers of half-finished products and articles with the purpose to improve their service properties. Ion-beam, plasma, and ion-plasma, as well as the technologies based on the use of concentrated fluxes of energy, generated by laser radiation, high-power pulsed electron and ion beams, and high-temperature pulsed plasma fluxes are analysed. As applied to improvement of the corrosion and erosion resistance, breaking strength, friction and wear resistance, and crack resistance, the directions of the choice and the use of RBT have been considered for changes of the surface layer state by applying covers and films, and by a change of the surface topography (relief), surface structure and defects, and the element composition and phase state of materials [ru

  16. Gene Expression Analysis of Four Radiation-resistant Bacteria

    OpenAIRE

    Gao, Na; Ma, Bin-Guang; Zhang, Yu-Sheng; Song, Qin; Chen, Ling-Ling; Zhang, Hong-Yu

    2009-01-01

    To investigate the general radiation-resistant mechanisms of bacteria, bioinformatic method was employed to predict highly expressed genes for four radiation-resistant bacteria, i.e. Deinococcus geothermalis (D. geo), Deinococcus radiodurans (D. rad), Kineococcus radiotolerans (K. rad) and Rubrobacter xylanophilus (R. xyl). It is revealed that most of the three reference gene sets, i.e. ribosomal proteins, transcription factors and major chaperones, are generally highly expressed in the four ...

  17. Electromagnetic Radiation of Electrons in Periodic Structures

    CERN Document Server

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation a...

  18. Development of flame retardant, radiation resistant insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, M.

    1984-01-01

    On the cables used for nuclear power stations, in particular those ranked as IE class, flame retardation test, simulated LOCA environment test, radiation resistance test and so on are imposed. The results of the evaluation of performance by these tests largely depend on the insulating materials mainly made of polymers. Ethylene propylene copolymer rubber has been widely used as cable insulator because of its electrical characteristics, workability, economy and relatively good radiation resistance, but it is combustible, therefore, in the practical use, it is necessary to make it fire resistant. The author et al. have advanced the research on the molecular design of new fire retarding materials, and successfully developed acenaphthylene bromide condensate, which is not only fire resistant but also effective for improving radiation resistance. The condition of flame retardant, radiation resistant auxiliary agents is explained, and there are additive type and reaction type in fire retarding materials. The synthesis of acenaphthylene bromide condensate and its effect of giving flame retardant and radiation resistant properties are reported. The characteristics of the cables insulated with the flame retardant ethylene propylene rubber containing acenaphthylene bromide condensate were tested, and the results are shown. (Kako, I.).

  19. Trial manufacture of flame retardant and radiation resistant cables

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Yunosuke; Hagiwara, Miyuki (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment); Oda, Eisuke

    1983-04-01

    High radiation resistance as well as incombustibility is required for the wires and cables used for nuclear facilities such as nuclear power stations. In order to give such performance to general purpose insulation materials such as ethylene-propylene copolymerized rubber, acenaphthylene bromide condensation product was developed anew. Moreover, by the use of this agent, the new flame retardant and radiation resistant cables were manufactured for trial, which are not different from ordinary plastic rubber cables in the handling such as flexibility, and withstand the radiation nearly up to 1000 Mrad. The requirement for the agent giving flame retardant and radiation resistant properties is explained. The synthesis of acenaphthylene bromide and its condensation product and the effect of giving flame retardant and radiation resistant properties are described. The test resultd of the prevention of spread of flame, the endurance in LOCA-simulating environment, and radiation resistance for the cables manufactured for trial are reported. It was confirmed that the cables of this type are suitable to the use in which the maintenance of mechanical properties after radiation exposure is required.

  20. Oncogenes and radiation resistance - a review

    International Nuclear Information System (INIS)

    Dritschilo, A.

    1992-01-01

    Oncogenes exert their effects on the genetic programs of cells by regulating signal transduction pathways, resulting in multi-factorial genetic responses. By such actions, the genetic elements responsible for the cellular responses to ionizing radiation may be affected. Reports implicating the association of oncogene expression with modulation of the radiation response include the ras, raf, and myc genes. Experiments overexpressing H-ras and c-raf-1 using genetically engineered constructs result in enhanced post-radiation cellular survival. Conversely, inhibition of raf gene expression has resulted in relative radiation sensitization and delay of human squamous cell carcinoma tumor growth in nude mice. There appears to be a potential strategy for therapeutic intervention. The identification of genes that confer survival advantage following radiation exposure, and understanding their mechanisms of action, may permit a genetically based intervention for radiation sensitization. One such approach employs oligo-deoxynucleotides complementary to oncogene-encoded in RNA's (antisense DNA). (author)

  1. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  2. Earthquake resistant design of structures

    International Nuclear Information System (INIS)

    Choi, Chang Geun; Kim, Gyu Seok; Lee, Dong Geun

    1990-02-01

    This book tells of occurrence of earthquake and damage analysis of earthquake, equivalent static analysis method, application of equivalent static analysis method, dynamic analysis method like time history analysis by mode superposition method and direct integration method, design spectrum analysis considering an earthquake-resistant design in Korea. Such as analysis model and vibration mode, calculation of base shear, calculation of story seismic load and combine of analysis results.

  3. Resistance to BN myelogenous leukemia in rat radiation chimeras

    International Nuclear Information System (INIS)

    Singer, D.E.; Haynor, D.R.; Williams, R.M

    1980-01-01

    Lewis → LBNFl rat radiation chimeras showed marked resistance to transplanted BN myelogenous leukemia when compared to naive LBNFl, LBNFl → LBNFl, or BN → LBNFl. This occurred in the absence of overt graft versus host disease or of anti-BN response in mixed lymphocyte culture. Bone marrow specific antigens may serve as the target of the resistance mechanism. (author)

  4. Utilization of SRNL-developed radiation-resistant polymer in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Skibo, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-27

    The radiation-resistant polymer developed by the Savannah River National Laboratory is adaptable for multiple applications to enhance polymer endurance and effectiveness in radiation environments. SRNL offers to collaborate with TEPCO in evaluation, testing, and utilization of SRNL’s radiation-resistant polymer in the D&D of the Fukushima Daiichi NPS. Refinement of the scope and associated costs will be conducted in consultation with TECPO.

  5. Radiation resistance of a hemolytic micrococcus isolated from chicken meat

    International Nuclear Information System (INIS)

    Tan, S.T.

    1982-01-01

    The effects of environmental factors on a highly radiation-resistant hemolytic micrococcus isolated from chicken meat were studied. NaCl tolerance and gamma radiation resistance of the cells were growth phase-related. The cells were resistant to injury from drying or freezing/thawing. Under certain conditions, cells in the frozen state required approximately 5 Mrad to inactivate 90% of the population; 0.2 Mrad injured an equivalent proportion. Survival curve of the cells heated at 60 0 C showed a unique pattern which was in three distinct phases. Heat-stressed cells were much more sensitive to radiation inactivation than unheated cells. When suspended in fresh m-Plate Count Broth (PCB), the injured cells repaired without multiplication during incubation at 32 0 C. The repair process in this bacterium, however, was slower compared to thermally injured organisms studied by other workers. An improved replica-plating technique, was devised for isolation of radiation-sensitive mutants of pigmented bacteria. A simple method to demonstrate radiation-inducible radiation resistance in microbial cells was developed. The new method required neither washing/centrifugation nor procedures for cell enumeration. Mutagenesis treatment of radiation-resistant micrococcal bacterium with N-methyl-N'-nitro-N-nitrosoguanidine (NTG) followed by FPR and screening steps resulted in isolation of two radiation-sensitive mutants. The more sensitive mutant strain, designated as 702, was seven times as sensitive to gamma or UC radiation as the wild type. No apparent difference was observed between 702 and the wild type in (1) cell morphology, colonial morphology, and pigment production or (2) tolerance to NaCl, drying/storage, freezing/thawing, and heating. Sodium dodecyl sulfate treatment (for curing) of wild type did not result in isolation of a radiation-sensitive mutant

  6. A Novel Radiation-Resistant Yeast, Filobasidium elegans RRY1

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harinder; Kim, Ha Ram; Song, Hyun Pa; Lim, Sang Yong; Kim, Dong Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2012-05-15

    The tolerance to ionizing radiation stress is present among different classes and species of organisms. As listed by Rainey et al., ionizing radiation resistant organisms were isolated from a variety of different sources like processed/canned food items, paper industry, soil and water samples. Apart from extensively reported bacteria and Archea group, many fungal species like Aspergillus, Curvularia, Alternaria, Cryptococcus, and Ustilago maydis have been found to be resistant to ionizing radiation. However, different environmental sources are constantly been explored for novel radioresistant organisms, which can help in understanding the molecular mechanism behind these extreme stress responses. On the basis of this, present study was initiated to find novel radiation resistant yeast from sea water source

  7. Research progress and application prospect of radiation-resistant prokaryotic microbe

    International Nuclear Information System (INIS)

    Wang Wei; Zhu Jing; Zhang Zhidong; Tang Qiyong; Chen Ming

    2013-01-01

    Radiation-resistant microbe is becoming the research hotspot because of its special life phenomenon and physiological mechanism. Radiation-resistant bacteria are one kind of the most studied radiation-resistant microbe. This article summarized some aspects of the research on radiation-resistant bacteria, including the radiation resistant bacteria resources, and discussed its potential application prospects in the environmental engineering, biotechnology, human health, military and space et al. (authors)

  8. Radiation curable resistant coatings and their preparation

    International Nuclear Information System (INIS)

    Brack, K.

    1976-01-01

    A prepolymer containing unsaturated hydrocarbon groups is prepared and mixed on a roller mill with one or more acrylic ester monomers and various additives to make a coating formulation of a desired viscosity. In general, low viscosity formulations are used for overprint varnishes, on paper or foil, or with pigments, for certain types of printing inks. Higher viscosity formulations are used to apply thick films on panels, tiles, or other bodies. Thin films are cured to hardness by brief exposure to ultraviolet light. Thicker films require more energetic radiation such as plasma arc and electron beam radiation. The prepolymers particularly useful for making such radiation curable coatings are the reaction products of polyether polyols and bis- or polyisocyanates and hydroxy alkenes or acrylic (or methacrylic) hydroxy esters, and, likewise, reactive polyamides modified with dicarboxy alkenes, their anhydrides or esters. A small amount of wax incorporated in the coating formulations results in coatings with release characteristics similar to those of PTFE coatings. 10 claims

  9. Insulating materials resistance in intense radiation beams

    International Nuclear Information System (INIS)

    Oproiu, Constantin; Martin, Diana; Scarlat, Florin; Timus, Dan; Brasoveanu, Mirela; Nemtanu, Monica

    2002-01-01

    The paper emphasizes the main changes of the mechanical and electrical properties of some organic insulating materials exposed to accelerated electron beams. These materials are liable to be used in nuclear plants and particle accelerators. The principal mechanical and electrical properties analyzed were: tensile strength, fracture strength, tearing on fracture, dielectric strength, electrical resistivity, dielectric constant and tangent angle of dielectric losses. (authors)

  10. Radiation effects on structural materials

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1991-01-01

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support

  11. Radiation-resistant micro-organisms isolated from textiles

    International Nuclear Information System (INIS)

    Kristensen, H.; Christensen, E.A.

    1981-01-01

    Towels from private homes and public offices and underwear contaminated by being used by employees at a public health laboratory were examined for occurrence of radiation-resistant bacteria and fungi. Three different methods were used for isolation of the most resistant organisms, one with multiplication of the microbial population prior to an irradiation used for selection, and two witout this multiplication and with the organisms placed on membrane filters or in situ on the textiles, respectively. A total of 44 different strains were isolated. Differences in the three methods used for selection of the most radiation-resistant microorganisms were not reflected in the results. 16 pigmentproducing Gram-positive cocci, tentatively classified as Micrococcus radiodurans, were the most radiation-resistant and were isolated in about half of the examinations. Other Gram-positive cocci, nonspore forming rods, some Nocardia and Candida parapsilosis strains and two Bacillus strains constituted the rest of the collection. With few exceptions dose-response curves for the strains were upward convex. D-6 values determined to be between 1.5 megarad for the most radiation sensitive, a Candida, and 5.7 megarad for the most resistant, tentatively classified as M. radiodurans. The D-6 values for the Bacillus strains were in both cases 1.8 megarad, consistent with a D-value of 0.3 megarad. The same resistance is reported to be the maximum resistance for B. pumilus, strain E601, commonly used as reference strain in the literature on radiation sterilization of medical devices and supplies. (author)

  12. Radiation-resistant micro-organisms isolated from textiles

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, H; Christensen, E A [Statens Seruminstitut, Copenhagen (Denmark)

    1981-01-01

    Towels from private homes and public offices and underwear contaminated by being used by employees at a public health laboratory were examined for occurrence of radiation-resistant bacteria and fungi. Three different methods were used for isolation of the most resistant organisms, one with multiplication of the microbial population prior to an irradiation used for selection, and two witout this multiplication and with the organisms placed on membrane filters or in situ on the textiles, respectively. A total of 44 different strains were isolated. Differences in the three methods used for selection of the most radiation-resistant microorganisms were not reflected in the results. 16 pigmentproducing Gram-positive cocci, tentatively classified as Micrococcus radiodurans, were the most radiation-resistant and were isolated in about half of the examinations. Other Gram-positive cocci, nonspore forming rods, some Nocardia and Candida parapsilosis strains and two Bacillus strains constituted the rest of the collection. With few exceptions dose-response curves for the strains were upward convex. D-6 values determined to be between 1.5 megarad for the most radiation sensitive, a Candida, and 5.7 megarad for the most resistant, tentatively classified as M. radiodurans. The D-6 values for the Bacillus strains were in both cases 1.8 megarad, consistent with a D-value of 0.3 megarad. The same resistance is reported to be the maximum resistance for B. pumilus, strain E601, commonly used as reference strain in the literature on radiation sterilization of medical devices and supplies.

  13. Metal-nanotube composites as radiation resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, CEDENNA, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); So, Kang Pyo; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bringa, Eduardo M. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina)

    2016-07-18

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  14. Metal-nanotube composites as radiation resistant materials

    International Nuclear Information System (INIS)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel; Duin, Adri C. T. van; So, Kang Pyo; Li, Ju; Bringa, Eduardo M.

    2016-01-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  15. Data base of radiation-resistant dielectric and insulating materials

    International Nuclear Information System (INIS)

    Hama, Yoshimasa; Sunazuka, Hideo; Nashiyama, Isamu; Kakuta, Tsunemi.

    1987-01-01

    In the data base of radiation-resistant dielectric and insulating materials, the data format contains such items as to give the summary; the data sheet contains the data in concrete form of respective properties from the references; the sheet of references contains the references in the former two. In the above three, there are attached code No., data sheet No., reference No. and key words. In the three areas as radiation-resistant dielectric and insulating materials, i.e., organic materials, inorganic materials and optical fibers, the following are explained: data format, data sheet and objectives. (Mori, K.)

  16. Ways of providing radiation resistance of magnetic field semiconductor sensors

    CERN Document Server

    Bolshakova, I A; Holyaka, R; Matkovskii, A; Moroz, A

    2001-01-01

    Hall magnetic field sensors resistant to hard ionizing irradiation are being developed for operation under the radiation conditions of space and in charged particle accelerators. Radiation resistance of the sensors is first determined by the properties of semiconductor materials of sensitive elements; we have used microcrystals and thin layers of III-V semiconductors. Applying complex doping by rare-earth elements and isovalent impurities in certain proportions, we have obtained magnetic field sensors resistant to irradiation by fast neutrons and gamma-quanta. Tests of their radiation resistance were carried out at IBR-2 at the Joint Institute for Nuclear Research (Dubna). When exposed to neutrons with E=0.1-13 MeV and intensity of 10 sup 1 sup 0 n cm sup - sup 2 s sup - sup 1 , the main parameter of the sensors - their sensitivity to magnetic fields - changes by no more than 0.1% up to fluences of 10 sup 1 sup 4 n cm sup - sup 2. Further improvement of radiation resistance of sensor materials is expected by ...

  17. Heat- and radiation-resistant scintillator for electron microscopes

    International Nuclear Information System (INIS)

    Kosov, A.V.; Petrov, S.A.; Puzyr', A.P.; Chetvergov, N.A.

    1987-01-01

    The use of a scintillator consisting of a single crystal of bismuth orthogermanate, which has high heat and radiation resistance, in REM-100, REM-200, and REM-100U electron microscopes is described. A study of the heat and radiation stabilities of single crystals of bismuth orthogermanate (Bi 4 Ge 3 O 12 ) has shown that they withstood multiple electron-beam heating redness (T ∼ 800 0 C) without changes in their properties

  18. Radiation resistivity of pure-silica core image guide

    International Nuclear Information System (INIS)

    Hayami, H.; Ishitani, T.; Kishihara, O.; Suzuki, K.

    1988-01-01

    Radiation resistivity of pure-silica core image guides were investigated in terms of incremental spectral loss and quality of pictures transmitted through the image guides. Radiation-induced spectral losses were measured so as to clarify the dependences of radiation resistivity on such parameters as core materials (OH and Cl contents), picture element dimensions, (core packing density and cladding thickness), number of picture elements and drawing conditions. As the results, an image guide with OH-and Cl-free pure-silica core, 30-45% in core packing density, and 1.8 ∼ 2.2 μm in cladding thickness showed the lowest loss. The parameters to design this image guide were almost the same as those to obtain a image guide with good picture quality. Radiation resistivity of the image guide was not dependent on drawing conditions and number of picture elements, indicating that the image guide has large allowable in production conditions and that reliable quality is constantly obtained in production. Radiation resistivity under high total doses was evaluated using the image guide with the lowest radiation-induced loss. Maximum usable lengths of the image guide for practical use under specific high total doses and maximum allowable total doses for the image guide in specific lengths were extrapolated. Picture quality in terms of radiation-induced degradation in color fidelity in the pictures transmitted through image guides was quantitatively evaluated in the chromaticity diagram based on the CIE standard colorimetric system and in the color specification charts according to three attributes of colors. The image guide with the least spectral incremental loss gives the least radiation-induced degradation in color fidelity in the pictures as well. (author)

  19. Genetic variation in resistance to ionizing radiation

    International Nuclear Information System (INIS)

    Ayala, F.J.

    1991-01-01

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population ''null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD ''null'' allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele

  20. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments.

    Science.gov (United States)

    Sun, C; Zheng, S; Wei, C C; Wu, Y; Shao, L; Yang, Y; Hartwig, K T; Maloy, S A; Zinkle, S J; Allen, T R; Wang, H; Zhang, X

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304 L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500 °C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M(23)C(6) precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  1. Radiation resistance of clinical Acinetobacter spp.: A need for concern

    International Nuclear Information System (INIS)

    Christensen, E.A.; Gerner-Smidt, P.; Kristensen, H.

    1991-01-01

    As part of an epidemiological investigation of hospital infections caused by Acinetobacter spp. the radiation resistance of 15 clinical isolates and four reference strains was assessed. The radiation resistance (in D-6 values, viz. the dose necessary for reducing the initial number of colony forming units by a factor of 10(6)) was, in general, higher in the isolates of A. radioresistens than in the isolates of the A. calcoaceticus-A. baumannii complex and of A. lwoffi. However, the least resistant isolates of A. radioresistens had a D-6 value equal to or lower than the most resistant isolates of the other groups. The lowest D-6 values found were for two of the reference strains. The highest D-6 value was 35 kGy. Three isolates of A. johnsonii could not survive long enough in a dried preparation to make an assessment of the D-6 values possible. The radiation resistance of the 15 clinical isolates in the present study was higher than the resistance found in a study of similar isolates in 1970

  2. Radiation resistance of clinical Acinetobacter spp. : A need for concern

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, E.A.; Gerner-Smidt, P.; Kristensen, H. (Control Department, Statens Seruminstitut, Copenhagen (Denmark))

    1991-06-01

    As part of an epidemiological investigation of hospital infections caused by Acinetobacter spp. the radiation resistance of 15 clinical isolates and four reference strains was assessed. The radiation resistance (in D-6 values, viz. the dose necessary for reducing the initial number of colony forming units by a factor of 10(6)) was, in general, higher in the isolates of A. radioresistens than in the isolates of the A. calcoaceticus-A. baumannii complex and of A. lwoffi. However, the least resistant isolates of A. radioresistens had a D-6 value equal to or lower than the most resistant isolates of the other groups. The lowest D-6 values found were for two of the reference strains. The highest D-6 value was 35 kGy. Three isolates of A. johnsonii could not survive long enough in a dried preparation to make an assessment of the D-6 values possible. The radiation resistance of the 15 clinical isolates in the present study was higher than the resistance found in a study of similar isolates in 1970.

  3. Structural basis of protein oxidation resistance: a lysozyme study.

    Directory of Open Access Journals (Sweden)

    Marion Girod

    Full Text Available Accumulation of oxidative damage in proteins correlates with aging since it can cause irreversible and progressive degeneration of almost all cellular functions. Apparently, native protein structures have evolved intrinsic resistance to oxidation since perfectly folded proteins are, by large most robust. Here we explore the structural basis of protein resistance to radiation-induced oxidation using chicken egg white lysozyme in the native and misfolded form. We study the differential resistance to oxidative damage of six different parts of native and misfolded lysozyme by a targeted tandem/mass spectrometry approach of its tryptic fragments. The decay of the amount of each lysozyme fragment with increasing radiation dose is found to be a two steps process, characterized by a double exponential evolution of their amounts: the first one can be largely attributed to oxidation of specific amino acids, while the second one corresponds to further degradation of the protein. By correlating these results to the structural parameters computed from molecular dynamics (MD simulations, we find the protein parts with increased root-mean-square deviation (RMSD to be more susceptible to modifications. In addition, involvement of amino acid side-chains in hydrogen bonds has a protective effect against oxidation Increased exposure to solvent of individual amino acid side chains correlates with high susceptibility to oxidative and other modifications like side chain fragmentation. Generally, while none of the structural parameters alone can account for the fate of peptides during radiation, together they provide an insight into the relationship between protein structure and susceptibility to oxidation.

  4. Electromagnetic radiation of electrons in periodic structures

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented. (orig.)

  5. Study of radiation induced structural changes in nitrile rubber

    International Nuclear Information System (INIS)

    Cardona, F.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Copolymers of butadiene (BD) and acrylonitrile (AN) (NBR rubber), have become important commercial material. NBR rubbers are part of a larger classification of products often referred to as special-purpose rubbers. Oil resistance is the most important property of nitrile rubbers, and refer to the ability of the vulcanised product to retain its original physical properties such as modulus, tensile strength, abrasion resistance and dimensions, while in contact with oils and fuels. Despite these reported advantages very few studies have been conducted on the radiation yields and structural changes in nitrile rubbers during exposure to high energy radiation. In this study we are investigating the stability against gamma and UV radiation, to different doses in vacuum, of butadiene, acrylonitrile and NBR copolymers with different composition ratio BD/AN. The mechanism of radiation induced structural changes is being investigated using experimental techniques such as ESR, NMR (Solid-state), FT-IR, RAMAN and UV spectroscopy. Also is being investigated the effect of irradiation on the mechanical properties of stressed and unstressed samples by TGA, DSC, DMA, Instron and Creep Test measurements. So far the main effect have been a marked radiation-induced loss of unsaturation in the butadiene units, cis to trans isomerization and formation of crosslink structures (intermolecular and intramolecular). One of the main challenges in the studies of NBR polymers is to observe directly the crosslinks produces by the radiation induced chemical reactions. IR spectroscopy is unsuitable because of the low molar absorbity of the peaks related to intermolecular crosslinking and the overlapping of the peaks (1630-1670 cm-1) related to intramolecular crosslinking (cyclization), with conjugated and nonconjugated (-C=C-; -C=N-) double bonds. A. K. Whittaker has shown that crosslink structures in PBD can be detected and measured directly using solid-state 13 C NMR. This technique

  6. Tumourigenicity and radiation resistance of mesenchymal stem cells.

    Science.gov (United States)

    D'Andrea, Filippo P; Horsman, Michael R; Kassem, Moustapha; Overgaard, Jens; Safwat, Akmal

    2012-05-01

    Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under nontreated and irradiated conditions, were assessed with microarrays (Affymetrix Human Exon 1.0 ST array). The cellular functions affected by the altered gene expressions were assessed through gene pathway mapping (Ingenuity Pathway Analysis). Based on the clonogenic assay the nontumourigenic cell line was found to be more sensitive to radiation than the tumourigenic cell line. Using the exon chips, 297 genes were found altered between untreated samples of the cell lines whereas only 16 genes responded to radiation treatment. Among the genes with altered expression between the untreated samples were PLAU, PLAUR, TIMP3, MMP1 and LOX. The pathway analysis based on the alteration between the untreated samples indicated cancer and connective tissue disorders. This study has shown possible common genetic events linking tumourigenicity and radiation response. The PLAU and PLAUR genes are involved in apoptosis evasion while the genes TIMP3, MMP1 and LOX are involved in regulation of the surrounding matrix. The first group may contribute to the difference in radiation resistance observed and the latter could be a major contributor to the tumourigenic capabilities by degrading the intercellular matrix. These results also indicate that cancer stem cells are more radiation resistant than stem cells of the same origin.

  7. Radiation resistance of concrete of nuclear reactor vessel

    International Nuclear Information System (INIS)

    Belyakov, V.V.; Denisov, A.V.; Korenevskij, V.V.; Muzalevskij, L.P.; Dubrovskij, V.B.; Ivanov, D.A.; Nazarov, I.L.; Sashin, N.L.

    1992-01-01

    Results of calculational-experimental determination of radiation resistance for concrete bases on limestone gravel and quartz sand, which are the most perspective materials for manufacturing prestressed concrete of the VG-400 reactor vessel are considered. Material samples under investigation were irradiated in the channels of the IBR-2 research reactor for the purpose of the calcultional result verification

  8. Radiation resistivity of frozen insulin solutions and suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Soboleva, N N; Ivanova, A I; Talrose, V L; Trofimov, V I; Fedotov, V P [AN SSSR, Moscow. Inst. Fizicheskoj Khimii; Research Institute for Biological Testing of Chemicals, Moscow (USSR); Institute of Experimental Endocrinology and Hormon Chemistry, Moscow (USSR))

    1981-10-01

    The effect of great increase in radiation resistance of insulin solutions and suspensions after irradiation at low temperatures in the frozen state was observed by absorption spectrophotometry, paper chromatography and biological analysis. The data obtained suggest irradiation of frozen insulin solutions and suspensions as a method for its sterilization.

  9. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  10. Development of application technology of radiation-resistant microorganism

    International Nuclear Information System (INIS)

    Kim, Dong Ho; Lim, Sang Yong; Joe, Min Ho; Jung, Jin Woo; Jung, Sun Wook; Song, Du Sup; Choi, Young Ji

    2009-02-01

    The scope of the project is divided into of three parts; (i) to define the survival strategy of radiation-resistant microbes, especially Deinococcus (ii) acquisition of gene resources encoding the novel protein and related with the production of functional materials (iii) development of control technology against radiation-resistant microbes. To this aim, first, the whole transcriptional response of the D. radiodurans strain haboring pprI mutation, which plays an important role in radiation resistance, was analyzed by cDNA microarray. The anti-oxidant activity of the major carotenoid of D. radiodurans, deinoxanthin, was analyzed and the strain was constructed, in which the gene necessary for bio- synthesis of deinoxanthin is deleted. The response to cadmium of D. radiodurans was also investigated through cDNA microarray analysis. Radiogenic therapy, one of the cancer treatments, is designed to use radiation-inducible gene for the treatment. To develop the gene-transfer vehicle for radiogenic therapy, we have investigated the virulence mechanism of Salmonella, which is tumor-targeting bacteria and studied the synergistic effect of some anti-cancer agents on radiation treatment for cancer. Finally, we confirmed that irradiation could decompose a fungus toxin, patulin, into various harmless by-products

  11. Development of application technology of radiation-resistant microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Lim, Sang Yong; Joe, Min Ho; Jung, Jin Woo; Jung, Sun Wook; Song, Du Sup; Choi, Young Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-02-15

    The scope of the project is divided into of three parts; (i) to define the survival strategy of radiation-resistant microbes, especially Deinococcus (ii) acquisition of gene resources encoding the novel protein and related with the production of functional materials (iii) development of control technology against radiation-resistant microbes. To this aim, first, the whole transcriptional response of the D. radiodurans strain haboring pprI mutation, which plays an important role in radiation resistance, was analyzed by cDNA microarray. The anti-oxidant activity of the major carotenoid of D. radiodurans, deinoxanthin, was analyzed and the strain was constructed, in which the gene necessary for bio- synthesis of deinoxanthin is deleted. The response to cadmium of D. radiodurans was also investigated through cDNA microarray analysis. Radiogenic therapy, one of the cancer treatments, is designed to use radiation-inducible gene for the treatment. To develop the gene-transfer vehicle for radiogenic therapy, we have investigated the virulence mechanism of Salmonella, which is tumor-targeting bacteria and studied the synergistic effect of some anti-cancer agents on radiation treatment for cancer. Finally, we confirmed that irradiation could decompose a fungus toxin, patulin, into various harmless by-products.

  12. Online Simulation of Radiation Track Structure Project

    Science.gov (United States)

    Plante, Ianik

    2015-01-01

    Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.

  13. Radiation Resistance Test of Wireless Sensor Node and the Radiation Shielding Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liqan; Sur, Bhaskar [Atomic Energy of Canada Limited, Ontario (Canada); Wang, Quan [University of Western Ontario, Ontario (Canada); Deng, Changjian [The University of Electronic Science and Technology, Chengdu (China); Chen, Dongyi; Jiang, Jin [Applied Physics Branch, Ontario (Korea, Republic of)

    2014-08-15

    A wireless sensor network (WSN) is being developed for nuclear power plants. Amongst others, ionizing radiation resistance is one essential requirement for WSN to be successful. This paper documents the work done in Chalk River Laboratories of Atomic Energy of Canada Limited (AECL) to test the resistance to neutron and gamma radiation of some WSN nodes. The recorded dose limit that the nodes can withstand before being damaged by the radiation is compared with the radiation environment inside a typical CANDU (CANada Deuterium Uranium) power plant reactor building. Shielding effects of polyethylene, cadmium and lead to neutron and gamma radiations are also analyzed using MCNP simulation. The shielding calculation can be a reference for the node case design when high dose rate or accidental condition (like Fukushima) is to be considered.

  14. Chemical structure and radiation stability of solid crystalline antibiotics: thiamphenicol and chloramphenicol

    International Nuclear Information System (INIS)

    Varshney, Lalit; Soe Nwe

    1997-01-01

    Antibiotics in solid state show significant radiation resistance and some of them are exposed to gamma or electron beam irradiation for sterilization. Even small radiation degradation in solid state antibiotics is not desirable. Two antibiotics namely thiamphenicol (TPL) and chloramphenicol (CPL) having similar chemical and solid state structure were irradiated at different graded radiation doses to study their stability. Differential scanning calorimetry (DSC) was used to evaluate purity, entropy of radiation processing, heat of fusion and melting point. (author). 3 refs., 1 tab

  15. Shielding ability of lead loaded radiation resistant gloves

    International Nuclear Information System (INIS)

    Kawano, Takao; Ebihara, Hiroshi

    1990-01-01

    The shielding ability of radiation resistant gloves were examined. The gloves are made of lead loaded (as PbO 2 ) polyvinyl chloride resin and are about 0.4 mm of thickness (70 mg/cm 2 ). Eleven test pieces were sampled from each of three gloves (total were thirty three) and the transmission rates for radiations (X-ray or γ-ray) through the test pieces were measured with radiation sources, 99m Tc, 57 Co, 133 Ba, 133 Xe and 241 Am. The differences of the transmission rate for radiations by the positions of the gloves were smaller than 15%, and the differences by three gloves were smaller than 5% in the case of 60 keV and 141 keV radiations. The average transmission rates for radiations in thirty three test pieces were about 40% for 30 keV radiation, about 90% for 80 keV and 140 keV radiations. The shielding characteristic of the gloves could be equivalent to about 0.026 mm thick lead plate. (author)

  16. Atomistic simulations of the radiation resistance of oxides

    International Nuclear Information System (INIS)

    Chartier, A.; Van Brutzel, L.; Crocombette, J.-P.

    2012-01-01

    Fluorite compounds such as urania and ceria, or related compounds such as pyrochlores and also spinels show different behaviors under irradiations, which ranges from perfect radiation resistance to crystalline phase change or even complete amorphization depending on their structure and/or their composition. Displacement cascades – dedicated to the understanding of the ballistic regime and performed by empirical potentials molecular dynamics simulations – have revealed that the remaining damages of the above mentioned oxides are reduced to point defects unlike what is observed in zircon and zirconolite, which directly amorphize during the cascade. The variable behavior of these point defects is the key of the various responses of these materials to irradiations. This behavior can be investigated by two specific molecular dynamics methodologies that will be reviewed here: (i) the method of point defects accumulation as a function of temperature that gives access to the dose effects and to the critical doses for amorphization; (ii) the study Frenkel pairs life-time – i.e. their time of recombination as function of temperature – that may be used as a tool to understand the results obtained in displacements cascades or to identify the microscopic mechanisms responsible for the amorphization/re-crystallization during the point defects accumulations.

  17. Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance.

    Science.gov (United States)

    Musilova, Michaela; Wright, Gary; Ward, John M; Dartnell, Lewis R

    2015-12-01

    Extreme radiation-resistant microorganisms can survive doses of ionizing radiation far greater than are present in the natural environment. Radiation resistance is believed to be an incidental adaptation to desiccation resistance, as both hazards cause similar cellular damage. Desert soils are, therefore, promising targets to prospect for new radiation-resistant strains. This is the first study to isolate radiation-resistant microbes by using gamma-ray exposure preselection from the extreme cold desert of the Antarctic Dry Valleys (a martian surface analogue). Halomonads, identified by 16S rRNA gene sequencing, were the most numerous survivors of the highest irradiation exposures. They were studied here for the first time for both their desiccation and irradiation survival characteristics. In addition, the association between desiccation and radiation resistance has not been investigated quantitatively before for a broad diversity of microorganisms. Thus, a meta-analysis of scientific literature was conducted to gather a larger data set. A strong correlation was found between desiccation and radiation resistance, indicating that an increase in the desiccation resistance of 5 days corresponds to an increase in the room-temperature irradiation survival of 1 kGy. Irradiation at -79°C (representative of average martian surface temperatures) increases the microbial radiation resistance 9-fold. Consequently, the survival of the cold-, desiccation-, and radiation-resistant organisms isolated here has implications for the potential habitability of dormant or cryopreserved life on Mars. Extremophiles-Halomonas sp.-Antarctica-Mars-Ionizing radiation-Cosmic rays.

  18. Inactivation of the Radiation-Resistant Spoilage Bacterium Micrococcus radiodurans

    Science.gov (United States)

    Duggan, D. E.; Anderson, A. W.; Elliker, P. R.

    1963-01-01

    A simplified technique permitting the pipetting of raw puréed meats for quantitative bacteriological study is described for use in determining survival of these non-sporing bacteria, which are exceptionally resistant to radiation. Survival curves, using gamma radiation as the sterilizing agent, were determined in raw beef with four strains of Micrococcus radiodurans. Survival curves of the R1 strain in other meat substrates showed that survival was significantly greater in raw beef and raw chicken than in raw fish or in cooked beef. Resistance was lowest in the buffer. Cells grown in broth (an artificial growth medium) and resuspended in beef did not differ in resistance from cells that had been grown and irradiated in beef. Survival rate was statistically independent of the initial cell concentration, even though there appeared to be a correlation between lower death rate and lower initial cell concentrations. The initial viable count of this culture of the domesticated R1 strain in beef was reduced by a factor of about 10-5 by 3.0 megarad, and 4.0 megarad reduced the initial count by a factor of more than 10-9. Data suggest that M. radiodurans R1 is more resistant to radiation than spore-forming spoilage bacteria for which inactivation rates have been published. PMID:14063780

  19. Radiation resistance of wide-bandgap semiconductor power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hazdra, Pavel; Popelka, Stanislav [Department of Microelectronics, Czech Technical University in Prague (Czech Republic)

    2017-04-15

    Radiation resistance of state-of-the-art commercial wide-bandgap power transistors, 1700 V 4H-SiC power MOSFETs and 200 V GaN HEMTs, to the total ionization dose was investigated. Transistors were irradiated with 4.5 MeV electrons with doses up to 2000 kGy. Electrical characteristics and introduced defects were characterized by current-voltage (I-V), capacitance-voltage (C-V), and deep level transient spectroscopy (DLTS) measurements. Results show that already low doses of 4.5 MeV electrons (>1 kGy) cause a significant decrease in threshold voltage of SiC MOSFETs due to embedding of the positive charge into the gate oxide. On the other hand, other parameters like the ON-state resistance are nearly unchanged up to the dose of 20 kGy. At 200 kGy, the threshold voltage returns back close to its original value, however, the ON-state resistance increases and transconductance is lowered. This effect is caused by radiation defects introduced into the low-doped drift region which decrease electron concentration and mobility. GaN HEMTs exhibit significantly higher radiation resistance. They keep within the datasheet specification up to doses of 2000 kGy. Absence of dielectric layer beneath the gate and high concentration of carriers in the two dimensional electron gas channel are the reasons of higher radiation resistance of GaN HEMTs. Their degradation then occurs at much higher doses due to electron mobility degradation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Structured thermal surface for radiative camouflage.

    Science.gov (United States)

    Li, Ying; Bai, Xue; Yang, Tianzhi; Luo, Hailu; Qiu, Cheng-Wei

    2018-01-18

    Thermal camouflage has been successful in the conductive regime, where thermal metamaterials embedded in a conductive system can manipulate heat conduction inside the bulk. Most reported approaches are background-dependent and not applicable to radiative heat emitted from the surface of the system. A coating with engineered emissivity is one option for radiative camouflage, but only when the background has uniform temperature. Here, we propose a strategy for radiative camouflage of external objects on a given background using a structured thermal surface. The device is non-invasive and restores arbitrary background temperature distributions on its top. For many practical candidates of the background material with similar emissivity as the device, the object can thereby be radiatively concealed without a priori knowledge of the host conductivity and temperature. We expect this strategy to meet the demands of anti-detection and thermal radiation manipulation in complex unknown environments and to inspire developments in phononic and photonic thermotronics.

  1. Direction selective structural-acoustic coupled radiator

    Science.gov (United States)

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-04-01

    This paper presents a method of designing a structural-acoustic coupled radiator that can emit sound in the desired direction. The structural-acoustic coupled system is consisted of acoustic spaces and wall. The wall composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. An equation is developed that predicts energy distribution and energy flow in the two spaces separated by the wall, and its computational examples are presented including near field acoustic characteristics. To design the directional coupled radiator, Pareto optimization method is adapted. An objective is selected to maximize radiation power on a main axis and minimize a side lobe level and a subjective is selected direction of the main axis and dimensions of the walls geometry. Pressure and intensity distribution of the designed radiator is also presented.

  2. Development of superior radiation resistant materials and cables. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ikehara, Junichiro; Kanemitsuya, Kazuhiko; Ohara, Hideo; Araki, Syogo; Hamachi, Katsuhiko [Mitsubishi Cable Industries Ltd., Tokyo (Japan)

    1996-01-01

    Many nuclear power plants have been constructed in Japan and electric power generation is now highly dependent on this technology. Therefore, the needs for facilities that will enrich and reprocess nuclear fuel from nuclear power stations will be high. As there are areas with high levels of radiation, the cables which can be used in these environments are needed. We have developed a superior radiation-resistant cable which uses halogen flame-retardant materials. This radiation-resistant cable consists of Ethylene-propylene rubber (EPDM) insulation and Chlorosulfonated polyethylene (CSM) sheath can be safely used in areas with high levels of radiation. We developed this product to aid in disaster prevention. Non-halogen, flame-retardant EPDM is used for the insulation, and low-halogen, flame-retardant CSM and new non-halogen, flame-retardant materials are used for the sheath. These cables have superior flame-retardant properties and generate little smoke on corrosive gas. This products can hence reduce the danger of a secondary disaster in a fire. We expect that these cables will find application in areas with high levels of radiation. (author).

  3. Development of superior radiation resistant materials and cables. 2

    International Nuclear Information System (INIS)

    Ikehara, Junichiro; Kanemitsuya, Kazuhiko; Ohara, Hideo; Araki, Syogo; Hamachi, Katsuhiko

    1996-01-01

    Many nuclear power plants have been constructed in Japan and electric power generation is now highly dependent on this technology. Therefore, the needs for facilities that will enrich and reprocess nuclear fuel from nuclear power stations will be high. As there are areas with high levels of radiation, the cables which can be used in these environments are needed. We have developed a superior radiation-resistant cable which uses halogen flame-retardant materials. This radiation-resistant cable consists of Ethylene-propylene rubber (EPDM) insulation and Chlorosulfonated polyethylene (CSM) sheath can be safely used in areas with high levels of radiation. We developed this product to aid in disaster prevention. Non-halogen, flame-retardant EPDM is used for the insulation, and low-halogen, flame-retardant CSM and new non-halogen, flame-retardant materials are used for the sheath. These cables have superior flame-retardant properties and generate little smoke on corrosive gas. This products can hence reduce the danger of a secondary disaster in a fire. We expect that these cables will find application in areas with high levels of radiation. (author)

  4. Isolation of radiation resistant fungal strains from highly radioactive field

    International Nuclear Information System (INIS)

    Adam, Y.M.; Aziz, N.H.; Attaby, H.S.H.

    1995-01-01

    This study examined the radiation resistance of fungal flora isolated from the hot-lab around the radiation sources, cobalt 137 and radium 226 . The predominant mould species were: Aspergillus flavus, A. Niger, penicillium chrysogenum, cladosporium herbarum, fusarium oxysporum and alternaria citri. The D 10 values of F. Oxysporum; 2.00 KGy, A. Flavus; 1.40 KGy, P. chrysogenum; 1.15 KGy, and A. citri; 0.95 KGy, are about 1.67, 3.10, 1.92 and 1.36 folds as the D 1 0 values of the same isolates recovered from soil

  5. Human Genetic Marker for Resistance to Radiation and Chemicals

    International Nuclear Information System (INIS)

    Lieberman, Howard B.

    2001-01-01

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage

  6. Radiation resistance of InP-related materials

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Takamoto, Tatsuya; Ikeda, Eiji; Kurita, Hiroshi; Ohmori, Masamichi; Ando, Koshi; Vargas-Aburto, C.

    1995-01-01

    Irradiation effects of 1-MeV electrons on InP-related materials such as InP, InGaP and InGaAsP have been examined in comparison with those of GaAs. Superior radiation-resistance of InP-related materials and their devices compared to GaAs has been found in terms of minority-carrier diffusion length and properties of devices such as solar cells and light-emitting devices. Moreover, minority-carrier injection-enhanced annealing of radiation-induced defects in InP-related materials has also been observed. (author)

  7. Ionizing radiations in Italian health care structures

    International Nuclear Information System (INIS)

    Fizzano, M.R.; Frusteri, L.

