WorldWideScience

Sample records for radiation resistance

  1. Biological improvement of radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K J; Lee, Y K; Kim, J S; Kim, J K; Lee, S J

    2000-08-01

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes.

  2. Biological improvement of radiation resistance

    International Nuclear Information System (INIS)

    Chun, K. J.; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.

    2000-08-01

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes

  3. Communication equipment radiation resistance ensurance

    International Nuclear Information System (INIS)

    Myrova, L.O.; Chelizhenko, A.Z.

    1983-01-01

    A review of works on radiation resistance of electronic equipment (epsilon epsilon) for 15 years is presented. The effect of ionizing radiation appearing as a result of nuclear explosions in nuclear facilities and in outerspace on epsilon epsilon has been considered. Types of radiation effects in epsilon epsilon, radiation effect on semiconductor devices and integrated circUits, types of epsilon epsilon failures, as well as the procass of radiation-resistant epsilon epsilon designing and selection of its main parameters have been described. The methods of epsilon epsilon flowsheet optimization, application of mathematical simulation and peculiarities of ensurance of epsilon epsilon radiation resistance of communication systems are considered. Peculiarities of designing of radiation-resistant quartz generators, secondary power supply sources and amplifiers are discussed

  4. Radiation resistant modified polypropylene

    International Nuclear Information System (INIS)

    Bojarski, J.; Zimek, Z.

    1997-01-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs

  5. Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant

    International Nuclear Information System (INIS)

    Keller, L.C.; Maxcy, R.B.

    1984-01-01

    Physiological age-dependent variation in radiation resistance was studied for three bacteria that are highly radiation resistant: Micrococcus radiodurans, Micrococcus sp. isolate C-3, and Moraxella sp. isolate 4. Stationary-phase cultures of M. radiodurans and isolate C-3 were much more resistant to gamma radiation than were log-phase cultures. This pattern of relative resistance was reversed for isolate 4. Resistance of isolate 4 to UV light was also greater during log phase, although heat resistance and NaCl tolerance after heat stresses were greater during stationary phase. Radiation-induced injury of isolate 4 compared with injury of Escherichia coli B suggested that the injury process, as well as the lethal process, was affected by growth phase. The hypothesis that growth rate affects radiation resistance was tested, and results were interpreted in light of the probable confounding effect of methods used to alter growth rates of bacteria. These results indicate that dose-response experiments should be designed to measure survival during the most resistant growth phase of the organism under study. The timing is particularly important when extrapolations of survival results might be made to potential irradiation processes for foods. 17 references

  6. Radiation-resistant asporogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K [Tokyo Univ. (Japan). Faculty of Agriculture

    1975-09-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned.

  7. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    Yano, Keiji

    1975-01-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  8. Gravitational radiation resistance, radiation damping and field fluctuations

    International Nuclear Information System (INIS)

    Schaefer, G.

    1981-01-01

    Application is made of two different generalised fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler (Gravitation (San Francisco: Freeman) ch 36,37 (1973)) and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalisations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance. (author)

  9. Physiological and genetics studies of highly radiation-resistant bacteria

    International Nuclear Information System (INIS)

    Keller, L.C.

    1981-01-01

    The phenomenon of radiation resistance was studied using micrococci and Moraxella-Acinetobacter capable of surviving very high doses of gamma radiation which were isolated from foods. Physiological age, or growth phase, was found to be an important factor in making comparisons of radiation-resistance among different bacteria and their mutants. Radiation-resistant bacteria were highly resistant to the lethal effect of nitrosoguanidine used for mutagenesis. Studies of relative resistance of radiation-resistant bacteria, radiation-sensitive mutants, and nonradiation-resistant bacteria to killing by different chemical mutagens did not reveal a correlation between the traits of radiation resistance and mutagen resistance among different strains. Comparisons of plasmid profiles of radiation-resistant bacteria and selected radiation-sensitive mutants suggested the possibility that plasmids may carry genes involved in radiation resistance

  10. Radiation-resistant camera tube

    International Nuclear Information System (INIS)

    Kuwahata, Takao; Manabe, Sohei; Makishima, Yasuhiro

    1982-01-01

    It was a long time ago that Toshiba launched on manufacturing black-and-white radiation-resistant camera tubes employing nonbrowning face-plate glass for ITV cameras used in nuclear power plants. Now in compliance with the increasing demand in nuclear power field, the Company is at grips with the development of radiation-resistant single color-camera tubes incorporating a color-stripe filter for color ITV cameras used under radiation environment. Herein represented are the results of experiments on characteristics of materials for single color-camera tubes and prospects for commercialization of the tubes. (author)

  11. Adriamycin resistance, heat resistance and radiation response in Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Wallner, K.; Li, G.

    1985-01-01

    Previous investigators have demonstrated synergistic interaction between hyperthermia and radiation or Adriamycin (ADR), using cell lines that are sensitive to heat or ADR alone. The authors investigated the effect of heat, radiation or ADR on Chinese hamster fibroblasts (HA-1), their heat resistant variants and their ADR resistant variants. Heat for ADR resistance did not confer cross resistance to radiation. Cells resistant to heat did show cross resistance to ADR. While cells selected for ADR resistance were not cross resistant to heat, they did not exhibit drug potentiation by hyperthermia, characteristic of ADR sensitive cells. Cytofluorometric measurement showed decreased ADR uptake in both heat and ADR resistant cells. The possibility of cross resistance between heat and ADR should be considered when designing combined modality trials

  12. Radiation resistance of Rhizopus stolonifer

    International Nuclear Information System (INIS)

    Robbertse, P.J.; Du Toit, T.L.; Van der Merwe, L.J.; Koekemoer, M.L.; Eilers, I.M.I.

    1983-01-01

    A problem encountered with the irradiation of food is that certain micro-organisms are highly resistant to gamma rays. This includes the fungus, Rhizopus stolonifer, associated with most fruits. The Nuclear Development Corporation of South Africa (NUCOR) has found that a combination of radiation and mild heat treatment reduces the radiation dose necessary to kill 90% of R. stolonifer by approximately half. Treatment at 50 degrees Celsius for 10 minutes or at 55 degrees Celsius for five minutes is sufficient. The article discusses the mechanism of radiation resistance in R. stolonifer and the way in which heating affects this resistance

  13. Radiation resistance of Candida parapsilosis

    International Nuclear Information System (INIS)

    Kristensen, H.

    1982-01-01

    The radiation resistance of 30 strains classified as Candida parapsilosis was examined. The strains originated partly from environments where ionizing radiation was used for research or routine purposes, partly from environments with no known possibility for selection of strains with unusually high radiation resistance. D-6 values between 1.5 and 2.4 Megarads were found when the cells were irradiated in the dried state, a D-6 value being the dose necessary to reduce the initial number of colony-forming units with a factor of 10 6 . The majority of D-6 values were between 1.9 and 2.1 Megarads. D-6 values for the cells irradiated in liquid media were about 2/3 of tose in the dried state. No difference in resistance was revealed depending on the origin of the strains examined. For radiation sterilization of medical products the demonstrated resistance of Candida parapsilosis might be of importance of routine use of minimum doses below 2.5 Megarads were to be accepted. (author)

  14. Radiation-resistant control system

    International Nuclear Information System (INIS)

    Cable, T.C.; Jones, S.

    1995-01-01

    REMOTEC has developed a open-quotes radiation resistanceclose quotes control system under a U.S. Department of Energy Small Business Innovative Research (SBIR) contract with assistance from the University of Florida. The SBIR goal was to develop a radiation resistant mobile robot from the ANDROS family of hazardous duty mobile robots that REMOTEC manufactures. See Refs. 1 and 2 for additional SBIR results. The control system, as well as the entire ANDROS robot, was redesigned, where necessary, to withstand radiation doses in excess of 10 6 rad. Those components of the robot that could not be purchased as open-quotes radiation hardenedclose quotes were tested under standard operating conditions for determination of their open-quotes radiation resistance.close quotes The entire ANDROS robot was then assembled with these new components and tested to > 10 6 rad

  15. Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance.

    Science.gov (United States)

    Musilova, Michaela; Wright, Gary; Ward, John M; Dartnell, Lewis R

    2015-12-01

    Extreme radiation-resistant microorganisms can survive doses of ionizing radiation far greater than are present in the natural environment. Radiation resistance is believed to be an incidental adaptation to desiccation resistance, as both hazards cause similar cellular damage. Desert soils are, therefore, promising targets to prospect for new radiation-resistant strains. This is the first study to isolate radiation-resistant microbes by using gamma-ray exposure preselection from the extreme cold desert of the Antarctic Dry Valleys (a martian surface analogue). Halomonads, identified by 16S rRNA gene sequencing, were the most numerous survivors of the highest irradiation exposures. They were studied here for the first time for both their desiccation and irradiation survival characteristics. In addition, the association between desiccation and radiation resistance has not been investigated quantitatively before for a broad diversity of microorganisms. Thus, a meta-analysis of scientific literature was conducted to gather a larger data set. A strong correlation was found between desiccation and radiation resistance, indicating that an increase in the desiccation resistance of 5 days corresponds to an increase in the room-temperature irradiation survival of 1 kGy. Irradiation at -79°C (representative of average martian surface temperatures) increases the microbial radiation resistance 9-fold. Consequently, the survival of the cold-, desiccation-, and radiation-resistant organisms isolated here has implications for the potential habitability of dormant or cryopreserved life on Mars. Extremophiles-Halomonas sp.-Antarctica-Mars-Ionizing radiation-Cosmic rays.

  16. Intrinsic radiation resistance in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A.

    2006-01-01

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16 ink4a , one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16 ink4a contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16 ink4a expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16 ink4a expression on chondrosarcoma cell resistance to low-dose γ-irradiation (1-5 Gy). p16 ink4a expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16 ink4a transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16 ink4a plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas

  17. Radiation resistance of microorganisms on unsterilized infusion sets

    DEFF Research Database (Denmark)

    Christensen, E. Ahrensburg; Kristensen, H.; Hoborn, J.

    1991-01-01

    Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a steriliza......Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor...

  18. Research of radiation-resistant microbial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-15

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA{sub 0}279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project.

  19. Research of radiation-resistant microbial organisms

    International Nuclear Information System (INIS)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-01

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA 0 279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project

  20. Effect of radiation resistance additives for insulation materials

    International Nuclear Information System (INIS)

    Yamamoto, Yasuaki; Yagyu, Hideki; Seguchi, Tadao.

    1988-01-01

    For the electric wires and cables used in radiation environment such as nuclear power stations and fuel reprocessing facilities, the properties of excellent radiation resistance are required. For these insulators and sheath materials, ethylene propylene rubber, polyethylene and other polymers have been used, but it cannot be said that they always have good radiation resistance. However, it has been well known that radiation resistance can be improved with small amount of additives, and heat resistance and burning retarding property as well as radiation resistance are given to the insulators of wires and cables for nuclear facilities by mixing various additives. In this research, the measuring method for quantitatively determining the effect of Anti-rad (radiation resistant additive) was examined. Through the measurement of gel fraction, radical formation and decomposed gas generation, the effect of Anti-rad protecting polymers from radiation deterioration was examined from the viewpoint of chemical reaction. The experimental method and the results are reported. The radiation energy for cutting C-H coupling is polymers is dispersed by Anti-rad, and the probability of cutting is lowered. Anti-rad catches and extinguishes radicals that start oxidation reaction. (K.I.)

  1. Radiation resistant lining material

    International Nuclear Information System (INIS)

    Ouchi, Koki; Okagawa, Seigo; Tamaki, Hidehiro.

    1990-01-01

    Rigidity, viscoelasticity, flexibility, radiation resistance, leaching resistance, rust-proofness, endurance, etc. are required for the lining materials to wall surfaces and floor surfaces of facilities used under the effect of radiation rays and for the inner surface protection of vessels for radioactive wastes. The present invention provides radiation resistant lining material capable of satisfying such various requirements in a well-balanced manner. That is, the material contains (A) 100 parts by weight of rapidly curing cement, (B) 50 to 300 % by weight of aggregate, and (C) 80 to 120 parts by weight of polymer emulsion. As the specific example, the ingredient (A) is commercially available under the trade name of Jet Cement. The aggregate of the ingredient (B) has preferably from about 0.6 to 0.2 mm of size and is made of material, preferably, silicon or iron grains. As the ingredient (C), acrylic resin emulsion is preferred. As a result of example, these ingredient constitutions can satisfy each of the required performance described above. (I.S.)

  2. Resistive Memory Devices for Radiation Resistant Non-Volatile Memory

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionizing radiation in space can damage electronic equipment, corrupting data and even disabling computers. Radiation resistant (rad hard) strategies must be employed...

  3. Isolation of radiation-resistant bacteria without exposure to irradiation

    International Nuclear Information System (INIS)

    Sanders, S.W.; Maxcy, R.B.

    1979-01-01

    Resistance to desiccation was utilized in the selection of highly radiation-resistant asporogenous bacteria from nonirradiated sources. A bacterial suspension in phosphate buffer was dried in a thin film at 25 0 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the number of radiation-sensitive bacteria. Further selection for radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, therby avoiding the toxic effect of irradiated media. The similarity of radiation resistance and identifying characteristics in irradiated and non-irradiated isolates should allay some concerns that highly radiation-resistance bacteria have been permanently altered by radiation selection

  4. Design of online testing system of material radiation resistance

    International Nuclear Information System (INIS)

    Wan Junsheng; He Shengping; Gao Xinjun

    2014-01-01

    The capability of radiation resistance is important for some material used in some specifically engineering fields. It is the same principal applied in all existing test system that compares the performance parameter after radiation to evaluate material radiation resistance. A kind of new technique on test system of material radiation resistance is put forward in this paper. Experimentation shows that the online test system for material radiation resistance works well and has an extending application outlook. (authors)

  5. Research progress and application prospect of radiation-resistant prokaryotic microbe

    International Nuclear Information System (INIS)

    Wang Wei; Zhu Jing; Zhang Zhidong; Tang Qiyong; Chen Ming

    2013-01-01

    Radiation-resistant microbe is becoming the research hotspot because of its special life phenomenon and physiological mechanism. Radiation-resistant bacteria are one kind of the most studied radiation-resistant microbe. This article summarized some aspects of the research on radiation-resistant bacteria, including the radiation resistant bacteria resources, and discussed its potential application prospects in the environmental engineering, biotechnology, human health, military and space et al. (authors)

  6. Utilization of SRNL-developed radiation-resistant polymer in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Skibo, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-27

    The radiation-resistant polymer developed by the Savannah River National Laboratory is adaptable for multiple applications to enhance polymer endurance and effectiveness in radiation environments. SRNL offers to collaborate with TEPCO in evaluation, testing, and utilization of SRNL’s radiation-resistant polymer in the D&D of the Fukushima Daiichi NPS. Refinement of the scope and associated costs will be conducted in consultation with TECPO.

  7. Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria.

    Science.gov (United States)

    Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor

    2017-04-01

    A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compensate for the genome-destabilizing effect of environmental DNA damage and may be expected to result in a more conserved gene order in radiation-resistant species. However, here we show that rates of genome rearrangements, measured as loss of gene order conservation with time, are higher in radiation-resistant species in multiple, phylogenetically independent groups of bacteria. Comparison of indicators of selection for genome organization between radiation-resistant and phylogenetically matched, nonresistant species argues against tolerance to disruption of genome structure as a strategy for radiation resistance. Interestingly, an important mechanism affecting genome rearrangements in prokaryotes, the symmetrical inversions around the origin of DNA replication, shapes genome structure of both radiation-resistant and nonresistant species. In conclusion, the opposing effects of environmental DNA damage and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria. Copyright © 2017 Repar et al.

  8. Final Report for Radiation Resistant Magnets II

    International Nuclear Information System (INIS)

    A. F. Zeller

    2005-01-01

    Report on techniques for the fabrication of radiation resistant magnets for the RIA Fragment Separator. The development of magnet designs capable of reasonable life times in high-radiation environments and having reasonable performance is of paramount importance for RIA as well as other high-intensity projects under consideration, such as the Neutrino Factory and FAIR project at GSI. Several approaches were evaluated for radiation resistant superconducting magnets. One approach was to simply use a more radiation resistant epoxy for the coil fabrication. Another approach for cryostable magnets, like the S800 Spectrograph dipole, is the use of all-inorganic materials. The final approach was the development of radiation resistant Cable-In-Conduit-Conductor (CICC) like that used in fusion magnets; though these are not radiation resistant because an organic insulator is used. Simulations have shown that the nuclear radiation heating of the first quadrupoles in the RIA Fragment Separator will be so large that cold mass minimization will be necessary with the magnet iron being at room temperature. Three different types of conductor for radiation resistant superconducting magnets have been built and successfully tested. The cyanate ester potted coils will work nicely for magnets where the lifetime dose is a factor of 20 less than the end of life of the superconductor and the rate of energy deposition is below the heat-removal limit of the coil. The all-inorganic cryostable coil and the metal oxide insulated CICC will provide conductor that will work up to the life of the superconductor and have the ability to remove large quantities of nuclear heating. Obviously, more work needs to be done on the CICC to increase the current density and to develop different insulations; and on the cyanate esters to increase the heat transfer

  9. Development of flame retardant, radiation resistant insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, M.

    1984-01-01

    On the cables used for nuclear power stations, in particular those ranked as IE class, flame retardation test, simulated LOCA environment test, radiation resistance test and so on are imposed. The results of the evaluation of performance by these tests largely depend on the insulating materials mainly made of polymers. Ethylene propylene copolymer rubber has been widely used as cable insulator because of its electrical characteristics, workability, economy and relatively good radiation resistance, but it is combustible, therefore, in the practical use, it is necessary to make it fire resistant. The author et al. have advanced the research on the molecular design of new fire retarding materials, and successfully developed acenaphthylene bromide condensate, which is not only fire resistant but also effective for improving radiation resistance. The condition of flame retardant, radiation resistant auxiliary agents is explained, and there are additive type and reaction type in fire retarding materials. The synthesis of acenaphthylene bromide condensate and its effect of giving flame retardant and radiation resistant properties are reported. The characteristics of the cables insulated with the flame retardant ethylene propylene rubber containing acenaphthylene bromide condensate were tested, and the results are shown. (Kako, I.).

  10. Radiation resistance of ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Matsumoto, Kaoru; Ikeda, Masaaki; Ohki, Yoshimichi; Kusama, Yasuo; Harashige, Masahiro; Yazaki, Fumihiko.

    1988-01-01

    In this paper, the radiation resistance of ethylene-styrene copolymer, a polymeric resin developed newly by the authors, is reported. Resin examined were five kinds of ethylene-styrene copolymers: three random and two graft copolymers with different styrene contents. Low-density polyethylene was used as a reference. The samples were irradiated by 60 Co γ-rays to total absorbed doses up to 10 MGy. The mechanical properties of the smaples were examined. Infrared spectroscopy, differential scanning calorimetry and X-ray scattering techniques were used to examine the morphology of the samples. The random copolymers are soft and easy to extend, because benzene rings which exisist highly at random hinder the crystallization. As for the radiation resistance, they are highly resistant to γ-rays in the aspects of carbonyl group formation, gel formation, and elongation. Further, they show even better radiation resistance when proper additives were compounded in. The graft copolymers are hard to extend, because they consist of segregated polystyrene and polyethylene regions which are connected with each other. The tensile strength of irradiated graft copolymers does not decrease below that of unirradiated copolymers, up to a total dose of 10 MGy. As a consequence, it can be said that ethylene-styrene copolymers have good radiation resistance owing to the so-called 'sponge' effect of benzene rings. (author)

  11. Radiation-resistant micro-organisms isolated from textiles

    International Nuclear Information System (INIS)

    Kristensen, H.; Christensen, E.A.

    1981-01-01

    Towels from private homes and public offices and underwear contaminated by being used by employees at a public health laboratory were examined for occurrence of radiation-resistant bacteria and fungi. Three different methods were used for isolation of the most resistant organisms, one with multiplication of the microbial population prior to an irradiation used for selection, and two witout this multiplication and with the organisms placed on membrane filters or in situ on the textiles, respectively. A total of 44 different strains were isolated. Differences in the three methods used for selection of the most radiation-resistant microorganisms were not reflected in the results. 16 pigmentproducing Gram-positive cocci, tentatively classified as Micrococcus radiodurans, were the most radiation-resistant and were isolated in about half of the examinations. Other Gram-positive cocci, nonspore forming rods, some Nocardia and Candida parapsilosis strains and two Bacillus strains constituted the rest of the collection. With few exceptions dose-response curves for the strains were upward convex. D-6 values determined to be between 1.5 megarad for the most radiation sensitive, a Candida, and 5.7 megarad for the most resistant, tentatively classified as M. radiodurans. The D-6 values for the Bacillus strains were in both cases 1.8 megarad, consistent with a D-value of 0.3 megarad. The same resistance is reported to be the maximum resistance for B. pumilus, strain E601, commonly used as reference strain in the literature on radiation sterilization of medical devices and supplies. (author)

  12. Radiation-resistant micro-organisms isolated from textiles

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, H; Christensen, E A [Statens Seruminstitut, Copenhagen (Denmark)

    1981-01-01

    Towels from private homes and public offices and underwear contaminated by being used by employees at a public health laboratory were examined for occurrence of radiation-resistant bacteria and fungi. Three different methods were used for isolation of the most resistant organisms, one with multiplication of the microbial population prior to an irradiation used for selection, and two witout this multiplication and with the organisms placed on membrane filters or in situ on the textiles, respectively. A total of 44 different strains were isolated. Differences in the three methods used for selection of the most radiation-resistant microorganisms were not reflected in the results. 16 pigmentproducing Gram-positive cocci, tentatively classified as Micrococcus radiodurans, were the most radiation-resistant and were isolated in about half of the examinations. Other Gram-positive cocci, nonspore forming rods, some Nocardia and Candida parapsilosis strains and two Bacillus strains constituted the rest of the collection. With few exceptions dose-response curves for the strains were upward convex. D-6 values determined to be between 1.5 megarad for the most radiation sensitive, a Candida, and 5.7 megarad for the most resistant, tentatively classified as M. radiodurans. The D-6 values for the Bacillus strains were in both cases 1.8 megarad, consistent with a D-value of 0.3 megarad. The same resistance is reported to be the maximum resistance for B. pumilus, strain E601, commonly used as reference strain in the literature on radiation sterilization of medical devices and supplies.

  13. Heat resistant/radiation resistant cable and incore structure test device for FBR type reactor

    International Nuclear Information System (INIS)

    Tanimoto, Hajime; Shiono, Takeo; Sato, Yoshimi; Ito, Kazumi; Sudo, Shigeaki; Saito, Shin-ichi; Mitsui, Hisayasu.

    1995-01-01

    A heat resistant/radiation resistant coaxial cable of the present invention comprises an insulation layer, an outer conductor and a protection cover in this order on an inner conductor, in which the insulation layer comprises thermoplastic polyimide. In the same manner, a heat resistant/radiation resistant power cable has an insulation layer comprising thermoplastic polyimide on a conductor, and is provided with a protection cover comprising braid of alamide fibers at the outer circumference of the insulation layer. An incore structure test device for an FBR type reactor comprises the heat resistant/radiation resistant coaxial cable and/or the power cable. The thermoplastic polyimide can be extrusion molded, and has excellent radiation resistant by the extrusion, as well as has high dielectric withstand voltage, good flexibility and electric characteristics at high temperature. The incore structure test device for the FBR type reactor of the present invention comprising such a cable has excellent reliability and durability. (T.M.)

  14. Development of radiation-resisting high molecular-weight materials

    International Nuclear Information System (INIS)

    Nakagawa, Tsutomu

    1976-01-01

    The excellent radiation-resisting polyvinyl chloride developed at the opportunity of the research on the relationships between the protection of living body and the polymer-technological protection from radiation is reviewed. The report is divided into four main parts, namely 1) the change in the molecular arrangement of market-available, high molecular-weight materials by gamma-ray irradiation, 2) the protection of high molecular-weight materials from radiation, 3) the relationships between the biological radiation-protective substances and the change to radiation-resisting property of synthesized high molecular-weight substances, and 4) the development of the radiation-resisting high molecular-weight materials as metal-collecting agents. Attention is paid to the polyvinyl chloride having N-methyl-dithio-carbamate radical (PMD), synthesized by the author et. al., that has excellent radiation-resisting property. PMD has some possibility to form thiol- and amino-radicals necessary to protect living things from radiation. It is believed that the protection effects of N-methyl-dithio-carbamate radical are caused by the relatively stable S radical produced by the energy transfer. PMD film is suitable for the irradiation of foods, because it hardly changes the permeability of oxygen and carbon dioxide. PMD produces mercaptide or chelate. A new metal-collecting agent (PSDC) having reactivity with the metallic ions with radiation-resisting property was developed, which is derived from polyvinyl chloride and sodium N-methyl-N-carboxy-methyl-dithio-carbamate. (Iwakiri, K.)

  15. Radiation resistant characteristics of optical fibers

    International Nuclear Information System (INIS)

    Nakasuji, Masaaki; Tanaka, Gotaro; Watanabe, Minoru; Kyodo, Tomohisa; Mukunashi, Hiroaki

    1983-01-01

    It is required to develop the optical fibers with good radiation resistivity because the fibers cause the increase of transmission loss due to glass colouring when they are used under the presence of radiation such as γ-ray. Generally, it is known that SI (step index) fibers are more resistive to radiation than GI (graded index) fibers. However, since a wide band can not be obtained with SI fibers, the development of radiation resistive GI optical fibers is desirable. In this report, the production for trial of the GI fibers of fluorine-doped silica core, the examination of radiation effect on their optical transmission loss by exposing them to γ-ray, thermal and fast neutron beams and also of mechanical strength are described. The GI fibers of fluorine-doped silica core show better radiation resistivity than Ge-doped ones. The B- and F-doped GI fibers show small increase of loss due to γ-ray, but large increase of loss due to thermal neutron beam. This is supposed to be caused by the far greater neutron absorption cross-section of boron than that of other elements. Significant increase of loss was not recognized when 14 MeV fast neutrons (8.6 x 10 4 n/cm 2 .s) were applied by 1.8 x 10 9 n/cm 2 . It was found that ETFE-covered fiber cores generated fluorine-containing gas due to γ irradiation, and the strength was remarkably lowered, but the lowering of strength can be prevented by adding titanium-white to the covering material. (Wakatsuki, Y.)

  16. Effect of radiation decontamination on drug-resistant bacteria

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    More than 80% of food poisoning bacteria such as Salmonella are reported as antibiotic-resistant to at least one type antibiotic, and more than 50% as resistant to two or more. For the decontamination of food poisoning bacteria in foods, radiation resistibility on drug-resistant bacteria were investigated compared with drug-sensitive bacteria. Possibility on induction of drug-resistant mutation by radiation treatment was also investigated. For these studies, type strains of Escherichia coli S2, Salmonella enteritidis YK-2 and Staphylococcus aureus H12 were used to induce drug-resistant strains with penicillin G. From the study of radiation sensitivity on the drug-resistant strain induced from E. coli S2, D 10 value was obtained to be 0.20 kGy compared with 0.25 kGy at parent strain. On S. enteritidis YK-2, D 10 value was obtained to be 0.14 kGy at drug-resistant strain compared with 0.16 kGy at parent strain. D 10 value was also obtained to be 0.15 kGy at drug-resistant strain compared with 0.21 kGy at parent strain of St. aureus H12. Many isolates of E. coli 157:H7 or other type of E. coli from meats such as beef were resistant to penicillin G, and looked to be no relationship on radiation resistivities between drug-resistant strains and sensitive strains. On the study of radiation sensitivity on E. coli S2 at plate agars containing antibiotics, higher survival fractions were obtained at higher doses compared with normal plate agar. The reason of higher survival fractions at higher doses on plate agar containing antibiotics should be recovery of high rate of injured cells by the relay of cell division, and drug-resistant strains by mutation are hardly induced by irradiation. (author)

  17. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing micro-organisms. Eradi cation techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation-based sterilization processes. Due to their resistance to a variety of perturbations, the nonspore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-sporeforming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/m2), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  18. NEW RADIATION RESISTANT GREASES

    Energy Technology Data Exchange (ETDEWEB)

    DasGupta, Sharda; Slobodian, J. T.