    2006-01-01

    The Council of the European Union has completely renewed the framework regarding radiation protection by adopting some directives: Directive 97/43 EURATOM lays down the general principles of the radiation protection of individuals undergoing exposure to ionising radiations related to medical exposures, as a supplement of Directive 96/29 EURATOM laying down the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiations.The incorporation into Italian legislation of the European Community directives on the improvement of health and safety at work has promoted a vast effort in order to revise the surveillance approach in many facilities, including hospitals. In Italy, safety law is referred to every workplace; anyway the use of ionising radiations is ruled by specific laws. So in the health care structures it is necessary integrating both the laws and this process is often difficult to carry on. The Italian Legislative Decree 230/95, one the main laws that aim to protect workers against ionising radiations, introduced Directive 96/29/EURATOM. This Decree asks that a doctor and a technical expert analyse the workplace and classify area and workers in according to dose of ionising radiation established by law. The Italian Legislative Decree 626/94 asks that risk analysis in general is made by doctor and specialist in risk. So, in case of risk from ionising radiation, all these figures have to cooperate in order to make an evaluation risk document. (N.C.)

  8. Ionizing radiations in Italian health care structures

    Energy Technology Data Exchange (ETDEWEB)

    Fizzano, M.R.; Frusteri, L. [Technical Advisory Dept. for Risk Assessment and Prevention, Italian Workers Compensation Authority, Rome (Italy)

    2006-07-01

    The Council of the European Union has completely renewed the framework regarding radiation protection by adopting some directives: Directive 97/43 EURATOM lays down the general principles of the radiation protection of individuals undergoing exposure to ionising radiations related to medical exposures, as a supplement of Directive 96/29 EURATOM laying down the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiations.The incorporation into Italian legislation of the European Community directives on the improvement of health and safety at work has promoted a vast effort in order to revise the surveillance approach in many facilities, including hospitals. In Italy, safety law is referred to every workplace; anyway the use of ionising radiations is ruled by specific laws. So in the health care structures it is necessary integrating both the laws and this process is often difficult to carry on. The Italian Legislative Decree 230/95, one the main laws that aim to protect workers against ionising radiations, introduced Directive 96/29/EURATOM. This Decree asks that a doctor and a technical expert analyse the workplace and classify area and workers in according to dose of ionising radiation established by law. The Italian Legislative Decree 626/94 asks that risk analysis in general is made by doctor and specialist in risk. So, in case of risk from ionising radiation, all these figures have to cooperate in order to make an evaluation risk document. (N.C.)

  9. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  10. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  11. CERTIFICATION OF THE RADIATION RESISTANCE OF COIL INSULATION MATERIAL

    CERN Document Server

    Polinski, J; Bogdan, P

    2013-01-01

    The goal of the WP 7.2.1 sub-task of the EuCARD program has been to determine the Nb$_{3}$Sn based accelerator magnet coil electrical insulation resistance against irradiation, which will occur in future accelerators. The scope of the certification covers determination of mechanical, electrical and thermal properties changes due to irradiation. The report presents a selection of the insulation material candidates for future accelerator magnets as well as the definition of the radiation certification methodology with respect of radiation type, energy, doses and irradiation conditions. The test methods and results of the electrical and mechanical insulation materials properties degradation due to irradiation are presented. Thermal conductivity and Kapitza resistance at temperature range from 1.5 K to 2.0 K (superfluid helium conditions) are given.

  12. High resistance of some oligotrophic bacteria to ionizing radiation

    International Nuclear Information System (INIS)

    Nikitin, D.I.; Tashtemirova, M.A.; Pitryuk, I.A.; Sorokin, V.V.; Oranskaya, M.S.; Nikitin, L.E.

    1994-01-01

    The resistance of seven cultures of eutrophic and oligotrophic bacteria to gamma radiation (at doses up to 360 Gy) was investigated. The bacteria under study were divided into three groups according to their survival ability after irradiation. Methylobacterium organophilum and open-quotes Pedodermatophilus halotoleransclose quotes (LD 50 = 270 Gy) were highly tolerant. By their tolerance, these organisms approached Deinococcus radiodurans. Aquatic ring-shaped (toroidal) bacteria Flectobacillus major and open-quotes Arcocella aquaticaclose quotes (LD 5 = 173 and 210 Gy, respectively) were moderately tolerant. Eutrophic Pseudomonas fluorescens and Escherichia coli (LD 50 = 43 and 38 Gy, respectively) were the most sensitive. X-ray microanalysis showed that in tolerant bacteria the intracellular content of potassium increased and the content of calcium decreased after irradiation. No changes in the element composition of the eutrophic bacterium E. coli were detected. Possible mechanisms of the resistance of oligotrophic bacteria to gamma radiation are discussed

  13. Radiation resistance of amorphous silicon alloy solar cells

    International Nuclear Information System (INIS)

    Hanak, J.J.; Chen, E.; Myatt, A.; Woodyard, J.R.

    1987-01-01

    The radiation resistance of a-Si alloy solar cells when bombarded by high energy particles is reviewed. The results of investigations of high energy proton radiation resistance of a-Si alloy thin film photovoltaic cells are reported. Irradiations were carried out with 200 keV and 1.00 MeV protons with fluences ranging betweeen 1E11 and 1E15 cm-2. Defect generation and passivation mechanisms were studied using the AM1 conversion efficiency and isochronal anneals. It is concluded that the primary defect generation mechanism results from the knock-on of Si and Ge in the intrinsic layer of the cells. The defect passivation proceeds by the complex annealing of Si and Ge defects and not by the simple migration of hydrogen

  14. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    Directory of Open Access Journals (Sweden)

    Kurmashev Sh. D.

    2014-12-01

    Full Text Available The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czochralski method. Irradiation of the samples was carried out using electron linear accelerator "Electronics" (ЭЛУ-4. Energy of the particles was 2,3—3,0 MeV, radiation dose 1015—1020 m–2, electron beam current 2 mA/m2. It is shown that in structures containing dislocation networks, irradiation results in reduction of the reverse currents by 5—8 times and of the density of defects by 5—10 times, while the mobility of the charge carriers is increased by 1,2 times. Wafer yield for operation under radiation exposure, when the semiconductor structures are formed in the optimal mode, is increased by 7—10% compared to the structures without dislocation networks. The results obtained can be used in manufacturing technology for radiation-resistant integrated circuits (bipolar, CMOS, BiCMOS, etc..

  15. Destruction of radiation-resistant cell populations by hyperthermia

    International Nuclear Information System (INIS)

    Roettinger, E.M.; Gerweck, L.E.

    1979-01-01

    Animal experiments with local hyperthermia have shown that the radiauion dose necessary for the local control of 50% of the tumours examined was essentially reduced by heating to 42,5 0 C. In-vitro experients indicated selective destruction of relatively radiation-resistent cell populations by the combination of hyperthermie and reduced hydrogen ion concentration. Experiments with glioblastoma cells confirmed these results qualitatively, but showed quantitatively considerably lower sensitivity towards hyperthermia. (orig.) 891 MG/orig. 892 RDG [de

  16. Effect that radiation exerts to insulation breakdown of heat resistant polymer materials

    International Nuclear Information System (INIS)

    Fujita, Shigetaka; Baba, Makoto; Noto, Fumitoshi; Ruike, Mitsuo.

    1990-01-01

    Artificial satellites are always exposed to cosmic rays which contain the radiations which do not reach the ground, therefore, the radiation resistance of the polymer insulators for cables and others used in such environment becomes a problem. Also the polymer insulator materials used for nuclear facilities require excellent radiation resistance. It is important to examine the effect that radiation exerts to electric insulation characteristics from the viewpoint of material development. In this paper, the insulation breakdown characteristics of heat resistant polymer films and the mini-cables made for trial of heat resistant polymer materials in the case without irradiation and in the case of gamma ray irradiation, and the results of the structural analysis are reported. The specimens tested, the experimental method and the results are described. The insulation breakdown strength of PFA and FEP films lowered from 0.15-0.2 MGy, but that of PEEK film did not change up to 5 MGy. It was found that fluorine group resins were apt to deteriorate by oxidation as dose increased. (K.I.)

  17. Radiation resistant polypropylene blended with mobilizer,. antioxidants and nucleating agent

    Science.gov (United States)

    Shamshad, A.; Basfar, A. A.

    2000-03-01

    Post-irradiation storage of medical disposables prepared from isotactic polypropylene renders them brittle due to degradation. To avoid this, isotactic polypropylene [(is)PP] was blended with a mobilizer, dioctyl pthallate (DOP), three antioxidants (hindered amines and a secondary antioxidant) and benzoic acid to obtain radiation-resistant, thermally-stable and transparent material. Different formulations prepared were subjected to gamma radiation to doses of 25 and 50 kGy. Tests of breakage on bending after ageing in an oven at 70°C up to 12 months have shown that the addition of DOP and the antioxidants imparts improved radiation and thermal stability as compared to (is)PP alone or its blend with DOP. All the formulations irradiated or otherwise demonstrated excellent colour stability even after accelerated ageing at 70°C for prolonged periods.

  18. Resistance of Salmonella enteritidis variety typhimurium to gamma radiation

    International Nuclear Information System (INIS)

    Norberg, A.N.; Maliska, C.

    1988-01-01

    The use of ionizing radiations to kill microrganisms responsible for food deterioration, and toxinfections is an example of peaceful use of nuclear energy. Food toxinfections are, amongus, produced mostly by Salmonella enteritidis var. typhimurium. Due to the pauncity of information on the resistance to gamma radiation of Salmonella enteritidis var. typhimurium this paper has the aim to define the 60-Cobalt gamma radiation lethal dose to these bacteria, in experimentally contaminated milk by samples recovered from our geographycal area. One hundred nineteen samples of milk containing about 150.000 bacteria per ml were irradiated with doses ranging from 100 to 1.100 Gy. Two samples of surving bacteria were again irradiated by doses up to 2.500 Gy. The bacteria not previously irradiated were killed by doses of 1.100 Gy. It was concluded that the 60-Cobalt gamma radiation minimal lethal dose to Salmonella enteritidis var. typhimurium is 1.200 Gy. The surviving strains to smaller doses than 1.200 Gy when re-irradiated prompt the forthcoming of more radio-resistant germs. (author) [pt

  19. Radiation resistant quench protection diodes for the LHC

    International Nuclear Information System (INIS)

    Hagedorn, D.; Coull, L.

    1994-01-01

    The quench protection diodes for the proposed Large Hadron Collider at CERN will be located inside the He-II vessel of the short straight section of one half cell, where they could be exposed to a radiation dose of about 50 kGy and a total neutron fluence of about 10 15 n/cm 2 over 10 years at temperatures of about 2 K. To investigate the influence of irradiation on the electrical characteristics of the diodes, newly developed diodes of thin base region of the diffusion type and of the epitaxial type have been submitted to irradiation tests at liquid nitrogen temperature in a target area of the SPS accelerator at CERN. The degradation of the electrical characteristics of the diodes for a radiation dose up to about 20 kGy and neutron fluence of up to about 5 10 14 n/cm 2 and the effect of carrier injection and thermal annealing after irradiation have been measured. The test results show that only the thin base diodes of the epitaxial type are really radiation resistant. A compromise must be found between required blocking characteristics and radiation resistance. Annealing by carrier injection and occasional warm up to room temperature can extend the service life of irradiated diodes quite substantially

  20. Electrical resistance behavior with gamma radiation dose in bulk carbon nanostrutured samples

    International Nuclear Information System (INIS)

    Lage, J.; Leyva, A.; Pinnera, I.; Desdin, L. F.; Abreu, Y.; Cruz, C. M.; Leyva, D.; Toledo, C.

    2013-01-01

    The aim of this paper is to study the effects of 60 Co gamma radiation on the electrical resistance and V-I characteristic of bulk carbon nano structured samples obtained by electric arc discharge in water method. Images of pristine samples obtained with scanning electron, and the results in graphical form of the electrical characterization of irradiated samples are presented in the text. It was observed that the electrical resistance vs. dose behavior shows an initial increment reaching the maximum at approximately 135 kGy, followed by a drop of the resistance values. These behaviors are associated with the progressive generation of radiation induced defects in the sample, whose number increases to reach saturation at 135 kGy. From this dose, defects could lead to cross-links between different nano structures present in the sample conducting to a gradually drop in electrical resistance. The measured V-I curves show that, increasing exposure to the 60 Co gamma radiation, the electrical properties of the studied samples transit from a semiconductor towards a predominantly metallic behavior. These results were compared with those obtained for a sample of graphite powder irradiated under the same conditions. (Author)

  1. Radiation-Resistant Micrococcus luteus SC1204 and Its Proteomics Change Upon Gamma Irradiation.

    Science.gov (United States)

    Deng, Wuyuan; Yang, Yang; Gao, Peng; Chen, Hao; Wen, Wenting; Sun, Qun

    2016-06-01

    To explore the radiation-resistance mechanisms in bacteria, a radiation-resistant strain SC1204 was isolated from the surrounding area of a (60)Co-γ radiation facility. SC1204 could survive up to 8 kGy dose of gamma irradiation and was identified as Micrococcus luteus by phylogenetic analysis of 16S rRNA gene sequences. Its proteomic changes under 2-kGy irradiation were examined by two-dimensional electrophoresis followed by MALDI-TOF-TOF/MS analysis. The results showed that at least 24 proteins displayed significant changes (p < 0.05) at expression level under the radiation stress, among which 22 were successfully identified and classified into the major functional categories of metabolism, energy production and conservation, translation, ribosomal structure, and biogenesis. Among these proteins, leucyl aminopeptidase involved in synthesis of glutathione was the most abundant induced protein during postirradiation recovery, indicating that anti-oxidation protection was the most important line of defense in SC1204 against radiation. The next abundant protein was phosphoribosyl aminoimidazole carboxamide formyltransferase/IMP cyclohydrolase (AICAR Tfase/IMPCH), the key enzyme in the biosynthetic pathway of purine that is anti-radiation compound. Other proteins changing significantly (p < 0.05) after radiation exposure included urocanate hydratase, dihydrolipoyl dehydrogenase, succinyl-CoA synthetase subunit alpha, phosphoglycerate kinase, cell division protein FtsZ, elongation factor Ts and Tu, translation elongation factor Tu and G, 30S ribosomal protein S1, histidyl-tRNA synthetase, and arginyl-tRNA synthetase, which were considered to be the key proteins in urocanate metabolism, tricarboxylic acid cycle, glycolysis, cell division process, and synthesis process of proteins. Therefore, these proteins may also play important roles in radiation resistance in M. luteus.

  2. Propagation of synchrotron radiation through nanocapillary structures

    International Nuclear Information System (INIS)

    Bjeoumikhov, A.; Bjeoumikhova, S.; Riesemeier, H.; Radtke, M.; Wedell, R.

    2007-01-01

    The propagation of synchrotron radiation through nanocapillary structures with channel sizes of 200 nm and periods in the micrometer size has been studied experimentally. It was shown that the propagation through individual capillary channels has a mode formation character. Furthermore it was shown that during the propagation through capillary channels the coherence of synchrotron radiation is partially conserved. Interference of beams propagating through different capillary channels is observed which leads to a periodically modulated distribution of the radiation intensity in a plane far from the exit of the structure. These investigations are of high relevance for the understanding of X-ray transmission through nanocapillaries and the appearance of wave properties at this size scale

  3. Fiber structural analysis by synchrotron radiation

    CERN Document Server

    Kojima, J I; Kikutani, T

    2003-01-01

    Topics of fiber structural analysis by synchrotron radiation are explained. There are only three synchrotron radiation facilities in the world, SPring-8 (Super Photon ring-8) in Japan, APS (Advanced Photon Source) in U.S.A. and ESRF (European Synchrotron Radiation Facility) in France. Online measurement of melt spinning process of PET and Nylon6 is explained in detail. Polypropylene and PBO (poly-p-phenylenebenzobisoxazole) was measured by WAXD (Wide Angle X-ray Diffraction)/SAXS (Small Angle X-ray Scattering) at the same time. Some examples of measure of drawing process of fiber are described. The structure formation process of spider's thread was measured. Micro beam of X-ray of synchrotron facility was improved and it attained to 65nm small angle resolving power by 10 mu m beamsize. (S.Y.)

  4. Radiation effects on structural ceramics in fusion

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Price, R.J.; Trester, P.W.

    1986-01-01

    Ceramics are required to serve in a conventional role as electrical and thermal insulators and dielectrics in fusion power reactors. In addition, certain ceramic materials can play a unique structural role in fusion power reactors by virtue of their very low induced radioactivity from fusion neutron capture. The aspects of safety, long-term radioactive waste management, and personnel access for maintenance and repair can all be significantly improved by applying the low-activation ceramics to the structural materials of the first-wall and blanket regions of a fusion reactor. Achievement of long service life at high structural loads and thermal stresses on the materials exposed to high-radiation doses presents a critical challenge for fusion. In this paper, we discuss radiation effects on structural ceramics for fusion application

  5. Radiation resistivity of pure silica core image guides for industrial fiberscopes

    International Nuclear Information System (INIS)

    Okamoto, Shinichi; Ohnishi, Tokuhiro; Kanazawa, Tamotsu; Tsuji, Yukio; Hayami, Hiroyuki; Ishitani, Tadayoshi; Akutsu, Takeji; Suzuki, Koichi.

    1991-01-01

    Industrial fiberscopes incorporating pure silica core image guides have been extensively used for remote visual inspection in radiation fields including nuclear power plants, owing to their superior radiation resistivity. The authors have been intensively conducting R and D on improving radiation resistivity of pure silica core image guides. This paper reports the results of experiments to compare the effects of core materials on radiation resistivity and to investigate the dependence of radiation resistivity on total dose, does rate, and support pipe material. The results confirmed the superior radiation resistivity of the core material containing fluorine at any irradiation condition and indicated the existence of a critical dose rate at which radiation-induced deterioration was stabilized. No difference in radiation resistivity attributable to support layer material was observed. (author)

  6. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  7. Resistive field structures for semiconductor devices and uses therof

    Science.gov (United States)

    Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert; Baca, Albert G.

    2017-09-12

    The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additional methods and architectures are described herein.

  8. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  9. Characterization of radiation-resistant vegetative bacteria in beef

    International Nuclear Information System (INIS)

    Welch, A.B.; Maxcy, R.B.

    1975-01-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D 10 of 5.4 min at 70 0 C or less. The radiation resistance ranged from D 10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. (auth)

  10. Optical emission behavior and radiation resistance of epoxy resins

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Udagawa, Akira; Hagiwara, Miyuki

    1987-11-01

    To make clear a mechanism of radiation resistance of epoxy resin systems, a role of energy trapping site induced in bisphenol A type epoxy resins cured with 4 kinds of aromatic amines (Φ N ) was studied in comparison with the case of aliphatic amine curing system through a measurement of optical emission. In the system of the epoxy resin cured with DETA, the optical emission from an excited state of bisphenol A unit of epoxy resin and a charge transfer complex was observed. On the other hand, the optical emission from Φ N was observed in the aromatic amine curing system. Their excitation spectrum consists of peaks of absorption spectrum of BA and those of Φ N , showing that the excited state of Φ N is formed through the excitation of both BA and Φ N . Therefore, the excited energy of BA transfers to the excited state of Φ N . Emission intensity of Φ N band was 20 ∼ 100 times as large as that of BA. These results indicate that the radiation energy is effectively released as an optical emission from excited state of Φ N in the epoxy resin when cured with aromatic amine. It can be concluded from the above results that aromatic amine hardeners contribute to enhancement of the radiation resistance of epoxy resin by acting as an energy transfer agent. (author)

  11. Radiation resistance characteristics of optical communication system for single mode

    International Nuclear Information System (INIS)

    Ohe, Masamoto; Chigusa, Yoshiki; Kyodo, Tomohisa; Tanaka, Gohtaro; Watanabe, Hajime; Okamoto, Shin-ichi; Yamamoto, Takao.

    1988-01-01

    Optical communication has been utilized also for nuclear power stations and fuel reporocessing plants. As the sufficient safety countermeasures are required there, the amount of information becomes enormous, therefore, optical communication, by which the required space is expected to be reduced, becomes more important. Also in the application to submarine cables, attention must be paid to the radiation resistance as there are the effects of potassium contained in large amount in seawater and uranium deposits in sea bottom. Therefore, the reliability of the components of optical communication systems against radiation becomes a problem. In this study, single mode optical fibers and transmission and receipt modules were selected, and high dose rate irradiation supposing the case of using in a cell and low dose rate, long time irradiation supposing the case of submarine cables were carried out to evaluate the radiation resistance characteristics. The fibers tested were SiO 2 core/F-SiO 2 clad type and GeO 2 -SiO 2 core/SiO 2 clad type. The characteristics of increasing loss in irradiation and restoration after irradiation of the former type were superior to those of the latter type. The output of a receipt module was normal during irradiation, and the output power of a transmission module decreases, but other problems did not arise. (K.I.)

  12. Radiation resistance of insulating materials for electric wires

    International Nuclear Information System (INIS)

    Kanemitsuya, Kazuhiko; Okuda, Tomoaki; Tachibana, Tadao; Yagi, Toshiaki; Seguchi, Tadao.

    1990-01-01

    In no halogen incombustible materials, smoke and poisonous gas generation at the time of burning is small, and corrosive gas rarely arises. Since no halogen electric wires and cables which use these material maintain safety for people and equipment in the case of fires, those are used for ships, tunnels, subways and so on. Also in nuclear power stations, the demand for no halogen cables becomes high although the condition of adoption is difficult. In this study, for the purpose of developing the no halogen cables for nuclear power stations, the basic data on the radiation resistance of no halogen incombustible materials were collected, and by using chemical analysis method, the radiation deterioration behavior was examined. The samples were those with base polymers of VLDPE, ULDPE, EEA, EMA and EVA. Gamma ray irradiation, tensile test, chemi-luminescence measurement, and the determination of gel fraction and swelling rate were carried out. The results are reported, In no halogen materials, when ethylene system copolymer is used as the base polymer instead of PE, the composition with good radiation resistance can be obtained, and by combining amine oxidation inhibitor, it is further improved. (K.I.)

  13. Development of new radiation resistant, fire-retardant cables

    International Nuclear Information System (INIS)

    Hagiwara, Ko; Morita, Yosuke; Udagawa, Takashi; Fujimura, Shun-ichi; Oda, Eisuke.

    1982-01-01

    For the cables for nuclear facilities, radiation resistance and fire-retardation are severely required. The authors took note of the fact that even in the existing cables for nuclear power plants, their mechanical properties are greatly degraded by the exposure to large dose (for example, 200 Mrad in PWR testing conditions), and attempted the improvement. They employed a new additive, bromated acenaphthylene condensate (con-BACN), which effectively gives radiation resistance and also is a good flame retarder, to be compounded to an insulation material, and examined the characteristics. In this paper, the features of con-BACN and the investigation of fire-retardant EPDM composition are described. As an initial composition, a small amount of zinc white, sulphur, stearic acid, noclac 224 (Ouchi-Shinko Chemicals, Co.), and antimony trioxide, 100 parts of tale and 45 parts of con-BACN were added to 100 parts of EPDM (propylene content 34 %, Japan Synthetic Rubber Co.). As the antiaging agent, it was decided to use phenol series No. 3 as a result of test. The fire-retardant EP rubber-composed cable was produced for trial, its insulation being fabricated, using a Furukawa's pressurized salt bath continuous vulcanizer. The tests of γ-irradiation, simulated LOCA and combustion were carried out, and the test results are reported. It was indicated that the cable resisted against high dose several times as much as 200 Mrad, and was suitable for the applications, in which the mechanical properties such as bending are required to be maintained after radiation exposure. It was also found that con-BACN was safe, and its properties of decomposition, concentration and acute toxicity were all very low. (Wakatsuki, Y.)

  14. Analysis of QTL for resistance to radiation in rice

    International Nuclear Information System (INIS)

    Zhao Fei; Zhou Yifeng; Ren Sanjuan; Fu Junjie; Zhuang Jieyun; Shen Shengquan

    2010-01-01

    The recombinant inbred line (RIL) population derived from rice variates Zhenshan 97B/Miyang 46 and their genetic linkage maps were used to map QTLs controlling resistant to radiation. The trait was measured by the relative germination rate (RGR) and the relative surviving plant rate (RSPR) after the seeds of each line treated with γ-rays irradiation at two 350 and 550 Gy. The results indicated that the lines treated with γ-irradiation showed different performance in resistance to radiation. Under the treatment of 350 Gy, two QTLs with additive effects were detected, of which qRR (g) 81 was only significant for relative germination rate, and it had the positive additive effects from the male parent, explaining 6.53% of the total phenotypic variations. The qRR(s)2-2 was another significant one for relative surviving plant rate, whose positive effects came from the female parent,explaining 12.81% of the total phenotypic variations. Similarly, 4 QTLs were detected under irradiation dose of 550 Gy, and qRR(g)1-2 and qRR(g)8-2 were detected for relative germination rate, with positive effects coming from female and male parent,respectively,explaining 14.38% of the total variations. qRR(s)5-2 and qRR(s)10 were detected for relative surviving plant rate, with positive effects coming from the male parent, explaining 19.65% of total variations. Under different irradiation dose, 9 pairs of double QTL epistasis effects could be identified in this population. The results suggested that the expression of QTL with resistance to radiation might have relation with the irradiation dose. (authors)

  15. Radiation Resistance and Gain of Homogeneous Ring Quasi-Array

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1954-01-01

    In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase that incr......In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase...... that increases uniformly along the circle. Such quasi-arrays are azimuthally omnidirectional, and the radiated field will be mainly horizontally polarized and concentrated around the plane of the circle. In this paper expressions are obtained for the radiation resistance and the gain of homogeneous ring quasi...

  16. Radiation resistance of electro-optic polymer-based modulators

    International Nuclear Information System (INIS)

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio D.; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, Brian M.; Cook, Paul R.; McEwen, Tom A.; McKeon, Brian F.; Payson, Paul M.; Brost, George A.; Pirich, Andrew R.; Castaneda, Carlos; Tsap, Boris; Fetterman, Harold R.

    2005-01-01

    Mach-Zehnder interferometric electro-optic polymer modulators composed of highly nonlinear phenyltetraene bridge-type chromophores within an amorphous polycarbonate host matrix were investigated for their resistance to gamma rays and 25.6 MeV protons. No device failures were observed and the majority of irradiated modulators exhibited decreases in half-wave voltage and optical insertion losses compared to nonirradiated control samples undergoing aging processes. Irradiated device responses were attributed to scission, cross-linking, and free volume processes. The data suggests that strongly poled devices are less likely to de-pole under the influence of ionizing radiation

  17. Radiation resistance of solar cells for space application, 1

    International Nuclear Information System (INIS)

    Mitsui, Hiroshi; Tanaka, Ryuichi; Sunaga, Hiromi

    1989-07-01

    A 50-μm thick ultrathin silicon solar cell and a 280-μm thick high performance AlGaAs/GaAs solar cell with high radiation resistance have been recently developed by National Space Development Agency of Japan (NASDA). In order to study the radiation resistance of these cells, a joint research was carried out between Japan Atomic Energy Research Institute (JAERI) and NASDA from 1984 through 1987. In this research, the irradiation method of electron beams, the effects of the irradiation conditions on the deterioration of solar cells by electron beams, and the annealing effects of the radiation damage in solar cells were investigated. This paper is the first one of a series of reports of the joint research. In this paper, the space radiation environment which artificial satellites will encounter, the solar cells used, and the experimental methods are described. In addition to these, the results of the study on the irradiation procedure of electron beams are reported. In the study of the irradiation method of electron beams, three methods, that is, the fixed irradiation method, the moving irradiation method, and the spot irradiation method were examined. In the fixed irradiation method and moving one, stationary solar cells and solar cells moving by conveyer were irradiated by scanning electron beams, respectively. On the other hand, in the spot irradiation method, stationary solar cells were irradiated by non-scanning steady electron beams. It was concluded that the fixed irradiation method was the most proper method. In addition to this, in this study, some pieces of information were obtained with respect to the changes in the electrical characteristics of solar cells caused by the irradiation of electron beams. (author) 52 refs

  18. Thermal resistance of aluminum gravity heaГІ pipe with threaded capillary structure

    Directory of Open Access Journals (Sweden)

    Nikolaenko Yu. E.

    2017-10-01

    Full Text Available The results of an experimental study of the thermal resistance of an aluminum gravitational heat pipe with isobutane (R600a as a working fluid under conditions of heat removal of natural air convection are presented. Comparison of the thermal resistance of an aluminum gravitational heat pipe with a threaded capillary structure and the thermal resistance of an aluminum thermosyphon of the same size, having a smooth surface of the body in the evaporation zone, is given. It is shown that in the range of values of the input heat flux from 5 to 50 W the thermal resistance of the gravitational heat pipe is substantially lower than the thermal resistance of the thermosiphon. The studies were conducted both without the use of additional radiators in the condensation zone of heat transfer devices, and with the use of one, two and three radiators.

  19. Structural analysis with high brilliance synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Hideo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1997-11-01

    The research subjects in diffraction and scattering of materials with high brilliance synchrotron radiation such as SPring-8 (Super Photon ring 8 GeV) are summarized. The SPring-8 project is going well and 10 public beamlines will be opened for all users in October, 1997. Three JAERI beamlines are also under construction for researches of heavy element science, physical and structural properties under extreme conditions such as high temperature and high pressure. (author)

  20. Crown structure, radiation absorption, photosynthesis and transpiration

    OpenAIRE

    Wang, Yingping

    1988-01-01

    A complex simulation model, MAESTRO, has been developed and validated against field measurements in plantation in both Scotland and Australia. It has been shown that MAESTRO can reasonably predict the daily course of PAR (photosynetically active radiation) transmittance at points below the canopies of radiata pine and Sitka spruce plantations. 1. Four structural properties of the Sitka spruce tree crown have been identified and evaluation in relation to PAR absorption, photosynthesis and ...

  1. Radiation-induced structural changes, (2)

    International Nuclear Information System (INIS)

    Ogasawara, M.; Matsuyama, T.

    1992-11-01

    This seminar is aimed at understanding both the physical and chemical aspects of the structural changes of materials induced by photons or ionizing radiation. The seminar was held on December 19th, 1991 and from February 13 to 14th, 1992 in this institute. The most active areas of the material science, in addition to the previous subjects, such as organic superconductors, silicon-based polymers, and fullerenes were included in this seminar. (J.P.N.)

  2. Cross-resistance to radiation in human squamous cell carcinoma cells with induced cisplatin resistance

    International Nuclear Information System (INIS)

    Komori, Keiichi

    1998-01-01

    Accumulated evidence indicates that drug resistance is induced in tumor cells treated with a variety of anti-cancer drugs and that there is a possibility of cross-resistance to ionizing radiation associated with induced drug resistance. Most in vitro studies have shown inconsistent results on cross-resistance probably because of different cell lines used and protocols for drug induction. In this study, TE3 human squamous cell carcinoma cell line was treated with a 4-day cycle of cisplatin (cis-diamminedichloroplatinum (II); CDDP) at a concentration yielding 10% cell survival. The treatment was repeated up to 3 cycles. After treatment, cells were tested for CDDP and X-ray sensitivity. One cycle of CDDP treatment induced CDDP resistance with a factor of 1.41 and 2 cycles of the treatment with a factor of 1.86. The resistance factor reached a plateau at 3 cycles of treatment. For analyzing the correlation of CDDP and X-ray resistance, 30 clones from both untreated and 3-cycle treated cells were isolated and analyzed for CDDP and X-ray sensitivity. The sensitivity was expressed as the concentration of drug or dose of X-ray required to reduce the cell survival to x% (Dx). The correlation coefficient of clones with 3-cycle treatment between CDDP and X-ray sensitivity increased gradually by increasing the end point of Dx from D 10 to D 90 , resulting in significant correlation at D 90 . The result suggested that there is a certain common repair-related mechanism affecting both CDDP and X-ray resistance in CDDP-treated cells. (author)

  3. A possible radiation-resistant solar cell geometry using superlattices

    Science.gov (United States)

    Goradia, C.; Clark, R.; Brinker, D.

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  4. Improvement of radiation resistance for polytetrafluoroethylene(PTFE) by radiation cross-linking

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Seguchi, Tadao.

    1996-01-01

    The crosslinked polytetrafluoroethylene(PTFE) was prepared by electron beams irradiation technique in the molten state at 340degC ± 3degC in inert gas atmosphere. The crosslinking density was changed by the irradiation dose. The radiation resistance of crosslinked PTFE was investigated on the mechanical properties after irradiation by γ-rays at room temperature under vacuum and in air. The dose at half value of elongation at break was about 1MGy for 500kGy-crosslinked PTFE, while the dose for non-crosslinked PTFE was only 3.5kGy. It was found that the radiation resistance of PTFE was extremely improved by crosslinking. (author)

  5. A novel radiation-induced p53 mutation is not implicated in radiation resistance via a dominant-negative effect.

    Directory of Open Access Journals (Sweden)

    Yunguang Sun

    Full Text Available Understanding the mutations that confer radiation resistance is crucial to developing mechanisms to subvert this resistance. Here we describe the creation of a radiation resistant cell line and characterization of a novel p53 mutation. Treatment with 20 Gy radiation was used to induce mutations in the H460 lung cancer cell line; radiation resistance was confirmed by clonogenic assay. Limited sequencing was performed on the resistant cells created and compared to the parent cell line, leading to the identification of a novel mutation (del at the end of the DNA binding domain of p53. Levels of p53, phospho-p53, p21, total caspase 3 and cleaved caspase 3 in radiation resistant cells and the radiation susceptible (parent line were compared, all of which were found to be similar. These patterns held true after analysis of p53 overexpression in H460 cells; however, H1299 cells transfected with mutant p53 did not express p21, whereas those given WT p53 produced a significant amount, as expected. A luciferase assay demonstrated the inability of mutant p53 to bind its consensus elements. An MTS assay using H460 and H1299 cells transfected with WT or mutant p53 showed that the novel mutation did not improve cell survival. In summary, functional characterization of a radiation-induced p53 mutation in the H460 lung cancer cell line does not implicate it in the development of radiation resistance.

  6. Radiation resistance of the carbon fiber reinforced composite material with PEEK as the matrix resin

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-01-01

    In the fast breeder reactor etc. the structural materials are exposed to various environment, i.e., repeated high and low temperature, stress, etc. Irradiation effect (electron radiation) in the mechanical characteristic at low and high temperature has been studied in the PEEK-CF, polyarylether · ether · ketone - carbon fiber composite. Following are the results. (1) Radiation resistance of PEEK-CF is higher than that of PEEK-PES-CF, PEEK - polyethersulfone surface treated CF composite. In PEEK-PES-CF, PES is deteriorated by irradiation so the adhesive power lowers. (2) In the unirradiated PEEK-CF, its mechanical characteristic decreases beyond 140 deg C. With increase of the radiation dose, however, the characteristic rises. (3) Mechanical characteristic of PEEK-CF thus little drops by the heat treatment after the irradiation. (Mori, K.)

  7. Radiation resistance of paralytic shellfish poison (PSP) toxins

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, Edith M

    2000-04-01

    Radiation resistance of paralytic shellfish poison (PSP) toxins, obtained from Pyrodinium bahamense var. compressum in shellstocks of green mussels, was determined by subjecting the semi-purified toxin extract as well as the shellstocks of green mussels to high doses of ionizing radiation of 5, 10, 15 and 20 kGy. The concentration of the PSP toxins was determined by the Standard Mouse Bioassay (SMB) method. The radiation assistance of the toxins was determined by plotting the PSP toxin concentration versus applied dose in a semilog paper. The D{sub 10} value or decimal reduction dose was obtained from the straight line which is the dose required to reduce the toxicity level by 90%. The effects of irradiation on the quality of green mussels in terms of its physico-chemical, microbiological and sensory attributes were also conducted. The effect of irradiation on the fatty acid components of green mussels was determined by gas chromatography. Radiation resistance of the PSP toxins was determined to be lower in samples with initially high toxicity level as compared with samples with initially low toxicity level. The D{sub 10} values of samples with initially high PSP level were 28.5 kGy in shellstocks of green musssels and 17.5 kGy in the semi-purified toxin extract. When the PSP level was low initially, the D{sub 10} values were as high as 57.5 and 43.5 kGy in shellstocks of green mussels for the two trials, and 43.0 kGy in semi-purified toxin extract. The microbial load of the irradiated mussels was remarkably reduced. No differnce in color and odor characteristics were observed in the mussel samples subjected to varying doses of ionizing radiation. There was darkening in the color of mussel meat and its juice. The concentration of the fatty acid components in the fresh green mussels were considerably higher as compared with those present in the irradiated mussels, though some volatile fatty acids were detected as a result of irradiation. (Author)

  8. Radiation resistance of paralytic shellfish poison (PSP) toxins

    International Nuclear Information System (INIS)

    San Juan, Edith M.

    2000-04-01

    Radiation resistance of paralytic shellfish poison (PSP) toxins, obtained from Pyrodinium bahamense var. compressum in shellstocks of green mussels, was determined by subjecting the semi-purified toxin extract as well as the shellstocks of green mussels to high doses of ionizing radiation of 5, 10, 15 and 20 kGy. The concentration of the PSP toxins was determined by the Standard Mouse Bioassay (SMB) method. The radiation assistance of the toxins was determined by plotting the PSP toxin concentration versus applied dose in a semilog paper. The D 10 value or decimal reduction dose was obtained from the straight line which is the dose required to reduce the toxicity level by 90%. The effects of irradiation on the quality of green mussels in terms of its physico-chemical, microbiological and sensory attributes were also conducted. The effect of irradiation on the fatty acid components of green mussels was determined by gas chromatography. Radiation resistance of the PSP toxins was determined to be lower in samples with initially high toxicity level as compared with samples with initially low toxicity level. The D 10 values of samples with initially high PSP level were 28.5 kGy in shellstocks of green musssels and 17.5 kGy in the semi-purified toxin extract. When the PSP level was low initially, the D 10 values were as high as 57.5 and 43.5 kGy in shellstocks of green mussels for the two trials, and 43.0 kGy in semi-purified toxin extract. The microbial load of the irradiated mussels was remarkably reduced. No differnce in color and odor characteristics were observed in the mussel samples subjected to varying doses of ionizing radiation. There was darkening in the color of mussel meat and its juice. The concentration of the fatty acid components in the fresh green mussels were considerably higher as compared with those present in the irradiated mussels, though some volatile fatty acids were detected as a result of irradiation. (Author)

  9. Radiation resistance in a melphalan-resistant subline of a rat mammary carcinoma

    International Nuclear Information System (INIS)

    Lehnert, S.; Vestergaard, J.; Batist, G.; Aloui-Jamali, M.A.

    1994-01-01

    A subline of a rat mammary carcinoma (MATB 13762), selected for resistance to melphalan, is cross-resistant to other alkylating drugs, to unrelated drugs and to ionizing radiation. The difference in radioresponse between the sensitive wild-type cell line and the melphalan- and radiation-resistant line (MLN r ) is related to the size of the α component in the linear-quadratic model. Reduction of dose rate does not affect the response of MLN r cells but does increase survival for wild-type cells. MLN r cells have elevated levels of reduced glutathione (GSH) and overexpress redox enzymes glutathione-S-transferase and glutathione peroxidase. Modest depletion of GSH (to 50% of control) radiosensitizes MLN r cells but not wild-type cells. On the basis of the results of an excitation assay, growth delay and tumor control experiments, MATB MLN r tumors are also more radioresistant than wild-type cells when irradiated in situ. However, wild-type cells irradiated shortly after excision of the tumor are much more radioresistant than the same cells irradiated 24 h after excision or maintained in culture, and their response resembles that of MLN r cells irradiated under the same conditions. These results suggest that, in spite of some similarity between the in vivo and in vitro observations, intrinsic radioresistance is not the most important factor influencing the response of MLN r cells in vivo. 22 refs., 7 figs., 4 tabs

  10. Flame-Resistant Composite Materials For Structural Members

    Science.gov (United States)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  11. Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop radiation resistant hybrid Lotus Effect photoelectrocatalytic self-cleaning anti-contamination coatings for application to Lunar...

  12. Carbon glass-ceramics and their radiation resistance

    International Nuclear Information System (INIS)

    Virgil'ev, Yu. S.

    1995-01-01

    Structural carbon materials (SCMs) hold great promise for use in numerous plasma-facing components of fusion reactors. One possible candidate for this use is carbon glass-ceramic. Therefore, it is not surprising that there is considerable interest in studying its properties and their variations upon exposure to different radiations, such as neutrons, high-energy electrons, and light ions (H + , D + , and He + ). Here, the authors summarize data accumulated to date on the structure and properties of commercial carbon glass-ceramics and their behavior under irradiation with neutrons, electrons, and some ions

  13. Radiation induction of drug resistance in RIF-1: Correlation of tumor and cell culture results

    International Nuclear Information System (INIS)

    Moulder, J.E.; Hopwood, L.E.; Volk, D.M.; Davies, B.M.

    1991-01-01

    The RIF-1 tumor line contains cells that are resistant to various anti-neoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), adriamycin (ADR), and etoposide (VP16). The frequency of these drug-resistant cells is increased after irradiation. The frequency of drug-resistant cells and the magnitude of radiation-induced drug resistance are different in cell culture than in tumors. The dose-response and expression time relationships for radiation induction of drug resistance observed in RIF-1 tumors are unusual.We hypothesize that at high radiation doses in vivo, we are selecting for cells that are both drug resistant and radiation resistant due to microenvironmental factors, whereas at low radiation doses in vivo and all radiation doses in vitro, we are observing true mutants. These studies indicate that there can be significant differences in drug-resistance frequencies between tumors and their cell lines of origin, and that radiation induction of drug resistance depends significantly on whether the induction is done in tumors or in cell culture. These results imply that theories about the induction of drug resistance that are based on cell culture studies may be inapplicable to the induction of drug resistance in tumors

  14. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest.

  15. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  16. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mikestikova, M., E-mail: mikestik@fzu.cz [Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, 18221 Prague 8 (Czech Republic); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Tackmann, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hauser, M.; Jakobs, K.; Kuehn, S. [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); and others

    2016-09-21

    A radiation hard n{sup +}-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the “ATLAS ITk Strip Sensor collaboration” and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in “punch-through protection” (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×10{sup 16} n{sub eq}/cm{sup 2}, by reactor neutron fluence of 1×10{sup 15} n{sub eq}/cm{sup 2} and by gamma rays from {sup 60}Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07. - Highlights:

  17. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  18. Gamma radiation shielding materials improved with burning resistance

    International Nuclear Information System (INIS)

    Nakamura, Michio; Nakamura, Ken-ichi; Yukawa, Katsunori.

    1985-01-01

    Purpose: To obtain gamma irradiation shielding materials excellent in workability and resistant to burning by using a two component type room temperature vulcanizing silicon rubber composition as the base material. Method: Silicon rubber comprising a diorganopolysiloxane polymer, an alkyl silicate as a crosslinker and a suitable sulfurdizing catalyst, for example, a carboxylate is mixed with iron powder and silicon oxide powder as reinforcing and flame retardant material and applied with molding. The iron powder and the silica rocks powder have grain size of 50 - 150 μm and 1 - 70 μm and charged by the amount of from 55 to 60 % by weight and from 20 to 25 % by weight respectively. The fluidizing property is impaired if the particle size of the silica rocks powder is less than 1 μm and, while on the other hand, no desired specific gravity of a predetermined value can be obtained for the molding product if the filled amount of the iron powder is less than 55 %. The oxygen index of the molding product is 45 to improve the burning resistance. The materials are excellent in the air-tightness, gamma radiation shielding performance, elasticity and workability required for the cable penetrations in a nuclear power plant and they generate noxious gases neither. (Kawakami, Y.)

  19. Tamper and radiation resistant instrumentation for safeguarding special nuclear materials

    International Nuclear Information System (INIS)

    Parsons, B.B.; Wells, J.L.

    1977-01-01

    A tamper-resistant liquid level/accountability instrumentation system for safeguards use has been developed and tested. The tests demonstrate the accuracy of liquid level measurement using TDR (Time Domain Reflectometry) techniques and the accuracy of differential pressure and temperature measurements utilizing a custom designed liquid level sensor probe. The calibrated liquid level, differential pressure, and temperature data provide sufficient information to accurately determine volume, density, and specific gravity. Test solutions used include ordinary tap water, diluted nitric acid in varying concentrations, and diluted uranium trioxide also in varying concentrations. System operations and preliminary test results conducted at the General Electric Midwest Fuel Recovery Plant and the National Bureau of Standards, respectively, suggest that the system will provide the safeguards inspector with an additional tool for real-time independent verification of normal operations and special nuclear materials accountancy data for chemical reprocessing plants. This paper discusses the system design concepts, including a brief description of the tamper and radiation resistant features, the preliminary test results, and the significance of the work

  20. The radiation resistance of thermoset plastics: Pt. 1

    International Nuclear Information System (INIS)

    Gilfrich, H.-P.; Roesinger, S.; Wilski, H.

    1991-01-01

    Not much is known about the influence of ionising radiation on thermoset plastics. In particular the influence of the dose rate on the radiation resistance has not yet been investigated. To get more information about this subject we have irradiated a number of thermoset plastics of different chemical compositions in two ways: irradiation with electrons at a high dose rate and under exclusion of oxygen and irradiation at an extremely low dose rate in air with the γ-rays of a cobalt-60 source. The latter experiment lasting over a period of 10 years (and in some cases even 16 years). In this first part of our report we describe the experimental conditions as well as the results obtained using two phenolic plastics with different inorganic fillers. In no case did we find any improvement in the properties tested. The mechanical properties deteriorated at high doses, the effects being particularly noticeable in long term experiments. Both materials became more sensitive to the influence of heat and humidity. A relatively reliable extrapolation of the results to a working period of 50 years seems to be possible. (author)

  1. Autophagy contributes to resistance of tumor cells to ionizing radiation.

    Science.gov (United States)

    Chaachouay, Hassan; Ohneseit, Petra; Toulany, Mahmoud; Kehlbach, Rainer; Multhoff, Gabriele; Rodemann, H Peter

    2011-06-01

    Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Science.gov (United States)

    Mikestikova, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A radiation hard n+-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the "ATLAS ITk Strip Sensor collaboration" and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in "punch-through protection" (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×1016 neq/cm2, by reactor neutron fluence of 1×1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07.

  3. Tolerance of retroperitoneal structures to intraoperative radiation

    International Nuclear Information System (INIS)

    Sindelar, W.F.; Tepper, J.; Travis, E.L.; Terrill, R.

    1982-01-01

    In conjunction with the clinical development of intraoperative radiotherapy, a study was undertaken in dogs to define the tolerance of normal anatomic structures in the retroperitoneum to radiation delivered during operation. Twenty adult dogs were subjected to laparotomy and intraoperative 11 MeV electron irradiation in single doses ranging from 0.to 5000 rad. Animals were followed regularly with clinical observation, blood count, serum chemistries, pyelography, and angiography. Animals were sacrificed and autopsied at regular intervals up to 12 months following treatment to assess radiation-induced complications or tissue damage. Irradiation field in all dogs consisted of a 4 X 15 cm rectangle extending in the retroperitoneum from the level of the renal vessels to the bifurcation of aorta and vena cava. The field included aorta, vena cava, inferior portion of left kidney, and distal portion of left ureter. No complications or histologic changes occurred in any animal given doses of 2000 rad, with a follow-up in excess of 18 months. A dose of 3000 rad was well tolerated, except for left ureteral occlusion in one animal. Mild vascular fibrosis was present inthe aorta and vena cava, and significant ureteral fibrosis developed by six months after doses of 4000 or 5000 rad. All animals that received 5000 rad died of radiation-related complications, including ureteral obstruction and rectal perforation. It was concluded that major vessels tolerate intraoperative irradiation well up to and including 3000 rad and that no clinically significant vascular problems develop after 4000 and 5000 rad, although some fibrosis does occur. The ureter and kidney appear to be the most radiosensitive structures inthe retroperitoneum, showing progressive changes at 300 rad or greater and showing the potential for serious complications after doses of 4000 rad or more

  4. DNA from radiation resistant human tumor cells transfers resistance to NIH/3T3 cells with varying degrees of penetrance

    International Nuclear Information System (INIS)

    Kasid, U.; Dritschilo, A.; Weichselbaum, R.

    1987-01-01

    Experimental evidence suggests that clinical radiation resistance may correlate with in vitro radiation survival parameters. Specifically, they isolated several cell lines from radioresistant head and neck carcinomas with D/sub 0/ values greater than 2 Gy. The authors co-transfected DNA from cell line SQ2OB (D/sub 0/ = 2.4 Gy) with the rhoSVNeO plasmid into NIH/3T3 cells (D/sub 0/ = 1.7 Gy). Antibiotic G418 resistant, transformed clones were isolated and confirmed by Southern blotting to contain human alu, as well as rhoSVNeO sequences. Screening for radiation resistance with 8Gy (Cs-137) revealed that 3 of 4 tested hybrid clones show a radiation survival intermediate between NIH/3T3 and SQ2OB. This suggests that radiation resistance is a dominant, transfectable phenotype of mammalian cells and can be expressed in more sensitive cells. Karyotyping of resistant hybrid clones shows the presence of double minute chromosomes. Secondary transfection results and experiments to clone the genetic factors responsible for radiation resistance are in progress and results will be reported

  5. Effect of ionizing radiation on structural and conductive properties of copper nanotubes

    Science.gov (United States)

    Zdorovets, M. V.; Borgekov, D. B.; Kenzhina, I. E.; Kozlovskiy, A. L.

    2018-01-01

    The use of electron radiation is an effective tool for stimulating a controlled modification of structural and conductive properties of nanomaterials in modern materials science. The paper presents the results of studies of the influence of various types of radiation on structural and conductive properties of copper nanotubes obtained by electrochemical synthesis in pores of templates based on polyethylene terephthalate. Such methods as SEM, X-ray diffraction and EDS show that irradiation with a stream of high-energy electrons with doses of 50-250 kGy makes it possible to modify the crystal structure of nanotubes, increasing their conductivity and decreasing the resistance of nanostructures without destroying the structure.

  6. Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Ikeda, Shigetoshi; Katoh, Etsuko; Tabata, Yoneho

    2001-01-01

    The chemical structure and physical properties of polytetrafluoroethylene (PTFE) that has been crosslinked by radiation have been studied by various methods. It has been found that a Y-type crosslinking structure and a Y-type structure incorporating a double bond (modified Y-type) is formed in PTFE by radiation-crosslinking in the molten state. In addition, various types of double bond structures, excluding the crosslinking site, have been identified. The crosslinked PTFE has a good light transparency due to the loss of crystallites, whilst it retains the excellent properties of electrical insulation and heat resistance. The coefficient of abrasion and the permanent creep are also greatly improved by crosslinking

  7. Radiation curable adhesive compositions and composite structures

    International Nuclear Information System (INIS)

    Brenner, W.

    1984-01-01

    This disclosure relates to novel adhesive compositions and composite structures utilizing the same, wherein said adhesive compositions contain an elastomer, a chemically compatible ethylenically unsaturated monomer, a tackifier, an adhesion promoter, and optionally, pigments, fillers, thickeners and flow control agents which are converted from the liquid to the solid state by exposure to high energy ionizing radiation such as electron beam. A particularly useful application for such adhesive compositions comprises the assembly of certain composite structures or laminates consisting of, for example, a fiber flocked rubber sheet and a metal base with the adhesive fulfilling the multiple functions of adhering the flocked fiber to the rubber sheet as well as adhering the rubber sheet to the metal base. Optionally, the rubber sheet itself may also be cured at the same time as the adhesive composition with all operations being carried out at ambient temperatures and in the presence of air, with exposure of said assembly to selected dosages of high energy ionizing radiation. These adhesive compositions contain no solvents thereby almost eliminating air pollution or solvent toxicity problems, and offer substantial savings in energy and labor as they are capable of curing in very short time periods without the use of external heat which might damage the substrate

  8. Assessment of the radiation resistance of some aromatic polyesters

    International Nuclear Information System (INIS)

    Choi, E.J.; Hill, D.J.T.; Kim, K.Y.

    1998-01-01

    Full text: For many applications, polyesters have more useful properties than vinyl polymers, and they can be degraded to their monomer components and recycled. In addition, aromatic polyesters are known to display a resistance to high temperatures and high-energy ionizing radiation. Recently, we have reported the γ-radiolysis for some aromatic polyesters at low radiation dose; The G-values of radical formation at 77 K were determined to be in the range 0.38∼0.46 for the polyesters of bisphenol A with fluorine substitution at isopropylidene units and in the range 0.71∼1.18 for the polyesters of halogenated bisphenol A with decamethylene segments. While the radiation sensitivities of the latter polymers were dependent on the position and content of halogen substitution, those of the former polymers were slightly dependent on these factors as assessed by the G-values at 77 K. We also have studied the radiolysis of the commercial aromatic polyesters (UP) and polycarbonate (PC). UP has been found to be more radiation stable than PC with respect to the total yield of radicals formed. The G-values for radical formation at 77K was determined to be 0.31 and 0.5 for UP and PC, respectively. In this work, we have prepared poly(ethylene-, butylene- or decalene-terephthalate)s (PET, PBT or PDT) and poly(ethylene-, buthylene- or decalene-2,6-naphthalenedicarboxylate)s (PEN, PBN or PDN) by standard melt polymerization methods, and have examined their γ-radiolysis at 77 K or room temperature, and in vacuum or air, through the applications of ESR spectroscopy and thermal analysis. Inherent viscosities of the polyesters used for the radiation studies were in the range of 0.16∼0.69 dL/g. The values of G(R) indicates that PEN-related polymers have more radiation stable than PET-related polymers and the E, B and D order is one of decreasing stability as one might expect. The significant decrease in the G(R)-values of the polyester being in the range of 0.1∼0.41 at 77 K by

  9. Development of new radiation resistant, fire-retardant cables. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Ko; Morita, Yosuke; Udagawa, Takashi (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment); Fujimura, Shun-ichi; Oda, Eisuke

    1982-12-01

    For the cables for nuclear facilities, radiation resistance and fire-retardation are severely required. The authors took note of the fact that even in the existing cables for nuclear power plants, their mechanical properties are greatly degraded by the exposure to large dose (for example, 200 Mrad in PWR testing conditions), and attempted the improvement. They employed a new additive, bromated acenaphthylene condensate (con-BACN), which effectively gives radiation resistance and also is a good flame retarder, to be compounded to an insulation material, and examined the characteristics. In this paper, the features of con-BACN and the investigation of fire-retardant EPDM composition are described. As an initial composition, a small amount of zinc white, sulphur, stearic acid, noclac 224 (Ouchi-Shinko Chemicals, Co.), and antimony trioxide, 100 parts of tale and 45 parts of con-BACN were added to 100 parts of EPDM (propylene content 34 %, Japan Synthetic Rubber Co.). As the antiaging agent, it was decided to use phenol series No. 3 as a result of test. The fire-retardant EP rubber-composed cable was produced for trial, its insulation being fabricated, using a Furukawa's pressurized salt bath continuous vulcanizer. The tests of ..gamma..-irradiation, simulated LOCA and combustion were carried out, and the test results are reported. It was indicated that the cable resisted against high dose several times as much as 200 Mrad, and was suitable for the applications, in which the mechanical properties such as bending are required to be maintained after radiation exposure. It was also found that con-BACN was safe, and its properties of decomposition, concentration and acute toxicity were all very low.

  10. Estimation of interface resistivity in bonded Si for the development of high performance radiation detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yamashita, Makoto; Nomiya, Seiichiro; Onabe, Hideaki

    2007-01-01

    For the development of high performance radiation detectors, direct bonding of Si wafers would be an useful method. Previously, p-n bonded Si were fabricated and they showed diode characteristics. The interface resistivity was, however, not investigated in detail. For the study of interface resistivity, n-type Si wafers with different resistivities were bonded. The resistivity of bonded Si wafers were measured and the interface resistivity was estimated by comparing with the results of model calculations. (author)

  11. Heavy irradiation effects in radiation-resistant optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, Tatsuo [Tohoku Univ., Oarai, Ibaraki (Japan). Oarai Branch, Inst. for Materials Research

    1998-07-01

    Development of a system for optical measurements in a nuclear reactor has been progressing to investigate dynamic changes in a material caused by heavy irradiation. In such system, transfer of optical signals to out-pile measuring systems is being attempted by the use of optical fibers. In this report, the characteristics of optical fibers in the heavy irradiation field were summarized. It has been known that amorphous silica might produce radiolysis and structural defects by the exposure to ionizing radiation. The effects of heavy irradiation on molten silica were extremely complicated. A large intensity of visible light absorption occurred from an early time during start-up of the reactor. The absorption range was limited below 700 nm for the radiation associating fast neutron and the absorption was mostly attributed to non-bridging oxygen hole center. The depletion of optical transferring capacity under the radiation might be related to the internal stress. Therefore, it seems desirable to use optical fibers in the conditions without leading too much stress. (M.N.)

  12. Radiation-resistant bacteria and their application to metal and radionuclides bioremediation

    International Nuclear Information System (INIS)

    Wang Jianlong

    2004-01-01

    Microorganisms have a number of applications in the nuclear industry, which would benefit from the use of radiation-resistant microorganisms. Environmentally isolated bacteria have shown to be resistant to gamma irradiation up to a dose of 30,000 Gy. It has also been reported that the presence of ionizing radiation may induce radio-resistance in bacteria. Recent demonstrations of the removal and immobilization of inorganic contaminants by microbial transformations, sorption and mineralization show the potential of both natural and engineered microorganisms as bioremedial tools. This review is to provide an overview of the application of radiation-resistant bacteria to decontamination of metal and radionuclide. (authors)

  13. Radiation-resistance of polyurethane pipes for cooling liquid in BES III

    International Nuclear Information System (INIS)

    Li Xunfeng; Zheng Lifang; Ji Quan; Wu Ping; Wang Li

    2009-01-01

    Gamma ray radiation and neutron radiation are predominant in the working conditions of BES III, and the radiation-resistance aging of polyurethane pipes is very important in this condition, as the pipes of cooling liquid for beam pipe and SCQ (superconducting quadrupole) vacuum pipe in BESIII. Polyester polyurethane pipes and polyether polyurethane pipes were irradiated by gamma ray and neutron. The radiation doses were as much as ten years' doses in BES. Pressure test, FTIR and thermal analysis were used to study the radiation-resistance of these two kinds of polyurethane pipes. The results show that the radiation-resistance and thermal stability of polyester polyurethane pipes are prior to those of polyether polyurethane pipes, and the pressure resistance of polyester polyurethane pipes is almost maintained after the irradiation by gamma ray and neutron, but the polyether polyurethane pipes can be aged and ruptured after the irradiation by neutron. (authors)

  14. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    OpenAIRE

    Webb, Kimberly M.; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-m...

  15. Radiation-induced structural changes. 3

    International Nuclear Information System (INIS)

    Kondo, Yasuhiro; Matsuyama, Tomochika; Ogasawara, Masaaki

    1993-05-01

    This meeting is the fourth of series meetings on the structural change in materials induced by ionizing radiation. The present meeting was organized to discuss specifically on the x-ray storage phosphors such as BaFBr:Eu 2+ or RbI x Br 1-x :Tl and to get a clear understanding of the present status of the research on the storage mechanisms, nature of the rare earth impurities, and the optical properties of BaFBr. It was also expected that all the participants became aware of unsolved problems in these storage materials and that some of them would start research work on the storage phosphors. Therefore this report was edited mainly to provide basic knowledge correlated with the storage phosphors and related phenomena rather than to report simply on the experimental results. (J.P.N.)

  16. Radiation-resistance test on optical fiber for artificial satellite

    International Nuclear Information System (INIS)

    Morita, Yosuke; Seguchi, Tadao; Mori, Tatsuo; Miyaji, Yuji.

    1985-01-01

    Radiation resistance of a prototype optical fiber for use in artificial satellites is investigated under a long-term irradiation of gamma rays at relatively low dose rates. The optical fiber tested is composed of a pure silica core and an F-doped cladding. Various aspects of the relations between induced loss and irradiation time are observed and results obtained are discussed. It is generally accepted that a satellite and its equipment should be resistant to a total dose of about 1 x 10 6 rad. In the present test, accordingly, gamma ray irradiation is performed up to a total dose of 1 x 10 6 rad at a dose rate of 1 x 10 4 rad/h (for 100 h), 3 x 10 3 rad/h (333 h) and 1 x 10 3 rad/h (1000 h), and it is shown that the loss induced in this fiber at these dose rates is 23.6 - 27.2, 16.9 - 21.6 and 12.5 - 13.5 dB/km, respectively. On the other hand, it has been reported that the loss induced at the dose rate of 1 x 10 6 rad/h (1 h) is about 600 dB/km, which is much larger than the above values. From these results, the loss at a dose rate of 100 rad/h, which would be expected in a satellite, is estimated at about 10 dB/km. It is concluded that this prototype fiber has a sufficient capability for satellite use with respect to induced loss. (Nogami, K.)

  17. Frost resistance of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1999-01-01

    Frost resistance of fibre reinforced concrete with 2.5-4.2% air and 6-9% air (% by volume in fresh concrete) casted in the laboratory and in-situ is compared. Steel fibres with hooked ends (ZP, length 30 mm) and polypropylene fibres (PP, CS, length 12 mm) are applied. It is shown that· addition...... of 0.4-1% by volume of fibres cannot replace air entrainment in order to secure a frost resistant concrete; the minimum amount of air needed to make the concrete frost resistant is not changed when adding fibres· the amount of air entrainment must be increased when fibres are added to establish...

  18. Radiation-resistance assessment of IR fibres for ITER thermography diagnostic system

    International Nuclear Information System (INIS)

    Brichard, B.; Ierschot, S. van; Ooms, H.; Berghmans, F.; Reichle, R.; Pocheau, C.; Decreton, M.

    2006-01-01

    The actively cooled target plates in the divertor of ITER will be subjected to high thermal fluxes (∼ 10 MW/m 2 ). These target plates are compound structures of an armour material at the surface - either carbon fibre reinforced carbon (CFC) or tungsten - and a water cooled CuCrZr structure inside or below. The thermal limit of the interface between the two materials must not exceed 550 o C. Therefore, the temperature must be carefully monitored to prevent structural damages of the divertor plates. Non contact measurements of the temperature offer the advantage to avoid weakening of the cooling plate structure which is already quite complex to manufacture. Infrared thermography of the target surface is therefore considered as a possible solution. Recently a diagnostic concept for spectrally resolved ITER divertor thermography using optical fibres has been proposed by CEA-Cadarache. However, the divertor region will have to face high-radiation flux and the radiation-resistance of InfraRed (IR)-fibres must be evaluated. In collaboration with CEA-Cadarache, an irradiation program has been started at SCK-CEN (Mol, Belgium) with the aim to measure the radiation-induced absorption of different IR fibre candidates operating in the 1-5 μm range. We selected various commercially available IR technologies: ZrF 4 , Hollow-Waveguide, Sapphire and Chalcogenide. For wavelengths below 2 μm we also tested low-OH silica fibres. We carried out a gamma irradiation at a maximum dose-rate of 0.42 Gy/s up to a total dose of about 5000 Gy. We showed that the optical transmission of ZrF 4 fibres strongly decreased under gamma radiation, primarily for wavelengths below 2 μm. In this type of fibre typical optical losses can reach 50 % at 5000 Gy around 3 μm. Nevertheless, the optical transmission can be significantly recovered by performing a thermal annealing treatment at a temperature of 100 o C. We also irradiated a Silver-coated hollow waveguide fibre at the same dose-rate but up

  19. Radiation-resistant photostructure for Schottky diode based on Cr/In2Hg3Te6

    Directory of Open Access Journals (Sweden)

    Ashcheulov A. A.

    2016-05-01

    Full Text Available Ge, Si, InGaAs, GaInAsP photodiodes are used as optical radiation receivers and function in a spectral range of transparency of quartz fiberglass. For the optical systems operated in the increased radioactivity the photodetectors' application on In2Hg3Te6 crystal base characterized by a photosensitivity in the spectral range of 0,5-1,6 mm and also by increased radiation resistance to alpha, beta and gamma radiation is most acceptable. Schottky photodiode structure was designed on the base of this semiconductor formed by a modified floating zone recrystallization technique where the sedimentation effect was leveled. It consists of n-In2Hg3Te6 substrate and deposited by cathode sputtering Cr barrier layer of thickness within a range 10-11 nm choice of Cr is determined by its optimal optical, electric and adhesive features in high quality radiation-resistant photodiode structures manufacturing. Indium and nichrome are used as ohmic contacts. The barrier structures have the contact area of 1,13 mm2 with photo response of 0,6-1,6 mm at the maximal sensitivity 0,43 A/W on the wavelength l,55 mm. Reverse dark current of these structures do not exceed 4 mA at the bias of 1 V (T=295 K, and the potential barrier height is equal to 0,41 eV. The tests of radiation resistance of these structures demonstrated their ability to function at doses of 2⋅108 rem without evident parameters changes. This allows using them in practical aims in the conditions of high radiation.

  20. Ultrastructural investigation on radiation resistant microbial isolates of bacillus coagulans

    International Nuclear Information System (INIS)

    Tawfik, Z.S.

    1992-01-01

    Radiation resistant strains of bacillus coagulans were isolated from environmental atmospheric surrounding industrial cobalt-60 irradiator. D 1 0 value of the studied isolate was found to be 3.3 KGy. Ultrastructure studies were performed on control isolates as well as on isolates exposed to challenging doses of 12, 15 and 25 KGy. These dose values were delivered at two different dose rate values 40 Gy/min and 300 Gy/min. Ultrastructure studies showed small differences due to dose rate effect. These differences were not sufficient to cause lethality changes. It was demonstrated that the growing effect of dose value is concentrated on cellular material rather than on cellular membrane damages. The severeness of cell damage, due to received dose increase, was also demonstrated. Results suggest that repeated sub culturing may lead to repair of cell damage when it is subjected to sub sterilizing doses. This fact is of special interest when the sterilizing dose might be splitted in more than one fraction at different latent periods

  1. Probability based high temperature engineering creep and structural fire resistance

    CERN Document Server

    Razdolsky, Leo

    2017-01-01

    This volume on structural fire resistance is for aerospace, structural, and fire prevention engineers; architects, and educators. It bridges the gap between prescriptive- and performance-based methods and simplifies very complex and comprehensive computer analyses to the point that the structural fire resistance and high temperature creep deformations will have a simple, approximate analytical expression that can be used in structural analysis and design. The book emphasizes methods of the theory of engineering creep (stress-strain diagrams) and mathematical operations quite distinct from those of solid mechanics absent high-temperature creep deformations, in particular the classical theory of elasticity and structural engineering. Dr. Razdolsky’s previous books focused on methods of computing the ultimate structural design load to the different fire scenarios. The current work is devoted to the computing of the estimated ultimate resistance of the structure taking into account the effect of high temperatur...

  2. Structural modifications of spinels under radiation

    International Nuclear Information System (INIS)

    Quentin, A.

    2010-12-01

    This work is devoted to the study of spinel structure materials under radiation. For that purpose, samples of polycrystalline ZnAl 2 O 4 and monocrystalline MgAl 2 O 4 were irradiated by different heavy ions with different energies. Samples of ZnAl 2 O 4 were studied par electron transmission microscopy, and by grazing incidence X-Ray diffraction and Rietveld analysis. Samples of MgAl 2 O 4 were studied by optical spectroscopy. Most of the results concern amorphization and crystalline structure modification of ZnAl 2 O 4 especially the inversion. We were able to determine a stopping power threshold for amorphization, between 11 keV/nm and 12 keV/nm, and also the amorphization process, which is a multiple impacts process. We studied the evolution of the amorphous phase by TEM and showed a nano-patterning phenomenon. Concerning the inversion, we determined that it did happen by a single impact process, and the saturation value did not reach the random cation distribution value. Inversion and amorphization have different, but close, stopping power threshold. However, amorphization seems to be conditioned by a pre-damage of the material which consists in inversion. (author)

  3. Radiation resistance of cable insulation and jacket materials for nuclear power plants

    International Nuclear Information System (INIS)

    Morita, Minoru; Kon, Shuji; Nishikawa, Ichiro

    1978-01-01

    The cables for use in nuclear power plants are required to satisfy the specific environmental resistance and excellent flame resistance as stipulated in IEEE Std. 383. The materials to be used to cables intended for this specific purpose of use must therefore be strictly tested so as to evaluate their flame resistance in addition to compliance with various environmental requirements, such as heat resistance, water-vapor resistance, and radiation resistance. This paper describes general information on radiation resistance and deterioration of various high-molecular materials, suggests the direction of efforts to be made to improve their properties including flame resistance of various rubber and plastic materials for cables to be used in nuclear power plants, and indicates the performance characteristics of such materials. (author)

  4. Effects of radiation on MOS structures and silicon devices

    International Nuclear Information System (INIS)

    Braeunig, D.; Fahrner, W.

    1983-02-01

    A comprehensive view of radiation effects on MOS structures and silicon devices is given. In the introduction, the interaction of radiation with semiconductor material is presented. In the next section, the electrical degradation of semiconductor devices due to this interaction is discussed. The commonly used hardening techniques are shown. The last section deals with testing of radiation hardness of devices. (orig.) [de

  5. Human genetic marker for resistance to radiations and chemicals. 1998 annual progress report

    International Nuclear Information System (INIS)

    Lieberman, H.B.

    1998-01-01

    'The broad objective of the project is to understand the molecular basis for the response of cells to radiations and chemicals, with the pragmatic goal of being able to identify human subpopulations that are exceptionally sensitive to DNA damaging agents. The project focuses on HRAD9, a human orthologue of the fission yeast Schizosaccharomyces pombe gene rad9. S. pombe rad9::ura4+ mutant cells are highly sensitive to ionizing radiation, UV and many chemicals, such as the DNA synthesis inhibitor hydroxyurea. They also lack the ability to delay cycling transiently in S phase or in G2 following a block in DNA replication or after incurring DNA damage, respectively -i.e., they lack checkpoint controls. The attempt by mutant cells to progress through mitosis in the absence of fully intact DNA accounts at least in part for their sensitivity to DNA damaging agents. Cells bearing rad9::ura4+ also aberrantly regulate UVDE, an enzyme that participates in a secondary DNA excision repair pathway. The key role played by S. pombe rad9 in promoting resistance to chemicals and radiations suggests that the evolutionarily conserved human cognate also has important functions in mammals. The first set of aims in this proposal centers on characterizing the structure and expression of HRAD9, to assess structure/function relationships and potentially link protein activity to a specific tissue. The next set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer.'

  6. Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours

    International Nuclear Information System (INIS)

    Horsman, M.

    1996-01-01

    Oxygen deficient hypoxic cells, which are resistant to sparsely ionising radiation, have now been identified in most animal and some human solid tumours and will influence the response of those tumours to radiation treatment. This hypoxia can be either chronic, arising from an oxygen diffusion limitation, or acute, resulting from transient stoppages in microregional blood flow. Extensive experimental studies, especially in the last decade, have shown that nicotinamide and structurally related analogs can effectively sensitize murine tumours to both single and fractionated radiation treatments and that they do so in preference to the effects seen in mouse normal tissues. The earliest studies suggested that this enhancement of radiation damage was the result of an inhibition of the repair mechanisms. However, recent studies in mouse tumours have shown that these drugs prevent transient cessations in blood flow, thus inhibiting the development of acute hypoxia. This novel discovery led to the suggestion that the potential role of these agents as radiosensitizers would be when combined with treatments that overcame chronic hypoxia. The combined nicotinamide with hyperthermia proved that the enhancement of radiation damage by both agents together was greater than that seen with each agent alone. Similar results were later seen for nicotinamide combined with a perfluorochemical emulsion, carbogen breathing, and pentoxifylline, and in all these studies the effects in tumours were always greater than those seen in appropriate normal tissues. Of all the analogs, it is nicotinamide itself which has been the most extensively studied as a radiosensitizer in vivo and the one that shows the greatest effect in animal tumours. It is also an agent that has been well established clinically, with daily doses of up to 6 g, associated with a low incidence of side effects. This human dose is equivalent to 100-200 mg/kg in mice and such doses will maximally sensitize murine tumours to

  7. A Structural View on Medicinal Chemistry Strategies against Drug Resistance.

    Science.gov (United States)

    Agnello, Stefano; Brand, Michael; Chellat, Mathieu F; Gazzola, Silvia; Riedl, Rainer

    2018-05-30

    The natural phenomenon of drug resistance represents a generic impairment that hampers the benefits of drugs in all major clinical indications. Antibacterials and antifungals are affected as well as compounds for the treatment of cancer, viral infections or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, underlying molecular processes have been identified to understand the emergence of resistance and to overcome this detrimental mechanism. Detailed structural information of the root causes for drug resistance is nowadays frequently available to design next generation drugs anticipated to suffer less from resistance. This knowledge-based approach is a prerequisite in the fight against the inevitable occurrence of drug resistance to secure the achievements of medicinal chemistry in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fracture resistance enhancement of layered structures by multiple cracks

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Sørensen, Bent F.

    2016-01-01

    A theoretical model is developed to test if the fracture resistance of a layered structure can be increased by introducing weak layers changing the cracking mechanism. An analytical model, based on the J integral, predicts a linear dependency between the number of cracks and the steady state...... fracture resistance. A finite element cohesive zone model, containing two cracking planes for simplicity, is used to check the theoretical model and its predictions. It is shown that for a wide range of cohesive law parameters, the numerical predictions agree well quantitatively with the theoretical model....... Thus, it is possible to enhance considerably the fracture resistance of a structure by adding weak layers....

  9. Basic design of radiation-resistant LVDTs: Linear Variable Differential Transformer

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J. M.; Park, S. J.; Kang, Y. H. (and others)

    2008-02-15

    A LVDT(Linear Variable Differential Transformer) for measuring the pressure level was used to measure the pressure of a nuclear fuel rod during the neutron irradiation test in a research reactor. A LVDT for measuring the elongation was also used to measure the elongation of nuclear fuels, and the creep and fatigue of materials during a neutron irradiation test in a research reactor. In this report, the basic design of two radiation-resistant LVDTs for measuring the pressure level and elongation are described. These LVDTs are used a under radiation environment such as a research reactor. In the basic design step, we analyzed the domestic and foreign technical status for radiation-resistant LVDTs, made part and assembly drawings and established simple procedures for their assembling. Only a few companies in the world can produce radiation-resistant LVDTs. Not only these are extremely expensive, but the prices are continuously rising. Also, it takes a long time to procure a LVDT, as it can only be bought about by an order-production. The localization of radiation-resistant LVDTs is necessary in order to provide them quickly and at a low cost. These radiation-resistant LVDTs will be used at neutron irradiation devices such as instrumented fuel capsules, special purpose capsules and a fuel test loop in research reactors. We expect that the use of neutron irradiation tests will be revitalized by the localization of radiation-resistant LVDTs.

  10. Genetic study of resistance to inhibitory effects of UV radiation in rice (Oryza sativa)

    International Nuclear Information System (INIS)

    Sato, T.; Kang, H.S.; Kumagai, T.

    1994-01-01

    Genetic analysis of resistance to the inhibitory effects of UV radiation on growth of rice (Oryza sativa L.) cultivars was carried out. Some experimental plants were grown in visible radiation supplemented with UV radiation containing a large amount of UV-B and a small amount of UV-C in a phytotron, while others were grown without UV radiation. The degree of resistance to UV radiation was estimated in terms of the degree of reduction caused by supplemental UV radiation in the fresh weight of the aboveground plant parts and the chlorophyll content per unit fresh weight. Fresh weight and chlorophyll content in F 2 plants generated by reciprocally crossing cv. Sasanishiki, a cultivar more resistant to UV radiation, and Norin 1, a cultivar less resistant to such radiation exhibited a normal frequency distribution. The heritabilities of these two properties in F 2 plants were low under conditions of non-supplemental UV radiation. Under elevated UV radiation, the F 2 population shifted to the lower range of fresh weight and chlorophyll content, and the means were close to those of Norin 1. The heritabilities of these two properties were the same in the reciprocal crosses, indicating that maternal inheritance was not involved. Inheritance of chlorophyll content per unit fresh weight was further determined in F 3 lines generated by self-fertilizing F 2 plants of Sasanishiki and Norin 1. The results showed that the F 3 population was segregated into three genotypes, namely, resistant homozygotes, segregated heterozygotes and sensitive homozygotes, with a ratio of 1:65:16. It was thus evident that the resistance to the inhibitory effect of elevated UV radiation in these rice plants was controlled by recessive polygenes. (author)

  11. Investigating mechanical behavior and radiation resistant of fuel rods clad in nuclear power plant

    International Nuclear Information System (INIS)

    Sedgh Kerdar, A.

    1999-01-01

    The important factors for selection of material for use in nuclear reactors is similar to those for other engineering applications. There are however other parameters which are of importance when materials are going to be used in high radiation environments. These parameters are compatibility in intense nuclear radiation field, high resistance against corrosion and other characteristics such as thermal conductivity, machinability and suitable welding properties. This factors discussed in chapter one. In additions to the materials used as fuel, moderator, controls, etc., which have clear and stringent nuclear requirements, other materials may be necessary in a reactor to provide structural strength and other desired properties. For a materials used in a reactor core, the single most important property is its capacity for neutron absorption. Other properties, such as temperature and radiation stability, mechanical strength, corrosion resistance, etc., also receive much attention in selecting material for a specific application. Obviously, far more can be said about each of the potential metals than is possible in chapter two. We shall limit our attention to those metals of current nuclear interest, i.e., aluminium, beryllium magnesium, zirconium, austenitic stainless steels, nickel base alloys, and in factory metals (Nb and Mo). Interactions between matter and different radiations like Neutrons, protons, Gamma , Beta and Alpha rays in nuclear reactors induced important changes in properties of materials.There are five mechanism responsible for radiation induced changes in solids: ionization, vacancy formation, interstitial formation, creation of impurities caused by nuclear reactions and displacements spikes under the local thermal environment. Due to presence of many electrons in metals ionization does not play a major role in metals only the other four mechanisms are relevant to metals and their alloys. Generally speaking formation of many vacancies and

  12. Diversity of ionizing radiation-resistant bacteria obtained from the Taklimakan Desert.

    Science.gov (United States)

    Yu, Li Zhi-Han; Luo, Xue-Song; Liu, Ming; Huang, Qiaoyun

    2015-01-01

    So far, little is known about the diversity of the radiation-resistant microbes of the hyperarid Taklimakan Desert. In this study, ionizing radiation (IR)-resistant bacteria from two sites in Xinjiang were investigated. After exposing the arid (water content of 0.8 ± 0.3%) and non-arid (water content of 21.3 ± 0.9%) sediment samples to IR of 3000 Gy using a (60)Co source, a total of 52 γ-radiation-resistant bacteria were isolated from the desert sample. The 16S rRNA genes of all isolates were sequenced. The phylogenetic tree places these isolates into five groups: Cytophaga-Flavobacterium-Bacteroides, Proteobacteria, Deinococcus-Thermus, Firmicutes, and Actinobacteria. Interestingly, this is the first report of radiation-resistant bacteria belonging to the genera Knoellia, Lysobacter, Nocardioides, Paracoccus, Pontibacter, Rufibacter and Microvirga. The 16s rRNA genes of four isolates showed low sequence similarities to those of the published species. Phenotypic analysis showed that all bacteria in this study are able to produce catalase, suggesting that these bacteria possess reactive oxygen species (ROS)-scavenging enzymes. These radiation-resistant bacteria also displayed diverse metabolic properties. Moreover, their radiation resistances were found to differ. The diversity of the radiation-resistant bacteria in the desert provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of ROS-scavenging systems that protect cells against oxidative damage caused by desiccation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Contact resistance measurement structures for high frequencies

    NARCIS (Netherlands)

    Roy, Deepu; Pijper, Ralf M.T.; Tiemeijer, Luuk F.; Wolters, Robertus A.M.

    2011-01-01

    Knowledge of the interfacial contact impedance offered by the device at its operating frequency range is crucial for accurate modelling and understanding of the device. In this article, a novel modified TLM test-structure has been devised to extract interfacial contact parameters at frequencies upto

  14. Blast resistance behaviour of steel frame structures

    NARCIS (Netherlands)

    Varas, J.M.; Soetens, F.

    2010-01-01

    The effect of a blast explosion on a typical steel frame building is investigated by means of computer simulations. The simulations help to identify possible hot spots that may lead to local or global failure. The blast energy is transferred to the structure by means of the façade. In particular

  15. Thermal Radiation for Structural Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    The lecture notes give a short introduction of the theory of thermal radiation. The most elementary concepts and methods are presented in order to give a fundamental knowledge for calculation of the load bearing capacities of fire exposed building constructions....

  16. Superconductive tunnel structures as radiation detectors

    International Nuclear Information System (INIS)

    Barone, A.; Gray, K.E.

    1985-08-01

    A brief review is given on various aspects of the potential of superconducting tunnel junctions as detectors for atomic and nuclear radiations. On the basis of recent results main advantages and drawbacks are indicated providing a preliminary comparison with the presently used semiconductor detectors. The basic ideas underlying the physics of the interaction of nuclear particles and other radiations with superconducting junctions are outlined. 9 refs., 1 tab

  17. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    Science.gov (United States)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  18. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    International Nuclear Information System (INIS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy

  19. Synchrotron radiation: a new perspectives for structure examinations

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Kozhakhmetov, S.K.; Turkebaev, T.Eh.

    2001-01-01

    An important task of radiation material testing is manufacture of multifunctional, stable and cheap materials with designed properties. A materials successful operation in an extemal conditions (high temperatures and pressures, high radiation fluences and charged particles, and etc.) imply an joint decision of physical, chemical, mechanical and other problems. The decision of these problems includes at least examination for structural, phase content, oxidation stability, thermal stability, mechanical strength, thin-film-coverings controlled synthesis (both the passivating and the catalytic) compatible with main matrix, and etc. Synchrotron radiation sources application for these problems are highly perspective. Solution of a set of problems on structural examinations for a materials exposed to high radiation fluences and operating in extemal condition is planning with use of the DELSY third generation synchrotron radiation source constructing at the Joint Institute for Nuclear Research (Dubna). In the paper the principal parameters of the DELSY synchrotron radiation source are given

  20. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2013-08-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 Multiplication-Sign 4 matrices (for the gas-radiation interaction) and 3 Multiplication-Sign 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.

  1. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken

    2013-01-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 × 4 matrices (for the gas-radiation interaction) and 3 × 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag

  2. Induced resistance to hydrogen peroxide, UV and gamma radiation in bacillus species

    International Nuclear Information System (INIS)

    Bashandy, A.S.

    2005-01-01

    The catalase activity produced in four bacillus spp.(bacillus cereus, B. laterosporus, B. pumilus and B. subtilis (Escherichia coli was used for comparison) was measured and the sensitivity of these bacteria to hydrogen peroxide was tested. Bacillus spp. had higher resistance to hydrogen peroxide than E. coil. cultures of bacillus spp . When pretreated with sublethal level of hydrogen peroxide, became relatively resistant to the lethal effects of hydrogen than untreated control cultures. These pretreated cells were also resistant to lethality mediated by UV light and gamma radiation. The obtained results suggest that bacillus spp. Possess inducible defense mechanism (s) against the deleterious effects of oxidants and /or ionizing radiation

  3. Radiation swelling of steels with lath martensite-austenic structure

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Pavlov, V.A.; Alyab'ev, V.M.; Lapin, S.S.; Ermishkin, V.A.; Antonova, O.V.

    1987-01-01

    Influence of electron radiation in the column of the JEM-1000 electron microscope on radiation swelling of austenite as austenitic fields and thin plates surrounded by α-martensite crystals is investigated. Formation of lath structure of alternating dispersive plates of martensite and invert austenite formed as a result of partial inverse martensite transformation α→γ is shown to restrain radiation swelling and formation of vacancy voids in stainless steels

  4. Air void structure and frost resistance

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    ). This observation is interesting as the parameter of total surface area of air voids normally is not included in air void analysis. The following reason for the finding is suggested: In the air voids conditions are favourable for ice nucleation. When a capillary pore is connected to an air void, ice formation...... on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor.......This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test...

  5. Radiation response of drug-resistant variants of a human breast cancer cell line

    International Nuclear Information System (INIS)

    Lehnert, S.; Greene, D.; Batist, G.

    1989-01-01

    The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells

  6. Inferring the interaction structure of resistance to antimicrobials.

    Science.gov (United States)

    Zawack, Kelson; Love, Will; Lanzas, Cristina; Booth, James G; Gröhn, Yrjö T

    2018-04-01

    The growth of antimicrobial resistance presents a significant threat to human and animal health. Of particular concern is multi-drug resistance, as this increases the chances an infection will be untreatable by any antibiotic. In order to understand multi-drug resistance, it is essential to understand the association between drug resistances. Pairwise associations characterize the connectivity between resistances and are useful in making decisions about courses of treatment, or the design of drug cocktails. Higher-order associations, interactions, which tie together groups of drugs can suggest commonalities in resistance mechanism and lead to their identification. To capture interactions, we apply log-linear models of contingency tables to analyze publically available data on the resistance of Escheresia coli isolated from chicken and turkey meat by the National Antimicrobial Resistance Monitoring System. Standard large sample and conditional exact testing approaches for assessing significance of parameters in these models breakdown due to structured patterns inherent to antimicrobial resistance. To address this, we adopt a Bayesian approach which reveals that E. coli resistance associations can be broken into two subnetworks. The first subnetwork is characterized by a hierarchy of β-lactams which is consistent across the chicken and turkey datasets. Tier one in this hierarchy is a near equivalency between amoxicillin-clavulanic acid, ceftriaxone and cefoxitin. Susceptibility to tier one then implies susceptibility to ceftiofur. The second subnetwork is characterized by more complex interactions between a variety of drug classes that vary between the chicken and turkey datasets. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    International Nuclear Information System (INIS)

    Pelfrey, C.M.; Waxman, F.J.; Whitacre, C.C.