    1962-11-20

    New radiation resistant greases were prepared from commercially available greases by carrying out radioinduced reactions with styrene. The radiation tolerances of the products were 250-1000 fold more than the starting materials and any product of similar properties now available. The various properties of the new products initially and after exposure to large radiation doses were in no case inferior to the original greases and in some respects improvements were observed. Radiation tolerance of commercial greases could be enhanced by the addition of polystyrene to form a physical mixture rather than copolymers. The reaction mechanisms involved at all stages were studied using infrared spectroscopic techniques. (P.C.H.)

  19. Trial manufacture of flame retardant and radiation resistant cables

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Yunosuke; Hagiwara, Miyuki (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment); Oda, Eisuke

    1983-04-01

    High radiation resistance as well as incombustibility is required for the wires and cables used for nuclear facilities such as nuclear power stations. In order to give such performance to general purpose insulation materials such as ethylene-propylene copolymerized rubber, acenaphthylene bromide condensation product was developed anew. Moreover, by the use of this agent, the new flame retardant and radiation resistant cables were manufactured for trial, which are not different from ordinary plastic rubber cables in the handling such as flexibility, and withstand the radiation nearly up to 1000 Mrad. The requirement for the agent giving flame retardant and radiation resistant properties is explained. The synthesis of acenaphthylene bromide and its condensation product and the effect of giving flame retardant and radiation resistant properties are described. The test resultd of the prevention of spread of flame, the endurance in LOCA-simulating environment, and radiation resistance for the cables manufactured for trial are reported. It was confirmed that the cables of this type are suitable to the use in which the maintenance of mechanical properties after radiation exposure is required.

  20. Radiation resistance of organic azo dyes in aqueous solutions

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.

    1987-01-01

    The resistance to the action of the ionizing radiation of aqueous and aqueous-alcoholic solutions of organic mono- and diazo dyes was studied. The radiation chemical yield of decolorization of the dye, determined from the kinetic decolorization curves served as a quantitative criterion of the radiation resistance. The influence of pH, addition of ethanol, hydroquinone, thiourea, glucose and oxygen on the radiation resistance of the azo dyes was studied. An attempt was made to relate the efficiency of radiation decolorization to the chemical nature of the dye

  1. Radiation resistivity of pure silica core image guides for industrial fiberscopes

    International Nuclear Information System (INIS)

    Okamoto, Shinichi; Ohnishi, Tokuhiro; Kanazawa, Tamotsu; Tsuji, Yukio; Hayami, Hiroyuki; Ishitani, Tadayoshi; Akutsu, Takeji; Suzuki, Koichi.

    1991-01-01

    Industrial fiberscopes incorporating pure silica core image guides have been extensively used for remote visual inspection in radiation fields including nuclear power plants, owing to their superior radiation resistivity. The authors have been intensively conducting R and D on improving radiation resistivity of pure silica core image guides. This paper reports the results of experiments to compare the effects of core materials on radiation resistivity and to investigate the dependence of radiation resistivity on total dose, does rate, and support pipe material. The results confirmed the superior radiation resistivity of the core material containing fluorine at any irradiation condition and indicated the existence of a critical dose rate at which radiation-induced deterioration was stabilized. No difference in radiation resistivity attributable to support layer material was observed. (author)

  2. Radiation resistant modified polypropylene; Polipropylen modyfikowany odporny radiacyjnie

    Energy Technology Data Exchange (ETDEWEB)

    Bojarski, J; Zimek, Z [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs.

  3. Radiation-resistant plastic insulators

    International Nuclear Information System (INIS)

    Sturm, B.J.; Parkinson, W.W.

    1975-01-01

    A high molecular weight organic composition useful as an electric insulator in radiation fields is provided and comprises normally a solid polymer of an organic compound having a specific resistance greater than 10 19 ohm-cm and containing phenyl groups and 1 to 7.5 weight percent of a high molecular weight organic phosphite. In one embodiment the composition comprises normally solid polystyrene having 7.5 weight percent tris-β-chloroethyl phosphite as an additive; the composition exhibited an increase in the post-irradiation resistivity of over an order of magnitude over the post-irradiation resistivity of pure polystyrene. (Patent Office Record)

  4. Development of radiation resistant organic composites for cryogenic use

    International Nuclear Information System (INIS)

    Nishijima, S.

    1997-01-01

    The mechanism of the radiation induced degradation of the mechanical properties in composite materials have been studied and based on the mechanism the radiation resistant organic composites for fusion magnet have been developing. It was found that the degradation was brought by the change of the fracture mode from tensile (or flexural) to shear failure. Consequently the intrinsic parameter which control the degradation was concluded to be the interlaminar shear strength. To develop the radiation resistant composites, therefore, means to develop the composites showing the radiation resistant interlaminar shear strength. The mechanism was confirmed using three dimensional fabric reinforced plastics which do not have the interlaminar area. The roles of matrix in the composites were also revealed. The effects of dose quality and irradiated temperature on the radiation induced degradation were also discussed and the selection standards of the components for radiation resistant composites were proposed

  5. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  6. Enhanced radiation resistant fiber optics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures

  7. arXiv Radiation resistant LGAD design

    CERN Document Server

    Ferrero, M.; Boscardin, M.; Cartiglia, N.; Dalla Betta, G.F.; Galloway, Z.; Mandurrino, M.; Mazza, S.; Paternoster, G.; Ficorella, F.; Pancheri, L.; Sadrozinski, H-F W.; Sola, V.; Staiano, A.; Seiden, A.; Zhao, Y.

    In this paper, we report on the radiation resistance of 50-micron thick LGAD detectors manufactured at the Fondazione Bruno Kessler employing several different doping combinations of the gain layer. LGAD detectors with gain layer doping of Boron, Boron low-diffusion, Gallium, Carbonated Boron and Carbonated Gallium have been designed and successfully produced. These sensors have been exposed to neutron fluences up to $\\phi_n \\sim 3 \\cdot 10^{16}\\; n/cm^2$ and to proton fluences up to $\\phi_p \\sim 9\\cdot10^{15}\\; p/cm^2$ to test their radiation resistance. The experimental results show that Gallium-doped LGADs are more heavily affected by initial acceptor removal than Boron-doped LGAD, while the presence of Carbon reduces initial acceptor removal both for Gallium and Boron doping. Boron low-diffusion shows a higher radiation resistance than that of standard Boron implant, indicating a dependence of the initial acceptor removal mechanism upon the implant width. This study also demonstrates that proton irradiati...

  8. Synthesis and radiation resistance of fullerenes and fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Shilin, V. A., E-mail: shilin@pnpi.spb.ru; Lebedev, V. T.; Sedov, V. P.; Szhogina, A. A. [St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-07-15

    The parameters of an electric-arc facility for the synthesis of fullerenes and endohedral metallofullerenes are optimized. The resistance of C{sub 60} and C{sub 70} fullerenes and C{sub 60}(OH){sub 30} and C{sub 70}(OH){sub 30} fullerenols against neutron irradiation is studied. It is established that the radiation resistance of the fullerenes is higher than that of the fullerenols, but the radiation resistance of the Gd@C{sub 2n} endometallofullerenes is lower than that of the corresponding Gd@C{sub 2n}(OH){sub 38} fullerenols. The radiation resistance of mixtures of Me@C{sub 2n}(OH){sub 38} (Me = Gd, Tb, Sc, Fe, and Pr) endometallofullerenes with C{sub 60}(OH){sub 30} is determined. The factors affecting the radiation resistance of the fullerenes and fullerenols are discussed.

  9. Adriamycin resistance and radiation response

    International Nuclear Information System (INIS)

    Belli, J.A.; Harris, J.R.

    1979-01-01

    Mammalian cells (V79) in culture developed resistance to Adriamycin during continuous exposure to low levels of drug. This resistance was accompanied by change in x-ray survival properties which, in turn, depended upon the isolation of subpopulations from resistant sub lines. These changes in x-ray survival properties were characterized by reduced D/sub Q/ values and a decrease in the D/sub O/. However, these changes were not observed together in the same cell sub line. Adriamycin-resistant cells did not appear to be radiation damage repair deficient. Other phenotypic changes (cell morphology, DNA content and chromosome number) suggested mutational events coincident with the development of Adriamycin resistance

  10. Studies on the radiation resistances of bioburden for medical devices

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Tabei, Masae

    1997-01-01

    Radiation resistances of reference bacteria strains and the bioburden obtained from hypodermic needles were estimated with gamma- and electron- irradiators calibrated with NPL (National Physics Laboratory) alanine dosimeter. Radiation resistances of the TSB-bacteria suspension samples dried on glass test tubes showed about two times higher than those of the water-bacteria suspension dried on glass fiber paper or paper filter. Radiation resistances of the dried TSB-bacteria suspension samples irradiated by both gamma rays and electron beams were fluctuated. The overall increase ratio of radiation resistance was estimated by dividing D-values of TSB-bacteria suspension samples by that of water-bacteria suspension samples for individual bacteria. Then, the survival curve of hypodermic needle bioburden revised by the increase ratio was obtained, and which compared with that of standard distribution of radiation resistances of ISO(SDR). (author)

  11. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Horsman, Michael Robert; Kassem, Moustapha

    2012-01-01

    Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods....... Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...... the intercellular matrix. These results also indicate that cancer stem cells are more radiation resistant than stem cells of the same origin....

  12. Radiation resistance of optical fibers, (10)

    International Nuclear Information System (INIS)

    Tsunoda, Tsunemi; Ara, Katsuyuki; Morimoto, Naoki; Sanada, Kazuo; Inada, Koichi.

    1991-01-01

    Optical fibers have many excellent characteristics such as the light weight of the material, insulation, the noninductivity of electromagnetic interference noise, the wide band of signal transmission, and small loss. Also in the field of atomic energy, the utilization of optical fibers is positively expanded, and the research on the method of application and so on has been advanced. However in optical fibers, there is the problem that color centers are formed at the relatively low level of radiation, and they are colored. Accordingly, for effectively utilizing optical fibers in radiation environment, it is indispensable to improve their radiation resistance. For the purpose of solving this problem, the authors have carried out the basic research on the effect that radiation exerts to optical fibers and the development of the optical fibers having excellent radiation resistance. For the purpose of expanding the range of application of GeO 2 -doped silica core fibers including GI type in radiation regions, the transmission characteristics of the fibers during irradiation were examined by using the Cl content as the parameter. Therefore, the results are reported. The fibers put to the test, the testing method and the results are described. (K.I.)

  13. Radiation Resistance Test of Wireless Sensor Node and the Radiation Shielding Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liqan; Sur, Bhaskar [Atomic Energy of Canada Limited, Ontario (Canada); Wang, Quan [University of Western Ontario, Ontario (Canada); Deng, Changjian [The University of Electronic Science and Technology, Chengdu (China); Chen, Dongyi; Jiang, Jin [Applied Physics Branch, Ontario (Korea, Republic of)

    2014-08-15

    A wireless sensor network (WSN) is being developed for nuclear power plants. Amongst others, ionizing radiation resistance is one essential requirement for WSN to be successful. This paper documents the work done in Chalk River Laboratories of Atomic Energy of Canada Limited (AECL) to test the resistance to neutron and gamma radiation of some WSN nodes. The recorded dose limit that the nodes can withstand before being damaged by the radiation is compared with the radiation environment inside a typical CANDU (CANada Deuterium Uranium) power plant reactor building. Shielding effects of polyethylene, cadmium and lead to neutron and gamma radiations are also analyzed using MCNP simulation. The shielding calculation can be a reference for the node case design when high dose rate or accidental condition (like Fukushima) is to be considered.

  14. Isolation and identification of radiation resistant yeasts from sea water

    International Nuclear Information System (INIS)

    Park, Jong Cheon; Jeong, Yong Uk; Kim, Du Hong; Jo, Eun A

    2011-12-01

    This study was conducted to isolate radiation-resistant yeasts from sea water for development of application technology of radiation-resistant microorganism. · Isolation of 656 yeasts from sea water and selection of 2 radiation-resistant yeasts (D 10 value >3) · Identification of isolated yeasts as Filobasidium elegans sharing 99% sequence similarity · Characterization of isolated yeast with ability to repair of the DNA damage and membrane integrity to irradiation

  15. A Novel Radiation-Resistant Yeast, Filobasidium elegans RRY1

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harinder; Kim, Ha Ram; Song, Hyun Pa; Lim, Sang Yong; Kim, Dong Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2012-05-15

    The tolerance to ionizing radiation stress is present among different classes and species of organisms. As listed by Rainey et al., ionizing radiation resistant organisms were isolated from a variety of different sources like processed/canned food items, paper industry, soil and water samples. Apart from extensively reported bacteria and Archea group, many fungal species like Aspergillus, Curvularia, Alternaria, Cryptococcus, and Ustilago maydis have been found to be resistant to ionizing radiation. However, different environmental sources are constantly been explored for novel radioresistant organisms, which can help in understanding the molecular mechanism behind these extreme stress responses. On the basis of this, present study was initiated to find novel radiation resistant yeast from sea water source

  16. Development of radiation resistant PEEK insulation cable

    International Nuclear Information System (INIS)

    Mio, Keigo; Ogiwara, Norio; Hikichi, Yusuke; Furukori, Hisayoshi; Arai, Hideyuki; Nishizawa, Daiji; Nishidono, Toshiro

    2009-04-01

    Material characterization and development has been carried out for cable insulation suitable for use in the J-PARC 3-GeV RCS radiation environment. In spite of its high cost, PEEK (polyether-ether-ketone) has emerged as the leading candidate satisfying requirements of being non-halogen based, highly incombustible and with radiation resistant at least 10 MGy, along with the usual mechanical characteristics such as good elongation at break, which are needed in a cable insulation. Gamma-ray irradiation tests have been done in order to study radiation resistance of PEEK cable. Further, mechanical, electrical and fire retardant characteristics of a complete cable such as would be used at the J-PARC RCS were investigated. As a result, PEEK cables were shown to be not degraded by radiation up to at least 10 MGy, and thus could be expected to operate stably under the 3-GeV RCS radiation environment. (author)

  17. Radiation resistivity of pure-silica core image guide

    International Nuclear Information System (INIS)

    Hayami, H.; Ishitani, T.; Kishihara, O.; Suzuki, K.

    1988-01-01

    Radiation resistivity of pure-silica core image guides were investigated in terms of incremental spectral loss and quality of pictures transmitted through the image guides. Radiation-induced spectral losses were measured so as to clarify the dependences of radiation resistivity on such parameters as core materials (OH and Cl contents), picture element dimensions, (core packing density and cladding thickness), number of picture elements and drawing conditions. As the results, an image guide with OH-and Cl-free pure-silica core, 30-45% in core packing density, and 1.8 ∼ 2.2 μm in cladding thickness showed the lowest loss. The parameters to design this image guide were almost the same as those to obtain a image guide with good picture quality. Radiation resistivity of the image guide was not dependent on drawing conditions and number of picture elements, indicating that the image guide has large allowable in production conditions and that reliable quality is constantly obtained in production. Radiation resistivity under high total doses was evaluated using the image guide with the lowest radiation-induced loss. Maximum usable lengths of the image guide for practical use under specific high total doses and maximum allowable total doses for the image guide in specific lengths were extrapolated. Picture quality in terms of radiation-induced degradation in color fidelity in the pictures transmitted through image guides was quantitatively evaluated in the chromaticity diagram based on the CIE standard colorimetric system and in the color specification charts according to three attributes of colors. The image guide with the least spectral incremental loss gives the least radiation-induced degradation in color fidelity in the pictures as well. (author)

  18. Increased radiation resistance in lithium-counterdoped silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  19. Bacterial and archaeal resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Confalonieri, F; Sommer, S, E-mail: fabrice.confalonieri@u-psud.fr, E-mail: suzanne.sommer@u-psud.fr [University Paris-Sud, CNRS UMR8621, Institut de Genetique et Microbiologie, Batiments 400-409, Universite Paris-Sud, 91405 Orsay (France)

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  20. Diversity of ionizing radiation-resistant bacteria obtained from the Taklimakan Desert.

    Science.gov (United States)

    Yu, Li Zhi-Han; Luo, Xue-Song; Liu, Ming; Huang, Qiaoyun

    2015-01-01

    So far, little is known about the diversity of the radiation-resistant microbes of the hyperarid Taklimakan Desert. In this study, ionizing radiation (IR)-resistant bacteria from two sites in Xinjiang were investigated. After exposing the arid (water content of 0.8 ± 0.3%) and non-arid (water content of 21.3 ± 0.9%) sediment samples to IR of 3000 Gy using a (60)Co source, a total of 52 γ-radiation-resistant bacteria were isolated from the desert sample. The 16S rRNA genes of all isolates were sequenced. The phylogenetic tree places these isolates into five groups: Cytophaga-Flavobacterium-Bacteroides, Proteobacteria, Deinococcus-Thermus, Firmicutes, and Actinobacteria. Interestingly, this is the first report of radiation-resistant bacteria belonging to the genera Knoellia, Lysobacter, Nocardioides, Paracoccus, Pontibacter, Rufibacter and Microvirga. The 16s rRNA genes of four isolates showed low sequence similarities to those of the published species. Phenotypic analysis showed that all bacteria in this study are able to produce catalase, suggesting that these bacteria possess reactive oxygen species (ROS)-scavenging enzymes. These radiation-resistant bacteria also displayed diverse metabolic properties. Moreover, their radiation resistances were found to differ. The diversity of the radiation-resistant bacteria in the desert provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of ROS-scavenging systems that protect cells against oxidative damage caused by desiccation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Radiation-resistant composite for biological shield of personnel

    Science.gov (United States)

    Barabash, D. E.; Barabash, A. D.; Potapov, Yu B.; Panfilov, D. V.; Perekalskiy, O. E.

    2017-10-01

    This article presents the results of theoretical and practical justification for the use of polymer concrete based on nonisocyanate polyurethanes in biological shield structures. We have identified the impact of ratio: polymer - radiation-resistant filling compound on the durability and protection properties of polymer concrete. The article expounds regression dependence of the change of basic properties of the aforementioned polymer concrete on the absorbed radiation dose rate. Synergy effect in attenuation of radioactivity release in case of conjoint use of hydrogenous polymer base and radiation-resistant powder is also addressed herein.

  2. Basic design of radiation-resistant LVDTs: Linear Variable Differential Transformer

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J. M.; Park, S. J.; Kang, Y. H. (and others)

    2008-02-15

    A LVDT(Linear Variable Differential Transformer) for measuring the pressure level was used to measure the pressure of a nuclear fuel rod during the neutron irradiation test in a research reactor. A LVDT for measuring the elongation was also used to measure the elongation of nuclear fuels, and the creep and fatigue of materials during a neutron irradiation test in a research reactor. In this report, the basic design of two radiation-resistant LVDTs for measuring the pressure level and elongation are described. These LVDTs are used a under radiation environment such as a research reactor. In the basic design step, we analyzed the domestic and foreign technical status for radiation-resistant LVDTs, made part and assembly drawings and established simple procedures for their assembling. Only a few companies in the world can produce radiation-resistant LVDTs. Not only these are extremely expensive, but the prices are continuously rising. Also, it takes a long time to procure a LVDT, as it can only be bought about by an order-production. The localization of radiation-resistant LVDTs is necessary in order to provide them quickly and at a low cost. These radiation-resistant LVDTs will be used at neutron irradiation devices such as instrumented fuel capsules, special purpose capsules and a fuel test loop in research reactors. We expect that the use of neutron irradiation tests will be revitalized by the localization of radiation-resistant LVDTs.

  3. Gene Expression Analysis of Four Radiation-resistant Bacteria

    OpenAIRE

    Gao, Na; Ma, Bin-Guang; Zhang, Yu-Sheng; Song, Qin; Chen, Ling-Ling; Zhang, Hong-Yu

    2009-01-01

    To investigate the general radiation-resistant mechanisms of bacteria, bioinformatic method was employed to predict highly expressed genes for four radiation-resistant bacteria, i.e. Deinococcus geothermalis (D. geo), Deinococcus radiodurans (D. rad), Kineococcus radiotolerans (K. rad) and Rubrobacter xylanophilus (R. xyl). It is revealed that most of the three reference gene sets, i.e. ribosomal proteins, transcription factors and major chaperones, are generally highly expressed in the four ...

  4. Development of application technology of radiation-resistant microorganism

    International Nuclear Information System (INIS)

    Kim, Dong Ho; Lim, Sang Yong; Joe, Min Ho; Jung, Jin Woo; Jung, Sun Wook; Song, Du Sup; Choi, Young Ji

    2009-02-01

    The scope of the project is divided into of three parts; (i) to define the survival strategy of radiation-resistant microbes, especially Deinococcus (ii) acquisition of gene resources encoding the novel protein and related with the production of functional materials (iii) development of control technology against radiation-resistant microbes. To this aim, first, the whole transcriptional response of the D. radiodurans strain haboring pprI mutation, which plays an important role in radiation resistance, was analyzed by cDNA microarray. The anti-oxidant activity of the major carotenoid of D. radiodurans, deinoxanthin, was analyzed and the strain was constructed, in which the gene necessary for bio- synthesis of deinoxanthin is deleted. The response to cadmium of D. radiodurans was also investigated through cDNA microarray analysis. Radiogenic therapy, one of the cancer treatments, is designed to use radiation-inducible gene for the treatment. To develop the gene-transfer vehicle for radiogenic therapy, we have investigated the virulence mechanism of Salmonella, which is tumor-targeting bacteria and studied the synergistic effect of some anti-cancer agents on radiation treatment for cancer. Finally, we confirmed that irradiation could decompose a fungus toxin, patulin, into various harmless by-products

  5. Development of application technology of radiation-resistant microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Lim, Sang Yong; Joe, Min Ho; Jung, Jin Woo; Jung, Sun Wook; Song, Du Sup; Choi, Young Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-02-15

    The scope of the project is divided into of three parts; (i) to define the survival strategy of radiation-resistant microbes, especially Deinococcus (ii) acquisition of gene resources encoding the novel protein and related with the production of functional materials (iii) development of control technology against radiation-resistant microbes. To this aim, first, the whole transcriptional response of the D. radiodurans strain haboring pprI mutation, which plays an important role in radiation resistance, was analyzed by cDNA microarray. The anti-oxidant activity of the major carotenoid of D. radiodurans, deinoxanthin, was analyzed and the strain was constructed, in which the gene necessary for bio- synthesis of deinoxanthin is deleted. The response to cadmium of D. radiodurans was also investigated through cDNA microarray analysis. Radiogenic therapy, one of the cancer treatments, is designed to use radiation-inducible gene for the treatment. To develop the gene-transfer vehicle for radiogenic therapy, we have investigated the virulence mechanism of Salmonella, which is tumor-targeting bacteria and studied the synergistic effect of some anti-cancer agents on radiation treatment for cancer. Finally, we confirmed that irradiation could decompose a fungus toxin, patulin, into various harmless by-products.

  6. Metal-nanotube composites as radiation resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, CEDENNA, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); So, Kang Pyo; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bringa, Eduardo M. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina)

    2016-07-18

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  7. Metal-nanotube composites as radiation resistant materials

    International Nuclear Information System (INIS)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel; Duin, Adri C. T. van; So, Kang Pyo; Li, Ju; Bringa, Eduardo M.

    2016-01-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  8. A novel radiation-induced p53 mutation is not implicated in radiation resistance via a dominant-negative effect.

    Directory of Open Access Journals (Sweden)

    Yunguang Sun

    Full Text Available Understanding the mutations that confer radiation resistance is crucial to developing mechanisms to subvert this resistance. Here we describe the creation of a radiation resistant cell line and characterization of a novel p53 mutation. Treatment with 20 Gy radiation was used to induce mutations in the H460 lung cancer cell line; radiation resistance was confirmed by clonogenic assay. Limited sequencing was performed on the resistant cells created and compared to the parent cell line, leading to the identification of a novel mutation (del at the end of the DNA binding domain of p53. Levels of p53, phospho-p53, p21, total caspase 3 and cleaved caspase 3 in radiation resistant cells and the radiation susceptible (parent line were compared, all of which were found to be similar. These patterns held true after analysis of p53 overexpression in H460 cells; however, H1299 cells transfected with mutant p53 did not express p21, whereas those given WT p53 produced a significant amount, as expected. A luciferase assay demonstrated the inability of mutant p53 to bind its consensus elements. An MTS assay using H460 and H1299 cells transfected with WT or mutant p53 showed that the novel mutation did not improve cell survival. In summary, functional characterization of a radiation-induced p53 mutation in the H460 lung cancer cell line does not implicate it in the development of radiation resistance.

  9. Radiation-resistance of polyurethane pipes for cooling liquid in BES III

    International Nuclear Information System (INIS)

    Li Xunfeng; Zheng Lifang; Ji Quan; Wu Ping; Wang Li

    2009-01-01

    Gamma ray radiation and neutron radiation are predominant in the working conditions of BES III, and the radiation-resistance aging of polyurethane pipes is very important in this condition, as the pipes of cooling liquid for beam pipe and SCQ (superconducting quadrupole) vacuum pipe in BESIII. Polyester polyurethane pipes and polyether polyurethane pipes were irradiated by gamma ray and neutron. The radiation doses were as much as ten years' doses in BES. Pressure test, FTIR and thermal analysis were used to study the radiation-resistance of these two kinds of polyurethane pipes. The results show that the radiation-resistance and thermal stability of polyester polyurethane pipes are prior to those of polyether polyurethane pipes, and the pressure resistance of polyester polyurethane pipes is almost maintained after the irradiation by gamma ray and neutron, but the polyether polyurethane pipes can be aged and ruptured after the irradiation by neutron. (authors)

  10. Tumourigenicity and radiation resistance of mesenchymal stem cells.

    Science.gov (United States)

    D'Andrea, Filippo P; Horsman, Michael R; Kassem, Moustapha; Overgaard, Jens; Safwat, Akmal

    2012-05-01

    Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under nontreated and irradiated conditions, were assessed with microarrays (Affymetrix Human Exon 1.0 ST array). The cellular functions affected by the altered gene expressions were assessed through gene pathway mapping (Ingenuity Pathway Analysis). Based on the clonogenic assay the nontumourigenic cell line was found to be more sensitive to radiation than the tumourigenic cell line. Using the exon chips, 297 genes were found altered between untreated samples of the cell lines whereas only 16 genes responded to radiation treatment. Among the genes with altered expression between the untreated samples were PLAU, PLAUR, TIMP3, MMP1 and LOX. The pathway analysis based on the alteration between the untreated samples indicated cancer and connective tissue disorders. This study has shown possible common genetic events linking tumourigenicity and radiation response. The PLAU and PLAUR genes are involved in apoptosis evasion while the genes TIMP3, MMP1 and LOX are involved in regulation of the surrounding matrix. The first group may contribute to the difference in radiation resistance observed and the latter could be a major contributor to the tumourigenic capabilities by degrading the intercellular matrix. These results also indicate that cancer stem cells are more radiation resistant than stem cells of the same origin.

  11. Radiation resistance of a hemolytic micrococcus isolated from chicken meat

    International Nuclear Information System (INIS)

    Tan, S.T.