    1989-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals

  8. Design and characterization of radiation resistant integrated circuits for the LHC particle detectors using deep sub-micron CMOS technologies

    International Nuclear Information System (INIS)

    Anelli, Giovanni Maria

    2000-01-01

    The electronic circuits associated with the particle detectors of the CERN Large Hadron Collider (LHC) have to work in a highly radioactive environment. This work proposes a methodology allowing the design of radiation resistant integrated circuits using the commercial sub-micron CMOS technology. This method uses the intrinsic radiation resistance of ultra-thin grid oxides, the technology of enclosed layout transistors (ELT), and the protection rings to avoid the radio-induced creation of leakage currents. In order to check the radiation tolerance level, several test structures have been designed and tested with different radiation sources. These tests have permitted to study the physical phenomena responsible for the damages induced by the radiations and the possible remedies. Then, the particular characteristics of ELT transistors and their influence on the design of complex integrated circuits has been explored. The modeling of the W/L ratio, the asymmetries (for instance in the output conductance) and the performance of ELT couplings have never been studied yet. The noise performance of the 0.25 μ CMOS technology, used in the design of several integrated circuits of the LHC detectors, has been characterized before and after irradiation. Finally, two integrated circuits designed using the proposed method are presented. The first one is an analogic memory and the other is a circuit used for the reading of the signals of one of the LHC detectors. Both circuits were irradiated and have endured very high doses practically without any sign of performance degradation. (J.S.)

  9. X- and gamma-ray N+PP+ silicon detectors with high radiation resistance

    International Nuclear Information System (INIS)

    Petris, M.; Ruscu, R.; Moraru, R.; Cimpoca, V.

    1998-01-01

    We have investigated the use of p-type silicon detectors as starting material for X-and gamma-ray detectors because of several potential benefits it would bring: 1. high purity p-type silicon grown by the float-zone process exhibits better radial dopant uniformity than n-type float-zone silicon; 2. it is free of radiation damage due to the neutron transmutation doping process and behaves better in a radiation field because mainly acceptor like centers are created through the exposure and the bulk material type inversion does not occur as in the n-type silicon. But the p-type silicon, in combination with a passivating layer of silicon dioxide, leads to a more complex detector layout since the positive charge in the oxide causes an inversion in the surface layer under the silicon dioxide. Consequently, it would be expected that N + P diodes have a higher leakage current than P + N ones. All these facts have been demonstrated experimentally. These features set stringent requirements for the technology of p-type silicon detectors. Our work presents two new geometries and an improved technology for p-type high resistivity material to obtain low noise radiation detectors. Test structures were characterized before and after the gamma exposure with a cumulative dose in the range 10 4 - 5 x 10 6 rad ( 60 Co). Results indicate that proposed structures and their technology enable the development of reliable N + PP + silicon detectors. For some samples (0.8 - 12 mm 2 ), extremely low reverse currents were obtained and, in combination with a low noise charge preamplifier, the splitting of 241 Am X-ray lines was possible and also the Mn Kα line (5.9 keV) was extracted from the noise with a 1.9 keV FWHM at the room temperature. An experimental model of a nuclear probe based on these diodes was designed for X-ray detection applications. (authors)

  10. Correlation of electromagnetic radiation emitted from coal or rock to supporting resistance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hui-lin; Wang, En-yuan; Song, Xiao-yan; Zhang, Hong-jie; Li, Zhong-hui [China University of Mining & Technology, Xuzhou (China). School of Safety Engineering

    2009-05-15

    More accurate forecasting of rock burst might be possible from observations of electromagnetic radiation emitted in the mine. We analyzed experimental observations and field data from the Muchengjian coal mine to study the relationship between electromagnetic radiation signal intensity and stress during the fracturing of coal, or rock, and samples under load. The results show that the signal intensity is positively correlated with stress. In addition, we investigated the change in the electromagnetic radiation intensity, the supporting resistance in a real coal mine environment, and the coal or rock stress in the mining area. The data analysis indicates that: (1) electromagnetic radiation intensity can accurately reflect the distribution of stress in the mining area; and, (2) there is a correlation between electromagnetic radiation intensity and supporting resistance. The research has some practical guiding significance for rock burst forecasting and for the prevention of accidents in coal mines. 9 refs., 6 figs.

  11. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.edu [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Natarajan, Mohan [Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States)

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  12. Influence of preliminary radiation-oxidizing treatment on the corrosion resistance of zirconium in conditions of action of ionizing radiation

    International Nuclear Information System (INIS)

    Garibov, A. A.; Aliyev, A. G.; Agayev, T. N.; Velibekova, G. Z.

    2004-01-01

    Today mainly water-cooled nuclear reactors predominate in atomic energetics. For safe work of nuclear reactors detection of accumulation process of explosives, formed during radiation and temperature influence on heat-carriers in contact with materials of nuclear reactors in normal and emergency regimes of work is of great importance. The main sources of molecular hydrogen formation in normal and emergency regimes are the processes of liquid and vaporous water in vapo metallic reaction [1-5]. At the result of these processes molecular hydrogen concentration in heat-carrier composition always exceeds theoretically expected concentration. One of the main ways to solve the problem of water-cooled reactors safety is detection of possibilities to raise material resistance of fuel elements and heat carrier to joint action of ionizing radiation and temperature. The second way is inhibition of radiation-catalytic activity of construction materials' surface during the process of water decomposition. It's been established, that one of the ways to raise resistance of zirconium materials to the influence of ionizing radiation is formation of thin oxide film on the surface of metals. In the given work the influence of preliminary oxidizing treatment of zirconium surface on its radiation-catalytic activity during the process of water decomposition. With this aim zirconium is exposed to preliminary influence of gamma-quantum in contact with hydrogen peroxide at different meanings of absorbed radiation dose

  13. Radiative heat transfer in honeycomb structures-New simple analytical and numerical approaches

    International Nuclear Information System (INIS)

    Baillis, D; Coquard, R; Randrianalisoa, J

    2012-01-01

    Porous Honeycomb Structures present the interest of combining, at the same time, high thermal insulating properties, low density and sufficient mechanical resistance. However, their thermal properties remain relatively unexplored. The aim of this study is the modelling of the combined heat transfer and especially radiative heat transfer through this type of anisotropic porous material. The equivalent radiative properties of the material are determined using ray-tracing procedures inside the honeycomb porous structure. From computational ray-tracing results, simple new analytical relations have been deduced. These useful analytical relations permit to determine radiative properties such as extinction, absorption and scattering coefficients and phase function functions of cell dimensions and optical properties of cell walls. The radiative properties of honeycomb material strongly depend on the direction of propagation. From the radiative properties computed, we have estimated the radiative heat flux passing through slabs of honeycomb core materials submitted to a 1-D temperature difference between a hot and a cold plate. We have compared numerical results obtained from Discrete Ordinate Method with analytical results obtained from Rosseland-Deissler approximation. This approximation is usually used in the case of isotropic materials. We have extended it to anisotropic honeycomb materials. Indeed a mean over incident directions of Rosseland extinction coefficient is proposed. Results tend to show that Rosseland-Deissler extended approximation can be used as a first approximation. Deviation on radiative conductivity obtained from Rosseland-Deissler approximation and from the Discrete Ordinated Method are lower than 6.7% for all the cases studied.

  14. How the nature of the chemical bond governs resistance to amorphization by radiation damage

    International Nuclear Information System (INIS)

    Trachenko, Kostya; Artacho, Emilio; Dove, Martin T.; Pruneda, J.M.

    2005-01-01

    We discuss what defines a material's resistance to amorphization by radiation damage. We propose that resistance is generally governed by the competition between the short-range covalent and long-range ionic forces, and we quantify this picture using quantum-mechanical calculations. We calculate the Voronoi deformation density charges and Mulliken overlap populations of 36 materials, representative of different families, including complex oxides. We find that the computed numbers generally follow the trends of experimental resistance in several distinct families of materials: the increase (decrease) of the short-range covalent component in material's total force field decreases (increases) its resistance

  15. Collection of radiation resistant characteristics reports for instruments and materials in high dose rate environment

    International Nuclear Information System (INIS)

    Kusano, Joichi

    2008-03-01

    This document presents the collected official reports of radiation irradiation study for the candidate materials to be used in high dose rate environment as J-PARC facility. The effect of radiation damage by loss-beam or secondary particle beam of the accelerators influences the performance and the reliability of various instruments. The knowledge on the radiation resistivity of the materials is important to estimate the life of the equipments, the maintenance interval and dose evaluation for the personnel at the maintenance period. The radiation damage consists with mechanical property, electrical property and gas-evolution property. (author)

  16. Radiation performance of AlGaAs concentrator cells and expected performance of cascade structures

    International Nuclear Information System (INIS)

    Curtis, H.B.; Swartz, C.K.; Hart, R.E. Jr.

    1987-01-01

    Aluminum gallium arsenide, GaAs, silicon and InGaAs cells have been irradiated with 1 MeV electrons and 37 MeV protons. These cells are candidates for individual cells in a cascade structure. Data is presented for both electron and proton irradiation studies for one sun and a concentration level of 100X AMO. Results of calculations on the radiation resistance of cascade cell structures based on the individual cell data are also presented. Both series connected and separately connected structures are investigated

  17. Radiation damage to DNA: The importance of track structure

    CERN Document Server

    Hill, M A

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that...

  18. Effect of temperature on structure and corrosion resistance for ...

    Indian Academy of Sciences (India)

    The effect of plating temperatures between 60 and 90◦C on structure and corrosion resistance for elec- troless NiWP coatings ..... which helps to form fine grain. At 80 .... [23] Zhang W X, Jiang Z H, Li G Y and Jiang Q 2008 Surf. Coat. Technol.

  19. Fracture Resistance, Surface Defects and Structural Strength of Glass

    NARCIS (Netherlands)

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass

  20. Thermal-Interaction Matrix For Resistive Test Structure

    Science.gov (United States)

    Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser

    1990-01-01

    Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.

  1. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    Directory of Open Access Journals (Sweden)

    Kimberly M. Webb

    2012-01-01

    Full Text Available Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  2. Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea.

    Science.gov (United States)

    Webb, Kimberly M; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn(2+)-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  3. Radiation-resistant vegetative bacteria in a proposed system of radappertization of meats

    International Nuclear Information System (INIS)

    Maxcy, R.B.; Rowley, D.B.

    1978-01-01

    After irradiation in the frozen state with 1 Mrad fresh minced pork or chicken contained approximately 10-100 colony-forming units of highly radiation resistant asporogenous bacteria per gram. Some of these had greater radiation resistance than Clostridium botulinum spores. Much of the radiation resistance was apparent as a shoulder in the death curve, which was markedly reduced by heating prior or subsequent to irradiation. Nature of the meat, such as variation in fat content (5-44%), had no significant effect on the radiation resistance of bacteria therein. Even though these bacteria were isolated from meat, it was not a favourable microenvironment for their growth. The water activity was too low. Heat sensitivity of isolates indicated the pre-irradiation enzyme inactivation treatment required for radappertization of meats would destroy or injure most vegetative cells. Thus, the combined process of heat, irradiation, and unfavourable microenvironment would ensure that these radiation resistant cells would not be a problem in radappertized meats. (author)

  4. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Moulder, J.E.

    1989-01-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance

  5. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  6. Breast cancers radiation-resistance: key role of the cancer stem cells marker CD24

    International Nuclear Information System (INIS)

    Bensimon, Julie

    2013-01-01

    This work focuses on the characterization of radiation-resistant breast cancer cells, responsible for relapse after radiotherapy. The 'Cancer Stem Cells' (CSC) theory describes a radiation-resistant cellular sub-population, with enhanced capacity to induce tumors and proliferate. In this work, we show that only the CSC marker CD24-/low defines a radiation resistant cell population, able to transmit the 'memory' of irradiation, expressed as long term genomic instability in the progeny of irradiated cells. We show that CD24 is not only a marker, but is an actor of radiation-response. So, CD24 expression controls cell proliferation in vitro and in vivo, and ROS level before and after irradiation. As a result, CD24-/low cells display enhanced radiation-resistance and genomic stability. For the first time, our results attribute a role to CD24-/low CSCs in the transmission of genomic instability. Moreover, by providing informations on tumor intrinsic radiation-sensitivity, CD24- marker could help to design new radiotherapy protocols. (author)

  7. Responsibility structure in medical radiation applications

    International Nuclear Information System (INIS)

    Beekman, Z.M.

    1989-01-01

    The author discusses the various aspects of the responsibilities of physicians and clinical physicists with regard to radiation protection in medical applications of ionizing radiation. It becomes still clearer that the physician, who carries out the examination or the treatment, also has to bear the responsibility. this holds for the indication assessment as well as for optimization of the quality of the examination or treatment versus radiation burden of the patient, radiologic worker and thirds. Further it is clear that the physician in these will have to delegate specific tasks and responsibilities, whether or not in the elongated-arm construction. The clinical physicist is responsible in particular for the applications of the physical methods and watches the quality of the apparatus and methods used. As such he also is responsible for the technical workers, who take care of the preventive and corrective maintenance. The principal responsibility of the clinical physicist however lies in the field of standardization and calibration of medical-physical instruments. Besides this investigation into and development of new techniques, methods and apparatus come up, while also education and training of various profession groups involved need attention. (author). 6 refs.; 1 tab

  8. Structural Biology Meets Drug Resistance: An Overview on Multidrug Resistance Transporters

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Iqbal, Mazhar; Mirza, Osman

    2017-01-01

    . Research on the underlying causes of multidrug resistance in cancerous cells and later on in infectious bacteria revealed the involvement of integral membrane transporters, capable of recognizing a broad range of structurally different molecules as substrates and exporting them from the cell using cellular...... superfamilies, viz., ATP-binding cassette superfamily, major facilitator superfamily and resistance nodulation division superfamily are presented. Further, the future role of structural biology in improving our understanding of drug-transporter interactions and in designing novel inhibitors against MDR pump...... century, mankind has become aware and confronted with the emergence of antibiotic-resistant pathogens. In parallel to the failure of antibiotic therapy against infectious pathogens, there had been continuous reports of cancerous cells not responding to chemotherapy with increase in the duration of therapy...

  9. Radiation effects evaluation for electrons sheaf in packages resistance in a Lasioderma serricorne, Plodia interpunctella and Sitophilus zeamais

    International Nuclear Information System (INIS)

    Alves, Juliana Nazare

    2011-01-01

    The plagues of stored products consist of a man problem, depreciating products and causing economical damages. Among these curses we have Lasioderma serricorne (F. 1792), Sitophilus zeamais (M. 1855) and Plodia interpunctella (H. 1813) known by infesting stored products as: grains, brans, flours, coffee, tobacco, dried fruits and spices. These curses perforate and penetrate the packages, ovipositing over the substratum. In this context the package plays a fundamental part, preventing the contact and curses' proliferation in the packed product. So, to protect the packed product and to prolong its shelf life, the package should have good mechanical resistance to tension and perforation, good sealing, good barrier properties and should not transfer odors nor strange flavors to the packed product. The ionizing radiation can cause structural changes in polymer packages, these changes are caused by the scission processes and reticulation of the polymers chains. These are concurrent processes and the predominance of one over the other depends on the chemical structure of the polymer, the irradiation conditions and specific factors of the material that will absorb the energy. This work had the objective to evaluate the changes in mechanical properties of package structures used to store granola, cereal bar and pasta, as well as its resistance to perforation by L. serricorne, P. interpunctella and S. zeamais, when submitted to electrons sheaf radiation. In this methodology were used five structures of commercially utilized packages to store granola, cereal bar and pasta composed by (Polypropylene bi-oriented metallic/Polypropylene bi-oriented coextruded - BOPPmet/BOPP 50 μm), (Polypropylene bi-oriented/Polypropylene - BOPP/PP 50 μm), Poli (ethylene terephthalate) metallic/Polypropylene bi-oriented coextruded - PETmet/BOPP 32 μm), Poli (ethylene terephthalate) /Polypropylene - PET/PP1 72 μm), Poli (ethylene terephthalate)/Polypropylene - PET/PP2 32 μm). The structures

  10. INVESTIGATION OF THERMAL BEHAVIOR OF MULTILAYERED FIRE RESISTANT STRUCTURE

    Directory of Open Access Journals (Sweden)

    R. GUOBYS

    2016-09-01

    Full Text Available This paper presents experimental and numerical investigations of thermal behavior under real fire conditions of new generation multilayered fire resistant structure (fire door, dimensions H × W × D: 2090 × 980 × 52 mm combining high strength and fire safety. This fire door consists of two steel sheets (thickness 1.5 and 0.7 mm with stone wool ( = 33 kg/m3, k = 0.037 W/mK, E = 5000 N/m2,  = 0.2 insulating layer in between. One surface of the structure was heated in fire furnace for specified period of time of 60 min. Temperature and deformation of opposite surface were measured from outside at selected measuring points during fire resistance test. Results are presented as temperature-time and thermal deformation-time graphs. Experimental results were compared with numerical temperature field simulation results obtained from SolidWorks®Simulation software. Numerical results were found to be in good agreement with experimental data. The percent differences between door temperatures from simulation and fire resistance test don’t exceed 8%. This shows that thermal behaviour of such multilayered structures can be investigated numerically, thus avoiding costly and time-consuming fire resistance tests. It is established that investigated structure should be installed in a way that places thicker steel sheet closer to the potential heat source than thinner one. It is also obtained that stone wool layer of higher density should be used to improve fire resistance of the structure.

  11. Experimental study on radiation resistant properties of seismic isolation elements

    International Nuclear Information System (INIS)

    Yoneda, G.; Nojima, O.; Aizawa, S.; Uchiyama, Y.; Ikenaga, M.; Yoshizawa, T.

    1991-01-01

    Recently, studies on the application of a seismic isolation system to a reactor building and or the equipment of a nuclear power plant has been carried out. This study aims at investigating the influence which is exerted upon the mechanical properties of the seismic isolation elements by radiation. The authors conducted irradiation tests, using γ rays, on natural rubber bearings (NRB), lead rubber bearings (LRB), high damping rubber bearings (HRB), and the viscous fluid used in viscous dampers. The maximum radiation intensity was 5 x 10 7 R (Roentgen). The comparison between the mechanical properties of each seismic isolation element before and after the irradiation test are reported in the following. (author)

  12. Development of a programming model for radiation-resistant software

    International Nuclear Information System (INIS)

    Eichhorn, G.; Piercey, R.B.

    1984-01-01

    The adverse effects of ionizing radiation on microelectronic systems include cumulative dosage effects, single-event upsets (SEU's) and latch-up. Most frequent, especially when the radiation environment includes heavy ions, are SEU's. Unfortunately SEU's are difficult to detect since they can be read (in RAM or ROM) as valid addresses. They can however be handled in software by proper techniques. The authors refer to their method as MRS - Maximally Redundant Software. The MRS programming model which the authors are developing uses multiply redundant boot blocks, majority voting, periodic refresh, and error recovery techniques to minimize the deleterious effects of SEU's. 1 figure

  13. Structural Implications of Mutations Conferring Rifampin Resistance in Mycobacterium leprae.

    Science.gov (United States)

    Vedithi, Sundeep Chaitanya; Malhotra, Sony; Das, Madhusmita; Daniel, Sheela; Kishore, Nanda; George, Anuja; Arumugam, Shantha; Rajan, Lakshmi; Ebenezer, Mannam; Ascher, David B; Arnold, Eddy; Blundell, Tom L

    2018-03-22

    The rpoB gene encodes the β subunit of RNA polymerase holoenzyme in Mycobacterium leprae (M. leprae). Missense mutations in the rpoB gene were identified as etiological factors for rifampin resistance in leprosy. In the present study, we identified mutations corresponding to rifampin resistance in relapsed leprosy cases from three hospitals in southern India which treat leprosy patients. DNA was extracted from skin biopsies of 35 relapse/multidrug therapy non-respondent leprosy cases, and PCR was performed to amplify the 276 bp rifampin resistance-determining region of the rpoB gene. PCR products were sequenced, and mutations were identified in four out of the 35 cases at codon positions D441Y, D441V, S437L and H476R. The structural and functional effects of these mutations were assessed in the context of three-dimensional comparative models of wild-type and mutant M. leprae RNA polymerase holoenzyme (RNAP), based on the recently solved crystal structures of RNAP of Mycobacterium tuberculosis, containing a synthetic nucleic acid scaffold and rifampin. The resistance mutations were observed to alter the hydrogen-bonding and hydrophobic interactions of rifampin and the 5' ribonucleotide of the growing RNA transcript. This study demonstrates that rifampin-resistant strains of M. leprae among leprosy patients in southern India are likely to arise from mutations that affect the drug-binding site and stability of RNAP.

  14. On the honeybee resistance to gamma radiation; Sur la resistance au rayonnement gamma de l'abeille ouvriere

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, G.; Lecomte, J. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Section des Applications des Radioelements, Centre d' Etudes Nucleaires, Saclay, Station de Recherches Apicoles, Bures-sur-Yvette (France)

    1960-07-01

    The honeybee, when irradiated by gamma radiations from a cobalt-60 source can stand a 18000 r dose without any apparent harm. Noticeable harm is observed for 90000 r. while immediate death of 100% of the individuals is obtained with a 200000 r dose. The physiological condition of the honeybee plays an important role in its resistance to gamma radiation. Reprint of a paper published in Annales de l'abeille, IV, 1959, p. 285-290 [French] L'Abeille butineuse irradiee par le rayonnement gamma issu d'une source de Cobalt 60 supporte sans dommages apparents une dose de 18000 r. Des dommages tres appreciables sont observes pour 90000 r. Une dose de 200000 r entraine la mort immediate de 100% des individus. L'etat physiologique de l'Abeille joue un role important dans la resistance au rayonnement gamma. Reproduction d'un article publie dans Annales de l'abeille, IV, 1959, p. 285-290.

  15. Nuclear radiation detectors using high resistivity neutron transmutation doped silicon

    International Nuclear Information System (INIS)

    Gessner, T.; Irmer, K.

    1983-01-01

    A method for the production of semiconductor detectors based on high resistivity n-type silicon is described. The n-type silicon is produced by neutron irradiation of p-type silicon. The detectors are produced by planar technique. They are suitable for the spectrometry of alpha particles and for the pulse count measurement of beta particles at room temperature. (author)

  16. Radiation crosslinked block copolymer blends with improved impact resistance

    International Nuclear Information System (INIS)

    Saunders, F.L.; Pelletier, R.R.

    1976-01-01

    Polymer blends having high impact resistance after mechanical working are produced by blending together a non-elastomeric monovinylidene aromatic polymer such as polystyrene with an elastomeric copolymer, such as a block copolymer of styrene and butadiene, in the form of crosslinked, colloidal size particles

  17. Computational methods for structural load and resistance modeling

    Science.gov (United States)

    Thacker, B. H.; Millwater, H. R.; Harren, S. V.

    1991-01-01

    An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.

  18. Effect of structure state on the microplastic resistance of thermobimetals

    International Nuclear Information System (INIS)

    Bashnin, Yu.A.; Ulanovskij, F.B.; Shiryaeva, A.N.

    1983-01-01

    The effect of structural state on microplastic resistance of nickel alloy thermobimetals with butt oint of layers has been studied. It has been shown that a stable polygonal structure with minimum level of residual stresses is achieved in thermobimetals by a three-fold thermocyclic treatment with heating up to 400 deg C, holding during 1 hour and slow cooling up to room temperature after each cycle with a speed of 2-4 deg C per min. The stable polygonal structure of alloys-components of thermobimetals provides growth of microplastic resistance and drop of residual deflection. The maximum thermobimetal thermosensitivity is provided at 50% preliminary plastic deformation degree on thermocouples cut out along the direction of rolli

  19. Effect of structure state on the microplastic resistance of thermobimetals

    Energy Technology Data Exchange (ETDEWEB)

    Bashnin, Yu.A.; Ulanovskij, F.B.; Shiryaeva, A.N. (Moskovskij Vechernij Metallurgicheskij Inst. (USSR))

    1983-01-01

    The effect of structural state on microplastic resistance of nickel alloy thermobimetals with butt joint of layers has been studied. It has been shown that a stable polygonal structure with minimum level of residual stresses is achieved in thermobimetals by a three-fold thermocyclic treatment with heating up to 400 deg C, holding during 1 hour and slow cooling up to room temperature after each cycle with a speed of 2-4 deg C per min. The stable polygonal structure of alloys-components of thermobimetals provides growth of microplastic resistance and drop of residual deflection. The maximum thermobimetal thermosensitivity is provided at 50% preliminary plastic deformation degree on thermocouples cut out along the direction of rolli.

  20. Beam structure of Jupiter's decametric radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K; Carr, T D

    1984-03-08

    The well-defined zones of central meridian longitude within which the probability of jovian radio emission at frequencies near 22 MHz is relatively high are known as sources A, B and C. Each consists of a component for which the emission probability is strongly correlated with Io's orbital position, and another that is Io-unrelated. The paper presents convincing evidence based on concurrent observations from two Voyager spacecraft and a terrestrial observatory that the component of source A radiation that is not correlated with Io's position is generally emitted in co-rotating searchlight beams of distinctive cross-sectional shape.

  1. Studies on the flame and radiation resistant modification of wires and cables for nuclear power generation plants

    International Nuclear Information System (INIS)

    Hagiwara, Miyuki; Morita, Yosuke; Udagawa, Akira; Oda, Eisuke; Fujimura, Shunichi.

    1982-08-01

    For the use in the light-water nuclear power generation plants, wires and cables are required to keep high flame retardancy and superior resistivity against heat and radiation throughout the whole period of service. They are expected, further, to fulfill their functions even under LOCA conditions. The present work aimed to provide new technology to give flame and radiation resistancy to insulating materials for the cables which are used under the above requirements. For the improvement of flame retardancy and the elongation of life time, polymerizable flame retardants were examined their applicability to ethylene-propylene-diene rubber. Various polymerizable flame retardants were first synthesized, and their performance was analyzed, especially, as to the relationship between molecular structure and their effectiveness. As a guiding principle for developing of a high performance flame and radiation resistant reagent, it was suggested that the back born of the reagent molecule should be constructed by carbon-carbon bond including fused aromatic rings and groups which can undergo polymerization by radical initiators. After careful consideration and detailed experimental work, condensed bromoacenaphthylene (con-BACN) was shown to have an effectiveness enough for the present purpose. Its satisfactory performance was also shown by making cables of a practical size using con-BACN, and by carrying out various performance tests based substantially on IEEE standards. (author)

  2. Characteristic of resistant ionization-radiation and its relationship with polysaccharide contents in spirulina

    International Nuclear Information System (INIS)

    Wang Zhiping; Xu Bujin

    2001-01-01

    The anti-radiation capacities of intact filaments, no-sheath filaments and cells of 4 kinds of Spiralina strains (Ss-V, Sp-F, Sp-Z and Sp-D) treated by "6"0Co γ-rays were studied. The relationship between polysaccharide contents and anti-radiation capacity of 4 strains were also detected. The results showed that Spirulina is highly resistant toγ-radiation, however there were significant differences with various strains. The order of anti-radiation capacity is Ss-V > Sp-F > Sp-Z > Sp-D. Moreover, the anti-radiation capacity were remarkably related with polysaccharide contents in the 4 strains. This showed that polysaccharide is very important for raising and maintain-ing super anti-radiation capacity in Spiralina. (authors)

  3. Evaluation of Radiation Response and Gold Nanoparticle Enhancement in Drug-Resistant Pancreatic Cancer Cells

    Science.gov (United States)

    Abourabia, Assya

    Pancreatic cancer is a major cause of cancer-related death worldwide after lung cancer and colorectal cancer Pancreatic treatment modalities consist of surgery, chemotherapy, and radiation therapy or combination of these therapies. These modalities are good to some extents but they do have some limitations. For example, during the chemotherapy, tumor cells can develop some escape mechanisms and become chemoresistant to protect themselves against the chemo drugs and pass on theses escape mechanisms to their offspring, despite the treatment given. Cancer Cells can become chemoresistant by many mechanisms, for example, decreased drug influx mechanisms, decreased of drug transport molecules, decreased drug activation, altered drug metabolism that diminishes the capacity of cytotoxic drugs, and enhanced repair of DNA damage. Given that some of these chemoresistance mechanisms may impact sensitivity to radiation. Therefore, there is a strong need for a new alternative treatment option to amplify the therapeutic efficacy of radiotherapy and eventually increase the overall efficacy of cancer treatment. Nano-radiation therapy is an emerging and promising modality aims to enhance the therapeutic efficacy of radiotherapy through the use of radiosensitizing nanoparticles. The primary goal of using GNP-enhanced radiation is that GNPs are potent radiosensitizer agents that sensitize the tumor cells to radiation, and these agents promote generation of the free radicals produced by Photo- and Auger- electrons emission at the molecular level which can enhance the effectiveness of radiation-induced cancer cell death. The main aim of this research is to analyze and compare the response to radiation of pancreatic cancer cells, PANC-1, and PANC-1 cells that are resistant to oxaliplatin, PANC-1/OR, and investigate the radiation dose enhancement effect attributable to GNP when irradiating the cells with low-energy (220 kVp) beam at various doses. Based on evidence from the existing

  4. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    Science.gov (United States)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-09-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 °C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 °C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation.

  5. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    International Nuclear Information System (INIS)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-01-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 o C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 o C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D 10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D 10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation

  6. Irradiation tests of a small-sized motor with radiation resistance

    International Nuclear Information System (INIS)

    Nakamichi, M.; Ishitsuka, E.; Shimakawa, S.; Kan, S.

    2007-01-01

    In the Test Blanket Module (TBM) of the International Thermonuclear Experimental Reactor (ITER), tritium production and release behavior will be studied using neutrons from fusion reactions, as the blanket development for a demonstration (DEMO) reactor. For development of the TBM, in-pile functional tests are planned, including an integrated irradiation experiment of a fusion blanket mock-up for pulsed operation simulating the ITER operation mode, using the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Agency (JAEA).Due to be installed in an irradiation rig, a small-sized motor has to be developed for rotating a neutron absorber with a window to realize the simulated pulse operation. Since degradation of materials of the motor may be caused by radiation damage due to neutron and gamma-ray irradiation, it is important to examine the soundness of the motor materials under the neutron and gamma irradiation.In the present study, a small-sized motor with increased radiation resistance was developed as follows. A design of a commercial alternate current (AC) servomotor was adopted in the base structure, and some components of the motor were replaced by those made of radiation-proof materials, through elimination of organic materials. Polyester-coated wire for field coil and epoxy for fixed resin were replaced by polyimide-coated wire and polysiloxane filled with MgO and Al 2 O 3 , respectively. Furthermore, inorganic lubricant (Mo-based coating of 4 micro meter in thickness) was treated on the surface of a gear, instead of organic (polyphenylether) oil.Radiation-induced degradation of the components of the developed small-sized motor was examined using JMTR and the Japan Research Reactor No.4 (JRR-4) of JAEA. The motor was operating normally up to a gamma-ray dose of 7 x 10 8 Gy, a fast neutron (E>1 MeV) fluence of 2 x 10 21 m -2 and a thermal neutron (E 22 m -2 . The irradiated gamma-ray dose for this motor is about 700 times as high as the operation

  7. Structural dynamic and resistance to nuclear air blast

    International Nuclear Information System (INIS)

    Qureshi, S.M.

    2003-01-01

    A need exists to design protective shelters attached to specialized facilities against nuclear airbursts, explosive shocks and impacting projectiles. Designing such structures against nuclear and missile impact is a challenging task that needs to be looked into for design methodology formulation and practicability. Structures can be designed for overpressure pulsed generated by a nuclear explosion as well as the scabbing and perforation/punching of an impacting projectile. This paper discuses and formulates the methods of dynamic analysis and design required to undertake such a task. Structural resistance to peak overpressure pulse for a 20 KT weapons and smaller tactical nuclear weapons of 1 KT (16 psi, overpressure) size as a direct air blast overpressure has been considered in design of walls, beams and slabs of a special structure under review. The design of shear reinforcement as lacing is also carried out. Adopting the philosophy of strengthening and hardening can minimize the effect of air blast overpressure and projectile impact. The objective is to avoid a major structural failure. The structure then needs to be checked against ballistic penetration by a range of weapons or be required to resist explosive penetration from the charge detonated in contact with the structure. There is also a dire need to formulate protective guidelines for all existing and future critical facilities. (author)

  8. INFLUENCE OF INCUBATION TIME, GAMMA RAYS AND ELECTRON BEAM ON RADIATION RESISTANCE OF SOME SELECTED PATHOGENS

    International Nuclear Information System (INIS)

    EL-HIFNAWI, H.N.; EL-TABLAWY, S.Y.

    2009-01-01

    The effect of different growth phases on the radiation resistance, antibiotic susceptibility and pathogenicity of certain selected pathogens (Escherichia coli, Candida albicans and Staphylococcus aureus) was studied in mice. The obtained results showed that Escherichia coli was slightly more resistant to gamma radiation in 18 h than 24 h or 48 h but it was relatively more resistant to electron beam in 24 h and 48 h than 18 h. Candida albicans showed radiation resistance nearly the same in all incubation times in the case of gamma radiation while for electron beam, its radiation resistance was slightly more in 24 h and 48 h than in 18 h. On the other hand, Staphylococcus aureus recorded much more resistance to gamma radiation in the 48 h than in 24 h or 18 h whereas in the case of electron beam, it was slightly more resistant in 18 h than in 24 h and 48 h.The antibiotic susceptibility of Escherichia coli reported that the exposure to gamma radiation at 3 kGy and electron beam at 6 kGy increase the susceptibility to the nalidixic acid and nitrofurantoin. When Candida albicans was exposed to 3 kGy gamma radiation and 6 kGy electron beam, the same sensitivity to nystatin was observed in comparison with the unexposed one while the sensitivity of Staphylococcus aureus to some antibiotics (amoxicillin, nitrofurantoin and tetracycline) was decreased after exposure to gamma radiation at 0.75 and 2 kGy and electron beam at 6 kGy, but for other antibiotics (trimethoprim/ sulfamethoxazole), the sensitivity was increased at 6 kGy electron beam.The lethality percent recorded after the oral ingestion of the mice with the unexposed Escherichia coli and Candida albicans were 25% and 100%, respectively, and for 6 kGy exposure to electron beam was 0% . The cotaneous disease and abscesses caused by the intradermal injection of the mice with unexposed Staphylococcus aureus was 75% and for 6 kGy exposure to electron beam was 25%.

  9. Radiation-hard ceramic Resistive Plate Chambers for forward TOF and T0 systems

    Energy Technology Data Exchange (ETDEWEB)

    Akindinov, A., E-mail: Alexander.Akindinov@cern.ch [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Dreyer, J.; Fan, X.; Kämpfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kiselev, S. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Kotte, R.; Garcia, A. Laso [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Malkevich, D. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Naumann, L. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Nedosekin, A.; Plotnikov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Sultanov, R.; Voloshin, K. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2017-02-11

    Resistive Plate Chambers with ceramic electrodes are the main candidates for a use in precise multi-channel timing systems operating in high-radiation conditions. We report the latest R&D results on these detectors aimed to meet the requirements of the forward T0 counter at the CBM experiment. RPC design, gas mixture, limits on the bulk resistivity of ceramic electrodes, efficiency, time resolution, counting rate capabilities and ageing test results are presented.

  10. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  11. Evolution of radiation resistant hollow fibers membranes for nuclear

    International Nuclear Information System (INIS)

    Neelam Kumari; Raut, D.R.; Bhardwaj, Y.K.; Mohapatra, P.K.

    2014-01-01

    We have evaluated hollow fiber supported liquid membrane (HFSLM) technique for the separation of actinides, fission products and other valuables from the nuclear waste solutions. In this technique, ligand responsible for separation of metal ion is held in tiny pores of membrane. Any drastic change as a consequence of irradiation, like change in pore size, change in hydrophobicity of polymeric material can be fatal for separation process as it may lead dislodging of carrier ligands from the pores. It was therefore needed to study the irradiation stability of hollow fibers. We have earlier showed that polypropylene fibers were stable up to 500 radiation dose and we therefore need to look into other options. In the present work, hollow fiber membranes made from polyether ether ketone (PEEK), polysulphone (PS). Polymers were evaluated for their radiation stability after exposing to varying absorbed dose of gamma radiation. The hollow fibers were irradiated to 100 KGy, 200 KGy, 500 KGy and 1000 KGy and its changes in hydrophobicity were measured using contact angle measurement studies

  12. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  13. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    Science.gov (United States)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  14. Measurement of resistance switching dynamics in copper sulfide memristor structures

    Science.gov (United States)

    McCreery, Kaitlin; Olson, Matthew; Teitsworth, Stephen

    Resistance switching materials are the subject of current research in large part for their potential to enable novel computing devices and architectures such as resistance random access memories and neuromorphic chips. A common feature of memristive structures is the hysteretic switching between high and low resistance states which is induced by the application of a sufficiently large electric field. Here, we describe a relatively simple wet chemistry process to fabricate Cu2 S / Cu memristive structures with Cu2 S film thickness ranging up to 150 micron. In this case, resistance switching is believed to be mediated by electromigration of Cu ions from the Cu substrate into the Cu2 S film. Hysteretic current-voltage curves are measured and reveal switching voltages of about 0.8 Volts with a relatively large variance and independent of film thickness. In order to gain insight into the dynamics and variability of the switching process, we have measured the time-dependent current response to voltage pulses of varying height and duration with a time resolution of 1 ns. The transient response consists of a deterministic RC component as well as stochastically varying abrupt current steps that occur within a few microseconds of the pulse application.

  15. Structure and radiation induced swelling of steels and alloys

    International Nuclear Information System (INIS)

    Parshin, A.M.

    1983-01-01

    Regularities of vacancy void formation and radiation induced swelling of austenitic chromium-nickel steels and alloyse ferritic steels as well as titanium α-alloys under radiation by light and heavy ions and neutrons are considered. Possible methods for preparation of alloys with increased resistance to radiation swelling are described. Accounting for investigations into ferritic steels and α-alloys of titanium the basic way of weakening vacancy smelling is development of continuous homogeneous decomposition of solid solution using alloying with vividly expressed incubation period at a certain volumetric dilatation as well as decompositions of the type of ordering, K-state, lamination of solid solutions, etc. Additional alloying of solid solutions is also shown to be necessary for increasing recrystallization temperature of cold-deformed steel

  16. Radiation induced structural changes in alpha-copper-zinc alloys

    International Nuclear Information System (INIS)

    Schuele, W.; Gieb, M.

    1991-01-01

    During irradiation of alpha-copper-zinc alloys with high energy electrons and protons a decrease of the electrical resistivity due to an increase of the degree of short range order is observed through radiation enhanced diffusion followed by an increase of the electrical resistivity through the formation of radiation induced interstitial clusters. The initial formation rate of interstitial clusters increases about linearly with the displacement rate for electron and proton irradiation. The largest initial formation rate is found between 60 and 130 0 C becoming negligibly small above 158 0 C and decreases drastically below 60 0 C. The dynamic steady state interstitial cluster concentration increases with decreasing irradiation temperature in the investigated temperature range between 158 and 40 0 C. Above 158 0 C the formation rate of interstitial clusters is negligibly small. Thus the transition temperature for radiation induced interstitial cluster formation is 158 0 C, depending mainly on the migration activation energy of vacancies. The radiation induced interstitial clusters are precipitates in those alloys in which the diffusion rate of the undersized component atoms via an interstitialcy diffusion mechanism is larger than that of the other atoms

  17. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl.

    Science.gov (United States)

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-03-15

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.

  18. Indirect radiation effects related to the environmental structure of targets

    International Nuclear Information System (INIS)

    Frankenberg, D.

    1976-01-01

    It is supposed, that in biological systems there are direct as well as indirect radiation effects. Their contributions to lethal effects depend mainly on two different kinds of structures within irradiated systems: the microscopic energy deposition patterns of radiation and the environmental structures of targets. The approach to determine these contributions of the lethal action of ionizing radiation in yeast cells was, to use chemical compounds, which specifically change the radical spectrum of water radiolysis. The efficiency of such chemical compounds in scavenging specifically water radicals was tested in aqueous solutions of thymine molecules, in which indirect radiation effects occur exclusively. The main result is, that the OH'-radical is by far the most effective radical to destroy thymine molecules. The relative contributions of direct and indirect radiation effects to lethal actions of ionizing radiation was investigated in yeast cells. The radical spectrum of water radiolysis was changed by bubbling the cell suspensions with different gases. The main result is, that there are no lethal radiation effects du to the action of water radicals

  19. Radiation Resistance of the U(Al, Si)3 Alloy: Ion-Induced Disordering

    Science.gov (United States)

    Yaniv, Gili; Horak, Pavel; Vacik, Jiri; Mykytenko, Natalia; Rafailov, Gennady; Dahan, Itzchak; Fuks, David; Kiv, Arik

    2018-01-01

    During the exploitation of nuclear reactors, various U-Al based ternary intermetallides are formed in the fuel-cladding interaction layer. Structure and physical properties of these intermetallides determine the radiation resistance of cladding and, ultimately, the reliability and lifetime of the nuclear reactor. In current research, U(Al, Si)3 composition was studied as a potential constituent of an interaction layer. Phase content of the alloy of an interest was ordered U(Al, Si)3, structure of which was reported earlier, and pure Al (constituting less than 20 vol % of the alloy). This alloy was investigated prior and after the irradiation performed by Ar ions at 30 keV. The irradiation was performed on the transmission electron microscopy (TEM, JEOL, Japan) samples, characterized before and after the irradiation process. Irradiation induced disorder accompanied by stress relief. Furthermore, it was found that there is a dose threshold for disordering of the crystalline matter in the irradiated region. Irradiation at doses equal or higher than this threshold resulted in almost solely disordered phase. Using the program “Stopping and Range of Ions in Matter” (SRIM), the parameters of penetration of Ar ions into the irradiated samples were estimated. Based on these estimations, the dose threshold for ion-induced disordering of the studied material was assessed. PMID:29393870

  20. Some physiological and morphological aspects of radiation-resistant bacteria and a new method for their isolation from food

    International Nuclear Information System (INIS)

    Sanders, S.W.

    1978-01-01

    A study was undertaken to help clarify the taxonomic positions and mechanisms of radiation resistance of radiation-resistant asporogenous bacteria found in foods. Determinations of DNA base compositions of highly resistant Moroxella-Acinetobacter (M-A) strains indicated that they were atypical, having percent guanine plus cytosine contents exceeding the values for true Moraxella or Acinetobacter spp. By direct observation of dividing cells, the resistant M-A were found to undergo multiple-plane division. Electron micrographs revealed unusually thick cell walls in the M-A as compared with gram-negative bacteria, indicating a possible role of the cell wall in radiation resistance. Resistance to desiccation was utilized in the selection of highly radiation-resistant bacteria from non-irradiated sources. Bacteria from a food or other source were suspended in dilute phosphate buffer and dried in a thin film at 25 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the numbers of radiation-sensitive bacteria. Further selection of the most radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, thereby allowing the isolation of highly resistant bacteria that had not been irradiated. The similarity of radiation-resistance and identifying characteristics between irradiated and non-irradiated isolates indicated that highly radiation-resistant bacteria are not altered by radiation selection. Irradiated Plate Count Agar and Tryptic Soy Agar were found to be very toxic to radiation-resistant bacteria. This phenomenon may be important in food irradiation, where the ability to survive and grow in a product may depend partly on the sensitivity to bacteriocidal products formed during irradiation

  1. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  2. Effect of radiation on microtubule structure in cancer cells

    International Nuclear Information System (INIS)

    Tripath, Shambhoo Sharan; Panda, Dulal; Jayakumar, S.; Maikho, Thoh; Sandur, Santosh Kumar

    2017-01-01

    Microtubules (MT) are dynamic structural cellular components. In proliferating cells, they are essential components in cell division through the formation of the mitotic spindle. Radiotherapy is an integral part of cancer treatment for most of the solid cancers. Scanty data exists in the literature related to how ionizing radiation affects microtubule reorganization in tumor cells. In the present study, breast cancer cell line (MCF-7 cells) was exposed to different doses of radiation (2-10Gy). Cells were cultured for 24 h, fixed and stained with antitubulin antibody and subjected to immunofluorescence microscopy. In another experiment, cells were subjected to cold treatment for 5 min or 30 min for studying the disassembly of microtubules after 24 h of irradiation. Further, these cells were incubated at 37°C for 20 min for studying the reassembly of microtubules. Acetylation of microtubule was also examined after exposure of cells to radiation. Experiments were also performed by combining radiation with low concentration of CXI-Benzo 84 (MT destabilizing agent 1 and 2.5 uM). Exposure of MCF-7 cells to radiation lead to destabilization of microtubules. Interestingly, destabilization of microtubule was faster upon cold treatment in irradiated group as compared to control group. These cells failed to re-stabilize at 37°C. Radiation also reduced the acetylation level of microtubule. Combination treatment of CXI-Benzo 84 with radiation exhibited additive effect in terms of depolymerization of MT. Our results suggest that ionizing radiation indeed modulates microtubule dynamics. (author)

  3. The radiation resistance of thermoset plastics: Pt. 2

    International Nuclear Information System (INIS)

    Gilfrich, H.-P.; Roesinger, S.; Wilski, H.