    1982-01-01

    The effects of environmental factors on a highly radiation-resistant hemolytic micrococcus isolated from chicken meat were studied. NaCl tolerance and gamma radiation resistance of the cells were growth phase-related. The cells were resistant to injury from drying or freezing/thawing. Under certain conditions, cells in the frozen state required approximately 5 Mrad to inactivate 90% of the population; 0.2 Mrad injured an equivalent proportion. Survival curve of the cells heated at 60 0 C showed a unique pattern which was in three distinct phases. Heat-stressed cells were much more sensitive to radiation inactivation than unheated cells. When suspended in fresh m-Plate Count Broth (PCB), the injured cells repaired without multiplication during incubation at 32 0 C. The repair process in this bacterium, however, was slower compared to thermally injured organisms studied by other workers. An improved replica-plating technique, was devised for isolation of radiation-sensitive mutants of pigmented bacteria. A simple method to demonstrate radiation-inducible radiation resistance in microbial cells was developed. The new method required neither washing/centrifugation nor procedures for cell enumeration. Mutagenesis treatment of radiation-resistant micrococcal bacterium with N-methyl-N'-nitro-N-nitrosoguanidine (NTG) followed by FPR and screening steps resulted in isolation of two radiation-sensitive mutants. The more sensitive mutant strain, designated as 702, was seven times as sensitive to gamma or UC radiation as the wild type. No apparent difference was observed between 702 and the wild type in (1) cell morphology, colonial morphology, and pigment production or (2) tolerance to NaCl, drying/storage, freezing/thawing, and heating. Sodium dodecyl sulfate treatment (for curing) of wild type did not result in isolation of a radiation-sensitive mutant

  12. Improvement of radiation resistance for polytetrafluoroethylene(PTFE) by radiation cross-linking

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Seguchi, Tadao.

    1996-01-01

    The crosslinked polytetrafluoroethylene(PTFE) was prepared by electron beams irradiation technique in the molten state at 340degC ± 3degC in inert gas atmosphere. The crosslinking density was changed by the irradiation dose. The radiation resistance of crosslinked PTFE was investigated on the mechanical properties after irradiation by γ-rays at room temperature under vacuum and in air. The dose at half value of elongation at break was about 1MGy for 500kGy-crosslinked PTFE, while the dose for non-crosslinked PTFE was only 3.5kGy. It was found that the radiation resistance of PTFE was extremely improved by crosslinking. (author)

  13. Ways of providing radiation resistance of magnetic field semiconductor sensors

    CERN Document Server

    Bolshakova, I A; Holyaka, R; Matkovskii, A; Moroz, A

    2001-01-01

    Hall magnetic field sensors resistant to hard ionizing irradiation are being developed for operation under the radiation conditions of space and in charged particle accelerators. Radiation resistance of the sensors is first determined by the properties of semiconductor materials of sensitive elements; we have used microcrystals and thin layers of III-V semiconductors. Applying complex doping by rare-earth elements and isovalent impurities in certain proportions, we have obtained magnetic field sensors resistant to irradiation by fast neutrons and gamma-quanta. Tests of their radiation resistance were carried out at IBR-2 at the Joint Institute for Nuclear Research (Dubna). When exposed to neutrons with E=0.1-13 MeV and intensity of 10 sup 1 sup 0 n cm sup - sup 2 s sup - sup 1 , the main parameter of the sensors - their sensitivity to magnetic fields - changes by no more than 0.1% up to fluences of 10 sup 1 sup 4 n cm sup - sup 2. Further improvement of radiation resistance of sensor materials is expected by ...

  14. Radiation resistance of wide-bandgap semiconductor power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hazdra, Pavel; Popelka, Stanislav [Department of Microelectronics, Czech Technical University in Prague (Czech Republic)

    2017-04-15

    Radiation resistance of state-of-the-art commercial wide-bandgap power transistors, 1700 V 4H-SiC power MOSFETs and 200 V GaN HEMTs, to the total ionization dose was investigated. Transistors were irradiated with 4.5 MeV electrons with doses up to 2000 kGy. Electrical characteristics and introduced defects were characterized by current-voltage (I-V), capacitance-voltage (C-V), and deep level transient spectroscopy (DLTS) measurements. Results show that already low doses of 4.5 MeV electrons (>1 kGy) cause a significant decrease in threshold voltage of SiC MOSFETs due to embedding of the positive charge into the gate oxide. On the other hand, other parameters like the ON-state resistance are nearly unchanged up to the dose of 20 kGy. At 200 kGy, the threshold voltage returns back close to its original value, however, the ON-state resistance increases and transconductance is lowered. This effect is caused by radiation defects introduced into the low-doped drift region which decrease electron concentration and mobility. GaN HEMTs exhibit significantly higher radiation resistance. They keep within the datasheet specification up to doses of 2000 kGy. Absence of dielectric layer beneath the gate and high concentration of carriers in the two dimensional electron gas channel are the reasons of higher radiation resistance of GaN HEMTs. Their degradation then occurs at much higher doses due to electron mobility degradation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. CERN selects Fujikura's radiation resistant fiber

    CERN Multimedia

    2007-01-01

    "Fujikura Europe Ltd. (search for Fujikura Europe) today announced that its radiation resistant singlemode optical fiber has been selected by CERN to provide communicaton links within the world's largest particle accelerator..."(2/3 page)

  16. Radiation resistance of track etched membranes

    International Nuclear Information System (INIS)

    Buczkowski, M.; Sartowska, B.; Wawszczak, D.; Starosta, W.

    2001-01-01

    Track etched membranes (TEMs) obtained by irradiation of polymer films with heavy ions and subsequent etching of latent tracks can be applied in many fields and among others in biomedicine as well. It is important to know radiation resistance of TEMs because of wide use of radiation sterilization in the case of biomedical devices. Tensile properties of TEMs made of PET and PC films with the thickness of 10 μm after electron irradiation at different doses are known from literature. Nowadays TEMs are being manufactured from thicker (20 μm) PET and PC films as well as polyethylene naphthalate (PEN) films are proposed for TEMs. It seems to be important to get data about radiation resistance of new kinds of TEMs. Samples of polymer films made of PET and PEN with the thickness of 19-25 μm and TEMs made of such materials have been irradiated using 10 MeV electron beam with doses up to 990 kGy. Tensile properties and SEM photographs of the samples after irradiation are given in the paper

  17. DNA from radiation resistant human tumor cells transfers resistance to NIH/3T3 cells with varying degrees of penetrance

    International Nuclear Information System (INIS)

    Kasid, U.; Dritschilo, A.; Weichselbaum, R.

    1987-01-01

    Experimental evidence suggests that clinical radiation resistance may correlate with in vitro radiation survival parameters. Specifically, they isolated several cell lines from radioresistant head and neck carcinomas with D/sub 0/ values greater than 2 Gy. The authors co-transfected DNA from cell line SQ2OB (D/sub 0/ = 2.4 Gy) with the rhoSVNeO plasmid into NIH/3T3 cells (D/sub 0/ = 1.7 Gy). Antibiotic G418 resistant, transformed clones were isolated and confirmed by Southern blotting to contain human alu, as well as rhoSVNeO sequences. Screening for radiation resistance with 8Gy (Cs-137) revealed that 3 of 4 tested hybrid clones show a radiation survival intermediate between NIH/3T3 and SQ2OB. This suggests that radiation resistance is a dominant, transfectable phenotype of mammalian cells and can be expressed in more sensitive cells. Karyotyping of resistant hybrid clones shows the presence of double minute chromosomes. Secondary transfection results and experiments to clone the genetic factors responsible for radiation resistance are in progress and results will be reported

  18. Radiation-resistant bacteria and their application to metal and radionuclides bioremediation

    International Nuclear Information System (INIS)

    Wang Jianlong

    2004-01-01

    Microorganisms have a number of applications in the nuclear industry, which would benefit from the use of radiation-resistant microorganisms. Environmentally isolated bacteria have shown to be resistant to gamma irradiation up to a dose of 30,000 Gy. It has also been reported that the presence of ionizing radiation may induce radio-resistance in bacteria. Recent demonstrations of the removal and immobilization of inorganic contaminants by microbial transformations, sorption and mineralization show the potential of both natural and engineered microorganisms as bioremedial tools. This review is to provide an overview of the application of radiation-resistant bacteria to decontamination of metal and radionuclide. (authors)

  19. Radiation resistance of clinical Acinetobacter spp.: A need for concern

    International Nuclear Information System (INIS)

    Christensen, E.A.; Gerner-Smidt, P.; Kristensen, H.

    1991-01-01

    As part of an epidemiological investigation of hospital infections caused by Acinetobacter spp. the radiation resistance of 15 clinical isolates and four reference strains was assessed. The radiation resistance (in D-6 values, viz. the dose necessary for reducing the initial number of colony forming units by a factor of 10(6)) was, in general, higher in the isolates of A. radioresistens than in the isolates of the A. calcoaceticus-A. baumannii complex and of A. lwoffi. However, the least resistant isolates of A. radioresistens had a D-6 value equal to or lower than the most resistant isolates of the other groups. The lowest D-6 values found were for two of the reference strains. The highest D-6 value was 35 kGy. Three isolates of A. johnsonii could not survive long enough in a dried preparation to make an assessment of the D-6 values possible. The radiation resistance of the 15 clinical isolates in the present study was higher than the resistance found in a study of similar isolates in 1970

  20. Radiation resistance of clinical Acinetobacter spp. : A need for concern

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, E.A.; Gerner-Smidt, P.; Kristensen, H. (Control Department, Statens Seruminstitut, Copenhagen (Denmark))

    1991-06-01

    As part of an epidemiological investigation of hospital infections caused by Acinetobacter spp. the radiation resistance of 15 clinical isolates and four reference strains was assessed. The radiation resistance (in D-6 values, viz. the dose necessary for reducing the initial number of colony forming units by a factor of 10(6)) was, in general, higher in the isolates of A. radioresistens than in the isolates of the A. calcoaceticus-A. baumannii complex and of A. lwoffi. However, the least resistant isolates of A. radioresistens had a D-6 value equal to or lower than the most resistant isolates of the other groups. The lowest D-6 values found were for two of the reference strains. The highest D-6 value was 35 kGy. Three isolates of A. johnsonii could not survive long enough in a dried preparation to make an assessment of the D-6 values possible. The radiation resistance of the 15 clinical isolates in the present study was higher than the resistance found in a study of similar isolates in 1970.

  1. Radiation-resistant vegetative bacteria in a proposed system of radappertization of meats

    International Nuclear Information System (INIS)

    Maxcy, R.B.; Rowley, D.B.

    1978-01-01

    After irradiation in the frozen state with 1 Mrad fresh minced pork or chicken contained approximately 10-100 colony-forming units of highly radiation resistant asporogenous bacteria per gram. Some of these had greater radiation resistance than Clostridium botulinum spores. Much of the radiation resistance was apparent as a shoulder in the death curve, which was markedly reduced by heating prior or subsequent to irradiation. Nature of the meat, such as variation in fat content (5-44%), had no significant effect on the radiation resistance of bacteria therein. Even though these bacteria were isolated from meat, it was not a favourable microenvironment for their growth. The water activity was too low. Heat sensitivity of isolates indicated the pre-irradiation enzyme inactivation treatment required for radappertization of meats would destroy or injure most vegetative cells. Thus, the combined process of heat, irradiation, and unfavourable microenvironment would ensure that these radiation resistant cells would not be a problem in radappertized meats. (author)

  2. Radiation resistant polymers and coatings for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Mallika, C.; Lawrence, Falix

    2014-01-01

    Polymer based materials are extensively used in the nuclear industry for the reprocessing of spent fuels in highly radioactive and corrosive environment. Hence, these polymer materials are susceptible to damage by ionizing radiation, resulting in the degradation in properties. Polymers containing aromatic molecules generally possess higher resistance to radiation degradation than the aliphatic polymers. For improving the radiation resistance of polymers various methods are reported in the literature. Among the aromatic polymers, polyetheretherketone (PEEK) has the radiation tolerance up to 10 Mega Grey (MGy). To explore the possibility of enhancing the radiation resistance of PEEK, a study was initiated to develop PEEK - ceramic composites and evaluate the effect of radiation on the properties of the composites. PEEK and PEEK - alumina (micron size) composites were irradiated in a gamma chamber using 60 Co source and the degradation in mechanical, structural, electrical and thermal properties, gel fraction, coefficient of friction and morphology were investigated. The degradation in the mechanical properties owing to radiation could be reduced by adding alumina filler to PEEK. Nano alumina filler was observed to be more effective in suppressing the damage caused by radiation on the polymer, when compared to micron alumina filler. For the protection of aluminium components in the manipulators and the rotors and stators of the motors of the centrifugal extractors employed in the plant from the attack by nitric acid vapour, PEEK coating based on liquid dispersion was developed, which has resistance to radiation, chemicals and wear. The effect of radiation and chemical vapour on the properties of the PEEK coating was estimated. The performance of the coating in the plant was evaluated and the coating was found to give adequate protection to the motors of centrifugal extractors against corrosion. (author)

  3. Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria

    OpenAIRE

    Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor

    2017-01-01

    A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compen...

  4. Radiation induction of drug resistance in RIF-1: Correlation of tumor and cell culture results

    International Nuclear Information System (INIS)

    Moulder, J.E.; Hopwood, L.E.; Volk, D.M.; Davies, B.M.

    1991-01-01

    The RIF-1 tumor line contains cells that are resistant to various anti-neoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), adriamycin (ADR), and etoposide (VP16). The frequency of these drug-resistant cells is increased after irradiation. The frequency of drug-resistant cells and the magnitude of radiation-induced drug resistance are different in cell culture than in tumors. The dose-response and expression time relationships for radiation induction of drug resistance observed in RIF-1 tumors are unusual.We hypothesize that at high radiation doses in vivo, we are selecting for cells that are both drug resistant and radiation resistant due to microenvironmental factors, whereas at low radiation doses in vivo and all radiation doses in vitro, we are observing true mutants. These studies indicate that there can be significant differences in drug-resistance frequencies between tumors and their cell lines of origin, and that radiation induction of drug resistance depends significantly on whether the induction is done in tumors or in cell culture. These results imply that theories about the induction of drug resistance that are based on cell culture studies may be inapplicable to the induction of drug resistance in tumors

  5. CERN selects Fujikura's radiation resistant fiber

    CERN Multimedia

    2007-01-01

    "Fujikura recently announced that its radiation resistant single mode optical fiber has been selected by CERN, the European Laboratory for Particle Physics, to provide communication links within the world's largest particle accelerator - the Large Hadron Collider (LHC) - near Geneva, Switzerland." (1/2 page)

  6. CERN selects Fujikura's radiation resistant fibre

    CERN Multimedia

    2007-01-01

    "Fujikura today announced that its radiation resistant single mode optical fibre has been selected by CERN, the European Laboratory for Particle Physics, to provide communication links within the world's largest particle accelerator - the Large hadron Collider (LHC) - near Genevan, Switzerland. (1/2 page)

  7. Radiation-resistant acquired immunity of vaccinated mice to Schistosoma mansoni

    International Nuclear Information System (INIS)

    Aitken, R.; Coulson, P.S.; Dixon, B.; Wilson, R.A.

    1987-01-01

    Vaccination of mice with attenuated cercariae of Schistosoma mansoni induces specific acquired resistance to challenge infection. This resistance is immunologically-mediated, possibly via a delayed-type hypersensitivity. Studies of parasite migration have shown that the protective mechanism operates most effectively in the lungs of vaccinated mice. We have probed the mechanism by exposing mice to 500 rads of gamma radiation before challenge infection. Our results show that the effector mechanism operative against challenge larvae is resistant to radiation. In contrast, classical immune responses are markedly suppressed by the same treatment. While leukocyte populations in the blood fall dramatically after irradiation, numbers of cells recoverable by bronchoalveolar lavage are unaffected. We suggest that vaccination with attenuated cercariae establishes populations of sensitized cells in the lungs which trigger the mechanism of resistance when challenge schistosomula migrate through pulmonary capillary beds. Although the cells may be partially disabled by irradiation, they remain responsive to worm antigens and thereby capable of initiating the elimination mechanism. This hypothesis would explain the radiation resistance of vaccine-induced immunity to S. mansoni

  8. Radiation therapy for resistant sternal hydatid disease

    International Nuclear Information System (INIS)

    Ulger, S.; Barut, H.; Tunc, M.; Aydinkarahaliloglu, E.; Aydin, E.; Karaoglanoglu, N.; Gokcek, A.

    2013-01-01

    Hydatid disease is a zoonotic infectious disease for which there are known treatment procedures and effective antibiotics; however, there are resistant cases that do not respond to medication or surgery. We report a case diagnosed as hydatid disease of the chest wall and treated with radiation therapy (RT) after medical and surgical therapy had failed. In conclusion, RT represents an alternative treatment modality in resistant cases. (orig.)

  9. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  10. Ultraviolet radiation resistance in Halobacterium salinarium

    International Nuclear Information System (INIS)

    Kristoff, S.R.

    1985-01-01

    An obvious characteristic of wild type H. salinarium is its red pigmentation. A non-pigmented mutant was isolated to test the role of pigmentation in UV radiation resistance. Survival curves of UV-irradiated wild type and mutant cells show that pigmentation does not play a direct role in protecting DNA from UV damage. Pigmentation does play a role, however, in repairing UV damage. UV-irradiated wild type cells show more efficient recovery by photoreactivation with 405 nm light than do UV-irradiated non-pigmented mutants. High internal cation concentrations found in H. salinarium may also be partly responsible for the relative resistance of H. salinarium to UV radiation by causing the DNA to assume a conformation less conducive to the production of pyrimidine dimers. In vitro irradiation of DNA extracted from H. salinarium, dissolved in solutions of different ionic strengths, indicate that pyrimidine dimers may not form as readily in DNA which is in an environment with high salt concentration

  11. Development of new radiation resistant, fire-retardant cables. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Ko; Morita, Yosuke; Udagawa, Takashi (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment); Fujimura, Shun-ichi; Oda, Eisuke

    1982-12-01

    For the cables for nuclear facilities, radiation resistance and fire-retardation are severely required. The authors took note of the fact that even in the existing cables for nuclear power plants, their mechanical properties are greatly degraded by the exposure to large dose (for example, 200 Mrad in PWR testing conditions), and attempted the improvement. They employed a new additive, bromated acenaphthylene condensate (con-BACN), which effectively gives radiation resistance and also is a good flame retarder, to be compounded to an insulation material, and examined the characteristics. In this paper, the features of con-BACN and the investigation of fire-retardant EPDM composition are described. As an initial composition, a small amount of zinc white, sulphur, stearic acid, noclac 224 (Ouchi-Shinko Chemicals, Co.), and antimony trioxide, 100 parts of tale and 45 parts of con-BACN were added to 100 parts of EPDM (propylene content 34 %, Japan Synthetic Rubber Co.). As the antiaging agent, it was decided to use phenol series No. 3 as a result of test. The fire-retardant EP rubber-composed cable was produced for trial, its insulation being fabricated, using a Furukawa's pressurized salt bath continuous vulcanizer. The tests of ..gamma..-irradiation, simulated LOCA and combustion were carried out, and the test results are reported. It was indicated that the cable resisted against high dose several times as much as 200 Mrad, and was suitable for the applications, in which the mechanical properties such as bending are required to be maintained after radiation exposure. It was also found that con-BACN was safe, and its properties of decomposition, concentration and acute toxicity were all very low.

  12. Radiation-resistant beamline components at LAMPF

    International Nuclear Information System (INIS)

    Macek, R.J.; Grisham, D.L.; Lambert, J.e.; Werbeck, R.

    1983-01-01

    A variety of highly radiation-resistant beamline components have been successfully developed at LAMPF primarily for use in the target cells and beam stop area of the intense proton beamline. Design features and operating experience are reviewed for magnets, instrumentation, targets, vacuum seals, vacuum windows, collimators, and beam stops

  13. Radiation resistance of polymer materials for space

    International Nuclear Information System (INIS)

    Miyauchi, Masahiko; Iwata, Minoru; Yokota, Rikio

    2011-01-01

    The thin film of thermoplastic polyimide with a new asymmetric structure is used in the solar sail 'IKAROS'. Here, the relation of its chemical structure to its thermodynamic properties and radiation resistance is introduced. (M.H.)

  14. Radiation resistance of cable insulation and jacket materials for nuclear power plants

    International Nuclear Information System (INIS)

    Morita, Minoru; Kon, Shuji; Nishikawa, Ichiro

    1978-01-01

    The cables for use in nuclear power plants are required to satisfy the specific environmental resistance and excellent flame resistance as stipulated in IEEE Std. 383. The materials to be used to cables intended for this specific purpose of use must therefore be strictly tested so as to evaluate their flame resistance in addition to compliance with various environmental requirements, such as heat resistance, water-vapor resistance, and radiation resistance. This paper describes general information on radiation resistance and deterioration of various high-molecular materials, suggests the direction of efforts to be made to improve their properties including flame resistance of various rubber and plastic materials for cables to be used in nuclear power plants, and indicates the performance characteristics of such materials. (author)

  15. Inactivation of the Radiation-Resistant Spoilage Bacterium Micrococcus radiodurans

    Science.gov (United States)

    Duggan, D. E.; Anderson, A. W.; Elliker, P. R.

    1963-01-01

    A simplified technique permitting the pipetting of raw puréed meats for quantitative bacteriological study is described for use in determining survival of these non-sporing bacteria, which are exceptionally resistant to radiation. Survival curves, using gamma radiation as the sterilizing agent, were determined in raw beef with four strains of Micrococcus radiodurans. Survival curves of the R1 strain in other meat substrates showed that survival was significantly greater in raw beef and raw chicken than in raw fish or in cooked beef. Resistance was lowest in the buffer. Cells grown in broth (an artificial growth medium) and resuspended in beef did not differ in resistance from cells that had been grown and irradiated in beef. Survival rate was statistically independent of the initial cell concentration, even though there appeared to be a correlation between lower death rate and lower initial cell concentrations. The initial viable count of this culture of the domesticated R1 strain in beef was reduced by a factor of about 10-5 by 3.0 megarad, and 4.0 megarad reduced the initial count by a factor of more than 10-9. Data suggest that M. radiodurans R1 is more resistant to radiation than spore-forming spoilage bacteria for which inactivation rates have been published. PMID:14063780

  16. Development of superior radiation resistant materials and cables. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ikehara, Junichiro; Kanemitsuya, Kazuhiko; Ohara, Hideo; Araki, Syogo; Hamachi, Katsuhiko [Mitsubishi Cable Industries Ltd., Tokyo (Japan)

    1996-01-01

    Many nuclear power plants have been constructed in Japan and electric power generation is now highly dependent on this technology. Therefore, the needs for facilities that will enrich and reprocess nuclear fuel from nuclear power stations will be high. As there are areas with high levels of radiation, the cables which can be used in these environments are needed. We have developed a superior radiation-resistant cable which uses halogen flame-retardant materials. This radiation-resistant cable consists of Ethylene-propylene rubber (EPDM) insulation and Chlorosulfonated polyethylene (CSM) sheath can be safely used in areas with high levels of radiation. We developed this product to aid in disaster prevention. Non-halogen, flame-retardant EPDM is used for the insulation, and low-halogen, flame-retardant CSM and new non-halogen, flame-retardant materials are used for the sheath. These cables have superior flame-retardant properties and generate little smoke on corrosive gas. This products can hence reduce the danger of a secondary disaster in a fire. We expect that these cables will find application in areas with high levels of radiation. (author).

  17. Development of superior radiation resistant materials and cables. 2

    International Nuclear Information System (INIS)

    Ikehara, Junichiro; Kanemitsuya, Kazuhiko; Ohara, Hideo; Araki, Syogo; Hamachi, Katsuhiko

    1996-01-01

    Many nuclear power plants have been constructed in Japan and electric power generation is now highly dependent on this technology. Therefore, the needs for facilities that will enrich and reprocess nuclear fuel from nuclear power stations will be high. As there are areas with high levels of radiation, the cables which can be used in these environments are needed. We have developed a superior radiation-resistant cable which uses halogen flame-retardant materials. This radiation-resistant cable consists of Ethylene-propylene rubber (EPDM) insulation and Chlorosulfonated polyethylene (CSM) sheath can be safely used in areas with high levels of radiation. We developed this product to aid in disaster prevention. Non-halogen, flame-retardant EPDM is used for the insulation, and low-halogen, flame-retardant CSM and new non-halogen, flame-retardant materials are used for the sheath. These cables have superior flame-retardant properties and generate little smoke on corrosive gas. This products can hence reduce the danger of a secondary disaster in a fire. We expect that these cables will find application in areas with high levels of radiation. (author)

  18. Radiation resistant ducted superconductive coil

    International Nuclear Information System (INIS)

    Schleich, A.

    1976-01-01

    The radiation-resistant ducted superconductive coil consists of a helically wound electrical conductor constituted by an electrically conductive core of superconductive material provided with a longitudinally extending cooling duct. The core is covered with a layer of inorganic insulating material and the duct is covered by an electrically conductive metallic gas-tight sheath. The metallic sheaths on adjacent turns of the coil are secured together. 2 Claims, 4 Drawing Figures

  19. On the honeybee resistance to gamma radiation

    International Nuclear Information System (INIS)

    Courtois, G.; Lecomte, J.

    1960-01-01

    The honeybee, when irradiated by gamma radiations from a cobalt-60 source can stand a 18000 r dose without any apparent harm. Noticeable harm is observed for 90000 r. while immediate death of 100% of the individuals is obtained with a 200000 r dose. The physiological condition of the honeybee plays an important role in its resistance to gamma radiation. Reprint of a paper published in Annales de l'abeille, IV, 1959, p. 285-290 [fr

  20. Some resistance mechanisms to ultraviolet radiation

    International Nuclear Information System (INIS)

    Alcantara D, D.

    2002-12-01

    The cyclical exposure of bacterial cells to the ultraviolet light (UV) it has as consequence an increment in the resistance to the lethal effects of this type of radiation, increment that happens as a result of a selection process of favorable genetic mutations induced by the same UV light. With object to study the reproducibility of the genetic changes and the associate mechanisms to the resistance to UV in the bacteria Escherichia coli, was irradiated cyclically with UV light five different derived cultures of a single clone, being obtained five stumps with different resistance grades. The genetic mapping Hfr revealed that so much the mutation events like of selection that took place during the adaptation to the UV irradiation, happened of random manner, that is to say, each one of the resistant stumps it is the result of the unspecified selection of mutations arisen at random in different genes related with the repair and duplication of the DNA. (Author)

  1. Data base of radiation-resistant dielectric and insulating materials

    International Nuclear Information System (INIS)

    Hama, Yoshimasa; Sunazuka, Hideo; Nashiyama, Isamu; Kakuta, Tsunemi.

    1987-01-01

    In the data base of radiation-resistant dielectric and insulating materials, the data format contains such items as to give the summary; the data sheet contains the data in concrete form of respective properties from the references; the sheet of references contains the references in the former two. In the above three, there are attached code No., data sheet No., reference No. and key words. In the three areas as radiation-resistant dielectric and insulating materials, i.e., organic materials, inorganic materials and optical fibers, the following are explained: data format, data sheet and objectives. (Mori, K.)

  2. Genetic study of resistance to inhibitory effects of UV radiation in rice (Oryza sativa)

    International Nuclear Information System (INIS)

    Sato, T.; Kang, H.S.; Kumagai, T.

    1994-01-01

    Genetic analysis of resistance to the inhibitory effects of UV radiation on growth of rice (Oryza sativa L.) cultivars was carried out. Some experimental plants were grown in visible radiation supplemented with UV radiation containing a large amount of UV-B and a small amount of UV-C in a phytotron, while others were grown without UV radiation. The degree of resistance to UV radiation was estimated in terms of the degree of reduction caused by supplemental UV radiation in the fresh weight of the aboveground plant parts and the chlorophyll content per unit fresh weight. Fresh weight and chlorophyll content in F 2 plants generated by reciprocally crossing cv. Sasanishiki, a cultivar more resistant to UV radiation, and Norin 1, a cultivar less resistant to such radiation exhibited a normal frequency distribution. The heritabilities of these two properties in F 2 plants were low under conditions of non-supplemental UV radiation. Under elevated UV radiation, the F 2 population shifted to the lower range of fresh weight and chlorophyll content, and the means were close to those of Norin 1. The heritabilities of these two properties were the same in the reciprocal crosses, indicating that maternal inheritance was not involved. Inheritance of chlorophyll content per unit fresh weight was further determined in F 3 lines generated by self-fertilizing F 2 plants of Sasanishiki and Norin 1. The results showed that the F 3 population was segregated into three genotypes, namely, resistant homozygotes, segregated heterozygotes and sensitive homozygotes, with a ratio of 1:65:16. It was thus evident that the resistance to the inhibitory effect of elevated UV radiation in these rice plants was controlled by recessive polygenes. (author)

  3. Radiation resistance of amorphous silicon alloy solar cells

    International Nuclear Information System (INIS)

    Hanak, J.J.; Chen, E.; Myatt, A.; Woodyard, J.R.

    1987-01-01

    The radiation resistance of a-Si alloy solar cells when bombarded by high energy particles is reviewed. The results of investigations of high energy proton radiation resistance of a-Si alloy thin film photovoltaic cells are reported. Irradiations were carried out with 200 keV and 1.00 MeV protons with fluences ranging betweeen 1E11 and 1E15 cm-2. Defect generation and passivation mechanisms were studied using the AM1 conversion efficiency and isochronal anneals. It is concluded that the primary defect generation mechanism results from the knock-on of Si and Ge in the intrinsic layer of the cells. The defect passivation proceeds by the complex annealing of Si and Ge defects and not by the simple migration of hydrogen

  4. Breast cancers radiation-resistance: key role of the cancer stem cells marker CD24

    International Nuclear Information System (INIS)

    Bensimon, Julie

    2013-01-01

    This work focuses on the characterization of radiation-resistant breast cancer cells, responsible for relapse after radiotherapy. The 'Cancer Stem Cells' (CSC) theory describes a radiation-resistant cellular sub-population, with enhanced capacity to induce tumors and proliferate. In this work, we show that only the CSC marker CD24-/low defines a radiation resistant cell population, able to transmit the 'memory' of irradiation, expressed as long term genomic instability in the progeny of irradiated cells. We show that CD24 is not only a marker, but is an actor of radiation-response. So, CD24 expression controls cell proliferation in vitro and in vivo, and ROS level before and after irradiation. As a result, CD24-/low cells display enhanced radiation-resistance and genomic stability. For the first time, our results attribute a role to CD24-/low CSCs in the transmission of genomic instability. Moreover, by providing informations on tumor intrinsic radiation-sensitivity, CD24- marker could help to design new radiotherapy protocols. (author)

  5. Effect that radiation exerts to insulation breakdown of heat resistant polymer materials

    International Nuclear Information System (INIS)

    Fujita, Shigetaka; Baba, Makoto; Noto, Fumitoshi; Ruike, Mitsuo.

    1990-01-01

    Artificial satellites are always exposed to cosmic rays which contain the radiations which do not reach the ground, therefore, the radiation resistance of the polymer insulators for cables and others used in such environment becomes a problem. Also the polymer insulator materials used for nuclear facilities require excellent radiation resistance. It is important to examine the effect that radiation exerts to electric insulation characteristics from the viewpoint of material development. In this paper, the insulation breakdown characteristics of heat resistant polymer films and the mini-cables made for trial of heat resistant polymer materials in the case without irradiation and in the case of gamma ray irradiation, and the results of the structural analysis are reported. The specimens tested, the experimental method and the results are described. The insulation breakdown strength of PFA and FEP films lowered from 0.15-0.2 MGy, but that of PEEK film did not change up to 5 MGy. It was found that fluorine group resins were apt to deteriorate by oxidation as dose increased. (K.I.)

  6. Radiation resistance and molecular structure of poly(arylene ether sulphone)s

    International Nuclear Information System (INIS)

    Hill, D.J.T.; Lewis, D.A.; O'Donnell, J.H.; Pomery, P.J.; Hedrick, J.L.; McGrath, J.E.

    1991-01-01

    The radiation resistance of a series of aromatic polysulfones comprising alternating units of diphenyl sulfone and various aromatic diols has been investigated by measuring volatile products, soluble fractions and electron spin resonance (ESR) spectra. The yields of radicals at 77 K observed by ESR and of SO 2 at 423 K have indicated that biphenol gives enhanced resistance to γ radiation, and tetramethyl bisphenol-A decreased resistance, relative to bisphenol-A, bisphenol-S and hydroquinone. The protective effect of biphenol was confirmed by lower scission and crosslinking yields determined from the soluble fractions after high doses. (author)

  7. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  8. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2013-08-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 Multiplication-Sign 4 matrices (for the gas-radiation interaction) and 3 Multiplication-Sign 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.

  9. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken

    2013-01-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 × 4 matrices (for the gas-radiation interaction) and 3 × 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag

  10. Resistance of Salmonella enteritidis variety typhimurium to gamma radiation

    International Nuclear Information System (INIS)

    Norberg, A.N.; Maliska, C.

    1988-01-01

    The use of ionizing radiations to kill microrganisms responsible for food deterioration, and toxinfections is an example of peaceful use of nuclear energy. Food toxinfections are, amongus, produced mostly by Salmonella enteritidis var. typhimurium. Due to the pauncity of information on the resistance to gamma radiation of Salmonella enteritidis var. typhimurium this paper has the aim to define the 60-Cobalt gamma radiation lethal dose to these bacteria, in experimentally contaminated milk by samples recovered from our geographycal area. One hundred nineteen samples of milk containing about 150.000 bacteria per ml were irradiated with doses ranging from 100 to 1.100 Gy. Two samples of surving bacteria were again irradiated by doses up to 2.500 Gy. The bacteria not previously irradiated were killed by doses of 1.100 Gy. It was concluded that the 60-Cobalt gamma radiation minimal lethal dose to Salmonella enteritidis var. typhimurium is 1.200 Gy. The surviving strains to smaller doses than 1.200 Gy when re-irradiated prompt the forthcoming of more radio-resistant germs. (author) [pt

  11. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  12. Radiation resistance of InP-related materials

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Takamoto, Tatsuya; Ikeda, Eiji; Kurita, Hiroshi; Ohmori, Masamichi; Ando, Koshi; Vargas-Aburto, C.

    1995-01-01

    Irradiation effects of 1-MeV electrons on InP-related materials such as InP, InGaP and InGaAsP have been examined in comparison with those of GaAs. Superior radiation-resistance of InP-related materials and their devices compared to GaAs has been found in terms of minority-carrier diffusion length and properties of devices such as solar cells and light-emitting devices. Moreover, minority-carrier injection-enhanced annealing of radiation-induced defects in InP-related materials has also been observed. (author)

  13. Radiation resistant quench protection diodes for the LHC

    International Nuclear Information System (INIS)

    Hagedorn, D.; Coull, L.

    1994-01-01

    The quench protection diodes for the proposed Large Hadron Collider at CERN will be located inside the He-II vessel of the short straight section of one half cell, where they could be exposed to a radiation dose of about 50 kGy and a total neutron fluence of about 10 15 n/cm 2 over 10 years at temperatures of about 2 K. To investigate the influence of irradiation on the electrical characteristics of the diodes, newly developed diodes of thin base region of the diffusion type and of the epitaxial type have been submitted to irradiation tests at liquid nitrogen temperature in a target area of the SPS accelerator at CERN. The degradation of the electrical characteristics of the diodes for a radiation dose up to about 20 kGy and neutron fluence of up to about 5 10 14 n/cm 2 and the effect of carrier injection and thermal annealing after irradiation have been measured. The test results show that only the thin base diodes of the epitaxial type are really radiation resistant. A compromise must be found between required blocking characteristics and radiation resistance. Annealing by carrier injection and occasional warm up to room temperature can extend the service life of irradiated diodes quite substantially

  14. Experiment of radiation-resistant materials for nuclear powers generating station

    International Nuclear Information System (INIS)

    Choe, J.H.; Lee, C.K.; Kong, Y.K.; Chang, H.S.

    1981-01-01

    The properties of polyethylene materials exhibit good insulation and radiation resistance, but exhibit poor flame resistance. Flame retardant properties of the polyethylene were improved by the radiation induced grafting, coating or cross-linking. When the various flame retardants were fixed onto polyethylene, the amount of fixation in grafting or coating was increased with the increase of radiation dosages. In the case of grafting, it is necessary for high grafting yield that the polyethylene films were swelled before irradiation with γ-rays or electron beams. It is the suitable method for the fixation of flame retardant that polyethylene samples were blended with various flame retardants at 125 0 C and then blended polymers were crosslinked by the electron beams at room temperature

  15. Radiation resisting features of pure quartz fiber

    International Nuclear Information System (INIS)

    Fujii, Takashi; Nagasawa, Yoshiya; Hoshi, Hiroshi; Tomon, Ryoichi; Ooki, Yoshimichi; Yahagi, Kichinosuke

    1985-01-01

    The control of the generation of color centers is essential for optical fibers used in radiation environment. Even pure quartz which is the best radiation resisting material is not exceptional also elucidarion of the mechanism of the generation of color center is necessary for the development of optical fiber with higher radiation resisting feature. Previously, it was assumed that color centers are distributed uniformly throughout cores. Determination of the distribution of color centers was attempted. Cores were etched with HF after γ-ray irradiation, and the changes of intensity of ESR signals of NBOHC and E'-center were determined. NBOHC were not found in circumferential part, and concentrated in the central part. In other words the tendency of distribution is diametral. Thus, the distribution of precursor is supposed to be affected by certain external cause and the generation of NBOHC was depressed in circumferential area. The distribution of E'-center of high OH sample showed similar tendency and high in the center. Where as the distribution in low OH sample was uniform. The external cause is supposed to be hydrogen derived from silicone clad and silicone buffer. Two kind of precursor is suspected for the explanation of the difference of the E'-center in high OH sample and low OH sample. (Ishimitsu, A.)

  16. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  17. Heat- and radiation-resistant scintillator for electron microscopes

    International Nuclear Information System (INIS)

    Kosov, A.V.; Petrov, S.A.; Puzyr', A.P.; Chetvergov, N.A.

    1987-01-01

    The use of a scintillator consisting of a single crystal of bismuth orthogermanate, which has high heat and radiation resistance, in REM-100, REM-200, and REM-100U electron microscopes is described. A study of the heat and radiation stabilities of single crystals of bismuth orthogermanate (Bi 4 Ge 3 O 12 ) has shown that they withstood multiple electron-beam heating redness (T ∼ 800 0 C) without changes in their properties

  18. A study on measurement of radiation resistance of Pyronema domesticum sclerotia

    International Nuclear Information System (INIS)

    Aoshuang, Y.; Ailian, W.; Ying, Z.

    2000-01-01

    Measurements of radiation resistance have been carried out using two strains of Pyronema domesticum which were isolated from Chinese cotton swab gauze. A 'sand-washing' technique was developed to overcome the difficulties when harvesting sclerotia spores from cultured plates and preparing spore suspensions for further use. Three types of microbial preparations, spore suspension, inoculated cotton and spore dot, were exposed to gamma radiation. A dose-survival curve method and a fraction positive method were employed to determine radiation resistance. D 10 values derived from this study are within the range of 2.0-3.0 kGy. Concerns associated with the current study indicate that further work is needed. (author)

  19. Some physiological and morphological aspects of radiation-resistant bacteria and a new method for their isolation from food

    International Nuclear Information System (INIS)

    Sanders, S.W.

    1978-01-01

    A study was undertaken to help clarify the taxonomic positions and mechanisms of radiation resistance of radiation-resistant asporogenous bacteria found in foods. Determinations of DNA base compositions of highly resistant Moroxella-Acinetobacter (M-A) strains indicated that they were atypical, having percent guanine plus cytosine contents exceeding the values for true Moraxella or Acinetobacter spp. By direct observation of dividing cells, the resistant M-A were found to undergo multiple-plane division. Electron micrographs revealed unusually thick cell walls in the M-A as compared with gram-negative bacteria, indicating a possible role of the cell wall in radiation resistance. Resistance to desiccation was utilized in the selection of highly radiation-resistant bacteria from non-irradiated sources. Bacteria from a food or other source were suspended in dilute phosphate buffer and dried in a thin film at 25 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the numbers of radiation-sensitive bacteria. Further selection of the most radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, thereby allowing the isolation of highly resistant bacteria that had not been irradiated. The similarity of radiation-resistance and identifying characteristics between irradiated and non-irradiated isolates indicated that highly radiation-resistant bacteria are not altered by radiation selection. Irradiated Plate Count Agar and Tryptic Soy Agar were found to be very toxic to radiation-resistant bacteria. This phenomenon may be important in food irradiation, where the ability to survive and grow in a product may depend partly on the sensitivity to bacteriocidal products formed during irradiation

  20. Resistance to BN myelogenous leukemia in rat radiation chimeras

    International Nuclear Information System (INIS)

    Singer, D.E.; Haynor, D.R.; Williams, R.M

    1980-01-01

    Lewis → LBNFl rat radiation chimeras showed marked resistance to transplanted BN myelogenous leukemia when compared to naive LBNFl, LBNFl → LBNFl, or BN → LBNFl. This occurred in the absence of overt graft versus host disease or of anti-BN response in mixed lymphocyte culture. Bone marrow specific antigens may serve as the target of the resistance mechanism. (author)

  1. Shielding ability of lead loaded radiation resistant gloves

    International Nuclear Information System (INIS)

    Kawano, Takao; Ebihara, Hiroshi

    1990-01-01

    The shielding ability of radiation resistant gloves were examined. The gloves are made of lead loaded (as PbO 2 ) polyvinyl chloride resin and are about 0.4 mm of thickness (70 mg/cm 2 ). Eleven test pieces were sampled from each of three gloves (total were thirty three) and the transmission rates for radiations (X-ray or γ-ray) through the test pieces were measured with radiation sources, 99m Tc, 57 Co, 133 Ba, 133 Xe and 241 Am. The differences of the transmission rate for radiations by the positions of the gloves were smaller than 15%, and the differences by three gloves were smaller than 5% in the case of 60 keV and 141 keV radiations. The average transmission rates for radiations in thirty three test pieces were about 40% for 30 keV radiation, about 90% for 80 keV and 140 keV radiations. The shielding characteristic of the gloves could be equivalent to about 0.026 mm thick lead plate. (author)

  2. Radiation-resistant optical sensors and cameras; Strahlungsresistente optische Sensoren und Kameras

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G. [Imaging and Sensing Technology, Bonn (Germany)

    2008-02-15

    Introducing video technology, i.e. 'TV', specifically in the nuclear field was considered at an early stage. Possibilities to view spaces in nuclear facilities by means of radiation-resistant optical sensors or cameras are presented. These systems are to enable operators to monitor and control visually the processes occurring within such spaces. Camera systems are used, e.g., for remote surveillance of critical components in nuclear power plants and nuclear facilities, and thus contribute also to plant safety. A different application of optical systems resistant to radiation is in the visual inspection of, e.g., reactor pressure vessels and in tracing small parts inside a reactor. Camera systems are also employed in remote disassembly of radioactively contaminated old plants. Unfortunately, the niche market of radiation-resistant camera systems hardly gives rise to the expectation of research funds becoming available for the development of new radiation-resistant optical systems for picture taking and viewing. Current efforts are devoted mainly to improvements of image evaluation and image quality. Other items on the agendas of manufacturers are the reduction in camera size, which is limited by the size of picture tubes, and the increased use of commercial CCD cameras together with adequate shieldings or improved lenses. Consideration is also being given to the use of periphery equipment and to data transmission by LAN, WAN, or Internet links to remote locations. (orig.)

  3. Radiation resistant organic composites for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.

    1993-01-01

    Organic composite materials (usually reinforced by glas fibers: GFRP) are to be used in fusion superconducting magnets as insulating and/or structural materials. The fusion superconducting magnets are operated under radiation environments and hence the radiation induced degradation of magnet components is ought to be estimated. Among the components the organic composite materials were evaluated to be the most radiation sensitive. Consequently the development of radiation resistant organic composite materials is thought one of the 'key' technologies for fusion superconducting magnets. The mechanism of radiation-induced degradation was studied and the degradation of interlaminar shear strength (ILSS) was found to be the intrinsic phenomenon which controlled the overall degradation of organic composite materials. The degradation of ILSS was studied changing matrix resin, reinforcement and type of fabrics. The possible combination of the organic composites for the fusion superconducting magnet will be discussed. (orig.)

  4. Radiation resistance of pyrocarbon-boned fuel and absorbing elements for HTGR

    International Nuclear Information System (INIS)

    Gurin, V.A.; Konotop, Yu.F.; Odejchuk, N.P.; Shirochenkov, S.D.; Yakovlev, V.K.; Aksenov, N.A.; Kuprienko, V.A.; Lebedev, I.G.; Samsonov, B.V.

    1990-01-01

    In choosing the reactor type, problems of nuclear and radiation safety are outstanding. The analysis of the design and experiments show that HTGR type reactors helium cooled satisfy all the safety requirements. It has been planned in the Soviet Union to construct two HTGR plants, VGR-50 and VG-400. Later it was decided to construct an experimental plant with a low power high temperature reactor (VGM). Spherical uranium-graphite fuel elements with coated fuel particles are supposed to be used in HTGR core. A unique technology for producing spherical pyrocarbon-bound fuel and absorbing elements of monolithic type has been developed. Extended tests were done to to investigate fuel elements behaviour: radiation resistance of coated fuel particles with different types of fuel; influence of the coated fuel particles design on gaseous fission products release; influence of non-sphericity on coated fuel particle performance; dependence of gaseous fission products release from fuel elements on the thickness of fuel-free cans; confining role of pyrocarbon as a factor capable of diminishing the rate of fission products release; radiation resistance of spherical fuel elements during burnup; radiation resistance of spherical absorbing elements to fast neutron fluence and boron burnup

  5. Radiation resistance of insulating materials for electric wires

    International Nuclear Information System (INIS)

    Kanemitsuya, Kazuhiko; Okuda, Tomoaki; Tachibana, Tadao; Yagi, Toshiaki; Seguchi, Tadao.

    1990-01-01

    In no halogen incombustible materials, smoke and poisonous gas generation at the time of burning is small, and corrosive gas rarely arises. Since no halogen electric wires and cables which use these material maintain safety for people and equipment in the case of fires, those are used for ships, tunnels, subways and so on. Also in nuclear power stations, the demand for no halogen cables becomes high although the condition of adoption is difficult. In this study, for the purpose of developing the no halogen cables for nuclear power stations, the basic data on the radiation resistance of no halogen incombustible materials were collected, and by using chemical analysis method, the radiation deterioration behavior was examined. The samples were those with base polymers of VLDPE, ULDPE, EEA, EMA and EVA. Gamma ray irradiation, tensile test, chemi-luminescence measurement, and the determination of gel fraction and swelling rate were carried out. The results are reported, In no halogen materials, when ethylene system copolymer is used as the base polymer instead of PE, the composition with good radiation resistance can be obtained, and by combining amine oxidation inhibitor, it is further improved. (K.I.)

  6. Genetic analysis of resistance to radiation lymphomagenesis with recombinant inbred strains of mice

    International Nuclear Information System (INIS)

    Okumoto, M.; Nishikawa, R.; Imai, S.; Hilgers, J.

    1990-01-01

    Induction of lymphomas by radiation in mice is controlled by genetic factors. We analyzed the genetic control of radiation lymphomagenesis using the CXS series of recombinant inbred strains derived from two progenitor strains: one highly susceptible to radiation induction of lymphoma [BALB/cHeA (C)] and one extremely resistant [STS/A (S)]. The best concordances between strain distribution patterns of genetic markers and resistance (or susceptibility) to radiation lymphomagenesis were observed in a region with the b and Ifa genes on chromosome 4. This indicates that one major locus controls the incidence of radiogenic lymphomas in mice. We designated this locus as the Lyr (lymphoma resistance) locus. Backcrosses of (CXS)F1 to the two progenitor strains showed an intermediate incidence of lymphomas between their parental mice and did not significantly differ from (CXS)F1 mice. This and previous observations that (CXS)F1 mice also showed an intermediate incidence, differing from both progenitor strains, indicate that more genes are involved in the resistance (or susceptibility) to lymphoma induced by irradiation

  7. Radiation response of drug-resistant variants of a human breast cancer cell line

    International Nuclear Information System (INIS)

    Lehnert, S.; Greene, D.; Batist, G.

    1989-01-01

    The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells

  8. CERTIFICATION OF THE RADIATION RESISTANCE OF COIL INSULATION MATERIAL

    CERN Document Server

    Polinski, J; Bogdan, P

    2013-01-01

    The goal of the WP 7.2.1 sub-task of the EuCARD program has been to determine the Nb$_{3}$Sn based accelerator magnet coil electrical insulation resistance against irradiation, which will occur in future accelerators. The scope of the certification covers determination of mechanical, electrical and thermal properties changes due to irradiation. The report presents a selection of the insulation material candidates for future accelerator magnets as well as the definition of the radiation certification methodology with respect of radiation type, energy, doses and irradiation conditions. The test methods and results of the electrical and mechanical insulation materials properties degradation due to irradiation are presented. Thermal conductivity and Kapitza resistance at temperature range from 1.5 K to 2.0 K (superfluid helium conditions) are given.

  9. Induced resistance to hydrogen peroxide, UV and gamma radiation in bacillus species

    International Nuclear Information System (INIS)

    Bashandy, A.S.

    2005-01-01

    The catalase activity produced in four bacillus spp.(bacillus cereus, B. laterosporus, B. pumilus and B. subtilis (Escherichia coli was used for comparison) was measured and the sensitivity of these bacteria to hydrogen peroxide was tested. Bacillus spp. had higher resistance to hydrogen peroxide than E. coil. cultures of bacillus spp . When pretreated with sublethal level of hydrogen peroxide, became relatively resistant to the lethal effects of hydrogen than untreated control cultures. These pretreated cells were also resistant to lethality mediated by UV light and gamma radiation. The obtained results suggest that bacillus spp. Possess inducible defense mechanism (s) against the deleterious effects of oxidants and /or ionizing radiation

  10. Correlation of electromagnetic radiation emitted from coal or rock to supporting resistance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hui-lin; Wang, En-yuan; Song, Xiao-yan; Zhang, Hong-jie; Li, Zhong-hui [China University of Mining & Technology, Xuzhou (China). School of Safety Engineering

    2009-05-15

    More accurate forecasting of rock burst might be possible from observations of electromagnetic radiation emitted in the mine. We analyzed experimental observations and field data from the Muchengjian coal mine to study the relationship between electromagnetic radiation signal intensity and stress during the fracturing of coal, or rock, and samples under load. The results show that the signal intensity is positively correlated with stress. In addition, we investigated the change in the electromagnetic radiation intensity, the supporting resistance in a real coal mine environment, and the coal or rock stress in the mining area. The data analysis indicates that: (1) electromagnetic radiation intensity can accurately reflect the distribution of stress in the mining area; and, (2) there is a correlation between electromagnetic radiation intensity and supporting resistance. The research has some practical guiding significance for rock burst forecasting and for the prevention of accidents in coal mines. 9 refs., 6 figs.

  11. Radiation resistance of polymer materials. Degradation evaluation by accelerated testing for application condition

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Sorimachi, Masami

    2010-02-01

    This paper presents re-evaluated radiation resistance property data of polymer materials, which had been tested in past times in TAKASAKI Quantum Beam Science Directorate, for the future study of ageing evaluation of low voltage electric cable insulation materials used in light-water nuclear reactors. The radiation resistance of 25 types of plastics and rubbers materials applied in practical environments was evaluated by the accelerated testing of gamma-ray irradiation under oxygen pressure, and was compared with the radiation resistance determined from the traditional testing by irradiation with a high dose rate in air. The polymer materials were formulated to be similar or equivalent to practical materials, and the most of formulation (chemical compounds and quantities) were described. For all materials, the tensile properties (elongation at break, ultimate strength, 100% or 200% modulus), electric resistivity, gel-fraction, and density were measured after irradiation in oxidation conditions and irradiation in air with a high dose rate (non-oxidation conditions). The data of relations between each properties and total dose at various conditions were compiled, and the relations among the changes of mechanical properties, electrical properties, and radiation induced chemical reactions were discussed. (author)

  12. UV light-induced survival response in a highly radiation-resistant isolate of the Moraxella-acinetobacter group

    International Nuclear Information System (INIS)

    Keller, L.C.; Thompson, T.L.; Maxcy, R.B.

    1982-01-01

    A highly radiation-resistant member of the Moraxella-Acinetobacter group, isolate 4, obtained from meat, was studied to determine the effect of preexposure to UV radiation on subsequent UV light resistance. Cultures that were preexposed to UV light and incubated for a short time in plate count broth exhibited increased survival of a UV light challenge dose. This response was inhibited in the presence of chloramphenicol. Frequencies of mutation to streptomycin, trimethoprim, and sulfanilamide resistance remained the same after the induction of this survival response and were not altered by treatment with mutagens, with the exception of mutation to streptomycin resistance after γ-irradiation or nitrosoguanidine or methyl methane sulfonate treatment. The results indicated that isolate 4 has a UV light-inducible UV light resistance mechanism which is not associated with increased mutagenesis. The characteristics of the radiation resistance response in this organism are similar to those of certain other common food contaminants. Therefore, considered as part of the total microflora of meat, isolate 4 and the other radiation-resistant Moraxella-Acinetobacter isolates should not pose unique problems in a proposed radappertizaton process

  13. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and the correlation with stationary growth phase

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1982-01-01

    Radiation resistance and thermal resistance vary as a function of culture temperature in logarithmically growing Saccharomyces cerevisiae and are related to the optimum temperature for growth. Radiation resistance and thermal resistance were also induced when cells grown at low temperatures were subjected to a heat shock at or above the optimum growth temperature. Exposure to ionizing radiation followed by a short incubation at low temperature also induced resistance to killing by heat. Heat-shocked cells are induced to a level of thermal and radioresistance much greater than the characteristic resistance level of cells grown continuously at the shock temperature. This high level of resistance, which resembles that of stationary-phase cells, decays to the characteristic log-phase level within one doubling of cell number after the heat shock. Both induction of resistance and decay of that induction require protein synthesis. It is postulated that induction of resistance by heat shock or ionizing radiation is a response of the cells to stress and represents a preparation to enter stationary phase

  14. Radiation resistivity of frozen insulin solutions and suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Soboleva, N N; Ivanova, A I; Talrose, V L; Trofimov, V I; Fedotov, V P [AN SSSR, Moscow. Inst. Fizicheskoj Khimii; Research Institute for Biological Testing of Chemicals, Moscow (USSR); Institute of Experimental Endocrinology and Hormon Chemistry, Moscow (USSR))

    1981-10-01

    The effect of great increase in radiation resistance of insulin solutions and suspensions after irradiation at low temperatures in the frozen state was observed by absorption spectrophotometry, paper chromatography and biological analysis. The data obtained suggest irradiation of frozen insulin solutions and suspensions as a method for its sterilization.

  15. Radiation resistance in a melphalan-resistant subline of a rat mammary carcinoma

    International Nuclear Information System (INIS)

    Lehnert, S.; Vestergaard, J.; Batist, G.; Aloui-Jamali, M.A.