    1991-01-01

    Two thermoset phenolic plastics filled with organic fillers (wood flour and cotton fabric shreds) were irradiated at high dose rates (under exclusion of air) and with extremely low dose rates in air. The mechanical and electrical properties are compared with each other and with the results obtained from previous investigations involving inorganic filled thermosets. As expected, the organic filled plastics were found to be more sensitive to irradiation than the inorganic filled counterparts. Radiation induced changes previously observed with the inorganic filled thermosets can now be explained by the small amounts of organic admixtures which they contain. (author)

  4. Fracture Resistance, Surface Defects and Structural Strength of Glass

    OpenAIRE

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass strength assessment. The effect of loading conditions, constructional and technological factors on the engineering strength of glass can be evaluated in certain cases using fracture mechanics with inform...

  5. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    Energy Technology Data Exchange (ETDEWEB)

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  6. Radiation resistance of polymer materials. Degradation evaluation by accelerated testing for application condition

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Sorimachi, Masami

    2010-02-01

    This paper presents re-evaluated radiation resistance property data of polymer materials, which had been tested in past times in TAKASAKI Quantum Beam Science Directorate, for the future study of ageing evaluation of low voltage electric cable insulation materials used in light-water nuclear reactors. The radiation resistance of 25 types of plastics and rubbers materials applied in practical environments was evaluated by the accelerated testing of gamma-ray irradiation under oxygen pressure, and was compared with the radiation resistance determined from the traditional testing by irradiation with a high dose rate in air. The polymer materials were formulated to be similar or equivalent to practical materials, and the most of formulation (chemical compounds and quantities) were described. For all materials, the tensile properties (elongation at break, ultimate strength, 100% or 200% modulus), electric resistivity, gel-fraction, and density were measured after irradiation in oxidation conditions and irradiation in air with a high dose rate (non-oxidation conditions). The data of relations between each properties and total dose at various conditions were compiled, and the relations among the changes of mechanical properties, electrical properties, and radiation induced chemical reactions were discussed. (author)

  7. Radiation-resistant optical sensors and cameras; Strahlungsresistente optische Sensoren und Kameras

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G. [Imaging and Sensing Technology, Bonn (Germany)

    2008-02-15

    Introducing video technology, i.e. 'TV', specifically in the nuclear field was considered at an early stage. Possibilities to view spaces in nuclear facilities by means of radiation-resistant optical sensors or cameras are presented. These systems are to enable operators to monitor and control visually the processes occurring within such spaces. Camera systems are used, e.g., for remote surveillance of critical components in nuclear power plants and nuclear facilities, and thus contribute also to plant safety. A different application of optical systems resistant to radiation is in the visual inspection of, e.g., reactor pressure vessels and in tracing small parts inside a reactor. Camera systems are also employed in remote disassembly of radioactively contaminated old plants. Unfortunately, the niche market of radiation-resistant camera systems hardly gives rise to the expectation of research funds becoming available for the development of new radiation-resistant optical systems for picture taking and viewing. Current efforts are devoted mainly to improvements of image evaluation and image quality. Other items on the agendas of manufacturers are the reduction in camera size, which is limited by the size of picture tubes, and the increased use of commercial CCD cameras together with adequate shieldings or improved lenses. Consideration is also being given to the use of periphery equipment and to data transmission by LAN, WAN, or Internet links to remote locations. (orig.)

  8. Genetic analysis of resistance to radiation lymphomagenesis with recombinant inbred strains of mice

    International Nuclear Information System (INIS)

    Okumoto, M.; Nishikawa, R.; Imai, S.; Hilgers, J.

    1990-01-01

    Induction of lymphomas by radiation in mice is controlled by genetic factors. We analyzed the genetic control of radiation lymphomagenesis using the CXS series of recombinant inbred strains derived from two progenitor strains: one highly susceptible to radiation induction of lymphoma [BALB/cHeA (C)] and one extremely resistant [STS/A (S)]. The best concordances between strain distribution patterns of genetic markers and resistance (or susceptibility) to radiation lymphomagenesis were observed in a region with the b and Ifa genes on chromosome 4. This indicates that one major locus controls the incidence of radiogenic lymphomas in mice. We designated this locus as the Lyr (lymphoma resistance) locus. Backcrosses of (CXS)F1 to the two progenitor strains showed an intermediate incidence of lymphomas between their parental mice and did not significantly differ from (CXS)F1 mice. This and previous observations that (CXS)F1 mice also showed an intermediate incidence, differing from both progenitor strains, indicate that more genes are involved in the resistance (or susceptibility) to lymphoma induced by irradiation

  9. On possibility to make a new type of calorimeter: radiation resistant and fast

    International Nuclear Information System (INIS)

    Derevshchikov, A.A.; Khodyrev, V.Yu.; Kryshkin, V.I.; Rakhmatov, V.E.; Ronzhin, A.I.

    1990-01-01

    It is proposed to use electron multipliers, which directly detect low energy shower particles as an active element in sandwich calorimeters. The approach pffers fast and radiation resistant calorimetry. Test of the method is presented with the use of a microchannel plate. 4 refs.; 4 figs

  10. Structure analysis of biomolecules using synchrotron radiation circular dichroism spectrophotometer

    International Nuclear Information System (INIS)

    Gekko, Kunihiko; Matsuo, Koichi

    2004-01-01

    We constructed the vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer, which is capable of measuring circular dichroism spectra to 140 nm for aqueous solutions at temperature from -30 to 70degC, using a small-scale SR source at Hiroshima Synchrotron Radiation Center (HiSOR). This spectrophotometer was used for structural analyses of amino acids, saccharides, and proteins in water. The obtained results demonstrate that a synchrotron radiation VUVCD spectroscopy provides more detailed and new information on the structures of biomolecules, based on the high energy transitions of chromophores such as hydroxyl, acetal, and peptide groups. (author)

  11. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells

    International Nuclear Information System (INIS)

    Chadderton, Naomi; Cowen, Rachel L.; Sheppard, Freda C.D.; Robinson, Suzanne; Greco, Olga; Scott, Simon D.; Stratford, Ian J.; Patterson, Adam V.; Williams, Kaye J.

    2005-01-01

    Purpose: Tumor hypoxia is unequivocally linked to poor radiotherapy outcome. This study aimed to identify enhancer sequences that respond maximally to a combination of radiation and hypoxia for use in genetic radiotherapy approaches. Methods and materials: The influence of radiation (5 Gy) and hypoxia (1% O 2 ) on reporter-gene expression driven by hypoxia (HRE) and radiation (Egr-1) responsive elements was evaluated in tumor cells grown as monolayers or multicellular spheroids. Hypoxia-inducible factor-1α (HIF-1α) and HIF-2α protein expression was monitored in parallel. Results: Of the sequences tested, an HRE from the phosphoglycerate kinase-1 gene (PGK-18[5+]) was maximally induced in response to hypoxia plus radiation in all 5 cell lines tested. The additional radiation treatment afforded a significant increase in the induction of PGK-18[5+] compared with hypoxia alone in 3 cell lines. HIF-1α/2α were induced by radiation but combined hypoxia/radiation treatment did not yield a further increase. The dual responsive nature of HREs was maintained when spheroids were irradiated after delivery of HRE constructs in a replication-deficient adenovirus. Conclusions: Hypoxia-responsive enhancer element sequences are dually responsive to combined radiation and hypoxic treatment. Their use in genetic radiotherapy in vivo could maximize expression in the most radio-resistant population at the time of radiation and also exploit microenvironmental changes after radiotherapy to yield additional switch-on

  12. On the fine structure of the Vavilov-Cherenkov radiation

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Kartavenko, V.G.; Zrelov, V.P.

    2003-01-01

    The aim of this paper is to study the fine structure of the Cherenkov rings. We analyze Zrelov's experiments in which the Cherenkov radiation was detected without using the special focusing devices. The broad Cherenkov ring was observed in the plane perpendicular to the motion axis. Using the exact and approximate formulae, we investigate how a charge uniformly moving in a medium radiates in a finite space interval. The formulae obtained describe the radiation intensity in the whole space interval, inside and outside the Cherenkov ring. In the plane perpendicular to the motion axis, the radiation fills mainly the finite ring. Its width, proportional to the motion interval, and the energy released in this ring do not depend on the position of the observation plane. Outside the Cherenkov ring, the radiation intensity suddenly drops. Inside it, the radiation intensity exhibits small oscillations which are due to the interference of the Vavilov-Cherenkov radiation and bremsstrahlung. The increase in the radiation intensity at the ends of the Cherenkov ring is associated with the shock waves arising at the beginning and the end of the charge motion and at the moments when the charge velocity coincides with the light velocity in a medium. For the chosen motion interval, the well-known Tamm formula does not describe the radiation intensity inside the Cherenkov ring for any position of the observation plane. Outside the Cherenkov ring, the Tamm formula is valid only at very large observation distances. Theoretical calculations are in satisfactory agreement with experimental data. Thus, the combined experimental and theoretical study of the unfocused Cherenkov rings allows one to obtain information on the physical processes accompanying the Cherenkov radiation (bremsstrahlung, transition of the light velocity barrier, etc.)

  13. Radiation stability of low-temperature resistance thermometers

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Petrusenko, Yu.T.; Sleptsov, A.N.; Logvinenko, S.P.; Mikhina, G.F.; Rossoshanskij, O.A.

    1989-01-01

    The effect of low temperature (∼ 5 and 11 K) irradiation with E=30 MeV electrons and the subsequent annealing at 180 and 300 K on gauge dependences R(T) of resistance thermometers (RT) on the basis of p-GaAs, Ni and In is investigated. For GaAs-RT the dependence of electroresistance R(4.2 K) on the irradiation fluence is shown to be non monotonic. The annealing at 180 and 300 K does not restore GaAs-RT thermometric characteristics but it leads to their further degradation. The annealing of Ni and In irradiated RT's at T>180 K leads to total restoring of their electrophysical properties. 16 refs.; 5 figs.; 1 tab

  14. A general purpose fiber optic link with radiation resistance

    International Nuclear Information System (INIS)

    Beadle, E.R.

    1995-01-01

    In some applications it is necessary to send wide-band analog data, with good fidelity, between two stations separated by several hundred feet. This is particularly true for instrumentation in an accelerator environment, where the sensing equipment can be inside the tunnel, and the processing equipment outside. Aside from the distortion and loss introduced by low cost coaxial cables, this case is further complicated by the possibility of pick-up from environmental noise, and the possible radiation damage of the transmitting electronics. Fiber optics is be a viable alternative to the standard coaxial driver, particularly where video bandwidths are concerned. This paper discusses basic design, trade-offs, and performance of one such link developed primarily for the AGS-to-RHIC (ATR) Transfer line profile monitors

  15. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment

    International Nuclear Information System (INIS)

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-01-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO 2 , and N 2 ). Organisms exhibited the highest death rate (lowest D 10 values [doses required to reduce the logarithm of the bacterial population by 1] under CO 2 packaging conditions, but resistance to irradiation was increased under N 2 . The D 10 values of the isolates were generally greater than those of the reference strains. The D 10 values were also higher (approximately two times) in meat than in a semisynthetic growth medium

  16. Radiation-resistant acquired immunity of vaccinated mice to Schistosoma mansoni

    International Nuclear Information System (INIS)

    Aitken, R.; Coulson, P.S.; Dixon, B.; Wilson, R.A.

    1987-01-01

    Vaccination of mice with attenuated cercariae of Schistosoma mansoni induces specific acquired resistance to challenge infection. This resistance is immunologically-mediated, possibly via a delayed-type hypersensitivity. Studies of parasite migration have shown that the protective mechanism operates most effectively in the lungs of vaccinated mice. We have probed the mechanism by exposing mice to 500 rads of gamma radiation before challenge infection. Our results show that the effector mechanism operative against challenge larvae is resistant to radiation. In contrast, classical immune responses are markedly suppressed by the same treatment. While leukocyte populations in the blood fall dramatically after irradiation, numbers of cells recoverable by bronchoalveolar lavage are unaffected. We suggest that vaccination with attenuated cercariae establishes populations of sensitized cells in the lungs which trigger the mechanism of resistance when challenge schistosomula migrate through pulmonary capillary beds. Although the cells may be partially disabled by irradiation, they remain responsive to worm antigens and thereby capable of initiating the elimination mechanism. This hypothesis would explain the radiation resistance of vaccine-induced immunity to S. mansoni

  17. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    International Nuclear Information System (INIS)

    Fletcher, H.L.

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is. (orig./AJ)

  18. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, H L [East Anglia Univ., Norwich (UK). School of Biological Sciences

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is.

  19. Development of EPDM based thermoplastic elastomers for oil resistant applications: optimization of radiation grafting parameters

    International Nuclear Information System (INIS)

    Chaudhari, C.V.; Dubey, K.A.; Bhardwaj, Y.K.; Sabharwal, S.

    2008-01-01

    Full text: Ethylene-propylene diene terpolymer (EPDM) is currently among the most industrially useful elastomers because of its certain unique properties like excellent heat resistance, resistance towards ozone deterioration, high impact strength. However EPDM has a serious drawback of weak adhesion properties and tendency to swell in contact with paraffin oil and aromatic hydrocarbons. Blending EPDM with suitable polar elastomers or grafting polar polymer chains onto EPDM is an easy method to overcome this drawback. Radiation grafting of Acrylonitrile (ACN) on EPDM provides an easy and effective method of incorporating ACN uniformly on the EPDM backbone. Grafting of ACN on EPDM is expected to result grafted copolymer with better oil resistance, hardness and better compatibility with polar polymer matrices. In the present study radiation induced grafting of ACN onto EPDM rubber film was investigated by mutual radiation grafting technique. Effect of experimental variables viz. radiation dose, dose rate, types of solvents and monomer content on extent of grafting was studied. The solvent composition of Acetone:CCl 4 (20:80) was found to be the optimum mixture which resulted in highest degree of grafting. It was found that the degree of grafting increases with radiation dose, monomer content and decreases with dose rate

  20. Resistance of CFRP structures to environmental degradation in low Earth orbit

    Science.gov (United States)

    Suliga, Agnieszka

    Within this study, a development of a protection strategy for ultra-thin CFRP structures from degrading effects of low Earth orbit (LEO) is presented. The proposed strategy involves an application of a modified epoxy resin system on outer layers of the structure, which is cycloaliphatic in its chemical character and reinforced with POSS nanoparticles. The core of the CFRP structure is manufactured using a highly aromatic epoxy resin system which provides excellent mechanical properties, however, its long-term ageing performance in space is not satisfactory, and hence a surface treatment is required to improve its longevity. The developed resin system presented in this thesis is a hybrid material, designed in such a way that its individual constituents each contribute to combating the detrimental effects of radiation, atomic oxygen (AO), temperature extremes and vacuum induced outgassing of exposed material surfaces while operating in LEO. The cycloaliphatic nature of the outer epoxy increases UV resistance and the embedded silicon nanoparticles improve AO and thermal stability. During the study, a material characterization of the developed cycloaliphatic epoxy resins was performed including the effects of nanoparticles on morphology, curing behaviour, thermal-mechanical properties and surface chemistry. Following on that, the efficacy of the modified resin system on space-like resistance was studied. It was found that when the ultra-thin CFRP structures are covered with the developed resin system, their AO resistance is approximately doubled, UV susceptibility decreased by 80% and thermal stability improved by 20%. Following on the successful launch of the InflateSail mission earlier this year, which demonstrated a sail deployment and a controlled de-orbiting, the findings of this study are of importance for the future generation of similar, but significantly longer missions. Ensuring resistance of CFRP structures in a highly corrosive LEO environment is a critical

  1. Radiation damage to DNA: The importance of track structure

    International Nuclear Information System (INIS)

    Hill, M.A.

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that biological response to radiation is not always restricted to the 'hit' cell but can sometimes be induced in 'un-hit' cells near by

  2. Role of manganese in the resistance of Micrococcus radiodurans to ionizing radiation

    International Nuclear Information System (INIS)

    Wierowski, J.V.

    1980-01-01

    Micrococcus radiodurans possesses a very high level of intracellular manganese compared to other organisms. This manganese content has previously been shown to participate in the exceptional ulraviolet radiation resistance of M. radiodurans. This study was undertaken to determine the role of manganese in the ionizing radiation resistant of M. radiodurans. The results indicate that manganese is essential for DNA degradation to occur during irradiation. Manganese has also proven essential for the second phase of post-irradiation thymine base damage removal. These factors work together to increase the rate of recovery from radiation damage, which is reflected in a larger Dq, D 37 and exponential portion of the survival curve of high Mn-grown cells

  3. Prediction of Ionizing Radiation Resistance in Bacteria Using a Multiple Instance Learning Model.

    Science.gov (United States)

    Aridhi, Sabeur; Sghaier, Haïtham; Zoghlami, Manel; Maddouri, Mondher; Nguifo, Engelbert Mephu

    2016-01-01

    Ionizing-radiation-resistant bacteria (IRRB) are important in biotechnology. In this context, in silico methods of phenotypic prediction and genotype-phenotype relationship discovery are limited. In this work, we analyzed basal DNA repair proteins of most known proteome sequences of IRRB and ionizing-radiation-sensitive bacteria (IRSB) in order to learn a classifier that correctly predicts this bacterial phenotype. We formulated the problem of predicting bacterial ionizing radiation resistance (IRR) as a multiple-instance learning (MIL) problem, and we proposed a novel approach for this purpose. We provide a MIL-based prediction system that classifies a bacterium to either IRRB or IRSB. The experimental results of the proposed system are satisfactory with 91.5% of successful predictions.

  4. Endogenous superoxide dismutase and catalase activities and radiation resistance in mouse cell lines

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Ostrand-Rosenberg, S.

    1988-01-01

    The relationship between the endogenous cytoplasmic levels of the enzymes superoxide dismutase and catalase and the inhibition of cell proliferation by γ-radiation has been studied in 11 mouse cell lines. The resistance of these mouse cell lines to radiation was found to vary by over 25-fold. No correlation was found between the cytoplasmic level of CuZn-superoxide dismutase or catalase and the resistance to radiation as measured by extrapolation number (EN), quasi-threshold dose (Dsub(q)), or Dsub(o). None of the cell lines had detectable cytoplasmic Mn-superoxide dismutase. The apparent Ksub(i) of potassium cyanide for mouse CuZn-superoxide dismutase was determined (Ksub(i) = 6.5 μmol dm -3 ). (author)

  5. Experiment of radiation-resistant materials for nuclear powers generating station

    International Nuclear Information System (INIS)

    Choe, J.H.; Lee, C.K.; Kong, Y.K.; Chang, H.S.

    1981-01-01

    The properties of polyethylene materials exhibit good insulation and radiation resistance, but exhibit poor flame resistance. Flame retardant properties of the polyethylene were improved by the radiation induced grafting, coating or cross-linking. When the various flame retardants were fixed onto polyethylene, the amount of fixation in grafting or coating was increased with the increase of radiation dosages. In the case of grafting, it is necessary for high grafting yield that the polyethylene films were swelled before irradiation with γ-rays or electron beams. It is the suitable method for the fixation of flame retardant that polyethylene samples were blended with various flame retardants at 125 0 C and then blended polymers were crosslinked by the electron beams at room temperature

  6. A study on measurement of radiation resistance of Pyronema domesticum sclerotia

    International Nuclear Information System (INIS)

    Aoshuang, Y.; Ailian, W.; Ying, Z.

    2000-01-01

    Measurements of radiation resistance have been carried out using two strains of Pyronema domesticum which were isolated from Chinese cotton swab gauze. A 'sand-washing' technique was developed to overcome the difficulties when harvesting sclerotia spores from cultured plates and preparing spore suspensions for further use. Three types of microbial preparations, spore suspension, inoculated cotton and spore dot, were exposed to gamma radiation. A dose-survival curve method and a fraction positive method were employed to determine radiation resistance. D 10 values derived from this study are within the range of 2.0-3.0 kGy. Concerns associated with the current study indicate that further work is needed. (author)

  7. Radiative sky cooling: fundamental physics, materials, structures, and applications

    Science.gov (United States)

    Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang; Alam, Muhammad Ashraful; Bermel, Peter

    2017-07-01

    Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  8. Radiative sky cooling: fundamental physics, materials, structures, and applications

    Directory of Open Access Journals (Sweden)

    Sun Xingshu

    2017-07-01

    Full Text Available Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  9. Use of gamma radiation for inducing rust resistance in soybean

    International Nuclear Information System (INIS)

    Smutkupt, Sumit; Wongpiyasatid, Arunee; Lamseejan, Siranut; Naritoom, Kruik

    1982-01-01

    Experiments on induced mutations for rust resistance in 11 soybean cultivars were started in the rainy season of 1979. M 1 seeds were grown at Farm Suwan, Pak Chong, Nakorn Rajchasima Province. Six plods from each of 4,438 control and 43,907 M 1 plants were randomly harvested. M 2 seeds of each cultivar of different doses were bulked. In addition, 270 good M 1 plants were selected and threshed singly. M 2 -bulk and M 2 -single seeds were advanced to M 3 . Both of M 3 -bulk and M 3 -single plants together with M 2 -bulk plants derived from remnant M 2 seeds were screened for rust resistance in the rainy season of 1980. The IWGSR rust rating system was used. Based on the slow growth of rust reaction on the plant (323,333) compared with the average IWGSR rust rating notation of the rates (343) in the same row, 121 plants were selected. Among them, six were selected from a total of 2802 control plants, and 115 from a total of 28,834 M 2 and M 3 plants. Seeds of each selection harvested. Only 88 lines of M 4 and M 5 were available for further rust evaluation in the rainy season of 1981. The results were as follows: At 77 days after planting, 82 selected lines were rated 333, 323 in comparison with 87 out of 137 rows of control S.J.1, S.J.2, S.J.4 and T.K.5 were rated 343. At 86 days after planting, most of the selections reached the diseased level 343. However, six lines which were derived from G8586 were still rated 333. In addition, a plant with slow growth of rust (323) from Taichung N No. 81-1-032 was selected. The six selected lines having characteristics of slow growth of rust reaction on the plants will be further tested. The high yielding selections among 82 selected lines having low percentage of shrivelled seeds will be used for further yield evaluation in the rainy season of 1982

  10. Radiation resistance of some microorganisms isolated from irradiated herbs

    International Nuclear Information System (INIS)

    El-Bazza, Z.E.; Shihab, A.; Farrag, H.A.; El-Sayed, Z.G.; Mahmoud, M.I.

    1997-01-01

    Three types of Egyptian medicinal herbs, sweet marjoram, spearmint and thyme were used in this study. The tested herbs were exposed to gamma radiation doses ranging from 1.0 to 10,0 kGy. The sublethal doses of radioresistant molds ranged from 1.0 to 2.0 kGy and the sublethal doses of radioresistant bacteria ranged from 7.0 to 8.0 kGy. The radioresistant molds isolated from sweet marjoram and spearmint herbs were identified as Aspergillus, whereas that isolated from thyme was identified as Aspergillus ochraceus. The radioresistant bacteria isolated from sweet marjoram, spearmint and thyme were identified as Bacillus megaterium, B.pantothenticus and B. brevis, respectively. All the radioresistant molds exhibited an exponential response. The D 15 v alue of Asp. ochraceus was 0.33 kGy, while that of Asp. niger were 0.45 and 0.5 kGy, respectively. All the bacterial species exhibited non-exponential response. The D 10 -values for B.megaterium, B. pantothenticus and B. brevis were found to be 2.58, 3.0 and 1.63 kGy, respectively

  11. Studies of antibiotic resistant mutants of Bacteroides fragilis obtained by Cs-137 ionizing radiation

    International Nuclear Information System (INIS)

    Azghani, A.O.

    1986-01-01

    The genus Bacteroides is an obligate anaerobic bacillus normally found in the upper respiratory tract, the colon, and the genitourinary system. The project reported here was undertaken because of the high frequency of hospital infections attributed to B. fragilis, and the increased resistance of the bacteria to commonly used antibiotics. Cs-137 gamma irradiation was used to induce antibiotic resistant mutants in B. fragilis in the presence of Escherichia coli B/r membrane fragments, employed as reducing agent. Based on a dose-survival curve, an effective radiation dose of 1.54 x 10 4 R (3.99 C/Kg) was used to induce mutations to rifampicin and tetracycline resistance in the test organism. The antibiotic resistant mutants of B. fragilis were utilized to reveal the mechanism by which this group of organisms becomes resistant to select chemotherapeutic agents. Studies on tetracycline resistant mutants of B. fragilis isolated after irradiation, suggest that the resistance to this antibiotic is associated with the outer membrane permeability. The difference in inhibitory action of rifampicin on RNA polymerase activity, from rifampicin sensitive and resistant strains of B. fragilis, reveals that this enzyme is a possible suitable target for inhibition of bacterial growth in anaerobes by rifampicin

  12. Radiation-resistant requirements analysis of device and control component for advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tai Gil; Park, G. Y.; Kim, S. Y.; Lee, J. Y.; Kim, S. H.; Yoon, J. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    It is known that high levels of radiation can cause significant damage by altering the properties of materials. A practical understanding of the effects of radiation - how radiation affects various types of materials and components - is required to design equipment to operate reliably in a gamma radiation environment. When designing equipment to operate in a high gamma radiation environment, such as will be present in a nuclear spent fuel handling facility, several important steps should be followed. In order to active test of the advanced spent fuel management process, the radiation-resistant analysis of the device and control component for active test which is concerned about the radiation environment is conducted. Also the system design process is analysis and reviewed. In the foreign literature, 'threshold' values are generally reported. the threshold values are normally the dose required to begin degradation in a particular material property. The radiation effect analysis for the device of vol-oxidation and metalization, which are main device for the advanced spent fuel management process, is performed by the SCALE 4.4 code. 5 refs., 4 figs., 13 tabs. (Author)

  13. Track structure theory in radiobiology and in radiation detection

    International Nuclear Information System (INIS)

    Katz, R.

    1978-01-01

    The response of biological cells, and many physical radiation and track detectors to ionizing radiations and to energetic heavily ionizing particles, results from the secondary and higher generation electrons ejected from the atoms and molecules of the detector by the incident primary radiation. The theory uses a calculation of the radial distribution of local dose deposited by secondary electrons (delta-rays) from an energetic heavy ion as a transfer function, relating the dose-response relation measured (or postulated) for a particular detector in a uniform radiation field (gamma-rays) to obtain the radial distribution in response about the ion's path, and thus the structure of the track of a particle. Subsequent calculations yield the response of the detector to radiation fields of arbitrary quality. The models which have been used for detector response arise from target theory, and are of the form of statistical models called multi-hit or multi-target detectors, in which it is assumed that there are sensitive elements (emulsion grains, or biological cell nuclei) which may require many hits (emulsion grains) or single hits in different targets (say, cellular chromosomes) in order to produce the observed end-point. Recent work has demonstrated that many-hit physical detectors do exist. From both emulsion sensitometry and from the structure of tracks of heavy ions, it can be shown that emulsion-developer combinations exist which yield many-hit response. There is also some evidence that the supralinearity in thermoluminescent dosimeters arises from a mixture of 1-hit and 2-hit response, perhaps of different trap structures within the same TLD crystal. These detectors can be expected to mimic the response of biological cells to radiations of different quality. Their patterns of response may help us to understand better the structure of particle tracks in SSNTD's. (author)

  14. Radiation effects in structural materials of spallation targets

    Science.gov (United States)

    Jung, P.

    2002-02-01

    Effects of radiation damage by protons and neutrons in structural materials of spallation neutron sources are reviewed. Effects of atomic displacements, defect mobility and transmutation products, especially hydrogen and helium, on physical and mechanical properties are discussed. The most promising candidate materials (austenitic stainless steels, ferritic/martensitic steels and refractory alloys) are compared, and needed investigations are identified.

  15. Asymptotic Structure of the Seismic Radiation from an Explosive Column

    Directory of Open Access Journals (Sweden)

    Marco Rosales-Vera

    2018-01-01

    Full Text Available We study the structure of the seismic radiation in the far field produced by an explosive column. Using an asymptotic solution for the far field of vibration (Heelan’s solution, we find analytical expressions to the peak particle velocity (PPV diagrams. These results are extended to the case of a charge with finite velocity of detonation.

  16. Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines

    International Nuclear Information System (INIS)

    Bree, Chris van; Kreder, Natasja Castro; Loves, Willem J.P.; Franken, Nicolaas A.P.; Peters, Godefridus J.; Haveman, Jaap

    2002-01-01

    Purpose: To determine cross-resistance to anti-tumor treatments in 2',2'difluorodeoxycytidine (dFdC, gemcitabine)-resistant human tumor cells. Methods and Materials: Human lung carcinoma cells SW-1573 (SWp) were made resistant to dFdC (SWg). Sensitivity to cisplatin (cDDP), paclitaxel, 5-fluorouracil (5-FU), methotrexate (MTX), cytarabine (ara-C), and dFdC was measured by a proliferation assay. Radiosensitivity and radioenhancement by dFdC of this cell panel and the human ovarian carcinoma cell line A2780 and its dFdC-resistant variant AG6000 were determined by clonogenic assay. Bivariate flowcytometry was performed to study cell cycle changes. Results: In the SWg, a complete deoxycytidine kinase (dCK) deficiency was found on mRNA and protein level. This was accompanied by a 10-fold decrease in dCK activity which resulted in the >1000-fold resistance to dFdC. Sensitivity to other anti-tumor drugs was not altered, except for ara-C (>100-fold resistance). Radiosensitivity was not altered in the dFdC-resistant cell lines SWg and AG6000. High concentrations (50-100 μM dFdC) induced radioenhancement in the dFdC-resistant cell lines similar to the radioenhancement obtained at lower concentrations (10 nM dFdC) in the parental lines. An early S-phase arrest was found in all cell lines after dFdC treatment where radioenhancement was achieved. Conclusions: In the dFdC-resistant lung tumor cell line SWg, the deficiency in dCK is related to the resistance to dFdC and ara-C. No cross-resistance was observed to other anti-tumor drugs used for the treatment in lung cancer. Sensitivity to ionizing radiation was not altered in two different dFdC-resistant cell lines. Resistance to dFdC does not eliminate the ability of dFdC to sensitize cells to radiation

  17. Some resistance mechanisms to ultraviolet radiation; Algunos mecanismos de resistencia a radiacion ultravioleta

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-12-15

    The cyclical exposure of bacterial cells to the ultraviolet light (UV) it has as consequence an increment in the resistance to the lethal effects of this type of radiation, increment that happens as a result of a selection process of favorable genetic mutations induced by the same UV light. With object to study the reproducibility of the genetic changes and the associate mechanisms to the resistance to UV in the bacteria Escherichia coli, was irradiated cyclically with UV light five different derived cultures of a single clone, being obtained five stumps with different resistance grades. The genetic mapping Hfr revealed that so much the mutation events like of selection that took place during the adaptation to the UV irradiation, happened of random manner, that is to say, each one of the resistant stumps it is the result of the unspecified selection of mutations arisen at random in different genes related with the repair and duplication of the DNA. (Author)

  18. Radiation resistance of pyrocarbon-boned fuel and absorbing elements for HTGR

    International Nuclear Information System (INIS)

    Gurin, V.A.; Konotop, Yu.F.; Odejchuk, N.P.; Shirochenkov, S.D.; Yakovlev, V.K.; Aksenov, N.A.; Kuprienko, V.A.; Lebedev, I.G.; Samsonov, B.V.

    1990-01-01

    In choosing the reactor type, problems of nuclear and radiation safety are outstanding. The analysis of the design and experiments show that HTGR type reactors helium cooled satisfy all the safety requirements. It has been planned in the Soviet Union to construct two HTGR plants, VGR-50 and VG-400. Later it was decided to construct an experimental plant with a low power high temperature reactor (VGM). Spherical uranium-graphite fuel elements with coated fuel particles are supposed to be used in HTGR core. A unique technology for producing spherical pyrocarbon-bound fuel and absorbing elements of monolithic type has been developed. Extended tests were done to to investigate fuel elements behaviour: radiation resistance of coated fuel particles with different types of fuel; influence of the coated fuel particles design on gaseous fission products release; influence of non-sphericity on coated fuel particle performance; dependence of gaseous fission products release from fuel elements on the thickness of fuel-free cans; confining role of pyrocarbon as a factor capable of diminishing the rate of fission products release; radiation resistance of spherical fuel elements during burnup; radiation resistance of spherical absorbing elements to fast neutron fluence and boron burnup

  19. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    International Nuclear Information System (INIS)

    Sabanero, M.; Flores V, L. L.; Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M.; Castruita D, J. P.; Barbosa S, G.

    2015-10-01

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H 2 O 2 /1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  20. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  1. Photovoltage versus microprobe sheet resistance measurements on ultrashallow structures

    DEFF Research Database (Denmark)

    Clarysse, T.; Moussa, A.; Parmentier, B.

    2010-01-01

    on ultrashallow (sub-50-nm) chemical-vapor-deposited layers [T. Clarysse , Mater. Res. Soc. Symp. Proc. 912, 197 (2006)], especially in the presence of medium/highly doped underlying layers (representative for well/halo implants). Here the authors examine more closely the sheet resistance anomalies which have...... recently been observed between junction photovoltage (JPV) based tools and a micrometer-resolution four-point probe (M4PP) tool on a variety of difficult, state-of-the-art sub-32-nm complementary metal-oxide semiconductor structures (low energy and cluster implants, with/without halo, flash- and laser...

  2. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single

  3. Dislocation structure and cold resistance of low-carbon steel

    International Nuclear Information System (INIS)

    Gul', Yu.P.; Karnaukh, A.I.

    1975-01-01

    In the formation of the dislocation structure of a small (10%) deformation, the determining effect on the cold brittleness temperature is exerted by the degree of uniformity in the distribution of dislocations and microvolumes. The overall density of the dislocations is of secondary importance here. By pretreatment to achieve more uniform distribution and dispersion of particles of the excess phase, the degree of uniformity of dislocation distribution in microvolumes can be increased, the cold brittleness temperature lowered and the effect of various deformation patterns on resistance to cold counterbalanced. The formation of a cell-type dislocation structure in the case of a nonuniform distribution of relatively large particles of the excess phase and in that of a large overall density of dislocations does not result in low brittleness temperatures. The formation of a cell-type dislocation structure in the case of uniform distribution of particles of the excess phase and of a comparatively small overall density of dislocations is accompanied by a very pronounced decrease in cold brittleness temperature not only by comparison with other types of dislocation structure but also with the normalized state. At the same time the formation of this kind of a cell structure leads to a substantial (factor of 2-5) increase in resistance to plastic deformation. The prerequisites for obtaining an optimum dislocation are fulfilled either by a combination of hardening from the austenitic region and prompt, small-scale (5%) deformation, or by a combination of accelerated cooling from the austenitic region, 30-40% deformation and high yield. The size of the dislocation cells observed under the electron microscope does not exhibit - within the limits investigated - any direct effect on the cold brittleness temperature. (author)

  4. Phenotypical and biochemical characterisation of resistance for parasitic weed (Orobanche foetida Poir.) in radiation-mutagenised mutants of chickpea.

    Science.gov (United States)

    Brahmi, Ines; Mabrouk, Yassine; Brun, Guillaume; Delavault, Philippe; Belhadj, Omrane; Simier, Philippe

    2016-12-01

    Some radiation-mutagenised chickpea mutants potentially resistant to the broomrape, Orobanche foetida Poir., were selected through field trials. The objectives of this work were to confirm resistance under artificial infestation, in pots and mini-rhizotron systems, and to determine the developmental stages of broomrape affected by resistance and the relevant resistance mechanisms induced by radiation mutagenesis. Among 30 mutants tested for resistance to O. foetida, five shared strong resistance in both pot experiments and mini-rhizotron systems. Resistance was not complete, but the few individuals that escaped resistance displayed high disorders of shoot development. Results demonstrated a 2-3-fold decrease in stimulatory activity of root exudates towards broomrape seed germination in resistant mutants in comparison with non-irradiated control plants and susceptible mutants. Resistance was associated with an induction of broomrape necrosis early during infection. When infested, most of the resistant mutants shared enhanced levels of soluble phenolic contents, phenylalanine ammonia lyase activity, guaiacol peroxidase activity and polyphenol oxidase activity, in addition to glutathione and notably ascorbate peroxidase gene expression in roots. Results confirmed enhanced resistance in chickpea radiation-mutagenised mutants, and demonstrated that resistance is based on alteration of root exudation, presumed cell-wall reinforcement and change in root oxidative status in response to infection. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... and result in different representations of the controllers. The Internal Model Control structure combined with optimal filtering is suggested as an alternative to state space optimal control techniques for designing robust optimal controllers for audio frequency vibration control of resonant structures....

  6. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation.

    Science.gov (United States)

    Rabotyagova, Olena S; Cebe, Peggy; Kaplan, David L

    2008-12-01

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression.

  7. Handling technique of spore-forming bacteria in radiation sterilization. 2. Determination of numbers and radiation resistance of spores

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko

    1994-01-01

    Stepwise ten-fold dilution of bacterial solution is required in the determination of bacterial spores. For this, the selection of diluted solution is important according to the purpose of experiment. First, the preparation of suspension of bacterial spores and selection of diluted solution are presented. Then, a method for determining the number of bacterial spores in materials is outlined in terms of dilution methods of bacterial solution (shaking and homogenization) and application method of diluted solution to the plating medium. Finally, a method for determining radiation resistance of spore-forming bacteria is explained according to the measurement conditions (suspension of bacterial spores and filters applied with bacterial spores). (N.K.)

  8. Handling technique of spore-forming bacteria in radiation sterilization. 2. Determination of numbers and radiation resistance of spores

    Energy Technology Data Exchange (ETDEWEB)

    Koshikawa, Tomihiko [Japan Radioisotope Association, Shiga (Japan). Koka Laboratory

    1994-12-01

    Stepwise ten-fold dilution of bacterial solution is required in the determination of bacterial spores. For this, the selection of diluted solution is important according to the purpose of experiment. First, the preparation of suspension of bacterial spores and selection of diluted solution are presented. Then, a method for determining the number of bacterial spores in materials is outlined in terms of dilution methods of bacterial solution (shaking and homogenization) and application method of diluted solution to the plating medium. Finally, a method for determining radiation resistance of spore-forming bacteria is explained according to the measurement conditions (suspension of bacterial spores and filters applied with bacterial spores). (N.K.).

  9. In vitro induction of variability through radiation for late blight resistance and heat tolerance in potato

    International Nuclear Information System (INIS)

    Gosal, S.S.; Das, A.; Gopal, J.; Minocha, J.L.; Chopra, H.R.; Dhaliwal, H.S.

    2001-01-01

    In vitro cultured shoots of potato, cvs. 'Kufri Jyoti' and 'Kufri Chandramukhi', were irradiated with 20 and 40 Gy gamma rays. Microtubers, obtained from MIV3 shoots multiplied in vitro, were planted in pots. The resulting plants were screened for resistance to late blight, using detached leaf method. In 'Kufri Chandramukhi', 42% plants and in 'Kufri Jyoti' 36% plants, obtained from 40 Gy treatment, showed resistance to late blight. The frequency of resistant plants was lower from 20 Gy treatment. The progenies of putatively resistant plants were grown in field, and inoculated with sporangial inoculum of late blight fungus. The field grown progeny segregated for disease resistance, and approximately 56% plants showed resistance. During the next propagation, the frequency of resistant plants increased to 72%. For developing heat tolerance, microtubers obtained from 20 and 40 Gy treatments and in vitro multiplied M 1 V 3 shoots were cultured at high temperature of 28C. In both varieties, the number of the microtubers per plant was highly reduced and the resulting microtubers had distorted shape but showed better germination (62%), even in early sowing at relatively higher temperature. Of the two radiation doses, the higher dose of 40 Gy gave better results in both the varieties. Heat tolerance was also assessed from chlorophyll persistence. The progenies from putative heat-tolerant plants were tested in field by planting at higher temperature in two subsequent generations. The heat tolerant plants segregated in each generation, but the frequency of heat-tolerant plants increased. (author)

  10. Development of bunchy top virus resistant banana cv lakatan in vitro culture and radiation technology

    International Nuclear Information System (INIS)

    Estrella, J.D.; Caymo, L.S.; Dizon, T.O.; Dela Cruz, F. Jr; Damasco, O.P.

    2002-01-01

    Bunchy to virus (BTV) is the most destructive virus disease of banana in the Philippines. Incorporation of resistance to this virus disease by conventional hybridization is not possible due to male and female sterility of most commercial banana cultivars. In vitro culture coupled with radiation technology can be used to develop BTV resistance in banana cv. Lakatan. The sensitivity of banana shot tip explants to gamma irradiation was determined by subjecting the shoot tips to varying doses (5, 10, 20, 25, 30, 40, 60, 80 and 100 Gy) of irradiation. The LD sub 50 for banana shoot tips determined by 50% reduction in growth and shoot proliferation, was observed to around 20-25 Gy. Bulk irradiation of shoot tip explants was conducted using 20-25 Gy. Irradiated cultures were multiplied for 3-5 cycles and plants regenerated were potted out and screened for BTV resistance. A total of 3,447 irradiated plants regenerated from the radiosensitivity experiment (1,847 plants) and bulk irradiation of 20/25 Gy (1,600 plants) were screened for BTV resistance in the greenhouse using artificial BTV inoculation using the aphid vector Pentalonia nigronervosa. One hundred eighteen plants or 3.4% (118/3,447) of the artificially irradiated plants showed seedling resistance after 4-7 months of evaluation. These plants were planted in the field and were subjected to natural BTV infection. To date, 85 (out of the 118) putative seedling resistant plants continuously expressed BTV resistance in the field after more than 10 months of evaluation. The absence of BTV infection in 39 putative resistant plants was confirmed by ELISA test. Suckers from selected putative resistance plants will be collected, propagated and evaluated for the second cycle stability of BTV resistance and detailed characterization of important horticultural traits

  11. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  12. Numerical study of jet noise radiated by turbulent coherent structures

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, F.