    1994-01-01

    A subline of a rat mammary carcinoma (MATB 13762), selected for resistance to melphalan, is cross-resistant to other alkylating drugs, to unrelated drugs and to ionizing radiation. The difference in radioresponse between the sensitive wild-type cell line and the melphalan- and radiation-resistant line (MLN r ) is related to the size of the α component in the linear-quadratic model. Reduction of dose rate does not affect the response of MLN r cells but does increase survival for wild-type cells. MLN r cells have elevated levels of reduced glutathione (GSH) and overexpress redox enzymes glutathione-S-transferase and glutathione peroxidase. Modest depletion of GSH (to 50% of control) radiosensitizes MLN r cells but not wild-type cells. On the basis of the results of an excitation assay, growth delay and tumor control experiments, MATB MLN r tumors are also more radioresistant than wild-type cells when irradiated in situ. However, wild-type cells irradiated shortly after excision of the tumor are much more radioresistant than the same cells irradiated 24 h after excision or maintained in culture, and their response resembles that of MLN r cells irradiated under the same conditions. These results suggest that, in spite of some similarity between the in vivo and in vitro observations, intrinsic radioresistance is not the most important factor influencing the response of MLN r cells in vivo. 22 refs., 7 figs., 4 tabs

  16. Development of new radiation resistant, fire-retardant cables

    International Nuclear Information System (INIS)

    Hagiwara, Ko; Morita, Yosuke; Udagawa, Takashi; Fujimura, Shun-ichi; Oda, Eisuke.

    1982-01-01

    For the cables for nuclear facilities, radiation resistance and fire-retardation are severely required. The authors took note of the fact that even in the existing cables for nuclear power plants, their mechanical properties are greatly degraded by the exposure to large dose (for example, 200 Mrad in PWR testing conditions), and attempted the improvement. They employed a new additive, bromated acenaphthylene condensate (con-BACN), which effectively gives radiation resistance and also is a good flame retarder, to be compounded to an insulation material, and examined the characteristics. In this paper, the features of con-BACN and the investigation of fire-retardant EPDM composition are described. As an initial composition, a small amount of zinc white, sulphur, stearic acid, noclac 224 (Ouchi-Shinko Chemicals, Co.), and antimony trioxide, 100 parts of tale and 45 parts of con-BACN were added to 100 parts of EPDM (propylene content 34 %, Japan Synthetic Rubber Co.). As the antiaging agent, it was decided to use phenol series No. 3 as a result of test. The fire-retardant EP rubber-composed cable was produced for trial, its insulation being fabricated, using a Furukawa's pressurized salt bath continuous vulcanizer. The tests of γ-irradiation, simulated LOCA and combustion were carried out, and the test results are reported. It was indicated that the cable resisted against high dose several times as much as 200 Mrad, and was suitable for the applications, in which the mechanical properties such as bending are required to be maintained after radiation exposure. It was also found that con-BACN was safe, and its properties of decomposition, concentration and acute toxicity were all very low. (Wakatsuki, Y.)

  17. Electrical resistance behavior with gamma radiation dose in bulk carbon nanostrutured samples

    International Nuclear Information System (INIS)

    Lage, J.; Leyva, A.; Pinnera, I.; Desdin, L. F.; Abreu, Y.; Cruz, C. M.; Leyva, D.; Toledo, C.

    2013-01-01

    The aim of this paper is to study the effects of 60 Co gamma radiation on the electrical resistance and V-I characteristic of bulk carbon nano structured samples obtained by electric arc discharge in water method. Images of pristine samples obtained with scanning electron, and the results in graphical form of the electrical characterization of irradiated samples are presented in the text. It was observed that the electrical resistance vs. dose behavior shows an initial increment reaching the maximum at approximately 135 kGy, followed by a drop of the resistance values. These behaviors are associated with the progressive generation of radiation induced defects in the sample, whose number increases to reach saturation at 135 kGy. From this dose, defects could lead to cross-links between different nano structures present in the sample conducting to a gradually drop in electrical resistance. The measured V-I curves show that, increasing exposure to the 60 Co gamma radiation, the electrical properties of the studied samples transit from a semiconductor towards a predominantly metallic behavior. These results were compared with those obtained for a sample of graphite powder irradiated under the same conditions. (Author)

  18. Role of manganese in the resistance of Micrococcus radiodurans to ionizing radiation

    International Nuclear Information System (INIS)

    Wierowski, J.V.

    1980-01-01

    Micrococcus radiodurans possesses a very high level of intracellular manganese compared to other organisms. This manganese content has previously been shown to participate in the exceptional ulraviolet radiation resistance of M. radiodurans. This study was undertaken to determine the role of manganese in the ionizing radiation resistant of M. radiodurans. The results indicate that manganese is essential for DNA degradation to occur during irradiation. Manganese has also proven essential for the second phase of post-irradiation thymine base damage removal. These factors work together to increase the rate of recovery from radiation damage, which is reflected in a larger Dq, D 37 and exponential portion of the survival curve of high Mn-grown cells

  19. INFLUENCE OF INCUBATION TIME, GAMMA RAYS AND ELECTRON BEAM ON RADIATION RESISTANCE OF SOME SELECTED PATHOGENS

    International Nuclear Information System (INIS)

    EL-HIFNAWI, H.N.; EL-TABLAWY, S.Y.

    2009-01-01

    The effect of different growth phases on the radiation resistance, antibiotic susceptibility and pathogenicity of certain selected pathogens (Escherichia coli, Candida albicans and Staphylococcus aureus) was studied in mice. The obtained results showed that Escherichia coli was slightly more resistant to gamma radiation in 18 h than 24 h or 48 h but it was relatively more resistant to electron beam in 24 h and 48 h than 18 h. Candida albicans showed radiation resistance nearly the same in all incubation times in the case of gamma radiation while for electron beam, its radiation resistance was slightly more in 24 h and 48 h than in 18 h. On the other hand, Staphylococcus aureus recorded much more resistance to gamma radiation in the 48 h than in 24 h or 18 h whereas in the case of electron beam, it was slightly more resistant in 18 h than in 24 h and 48 h.The antibiotic susceptibility of Escherichia coli reported that the exposure to gamma radiation at 3 kGy and electron beam at 6 kGy increase the susceptibility to the nalidixic acid and nitrofurantoin. When Candida albicans was exposed to 3 kGy gamma radiation and 6 kGy electron beam, the same sensitivity to nystatin was observed in comparison with the unexposed one while the sensitivity of Staphylococcus aureus to some antibiotics (amoxicillin, nitrofurantoin and tetracycline) was decreased after exposure to gamma radiation at 0.75 and 2 kGy and electron beam at 6 kGy, but for other antibiotics (trimethoprim/ sulfamethoxazole), the sensitivity was increased at 6 kGy electron beam.The lethality percent recorded after the oral ingestion of the mice with the unexposed Escherichia coli and Candida albicans were 25% and 100%, respectively, and for 6 kGy exposure to electron beam was 0% . The cotaneous disease and abscesses caused by the intradermal injection of the mice with unexposed Staphylococcus aureus was 75% and for 6 kGy exposure to electron beam was 25%.

  20. Irradiation test of component for radiation-resistant small sized motor

    International Nuclear Information System (INIS)

    Nakamichi, M.; Ishitsuka, E.; Shimakawa, S.; Kan, S.

    2009-01-01

    A small-sized motor with a resistance to radiation was developed. This motor has been able to operate at a gamma-ray dose of a value 700 times as high as the specification of a commercial motor. The present work describes results of post-irradiation examinations (PIEs) to evaluate effects of neutron irradiation on the lifetime of some major components of the motor such as a bearing, a magnet and a fixation agent for a field coil wire. It became clear from the results of PIEs that the radiation-resistance dose of the motor using a Sm-Co magnet will be expected to be one order of magnitude higher than that of the motor using a Nb-Fe-B magnet.

  1. SU-C-303-01: Activation-Induced Cytidine Deaminase Confers Cancer Resistance to Radiation Therapy

    International Nuclear Information System (INIS)

    Yi, S; La Count, S; Liu, J; Bai, X; Lu, L

    2015-01-01

    Purpose: To study the role of activation-induced cytidine deaminase (AID) in malignant cell resistance to radiation therapy. Methods: We first developed several small devices that could be used to adopt radiation beams from clinical high dose rate brachy therapy (HDR) or linac-based megavoltage machines to perform pre-clinical cell and mouse experiments. Then we used these devices to deliver radiation to AID-positive and AID-silenced cancer cells or tumors formed by these cells in mice. Cells and mice bearing tumors received the same dose under the same experimental conditions. For cells, we observed the apoptosis and the cell survival rate over time. For mice bearing tumors, we measured and recorded the tumor sizes every other day for 4 weeks. Results: For cell experiments, we found that the AID-positive cells underwent much less apoptosis compared with AID-silenced cells upon radiation. And for mouse experiments, we found that AID-positive tumors grew significantly faster than the AID-silenced tumors despite of receiving the same doses of radiation. Conclusion: Our study suggests that AID may confer cancer resistance to radiation therapy, and AID may be a significant biomarker predicting cancer resistance to radiation therapy for certain cancer types

  2. Influence of mutations in some structural genes of heat-shock proteins on radiation resistance of Escherichia coli

    International Nuclear Information System (INIS)

    Verbenko, V.N.; Kuznetsova, L.V.; Bikineeva, E.G.; Kalinin, V.L.

    1992-01-01

    Lethal effects of γ-irradiation were studied in Escherichia coli strains with normal repair genotype and in radiation-resistant Gam r strains, both carrying additional mutations in the structural genes dnaK, grpE, groES or groEL. The null mutation ΔdnaK52::Cm r enhanced radiation sensitivity of wild-type cells and abolished the effect of heat induced rediation-resistance (ETIRR) and elevated radiation resistance of the Gam r strains

  3. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    Directory of Open Access Journals (Sweden)

    Kurmashev Sh. D.

    2014-12-01

    Full Text Available The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czochralski method. Irradiation of the samples was carried out using electron linear accelerator "Electronics" (ЭЛУ-4. Energy of the particles was 2,3—3,0 MeV, radiation dose 1015—1020 m–2, electron beam current 2 mA/m2. It is shown that in structures containing dislocation networks, irradiation results in reduction of the reverse currents by 5—8 times and of the density of defects by 5—10 times, while the mobility of the charge carriers is increased by 1,2 times. Wafer yield for operation under radiation exposure, when the semiconductor structures are formed in the optimal mode, is increased by 7—10% compared to the structures without dislocation networks. The results obtained can be used in manufacturing technology for radiation-resistant integrated circuits (bipolar, CMOS, BiCMOS, etc..

  4. High resistance of some oligotrophic bacteria to ionizing radiation

    International Nuclear Information System (INIS)

    Nikitin, D.I.; Tashtemirova, M.A.; Pitryuk, I.A.; Sorokin, V.V.; Oranskaya, M.S.; Nikitin, L.E.

    1994-01-01

    The resistance of seven cultures of eutrophic and oligotrophic bacteria to gamma radiation (at doses up to 360 Gy) was investigated. The bacteria under study were divided into three groups according to their survival ability after irradiation. Methylobacterium organophilum and open-quotes Pedodermatophilus halotoleransclose quotes (LD 50 = 270 Gy) were highly tolerant. By their tolerance, these organisms approached Deinococcus radiodurans. Aquatic ring-shaped (toroidal) bacteria Flectobacillus major and open-quotes Arcocella aquaticaclose quotes (LD 5 = 173 and 210 Gy, respectively) were moderately tolerant. Eutrophic Pseudomonas fluorescens and Escherichia coli (LD 50 = 43 and 38 Gy, respectively) were the most sensitive. X-ray microanalysis showed that in tolerant bacteria the intracellular content of potassium increased and the content of calcium decreased after irradiation. No changes in the element composition of the eutrophic bacterium E. coli were detected. Possible mechanisms of the resistance of oligotrophic bacteria to gamma radiation are discussed

  5. Modulation of DNA methylation levels sensitizes doxorubicin-resistant breast adenocarcinoma cells to radiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Luzhna, Lidia [Department of Biological Sciences, University of Lethbridge, AB, Canada T1K 3M4 (Canada); Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca [Department of Biological Sciences, University of Lethbridge, AB, Canada T1K 3M4 (Canada)

    2010-02-05

    Chemoresistant tumors often fail to respond to other cytotoxic treatments such as radiation therapy. The mechanisms of chemo- and radiotherapy cross resistance are not fully understood and are believed to be epigenetic in nature. We hypothesize that MCF-7 cells and their doxorubicin-resistant variant MCF-7/DOX cells may exhibit different responses to ionizing radiation due to their dissimilar epigenetic status. Similar to previous studies, we found that MCF-7/DOX cells harbor much lower levels of global DNA methylation than MCF-7 cells. Furthermore, we found that MCF-7/DOX cells had lower background apoptosis levels and were less responsive to radiation than MCF-7 cells. Decreased radiation responsiveness correlated to significant global DNA hypomethylation in MCF-7/DOX cells. Here, for the first time, we show that the radiation resistance of MCF-7/DOX cells can be reversed by an epigenetic treatment - the application of methyl-donor SAM. SAM-mediated reversal of DNA methylation led to elevated radiation sensitivity in MCF-7/DOX cells. Contrarily, application of SAM on the radiation sensitive and higher methylated MCF-7 cells resulted in a decrease in their radiation responsiveness. This data suggests that a fine balance of DNA methylation is needed to insure proper radiation and drug responsiveness.

  6. Radiation resistance of concrete of nuclear reactor vessel

    International Nuclear Information System (INIS)

    Belyakov, V.V.; Denisov, A.V.; Korenevskij, V.V.; Muzalevskij, L.P.; Dubrovskij, V.B.; Ivanov, D.A.; Nazarov, I.L.; Sashin, N.L.

    1992-01-01

    Results of calculational-experimental determination of radiation resistance for concrete bases on limestone gravel and quartz sand, which are the most perspective materials for manufacturing prestressed concrete of the VG-400 reactor vessel are considered. Material samples under investigation were irradiated in the channels of the IBR-2 research reactor for the purpose of the calcultional result verification

  7. Development of radiation resistant magnets for JHF/J-PARC project

    CERN Document Server

    Tanaka, K H; Takahashi, H; Agari, K; Toyoda, A; Sato, Y; Minakawa, M; Noumi, H; Yamanoi, Y; Ieiri, M; Katoh, Y; Yamada, Y; Suzuki, Y; Takasaki, M; Birumachi, T; Tsukuda, S; Saitoh, Y; Saitô, N; Yahata, K; Kato, K; Tanaka, H; 10.1109/TASC.2004.829681

    2004-01-01

    A series of the R&D works on the radiation resistant magnets for the Japan Hadron Facility (JHF) project has been continued at the High Energy Accelerator Research Organization (KEK). The JHF is a high- energy part of the Japanese high intensity Particle Accelerator Research Complex (J-PARC), which is Japanese next-generation high- intensity accelerator project. The main JHF accelerator is the 50 GeV proton synchrotron and will provide high intensity 15 mu A proton beam for various nuclear and particle physics experiments. This time, the actual sized completely-inorganic radiation-resistant quadrupole magnet, designed for the 50 GeV proton beam transportation, was manufactured successfully by using mineral insulation magnet cable (MIC). The assembling procedure and the test results are presented in this issue. (8 refs).

  8. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    Directory of Open Access Journals (Sweden)

    Kimberly M. Webb

    2012-01-01

    Full Text Available Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  9. Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea.

    Science.gov (United States)

    Webb, Kimberly M; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn(2+)-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  10. Characterization of radiation-resistant vegetative bacteria in beef

    International Nuclear Information System (INIS)

    Welch, A.B.; Maxcy, R.B.

    1975-01-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D 10 of 5.4 min at 70 0 C or less. The radiation resistance ranged from D 10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. (auth)

  11. Endogenous superoxide dismutase and catalase activities and radiation resistance in mouse cell lines

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Ostrand-Rosenberg, S.

    1988-01-01

    The relationship between the endogenous cytoplasmic levels of the enzymes superoxide dismutase and catalase and the inhibition of cell proliferation by γ-radiation has been studied in 11 mouse cell lines. The resistance of these mouse cell lines to radiation was found to vary by over 25-fold. No correlation was found between the cytoplasmic level of CuZn-superoxide dismutase or catalase and the resistance to radiation as measured by extrapolation number (EN), quasi-threshold dose (Dsub(q)), or Dsub(o). None of the cell lines had detectable cytoplasmic Mn-superoxide dismutase. The apparent Ksub(i) of potassium cyanide for mouse CuZn-superoxide dismutase was determined (Ksub(i) = 6.5 μmol dm -3 ). (author)

  12. Prediction of Ionizing Radiation Resistance in Bacteria Using a Multiple Instance Learning Model.

    Science.gov (United States)

    Aridhi, Sabeur; Sghaier, Haïtham; Zoghlami, Manel; Maddouri, Mondher; Nguifo, Engelbert Mephu

    2016-01-01

    Ionizing-radiation-resistant bacteria (IRRB) are important in biotechnology. In this context, in silico methods of phenotypic prediction and genotype-phenotype relationship discovery are limited. In this work, we analyzed basal DNA repair proteins of most known proteome sequences of IRRB and ionizing-radiation-sensitive bacteria (IRSB) in order to learn a classifier that correctly predicts this bacterial phenotype. We formulated the problem of predicting bacterial ionizing radiation resistance (IRR) as a multiple-instance learning (MIL) problem, and we proposed a novel approach for this purpose. We provide a MIL-based prediction system that classifies a bacterium to either IRRB or IRSB. The experimental results of the proposed system are satisfactory with 91.5% of successful predictions.

  13. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    OpenAIRE

    Webb, Kimberly M.; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-m...

  14. Analysis of QTL for resistance to radiation in rice

    International Nuclear Information System (INIS)

    Zhao Fei; Zhou Yifeng; Ren Sanjuan; Fu Junjie; Zhuang Jieyun; Shen Shengquan

    2010-01-01

    The recombinant inbred line (RIL) population derived from rice variates Zhenshan 97B/Miyang 46 and their genetic linkage maps were used to map QTLs controlling resistant to radiation. The trait was measured by the relative germination rate (RGR) and the relative surviving plant rate (RSPR) after the seeds of each line treated with γ-rays irradiation at two 350 and 550 Gy. The results indicated that the lines treated with γ-irradiation showed different performance in resistance to radiation. Under the treatment of 350 Gy, two QTLs with additive effects were detected, of which qRR (g) 81 was only significant for relative germination rate, and it had the positive additive effects from the male parent, explaining 6.53% of the total phenotypic variations. The qRR(s)2-2 was another significant one for relative surviving plant rate, whose positive effects came from the female parent,explaining 12.81% of the total phenotypic variations. Similarly, 4 QTLs were detected under irradiation dose of 550 Gy, and qRR(g)1-2 and qRR(g)8-2 were detected for relative germination rate, with positive effects coming from female and male parent,respectively,explaining 14.38% of the total variations. qRR(s)5-2 and qRR(s)10 were detected for relative surviving plant rate, with positive effects coming from the male parent, explaining 19.65% of total variations. Under different irradiation dose, 9 pairs of double QTL epistasis effects could be identified in this population. The results suggested that the expression of QTL with resistance to radiation might have relation with the irradiation dose. (authors)

  15. Radiation resistance of paralytic shellfish poison (PSP) toxins

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, Edith M

    2000-04-01

    Radiation resistance of paralytic shellfish poison (PSP) toxins, obtained from Pyrodinium bahamense var. compressum in shellstocks of green mussels, was determined by subjecting the semi-purified toxin extract as well as the shellstocks of green mussels to high doses of ionizing radiation of 5, 10, 15 and 20 kGy. The concentration of the PSP toxins was determined by the Standard Mouse Bioassay (SMB) method. The radiation assistance of the toxins was determined by plotting the PSP toxin concentration versus applied dose in a semilog paper. The D{sub 10} value or decimal reduction dose was obtained from the straight line which is the dose required to reduce the toxicity level by 90%. The effects of irradiation on the quality of green mussels in terms of its physico-chemical, microbiological and sensory attributes were also conducted. The effect of irradiation on the fatty acid components of green mussels was determined by gas chromatography. Radiation resistance of the PSP toxins was determined to be lower in samples with initially high toxicity level as compared with samples with initially low toxicity level. The D{sub 10} values of samples with initially high PSP level were 28.5 kGy in shellstocks of green musssels and 17.5 kGy in the semi-purified toxin extract. When the PSP level was low initially, the D{sub 10} values were as high as 57.5 and 43.5 kGy in shellstocks of green mussels for the two trials, and 43.0 kGy in semi-purified toxin extract. The microbial load of the irradiated mussels was remarkably reduced. No differnce in color and odor characteristics were observed in the mussel samples subjected to varying doses of ionizing radiation. There was darkening in the color of mussel meat and its juice. The concentration of the fatty acid components in the fresh green mussels were considerably higher as compared with those present in the irradiated mussels, though some volatile fatty acids were detected as a result of irradiation. (Author)

  16. Radiation resistance of paralytic shellfish poison (PSP) toxins

    International Nuclear Information System (INIS)

    San Juan, Edith M.

    2000-04-01

    Radiation resistance of paralytic shellfish poison (PSP) toxins, obtained from Pyrodinium bahamense var. compressum in shellstocks of green mussels, was determined by subjecting the semi-purified toxin extract as well as the shellstocks of green mussels to high doses of ionizing radiation of 5, 10, 15 and 20 kGy. The concentration of the PSP toxins was determined by the Standard Mouse Bioassay (SMB) method. The radiation assistance of the toxins was determined by plotting the PSP toxin concentration versus applied dose in a semilog paper. The D 10 value or decimal reduction dose was obtained from the straight line which is the dose required to reduce the toxicity level by 90%. The effects of irradiation on the quality of green mussels in terms of its physico-chemical, microbiological and sensory attributes were also conducted. The effect of irradiation on the fatty acid components of green mussels was determined by gas chromatography. Radiation resistance of the PSP toxins was determined to be lower in samples with initially high toxicity level as compared with samples with initially low toxicity level. The D 10 values of samples with initially high PSP level were 28.5 kGy in shellstocks of green musssels and 17.5 kGy in the semi-purified toxin extract. When the PSP level was low initially, the D 10 values were as high as 57.5 and 43.5 kGy in shellstocks of green mussels for the two trials, and 43.0 kGy in semi-purified toxin extract. The microbial load of the irradiated mussels was remarkably reduced. No differnce in color and odor characteristics were observed in the mussel samples subjected to varying doses of ionizing radiation. There was darkening in the color of mussel meat and its juice. The concentration of the fatty acid components in the fresh green mussels were considerably higher as compared with those present in the irradiated mussels, though some volatile fatty acids were detected as a result of irradiation. (Author)

  17. Radiation-Resistant Micrococcus luteus SC1204 and Its Proteomics Change Upon Gamma Irradiation.

    Science.gov (United States)

    Deng, Wuyuan; Yang, Yang; Gao, Peng; Chen, Hao; Wen, Wenting; Sun, Qun

    2016-06-01

    To explore the radiation-resistance mechanisms in bacteria, a radiation-resistant strain SC1204 was isolated from the surrounding area of a (60)Co-γ radiation facility. SC1204 could survive up to 8 kGy dose of gamma irradiation and was identified as Micrococcus luteus by phylogenetic analysis of 16S rRNA gene sequences. Its proteomic changes under 2-kGy irradiation were examined by two-dimensional electrophoresis followed by MALDI-TOF-TOF/MS analysis. The results showed that at least 24 proteins displayed significant changes (p < 0.05) at expression level under the radiation stress, among which 22 were successfully identified and classified into the major functional categories of metabolism, energy production and conservation, translation, ribosomal structure, and biogenesis. Among these proteins, leucyl aminopeptidase involved in synthesis of glutathione was the most abundant induced protein during postirradiation recovery, indicating that anti-oxidation protection was the most important line of defense in SC1204 against radiation. The next abundant protein was phosphoribosyl aminoimidazole carboxamide formyltransferase/IMP cyclohydrolase (AICAR Tfase/IMPCH), the key enzyme in the biosynthetic pathway of purine that is anti-radiation compound. Other proteins changing significantly (p < 0.05) after radiation exposure included urocanate hydratase, dihydrolipoyl dehydrogenase, succinyl-CoA synthetase subunit alpha, phosphoglycerate kinase, cell division protein FtsZ, elongation factor Ts and Tu, translation elongation factor Tu and G, 30S ribosomal protein S1, histidyl-tRNA synthetase, and arginyl-tRNA synthetase, which were considered to be the key proteins in urocanate metabolism, tricarboxylic acid cycle, glycolysis, cell division process, and synthesis process of proteins. Therefore, these proteins may also play important roles in radiation resistance in M. luteus.

  18. The involvement of topoisomerases and DNA polymerase I in the mechanism of induced thermal and radiation resistance in yeast

    International Nuclear Information System (INIS)

    Boreham, D.R.; Trivedi, A.; Weinberger, P.; Mitchel, R.E.

    1990-01-01

    Either an ionizing radiation exposure or a heat shock is capable of inducing both thermal tolerance and radiation resistance in yeast. Yeast mutants, deficient in topoisomerase I, in topoisomerase II, or in DNA polymerase I, were used to investigate the mechanism of these inducible resistances. The absence of either or both topoisomerase activities did not prevent induction of either heat or radiation resistance. However, if both topoisomerase I and II activities were absent, the sensitivity of yeast to become thermally tolerant (in response to a heat stress) was markedly increased. The absence of only topoisomerase I activity (top1) resulted in the constitutive expression of increased radiation resistance equivalent to that induced by a heat shock in wild-type cells, and the topoisomerase I-deficient cells were not further inducible by heat. This heat-inducible component of radiation resistance (or its equivalent constitutive expression in top1 cells) was, in turn, only a portion of the full response inducible by radiation. The absence of polymerase I activity had no detectable effect on either response. Our results indicate that the actual systems that confer resistance to heat or radiation are independent of either topoisomerase activity or DNA polymerase function, but suggest that topoisomerases may have a regulatory role during the signaling of these mechanisms. The results of our experiments imply that maintenance of correct DNA topology prevents induction of the heat-shock response, and that heat-shock induction of a component of the full radiation resistance in yeast may be the consequence of topoisomerase I inactivation

  19. Radiation resistance of elastomers

    International Nuclear Information System (INIS)

    Hourquebie, P.; Bigarre, J.; Forveille, J.L.; Raby, J.; Lazare, L.

    2002-01-01

    The COMOR group is a network of laboratories from both the CEA and the CNRS. This network is particularly involved in fundamental and applied studies on the ageing of polymers under irradiation. COMOR has studied the ageing of EPDM (ethylene-propylene-diene-monomer) because this elastomer is often used in nuclear environment (in cable coating for instance). In this study, we have prepared materials with different formulations and we have characterised their use-condition properties (dielectric and mechanical) before and after γ irradiation. The dielectric measurements are well adapted to study the oxidation and the crosslinking phenomena which appear during the irradiation ageing. We have shown that after a short time, the oxidation is limited by the diffusion of oxygen. A phenolic antioxidant is not able to protect the polymer against the oxidation. However, we used a concentration typical of a purely thermal stabilisation case (0,1%). On the other hand, a diamine type additive with a concentration of 1% showed efficient stabilisation. The mechanical properties of the regular EPDM are strongly affected by the irradiation but there is little difference with regard to radiation resistance between both types of raw materials. Nevertheless, the NORDEL IP 3725 stabilised with the amine has better initial mechanical properties whereas the NORDEL 2722 offers higher strength above 300 kGy. Our results emphasize the stake of a proper stabilisation of polymers with respect to ionising radiation. (authors)

  20. Development of the radiation-resistant strain of Moraxella osloensis and effect of penicillin G on its growth

    International Nuclear Information System (INIS)

    Lim, Sangyong; Yun, Hyejeong; Joe, Minho; Kim, Dongho

    2009-01-01

    A series of repeated exposures to γ-radiation with intervening outgrowth of survivors was used to develop radioresistant cultures of Moraxella osloensis that have been recognized as potential pathogenic microorganism. The D 10 value of the radiation-resistant strain, 5.903±0.006 kGy, was increased by four-fold compared to the parent wild-type strain, 1.637±0.004 kGy. Since most strains of M. osloensis are sensitive to penicillin, we have surveyed the sensitivity of radiation-resistant strain to this antibiotic. When the optical density was monitored after the addition of penicillin G, the radioresistant strain appeared to be more resistant to only a low concentration of penicillin G (0.5 U/ml) than the parent strain. Interestingly, however, there was no apparent difference in the number of viable cells between both strains. Scanning electron microscope data showed that the resistance cells were generally larger than the parent cells, suggesting that this increase in size may cause a higher optical density of radioresistant cells. In conclusion, radiation mutation does not affect the penicillin resistance of M. osloensis.

  1. Development of the radiation-resistant strain of Moraxella osloensis and effect of penicillin G on its growth

    Science.gov (United States)

    Lim, Sangyong; Yun, Hyejeong; Joe, Minho; Kim, Dongho

    2009-07-01

    A series of repeated exposures to γ-radiation with intervening outgrowth of survivors was used to develop radioresistant cultures of Moraxella osloensis that have been recognized as potential pathogenic microorganism. The D10 value of the radiation-resistant strain, 5.903±0.006 kGy, was increased by four-fold compared to the parent wild-type strain, 1.637±0.004 kGy. Since most strains of M. osloensis are sensitive to penicillin, we have surveyed the sensitivity of radiation-resistant strain to this antibiotic. When the optical density was monitored after the addition of penicillin G, the radioresistant strain appeared to be more resistant to only a low concentration of penicillin G (0.5 U/ml) than the parent strain. Interestingly, however, there was no apparent difference in the number of viable cells between both strains. Scanning electron microscope data showed that the resistance cells were generally larger than the parent cells, suggesting that this increase in size may cause a higher optical density of radioresistant cells. In conclusion, radiation mutation does not affect the penicillin resistance of M. osloensis.

  2. Development of the radiation-resistant strain of Moraxella osloensis and effect of penicillin G on its growth

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Yun, Hyejeong; Joe, Minho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Dongho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2009-07-15

    A series of repeated exposures to {gamma}-radiation with intervening outgrowth of survivors was used to develop radioresistant cultures of Moraxella osloensis that have been recognized as potential pathogenic microorganism. The D{sub 10} value of the radiation-resistant strain, 5.903{+-}0.006 kGy, was increased by four-fold compared to the parent wild-type strain, 1.637{+-}0.004 kGy. Since most strains of M. osloensis are sensitive to penicillin, we have surveyed the sensitivity of radiation-resistant strain to this antibiotic. When the optical density was monitored after the addition of penicillin G, the radioresistant strain appeared to be more resistant to only a low concentration of penicillin G (0.5 U/ml) than the parent strain. Interestingly, however, there was no apparent difference in the number of viable cells between both strains. Scanning electron microscope data showed that the resistance cells were generally larger than the parent cells, suggesting that this increase in size may cause a higher optical density of radioresistant cells. In conclusion, radiation mutation does not affect the penicillin resistance of M. osloensis.

  3. Optical emission behavior and radiation resistance of epoxy resins

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Udagawa, Akira; Hagiwara, Miyuki

    1987-11-01

    To make clear a mechanism of radiation resistance of epoxy resin systems, a role of energy trapping site induced in bisphenol A type epoxy resins cured with 4 kinds of aromatic amines (Φ N ) was studied in comparison with the case of aliphatic amine curing system through a measurement of optical emission. In the system of the epoxy resin cured with DETA, the optical emission from an excited state of bisphenol A unit of epoxy resin and a charge transfer complex was observed. On the other hand, the optical emission from Φ N was observed in the aromatic amine curing system. Their excitation spectrum consists of peaks of absorption spectrum of BA and those of Φ N , showing that the excited state of Φ N is formed through the excitation of both BA and Φ N . Therefore, the excited energy of BA transfers to the excited state of Φ N . Emission intensity of Φ N band was 20 ∼ 100 times as large as that of BA. These results indicate that the radiation energy is effectively released as an optical emission from excited state of Φ N in the epoxy resin when cured with aromatic amine. It can be concluded from the above results that aromatic amine hardeners contribute to enhancement of the radiation resistance of epoxy resin by acting as an energy transfer agent. (author)

  4. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream

    International Nuclear Information System (INIS)

    Rizzo, L.; Fiorentino, A.; Anselmo, A.

    2012-01-01

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC > 256 μg/mL) and SMZ (MIC > 1024 μg/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1 mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t 1/2 = 24 min) 1/2 = 99 min) 1/2 = 577 min). Accordingly, the risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. - Highlights: ► Solar radiation did not affect E. coli strain resistance to AMX and SMZ. ► Solar radiation affected the resistance of one E. coli strain to CPX. ► MIC for CPX decreased by 33% after 180 min of solar irradiation.

  5. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, L., E-mail: l.rizzo@unisa.it [Department of Civil Engineering, University of Salerno, via Ponte don Melillo, 1-84084 Fisciano (Italy); Fiorentino, A. [Department of Civil Engineering, University of Salerno, via Ponte don Melillo, 1-84084 Fisciano (Italy); Anselmo, A. [Pluriacque, via Alento, 84060 Prignano Cilento (Italy)

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC > 256 {mu}g/mL) and SMZ (MIC > 1024 {mu}g/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1 mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t{sub 1/2} = 24 min) < AMX (t{sub 1/2} = 99 min) < SMZ (t{sub 1/2} = 577 min). Accordingly, the risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. - Highlights: Black-Right-Pointing-Pointer Solar radiation did not affect E. coli strain resistance to AMX and SMZ. Black-Right-Pointing-Pointer Solar radiation affected the resistance of one E. coli strain

  6. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  7. Radiation resistance and comparative performance of ITO/InP and n/p InP homojunction solar cells

    International Nuclear Information System (INIS)

    Weinberg, I.; Swartz, C.K.; Hart, R.E. Jr.; Coutts, T.J.

    1988-09-01

    The radiation resistance of ITO/InP cells processed by DC magnetron sputtering is compared to that of standard n/p InP and GaAs homojunction cells. After 20 MeV proton irradiations, it is found that the radiation resistance of the present ITO/InP cell is comparable to that of the n/p homojunction InP cell and that both InP cell types have radiation resistance significantly greater than GaAs. The relatively lower radiation resistance, observed at higher fluence, for the InP cell with the deepest junction depth, is attributed to losses in the cells emitter region. Diode parameters obtained from I sub sc - V sub oc plots, data from surface Raman spectroscopy, and determinations of surface conductivity types are used to investigate the configuration of the ITO/InP cells. It is concluded that thesee latter cells are n/p homojunctions, the n-region consisting of a disordered layer at the oxide semiconductor

  8. Influence of preliminary radiation-oxidizing treatment on the corrosion resistance of zirconium in conditions of action of ionizing radiation

    International Nuclear Information System (INIS)

    Garibov, A. A.; Aliyev, A. G.; Agayev, T. N.; Velibekova, G. Z.

    2004-01-01

    Today mainly water-cooled nuclear reactors predominate in atomic energetics. For safe work of nuclear reactors detection of accumulation process of explosives, formed during radiation and temperature influence on heat-carriers in contact with materials of nuclear reactors in normal and emergency regimes of work is of great importance. The main sources of molecular hydrogen formation in normal and emergency regimes are the processes of liquid and vaporous water in vapo metallic reaction [1-5]. At the result of these processes molecular hydrogen concentration in heat-carrier composition always exceeds theoretically expected concentration. One of the main ways to solve the problem of water-cooled reactors safety is detection of possibilities to raise material resistance of fuel elements and heat carrier to joint action of ionizing radiation and temperature. The second way is inhibition of radiation-catalytic activity of construction materials' surface during the process of water decomposition. It's been established, that one of the ways to raise resistance of zirconium materials to the influence of ionizing radiation is formation of thin oxide film on the surface of metals. In the given work the influence of preliminary oxidizing treatment of zirconium surface on its radiation-catalytic activity during the process of water decomposition. With this aim zirconium is exposed to preliminary influence of gamma-quantum in contact with hydrogen peroxide at different meanings of absorbed radiation dose

  9. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, J.

    1995-01-01

    Fourier Transform (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  10. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, Joseph

    1995-01-01

    Fourier Transform Infrared (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  11. Cross-resistance to radiation in human squamous cell carcinoma cells with induced cisplatin resistance

    International Nuclear Information System (INIS)

    Komori, Keiichi

    1998-01-01

    Accumulated evidence indicates that drug resistance is induced in tumor cells treated with a variety of anti-cancer drugs and that there is a possibility of cross-resistance to ionizing radiation associated with induced drug resistance. Most in vitro studies have shown inconsistent results on cross-resistance probably because of different cell lines used and protocols for drug induction. In this study, TE3 human squamous cell carcinoma cell line was treated with a 4-day cycle of cisplatin (cis-diamminedichloroplatinum (II); CDDP) at a concentration yielding 10% cell survival. The treatment was repeated up to 3 cycles. After treatment, cells were tested for CDDP and X-ray sensitivity. One cycle of CDDP treatment induced CDDP resistance with a factor of 1.41 and 2 cycles of the treatment with a factor of 1.86. The resistance factor reached a plateau at 3 cycles of treatment. For analyzing the correlation of CDDP and X-ray resistance, 30 clones from both untreated and 3-cycle treated cells were isolated and analyzed for CDDP and X-ray sensitivity. The sensitivity was expressed as the concentration of drug or dose of X-ray required to reduce the cell survival to x% (Dx). The correlation coefficient of clones with 3-cycle treatment between CDDP and X-ray sensitivity increased gradually by increasing the end point of Dx from D 10 to D 90 , resulting in significant correlation at D 90 . The result suggested that there is a certain common repair-related mechanism affecting both CDDP and X-ray resistance in CDDP-treated cells. (author)

  12. Human Genetic Marker for Resistance to Radiation and Chemicals

    International Nuclear Information System (INIS)

    Lieberman, Howard B.

    2001-01-01

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage

  13. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    Science.gov (United States)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-09-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 °C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 °C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation.

  14. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    International Nuclear Information System (INIS)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-01-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 o C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 o C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D 10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D 10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation

  15. Isolation of radiation resistant fungal strains from highly radioactive field

    International Nuclear Information System (INIS)

    Adam, Y.M.; Aziz, N.H.; Attaby, H.S.H.

    1995-01-01

    This study examined the radiation resistance of fungal flora isolated from the hot-lab around the radiation sources, cobalt 137 and radium 226 . The predominant mould species were: Aspergillus flavus, A. Niger, penicillium chrysogenum, cladosporium herbarum, fusarium oxysporum and alternaria citri. The D 10 values of F. Oxysporum; 2.00 KGy, A. Flavus; 1.40 KGy, P. chrysogenum; 1.15 KGy, and A. citri; 0.95 KGy, are about 1.67, 3.10, 1.92 and 1.36 folds as the D 1 0 values of the same isolates recovered from soil

  16. Evaluation of Radiation Response and Gold Nanoparticle Enhancement in Drug-Resistant Pancreatic Cancer Cells

    Science.gov (United States)

    Abourabia, Assya

    Pancreatic cancer is a major cause of cancer-related death worldwide after lung cancer and colorectal cancer Pancreatic treatment modalities consist of surgery, chemotherapy, and radiation therapy or combination of these therapies. These modalities are good to some extents but they do have some limitations. For example, during the chemotherapy, tumor cells can develop some escape mechanisms and become chemoresistant to protect themselves against the chemo drugs and pass on theses escape mechanisms to their offspring, despite the treatment given. Cancer Cells can become chemoresistant by many mechanisms, for example, decreased drug influx mechanisms, decreased of drug transport molecules, decreased drug activation, altered drug metabolism that diminishes the capacity of cytotoxic drugs, and enhanced repair of DNA damage. Given that some of these chemoresistance mechanisms may impact sensitivity to radiation. Therefore, there is a strong need for a new alternative treatment option to amplify the therapeutic efficacy of radiotherapy and eventually increase the overall efficacy of cancer treatment. Nano-radiation therapy is an emerging and promising modality aims to enhance the therapeutic efficacy of radiotherapy through the use of radiosensitizing nanoparticles. The primary goal of using GNP-enhanced radiation is that GNPs are potent radiosensitizer agents that sensitize the tumor cells to radiation, and these agents promote generation of the free radicals produced by Photo- and Auger- electrons emission at the molecular level which can enhance the effectiveness of radiation-induced cancer cell death. The main aim of this research is to analyze and compare the response to radiation of pancreatic cancer cells, PANC-1, and PANC-1 cells that are resistant to oxaliplatin, PANC-1/OR, and investigate the radiation dose enhancement effect attributable to GNP when irradiating the cells with low-energy (220 kVp) beam at various doses. Based on evidence from the existing

  17. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment

    International Nuclear Information System (INIS)

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-01-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO 2 , and N 2 ). Organisms exhibited the highest death rate (lowest D 10 values [doses required to reduce the logarithm of the bacterial population by 1] under CO 2 packaging conditions, but resistance to irradiation was increased under N 2 . The D 10 values of the isolates were generally greater than those of the reference strains. The D 10 values were also higher (approximately two times) in meat than in a semisynthetic growth medium

  18. Theory of the high base resistivity n(+)pp(+) silicon solar cell and its application to radiation damage effects

    Science.gov (United States)

    Goradia, C.; Weinberg, I.

    1985-01-01

    Particulate radiation in space is a principal source of silicon solar cell degradation, and an investigation of cell radiation damage at higher base resistivities appears to have implication toward increasing solar cell and, therefore, useful satellite lifetimes in the space environment. However, contrary to expectations, it has been found that for cells with resistivities of 84 and 1250 ohm cm, the radiation resistance decreases as cell base resistivity increases. An analytical solar-cell computer model was developed with the objective to determine the reasons for this unexpected behavior. The present paper has the aim to describe the analytical model and its use in interpreting the behavior, under irradiation, of high-resistivity solar cells. Attention is given to boundary conditions at the space-charge region edges, cell currents, cell voltages, the generation of the theoretical I-V characteristic, experimental results, and computer calculations.

  19. Phenotypical and biochemical characterisation of resistance for parasitic weed (Orobanche foetida Poir.) in radiation-mutagenised mutants of chickpea.

    Science.gov (United States)

    Brahmi, Ines; Mabrouk, Yassine; Brun, Guillaume; Delavault, Philippe; Belhadj, Omrane; Simier, Philippe

    2016-12-01

    Some radiation-mutagenised chickpea mutants potentially resistant to the broomrape, Orobanche foetida Poir., were selected through field trials. The objectives of this work were to confirm resistance under artificial infestation, in pots and mini-rhizotron systems, and to determine the developmental stages of broomrape affected by resistance and the relevant resistance mechanisms induced by radiation mutagenesis. Among 30 mutants tested for resistance to O. foetida, five shared strong resistance in both pot experiments and mini-rhizotron systems. Resistance was not complete, but the few individuals that escaped resistance displayed high disorders of shoot development. Results demonstrated a 2-3-fold decrease in stimulatory activity of root exudates towards broomrape seed germination in resistant mutants in comparison with non-irradiated control plants and susceptible mutants. Resistance was associated with an induction of broomrape necrosis early during infection. When infested, most of the resistant mutants shared enhanced levels of soluble phenolic contents, phenylalanine ammonia lyase activity, guaiacol peroxidase activity and polyphenol oxidase activity, in addition to glutathione and notably ascorbate peroxidase gene expression in roots. Results confirmed enhanced resistance in chickpea radiation-mutagenised mutants, and demonstrated that resistance is based on alteration of root exudation, presumed cell-wall reinforcement and change in root oxidative status in response to infection. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems

    International Nuclear Information System (INIS)

    Chen, W.; De Geronimo, G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

    2011-01-01

    We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

  1. Susceptibility to radiation-induced mammary carcinoma in genetically resistant Copenhagen rats

    International Nuclear Information System (INIS)

    Kamiya, Kenji; Nitta, Yumiko; Gould, M.N.

    2000-01-01

    The objective of this experiment was to compare the cellular basis of mammary cancer induction by a chemical carcinogen with induction by ionizing radiation in three strains of rats (inbred that have different genetic susceptibilities: COP rats, F344 rats, and WF rats). Rats were given a single intraperitoneal injection of 50 mg MNU/kg body weight as a mammary-tumor-inducing chemical carcinogen and were irradiated with a 3.0 Gy dose of 60 Co gamma rays at a dose rate of 26.58±1.19 cGy/min. The rats were inspected weekly, and they were killed and necropsied whenever palpable tumors were detected or they became moribund. The histopathological and immunohistochemical characteristics of the mammary tumors were investigated. A transplantation experiment using selected primary mammary tumors that developed in COP rats exposed to gamma rays was also performed to investigate the transplantability of mammary tumors induced by ionizing radiation. The sensitivity of the WF and F344 rats and the resistance of the COP rats to mammary carcinoma induction by the chemical carcinogen MNU was confirmed. In contrast to the chemical carcinogens, no difference in susceptibility to radiation induction of mammary carcinomas was detected among the three strains of rats, and immunohistochemical examination indicated that the radiation-induced carcinomas consisted of more highly differentiated cells than the MNU-induced cancers. The results of the experiment appear to support the hypothesis that differentiated mammary gland tissue is more resistant to chemical carcinogens than to cancer induction by radiation. The authors conclude that radiation-induced cancers in rats may develop via different pathways or from different cell populations than chemically induced cancers. (K.H.)

  2. Susceptibility to radiation-induced mammary carcinoma in genetically resistant Copenhagen rats

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Kenji; Nitta, Yumiko [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Gould, M.N.

    2000-07-01

    The objective of this experiment was to compare the cellular basis of mammary cancer induction by a chemical carcinogen with induction by ionizing radiation in three strains of rats (inbred that have different genetic susceptibilities: COP rats, F344 rats, and WF rats). Rats were given a single intraperitoneal injection of 50 mg MNU/kg body weight as a mammary-tumor-inducing chemical carcinogen and were irradiated with a 3.0 Gy dose of {sup 60} Co gamma rays at a dose rate of 26.58{+-}1.19 cGy/min. The rats were inspected weekly, and they were killed and necropsied whenever palpable tumors were detected or they became moribund. The histopathological and immunohistochemical characteristics of the mammary tumors were investigated. A transplantation experiment using selected primary mammary tumors that developed in COP rats exposed to gamma rays was also performed to investigate the transplantability of mammary tumors induced by ionizing radiation. The sensitivity of the WF and F344 rats and the resistance of the COP rats to mammary carcinoma induction by the chemical carcinogen MNU was confirmed. In contrast to the chemical carcinogens, no difference in susceptibility to radiation induction of mammary carcinomas was detected among the three strains of rats, and immunohistochemical examination indicated that the radiation-induced carcinomas consisted of more highly differentiated cells than the MNU-induced cancers. The results of the experiment appear to support the hypothesis that differentiated mammary gland tissue is more resistant to chemical carcinogens than to cancer induction by radiation. The authors conclude that radiation-induced cancers in rats may develop via different pathways or from different cell populations than chemically induced cancers. (K.H.)

  3. Mutants of Escherichia coli K-12 with enhanced resistance to ionizing radiation

    International Nuclear Information System (INIS)

    Verbenko, V.N.; Akhmedov, A.T.; Kalinin, V.L.

    1986-01-01

    By means of one-dimensional electrophoresis, it is shown that in radiation-resistant Gam 444 ad Gam 445 mutants of Escherichia coli K-12 high-molecular weight heat shock proteins are hyperproduced at 32-37 deg C and are induced more intensively during heat shock (in comparison to the parental) wild-tupe strain AB parallel 57). When the missense htp R15 mutation of the positive regulatory htpR gene for heat shock proteins was introduced by transduction into genome of the Gam 444 mutant, its enhanced radiation-resistance disappeared but could not be restored upon introduction of pKV3 plasmid bearing the htpR, gene. These data show that heat shock Protens are participating in the enhanced radioresistance of Gam mutants

  4. Development of EPDM based thermoplastic elastomers for oil resistant applications: optimization of radiation grafting parameters

    International Nuclear Information System (INIS)

    Chaudhari, C.V.; Dubey, K.A.; Bhardwaj, Y.K.; Sabharwal, S.

    2008-01-01

    Full text: Ethylene-propylene diene terpolymer (EPDM) is currently among the most industrially useful elastomers because of its certain unique properties like excellent heat resistance, resistance towards ozone deterioration, high impact strength. However EPDM has a serious drawback of weak adhesion properties and tendency to swell in contact with paraffin oil and aromatic hydrocarbons. Blending EPDM with suitable polar elastomers or grafting polar polymer chains onto EPDM is an easy method to overcome this drawback. Radiation grafting of Acrylonitrile (ACN) on EPDM provides an easy and effective method of incorporating ACN uniformly on the EPDM backbone. Grafting of ACN on EPDM is expected to result grafted copolymer with better oil resistance, hardness and better compatibility with polar polymer matrices. In the present study radiation induced grafting of ACN onto EPDM rubber film was investigated by mutual radiation grafting technique. Effect of experimental variables viz. radiation dose, dose rate, types of solvents and monomer content on extent of grafting was studied. The solvent composition of Acetone:CCl 4 (20:80) was found to be the optimum mixture which resulted in highest degree of grafting. It was found that the degree of grafting increases with radiation dose, monomer content and decreases with dose rate

  5. Destruction of radiation-resistant cell populations by hyperthermia

    International Nuclear Information System (INIS)

    Roettinger, E.M.; Gerweck, L.E.

    1979-01-01

    Animal experiments with local hyperthermia have shown that the radiauion dose necessary for the local control of 50% of the tumours examined was essentially reduced by heating to 42,5 0 C. In-vitro experients indicated selective destruction of relatively radiation-resistent cell populations by the combination of hyperthermie and reduced hydrogen ion concentration. Experiments with glioblastoma cells confirmed these results qualitatively, but showed quantitatively considerably lower sensitivity towards hyperthermia. (orig.) 891 MG/orig. 892 RDG [de

  6. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    International Nuclear Information System (INIS)

    Fabian, P.E.; Munshi, N.A.; Denis, R.J.

    2002-01-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 10 8 Gy

  7. Radiation resistance of solar cells for space application, 1

    International Nuclear Information System (INIS)

    Mitsui, Hiroshi; Tanaka, Ryuichi; Sunaga, Hiromi

    1989-07-01

    A 50-μm thick ultrathin silicon solar cell and a 280-μm thick high performance AlGaAs/GaAs solar cell with high radiation resistance have been recently developed by National Space Development Agency of Japan (NASDA). In order to study the radiation resistance of these cells, a joint research was carried out between Japan Atomic Energy Research Institute (JAERI) and NASDA from 1984 through 1987. In this research, the irradiation method of electron beams, the effects of the irradiation conditions on the deterioration of solar cells by electron beams, and the annealing effects of the radiation damage in solar cells were investigated. This paper is the first one of a series of reports of the joint research. In this paper, the space radiation environment which artificial satellites will encounter, the solar cells used, and the experimental methods are described. In addition to these, the results of the study on the irradiation procedure of electron beams are reported. In the study of the irradiation method of electron beams, three methods, that is, the fixed irradiation method, the moving irradiation method, and the spot irradiation method were examined. In the fixed irradiation method and moving one, stationary solar cells and solar cells moving by conveyer were irradiated by scanning electron beams, respectively. On the other hand, in the spot irradiation method, stationary solar cells were irradiated by non-scanning steady electron beams. It was concluded that the fixed irradiation method was the most proper method. In addition to this, in this study, some pieces of information were obtained with respect to the changes in the electrical characteristics of solar cells caused by the irradiation of electron beams. (author) 52 refs

  8. Radiation resistance of quartz core fibers, (6)

    International Nuclear Information System (INIS)

    Suzuki, Toshiya; Morisawa, Masaaki; Gozen, Toshikazu; Tanaka, Yukihiro; Shintani, Takeshi; Okamoto, Shin-ichi.

    1988-01-01

    Quatz optical fibers have been used for the communication channels for long distance and large capacity, in addition, their application to the communication system in radiation environment such as nuclear power plants and artificial statellites has been positively examined. In the case of the application to aircrafts and communication satellites, optical fibers are exposed to the temperature variation of wider range than the system on the ground. Particularly, the radiation resistance of optical fibers depends largely on temperature, and at low temperature, the increase of loss is remarkable, therefore, it is important to know the characteristics in low temperature radiation environment. This time, five kinds of the core materials were prepared, and gamma-ray was irradiated at -80degC to evaluate the characteristics of increasing loss and restoration. In this report, based on the results of these evaluation, the wavelength dependence, the effect of impurities in the cores and so on are described. The absorption loss increased remarkably in short wavelength. The increase of loss in high OH fibers became high particularly in the case of low optical power. The effect of Cl was especially conspicuous in the restoration characteristics. Chlorine-free core fibers have the excellent restoration characteristics independent of wavelength and optical power. (K.I.)

  9. Irradiation tests of radiation resistance optical fibers for fusion diagnostic application

    Science.gov (United States)

    Kakuta, Tsunemi; Shikama, Tatsuo; Nishitani, Takeo; Yamamoto, Shin; Nagata, Shinji; Tsuchiya, Bun; Toh, Kentaro; Hori, Junichi

    2002-11-01

    To promote development of radiation-resistant core optical fibers, the ITER-EDA (International Thermonuclear Experimental Reactor-Engineering Design Activity) recommended carrying out international round-robin irradiation tests of optical fibers to establish a reliable database for their applications in the ITER plasma diagnostics. Ten developed optical fibers were irradiation-tested in a Co-60 gamma cell, a Japan Materials Testing Reactor (JMTR). Also, some of them were irradiation tested in a fast neutron irradiation facility of FNS (Fast Neutron Source), especially to study temperature dependence of neutron-associated irradiation effects. Included were several Japanese fluorine doped fibers and one Japanese standard fiber (purified and undoped silica core), as well as seven Russian fibers. Some of Russian fibers were drawn by Japanese manufactures from Russian made pre-form rods to study effects of manufacturing processes to radiation resistant properties. The present paper will describe behaviors of growth of radiation-induced optical transmission loss in the wavelength range of 350-1750nm. Results indicate that role of displacement damages by fast neutrons are very important in introducing permanent optical transmission loss. Spectra of optical transmission loss in visible range will depend on irradiation temperatures and material parameters of optical fibers.

  10. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    Science.gov (United States)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  11. Characteristic of resistant ionization-radiation and its relationship with polysaccharide contents in spirulina

    International Nuclear Information System (INIS)

    Wang Zhiping; Xu Bujin

    2001-01-01

    The anti-radiation capacities of intact filaments, no-sheath filaments and cells of 4 kinds of Spiralina strains (Ss-V, Sp-F, Sp-Z and Sp-D) treated by "6"0Co γ-rays were studied. The relationship between polysaccharide contents and anti-radiation capacity of 4 strains were also detected. The results showed that Spirulina is highly resistant toγ-radiation, however there were significant differences with various strains. The order of anti-radiation capacity is Ss-V > Sp-F > Sp-Z > Sp-D. Moreover, the anti-radiation capacity were remarkably related with polysaccharide contents in the 4 strains. This showed that polysaccharide is very important for raising and maintain-ing super anti-radiation capacity in Spiralina. (authors)

  12. Radiation resistivity of quartz core fiber, 3

    International Nuclear Information System (INIS)

    Gozen, Toshikazu; Suzuki, Toshiya; Hayashi, Tokuji; Tanaka, Hiroyuki; Okamoto, Shinichi.