    1995-08-01

    a numerical approach of jet mixing noise prediction is presented, based on the assumption that the radiated sound field is essentially due to large-scale coherent turbulent structures. A semi-deterministic turbulence modelling is used to obtain the flow coherent fluctuations. This model is derived from the k-{epsilon} model and validated on the 2-D compressible shear layer case. Three plane jets at Mach 0.5, 1.33 and 2 are calculated. The semi-deterministic modelling yields a realistic unsteady representation of plane jets but not appropriate for axisymmetric jet computations. Lighthill`s analogy is used to estimate the noise radiated by the flow. Three integral formulations of the theory are compared and the most suitable one is expressed in space-time Fourier space. This formulation is associated to a geometrical interpretation of acoustic computations in (k, {omega}) plane. The only contribution of coherent structures cannot account for the high-frequency radiation of a subsonic jet and thus, the initial assumption is not verified in the subsonic range. The interpretation of Lighthill`s analogy in (k, {omega}) plane allows to conclude that the missing high-frequency components are due to the inner structure of the coherent motion. For supersonic jets, full acoustic spectra are obtained, at least in the forward arc where the dominant radiation is emitted. For the fastest jet (M = 2), no Mach waves are observed, which may be explained by a ratio of the structures convection velocity to the jet exit velocity lower in plane than in circular jets. This point is confirmed by instability theory calculations. Large eddy simulations (LES) were performed for subsonic jets. Data obtained in the plane jet case show that this technique allows only a slight improvement of acoustic results. To obtain a satisfactory high-frequency radiation, very fine grids should be considered, and the 2-D approximation could not be justified anymore. (Abstract Truncated)

  13. Resistance to fracture of carbon weldable structural steel with ferrite-pearlite and widmanstaetten structure

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Guzovskaya, M.A.

    1977-01-01

    Consideration is given to mechanical properties of St3 steel with varying ferritic-peartilic and widmanstaetten structures typical of a weld seam and adjacent zones. It has been found that mechanical properties determined at static tension are sensitive to structure variation in the limits under study. A considerable difference has been detected during impact tests CT 50 , asub(p)). The highest resistance to breakage is observed for the steel with a fine-grain ferritic-pearlitic structure (T 50 =-10 deg C, asub(p)=4.3 kgxm/cm 2 ). The enlargement of such a structure enhances transition temperature (T 50 =+20 deg C) and reduces resistance to crack development (asub(p)2.4 kgxm/cm 2 ). The appearance of widmanstaetten zones in the fine-grain structure leads also to a higher T 50 , up to +10 deg C, and at a completely widmanstaetten structure T 50 =+25 deg C. An especially unfavorable effect on the resistance of steel to breakage is produced by structure nonuniformity, i.e. accumulation of loop-like pearlitic and ferritic zones

  14. Lead-Bismuth technology ; corrosion resistance of structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Park, Won Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Lead-Bismuth (Pb-Bi) eutectic alloy was determined as a coolant material for the HYPER system being studied by KAERI. The Pb-Bi alloy as a coolant, has a number of the favorable thermo-physical and technological properties, while it is comparatively corrosive to the structural materials. It is necessary to solve this problem for providing a long failure-proof operation of the facilities with Pb-Bi coolant. It seems to be possible to maintain corrosion resistance on structural material up to 600 deg C by using of various technologies, but it needs more studies for application to large-scale NPPs. 22 refs., 11 figs., 7 tabs. (Author)

  15. Integrated Thermal Protection Systems and Heat Resistant Structures

    Science.gov (United States)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  16. Effects of radiation on the structure of bothropstoxin-1

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P.J. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: pspencer@net.ipen.br

    2000-07-01

    Ionizing radiation has been widely employed to attenuate venoms and toxins, preserving and even enhancing their immunogenic properties. However, little is known about molecular changes in irradiated proteins. In this work, we compared native and irradiated bothropstoxin-1, with the aim of characterizing the structural modifications induced by radiation. Our results indicate that radiation promotes a transition from the multimeric to the monomeric state in a dose-dependent manner. Spectral and calorimetric analysis suggest that the irradiated molecules undergo oxidation and partially unfold the remaining elements being stabilized by the seven disulphide bonds. The binding pattern of monoclonal antibodies raised against irradiated bothropstoxin indicated that most of the recognized epitopes are linear present on the surface of both native and irradiated toxin. Also, irradiated toxin appears to be more immunogenic, inducing the formation of native toxin-binding antibodies. (author)

  17. Influence of radiation on structure of Venom Vipera Lebetina Obtusa

    International Nuclear Information System (INIS)

    Topchiyeva, Sh.A; Abiyev, H.A; Magerramov, A.

    2006-01-01

    Full text: Snake venoms are unique biologically active polymers of an animal origin. Though in the global literature the data are resulted on researching of zoo toxins, however many questions still remain not mentioned and need deep analysis and studying. Many questions on influence of small dozes gamma-radiation and other kinds ionization radiations on an alive organism remain open. These questions are important for technology of radiating sterilization of medical products, finding-out of the mechanism of additively and synergism, estimations of radio-ecological risk at influences of small dozes gamma-radiation on structure and dynamics of development of various biological and organic systems. In connection with special biochemical and preparations of venoms vipers and for an estimation of ecological factors (in particular, biotic, an electromagnetic field, gamma-radiation, solar radiation) on its properties we investigated influence gamma-radiation 6 0Co on structure at low temperatures. At low temperatures researches and at revealing prostrations effects in organic and biological systems of an organism from effective methods is radiotermoluminence.The method of radiotermoluminence will allow to receive data on structural properties of system, on the centers of stabilization of charges of initial products radials venom, about ways of migration of energy absorbed at an irradiation and so on. Samples on venom were irradiated in special a ditch with scales-beams at 77K up to dozes of %5 kGr. Before an irradiation samples were cleared of traces of oxygen. The irradiation was spent on air and in vacuum. Curves lighting registered with a speed gamma 50/1.min. It is shown, that in an interval of temperatures 77-330K the curve lighting radiotermoluminendce venom of vipers irradiated at 77K up to dozes 3 kGr is characterized not by a symmetric maximum at temperature 172K. Warming up to temperatures 320K results in monotonous decrease of intensity of a luminescence. It is

  18. Influence of radiation on structure of venom vipera lebetina obtusa

    International Nuclear Information System (INIS)

    Topchiyeva, Sh.A.; Abiyev, H.A.; Magerramov, A.

    2006-01-01

    Full text: Snake venoms are unique biologically active polymers of an animal origin. Though in the global literature the data are resulted on researching of zootoxins, however many questions still remain not mentioned and need deep analysis and studying. Many questions on influence of small dozes - radiation and other kinds ionization radiations on an alive organism remain open. These questions are important for technology of radiating sterilization of medical products, finding-out of the mechanism of additivity and sinergizm, estimations of radio-ecological risk at influences of small dozes - radiation on structure and dynamics of development of various biological and organic systems. In connection with special biochemical and preparations properties of venoms viperas and for an estimation of ecological factors (in particular, abiotics, an electromagnetic field, -radiation, solar radiation) on its properties we investigate influence - radiation n-tildei-circumflex 60 on structure at low temperatures. At low temperatures researches and at revealing postrations' effects in organic and biological systems of an organism from effective methods is radiotermoluminence. The method of radiotermoluminence will allow to receive data on structural properties of system, on the centers of stabilization of charges of initial products radiolis venom, about ways of migration of energy absorbed at an irradiation and so on. Samples of venom were irradiated in special a ditch with scales - beams at 77 E-tilde up to dozes of percent 5 e-tildeGr. Before an irradiation samples were cleared of traces of oxygen. The irradiation was spent on air and in vacuum. Curves lighting registered with a speed ∼ 50/l.min. It is shown, that in an interval of temperatures 77-330 E-tilde the curve lighting radiotermoluminence venom of viperas irradiated at 77 E-tilde up to dozes 3 ?Gr is characterized not by a symmetric maximum at temperature 172 E-tilde. Warming up up to temperatures 320E

  19. Structural aspects of crotalic venom proteins modified by ionizing radiation

    International Nuclear Information System (INIS)

    Oliveira, Karina Corleto de

    2010-01-01

    Snake bites are a serious public health problem, especially in subtropical countries. In Brazil, the Ministry of Health notified around 26 000 accidents in 2008. The genus Crotalus (rattlesnakes) accounts for approximately 7% of the total, with a high mortality rate of 72% when untreated with the specific serum, the only effective treatment in case of snake bites. In Brazil, the serum is produced in horses which, despite the large size, have a reduced lifespan due to the high toxicity of the antigen. Ionizing radiation has proven to be an excellent tool for reducing the toxicity of venoms and isolated toxins, resulting in better immunogens for serum production, and contributing to the welfare of serum producing animals. Since the action of gamma radiation on venoms and toxins has not been yet fully clarified from the structural point of view, we proposed in this paper, to characterize two toxins of the species Crotalus durissus terrificus: crotoxin and crotamine. After isolation of the toxins of interest by chromatographic techniques, they were subjected to structural analysis with the application of the following methods: Fluorescence, Circular Dichroism, Differential Calorimetry and Infrared Spectroscopy. These tests showed that both crotamine as crotoxin when subjected to gamma radiation, showed changes in their structural conformation compared with the samples in the native state. Such changes probably occur in the secondary and tertiary structure and may explain the changes on the biological activity of these toxins. (author)

  20. Development of radiation resistant magnets for JHF/J-PARC project

    CERN Document Server

    Tanaka, K H; Takahashi, H; Agari, K; Toyoda, A; Sato, Y; Minakawa, M; Noumi, H; Yamanoi, Y; Ieiri, M; Katoh, Y; Yamada, Y; Suzuki, Y; Takasaki, M; Birumachi, T; Tsukuda, S; Saitoh, Y; Saitô, N; Yahata, K; Kato, K; Tanaka, H; 10.1109/TASC.2004.829681

    2004-01-01

    A series of the R&D works on the radiation resistant magnets for the Japan Hadron Facility (JHF) project has been continued at the High Energy Accelerator Research Organization (KEK). The JHF is a high- energy part of the Japanese high intensity Particle Accelerator Research Complex (J-PARC), which is Japanese next-generation high- intensity accelerator project. The main JHF accelerator is the 50 GeV proton synchrotron and will provide high intensity 15 mu A proton beam for various nuclear and particle physics experiments. This time, the actual sized completely-inorganic radiation-resistant quadrupole magnet, designed for the 50 GeV proton beam transportation, was manufactured successfully by using mineral insulation magnet cable (MIC). The assembling procedure and the test results are presented in this issue. (8 refs).

  1. Mutants of Escherichia coli K-12 with enhanced resistance to ionizing radiation

    International Nuclear Information System (INIS)

    Verbenko, V.N.; Akhmedov, A.T.; Kalinin, V.L.

    1986-01-01

    By means of one-dimensional electrophoresis, it is shown that in radiation-resistant Gam 444 ad Gam 445 mutants of Escherichia coli K-12 high-molecular weight heat shock proteins are hyperproduced at 32-37 deg C and are induced more intensively during heat shock (in comparison to the parental) wild-tupe strain AB parallel 57). When the missense htp R15 mutation of the positive regulatory htpR gene for heat shock proteins was introduced by transduction into genome of the Gam 444 mutant, its enhanced radiation-resistance disappeared but could not be restored upon introduction of pKV3 plasmid bearing the htpR, gene. These data show that heat shock Protens are participating in the enhanced radioresistance of Gam mutants

  2. Irradiation test of component for radiation-resistant small sized motor

    International Nuclear Information System (INIS)

    Nakamichi, M.; Ishitsuka, E.; Shimakawa, S.; Kan, S.

    2009-01-01

    A small-sized motor with a resistance to radiation was developed. This motor has been able to operate at a gamma-ray dose of a value 700 times as high as the specification of a commercial motor. The present work describes results of post-irradiation examinations (PIEs) to evaluate effects of neutron irradiation on the lifetime of some major components of the motor such as a bearing, a magnet and a fixation agent for a field coil wire. It became clear from the results of PIEs that the radiation-resistance dose of the motor using a Sm-Co magnet will be expected to be one order of magnitude higher than that of the motor using a Nb-Fe-B magnet.

  3. Effect of nano-oxide particle size on radiation resistance of iron–chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weizong; Li, Lulu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Valdez, James A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Saber, Mostafa [Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201 (United States); Zhu, Yuntian, E-mail: ytzhu@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-02-15

    Radiation resistance of Fe–14Cr alloys under 200 keV He irradiation at 500 °C was systematically investigated with varying sizes of nano oxide Zr, Hf and Cr particles. It is found that these nano oxide particles acted as effective sites for He bubble formation. By statistically analyzing 700–1500 He bubbles at the depth of about 150–700 nm from a series of HRTEM images for each sample, we established the variation of average He bubble size, He bubble density, and swelling percentage along the depth, and found them to be consistent with the He concentration profile calculated from the SIRM program. Oxide particles with sizes less than 3.5–4 nm are found most effective for enhancing radiation resistance in the studied alloy systems.

  4. Simulation of Radiation Heat Transfer in a VAR Furnace Using an Electrical Resistance Network

    Science.gov (United States)

    Ballantyne, A. Stewart

    The use of electrical resistance networks to simulate heat transfer is a well known analytical technique that greatly simplifies the solution of radiation heat transfer problems. In a VAR furnace, radiative heat transfer occurs between the ingot, electrode, and crucible wall; and the arc when the latter is present during melting. To explore the relative heat exchange between these elements, a resistive network model was developed to simulate the heat exchange between the electrode, ingot, and crucible with and without the presence of an arc. This model was then combined with an ingot model to simulate the VAR process and permit a comparison between calculated and observed results during steady state melting. Results from simulations of a variety of alloys of different sizes have demonstrated the validity of the model. Subsequent simulations demonstrate the application of the model to the optimization of both steady state and hot top melt practices, and raises questions concerning heat flux assumptions at the ingot top surface.

  5. Gamma Radiation Dosimetry Using Tellurium Dioxide Thin Film Structures

    Directory of Open Access Journals (Sweden)

    Olga Korostynska

    2002-08-01

    Full Text Available Thin films of Tellurium dioxide (TeO2 were investigated for γ-radiation dosimetry purposes. Samples were fabricated using thin film vapour deposition technique. Thin films of TeO2 were exposed to a 60Co γ-radiation source at a dose rate of 6 Gy/min at room temperature. Absorption spectra for TeO2 films were recorded and the values of the optical band gap and energies of the localized states for as-deposited and γ-irradiated samples were calculated. It was found that the optical band gap values were decreased as the radiation dose was increased. Samples with electrical contacts having a planar structure showed a linear increase in current values with the increase in radiation dose up to a certain dose level. The observed changes in both the optical and the electrical properties suggest that TeO2 thin film may be considered as an effective material for room temperature real time γ-radiation dosimetry.

  6. Microbial cells can cooperate to resist high-level chronic ionizing radiation

    OpenAIRE

    Shuryak, Igor; Matrosova, Vera Y.; Gaidamakova, Elena K.; Tkavc, Rok; Grichenko, Olga; Klimenkova, Polina; Volpe, Robert P.; Daly, Michael J.

    2017-01-01

    Understanding chronic ionizing radiation (CIR) effects is of utmost importance to protecting human health and the environment. Diverse bacteria and fungi inhabiting extremely radioactive waste and disaster sites (e.g. Hanford, Chernobyl, Fukushima) represent new targets of CIR research. We show that many microorganisms can grow under intense gamma-CIR dose rates of 13–126 Gy/h, with fungi identified as a particularly CIR-resistant group of eukaryotes: among 145 phylogenetically diverse strain...

  7. Directional radiation pattern in structural-acoustic coupled system

    Science.gov (United States)

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-07-01

    In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm.

  8. Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems

    International Nuclear Information System (INIS)

    Chen, W.; De Geronimo, G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

    2011-01-01

    We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

  9. Test of scalar meson structure in φ radiative decays

    International Nuclear Information System (INIS)

    Kumano, S.

    1992-12-01

    We show that φ radiative decays into scalar mesons [f 0 (975), a 0 (980) ≡ S] can provide important clues on the internal structures of these mesons. Radiative decay widths vary widely: B.R. = 10 -4 -10 -6 depending on the substructures (qq-bar, qqq-barq-bar, KK-bar, glueball). Hence, we could discriminate among various models by measuring these widths at future φ factories. The understanding of these meson structures is valuable not only in hadron spectroscopy but also in nuclear physics in connection with the widely-used but little-understood σ meson. We also find that the decay φ→S γ →K 0 K-bar 0 γ is not strong enough to pose a significant background problem for studying CP violation via φ→K 0 K-bar 0 at the φ factories. (author)

  10. Use of radiation for improving vines regarding their resistance to mildew

    International Nuclear Information System (INIS)

    Coutinho, M.P.

    1977-01-01

    Vines (Vitis vinifera) resistant to mildew (Plasmopara viticola) offer real advantages in Europe, and the problems of producing such vines were studied for a long time. At first conventional techniques were used, obtaining plants with high yield and with resistance persisting under widely differing ecological conditions; moreover, pathogenically different biotypes of Plasmopara have never been found. However, various factors - such as the quantitative nature of this resistance, which is controlled by a polygenic system, certain genetic correlations between resistance and poor quality of the grapes and the lack of resistance sources in V. vinifera - suggested that mutagenesis should be included among the methods used for the improvement of vines. Hence shoots and, more particularly, seeds have been undergoing irradiation with X-rays and neutrons since 1966. The exposure of seeds to low radiation doses (about 1000rad), particularly of X-rays, has in most varieties produced a very welcome increase in the germination percentage. Seedlings from irradiated seeds are selected mainly on the basis of the characteristics of the infection spots which develop on the leaves. In V. vinifera, resistance to mildew is reflected not in necroses but in small and usually not very sporulated spots. Using these criteria, the author has already selected - after natural infections and inoculations - plants representing approximately 0.001-0.0025% of the total number of plants screened. Tables illustrate the selection procedure up to 1976

  11. Functional genetic research for radiation and drug resistant adenocarcinoma and its application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Chul, Shin Byung; Kook, Park Hyo; Lee, Hee Min

    2012-01-15

    The work scope of 'Functional genetic research for radiation and drug resistant adenocarcinoma and its application' had contained the research about effect of transgelin(SM22a), neurotensin, metallothionein-1G transgelin-2 genes on the cell death triggered ionizing radiation, cisplatin, MMS, luteolin and H{sub 2}O{sub 2}(toxic agents), which are highly expressed in radiation-induced mutant cells. In this study, to elucidate the role of these proteins in the ionizing radiation (toxic chemicals)-induced cell death, we utilized sensed (or antisense, small interference RNA) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation, H{sub 2}O{sub 2} and toxic chemicals. We also investigated the functions of downstream target genes of transgelin such as IGF-1Rβ/PI3K/AKT pathway and transgelin/metallothioneine in A-549 and HepG2 cells because such target genes are able to potentiate the cell-killing or cell protecting effects against radiation.

  12. Functional genetic research for radiation and drug resistant adenocarcinoma and its application

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Chul, Shin Byung; Kook, Park Hyo; Lee, Hee Min

    2012-01-01

    The work scope of 'Functional genetic research for radiation and drug resistant adenocarcinoma and its application' had contained the research about effect of transgelin(SM22a), neurotensin, metallothionein-1G transgelin-2 genes on the cell death triggered ionizing radiation, cisplatin, MMS, luteolin and H 2 O 2 (toxic agents), which are highly expressed in radiation-induced mutant cells. In this study, to elucidate the role of these proteins in the ionizing radiation (toxic chemicals)-induced cell death, we utilized sensed (or antisense, small interference RNA) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation, H 2 O 2 and toxic chemicals. We also investigated the functions of downstream target genes of transgelin such as IGF-1Rβ/PI3K/AKT pathway and transgelin/metallothioneine in A-549 and HepG2 cells because such target genes are able to potentiate the cell-killing or cell protecting effects against radiation

  13. Patterning characteristics of a chemically-amplified negative resist in synchrotron radiation lithography

    International Nuclear Information System (INIS)

    Deguchi, Kimiyoshi; Miyoshi, Kazunori; Ishii, Tetsuyoshi; Matsuda, Tadahito

    1992-01-01

    To explore the applicability of synchrotron radiation X-ray lithography for fabricating sub-quartermicron devices, we investigate the patterning characteristics of the chemically-amplified negative resist SAL601-ER7. Since these characteristics depend strongly on the conditions of the chemical amplification process, the effects of post-exposure baking and developing conditions on sensitivity and resolution are examined. The resolution-limiting factors are investigated, revealing that pattern collapse during the development process and fog caused by Fresnel diffraction, photo-electron scattering, and acid diffusion in the resist determine the resolution and the maximum aspect ratio of the lines and spaces pattern. Using the model of a swaying beam supported at one end, it is shown that pattern collapse depends on the resist pattern's flexural stiffness. Patterning stability, which depends on the delay time between exposure and baking, is also discussed. (author)

  14. Resistance to ionizing radiations of materials installed at the CERN accelerators

    International Nuclear Information System (INIS)

    Schoenbacher, H.

    1982-01-01

    All materials installed in high energy accelerators along the lines of primary and secondary beams are exposed to ionizing radiation. This can in certain cases cause a degradation of the properties of these materials and consequently affect the good function of the installation. The author has taken at CERN large number of samples of materials in order to determine their radioresistance. Generally the organic materials and the electronic components are more sensitive to ionizing radiation. The author presents the results of these studies which concern the isolations of the cables (polyethylene, polyvinyl chloride, caoutchouc ethylene propylene, etc.), the isolations for the magnets on the base of epoxy resins, as well as other thermoresistant and thermoplastic products. The author equally presents a choice of materials and components which are used at CERN and which are resistant to radiations above an integral dose of 10 7 -10 8 Gy. (orig.)

  15. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    International Nuclear Information System (INIS)

    Fabian, P.E.; Munshi, N.A.; Denis, R.J.

    2002-01-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 10 8 Gy

  16. Induction of radiation resistance and radio-protective mechanism. On the reactive oxygen and free radical

    International Nuclear Information System (INIS)

    Yukawa, Osami

    2003-01-01

    Radical scavenging system for reactive oxygen species (ROS) leading to radio-protection is reviewed on findings in animals, tissues and cells. Protection against oxygen toxicity in evolution can be seen in anaerobes' superoxide dismutase (SOD) over 3500 million years ago. ROS is generated endogenously and also by radiation. However, the intracellular sites of the generated ROS are different depending on its cause. The protection is done through enzymes like SOD, peroxidase, catalase, glutathione-related enzymes and through substances like GSH, α-tocopherol, ascorbic acid etc. Induction of ROS scavenging substances related with radio-resistance includes the responses to the low dose radiation (5-50 cGy) in those enzymes described above; to middle to high dose radiation (1-30 Gy) in a similar and in other unknown mechanisms; to exposure of ROS like H 2 O 2 at low concentration; and to antioxidant treatment. The cross-resistance between radiation and drugs suggests necessity of this induction. (N.I.)

  17. Radiation damage of silicon structures with electrons of 900 MeV

    CERN Document Server

    Rachevskaia, I; Bosisio, L; Dittongo, S; Quai, E; Rizzo, G

    2002-01-01

    We present first results on the irradiation of double-sided silicon microstrip detectors and test structures performed at the Elettra synchrotron radiation facility at Trieste, Italy. The devices were irradiated with 900 MeV electrons. The test structures we used for studying bulk, surface and oxide irradiation damage were guard ring diodes, gated diodes and MOS capacitors. The test structures and the double-sided microstrip detectors were produced by Micron Semiconductor Ltd. (England) and IRST (Trento, Italy). For the first time, bulk-type inversion is observed to occur after high-energy electron irradiation. Current and inter-strip resistance measurements performed on the microstrip detectors show that the devices are still usable after type inversion.

  18. Radiation response of human lung cancer cells with inherent and acquired resistance to cisplatin

    International Nuclear Information System (INIS)

    Twentyman, P.R.; Wright, K.A.; Rhodes, T.

    1991-01-01

    We have derived sublines of three human lung cancer cell lines with acquired resistance to cisplatin. The cisplatin resistant sublines of NCI-H69 (small cell), COR-L23 (large cell), and MOR (adenocarcinoma) show 5.3 fold, 3.1 fold, and 3.8 fold resistance, respectively, determined in a 6-day MTT assay. Although the parent lines show a wide range of glutathione content per cell, the sublines each show similar values to their corresponding parent line. Radiation response curves have been obtained using a soft agar clonogenic assay. Values obtained for the parent lines (95% CL in parentheses) were: NCI-H69: Do = 0.99 Gy (0.87-1.16), n = 2.9 (1.6-5.2), GSH = 14 ng/10(4) cells; COR-L23: Do = 1.23 Gy (1.05-1.49), n = 1.3 (0.7-2.2), GSH = 47 ng/10(4) cells; MOR: Do = 1.66 Gy (1.48-1.88), n = 3.0 (1.9-4.8), GSH = 86 ng/10(4) cells. The cisplatin resistant variants of NCI-H69 and COR-L23 showed 31% and 63% increases, respectively, in Do compared to their parent lines, whereas no change in radiation response was seen in MOR. In this panel of lines, therefore, although there is a correlation between glutathione content and radiosensitivity of the parent cell lines, acquired resistance to cisplatin is not accompanied by increased glutathione content. However, two of the three cisplatin resistant lines do show a significantly reduced radiosensitivity

  19. Susceptibility to radiation-induced mammary carcinoma in genetically resistant Copenhagen rats

    International Nuclear Information System (INIS)

    Kamiya, Kenji; Nitta, Yumiko; Gould, M.N.

    2000-01-01

    The objective of this experiment was to compare the cellular basis of mammary cancer induction by a chemical carcinogen with induction by ionizing radiation in three strains of rats (inbred that have different genetic susceptibilities: COP rats, F344 rats, and WF rats). Rats were given a single intraperitoneal injection of 50 mg MNU/kg body weight as a mammary-tumor-inducing chemical carcinogen and were irradiated with a 3.0 Gy dose of 60 Co gamma rays at a dose rate of 26.58±1.19 cGy/min. The rats were inspected weekly, and they were killed and necropsied whenever palpable tumors were detected or they became moribund. The histopathological and immunohistochemical characteristics of the mammary tumors were investigated. A transplantation experiment using selected primary mammary tumors that developed in COP rats exposed to gamma rays was also performed to investigate the transplantability of mammary tumors induced by ionizing radiation. The sensitivity of the WF and F344 rats and the resistance of the COP rats to mammary carcinoma induction by the chemical carcinogen MNU was confirmed. In contrast to the chemical carcinogens, no difference in susceptibility to radiation induction of mammary carcinomas was detected among the three strains of rats, and immunohistochemical examination indicated that the radiation-induced carcinomas consisted of more highly differentiated cells than the MNU-induced cancers. The results of the experiment appear to support the hypothesis that differentiated mammary gland tissue is more resistant to chemical carcinogens than to cancer induction by radiation. The authors conclude that radiation-induced cancers in rats may develop via different pathways or from different cell populations than chemically induced cancers. (K.H.)

  20. Susceptibility to radiation-induced mammary carcinoma in genetically resistant Copenhagen rats

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Kenji; Nitta, Yumiko [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Gould, M.N.

    2000-07-01

    The objective of this experiment was to compare the cellular basis of mammary cancer induction by a chemical carcinogen with induction by ionizing radiation in three strains of rats (inbred that have different genetic susceptibilities: COP rats, F344 rats, and WF rats). Rats were given a single intraperitoneal injection of 50 mg MNU/kg body weight as a mammary-tumor-inducing chemical carcinogen and were irradiated with a 3.0 Gy dose of {sup 60} Co gamma rays at a dose rate of 26.58{+-}1.19 cGy/min. The rats were inspected weekly, and they were killed and necropsied whenever palpable tumors were detected or they became moribund. The histopathological and immunohistochemical characteristics of the mammary tumors were investigated. A transplantation experiment using selected primary mammary tumors that developed in COP rats exposed to gamma rays was also performed to investigate the transplantability of mammary tumors induced by ionizing radiation. The sensitivity of the WF and F344 rats and the resistance of the COP rats to mammary carcinoma induction by the chemical carcinogen MNU was confirmed. In contrast to the chemical carcinogens, no difference in susceptibility to radiation induction of mammary carcinomas was detected among the three strains of rats, and immunohistochemical examination indicated that the radiation-induced carcinomas consisted of more highly differentiated cells than the MNU-induced cancers. The results of the experiment appear to support the hypothesis that differentiated mammary gland tissue is more resistant to chemical carcinogens than to cancer induction by radiation. The authors conclude that radiation-induced cancers in rats may develop via different pathways or from different cell populations than chemically induced cancers. (K.H.)

  1. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    Science.gov (United States)

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  2. Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology.

    Science.gov (United States)

    Bibault, Jean-Emmanuel; Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita

    2018-01-01

    Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our "record-and-verify" system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique-Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017).

  3. Mega-mining in Mexico. Structural reforms and resistance

    Directory of Open Access Journals (Sweden)

    Darcy Tetreault

    2013-11-01

    Full Text Available This article analyzes the structural causes of social environmental conflicts around mega-mining in Mexico and describes the emergence and coordination of resistance movements. It argues that neoliberal reforms have facilitated ‘accumulation by dispossession’ on two levels: first, by transferring public resources in the form of mineral reserves and state-run mining companies to the private sector; and second, bydispossessing smallholder farmers and indigenous communities of their land, water and cultural landscapes, in order to allow mining companies to carry out their activities. Furthermore, it argues that some factions of the resistance movements reflect ‘the environmentalism of the poor’ insofar as they seek to maintain natural resources outside of the sphere of the capitalist mode of production. Through a systematic revision of newspaper articles, blogs and scholarly publications, 29 high-profile eco-territorial mining conflicts are identified and a preliminary analysis of these is provided.

  4. RAD18 mediates resistance to ionizing radiation in human glioma cells

    International Nuclear Information System (INIS)

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi; Yue, Wu

    2014-01-01

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM

  5. Fishing for radiation quality: chromosome aberrations and the role of radiation track structure

    International Nuclear Information System (INIS)

    Hill, M.A.

    2015-01-01

    The yield of chromosome aberrations is not only dependent on dose but also on radiation quality, with high linear energy transfer (LET) typically having a greater biological effectiveness per unit dose than those of low-LET radiation. Differences in radiation track structure and cell morphology can also lead to quantitative differences in the spectra of the resulting chromosomal rearrangements, especially at low doses associated with typical human exposures. The development of combinatorial fluorescent labelling techniques (such as mFISH and mBAND) has helped to reveal the complexity of rearrangements, showing increasing complexity of observed rearrangements with increasing LET but has a resolution limited to ∼10 MBp. High-LET particles have not only been shown to produce clustered sites of DNA damage but also produce multiple correlated breaks along its path resulting in DNA fragments smaller than the resolution of these techniques. Additionally, studies have shown that the vast majority of radiation-induced HPRT mutations were also not detectable using fluorescent in situ hybridisation (FISH) techniques, with correlation of breaks along the track being reflected in the complexity of mutations, with intra- and inter-chromosomal insertions, and inversions occurring at the sites of some of the deletions. Therefore, the analysis of visible chromosomal rearrangements observed using current FISH techniques is likely to represent just the tip of the iceberg, considerably underestimating the extent and complexity of radiation induced rearrangements. (author)

  6. Scalable, ultra-resistant structural colors based on network metamaterials

    KAUST Repository

    Galinski, Henning

    2017-05-05

    Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors with a scalable fabrication technique is still lacking, hampering the realization of practical applications with this platform. Here, we develop a new approach based on large-scale network metamaterials that combine dealloyed subwavelength structures at the nanoscale with lossless, ultra-thin dielectric coatings. By using theory and experiments, we show how subwavelength dielectric coatings control a mechanism of resonant light coupling with epsilon-near-zero regions generated in the metallic network, generating the formation of saturated structural colors that cover a wide portion of the spectrum. Ellipsometry measurements support the efficient observation of these colors, even at angles of 70°. The network-like architecture of these nanomaterials allows for high mechanical resistance, which is quantified in a series of nano-scratch tests. With such remarkable properties, these metastructures represent a robust design technology for real-world, large-scale commercial applications.

  7. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and the correlation with stationary growth phase

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1982-01-01

    Radiation resistance and thermal resistance vary as a function of culture temperature in logarithmically growing Saccharomyces cerevisiae and are related to the optimum temperature for growth. Radiation resistance and thermal resistance were also induced when cells grown at low temperatures were subjected to a heat shock at or above the optimum growth temperature. Exposure to ionizing radiation followed by a short incubation at low temperature also induced resistance to killing by heat. Heat-shocked cells are induced to a level of thermal and radioresistance much greater than the characteristic resistance level of cells grown continuously at the shock temperature. This high level of resistance, which resembles that of stationary-phase cells, decays to the characteristic log-phase level within one doubling of cell number after the heat shock. Both induction of resistance and decay of that induction require protein synthesis. It is postulated that induction of resistance by heat shock or ionizing radiation is a response of the cells to stress and represents a preparation to enter stationary phase

  8. Track structure theory in radiobiology and in radiation detection

    International Nuclear Information System (INIS)

    Katz, R.

    1976-01-01

    The response of biological cells, and many physical radiation and track detectors to ionizing radiations, and to energetic heavily ionizing particles results from the secondary and higher generation electrons ejected from the atoms and molecules of the detector by the incident primary radiation. The models which have been used for detector response arise from target theory, and are of the form of statistical models called multi-hit or multi-target detectors, in which it is assumed that there are sensitive elements (emulsion grains, or biological cell nuclei) which may require many hits (emulsion grains) or single hits in different targets (say, cellular chromosomes) in order to produce the observed endpoint. Physically, a hit is interpreted as a 'registered event' caused by an electron passing through the sensitive site, with an efficiency which depends on the electron's speed. Some knowledge of size of the sensitive volume and of the sensitive target is required to make the transition from gamma-ray response to heavy ion response. Recent work has demonstrated that many-hit physical detectors do exist. From both emulsion sensitometry and from the structure of tracks of heavy ions, we are able to show that emulsion-developer combinations exist which yield many-hit response. There is also some evidence that the supralinearity in thermoluminescent dosimeters arises from a trap structures within the same TLD crystal. These detectors can be expected to mimic the response of biological cells to radiations of different quality. Their patterns of response may help us to understand better the structure of particle tracks in SSNTD's. (orig./ORU) [de

  9. Theory of the high base resistivity n(+)pp(+) silicon solar cell and its application to radiation damage effects

    Science.gov (United States)

    Goradia, C.; Weinberg, I.

    1985-01-01

    Particulate radiation in space is a principal source of silicon solar cell degradation, and an investigation of cell radiation damage at higher base resistivities appears to have implication toward increasing solar cell and, therefore, useful satellite lifetimes in the space environment. However, contrary to expectations, it has been found that for cells with resistivities of 84 and 1250 ohm cm, the radiation resistance decreases as cell base resistivity increases. An analytical solar-cell computer model was developed with the objective to determine the reasons for this unexpected behavior. The present paper has the aim to describe the analytical model and its use in interpreting the behavior, under irradiation, of high-resistivity solar cells. Attention is given to boundary conditions at the space-charge region edges, cell currents, cell voltages, the generation of the theoretical I-V characteristic, experimental results, and computer calculations.

  10. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1983-01-01

    In response to a heat shock, the yeast Saccharomyces cerevisiae undergoes a large increase in its resistance to heat and, by the induction of its recombinational DNA repair capacity, a corresponding increase in resistance to radiation. Yeast which lack mitochondrial DNA, mitochondria-controlled protein synthetic apparatus, aerobic respiration, and electron transport (rho 0 strain) were used to assess the role of O 2 , mitochondria, and oxidative processes controlled by mitochondria in the induction of these resistances. We have found that rho 0 yeast grown and heat shocked in either the presence or absence of O 2 are capable of developing both radiation and heat resistance. We conclude that neither the stress signal nor its cellular consequences of induced heat and radiation resistance are directly dependent on O 2 , mitochondrial DNA, or mitochondria-controlled protein synthetic or oxidative processes

  11. Transcription and activity of antioxidant proteins after ionization irradiation of radiation-resistant and radiation-sensitive mice

    International Nuclear Information System (INIS)

    Hardmeier, R.

    1998-03-01

    The involvernent of antioxidant proteins catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH px), and thioredoxin (TRX) in radiobiological processes has been described at the enzyme activity level. We were interested in examining the transcription of these proteins in a mammalian system following ionizing irradiation. In order to answer the question whether radiation effects in sensitive mice (Balb/c) (RS) showed differences at the transcriptional level from radiation effects in resistant mice (C3H) (RR). We exposed the whole body of these strains to X/rays doses of 2, 4, and 6 Gy and sacrificed the animals 5, 15, and 30 minutes after irradiation. The mRNA was isolated from liver and hybrized with probes for antioxidant enzymes and thioredoxin, β-actin was used as a housekeeping gene control. Antioxidant enzyme activities were determined by standard assays. Parameters for aromatic hydroxylation (o-Tyr) and lipid peroxidation (MDA) were determined by HPLC methods. Antioxidant transcription was unchanged in contrast to antioxidant activities. SOD and CAT activities were elevated within 15 minutes in RR animals but not in RS at all radiation doses. Glutathione peroxidase activity was not different between RR and RS mice, and was only moderately elevated after irradiation. No significant differences were found between RR and RS animals at the oxidation level, although a radiation dose-dependent increase of oxidation products was detected in both groups. Quantification of thioredoxin mRNA revealed that RR mice transcribed this protein at a significantly higher level at an earlier time point (5 minutes) than did RS mice. This delay may well be responsible for the radioresistance although no quantitative differences were found. As unchanged transcription of antioxidant enzymes could not have been responsible for the increased antioxidant enzyme activities, preformed antioxidant enzymes may have been released by irradiation. This would be in agreement

  12. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, P.R.; Blackwell, J.M.; Bradley, D.J. (London School of Hygiene and Tropical Medicine (UK))

    1984-07-01

    Reciprocal radiation bone marrow chimaeras were made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage.

  13. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    International Nuclear Information System (INIS)

    Crocker, P.R.; Blackwell, J.M.; Bradley, D.J.

    1984-01-01

    Reciprocal radiation bone marrow chimaeras mere made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage. (author)

  14. A study on the improvement of radiation-induced oxidation resistance for polypropylene and PVC materials

    International Nuclear Information System (INIS)

    Park, K. Z.; Jeong, K. S.; Cho, S. H.; Cho, Y. H.; Seok, H. C.

    2002-01-01

    The object of this project is to improve the stability and the economics by reducing the radiation-induced oxidation as a factor of degradation of polymer materials used under the radiation environment. In order to attain the objective of this study and to check the effect of diamond-like carbon (DLC) coating on the anti-oxidation reaction, polymer specimens such as Polyproplyene, PVC coating DLC thin layer were exposed to high level gamma radiation, and their irradiation effects were investigated. A plasma-enhanced chemical vapor deposition method was adopted in fabricating a DLC thin film on the polymer specimens, which were irradiated with the non-DLC film deposited specimens under the gamma radiation emitted from Co-60 source from 1 x 10 5 to 1 x 10 8 rads exposure. According to the characterization of irradiated specimens from the elapsed time of minimum 4 hours to a maximum of 105 days after the irradiation, the DLC deposition on the polymer surface was revealed to contribute to the improvement on the resistance of the radiation-induced oxidation in this study

  15. Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210Po source.

    Science.gov (United States)

    Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak

    2018-02-01

    Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Structure-borne sound structural vibrations and sound radiation at audio frequencies

    CERN Document Server

    Cremer, L; Petersson, Björn AT

    2005-01-01

    Structure-Borne Sound"" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radi

  17. WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma.

    Science.gov (United States)

    Zhukova, Nataliya; Ramaswamy, Vijay; Remke, Marc; Martin, Dianna C; Castelo-Branco, Pedro; Zhang, Cindy H; Fraser, Michael; Tse, Ken; Poon, Raymond; Shih, David J H; Baskin, Berivan; Ray, Peter N; Bouffet, Eric; Dirks, Peter; von Bueren, Andre O; Pfaff, Elke; Korshunov, Andrey; Jones, David T W; Northcott, Paul A; Kool, Marcel; Pugh, Trevor J; Pomeroy, Scott L; Cho, Yoon-Jae; Pietsch, Torsten; Gessi, Marco; Rutkowski, Stefan; Bognár, Laszlo; Cho, Byung-Kyu; Eberhart, Charles G; Conter, Cecile Faure; Fouladi, Maryam; French, Pim J; Grajkowska, Wieslawa A; Gupta, Nalin; Hauser, Peter; Jabado, Nada; Vasiljevic, Alexandre; Jung, Shin; Kim, Seung-Ki; Klekner, Almos; Kumabe, Toshihiro; Lach, Boleslaw; Leonard, Jeffrey R; Liau, Linda M; Massimi, Luca; Pollack, Ian F; Ra, Young Shin; Rubin, Joshua B; Van Meir, Erwin G; Wang, Kyu-Chang; Weiss, William A; Zitterbart, Karel; Bristow, Robert G; Alman, Benjamin; Hawkins, Cynthia E; Malkin, David; Clifford, Steven C; Pfister, Stefan M; Taylor, Michael D; Tabori, Uri

    2014-12-24

    TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.

  18. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  19. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  20. Synchrotron radiation and multichannel detectors in structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mokulskii, M

    1979-10-01

    A survey is presented of the development of multichannel synchrotron X radiation detectors for the structural analysis of crystals. Tests are currently under way of a 4-thousand-channel plane detector of soft X radiation. The detector consists of a multiwire proportional counter using argon and CO/sub 2/ as the working gases. The detector is coupled to a computer processing information and displaying the respective X-ray diffraction images on the monitor. The described equipment allows imaging, eg., the cross section of the elementary cell of a DNA crystal. A 16-thousand-channel detector exists in the present time and the building is envisaged of a detector with 65 thousand channels.

  1. Synchrotron radiation and multichannel detectors in structural analysis

    International Nuclear Information System (INIS)

    Mokulskij, M.

    1979-01-01

    A survey is presented of the development of multichannel synchrotron X radiation detectors for the structural analysis of crystals. Tests are currently under way of a 4-thousand-channel plane detector of soft X radiation. The detector consists of a multiwire proportional counter using argon and CO 2 as the working gases. The detector is coupled to a computer processing information and displaying the respective X-ray diffraction images on the monitor. The described equipment allows imaging, eg., the cross section of the elementary cell of a DNA crystal. A 16-thousand-channel detector exists in the present time and the building is envisaged of a detector with 65 thousand channels. (J.B.)

  2. Elimination of Listeria monocytogenes in sausage meat by combination treatment: Radiation and radiation-resistant bacteriocins

    International Nuclear Information System (INIS)

    Turgis, Mélanie; Stotz, Viviane; Dupont, Claude; Salmieri, Stéphane; Khan, Ruhul A.; Lacroix, Monique

    2012-01-01

    Two new bacteria were isolated from human feces and were designated MT 104 and MT 162. They were able to produce bacteriocins that are active against five strains of Listeria monocytogenes. Bacteriocins produced by these isolated strains had 100% and 82.35% residual activity when they were treated by gamma radiation at doses of 4 and 40 kGy, respectively. A reduction of 1.0, 1.5 and 3 log CFU/g of L. monocytogenes was observed in sausage meat when treated with bacteriocins from MT 104, MT 162, and nisin, respectively. For synergic effect, the D 10 value in presence of the bacteriocins produced by MT 104 showed a 1.08 fold increased relative sensitivity of L. monocytogenes as compared to control after 5 days. The highest synergic effect was observed in presence of nisin which led to 1.61 fold increased relative sensitivity. Combined treatments with nisin and γ-irradiation showed a synergic antimicrobial effect in meat after 24 h and 5 days of storage. A synergic effect was observed only after 5 days at 4 °C for the bacteriocin from MT 104, as compared to the bacteriocin produced by MT 162 that had only an additive antimicrobial effect in all conditions.

  3. Elimination of Listeria monocytogenes in sausage meat by combination treatment: Radiation and radiation-resistant bacteriocins

    Science.gov (United States)

    Turgis, Mélanie; Stotz, Viviane; Dupont, Claude; Salmieri, Stéphane; Khan, Ruhul A.; Lacroix, Monique

    2012-08-01

    Two new bacteria were isolated from human feces and were designated MT 104 and MT 162. They were able to produce bacteriocins that are active against five strains of Listeria monocytogenes. Bacteriocins produced by these isolated strains had 100% and 82.35% residual activity when they were treated by gamma radiation at doses of 4 and 40 kGy, respectively. A reduction of 1.0, 1.5 and 3 log CFU/g of L. monocytogenes was observed in sausage meat when treated with bacteriocins from MT 104, MT 162, and nisin, respectively. For synergic effect, the D10 value in presence of the bacteriocins produced by MT 104 showed a 1.08 fold increased relative sensitivity of L. monocytogenes as compared to control after 5 days. The highest synergic effect was observed in presence of nisin which led to 1.61 fold increased relative sensitivity. Combined treatments with nisin and γ-irradiation showed a synergic antimicrobial effect in meat after 24 h and 5 days of storage. A synergic effect was observed only after 5 days at 4 °C for the bacteriocin from MT 104, as compared to the bacteriocin produced by MT 162 that had only an additive antimicrobial effect in all conditions.

  4. Study of Enhanced Radiation Impact on the Resistance of Plant - Parasite System

    International Nuclear Information System (INIS)

    Damianova, A.; Sivriev, I.; Baicheva, O.; Ivanova, I

    2004-01-01

    The paper aimed to report the results from the experiments carried out in order to investigate the dependence between the increasing radiation doses and the vitality and reproductivity of the wide spread in the natural and agroecosystems nematodes Meloidogyne arenaria used as a laboratory model. In this study the influence of different doses of α- and γ- radiation have been examined using isotopes of 241 Am and 60 Co. As a result of the performed experiments a conclusion could be made for the protective role of the glycoproteid structures of the parasite sac against α-radiation. Part of the effects observed probably are due to the development in the process of evolution of a protective mechanism in order to adapt the organisms to the modifying of the radiation background

  5. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    International Nuclear Information System (INIS)

    Shimizu, Takashi; Ichikawa, Tsuneki

    2005-01-01

    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon γ-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as M n R 1 COOCH(C 6 H 5 )R 2 M n +e - ->M n R 1 COO - + · CH(C 6 H 5 )R 2 M n . The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching

  6. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi [Nitto Denko Co. LTD., Shimohozumi 1-1-2, Ibaraki, Osaka 567-8680 (Japan); Ichikawa, Tsuneki [Division of Materials Chemistry, Graduate school of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: ichikawa@eng.hokudai.ac.jp

    2005-07-01

    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon {gamma}-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as M{sub n}R{sub 1}COOCH(C{sub 6}H{sub 5})R{sub 2}M{sub n}+e{sup -}->M{sub n}R{sub 1}COO{sup -}+{sup {center_dot}}CH(C{sub 6}H{sub 5})R{sub 2}M{sub n}. The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching.

  7. Toward advanced gamma rays radiation resistance and shielding efficiency with phthalonitrile resins and composites

    Science.gov (United States)

    Derradji, Mehdi; Zegaoui, Abdeldjalil; Xu, Yi-Le; Wang, An-ran; Dayo, Abdul Qadeer; Wang, Jun; Liu, Wen-bin; Liu, Yu-Guang; Khiari, Karim

    2018-04-01

    The phthalonitrile resins have claimed the leading place in the field of high performance polymers thanks to their combination of outstanding properties. The present work explores for the first time the gamma rays radiation resistance and shielding efficiency of the phthalonitrile resins and its related tungsten-reinforced nanocomposites. The primary goal of this research is to define the basic behavior of the phthalonitrile resins under highly ionizing gamma rays. The obtained results confirmed that the neat phthalonitrile resins can resist absorbed doses as high as 200 kGy. Meanwhile, the remarkable shielding efficiency of the phthalonitrile polymers was confirmed to be easily improved by preparing lead-free nanocomposites. In fact, the gamma rays screening ratio reached the exceptional value of 42% for the nanocomposites of 50 wt% of nano-tungsten loading. Thus, this study confirms that the remarkable performances of the phthalonitrile resins are not limited to the thermal and mechanical properties and can be extended to the gamma rays radiation and shielding resistances.

  8. Resistance of human erythrocytes containing elevated levels of vitamin E to radiation-induced hemolysis

    International Nuclear Information System (INIS)

    Brown, M.A.

    1983-01-01

    Human erythrocytes were isolated from the blood of healthy donors and then incubated in the presence of suspensions of alpha-tocopherol for 30 min at 37 degrees C. Unabsorbed tocopherol was removed by centrifugation using several washes of isotonic phosphate-buffered saline. Washed erythrocytes were resuspended to 0.05%. Hct and exposed to hemolyzing doses of 60 Co gamma radiation, and hemolysis was monitored continuously by light scattering at 700 nm in a recording spectrophotometer. The extent of hemolysis with time was sigmoid and data analysis was carried out on the time taken for 50% hemolysis to occur (t50%). The vitamin E content of erythrocytes was significantly elevated by the incubation procedure and resulted in the cells exhibiting a significantly increased resistance to hemolysis as reflected by the extended t50% values. Oral supplementation of 500 IU of vitamin E per day to eight normal human subjects for a period of 16 days also resulted in their washed erythrocytes exhibiting a significant increase in resistance to radiation-induced hemolysis. When comparing vitamin E incubated cells with control cells, both the dose-reducing factor (DRF) and the time for 50% hemolysis quotient (Qt50%) were observed to increase with increasing radiation dose

  9. Irradiation tests of radiation resistance optical fibers for fusion diagnostic application

    Science.gov (United States)

    Kakuta, Tsunemi; Shikama, Tatsuo; Nishitani, Takeo; Yamamoto, Shin; Nagata, Shinji; Tsuchiya, Bun; Toh, Kentaro; Hori, Junichi

    2002-11-01

    To promote development of radiation-resistant core optical fibers, the ITER-EDA (International Thermonuclear Experimental Reactor-Engineering Design Activity) recommended carrying out international round-robin irradiation tests of optical fibers to establish a reliable database for their applications in the ITER plasma diagnostics. Ten developed optical fibers were irradiation-tested in a Co-60 gamma cell, a Japan Materials Testing Reactor (JMTR). Also, some of them were irradiation tested in a fast neutron irradiation facility of FNS (Fast Neutron Source), especially to study temperature dependence of neutron-associated irradiation effects. Included were several Japanese fluorine doped fibers and one Japanese standard fiber (purified and undoped silica core), as well as seven Russian fibers. Some of Russian fibers were drawn by Japanese manufactures from Russian made pre-form rods to study effects of manufacturing processes to radiation resistant properties. The present paper will describe behaviors of growth of radiation-induced optical transmission loss in the wavelength range of 350-1750nm. Results indicate that role of displacement damages by fast neutrons are very important in introducing permanent optical transmission loss. Spectra of optical transmission loss in visible range will depend on irradiation temperatures and material parameters of optical fibers.

  10. The involvement of topoisomerases and DNA polymerase I in the mechanism of induced thermal and radiation resistance in yeast

    International Nuclear Information System (INIS)

    Boreham, D.R.; Trivedi, A.; Weinberger, P.; Mitchel, R.E.

    1990-01-01

    Either an ionizing radiation exposure or a heat shock is capable of inducing both thermal tolerance and radiation resistance in yeast. Yeast mutants, deficient in topoisomerase I, in topoisomerase II, or in DNA polymerase I, were used to investigate the mechanism of these inducible resistances. The absence of either or both topoisomerase activities did not prevent induction of either heat or radiation resistance. However, if both topoisomerase I and II activities were absent, the sensitivity of yeast to become thermally tolerant (in response to a heat stress) was markedly increased. The absence of only topoisomerase I activity (top1) resulted in the constitutive expression of increased radiation resistance equivalent to that induced by a heat shock in wild-type cells, and the topoisomerase I-deficient cells were not further inducible by heat. This heat-inducible component of radiation resistance (or its equivalent constitutive expression in top1 cells) was, in turn, only a portion of the full response inducible by radiation. The absence of polymerase I activity had no detectable effect on either response. Our results indicate that the actual systems that confer resistance to heat or radiation are independent of either topoisomerase activity or DNA polymerase function, but suggest that topoisomerases may have a regulatory role during the signaling of these mechanisms. The results of our experiments imply that maintenance of correct DNA topology prevents induction of the heat-shock response, and that heat-shock induction of a component of the full radiation resistance in yeast may be the consequence of topoisomerase I inactivation

  11. Microstructural Evolution of Advanced Radiation-Resistant ODS Steel with Different Lengths of Mechanical Alloying Time

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Ga Eon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/ martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, powder properties and microstructures of the ODS steel with different length of mechanical alloying time was investigated. The ODS steel milled 5h showed homogeneous grain structure with the highest hardness.

  12. Microstructural Evolution of Advanced Radiation-Resistant ODS Steel with Different Lengths of Mechanical Alloying Time

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Kim, Ga Eon; Kang, Suk Hoon; Kim, Tae Kyu

    2015-01-01

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/ martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, powder properties and microstructures of the ODS steel with different length of mechanical alloying time was investigated. The ODS steel milled 5h showed homogeneous grain structure with the highest hardness

  13. Resistive foil edge grading for accelerator and other high voltage structures

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen F.; Sanders, David M.

    2014-06-10

    In a structure or device having a pair of electrical conductors separated by an insulator across which a voltage is placed, resistive layers are formed around the conductors to force the electric potential within the insulator to distribute more uniformly so as to decrease or eliminate electric field enhancement at the conductor edges. This is done by utilizing the properties of resistive layers to allow the voltage on the electrode to diffuse outwards, reducing the field stress at the conductor edge. Preferably, the resistive layer has a tapered resistivity, with a lower resistivity adjacent to the conductor and a higher resistivity away from the conductor. Generally, a resistive path across the insulator is provided, preferably by providing a resistive region in the bulk of the insulator, with the resistive layer extending over the resistive region.

  14. Modulation of DNA methylation levels sensitizes doxorubicin-resistant breast adenocarcinoma cells to radiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Luzhna, Lidia [Department of Biological Sciences, University of Lethbridge, AB, Canada T1K 3M4 (Canada); Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca [Department of Biological Sciences, University of Lethbridge, AB, Canada T1K 3M4 (Canada)

    2010-02-05

    Chemoresistant tumors often fail to respond to other cytotoxic treatments such as radiation therapy. The mechanisms of chemo- and radiotherapy cross resistance are not fully understood and are believed to be epigenetic in nature. We hypothesize that MCF-7 cells and their doxorubicin-resistant variant MCF-7/DOX cells may exhibit different responses to ionizing radiation due to their dissimilar epigenetic status. Similar to previous studies, we found that MCF-7/DOX cells harbor much lower levels of global DNA methylation than MCF-7 cells. Furthermore, we found that MCF-7/DOX cells had lower background apoptosis levels and were less responsive to radiation than MCF-7 cells. Decreased radiation responsiveness correlated to significant global DNA hypomethylation in MCF-7/DOX cells. Here, for the first time, we show that the radiation resistance of MCF-7/DOX cells can be reversed by an epigenetic treatment - the application of methyl-donor SAM. SAM-mediated reversal of DNA methylation led to elevated radiation sensitivity in MCF-7/DOX cells. Contrarily, application of SAM on the radiation sensitive and higher methylated MCF-7 cells resulted in a decrease in their radiation responsiveness. This data suggests that a fine balance of DNA methylation is needed to insure proper radiation and drug responsiveness.

  15. Isolation and characterization of a radiation resistant thermophilic bacterium from radon hot spring

    International Nuclear Information System (INIS)

    Liang Xinle; Yang Long; Zhang Hong; Zhang Lei

    2011-01-01

    A radiation resistant and thermophilic bacterium strain R4-33 was isolated from radon hot spring water samples, pretreated with 60 Co γ-rays and UV irradiation. Tests on morphological, physiological and biochemical characters, fatty acid compositions, (G + C) mol% contents, and 16S rDNA sequencing were conducted. The results showed that strain R4-33 was of rod-shape, Gram-negative, atrichous, and endospore-forming. The optimum growth temperature and pH were 60 ℃ and 7.5, respectively. The strain utilized glucose, maltose and trehalose as carbon sources, and hydrolyzed casein and starch. Its catalase positive. The strain was sensitive to penicillin, neomycin, erythromycin, vancomycin, streptomycin, gentamycin, amikacin and ampicillin. The major cellular fatty acids were C 14:1 (48.8%) and C 15:1 (15.2%). The (G + C) mol% content of DNA was 58.2%. Phylogenetic tree based on 16S rDNA sequence showed R4-33 shared highly similarity to those of species in genus Anoxybacillus, especially to that of Anoxybacillus gonensis (99.5%). Based on the above, the strain R4-33 was proposed to the evolution branch of Anoxybacillus and designated as Anoxybacillu sp. R4-33. The UV and γ-radiation tests showed that the strain R4-33 had an ability of resistance to UV of 396 J/m 2 and 60 Co γ-rays irradiation of 14.0 kGy, indicating that the strain was a radiation resistant and thermophilic bacterium. (authors)

  16. The effect of cellular carotenoid levels in micrococcus luteus on resistance to gamma radiation

    International Nuclear Information System (INIS)

    Al-Wandawi, K. H.

    2000-01-01

    In the present study, a biological system was developed to link the cellular carotenoid levels to Gamma radiation resistance in bacteria for the frst time. thus, in a non-photosynrhetic bacterium, in Micrococcus Luteus an inverse relationship was found between the increase in diphenylamine (DPA) concentration (5.25 μg/ml culture) and the polar cellular carotenoid pigments (C-45 and C-50 carotenoids and their glucosides). It was also found that irradiation of cells with different carotenoid concentrations with doses of γ-radiation in the range of (0.2500 gray) under oxic, air and hypoxic conditions showed that carotenoid pigments offer no significant protection as they usually do in case of visible light. (author).15 refs., 5 figs., 3 tabs

  17. Improvement of radiation resistance of polypropylene by blending with polyethylene and polystyrene

    International Nuclear Information System (INIS)

    Al Aji, Z.

    2001-01-01

    The use of polypropylene in production of medical component and packaging materials makes it an interesting material for applied research. Since the use of ethylene oxide for sterilization of medical components will be forbidden in the next future because of its carcinogens effect. Therefore, another alternative sterilization methods are required. The use of Gamma radiation is already established for sterilization of some medical components, this technique causes change in the physical mechanical properties of polypropylene, which makes the addition of stabilizers necessary. In this work, blends of domestically used polymers, polypropylene, linear low-density polyethylene, and polystyrene/butadiene were prepared in order to improve the radiation resistance of polypropylene; naphthalene was also used as an additive

  18. Heat enhancement of radiation resistivity of evaporated CsI, KI and KBr photocathodes

    CERN Document Server

    Tremsin, A S

    2000-01-01

    The photoemissive stability of as-deposited and heat-treated CsI, KI and KBr evaporated thin films under UV radiation is examined in this paper. After the deposition, some photocathodes were annealed for several hours at 90 deg. C in vacuum and their performance was then compared to the performance of non-heated samples. We observed that the post-evaporation thermal treatment not only increases the photoyield of CsI and KI photocathodes in the spectral range of 115-190 nm, but also reduces CsI, KI and KBr photocurrent degradation that occurs after UV irradiation. KBr evaporated layers appeared to be more radiation-resistant than CsI and KI layers. Post-deposition heat treatment did not result in any significant variation of KBr UV sensitivity.

  19. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    Science.gov (United States)

    Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA

  20. Gamma-Ray Dosimetry System Using Radiation-Resistant Optical Fibers and a Luminescent Material

    International Nuclear Information System (INIS)

    Toh, K.; Nakamura, T.; Yamagishi, H.; Sakasai, K.; Soyama, K.; Shikama, T.; Nagata, S.

    2013-06-01

    Gamma-ray dosimetry system using radiation-resistant optical fibers and a luminescent material was developed for use in a damaged Fukushima Dai-ichi nuclear power plant. The system was designed to be compact and unnecessary of an external supply of electricity to a radiation sensor head with a contaminated working environment and restricted through-holes to a measurement point in the damaged reactor. The system can detect a gamma-ray dose rate at a measurement point using a couple of optical fibers and a luminescent material with a coincidence method. This system demonstrated a linear response with respect to the gamma-ray dose rate from 0.5 mGy/h to 0.1 Gy/h and the system had a capability to measure the dose rate of more than 10 2 Gy/h. (authors)

  1. The origin of polarized blackbody radiation from resistively heated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Aliev, Ali E.; Kuznetsov, Alexander A.

    2008-01-01

    We observed very pronounced polarization of light emitted by highly aligned free-standing multiwall carbon nanotube (MWNT) sheet in axial direction which is turned to the perpendicular polarization when a number of layers are increased. The radiation spectrum of resistively heated MWNT sheet closely follows to the Plank's blackbody radiation distribution. The obtained polarization features can be described by a classical dielectric cylindrical shell model, taking into consideration the contribution of delocalized π-electrons (π surface plasmons). In absorption (emission) the optical transverse polarizability, which is much smaller than longitudinal one, is substantially suppressed by depolarization effect due to screening by induced charges. This phenomenon suggests very simple and precise method to estimate the alignment of nanotubes in bundles or large assemblies

  2. Conceptual design of a versatile radiation tolerant integrated signal conditioning circuit for resistive sensors

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, P. [Katholieke Hogeschool Kempen, Kleinhoefstraat 4, B-2440 Geel (Belgium); Katholieke Universiteit Leuven, Dept. ESAT-MICAS, Kasteelpark Arenberg 10, B-3001 Heverlee (Belgium); SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Sterckx, J. [Katholieke Hogeschool Kempen, Kleinhoefstraat 4, B-2440 Geel (Belgium); Van Uffelen, M.; Damiani, C. [Fusion 4 Energy, Ed. B3, c/Josep, no 2, Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2011-07-01

    This paper presents the design of a radiation tolerant configurable discrete time CMOS signal conditioning circuit for use with resistive sensors like strain gauge pressure sensors. The circuit is intended to be used for remote handling in harsh environments in the International Thermonuclear Experimental fusion Reactor (ITER). The design features a 5 V differential preamplifier using a Correlated Double Sampling (CDS) architecture at a sample rate of 20 kHz and a 24 V discrete time post amplifier. The gain is digitally controllable between 27 and 400 in the preamplifier and between 1 and 8 in the post amplifier. The nominal input referred noise voltage is only 8.5 {mu}V while consuming only 1 mW. The circuit has a simulated radiation tolerance of more than 1 MGy. (authors)

  3. Development of high voltage PEEK wire with radiation-resistance and cryogenic characteristics

    International Nuclear Information System (INIS)

    Fujita, T.; Hirata, T.; Araki, S.; Ohara, H.; Nishimura, H.

    1989-01-01

    High voltage electric wires insulated with highly-refined polyetheretherketone (PEEK) have been developed for the wiring in fusion reactors, where the wire is required to withstand high voltage under high vacuum up to 10 -5 Torr. The PEEK wires having the advantages of PEEK resin including superior radiation resistance and cryogenic characteristics are usable over a wide range of temperature and in radiation fields. The results of withstand voltage tests proved that the PEEK wires exceeding 0.8 mm in insulation thickness withstand such specified high voltage conditions as 24 kV for 1 minutes by 10 times and 6.6 kV for 110 hours. The results also revealed that the withstand voltage is improved by providing a jacket layer over the insulation and decreased by periodical voltage charge, by bending of the specimen and by water in the conductor. This paper deal with the withstand voltage test results under varied conditions of the PEEK wires. (author)

  4. Gamma radiation effects on the structure and properties of polystyrene

    International Nuclear Information System (INIS)

    Lima, Ivania Soares de

    1996-01-01

    Polystyrene is a linear thermoplastic with a molecular weight ranging from 130,000 to 300,000 g/mole. This polymer has wide industrial applications. In medicine it is used to manufacture medical supplies which can be sterilized by ionizing radiation. The sterilization of medical instruments by ionizing radiation was introduced in the 60's as an alternative method to the conventional treatment with ethylene oxide gas. Radiosterilization is now worldwide standard procedure, as it is cheaper and cleaner. Some polymers, however, may show some changes in their physical properties following irradiation. These changes are due to the prevailing crosslinking and main chain scission induced by the irradiation of the polymeric system. In the present work, Brazilian-made polystyrene Lustrex was irrigated with γ rays in the presence of air at room temperature. Under these conditions, the analysis of viscosimetric essays showed the prevalence of crosslinking effects at doses up to 25 kGy and of main scission effects at does from 25 to 200 kGy. Observed G values (number of events per 100 eV of absorbed energy) pointed to low degrees of both crosslinking (Gx ∼ 0.15) and main chain scission (Gs ∼ 0.09). Therefore, the minor changes in Lustrex's molecular structure induced by irradiation have not influenced significantly its mechanical, thermal, and optical properties. As a result, Lustrex can be used in applications involving radiation without the need to introduce radioprotective to the polymeric system. (author)

  5. Effect of fractionated radiation on multidrug resistance in human ovarian cancer

    International Nuclear Information System (INIS)

    Kong Dejuan; Liu Xiaodong; Liang Bing; Jia Lili; Ma Shumei

    2012-01-01

    Objective: To investigate the effect of different subtypes of fractionated doses on multidrug resistance in ovarian cancer cells. Methods: The human ovarian cancer cell lines SKOV3 and its drug-resistant subtype SKVCR were divided into four groups i.e., sham-irradiated, single dose (10 Gy), fractionated dose (2 Gy × 5) and multi-fractionated dose (1 Gy × 2 × 5). Cell sensitivity to vincristine (VCR), etoposide (VP-16), pirarubicin (THP) and cisplatin (DDP) was measured by MTT assay. Western blot was applied to detect the expression of P-gp after irradiation. Results: The doubling time of SKVCR was about 1.8-fold of that of SKOV3 cells. P-gp was expressed in SKVCR but not in SKOV3. IC 50 values of SKVCR were higher than those of SKOV3. To SKOV3 cells, single dose irradiation decreased cell sensitivity to THP and DDP and fractionated irradiation decreased cell sensitivity to VCR, THP and VP-16. Multi-fractionated irradiation decreased cell sensitivity to VP-16. In SKVCR cells, all these irradiation treatments increased cell sensitivity to VCR and VP-16 but not to DDP. In addition, single and fractionated irradiation decreased P-gp expression in SKVCR cells. Conclusions: Single, fractionated and multi-fractionated radiation induced chemotherapy resistance in SKOV3 cells, while reversed drug resistance to VCR and VP-16 in SKVCR cells. (authors)

  6. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko, E-mail: thirono@uni-bonn.de [Physikalisches Institute der Universität Bonn, Bonn (Germany); Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans [Physikalisches Institute der Universität Bonn, Bonn (Germany); Liu, Jian; Pangaud, Patrick [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Peric, Ivan [IPE, Karlsruher Institut für Technologie, Karlsruhe (Germany); Pohl, David-Leon [Physikalisches Institute der Universität Bonn, Bonn (Germany); Rozanov, Alexandre [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Rymaszewski, Piotr [Physikalisches Institute der Universität Bonn, Bonn (Germany); Wang, Anqing [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Wermes, Norbert [Physikalisches Institute der Universität Bonn, Bonn (Germany)

    2016-09-21

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  7. Effects of sulekang capsule in enhancement of resistance to radiation and regulating immunological function in mice

    International Nuclear Information System (INIS)

    Zhao Naikun; Zhou Ouliang; Du Weixia

    1990-01-01

    The effects of Sulekang capsule in enhancing the resistance to radiation and regulating the immunological function in mice were described. The results show that Sulekang capsule may lengthen the survival time (p 60 Co gamma rays. The experimental results of ANAE reaction show that the activety of T cells of normal or exposed mice may be enhanced by Sulekang capsule, which can control the decrease of both ANAE-positive cells and T cells in exposed mice. So it may enhance the immunological function on exposed animals

  8. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-01-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN - ) for murine Cu-Zn-SOD was determined to be 6.8 x 10 -6 M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied

  9. Effect of aromatic compounds on radiation resistance of polymers studied by optical emission

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Hagiwara, Miyuki

    1987-10-01

    To clarify the effects of condensed bromoacenaphthylene (con-BACN) as a newly developed flame retardant on the radiation resistance of ethylene-propylene-diene-terpolymer (EPDM), optical emission behavior of aromatic compounds, acenaphthylene and acenaphthene as model compound of con-BACN was studied. The energy absorbed in polymer matrix is transferred to the aromatic molecules very fast within 1 ns, and introduces excited states of aromatic compound. The fluorescence from naphthalene units of the additives with peak at 337 and 350 nm (named AT emission band) was observed in EPDM containing acenaphthene or acenaphthylene. When aromatic peroxide was used as a crosslinking agent, another emission band (Xn band) was observed at 400 nm. It was found that these emission bands play a role in trapping sites in which a part of radiation energy release in the form of fluorescence. The energy level of the excited state was correlated to the radiation stability measured with coloration and oxidation reaction of the polymer. Furthermore, acenaphthylene having a reactive vinyl bond forms excimer emission band Ex whose level is lower than those of AT and Xn bands, and therefore, enhances radiation stability of matrix polymer by giving effective routes for energy release. (author)

  10. Some aspects of radiation resistance of wide-gap metal oxides

    International Nuclear Information System (INIS)

    Lushchik, Aleksandr; Feldbach, Eduard; Galajev, Semjon; Kaerner, Tiit; Liblik, Peeter; Lushchik, Cheslav; Maaroos, Aarne; Nagirnyi, Vitali; Vasil'chenko, Evgeni

    2007-01-01

    Wide-gap oxides drastically differ in radiation resistance against nonimpact mechanisms of defect creation depending on the ratio between the values of the energy gap E g and the formation energy of a pair of Frenkel defects (FD) E FD . Materials with E g >E FD are radiation-sensitive even at a low excitation density, while the efficiency of FD creation in the materials with E g FD is noticeable only under a high excitation density or in the presence of impurity centers serving as the promoters of radiation damage due to the nonimpact mechanisms. Novel experimental results on the FD creation in the bulk of MgO single crystals (E g FD ) irradiated by swift uranium ions at 300 K and 5 keV electrons at 6 K are presented. The prospects of luminescent protection against radiation damage as well as of the decrease of the luminescence efficiency due to the suppression of nonradiative recombination of electrons and holes (both relaxed and nonrelaxed) by doping the material with a sufficient amount of luminescent impurity ions are considered on the example of spectral transformers for plasma display panels

  11. Clinical and histological study of radiation-resistant cancer of the larynx

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K [Osaka Univ. (Japan). Faculty of Medicine

    1979-02-01

    In its early stage, cancer of the larynx is treated mainly by irradiation. A clinical and histological study of the radiation-resistant cancer of the larynx is reported. From 1958 to 1976, 1190 patients with squamous cell carcinoma of the larynx were treated at the Department of Otolaryngology, Osaka University Hospital. Among them, 597 patients (50.2%) were treated by radiation therapy. In 180 patients who had developed local recurrence after initial irradiation, partial or total laryngectomies were performed and 5-year crude survival rates were 71.3%. Gross examination of the specimens and histological studies were performed on these cases, as well as microangiography. The majority of recurrent glottic cancers were located at the anterior commissure and had some subglottic extention. In the supraglottic cancers, marked invasion to the pre-epiglottic space, perichondritis, and edema of the arytenoids were observed. These findings suggested that the unsuccessful radiation therapy was due to the diagnostic failure of the tumor extention. Fixation of the affected vocal cords and ulcer formation were also observed. Histologically, cancer cells invaded deeply the surrounding tissues as scattered cancer nests with marked hypoxic stromal reaction. This study suggests that radiation therapy should be the initial but non-repetitive treatment of choice for earlystage laryngeal cancers.

  12. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, Joseph

    1995-01-01

    Fourier Transform Infrared (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  13. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, J.

    1995-01-01

    Fourier Transform (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  14. Comparison Study On Sunlight Or Gamma Radiation Aging Resistance Of Poly (Vinyl Pyrrolidone) Aqueous Solution With PVP Nanogel

    International Nuclear Information System (INIS)

    Doan Binh; Pham Thu Hong; Nguyen Nguyet Dieu; Nguyen Thanh Duoc

    2011-01-01

    Comparison study on sunlight or gamma-radiation aging resistance of poly (vinyl pyrrolidone) (PVP) aqueous solution with PVP nanogel at 0.5% was carried out. Sunlight or gamma- radiation aging resistance of PVP aqueous solution and nanogel was evaluated on the basis of their intrinsic viscosity, UV-VIS absorbance, weight averaged molecular weight (M w ). The PVP aqueous solution and nanogel exposed to sunlight in the storage duration of 3 months and to gamma radiation at absorbed doses of 0, 15, 30, 50 kGy were used for this study. Furthermore, the stability of PVP nanogel and of PVP aqueous solution was also studied on the change of their intrinsic viscosity, UV-VIS absorbance, weight averaged molecular weight, particle size distribution and coil size. The experimental results were shown that the aging resistance of PVP nanogel was higher than that of PVP aqueous solution when exposed to gamma radiation or sunlight. (author)

  15. Discussion on the fracutre microscopic resistance by cleavage in structural steels

    International Nuclear Information System (INIS)

    Darwish, F.A.I.; Teixeira, J.C.G.; Ouro, C.R.

    1982-01-01

    An analysis on the physical significance of the microscopic resistance of a structural steel is presented. The theorethical and experimental aspects involved in the determination of this resistance are still presented. The results obtained with low, medium and high mechanical resistance are showed and discussed. (E.G.) [pt

  16. UV light-induced survival response in a highly radiation-resistant isolate of the Moraxella-acinetobacter group

    International Nuclear Information System (INIS)

    Keller, L.C.; Thompson, T.L.; Maxcy, R.B.

    1982-01-01

    A highly radiation-resistant member of the Moraxella-Acinetobacter group, isolate 4, obtained from meat, was studied to determine the effect of preexposure to UV radiation on subsequent UV light resistance. Cultures that were preexposed to UV light and incubated for a short time in plate count broth exhibited increased survival of a UV light challenge dose. This response was inhibited in the presence of chloramphenicol. Frequencies of mutation to streptomycin, trimethoprim, and sulfanilamide resistance remained the same after the induction of this survival response and were not altered by treatment with mutagens, with the exception of mutation to streptomycin resistance after γ-irradiation or nitrosoguanidine or methyl methane sulfonate treatment. The results indicated that isolate 4 has a UV light-inducible UV light resistance mechanism which is not associated with increased mutagenesis. The characteristics of the radiation resistance response in this organism are similar to those of certain other common food contaminants. Therefore, considered as part of the total microflora of meat, isolate 4 and the other radiation-resistant Moraxella-Acinetobacter isolates should not pose unique problems in a proposed radappertizaton process

  17. Impact of Corrugated Paperboard Structure on Puncture Resistance

    Directory of Open Access Journals (Sweden)

    Vaidas Bivainis

    2015-03-01

    Full Text Available Thanks to its excellentprotective properties, lightness, a reasonable price, and ecology, corrugated paperboardis one of the most popular materials used in the production of packaging for variousproducts. During transportation or storage, packaging with goods can be exposedto the mass of other commodities, dropping from heights and transportationshock loads, which can lead to their puncture damage. Depending on the purposeand size of the packaging, the thickness, grammage, constituent paper layers,numbers of layers and type of fluting of corrugated paperboard used in itsproduction differ. A standard triangular prism, corrugated paperboard fixationplates and a universal tension-compression machine were used to investigate theimpact of corrugated paperboard structure and other parameters on the punctureresistance of the material. The investigation determines the maximum punctureload and estimates energy required to penetrate the corrugated paperboard. Itwas found that the greatest puncture resistance is demonstrated by paperboardwith a larger number of corrugating flutings and the board produced from harderpaper with a smaller amount of recycled paper. It was established that thegrammage of three-layered paperboard with two different fluting profiles has thegreatest impact on the level of static puncture energy.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5713

  18. Micropapillary Structures in Colorectal Cancer: An Anoikis-resistant Subpopulation.

    Science.gov (United States)

    Patankar, Madhura; Väyrynen, Sara; Tuomisto, Anne; Mäkinen, Markus; Eskelinen, Sinikka; Karttunen, Tuomo J

    2018-05-01

    Micropapillary structures (MIPs) are focal piles of columnar cells without extracellular matrix contact, and common in serrated colorectal carcinoma (CRC). In order to characterize biology of MIPs in colorectal cancer (CRC), the proliferation and apoptosis rates, and survivin expression were compared between MIPs and other cancer epithelial cells of CRC (non-MIPs). We assessed 46 samples of normal colorectal mucosa, 62 carcinomas and 54 polyps for proliferation (Ki67), apoptosis (M30), and survivin expression by immunohistochemistry. MIPs in carcinoma showed lower rates of proliferation and apoptosis than non-MIPs. A low rate of apotosis in MIPs was associated with poor prognosis in local carcinoma. In normal crypts, nuclear-to-cytoplasmic transition of survivin indicated epithelial cell maturation. Cancer cases showed increased cytoplasmic expression of survivin than normal mucosa and polyps. However, MIPs showed lower nuclear and cytoplasmic survivin expression than non-MIPs. Our findings suggest that MIPs represent a biologically distinct subpopulation of carcinoma cells with features of anoikis resistance and possibly quiescence. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Polymerization of allyl alcohol by radiation to obtain microencapsulated structure

    International Nuclear Information System (INIS)

    Usanmaz, A.; Saricilar, S.

    1989-01-01

    Allyl alcohol was polymerized by radiation under various conditions. The limiting conversions were about 30 % in bulk, 35 % when containing 0.03 mole fraction AlCl 3 and 50 % when water was contained at 27 % (v/v). Irradiation was done with Co-60 gamma rays at room temperature and under vacuum. The presence of oxygen did not cause any change in the reaction rate. Molecular weights were determined by viscosity and cryoscopic methods. K and α values were found to be 3.57 x 10 -4 and 0.62 for solutions in methanol at 25degC. The polymers up to about 10 % conversion were viscous liquids having microcapsular structures: at high conversions, they became hard and glassy. The microencapsulated structures were also retained in solutions in methanol, acetone, and isopropyl alcohol. The samples were insoluble in water, benzene, and toluence. (author)

  20. Synchrotron radiation and structure biology. From the instrumentation view point

    International Nuclear Information System (INIS)

    Sakabe, N.

    1996-01-01

    Structure Biology is based on a three dimensional macromolecule structures, the most of which are studied by x-ray crystal structure analysis. Synchrotron radiation X-rays are quite strong, tunable, very parallel and pico-second order bunch and are very suitable for diffraction data collection of macromolecular crystals. To collect accurate data at high resolution from large unit cell protein crystals using SR, we made screenless large Weissenberg cameras with imaging plates at the PF. 146 research projects using this data collection system were running in 1995. They include 51 projects from 11 overseas countries. Recently we have developed user-friendly type Weissenberg camera for the structure biology project of TARA (Tsukuba Advanced Research Alliance), and installed it at BL6B of the PF. Cylindrical cassette radius of this new camera is 575.7mm and two large format (400x800mm) imaging plates (IP) can be fixed into the cassette by suction from back side. However, the system is not automatic and manual tasks to be performed are heavy. Therefore an automation of the system is very urgent to maintain accuracy and resolution. We are now developing a high accuracy, high resolution and high speed automated data collection system. This fully automated system consists of a camera, an IP reader equipped with 8 reading heads, an IP eraser, and a cassette transportation mechanism. In the new system, one imaging plate is fixed inside of a movable cylindrical cassette. The cassette presenting 16 rectangular holes, direct beam injection of i.e. 1.0A X-rays would produce 8 images of data at 2.6A resolutions. As 2 cassettes can be used simultaneously on the cassette transportation system, one cassette is being read while the other one is being exposed, therefore completely removing the reading bottleneck problem. This system therefore permits to use the radiation with the maximum of efficiency, and reduce the manpower necessary for data recording. (author)

  1. Mechanisms of UVB-resistance in rice: Cultivar differences in the sensitivity to UVB radiation in rice

    International Nuclear Information System (INIS)

    Hidema, J.

    2001-01-01

    In a study on the sensitivity to UVB radiation of rice cultivars of 5 Asian rice ecotypes, results showed that the rice cultivars widely varied in UVB sensitivity; among the Japanese rice cultivars, Sasanishiki was more resistant to UVB, while Norin 1 was less resistant; UV-sensitive Norin 1 was deficient in photorepair of cyclobutane pyrimidine dimers (UV-induced DNA damage), and the sensitivity to UVB radiation significantly correlated with deficient CPD photorepair; and that this deficiency in Norin 1 resulted from a functionally altered photolyase. The results suggest that photorepair capacity is a principal factor in determining UVB sensitivity in rice. The effects of supplemental UVB radiation on the growth and yield of Japanese rice cultivars under field conditions were also studied in Japan since 1993. The results indicate that supplemental UVB radiation had inhibitory effects on the growth and yield of rice. Furthermore, grain size was smaller with supplemental UVB radiation

  2. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream

    International Nuclear Information System (INIS)

    Rizzo, L.; Fiorentino, A.; Anselmo, A.

    2012-01-01

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC > 256 μg/mL) and SMZ (MIC > 1024 μg/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1 mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t 1/2 = 24 min) 1/2 = 99 min) 1/2 = 577 min). Accordingly, the risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. - Highlights: ► Solar radiation did not affect E. coli strain resistance to AMX and SMZ. ► Solar radiation affected the resistance of one E. coli strain to CPX. ► MIC for CPX decreased by 33% after 180 min of solar irradiation.

  3. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, L., E-mail: l.rizzo@unisa.it [Department of Civil Engineering, University of Salerno, via Ponte don Melillo, 1-84084 Fisciano (Italy); Fiorentino, A. [Department of Civil Engineering, University of Salerno, via Ponte don Melillo, 1-84084 Fisciano (Italy); Anselmo, A. [Pluriacque, via Alento, 84060 Prignano Cilento (Italy)

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC > 256 {mu}g/mL) and SMZ (MIC > 1024 {mu}g/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1 mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t{sub 1/2} = 24 min) < AMX (t{sub 1/2} = 99 min) < SMZ (t{sub 1/2} = 577 min). Accordingly, the risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. - Highlights: Black-Right-Pointing-Pointer Solar radiation did not affect E. coli strain resistance to AMX and SMZ. Black-Right-Pointing-Pointer Solar radiation affected the resistance of one E. coli strain

  4. Active structural acoustic control for reduction of radiated sound from structure

    International Nuclear Information System (INIS)

    Hong, Jin Seok; Oh, Jae Eung

    2001-01-01

    Active control of sound radiation from a vibrating rectangular plate by a steady-state harmonic point force disturbance is experimentally studied. Structural excitation is achieved by two piezoceramic actuators mounted on the panel. Two accelerometers are implemented as error sensors. Estimated radiated sound signals using vibro-acoustic path transfer function are used as error signals. The vibro-acoustic path transfer function represents system between accelerometers and microphones. The approach is based on a multi-channel filtered-x LMS algorithm. The results shows that attenuation of sound levels of 11dB, 10dB is achieved

  5. Radiation-Induced Topological Disorder in Irradiated Network Structures

    International Nuclear Information System (INIS)

    Hobbs, Linn W.

    2002-12-01

    This report summarizes results of a research program investigating the fundamental principles underlying the phenomenon of topological disordering in a radiation environment. This phenomenon is known popularly as amorphization, but is more formally described as a process of radiation-induced structural arrangement that leads in crystals to loss of long-range translational and orientational correlations and in glasses to analogous alteration of connectivity topologies. The program focus has been on a set compound ceramic solids with directed bonding exhibiting structures that can be described as networks. Such solids include SiO2, Si3N4, SiC, which are of interest to applications in fusion energy production, nuclear waste storage, and device manufacture involving ion implantation or use in radiation fields. The principal investigative tools comprise a combination of experimental diffraction-based techniques, topological modeling, and molecular-dynamics simulations that have proven a rich source of information in the preceding support period. The results from the present support period fall into three task areas. The first comprises enumeration of the rigidity constraints applying to (1) more complex ceramic structures (such as rutile, corundum, spinel and olivine structures) that exhibit multiply polytopic coordination units or multiple modes of connecting such units, (2) elemental solids (such as graphite, silicon and diamond) for which a correct choice of polytope is necessary to achieve correct representation of the constraints, and (3) compounds (such as spinel and silicon carbide) that exhibit chemical disorder on one or several sublattices. With correct identification of the topological constraints, a unique correlation is shown to exist between constraint and amorphizability which demonstrates that amorphization occurs at a critical constraint loss. The second task involves the application of molecular dynamics (MD) methods to topologically-generated models

  6. Sound transmission analysis of plate structures using the finite element method and elementary radiator approach with radiator error index

    DEFF Research Database (Denmark)

    Jung, Jaesoon; Kook, Junghwan; Goo, Seongyeol

    2017-01-01

    combines the FEM and Elementary Radiator Approach (ERA) is proposed. The FE-ERA method analyzes the vibrational response of the plate structure excited by incident sound using FEM and then computes the transmitted acoustic pressure from the vibrating plate using ERA. In order to improve the accuracy...... and efficiency of the FE-ERA method, a novel criterion for the optimal number of elementary radiators is proposed. The criterion is based on the radiator error index that is derived to estimate the accuracy of the computation with used number of radiators. Using the proposed criterion a radiator selection method...... is presented for determining the optimum number of radiators. The presented radiator selection method and the FE-ERA method are combined to improve the computational accuracy and efficiency. Several numerical examples that have been rarely addressed in previous studies, are presented with the proposed method...

  7. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure

    International Nuclear Information System (INIS)

    Bergeard, N.; Silly, M.G.; Chauvet, C.; Guzzo, M.; Ricaud, J.P.; Izquierdo, M.; Sirotti, F.; Krizmancic, D.; Guzzo, M.; Stebel, L.; Pittana, P.; Sergo, R.; Cautero, G.; Dufour, G.; Rochet, F.

    2011-01-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photo emitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station. (authors)

  8. Solving RNA's structural secrets: interaction with antibodies and crystal structure of a nuclease resistant RNA

    International Nuclear Information System (INIS)

    Wallace, S.T.