    1985-01-01

    Radiation resistance characteristics were evaluated for a multi-mode quartz core fiber in low temperature region together with photobleaching effect depending on the incident light power and dependency on the wavelength of measuring rays. This report describes the results of the abovementioned items and the next step study of trial manufacturing of a pure-quartz single-mode fiber for the employment of longer wavelength rays and greater capacity in light transmission communication system. Quartz core fiber specimens were irradiated by 60 Co γ-ray source at -55 deg C to 80 deg C in a constant temperature bath and light transmission loss was determined under irradiation conditions. Low temperature characteristics were superior in an MRT (modified rod-in tube) pure quartz fiber prepared by the plasma method as compared to VAD quartz and Ge-GI fibers. The MRT fiber showed better quality than the Ge-GI fiber also in the photobleaching effect examination. As for the wavelength dependency, light transmission loss of the MRT fiber was less than that of the Ge-GI fiber. The MRT fiber also showed a superior quality in the wide range of irradiation temperatures. Based on the above-mentioned understandings, a pure-quartz single-mode fiber of both BF 3 -doped and F-doped cladding types were developed for longer wavelengths uses. The fibers could attain low light transmission loss of less than 1.0 dB/km at 1.30 μm of wavelength. At the standpoint of radiation resistivity, the BF 3 -doped fiber was found superior. (Takagi, S.)

  13. On the honeybee resistance to gamma radiation; Sur la resistance au rayonnement gamma de l'abeille ouvriere

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, G.; Lecomte, J. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Section des Applications des Radioelements, Centre d' Etudes Nucleaires, Saclay, Station de Recherches Apicoles, Bures-sur-Yvette (France)

    1960-07-01

    The honeybee, when irradiated by gamma radiations from a cobalt-60 source can stand a 18000 r dose without any apparent harm. Noticeable harm is observed for 90000 r. while immediate death of 100% of the individuals is obtained with a 200000 r dose. The physiological condition of the honeybee plays an important role in its resistance to gamma radiation. Reprint of a paper published in Annales de l'abeille, IV, 1959, p. 285-290 [French] L'Abeille butineuse irradiee par le rayonnement gamma issu d'une source de Cobalt 60 supporte sans dommages apparents une dose de 18000 r. Des dommages tres appreciables sont observes pour 90000 r. Une dose de 200000 r entraine la mort immediate de 100% des individus. L'etat physiologique de l'Abeille joue un role important dans la resistance au rayonnement gamma. Reproduction d'un article publie dans Annales de l'abeille, IV, 1959, p. 285-290.

  14. Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop radiation resistant hybrid Lotus Effect photoelectrocatalytic self-cleaning anti-contamination coatings for application to Lunar...

  15. Estimation of interface resistivity in bonded Si for the development of high performance radiation detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yamashita, Makoto; Nomiya, Seiichiro; Onabe, Hideaki

    2007-01-01

    For the development of high performance radiation detectors, direct bonding of Si wafers would be an useful method. Previously, p-n bonded Si were fabricated and they showed diode characteristics. The interface resistivity was, however, not investigated in detail. For the study of interface resistivity, n-type Si wafers with different resistivities were bonded. The resistivity of bonded Si wafers were measured and the interface resistivity was estimated by comparing with the results of model calculations. (author)

  16. Radiation resistant polypropylene blended with mobilizer,. antioxidants and nucleating agent

    Science.gov (United States)

    Shamshad, A.; Basfar, A. A.

    2000-03-01

    Post-irradiation storage of medical disposables prepared from isotactic polypropylene renders them brittle due to degradation. To avoid this, isotactic polypropylene [(is)PP] was blended with a mobilizer, dioctyl pthallate (DOP), three antioxidants (hindered amines and a secondary antioxidant) and benzoic acid to obtain radiation-resistant, thermally-stable and transparent material. Different formulations prepared were subjected to gamma radiation to doses of 25 and 50 kGy. Tests of breakage on bending after ageing in an oven at 70°C up to 12 months have shown that the addition of DOP and the antioxidants imparts improved radiation and thermal stability as compared to (is)PP alone or its blend with DOP. All the formulations irradiated or otherwise demonstrated excellent colour stability even after accelerated ageing at 70°C for prolonged periods.

  17. Radiation resistance characteristics of optical communication system for single mode

    International Nuclear Information System (INIS)

    Ohe, Masamoto; Chigusa, Yoshiki; Kyodo, Tomohisa; Tanaka, Gohtaro; Watanabe, Hajime; Okamoto, Shin-ichi; Yamamoto, Takao.

    1988-01-01

    Optical communication has been utilized also for nuclear power stations and fuel reporocessing plants. As the sufficient safety countermeasures are required there, the amount of information becomes enormous, therefore, optical communication, by which the required space is expected to be reduced, becomes more important. Also in the application to submarine cables, attention must be paid to the radiation resistance as there are the effects of potassium contained in large amount in seawater and uranium deposits in sea bottom. Therefore, the reliability of the components of optical communication systems against radiation becomes a problem. In this study, single mode optical fibers and transmission and receipt modules were selected, and high dose rate irradiation supposing the case of using in a cell and low dose rate, long time irradiation supposing the case of submarine cables were carried out to evaluate the radiation resistance characteristics. The fibers tested were SiO 2 core/F-SiO 2 clad type and GeO 2 -SiO 2 core/SiO 2 clad type. The characteristics of increasing loss in irradiation and restoration after irradiation of the former type were superior to those of the latter type. The output of a receipt module was normal during irradiation, and the output power of a transmission module decreases, but other problems did not arise. (K.I.)

  18. Radiation-resistance assessment of IR fibres for ITER thermography diagnostic system

    International Nuclear Information System (INIS)

    Brichard, B.; Ierschot, S. van; Ooms, H.; Berghmans, F.; Reichle, R.; Pocheau, C.; Decreton, M.

    2006-01-01

    The actively cooled target plates in the divertor of ITER will be subjected to high thermal fluxes (∼ 10 MW/m 2 ). These target plates are compound structures of an armour material at the surface - either carbon fibre reinforced carbon (CFC) or tungsten - and a water cooled CuCrZr structure inside or below. The thermal limit of the interface between the two materials must not exceed 550 o C. Therefore, the temperature must be carefully monitored to prevent structural damages of the divertor plates. Non contact measurements of the temperature offer the advantage to avoid weakening of the cooling plate structure which is already quite complex to manufacture. Infrared thermography of the target surface is therefore considered as a possible solution. Recently a diagnostic concept for spectrally resolved ITER divertor thermography using optical fibres has been proposed by CEA-Cadarache. However, the divertor region will have to face high-radiation flux and the radiation-resistance of InfraRed (IR)-fibres must be evaluated. In collaboration with CEA-Cadarache, an irradiation program has been started at SCK-CEN (Mol, Belgium) with the aim to measure the radiation-induced absorption of different IR fibre candidates operating in the 1-5 μm range. We selected various commercially available IR technologies: ZrF 4 , Hollow-Waveguide, Sapphire and Chalcogenide. For wavelengths below 2 μm we also tested low-OH silica fibres. We carried out a gamma irradiation at a maximum dose-rate of 0.42 Gy/s up to a total dose of about 5000 Gy. We showed that the optical transmission of ZrF 4 fibres strongly decreased under gamma radiation, primarily for wavelengths below 2 μm. In this type of fibre typical optical losses can reach 50 % at 5000 Gy around 3 μm. Nevertheless, the optical transmission can be significantly recovered by performing a thermal annealing treatment at a temperature of 100 o C. We also irradiated a Silver-coated hollow waveguide fibre at the same dose-rate but up

  19. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  20. Radiation resistance in mice increased following chronic application of Li/sub 2/CO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Vacek, A.; Sikulova, J.; Bartonickova, A. (Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav)

    1982-01-01

    In experiments on strain H mice the increased radiation resistance of mice was analysed after three weeks' feeding with a diet including Li given as lithium carbonicum. The concentration of Li in the serum during the first three days of feeding was increased to 0.5 mmol/l and remained at that level to the end of feeding. The application of Li increased the overall number of stem cells in the spleen by 80 per cent compared with the control group. D/sub 0/ of the line of dependence of the number of endogenous colonies on radiation dose increased following Li application by 1.2 Gy compared with controls. The proliferation activity of haemopoietic stem cells observed 90 min after injection of hydroxyurea was, after 21 days feeding with a mixture containing Li, increased by 200 per cent. The results support the idea that the increased radiation resistance of mice following feeding with Li salts before irradiation may be due to the increased content and resistance of the haemopoietic stem cells, as well as activation of granulopoiesis.

  1. Mechanisms of UVB-resistance in rice: Cultivar differences in the sensitivity to UVB radiation in rice

    International Nuclear Information System (INIS)

    Hidema, J.

    2001-01-01

    In a study on the sensitivity to UVB radiation of rice cultivars of 5 Asian rice ecotypes, results showed that the rice cultivars widely varied in UVB sensitivity; among the Japanese rice cultivars, Sasanishiki was more resistant to UVB, while Norin 1 was less resistant; UV-sensitive Norin 1 was deficient in photorepair of cyclobutane pyrimidine dimers (UV-induced DNA damage), and the sensitivity to UVB radiation significantly correlated with deficient CPD photorepair; and that this deficiency in Norin 1 resulted from a functionally altered photolyase. The results suggest that photorepair capacity is a principal factor in determining UVB sensitivity in rice. The effects of supplemental UVB radiation on the growth and yield of Japanese rice cultivars under field conditions were also studied in Japan since 1993. The results indicate that supplemental UVB radiation had inhibitory effects on the growth and yield of rice. Furthermore, grain size was smaller with supplemental UVB radiation

  2. Induction of radiation resistance and radio-protective mechanism. On the reactive oxygen and free radical

    International Nuclear Information System (INIS)

    Yukawa, Osami

    2003-01-01

    Radical scavenging system for reactive oxygen species (ROS) leading to radio-protection is reviewed on findings in animals, tissues and cells. Protection against oxygen toxicity in evolution can be seen in anaerobes' superoxide dismutase (SOD) over 3500 million years ago. ROS is generated endogenously and also by radiation. However, the intracellular sites of the generated ROS are different depending on its cause. The protection is done through enzymes like SOD, peroxidase, catalase, glutathione-related enzymes and through substances like GSH, α-tocopherol, ascorbic acid etc. Induction of ROS scavenging substances related with radio-resistance includes the responses to the low dose radiation (5-50 cGy) in those enzymes described above; to middle to high dose radiation (1-30 Gy) in a similar and in other unknown mechanisms; to exposure of ROS like H 2 O 2 at low concentration; and to antioxidant treatment. The cross-resistance between radiation and drugs suggests necessity of this induction. (N.I.)

  3. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.edu [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Natarajan, Mohan [Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States)

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  4. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1983-01-01

    In response to a heat shock, the yeast Saccharomyces cerevisiae undergoes a large increase in its resistance to heat and, by the induction of its recombinational DNA repair capacity, a corresponding increase in resistance to radiation. Yeast which lack mitochondrial DNA, mitochondria-controlled protein synthetic apparatus, aerobic respiration, and electron transport (rho 0 strain) were used to assess the role of O 2 , mitochondria, and oxidative processes controlled by mitochondria in the induction of these resistances. We have found that rho 0 yeast grown and heat shocked in either the presence or absence of O 2 are capable of developing both radiation and heat resistance. We conclude that neither the stress signal nor its cellular consequences of induced heat and radiation resistance are directly dependent on O 2 , mitochondrial DNA, or mitochondria-controlled protein synthetic or oxidative processes

  5. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    Science.gov (United States)

    Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA

  6. Radiation-resistant photostructure for Schottky diode based on Cr/In2Hg3Te6

    Directory of Open Access Journals (Sweden)

    Ashcheulov A. A.

    2016-05-01

    Full Text Available Ge, Si, InGaAs, GaInAsP photodiodes are used as optical radiation receivers and function in a spectral range of transparency of quartz fiberglass. For the optical systems operated in the increased radioactivity the photodetectors' application on In2Hg3Te6 crystal base characterized by a photosensitivity in the spectral range of 0,5-1,6 mm and also by increased radiation resistance to alpha, beta and gamma radiation is most acceptable. Schottky photodiode structure was designed on the base of this semiconductor formed by a modified floating zone recrystallization technique where the sedimentation effect was leveled. It consists of n-In2Hg3Te6 substrate and deposited by cathode sputtering Cr barrier layer of thickness within a range 10-11 nm choice of Cr is determined by its optimal optical, electric and adhesive features in high quality radiation-resistant photodiode structures manufacturing. Indium and nichrome are used as ohmic contacts. The barrier structures have the contact area of 1,13 mm2 with photo response of 0,6-1,6 mm at the maximal sensitivity 0,43 A/W on the wavelength l,55 mm. Reverse dark current of these structures do not exceed 4 mA at the bias of 1 V (T=295 K, and the potential barrier height is equal to 0,41 eV. The tests of radiation resistance of these structures demonstrated their ability to function at doses of 2⋅108 rem without evident parameters changes. This allows using them in practical aims in the conditions of high radiation.

  7. How the nature of the chemical bond governs resistance to amorphization by radiation damage

    International Nuclear Information System (INIS)

    Trachenko, Kostya; Artacho, Emilio; Dove, Martin T.; Pruneda, J.M.

    2005-01-01

    We discuss what defines a material's resistance to amorphization by radiation damage. We propose that resistance is generally governed by the competition between the short-range covalent and long-range ionic forces, and we quantify this picture using quantum-mechanical calculations. We calculate the Voronoi deformation density charges and Mulliken overlap populations of 36 materials, representative of different families, including complex oxides. We find that the computed numbers generally follow the trends of experimental resistance in several distinct families of materials: the increase (decrease) of the short-range covalent component in material's total force field decreases (increases) its resistance

  8. Comparison Study On Sunlight Or Gamma Radiation Aging Resistance Of Poly (Vinyl Pyrrolidone) Aqueous Solution With PVP Nanogel

    International Nuclear Information System (INIS)

    Doan Binh; Pham Thu Hong; Nguyen Nguyet Dieu; Nguyen Thanh Duoc

    2011-01-01

    Comparison study on sunlight or gamma-radiation aging resistance of poly (vinyl pyrrolidone) (PVP) aqueous solution with PVP nanogel at 0.5% was carried out. Sunlight or gamma- radiation aging resistance of PVP aqueous solution and nanogel was evaluated on the basis of their intrinsic viscosity, UV-VIS absorbance, weight averaged molecular weight (M w ). The PVP aqueous solution and nanogel exposed to sunlight in the storage duration of 3 months and to gamma radiation at absorbed doses of 0, 15, 30, 50 kGy were used for this study. Furthermore, the stability of PVP nanogel and of PVP aqueous solution was also studied on the change of their intrinsic viscosity, UV-VIS absorbance, weight averaged molecular weight, particle size distribution and coil size. The experimental results were shown that the aging resistance of PVP nanogel was higher than that of PVP aqueous solution when exposed to gamma radiation or sunlight. (author)

  9. Effect of nano-oxide particle size on radiation resistance of iron–chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weizong; Li, Lulu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Valdez, James A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Saber, Mostafa [Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201 (United States); Zhu, Yuntian, E-mail: ytzhu@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-02-15

    Radiation resistance of Fe–14Cr alloys under 200 keV He irradiation at 500 °C was systematically investigated with varying sizes of nano oxide Zr, Hf and Cr particles. It is found that these nano oxide particles acted as effective sites for He bubble formation. By statistically analyzing 700–1500 He bubbles at the depth of about 150–700 nm from a series of HRTEM images for each sample, we established the variation of average He bubble size, He bubble density, and swelling percentage along the depth, and found them to be consistent with the He concentration profile calculated from the SIRM program. Oxide particles with sizes less than 3.5–4 nm are found most effective for enhancing radiation resistance in the studied alloy systems.

  10. Concomitant changes in radiation resistance and trehalose levels during life stages of Drosophila melanogaster suggest radio-protective function of trehalose.

    Science.gov (United States)

    Paithankar, Jagdish Gopal; Raghu, Shamprasad Varija; Patil, Rajashekhar K

    2018-04-20

    During development, various life stages of Drosophila melanogaster (D. melanogaster) show different levels of resistance to gamma irradiation, with the early pupal stage being the most radiation sensitive. This provides us an opportunity to explore the biochemical basis of such variations. The present study was carried out to understand the mechanisms underlying radiation resistance during life stages of D. melanogaster. Homogenates from all the life stages of D. melanogaster were prepared at stipulated age. These homogenates were used for the determination of (1) enzymatic antioxidants: superoxide dismutase (SOD), catalase, D. melanogaster glutathione peroxidase (DmGPx), and glutathione S-transferase (GST); (2) reducing non-enzymatic antioxidants: total antioxidant capacity (TAC), reduced glutathione (GSH) and non-reducing non-enzymatic antioxidant trehalose; and (3) levels of protein carbonyl (PC) content. Age-dependent changes in radiation resistance and associated biochemical changes were also studied in young (2 d) and old (20 and 30 d) flies. TAC and GSH were found high in the early pupal stage, whereas catalase and DmGPx were found to increase in the early pupal stage. The non-feeding third instar (NFTI) larvae were found to have high levels of SOD and GST, besides NFTI larvae showed high levels of trehalose. A remarkable decrease was observed in radiation resistance and trehalose levels during the early pupal stage. The PC level was the highest during early pupal stage and was the lowest in NFTI larvae. Older flies showed high level of PC compared with young flies. In vitro increments in trehalose concentration correspond to reduced formation of PCs, suggesting a protective role of trehalose against free radicals. A strong correlation between levels of trehalose and PC formation suggests amelioration of proteome damage due to ionizing radiation (IR). Stages with high trehalose levels showed protected proteome and high radiation resistance, suggesting a

  11. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Moulder, J.E.

    1989-01-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance

  12. Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines

    International Nuclear Information System (INIS)

    Bree, Chris van; Kreder, Natasja Castro; Loves, Willem J.P.; Franken, Nicolaas A.P.; Peters, Godefridus J.; Haveman, Jaap

    2002-01-01

    Purpose: To determine cross-resistance to anti-tumor treatments in 2',2'difluorodeoxycytidine (dFdC, gemcitabine)-resistant human tumor cells. Methods and Materials: Human lung carcinoma cells SW-1573 (SWp) were made resistant to dFdC (SWg). Sensitivity to cisplatin (cDDP), paclitaxel, 5-fluorouracil (5-FU), methotrexate (MTX), cytarabine (ara-C), and dFdC was measured by a proliferation assay. Radiosensitivity and radioenhancement by dFdC of this cell panel and the human ovarian carcinoma cell line A2780 and its dFdC-resistant variant AG6000 were determined by clonogenic assay. Bivariate flowcytometry was performed to study cell cycle changes. Results: In the SWg, a complete deoxycytidine kinase (dCK) deficiency was found on mRNA and protein level. This was accompanied by a 10-fold decrease in dCK activity which resulted in the >1000-fold resistance to dFdC. Sensitivity to other anti-tumor drugs was not altered, except for ara-C (>100-fold resistance). Radiosensitivity was not altered in the dFdC-resistant cell lines SWg and AG6000. High concentrations (50-100 μM dFdC) induced radioenhancement in the dFdC-resistant cell lines similar to the radioenhancement obtained at lower concentrations (10 nM dFdC) in the parental lines. An early S-phase arrest was found in all cell lines after dFdC treatment where radioenhancement was achieved. Conclusions: In the dFdC-resistant lung tumor cell line SWg, the deficiency in dCK is related to the resistance to dFdC and ara-C. No cross-resistance was observed to other anti-tumor drugs used for the treatment in lung cancer. Sensitivity to ionizing radiation was not altered in two different dFdC-resistant cell lines. Resistance to dFdC does not eliminate the ability of dFdC to sensitize cells to radiation

  13. Radiation-hard ceramic Resistive Plate Chambers for forward TOF and T0 systems

    Energy Technology Data Exchange (ETDEWEB)

    Akindinov, A., E-mail: Alexander.Akindinov@cern.ch [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Dreyer, J.; Fan, X.; Kämpfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kiselev, S. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Kotte, R.; Garcia, A. Laso [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Malkevich, D. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Naumann, L. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Nedosekin, A.; Plotnikov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Sultanov, R.; Voloshin, K. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2017-02-11

    Resistive Plate Chambers with ceramic electrodes are the main candidates for a use in precise multi-channel timing systems operating in high-radiation conditions. We report the latest R&D results on these detectors aimed to meet the requirements of the forward T0 counter at the CBM experiment. RPC design, gas mixture, limits on the bulk resistivity of ceramic electrodes, efficiency, time resolution, counting rate capabilities and ageing test results are presented.

  14. Toward advanced gamma rays radiation resistance and shielding efficiency with phthalonitrile resins and composites

    Science.gov (United States)

    Derradji, Mehdi; Zegaoui, Abdeldjalil; Xu, Yi-Le; Wang, An-ran; Dayo, Abdul Qadeer; Wang, Jun; Liu, Wen-bin; Liu, Yu-Guang; Khiari, Karim

    2018-04-01

    The phthalonitrile resins have claimed the leading place in the field of high performance polymers thanks to their combination of outstanding properties. The present work explores for the first time the gamma rays radiation resistance and shielding efficiency of the phthalonitrile resins and its related tungsten-reinforced nanocomposites. The primary goal of this research is to define the basic behavior of the phthalonitrile resins under highly ionizing gamma rays. The obtained results confirmed that the neat phthalonitrile resins can resist absorbed doses as high as 200 kGy. Meanwhile, the remarkable shielding efficiency of the phthalonitrile polymers was confirmed to be easily improved by preparing lead-free nanocomposites. In fact, the gamma rays screening ratio reached the exceptional value of 42% for the nanocomposites of 50 wt% of nano-tungsten loading. Thus, this study confirms that the remarkable performances of the phthalonitrile resins are not limited to the thermal and mechanical properties and can be extended to the gamma rays radiation and shielding resistances.

  15. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    International Nuclear Information System (INIS)

    Shimizu, Takashi; Ichikawa, Tsuneki

    2005-01-01

    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon γ-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as M n R 1 COOCH(C 6 H 5 )R 2 M n +e - ->M n R 1 COO - + · CH(C 6 H 5 )R 2 M n . The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching

  16. Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Shintani, Satoru; Mihara, Mariko; Li, Chunnan; Nakahara Yuuji; Hino, Satoshi; Nakashiro, Koh-ichi; Hamakawa, Hiroyuki

    2003-01-01

    DNA-PK is a nuclear protein with serine/threonine kinase activity and forms a complex consisting of the DNA-PKcs and a heterodimer of Ku70 and Ku80 proteins. Recent laboratory experiments have demonstrated that the DNA-PK complex formation is one of the major pathways by which mammalian cells respond to DNA double-strand breaks induced by ionizing radiation. In this study, we evaluated the relationship between expression levels of DNA-PKcs, Ku70 and Ku80 proteins and radiation sensitivity in oral squamous cell carcinoma (OSCC) cell lines and in OSCC patients treated with preoperative radiation therapy. The OSCC cell lines greatly differed in their response to irradiation, as assessed by a standard colony formation assay. However, the expression levels of the DNA-PK complex proteins were all similar, and there was no association between the magnitude of their expression and the tumor radiation sensitivity. Expression of DNA-PK complex proteins increased after radiation treatment, and the increased values correlated with the tumor radiation resistance. Expression of DNA-PKcs and Ku70 after irradiation was increased in the surviving cells of OSCC tissues irradiated preoperatively. These results suggest that up-regulation of DNA-PK complex protein, especially DNA-PKcs, after radiation treatment correlates to radiation resistance. DNA-PKcs might be a molecular target for a novel radiation sensitization therapy of OSCC. (author)

  17. Radiation Resistance and Gain of Homogeneous Ring Quasi-Array

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1954-01-01

    In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase that incr......In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase...... that increases uniformly along the circle. Such quasi-arrays are azimuthally omnidirectional, and the radiated field will be mainly horizontally polarized and concentrated around the plane of the circle. In this paper expressions are obtained for the radiation resistance and the gain of homogeneous ring quasi...

  18. Radiation resistance of electro-optic polymer-based modulators

    International Nuclear Information System (INIS)

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio D.; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, Brian M.; Cook, Paul R.; McEwen, Tom A.; McKeon, Brian F.; Payson, Paul M.; Brost, George A.; Pirich, Andrew R.; Castaneda, Carlos; Tsap, Boris; Fetterman, Harold R.

    2005-01-01

    Mach-Zehnder interferometric electro-optic polymer modulators composed of highly nonlinear phenyltetraene bridge-type chromophores within an amorphous polycarbonate host matrix were investigated for their resistance to gamma rays and 25.6 MeV protons. No device failures were observed and the majority of irradiated modulators exhibited decreases in half-wave voltage and optical insertion losses compared to nonirradiated control samples undergoing aging processes. Irradiated device responses were attributed to scission, cross-linking, and free volume processes. The data suggests that strongly poled devices are less likely to de-pole under the influence of ionizing radiation

  19. Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of Pantoea agglomerans

    Science.gov (United States)

    Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Cardoso, A. F. R.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.

    2018-06-01

    Since infection is a common cause of delayed wound healing, it is important to understand the effect of low-level laser therapy (LLLT) in bacterial mechanisms. In this study we evaluated the effects of LLLT on antibiotic resistance, division rate, and biofilm formation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries in humans and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the susceptibility of an antimicrobial to ampicillin and piperacillin  +  tazobactam, quantification of areas of bacterial colonies, and biofilm formation of bacterial cells. Fluence, wavelength, and emission mode were used in the therapeutic protocols for wound healing. The data showed no changes in the areas of the colonies, but dichromatic laser radiation decreased biofilm formation, while a monochromatic red laser at low dose increased biofilm formation and infrared at high dose decreased antibiotic resistance to ampicillin. LLLT modulates antibiotic resistance and biofilm formation of P. agglomerans, but these depend on the laser irradiation parameters, since dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation. Thus, simultaneous dichromatic low-level red and infrared lasers could be a new option for the treatment of infected wounds, reducing biofilm formation, without altering antibiotic resistance and the division rate of P. agglomerans cultures.

  20. Functional genetic research for radiation and drug resistant adenocarcinoma and its application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Chul, Shin Byung; Kook, Park Hyo; Lee, Hee Min

    2012-01-15

    The work scope of 'Functional genetic research for radiation and drug resistant adenocarcinoma and its application' had contained the research about effect of transgelin(SM22a), neurotensin, metallothionein-1G transgelin-2 genes on the cell death triggered ionizing radiation, cisplatin, MMS, luteolin and H{sub 2}O{sub 2}(toxic agents), which are highly expressed in radiation-induced mutant cells. In this study, to elucidate the role of these proteins in the ionizing radiation (toxic chemicals)-induced cell death, we utilized sensed (or antisense, small interference RNA) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation, H{sub 2}O{sub 2} and toxic chemicals. We also investigated the functions of downstream target genes of transgelin such as IGF-1Rβ/PI3K/AKT pathway and transgelin/metallothioneine in A-549 and HepG2 cells because such target genes are able to potentiate the cell-killing or cell protecting effects against radiation.

  1. Functional genetic research for radiation and drug resistant adenocarcinoma and its application

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Chul, Shin Byung; Kook, Park Hyo; Lee, Hee Min

    2012-01-01

    The work scope of 'Functional genetic research for radiation and drug resistant adenocarcinoma and its application' had contained the research about effect of transgelin(SM22a), neurotensin, metallothionein-1G transgelin-2 genes on the cell death triggered ionizing radiation, cisplatin, MMS, luteolin and H 2 O 2 (toxic agents), which are highly expressed in radiation-induced mutant cells. In this study, to elucidate the role of these proteins in the ionizing radiation (toxic chemicals)-induced cell death, we utilized sensed (or antisense, small interference RNA) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation, H 2 O 2 and toxic chemicals. We also investigated the functions of downstream target genes of transgelin such as IGF-1Rβ/PI3K/AKT pathway and transgelin/metallothioneine in A-549 and HepG2 cells because such target genes are able to potentiate the cell-killing or cell protecting effects against radiation

  2. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    International Nuclear Information System (INIS)

    Pelfrey, C.M.; Waxman, F.J.; Whitacre, C.C.