    1998-10-01

    This Ph.D. thesis concerns the structural characterization of RNA. The work is split into two sections: 1) in vitro selection and characterization of RNAs which bind antibiotics and 2) crystal structure of a nuclease resistant RNA molecule used in antisense applications. Understanding antibiotic-RNA interactions is crucial in aiding rational drug design. We were interested in studying antibiotic interactions with RNAs small enough to characterize at the molecular and possibly at the atomic level. In order to do so, we previously performed in vitro selection to find small RNAs which bind to the peptide antibiotic viomycin and the aminoglycoside antibiotic streptomycin. The characterization of the viomycin-binding RNAs revealed the necessity of a pseudoknot-structure in order to interact with the antibiotic. The RNAs which were selected to interact with streptomycin require the presence of magnesium to bind the antibiotic. One of the RNAs, upon interacting with streptomycin undergoes a significant conformational change spanning the entire RNA sequence needed to bind the antibiotic. In a quest to design oligodeoxynucleotides (ODNs) which are able to specifically bid and inactivate the mRNA of a gene, it is necessary to fulfill two criteria: 1) increase binding affinity between the ODN and the target RNA and 2) increase the ODN's resistance to nuclease degradation. An ODN with an aminopropyl modification at the 2' position of its ribose has emerged as the most successful candidate at fulfilling both criteria. It is the most nuclease resistant modification known to date. We were interested in explaining how this modification is able to circumvent degradation by nucleases. A dodecamer containing a single 2'-O-aminopropyl modified nucleotide was crystallized and the structure was solved to a resolution of 1.6 A. In an attempt to explain the nuclease resistance, the crystal coordinates were modeled into the active exonuclease site of DNA polymerase I. We propose the

  9. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Tyler J. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bowen, Stephen R. [Departments of Radiation Oncology and Radiology, University of Washington, Seattle, Washington (United States); Deveau, Michael A. [Department of Small Animal Clinical Sciences, Texas A& M University, College Station, Texas (United States); Kubicek, Lyndsay [Angell Animal Medical Center, Boston, Massachusetts (United States); White, Pamela [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bentzen, Søren M. [Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland (United States); Chappell, Richard J. [Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Forrest, Lisa J. [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Jeraj, Robert, E-mail: rjeraj@wisc.edu [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States)

    2015-03-15

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV{sub max}; SUV{sub mean}) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R{sup 2}. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV{sub mean} (P=.018), and midtreatment FLT SUV{sub max} (P=.006). Large decreases in FLT SUV{sub mean} from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV{sub max} (P=.022) in

  10. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    International Nuclear Information System (INIS)

    Bradshaw, Tyler J.; Bowen, Stephen R.; Deveau, Michael A.; Kubicek, Lyndsay; White, Pamela; Bentzen, Søren M.; Chappell, Richard J.; Forrest, Lisa J.; Jeraj, Robert

    2015-01-01

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV max ; SUV mean ) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R 2 . Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV mean (P=.018), and midtreatment FLT SUV max (P=.006). Large decreases in FLT SUV mean from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV max (P=.022) in combination with large FLT response from

  11. Peculiarities of electronic structure of silicon-on-insulator structures and their interaction with synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Vladimir A. Terekhov

    2015-09-01

    Full Text Available SOI (silicon-on-insulator structures with strained and unstrained silicon layers were studied by ultrasoft X-ray emission spectroscopy and X-ray absorption near edge structure spectroscopy with the use of synchrotron radiation techniques. Analysis of X-ray data has shown a noticeable transformation of the electron energy spectrum and local partial density of states distribution in valence and conduction bands in the strained silicon layer of the SOI structure. USXES Si L2,3 spectra analysis revealed a decrease of the distance between the L2v′ и L1v points in the valence band of the strained silicon layer as well as a shift of the first two maxima of the XANES first derivation spectra to the higher energies with respect to conduction band bottom Ec. At the same time the X-ray standing waves of synchrotron radiation (λ~12–20 nm are formed in the silicon-on-insulator structure with and without strains of the silicon layer. Moreover changing the synchrotron radiation grazing angle θ by 2° leads to a change of the electromagnetic field phase to the opposite.

  12. Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Shintani, Satoru; Mihara, Mariko; Li, Chunnan; Nakahara Yuuji; Hino, Satoshi; Nakashiro, Koh-ichi; Hamakawa, Hiroyuki

    2003-01-01

    DNA-PK is a nuclear protein with serine/threonine kinase activity and forms a complex consisting of the DNA-PKcs and a heterodimer of Ku70 and Ku80 proteins. Recent laboratory experiments have demonstrated that the DNA-PK complex formation is one of the major pathways by which mammalian cells respond to DNA double-strand breaks induced by ionizing radiation. In this study, we evaluated the relationship between expression levels of DNA-PKcs, Ku70 and Ku80 proteins and radiation sensitivity in oral squamous cell carcinoma (OSCC) cell lines and in OSCC patients treated with preoperative radiation therapy. The OSCC cell lines greatly differed in their response to irradiation, as assessed by a standard colony formation assay. However, the expression levels of the DNA-PK complex proteins were all similar, and there was no association between the magnitude of their expression and the tumor radiation sensitivity. Expression of DNA-PK complex proteins increased after radiation treatment, and the increased values correlated with the tumor radiation resistance. Expression of DNA-PKcs and Ku70 after irradiation was increased in the surviving cells of OSCC tissues irradiated preoperatively. These results suggest that up-regulation of DNA-PK complex protein, especially DNA-PKcs, after radiation treatment correlates to radiation resistance. DNA-PKcs might be a molecular target for a novel radiation sensitization therapy of OSCC. (author)

  13. The Structure of Fitness Landscapes in Antibiotic-Resistant Bacteria

    Science.gov (United States)

    Deris, Barrett; Kim, Minsu; Zhang, Zhongge; Okano, Hiroyuki; Hermsen, Rutger; Gore, Jeff; Hwa, Terence

    2014-03-01

    To predict the emergence of antibiotic resistance, quantitative relations must be established between the fitness of drug-resistant organisms and the molecular mechanisms conferring resistance. We have investigated E. coli strains expressing resistance to translation-inhibiting antibiotics. We show that resistance expression and drug inhibition are linked in a positive feedback loop arising from an innate, global effect of drug-inhibited growth on gene expression. This feedback leads generically to plateau-shaped fitness landscapes and concomitantly, for strains expressing at least moderate degrees of drug resistance, gives rise to an abrupt drop in growth rates of cultures at threshold drug concentrations. A simple quantitative model of bacterial growth based on this innate feedback accurately predicts experimental observations without ad hoc parameter fitting. We describe how drug-inhibited growth rate and the threshold drug concentration (the minimum inhibitory concentration, or MIC) depend on the few biochemical parameters that characterize the molecular details of growth inhibition and drug resistance (e.g., the drug-target dissociation constant). And finally, we discuss how these parameters can shape fitness landscapes to determine evolutionary dynamics and evolvability.

  14. Irradiation of: MOS field effect structures effect of the radiation dose

    International Nuclear Information System (INIS)

    Leray, J.L.

    1989-01-01

    The radiation effects on the structure and the operation of a metal-oxide semiconductor (MOS) are studied. The phenomenology of the radiation damage is analyzed as a function of the accumulated radiation dose and the time. The chronology of the phenomena which takes place in the oxide and the radiation transient phases in MOS structures are discussed. The equivalence of different radiations on SiO2 and other semiconductors is analyzed. The models applied to the study of the radiation permanent effects are reviewed [fr

  15. SU-C-303-01: Activation-Induced Cytidine Deaminase Confers Cancer Resistance to Radiation Therapy

    International Nuclear Information System (INIS)

    Yi, S; La Count, S; Liu, J; Bai, X; Lu, L

    2015-01-01

    Purpose: To study the role of activation-induced cytidine deaminase (AID) in malignant cell resistance to radiation therapy. Methods: We first developed several small devices that could be used to adopt radiation beams from clinical high dose rate brachy therapy (HDR) or linac-based megavoltage machines to perform pre-clinical cell and mouse experiments. Then we used these devices to deliver radiation to AID-positive and AID-silenced cancer cells or tumors formed by these cells in mice. Cells and mice bearing tumors received the same dose under the same experimental conditions. For cells, we observed the apoptosis and the cell survival rate over time. For mice bearing tumors, we measured and recorded the tumor sizes every other day for 4 weeks. Results: For cell experiments, we found that the AID-positive cells underwent much less apoptosis compared with AID-silenced cells upon radiation. And for mouse experiments, we found that AID-positive tumors grew significantly faster than the AID-silenced tumors despite of receiving the same doses of radiation. Conclusion: Our study suggests that AID may confer cancer resistance to radiation therapy, and AID may be a significant biomarker predicting cancer resistance to radiation therapy for certain cancer types

  16. The Survival and Resistance of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae to Simulated Outer Space Solar Radiation.

    Science.gov (United States)

    Leuko, S; Domingos, C; Parpart, A; Reitz, G; Rettberg, P

    2015-11-01

    Solar radiation is among the most prominent stress factors organisms face during space travel and possibly on other planets. Our analysis of three different halophilic archaea, namely Halobacterium salinarum NRC-1, Halococcus morrhuae, and Halococcus hamelinensis, which were exposed to simulated solar radiation in either dried or liquid state, showed tremendous differences in tolerance and survivability. We found that Hcc. hamelinensis is not able to withstand high fluences of simulated solar radiation compared to the other tested organisms. These results can be correlated to significant differences in genomic integrity following exposure, as visualized by random amplified polymorphic DNA (RAPD)-PCR. In contrast to the other two tested strains, Hcc. hamelinensis accumulates compatible solutes such as trehalose for osmoprotection. The addition of 100 mM trehalose to the growth medium of Hcc. hamelinensis improved its survivability following exposure. Exposure of cells in liquid at different temperatures suggests that Hbt. salinarum NRC-1 is actively repairing cellular and DNA damage during exposure, whereas Hcc. morrhuae exhibits no difference in survival. For Hcc. morrhuae, the high resistance against simulated solar radiation may be explained with the formation of cell clusters. Our experiments showed that these clusters shield cells on the inside against simulated solar radiation, which results in better survival rates at higher fluences when compared to Hbt. salinarum NRC-1 and Hcc. hamelinensis. Overall, this study shows that some halophilic archaea are highly resistant to simulated solar radiation and that they are of high astrobiological significance. Halophiles-Solar radiation-Stress resistance-Survival.

  17. Radiation-induced structural transitions in composite materials with strong interaction of polymer components

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Koztaeva, U.P.

    2002-01-01

    characteristic feature of the measured IF spectra is a point in the temperature scale (about 150-170 deg. C) where all the curves of IF temperature dependencies for different irradiation doses intersect. IF dose dependence at the temperature lower than the intersection point can be related to radiation-induced structural alterations in the less radiation-resistant structural component and that at the higher temperature characterizes structural state of the high-resistant part of the composite. A special procedure is developed in this paper to separate the 'filler-based' and the 'binder-based' relaxation maximums. Determination of the dose dependence of temperature positions, widths and heights of the two IF peaks, allows to control changes in characteristics of thermally activated glassy transition, mass redistribution and radiation-induced structural alterations in a composite

  18. Coherent and radiative couplings through two-dimensional structured environments

    Science.gov (United States)

    Galve, F.; Zambrini, R.

    2018-03-01

    We study coherent and radiative interactions induced among two or more quantum units by coupling them to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.

  19. Chromatin Structure and Radiation-Induced Intrachromosome Exchange

    Science.gov (United States)

    Mangala; Zhang, Ye; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    We have recently investigated the location of breaks involved in intrachromosomal type exchange events, using the multicolor banding in situ hybridization (mBAND) technique for human chromosome 3. In human epithelial cells exposed to both low- and high-LET radiations in vitro, intrachromosome exchanges were found to occur preferentially between a break in the 3p21 and one in the 3q11. Exchanges were also observed between a break in 3p21 and one in 3q26, but few exchanges were observed between breaks in 3q11 and 3q26, even though the two regions were on the same arm of the chromosome. To explore the relationships between intrachromosome exchanges and chromatin structure, we used probes that hybridize the three regions of 3p21, 3q11 and 3q26, and measured the distance between two of the three regions in interphase cells. We further analyzed fragile sites on the chromosome that have been identified in various types of cancers. Our results demonstrated that the distribution of breaks involved in radiation-induced intrachromosome aberrations depends upon both the location of fragile sites and the folding of chromatins

  20. Scintillation detectors based on poly-2,4-dimethylstyrene: Structure peculiarities and radiation damage

    International Nuclear Information System (INIS)

    Gunder, O.A.; Voronkina, N.I.; Kopina, I.V.

    1995-01-01

    Scintillation detectors based on poly-2,4-dimethyl styrene (P-2,4-DMS) are studied. Investigated is the influence of two methyl groups present in the benzene ring on the energy, spectral and structural characteristics of the polymer. The said factors are assumed to result in the detectors high light output and radiation resistance. It is shown that under radiolysis (77 K) the radiation yield of the paramagnetic centers of P-2,4-DMS exceeds that of polystyrene (PST) by ∼ 1.5. Unlike PST film, the luminescence spectra of P-2,4-DMS are characterized by the presence of both excimer (320-340 nm) and monomer (292 nm) bands. Revealed are the distinction in the nature of the optical characteristics of macroradicals and the efficiency of energy transfer in gamma-irradiated PST and P-2,4-DMS scintillators. The relation between the super-molecular structure of the polymers and the interaction of their macroradicals with molecular O 2 is stated

  1. Effect of neutron radiation on mechanical properties of permanent near core structures

    International Nuclear Information System (INIS)

    Tavassoli, A.A.

    1988-01-01

    Several hundred specimens have been tested in order to assess the effects of low dose neutron radiation ( 0 C and ductility and toughness are primary design concerns, the changes provoked, by doses up to 1.3 dpa, in overall mechanical properties of welded joints are small. For upper core structure, where the operating temperature is about 550 0 C and fatigue and creep resistance are major design needs, the changes induced, through formation of up to about 2 appm helium, in conventional fatigue properties or fatigue with short hold times are negligible. With increasing hold time, intergranular rupture in irradiated specimens is enhanced but the limited number of tests does not allow definite conclusions to be drawn. 53 refs, 3 tabs, 9 figs

  2. Solidification structure and abrasion resistance of high chromium white irons

    Science.gov (United States)

    Doğan, Ö. N.; Hawk, J. A.; Laird, G.

    1997-06-01

    Superior abrasive wear resistance, combined with relatively low production costs, makes high Cr white cast irons (WCIs) particularly attractive for applications in the grinding, milling, and pumping apparatus used to process hard materials. Hypoeutectic, eutectic, and hypereutectic cast iron compositions, containing either 15 or 26 wt pct chromium, were studied with respect to the macrostructural transitions of the castings, solidification paths, and resulting microstructures when poured with varying superheats. Completely equiaxed macrostructures were produced in thick section castings with slightly hypereutectic compositions. High-stress abrasive wear tests were then performed on the various alloys to examine the influence of both macrostructure and microstructure on wear resistance. Results indicated that the alloys with a primarily austenitic matrix had a higher abrasion resistance than similar alloys with a pearlitic/bainitic matrix. Improvement in abrasion resistance was partially attributed to the ability of the austenite to transform to martensite at the wear surface during the abrasion process.

  3. Homozygous mutations in the Fhit gene results in resistance to ionizing radiation and inhibition of apoptosis

    International Nuclear Information System (INIS)

    Turner, B.C.; Potoczek, M.B.; Ottey, M.; Croce, C.M.; Huebner, K.

    2001-01-01

    radiation compared to parental mammalian cells expressing wild-type Fhit protein. Finally, we demonstrated that breast tumors from breast cancer patients with local breast tumor recurrences following breast conserving therapy more often lacked immunhistochemical detection of Fhit protein compared to tumors from breast cancer patients without local breast cancer recurrence (p=0.02). Interestingly, the adjacent benign regions of these sections contained similar levels of Fhit protein expression suggesting that a somatic alteration is critical in the clinical resistance to ionizing radiation observed in these patients. Apoptotic pathways regulating the aberrant response to DNA damage-induced apoptosis in Fhit knock-out cells are currently being studied. Conclusion: Mouse epithelial cells containing homozygous Fhit mutations are resistant to single fraction low and high dose ionizing radiation with decreased levels of radiation-induced apoptotic cell death. Breast tumors from women with local breast cancer recurrence following breast conserving therapy have low levels of Fhit protein. These findings may have important biologic and treatment implications including those for cancer patients with tumors having mutations in Fhit and suggest that treatment with ionizing radiation in these patients may not result in optimal responses

  4. Genetic structure and evolved malaria resistance in Hawaiian honeycreepers

    Science.gov (United States)

    Foster, J.T.; Woodworth, B.L.; Eggert, L.E.; Hart, P.J.; Palmer, D.; Duffy, D.C.; Fleischer, R.C.

    2007-01-01

    Infectious diseases now threaten wildlife populations worldwide but population recovery following local extinction has rarely been observed. In such a case, do resistant individuals recolonize from a central remnant population, or do they spread from small, perhaps overlooked, populations of resistant individuals? Introduced avian malaria (Plasmodium relictum) has devastated low-elevation populations of native birds in Hawaii, but at least one species (Hawaii amakihi, Hemignathus virens) that was greatly reduced at elevations below about 1000 m tolerates malaria and has initiated a remarkable and rapid recovery. We assessed mitochondrial and nuclear DNA markers from amakihi and two other Hawaiian honeycreepers, apapane (Himatione sanguinea) and iiwi (Vestiaria coccinea), at nine primary study sites from 2001 to 2003 to determine the source of re-establishing birds. In addition, we obtained sequences from tissue from amakihi museum study skins (1898 and 1948-49) to assess temporal changes in allele distributions. We found that amakihi in lowland areas are, and have historically been, differentiated from birds at high elevations and had unique alleles retained through time; that is, their genetic signature was not a subset of the genetic variation at higher elevations. We suggest that high disease pressure rapidly selected for resistance to malaria at low elevation, leaving small pockets of resistant birds, and this resistance spread outward from the scattered remnant populations. Low-elevation amakihi are currently isolated from higher elevations (> 1000 m) where disease emergence and transmission rates appear to vary seasonally and annually. In contrast to results from amakihi, no genetic differentiation between elevations was found in apapane and iiwi, indicating that slight variation in genetic or life-history attributes can determine disease resistance and population recovery. Determining the conditions that allow for the development of resistance to disease is

  5. Radiation enhanced copper clustering processes in Fe-Cu alloys during electron and ion irradiations as measured by electrical resistivity

    International Nuclear Information System (INIS)

    Ishino, S.; Chimi, Y.; Bagiyono; Tobita, T.; Ishikawa, N.; Suzuki, M.; Iwase, A.

    2003-01-01

    To study the mechanism of radiation-enhanced clustering of copper atoms in Fe-Cu alloys, in situ electrical resistivity measurements are performed during irradiation with 100 MeV carbon ions and with 2 MeV electrons at 300 K. Two kinds of highly pure Fe-Cu alloys with Cu content of 0.02 and 0.6 wt% are used. The results are summarized as follows: - Although there is a steep initial resistivity increase below about 10 μdpa, the resistivity steadily decreases after this initial transient in Fe-0.6wt%Cu alloy, while in Fe-0.02wt%Cu alloy, the resistivity either decreases slowly or stays almost constant. The rate of change in resistivity depends on copper concentration. - The rate of change in resistivity per dpa is larger for electron irradiation than for ion irradiation. - Change in dose rate from 10 -8 to 10 -9 dpa/s slightly enhances the rate of resistivity change per dpa. The decrease in resistivity with dose is considered to be due to clustering or precipitation of copper atoms. The initial abrupt increase in resistivity is too large to be accounted for by initial introduction of point defects before copper clustering. Tentatively the phenomenon is explained as due to the formation of embryos of copper precipitates with a large strain field around them. Quantitative evaluation of the results using resistivity contribution of a unit concentration of Frenkel pairs and that of copper atoms gives an important conclusion that more than one copper atom are removed from solid solution by one Frenkel pair. The clustering efficiency is surprisingly high in the present case compared with the ordinary radiation-induced or radiation-enhanced precipitation processes

  6. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream.

    Science.gov (United States)

    Rizzo, L; Fiorentino, A; Anselmo, A

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC>256 μg/mL) and SMZ (MIC>1024 μg/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t(1/2)=24 min)risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Ghoneim, Mohamed T.; Yu, Qingkai; Hussain, Muhammad Mustafa

    2013-01-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  8. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.

    2013-08-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  9. Effects of electron beam radiation on mechanical properties and on the resistance to punctures caused by Plodia interpunctella in cereal bar packaging

    International Nuclear Information System (INIS)

    Alves, Juliana N.; Moura, Esperidiana A.B.; Oliveira, Vitor M.; Potenza, Marcos R.; Arthur, Valter

    2009-01-01

    Plodia interpunctella is an important pest in stored products in the tropical and subtropical regions, infesting grains and flours. The adult of P. interpunctella is a small butterfly with about 15 - 20mm of spread and the female places separately of 100 the 400 eggs in groups on the grains whose hard incubation some days. This insect infesting diverse types of food packaging, depreciating the products and causing economic losses. It is therefore critical for these products a packaging that presents, in addition to good mechanical, barrier and machinability properties, a good resistance to puncture by insects, in order to prevent the contact and spread of pests in the packaged food. This study evaluates the changes on mechanical properties and puncture resistance by P. interpunctella in BOPPmet/BOPP structure, used commercially as cereal bar packaging, after electron beam irradiation. The material samples were irradiated up to 120 kGy using a 1.5 MeV electrostatic accelerator, at room temperature, in air, dose rate 11.22 kGy/s. Irradiation doses were measured using cellulose triacetate film dosimeters 'CTA-FTR-125' from Fuji Photo Film Co. Ltd. After irradiation the BOPPmet/BOPP samples were subjected to tests of puncture resistance by P. interpunctella, tensile tests and penetration resistance. The results showed significant decreases (p<0.05) in the original mechanical properties of the structures according to the radiation doses applied and effective resistance against punctures by P. interpunctella for irradiated and nonirradiated BOPPmet/BOPP samples. These results indicate that non-irradiated and irradiated BOPPmet/BOPP structure presents puncture resistance against P. interpunctella and that electron-beam irradiation, in conditions studied in this work, may turn the structure inappropriate for cereal bar packaging, due to high reduction its mechanical properties after irradiation. (author)

  10. Multi-functional layered structure having structural and radiation shielding attributes

    Science.gov (United States)

    Kaul, Raj K. (Inventor); Barghouty, Abdulnasser Fakhri (Inventor); Penn, Benjamin G. (Inventor); Hulcher, Anthony Bruce (Inventor)

    2010-01-01

    A cosmic and solar radiation shielding structure that also has structural attributes is comprised of three layers. The first layer is 30-42 percent by volume of ultra-high molecular weight (UHMW) polyethylene fibers, 18-30 percent by volume of graphite fibers, and a remaining percent by volume of an epoxy resin matrix. The second layer is approximately 68 percent by volume of UHMW polyethylene fibers and a remaining percent by volume of a polyethylene matrix. The third layer is a ceramic material.

  11. Analysis of CT radiation dose based on radiation-dose-structured reports

    International Nuclear Information System (INIS)

    Wang Weipeng; Zhang Yi; Zhang Menglong; Zhang Dapeng; Song Shaojuan

    2014-01-01

    Objective: To analyse the CT radiation dose statistically using the standardized radiation-dose-structured report (RDSR) of digital imaging and communications in medicine (DICOM). Methods: Using the self-designed software, 1230 RDSR files about CT examination were obtained searching on the picture archiving and communication system (PACS). The patient dose database was established by combination of the extracted relevant information with the scanned sites. The patients were divided into adult group (over 10 years) and child groups (0-1 year, 1-5 years, 5-10 years) according to the age. The average volume CT dose index (CTDI vol ) and dose length product (DLP) of all scans were recorded respectively, and then the effective dose (E) was estimated. The DLP value at 75% quantile was calculated and compared with the diagnostic reference level (DRL). Results: In adult group, CTDI vol and DLP values were moderately and positively correlated (r = 0.41), the highest E was observed in upper abdominal enhanced scan, and the DLP value at 75% quantile was 60% higher than DRL. In child group, their CTDI vol in group of 5-10 years was greater than that in groups of 0-1 and 1-5 years (t = 2.42, 2.04, P < 0.05); the DLP value was slightly and positively correlated with the age (r = 0.16), while E was moderately and negatively correlated with the age (r = -0.48). Conclusions: It is a simple and efficient method to use RDSR to obtain the radiation doses of patients. With the popularization of the new equipment and the application of regionalized medical platform, RDSR would become the main tool for the dosimetric level surveying and individual dose recording. (authors)

  12. Development of the radiation-resistant strain of Moraxella osloensis and effect of penicillin G on its growth

    International Nuclear Information System (INIS)

    Lim, Sangyong; Yun, Hyejeong; Joe, Minho; Kim, Dongho

    2009-01-01

    A series of repeated exposures to γ-radiation with intervening outgrowth of survivors was used to develop radioresistant cultures of Moraxella osloensis that have been recognized as potential pathogenic microorganism. The D 10 value of the radiation-resistant strain, 5.903±0.006 kGy, was increased by four-fold compared to the parent wild-type strain, 1.637±0.004 kGy. Since most strains of M. osloensis are sensitive to penicillin, we have surveyed the sensitivity of radiation-resistant strain to this antibiotic. When the optical density was monitored after the addition of penicillin G, the radioresistant strain appeared to be more resistant to only a low concentration of penicillin G (0.5 U/ml) than the parent strain. Interestingly, however, there was no apparent difference in the number of viable cells between both strains. Scanning electron microscope data showed that the resistance cells were generally larger than the parent cells, suggesting that this increase in size may cause a higher optical density of radioresistant cells. In conclusion, radiation mutation does not affect the penicillin resistance of M. osloensis.

  13. Development of the radiation-resistant strain of Moraxella osloensis and effect of penicillin G on its growth

    Science.gov (United States)

    Lim, Sangyong; Yun, Hyejeong; Joe, Minho; Kim, Dongho

    2009-07-01

    A series of repeated exposures to γ-radiation with intervening outgrowth of survivors was used to develop radioresistant cultures of Moraxella osloensis that have been recognized as potential pathogenic microorganism. The D10 value of the radiation-resistant strain, 5.903±0.006 kGy, was increased by four-fold compared to the parent wild-type strain, 1.637±0.004 kGy. Since most strains of M. osloensis are sensitive to penicillin, we have surveyed the sensitivity of radiation-resistant strain to this antibiotic. When the optical density was monitored after the addition of penicillin G, the radioresistant strain appeared to be more resistant to only a low concentration of penicillin G (0.5 U/ml) than the parent strain. Interestingly, however, there was no apparent difference in the number of viable cells between both strains. Scanning electron microscope data showed that the resistance cells were generally larger than the parent cells, suggesting that this increase in size may cause a higher optical density of radioresistant cells. In conclusion, radiation mutation does not affect the penicillin resistance of M. osloensis.

  14. Development of the radiation-resistant strain of Moraxella osloensis and effect of penicillin G on its growth

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Yun, Hyejeong; Joe, Minho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Dongho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2009-07-15

    A series of repeated exposures to {gamma}-radiation with intervening outgrowth of survivors was used to develop radioresistant cultures of Moraxella osloensis that have been recognized as potential pathogenic microorganism. The D{sub 10} value of the radiation-resistant strain, 5.903{+-}0.006 kGy, was increased by four-fold compared to the parent wild-type strain, 1.637{+-}0.004 kGy. Since most strains of M. osloensis are sensitive to penicillin, we have surveyed the sensitivity of radiation-resistant strain to this antibiotic. When the optical density was monitored after the addition of penicillin G, the radioresistant strain appeared to be more resistant to only a low concentration of penicillin G (0.5 U/ml) than the parent strain. Interestingly, however, there was no apparent difference in the number of viable cells between both strains. Scanning electron microscope data showed that the resistance cells were generally larger than the parent cells, suggesting that this increase in size may cause a higher optical density of radioresistant cells. In conclusion, radiation mutation does not affect the penicillin resistance of M. osloensis.

  15. Performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance. Performance evaluation examples

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Society of Civil Engineers has updated performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance in June 2005. Based on experimental and analytical considerations, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been incorporated in new recommendations. This document shows outdoor civil structures earthquake resistance and endurance performance evaluation examples based on revised recommendations. (T. Tanaka)

  16. Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques.

    Science.gov (United States)

    Vickers, Anna A; Potter, Nicola J; Fishwick, Colin W G; Chopra, Ian; O'Neill, Alex J

    2009-06-01

    This study sought to expand knowledge on the molecular mechanisms of mutational resistance to trimethoprim in Staphylococcus aureus, and the fitness costs associated with resistance. Spontaneous trimethoprim-resistant mutants of S. aureus SH1000 were recovered in vitro, resistance genotypes characterized by DNA sequencing of the gene encoding the drug target (dfrA) and the fitness of mutants determined by pair-wise growth competition assays with SH1000. Novel resistance genotypes were confirmed by ectopic expression of dfrA alleles in a trimethoprim-sensitive S. aureus strain. Molecular models of S. aureus dihydrofolate reductase (DHFR) were constructed to explore the structural basis of trimethoprim resistance, and to rationalize the observed in vitro fitness of trimethoprim-resistant mutants. In addition to known amino acid substitutions in DHFR mediating trimethoprim resistance (F(99)Y and H(150)R), two novel resistance polymorphisms (L(41)F and F(99)S) were identified among the trimethoprim-resistant mutants selected in vitro. Molecular modelling of mutated DHFR enzymes provided insight into the structural basis of trimethoprim resistance. Calculated binding energies of the substrate (dihydrofolate) for the mutant and wild-type enzymes were similar, consistent with apparent lack of fitness costs for the resistance mutations in vitro. Reduced susceptibility to trimethoprim of DHFR enzymes carrying substitutions L(41)F, F(99)S, F(99)Y and H(150)R appears to result from structural changes that reduce trimethoprim binding to the enzyme. However, the mutations conferring trimethoprim resistance are not associated with fitness costs in vitro, suggesting that the survival of trimethoprim-resistant strains emerging in the clinic may not be subject to a fitness disadvantage.

  17. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans.

    Science.gov (United States)

    Hansen, M T

    1978-01-01

    The complexity of the genome of Micrococcus radiodurans was determined to be (2.0 +/- 0.3) X 10(9) daltons by DNA renaturation kinetics. The number of genome equivalents of DNA per cell was calculated from the complexity and the content of DNA. A lower limit of four genome equivalents per cell was approached with decreasing growth rate. Thus, no haploid stage appeared to be realized in this organism. The replication time was estimated from the kinetics and amount of residual DNA synthesis after inhibiting initiation of new rounds of replication. From this, the redundancy of terminal genetic markers was calculated to vary with growth rate from four to approximately eight copies per cell. All genetic material, including the least abundant, is thus multiply represented in each cell. The potential significance of the maintenance in each cell of multiple gene copies is discussed in relation to the extreme radiation resistance of M. radiodurans. PMID:649572

  18. Conductive core of radiation-resistant high-pressure electric bushing, especially for nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Zajic, V

    1981-09-01

    A radiation-resistant high-pressure electric bushing was developed featuring a conductive core consisting of a hollow moulding. At the point of attachment to the bushing insulator the core moulding is widened, thus forming a ring support of a diameter larger by at least 10% than the diameter of the conductive core cylindrical section. On the outer side of the pressure body the core cavity is narrowed and tightly closed with the conductor. On the side facing the medium of higher pressure, the conductive core is provided with a thread. Core manufacture and connection of the conductor to the bushing is very simple. The bushing can be used for an environment with pressures exceeding 10 MPa.

  19. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery.

    Science.gov (United States)

    Cassier-Chauvat, Corinne; Dive, Vincent; Chauvat, Franck

    2017-02-01

    Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive ( 14 C) labeling of bioactive products, in order to facilitate the screening for new drugs.

  20. ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer

    Science.gov (United States)

    2016-05-01

    phenotype  in   preclinical  models  of  prostate  cancer,  2)  to  explore  the  mechanism  of  interaction  between   ERG  (the  predominant  ETS...established  this  axis  as  a  potential  therapeutic   target.         15. SUBJECT  TERMS Prostate cancer, ETS gene fusions, ERG , radiation resistance, DNA...interaction  between   ERG   (the   predominant   ETS   gene   fusion   product)   and   the   DNA   repair   protein   DNA-­PK,   and   3)   to

  1. Conductive core of radiation-resistant high-pressure electric bushing, especially for nuclear technology

    International Nuclear Information System (INIS)

    Zajic, V.

    1981-01-01

    A radiation-resistant high-pressure electric bushing was developed featuring a conductive core consisting of a hollow moulding. At the point of attachment to the bushing insulator the core moulding is widened, thus forming a ring support of a diameter larger by at least 10% than the diameter of the conductive core cylindrical section. On the outer side of the pressure body the core cavity is narrowed and tightly closed with the conductor. On the side facing the medium of higher pressure, the conductive core is provided with a thread. Core manufacture and connection of the conductor to the bushing is very simple. The bushing can be used for an environment with pressures exceeding 10 MPa. (J.B.)

  2. Radiation-resistant composite scintillators based on GSO and GPS grains

    Energy Technology Data Exchange (ETDEWEB)

    Boyarintsev, A.Yu. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Galunov, N.Z. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); V.N. Karasin Kharkov National University, 4 Svobody Sq., 61022 Kharkiv (Ukraine); Gerasymov, Ia.V.; Karavaeva, N.L. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Krech, A.V., E-mail: AntonKrech@gmail.com [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Levchuk, L.G.; Popov, V.F. [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv (Ukraine); Sidletskiy, O.Ts. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Sorokin, P.V. [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv (Ukraine); Tarasenko, O.A. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine)

    2017-01-01

    The effect of irradiation on the scintillation light output, optical transmittance, and luminescent spectra of composite scintillators based on grains of single crystals Gd{sub 2}SiO{sub 5}:Ce (GSO) and Gd{sub 2}Si{sub 2}O{sub 7}:Ce (GPS) is studied. The dielectric gel Sylgard-184 is the base and the binder for the grains inside the composite scintillator. The paper presents and analyzes the results obtained for the scintillators exposed by 10 MeV electrons from the linear electron accelerator at room temperature. The exposure doses D≤250 Mrad. The dose rate is 0.2 or 1500 Mrad/h. The study has shown that the composite scintillators based on the grains of GSO and GPS are radiation-resistant over the range of the irradiation.

  3. High conversion efficiency and high radiation resistance InP solar cells

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Itoh, Yoshio; Yamaguchi, Masafumi

    1987-01-01

    The fabrication of homojunction InP solar cells has been studied using impurity thermal diffusion, organometallic vapor phase epitaxy (OMVPE) and liquid phase epitaxy (LPE), and is discussed in this paper. Conversion efficiencies exceeding 20 % (AM1.5) are attained. These are the most efficient results ever reported for InP cells, and are comparable to those for GaAs cells. Electron and γ-ray irradiation studies have also been conducted for fabricated InP cells. The InP cells were found to have higher radiation resistance than GaAs cells. Through these studies, it has been demonstrated that the InP cells have excellent potential for space application. (author)

  4. Radiation structurization borosilicates in the region of small dozes

    International Nuclear Information System (INIS)

    Gadzhieva, N.N.; Melikova, S.Z.

    2007-01-01

    Full text: Borosilicates are one of perspective materials who are characterized by high thermal and radiating stability. Owing to these properties they are widely applied as constructional materials in reactor technologies. The structural condition of a bor in crystal compounds is characterized by two coordination numbers- three and and four. Change of this condition speaks also original properties borosilicate. Studying influence is actual γ-irradiations in the region of rather small dozes on ability change coordination of a B in borosilicate. In the given work results of IR-spectroscopic researches initial and radiation-structured borosilicates are presented. With this purpose were investigated borosilicates with maintenance B 2 O 3 in SiO 2 equal 0.5; 1; 1.5; 3; 5 and 10 mas.%, received by a method of sedimentation. Samples irradiated γ-quanta on an isotope source 60 Co with capacity of a doze dD γ /dt=0.80 Gy/s. The absorbed doze made D γ ∼0.5-50 kGy. IR-spectra of reflection initial and γ-irradiated tablets borosilicates measured on spectrophotometer Specord 71 IR (Carl Zeiss) at a room temperature. Optical density of the bands corresponding trigonal and tetrahedric - coordination atoms of a bor and their parity at the various mass maintenance of boric anhydride in SiO 2 before and after γ-irradiation. The absorption bands of asymmetric stretching vibration BO 3 and BO 4 groupings in structure of B 2 O 3 /SiO 2 have maxima at ν=1320 (ν as BO 3 ) and 980 cm -1 (ν as BO 4 ). Studying dose has shown dependences D 1320 /D 980 , that in the region of rather small dozes 0.5 γ 1320 /D 980 of optical densities trigonal and tetrahedric coordination a B it is established, that at the contain B 2 O 3 in SiO 2 /B 2 O 3 ∼1.5 mas.% maximal introduction B 3+ in a lattice oxide silicon is observed

  5. Analysis of interface states and series resistance at MIS structure irradiated under {sup 60}Co {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)], E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2007-10-11

    In this research, we investigated the effect of {sup 60}Co {gamma}-ray exposure on the electrical properties of Au/SnO{sub 2}/n-Si (MIS) structures using current-voltage (I-V) measurements. The fabricated devices were exposed to {gamma}-ray doses ranging from 0 to 300 kGy at a dose rate of 2.12 kGy h{sup -1} in water at room temperature. The density of interface states N{sub ss} as a function of E{sub c}-E{sub ss} is deduced from the forward bias I-V data for each dose by taking into account the bias dependence effective barrier height and series resistance of device at room temperature. Experimental results show that the {gamma}-irradiation gives rise to an increase in the zero bias barrier height {phi}{sub BO}, as the ideality factor n and N{sub ss} decrease with increasing radiation dose. In addition, the values of series resistance were determined using Cheung's method. The R{sub s} increases with increasing radiation dose. The results show that the main effect of the radiation is the generation of interface states with energy level within the forbidden band gap at the insulator/semiconductor interface.

  6. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    Science.gov (United States)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-01-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks. PMID:27255783

  7. Resistance and Security Index of Networks: Structural Information Perspective of Network Security.

    Science.gov (United States)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-03

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  8. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    Science.gov (United States)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  9. Individual domain wall resistance in submicron ferromagnetic structures.

    Science.gov (United States)

    Danneau, R; Warin, P; Attané, J P; Petej, I; Beigné, C; Fermon, C; Klein, O; Marty, A; Ott, F; Samson, Y; Viret, M

    2002-04-15

    The resistance generated by individual domain walls is measured in a FePd nanostructure. Combining transport and magnetic imaging measurements, the intrinsic domain wall resistance is quantified. It is found positive and of a magnitude consistent with that predicted by models based on spin scattering effects within the walls. This magnetoresistance at a nanometer scale allows a direct counting of the number of walls inside the nanostructure. The effect is then used to measure changes in the magnetic configuration of submicron stripes under application of a magnetic field.

  10. Evaluation of resistance of diamond-like carbon coating to the corpuscular radiation in outer space conditions

    Science.gov (United States)

    Tomilova, Elizaveta; Bashkov, Valeriy; Mikhalev, Pavel; Fedorchenko, Alexander; Volkova, Yana

    2015-02-01

    The purpose of this work was to research the resistance of thin coatings to the effects of corpuscular radiation, as well as evaluation speed etching of diamond-like films with different content of diamond phase. There were two samples of monocrystalline silicon with DLC coating. To evaluate the resistance, two groups of grooves were etched on each sample. The depth was then measured to calculate a relative etching ratio of DLC coating. The resistance was determined to be four times that of silicon.

  11. Radiation resistant, decontaminable and sealing jointing compounds for application in nuclear facilities

    International Nuclear Information System (INIS)

    Kunze, S.

    1991-09-01

    The sealing jointing compounds applied in practice and already examined for decontaminability will be presented here. Solvent-free sealing compounds, emulsifiable in water, with low molecular epoxy resins as binders, quite a number of curing versions, and little hygroscopic filler mixtures adapted in grain size have been tested with a view to ceramic tile jointing in nuclear facilities. The sealing compounds were examined before and after exposure to gamma irradiation (300 KGy energy dose) for decontaminability, color, gloss and resistance to decontaminants. Out of fourteeen compounds exhaustively investigated ten are very well decontaminable and four well decontaminable. After exposure to radiation no or only minor changes in color and gloss, respectively, were observed. Visible changes such as cracking, bubbles, etc. were not found and the resistance to decontaminants was neither affected. It has even been possible to replace in the well decontaminable sealing compounds developed until now part of the epoxy resin binder with elasticizing components such as Thiokol which is very important as a base material for sealing compounds in the construction industry, but difficult to decontaminate. (orig.) [de

  12. Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis

    Science.gov (United States)

    Billi, D.; Friedmann, E. I.; Hofer, K. G.; Caiola, M. G.; Ocampo-Friedmann, R.

    2000-01-01

    The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.

  13. FtsZ from radiation resistant bacterium Deinococcus radiodurans is different from its characterized homologues

    International Nuclear Information System (INIS)

    Mehta, Kruti P.; Misra, H.S.

    2012-01-01

    Polymerization/depolymerization dynamics of FtsZ and its GTPase activity are interdependent and the regulation of these processes determines the growth rate in a bacterium. Deinococcus radiodurans R1 that is best known for its extraordinary radiation resistance and efficient DNA double strand break repair is a comparatively slow growing bacterium and its growth gets arrested in response to gamma radiation. Mechanisms of cell division and its regulation under gamma stressed growth condition would be worth investigating. Genome of this bacterium encodes at least all the known components of divisome. Recombinant FtsZ of D. radiodurans (drFtsZ) preferred Mg 2+ for its GTPase activity. Relatively a very low GTPase activity was observed in presence of Mn 2+ , Co 2+ and Ni 2+ while release of inorganic phosphate could not be detected in presence of other divalent ions including Ca 2+ . GTPase activity of drFtsZ was lower than E. coli but higher than Mycobacterium and it required both Mg 2+ and GTP for its polymerization. Its GTPase activity did not increase with increasing concentration of Mg 2+ and correlates with the bundling of protofilaments. Results obtained from transmission electron microscopy and sedimentation analysis supported the reciprocal correlation of polymerization/depolymerization with the levels of GTPase activity. Dynamic light scattering in presence of 5mM or higher concentration of Mg 2+ and Mn 2 showed a characteristic cyclic change in light scattering without addition of extra metal ion or GTP

  14. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes. Final Report

    International Nuclear Information System (INIS)

    Lidstrom, Mary E.

    2003-01-01

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions

  15. The improvement for fire retardant and radiation resistance characteristics of chloroprene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. Y.; Lee, C.; Kim, P. J.; Kim, J. H

    2004-04-01

    In the report, in order to improve the fire retardancy better Chloroprene Rubber (CR) after adding each fixed amount of inorganic metallic hydroxide, and then compared and assessed fire retardancy with electrical properties and mechanical properties we intended to choose the most excellent additives. Also according to Co{sup 60} {gamma}-ray irradiation, we compared electrical, echanical and fire retardant characteristics to analyse to have the additives of inorganic filler effect on CR's antirad characteristic. In result, CR containing inorganic additive, advanced considerably fire retardant characteristics, but seems to be tended to declined electrical and mechanical characteris