    1989-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals

  3. Isolation and characterization of a radiation resistant thermophilic bacterium from radon hot spring

    International Nuclear Information System (INIS)

    Liang Xinle; Yang Long; Zhang Hong; Zhang Lei

    2011-01-01

    A radiation resistant and thermophilic bacterium strain R4-33 was isolated from radon hot spring water samples, pretreated with 60 Co γ-rays and UV irradiation. Tests on morphological, physiological and biochemical characters, fatty acid compositions, (G + C) mol% contents, and 16S rDNA sequencing were conducted. The results showed that strain R4-33 was of rod-shape, Gram-negative, atrichous, and endospore-forming. The optimum growth temperature and pH were 60 ℃ and 7.5, respectively. The strain utilized glucose, maltose and trehalose as carbon sources, and hydrolyzed casein and starch. Its catalase positive. The strain was sensitive to penicillin, neomycin, erythromycin, vancomycin, streptomycin, gentamycin, amikacin and ampicillin. The major cellular fatty acids were C 14:1 (48.8%) and C 15:1 (15.2%). The (G + C) mol% content of DNA was 58.2%. Phylogenetic tree based on 16S rDNA sequence showed R4-33 shared highly similarity to those of species in genus Anoxybacillus, especially to that of Anoxybacillus gonensis (99.5%). Based on the above, the strain R4-33 was proposed to the evolution branch of Anoxybacillus and designated as Anoxybacillu sp. R4-33. The UV and γ-radiation tests showed that the strain R4-33 had an ability of resistance to UV of 396 J/m 2 and 60 Co γ-rays irradiation of 14.0 kGy, indicating that the strain was a radiation resistant and thermophilic bacterium. (authors)

  4. Reverse resistance to radiation in KYSE-150R esophageal carcinoma cell after epidermal growth factor receptor signal pathway inhibition by cetuximab

    International Nuclear Information System (INIS)

    Jing Zhao; Gong Ling; Xie Congying; Zhang Li; Su Huafang; Deng Xia; Wu Shixiu

    2009-01-01

    Background and purpose: The purpose of our study is to examine the capacity of cetuximab to reverse radiation resistance and investigate molecular mechanisms in human radiation-resistant esophageal carcinoma cell line KYSE-150R. Materials and methods: The radioresistant cell line KYSE-150R was established by using fractionated irradiation (FIR). The KYSE-150R cell line was exposed to radiation, treatment with cetuximab, and combined treatment. Cell cycle distribution and apoptosis were analyzed using flow cytometry. Radiation survival was analyzed using clonogenic assays. RT 2 profiler TM PCR array was performed to analyze EGF/PDGF signaling pathway genes. Results: The established esophageal carcinoma cell line KYSE-150R showed higher radioresistance than parental cell line. Cetuximab could reverse the radiation resistance of KYSE-150R cells. Cell cycle analysis showed that combination with radiation and cetuximab resulted in the accumulation of cells in G1 and G2/M phases, with the reduction of cells within the S phase. Cetuximab enhanced the apoptosis induced by radiation. RT 2 profiler TM array showed that some intracellular signaling genes deriving from EGF/PDGF signaling pathway regulated by cetuximab. Conclusions: Irradiation combined with EGFR blocked by cetuximab may reverse the resistance to radiation in radioresistant esophageal carcinoma cell. The mechanisms may include cell cycle perturbation and enhancement of radiation-induced apoptosis. Further studies are needed to evaluate the role of cetuximab in combination with radiotherapy in the management of esophageal carcinoma.

  5. Some aspects of radiation resistance of wide-gap metal oxides

    International Nuclear Information System (INIS)

    Lushchik, Aleksandr; Feldbach, Eduard; Galajev, Semjon; Kaerner, Tiit; Liblik, Peeter; Lushchik, Cheslav; Maaroos, Aarne; Nagirnyi, Vitali; Vasil'chenko, Evgeni

    2007-01-01

    Wide-gap oxides drastically differ in radiation resistance against nonimpact mechanisms of defect creation depending on the ratio between the values of the energy gap E g and the formation energy of a pair of Frenkel defects (FD) E FD . Materials with E g >E FD are radiation-sensitive even at a low excitation density, while the efficiency of FD creation in the materials with E g FD is noticeable only under a high excitation density or in the presence of impurity centers serving as the promoters of radiation damage due to the nonimpact mechanisms. Novel experimental results on the FD creation in the bulk of MgO single crystals (E g FD ) irradiated by swift uranium ions at 300 K and 5 keV electrons at 6 K are presented. The prospects of luminescent protection against radiation damage as well as of the decrease of the luminescence efficiency due to the suppression of nonradiative recombination of electrons and holes (both relaxed and nonrelaxed) by doping the material with a sufficient amount of luminescent impurity ions are considered on the example of spectral transformers for plasma display panels

  6. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mikestikova, M., E-mail: mikestik@fzu.cz [Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, 18221 Prague 8 (Czech Republic); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Tackmann, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hauser, M.; Jakobs, K.; Kuehn, S. [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); and others

    2016-09-21

    A radiation hard n{sup +}-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the “ATLAS ITk Strip Sensor collaboration” and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in “punch-through protection” (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×10{sup 16} n{sub eq}/cm{sup 2}, by reactor neutron fluence of 1×10{sup 15} n{sub eq}/cm{sup 2} and by gamma rays from {sup 60}Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07. - Highlights:

  7. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream.

    Science.gov (United States)

    Rizzo, L; Fiorentino, A; Anselmo, A

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC>256 μg/mL) and SMZ (MIC>1024 μg/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t(1/2)=24 min)risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl.

    Science.gov (United States)

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-03-15

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.

  9. The effect of morphology and surface composition on radiation resistance of heterogeneous material CdS-PbS

    Energy Technology Data Exchange (ETDEWEB)

    Malyar, I. V., E-mail: imalyar@yandex.ru; Stetsyura, S. V., E-mail: stetsyurasv@info.sgu.ru [Chernyshevsky Saratov State University (Russian Federation)

    2011-07-15

    As a result of a complex study of the heterophase photosensitive material CdS-PbS by the methods of scanning electron microscopy and Auger spectrometry, it has been found that the radiation resistance of this material depends on the morphology and phase composition at its surface. It is shown that, as the temperature of annealing is increased, aggregations with predominant content of PbS grow; simultaneously, the composition of these aggregations varies as a consequence of the reaction of substitution of sulfur atoms with oxygen atoms. The latter of the aforementioned processes brings about a decrease in the radiation resistance of the heterophase photosensitive material CdS-PbS, which is accounted for by a decrease in the gettering due to appearance of an intermediate oxidized layer between PbS and CdS. An increase in the sizes and number of spherical aggregations at the surface, which consist of crystallites with predominant content of PbS, brings about an increase in the radiation resistance.

  10. Composite plasma electrolytic oxidation to improve the thermal radiation performance and corrosion resistance on an Al substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Sung, Dahye [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Lee, Junghoon [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Kim, Yonghwan [Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Chung, Wonsub, E-mail: wschung1@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of)

    2015-12-01

    Highlights: • Composite plasma electrolytic oxidation was performed using dispersed CuO particles in convectional PEO electrolyte. • Thermal radiation performance and corrosion resistance were examined by FT-IR spectroscopy and electrochemical methods, respectively. • Deposited copper oxide on the surface of the Al substrate was enhanced the corrosion resistance and the emissivity compared with the conventional PEO. - Abstract: A composite plasma electrolytic oxidation (PEO) was performed for enhancing the thermal radiation performance and corrosion resistance on an Al alloy by dispersing cupric oxide (CuO) particles in a conventional PEO electrolyte. Cu-based oxides (CuO and Cu{sub 2}O) formed by composite PEO increased the emissivity of the substrate to 0.892, and made the surface being dark color, similar to a black body, i.e., an ideal radiator. In addition, the corrosion resistance was analyzed using potentio-dynamic polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl aqueous solution. An optimum condition of 10 ampere per square decimeter (ASD) current density and 30 min processing time produced appropriate surface morphologies and coating thicknesses, as well as dense Cu- and Al-based oxides that constituted the coating layers.

  11. The effects of low-level ionizing radiation and copper exposure on the incidence of antibiotic resistance in lentic biofilm bacteria.

    Science.gov (United States)

    McArthur, J Vaun; Dicks, Christian A; Bryan, A Lawrence; Tuckfield, R Cary

    2017-09-01

    Environmental reservoirs of antibiotic resistant bacteria are poorly understood. Understanding how the environment selects for resistance traits in the absence of antibiotics is critical in developing strategies to mitigate this growing menace. Indirect or co-selection of resistance by environmental pollution has been shown to increase antibiotic resistance. However no attention has been given to the effects of low-level ionizing radiation or the interactions between radiation and heavy metals on the maintenance or selection for antibiotic resistance (AR) traits. Here we explore the effect of radiation and copper on antibiotic resistance. Bacteria were collected from biofilms in two ponds - one impacted by low-level radiocesium and the other an abandoned farm pond. Through laboratory controlled experiments we examined the effects of increasing concentrations of copper on the incidence of antibiotic resistance. Differences were detected in the resistance profiles of the controls from each pond. Low levels (0.01 mM) of copper sulfate increased resistance but 0.5 mM concentrations of copper sulfate depressed the AR response in both ponds. A similar pattern was observed for levels of multiple antibiotic resistance per isolate. The first principal component response of isolate exposure to multiple antibiotics showed significant differences among the six isolate treatment combinations. These differences were clearly visualized through a discriminant function analysis, which showed distinct antibiotic resistance response patterns based on the six treatment groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  13. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single

  14. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  15. Collection of radiation resistant characteristics reports for instruments and materials in high dose rate environment

    International Nuclear Information System (INIS)

    Kusano, Joichi

    2008-03-01

    This document presents the collected official reports of radiation irradiation study for the candidate materials to be used in high dose rate environment as J-PARC facility. The effect of radiation damage by loss-beam or secondary particle beam of the accelerators influences the performance and the reliability of various instruments. The knowledge on the radiation resistivity of the materials is important to estimate the life of the equipments, the maintenance interval and dose evaluation for the personnel at the maintenance period. The radiation damage consists with mechanical property, electrical property and gas-evolution property. (author)

  16. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi [Nitto Denko Co. LTD., Shimohozumi 1-1-2, Ibaraki, Osaka 567-8680 (Japan); Ichikawa, Tsuneki [Division of Materials Chemistry, Graduate school of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: ichikawa@eng.hokudai.ac.jp

    2005-07-01

    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon {gamma}-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as M{sub n}R{sub 1}COOCH(C{sub 6}H{sub 5})R{sub 2}M{sub n}+e{sup -}->M{sub n}R{sub 1}COO{sup -}+{sup {center_dot}}CH(C{sub 6}H{sub 5})R{sub 2}M{sub n}. The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching.

  17. Radiation response of human lung cancer cells with inherent and acquired resistance to cisplatin

    International Nuclear Information System (INIS)

    Twentyman, P.R.; Wright, K.A.; Rhodes, T.

    1991-01-01

    We have derived sublines of three human lung cancer cell lines with acquired resistance to cisplatin. The cisplatin resistant sublines of NCI-H69 (small cell), COR-L23 (large cell), and MOR (adenocarcinoma) show 5.3 fold, 3.1 fold, and 3.8 fold resistance, respectively, determined in a 6-day MTT assay. Although the parent lines show a wide range of glutathione content per cell, the sublines each show similar values to their corresponding parent line. Radiation response curves have been obtained using a soft agar clonogenic assay. Values obtained for the parent lines (95% CL in parentheses) were: NCI-H69: Do = 0.99 Gy (0.87-1.16), n = 2.9 (1.6-5.2), GSH = 14 ng/10(4) cells; COR-L23: Do = 1.23 Gy (1.05-1.49), n = 1.3 (0.7-2.2), GSH = 47 ng/10(4) cells; MOR: Do = 1.66 Gy (1.48-1.88), n = 3.0 (1.9-4.8), GSH = 86 ng/10(4) cells. The cisplatin resistant variants of NCI-H69 and COR-L23 showed 31% and 63% increases, respectively, in Do compared to their parent lines, whereas no change in radiation response was seen in MOR. In this panel of lines, therefore, although there is a correlation between glutathione content and radiosensitivity of the parent cell lines, acquired resistance to cisplatin is not accompanied by increased glutathione content. However, two of the three cisplatin resistant lines do show a significantly reduced radiosensitivity

  18. Resistance to ionizing radiations of materials installed at the CERN accelerators

    International Nuclear Information System (INIS)

    Schoenbacher, H.

    1982-01-01

    All materials installed in high energy accelerators along the lines of primary and secondary beams are exposed to ionizing radiation. This can in certain cases cause a degradation of the properties of these materials and consequently affect the good function of the installation. The author has taken at CERN large number of samples of materials in order to determine their radioresistance. Generally the organic materials and the electronic components are more sensitive to ionizing radiation. The author presents the results of these studies which concern the isolations of the cables (polyethylene, polyvinyl chloride, caoutchouc ethylene propylene, etc.), the isolations for the magnets on the base of epoxy resins, as well as other thermoresistant and thermoplastic products. The author equally presents a choice of materials and components which are used at CERN and which are resistant to radiations above an integral dose of 10 7 -10 8 Gy. (orig.)

  19. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments.

    Science.gov (United States)

    Sun, C; Zheng, S; Wei, C C; Wu, Y; Shao, L; Yang, Y; Hartwig, K T; Maloy, S A; Zinkle, S J; Allen, T R; Wang, H; Zhang, X

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304 L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500 °C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M(23)C(6) precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  20. Use of radiation for improving vines regarding their resistance to mildew

    International Nuclear Information System (INIS)

    Coutinho, M.P.

    1977-01-01

    Vines (Vitis vinifera) resistant to mildew (Plasmopara viticola) offer real advantages in Europe, and the problems of producing such vines were studied for a long time. At first conventional techniques were used, obtaining plants with high yield and with resistance persisting under widely differing ecological conditions; moreover, pathogenically different biotypes of Plasmopara have never been found. However, various factors - such as the quantitative nature of this resistance, which is controlled by a polygenic system, certain genetic correlations between resistance and poor quality of the grapes and the lack of resistance sources in V. vinifera - suggested that mutagenesis should be included among the methods used for the improvement of vines. Hence shoots and, more particularly, seeds have been undergoing irradiation with X-rays and neutrons since 1966. The exposure of seeds to low radiation doses (about 1000rad), particularly of X-rays, has in most varieties produced a very welcome increase in the germination percentage. Seedlings from irradiated seeds are selected mainly on the basis of the characteristics of the infection spots which develop on the leaves. In V. vinifera, resistance to mildew is reflected not in necroses but in small and usually not very sporulated spots. Using these criteria, the author has already selected - after natural infections and inoculations - plants representing approximately 0.001-0.0025% of the total number of plants screened. Tables illustrate the selection procedure up to 1976

  1. On possibility to make a new type of calorimeter: radiation resistant and fast

    International Nuclear Information System (INIS)

    Derevshchikov, A.A.; Khodyrev, V.Yu.; Kryshkin, V.I.; Rakhmatov, V.E.; Ronzhin, A.I.

    1990-01-01

    It is proposed to use electron multipliers, which directly detect low energy shower particles as an active element in sandwich calorimeters. The approach pffers fast and radiation resistant calorimetry. Test of the method is presented with the use of a microchannel plate. 4 refs.; 4 figs

  2. Irradiation behavior of developed radiation resistance optical-fibers and observed optical radiation from their SiO2 cores under reactor irradiation

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Narui, Minoru; Kayano, Hideo; Kakuta, Tsunemi; Sagawa, Tsutomu; Sanada, Kazuo; Shamoto, Naoki; Uramoto, Toshimasa.

    1994-01-01

    Two kinds of optical fibers were irradiated in a fission reactor, JMTR(Japan Materials Testing Reactor), up to a 1.55x10 19 n/cm 2 fast neutron fluence and a 3.3x10 9 Gy ionizing dose at 370K. Optical transmission spectra were measured in the wavelength range of 450-1750nm, in-situ. Growth of strong optical absorption bands were observed in the range of wavelength shorter than 750nm. In the meantime, the fibers showed good radiation-resistance in the range of wavelength longer than 750nm. Optical radiations were observed from SiO 2 optical fibers under irradiation. A major part of the observed optical radiations is thought to be composed of broad optical radiation in the whole wavelength range studied in the present experiment. This broad optical radiation will be generated by the process of so-called Cerenkov radiation. Also, a sharp optical radiation peak was found at 1270nm on a F-doped fiber. This peak is thought to relate with doped Fluorine ions and ionizing gamma-ray irradiation. (author)

  3. Effects of gamma ray irradiation on the radiation resistance, dielectric and mechanical properties of polyvinylchloride containing plasticizer and stabilizer

    International Nuclear Information System (INIS)

    Kim, B.H.; Lee, J.I.; Kang, D.Y.

    1977-01-01

    To investigate the properties of radiation resistance together with dielectric and mechanical relaxation behaviors of polyvinylchloride exposed to several different doses under the gamma ray of cobalt-60 source, experiments were carried out using the specimens prepared by mixing dibutyl-tin-dilaurate and dibutyl-tin-dimaleate as stabilizers with or without adding dioctylphthalate as a plasticizer. The origin of the absorption band at 1540-1640 cm -1 on infrared spectrum seemed to be RCOO - ion obtained from the ionization of the stabilizer, and this peak could be useful as a measure of radiation resistance on polyvinylchloride. Addition of increasing plasticizer to polyvinylchloride exhibited increasing radiation resistance and the reason for the result might be attributable to aromatic resonance adsorption of radiation energy by the dioctylphthalate. On dose dependent dielectric characteristics, nonplastized specimen showed peak at about 10 Mrad and that the peak disappeared on the plastification of specimens. Such phenomena might be explainable in considering the statistical distribution of scissored chain molecular segments as well as the plastification process of the plasticizer to polyvinylchloride chain molecules. (author)

  4. Study of decontamination and radiation resistance properties of Indian paints

    International Nuclear Information System (INIS)

    Shah, S.M.; Gopinathan, E.; Bhagwath, A.M.

    1976-01-01

    A brief introduction to the study of contamination and radiation resistance properties of Indian paints used as coating for structural materials in the nuclear industry is given. The general composition of paints such as epoxy, vinyl, alkyd, phenolic, chlesimated rubber, etc. is given. Method of sample preparation, processing and actual evaluation of decontaminability are described. The results have been discussed in terms of decontamination factors. Some recommendations based on the performance of the paints studied are also included. (K.B.)

  5. Patterning characteristics of a chemically-amplified negative resist in synchrotron radiation lithography

    International Nuclear Information System (INIS)

    Deguchi, Kimiyoshi; Miyoshi, Kazunori; Ishii, Tetsuyoshi; Matsuda, Tadahito

    1992-01-01

    To explore the applicability of synchrotron radiation X-ray lithography for fabricating sub-quartermicron devices, we investigate the patterning characteristics of the chemically-amplified negative resist SAL601-ER7. Since these characteristics depend strongly on the conditions of the chemical amplification process, the effects of post-exposure baking and developing conditions on sensitivity and resolution are examined. The resolution-limiting factors are investigated, revealing that pattern collapse during the development process and fog caused by Fresnel diffraction, photo-electron scattering, and acid diffusion in the resist determine the resolution and the maximum aspect ratio of the lines and spaces pattern. Using the model of a swaying beam supported at one end, it is shown that pattern collapse depends on the resist pattern's flexural stiffness. Patterning stability, which depends on the delay time between exposure and baking, is also discussed. (author)

  6. The radiation resistance of thermoset plastics: Pt. 1

    International Nuclear Information System (INIS)

    Gilfrich, H.-P.; Roesinger, S.; Wilski, H.

    1991-01-01

    Not much is known about the influence of ionising radiation on thermoset plastics. In particular the influence of the dose rate on the radiation resistance has not yet been investigated. To get more information about this subject we have irradiated a number of thermoset plastics of different chemical compositions in two ways: irradiation with electrons at a high dose rate and under exclusion of oxygen and irradiation at an extremely low dose rate in air with the γ-rays of a cobalt-60 source. The latter experiment lasting over a period of 10 years (and in some cases even 16 years). In this first part of our report we describe the experimental conditions as well as the results obtained using two phenolic plastics with different inorganic fillers. In no case did we find any improvement in the properties tested. The mechanical properties deteriorated at high doses, the effects being particularly noticeable in long term experiments. Both materials became more sensitive to the influence of heat and humidity. A relatively reliable extrapolation of the results to a working period of 50 years seems to be possible. (author)

  7. Radiation enhanced copper clustering processes in Fe-Cu alloys during electron and ion irradiations as measured by electrical resistivity

    International Nuclear Information System (INIS)

    Ishino, S.; Chimi, Y.; Bagiyono; Tobita, T.; Ishikawa, N.; Suzuki, M.; Iwase, A.

    2003-01-01

    To study the mechanism of radiation-enhanced clustering of copper atoms in Fe-Cu alloys, in situ electrical resistivity measurements are performed during irradiation with 100 MeV carbon ions and with 2 MeV electrons at 300 K. Two kinds of highly pure Fe-Cu alloys with Cu content of 0.02 and 0.6 wt% are used. The results are summarized as follows: - Although there is a steep initial resistivity increase below about 10 μdpa, the resistivity steadily decreases after this initial transient in Fe-0.6wt%Cu alloy, while in Fe-0.02wt%Cu alloy, the resistivity either decreases slowly or stays almost constant. The rate of change in resistivity depends on copper concentration. - The rate of change in resistivity per dpa is larger for electron irradiation than for ion irradiation. - Change in dose rate from 10 -8 to 10 -9 dpa/s slightly enhances the rate of resistivity change per dpa. The decrease in resistivity with dose is considered to be due to clustering or precipitation of copper atoms. The initial abrupt increase in resistivity is too large to be accounted for by initial introduction of point defects before copper clustering. Tentatively the phenomenon is explained as due to the formation of embryos of copper precipitates with a large strain field around them. Quantitative evaluation of the results using resistivity contribution of a unit concentration of Frenkel pairs and that of copper atoms gives an important conclusion that more than one copper atom are removed from solid solution by one Frenkel pair. The clustering efficiency is surprisingly high in the present case compared with the ordinary radiation-induced or radiation-enhanced precipitation processes

  8. Evaluation of resistance of diamond-like carbon coating to the corpuscular radiation in outer space conditions

    Science.gov (United States)

    Tomilova, Elizaveta; Bashkov, Valeriy; Mikhalev, Pavel; Fedorchenko, Alexander; Volkova, Yana

    2015-02-01

    The purpose of this work was to research the resistance of thin coatings to the effects of corpuscular radiation, as well as evaluation speed etching of diamond-like films with different content of diamond phase. There were two samples of monocrystalline silicon with DLC coating. To evaluate the resistance, two groups of grooves were etched on each sample. The depth was then measured to calculate a relative etching ratio of DLC coating. The resistance was determined to be four times that of silicon.

  9. Archway for Radiation and Micrometeorite Occurrence Resistance

    Science.gov (United States)

    Giersch, Louis R.

    2012-01-01

    The environmental conditions of the Moon require mitigation if a long-term human presence is to be achieved for extended periods of time. Radiation, micrometeoroid impacts, high-velocity debris, and thermal cycling represent threats to crew, equipment, and facilities. For decades, local regolith has been suggested as a candidate material to use in the construction of protective barriers. A thickness of roughly 3m is sufficient protection from both direct and secondary radiation from cosmic rays and solar protons; this thickness is sufficient to reduce radiation exposure even during solar flares. NASA has previously identified a need for innovations that will support lunar habitats using lightweight structures because the reduction of structural mass translates directly into additional up and down mass capability that would facilitate additional logistics capacity and increased science return for all mission phases. The development of non-pressurized primary structures that have synergy with the development of pressurized structures is also of interest. The use of indigenous or in situ materials is also a well-known and active area of research that could drastically improve the practicality of human exploration beyond low-Earth orbit. The Archway for Radiation and Micrometeorite Occurrence Resistance (ARMOR) concept is a new, multifunctional structure that acts as radiation shielding and micrometeorite impact shielding for long-duration lunar surface protection of humans and equipment. ARMOR uses a combination of native regolith and a deployed membrane jacket to yield a multifunctional structure. ARMOR is a robust and modular system that can be autonomously assembled on-site prior to the first human surface arrival. The system provides protection by holding a sufficiently thick (3 m) archshaped shell of local regolith around a central cavity. The regolith is held in shape by an arch-shaped jacket made of strong but deployable material. No regolith processing is

  10. Microbial cells can cooperate to resist high-level chronic ionizing radiation

    OpenAIRE

    Shuryak, Igor; Matrosova, Vera Y.; Gaidamakova, Elena K.; Tkavc, Rok; Grichenko, Olga; Klimenkova, Polina; Volpe, Robert P.; Daly, Michael J.

    2017-01-01

    Understanding chronic ionizing radiation (CIR) effects is of utmost importance to protecting human health and the environment. Diverse bacteria and fungi inhabiting extremely radioactive waste and disaster sites (e.g. Hanford, Chernobyl, Fukushima) represent new targets of CIR research. We show that many microorganisms can grow under intense gamma-CIR dose rates of 13–126 Gy/h, with fungi identified as a particularly CIR-resistant group of eukaryotes: among 145 phylogenetically diverse strain...

  11. Enhanced radiation resistance through interface modification of nano-structured steels for Gen IV in-core applications

    International Nuclear Information System (INIS)

    Jang, Jinsung; Kang, Suk Hoon; Kim, Min Chul

    2013-06-01

    This project is to increase radiation tolerance of candidate alloys for Gen IV core component through the optimization of grain size and grain boundary characteristics. The focus is on nanocrystalline metal alloys with a fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via grain boundary engineering. An austenitic stainless steel, HT-UPS (high temperature ultra-fine precipitates strengthened) was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometer-sized carbides. Reducing the grain size and increasing the fraction-induced point defects (due to the increased sink area of the grain boundaries), to make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and to improve the strength and ductility under radiation by producing a higher density of nanometer sized carbides on the boundaries

  12. Development of high radiation-resistant glass fiber reinforced plastics with cyanate-based resin for superconducting magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Idesaki, Akira, E-mail: idesaki.akira@qst.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Watanuki 1233, Takasaki, Gunma 370-1292 (Japan); Nakamoto, Tatsushi [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yoshida, Makoto [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shimada, Akihiko [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Watanuki 1233, Takasaki, Gunma 370-1292 (Japan); Iio, Masami; Sasaki, Kenichi; Sugano, Michinaka [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Makida, Yasuhiro [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ogitsu, Toru [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-11-15

    Highlights: • GFRPs for superconducting magnet systems were developed. • Cyanate-based resins were used for GFRPs as matrices. • Radiation resistance was evaluated based on gas evolution and mechanical properties. • GFRP with bismaleimide-triazine resin exhibited excellent radiation resistance. - Abstract: Glass fiber reinforced plastics (GFRPs) with cyanate ester resin/epoxy resin, bismaleimide resin/epoxy resin, and bismaleimide-triazine resin as matrices were developed for the superconducting magnet systems used in high intensity accelerators. The radiation resistance of these GFRPs was evaluated based on their gas evolution and changes in their mechanical properties after gamma-ray irradiation with dose of 100 MGy in vacuum at ambient temperature. After irradiation, a small amount of gas was evolved from all of the GFRPs, and a slight decrease in mechanical properties was observed compared with the conventional epoxy resin-GFRP, G10. Among the GFRPs, the smallest amount of gas (6 × 10{sup −5} mol/g) was evolved from the GFRP with the bismaleimide-triazine resin, which also retained more than 88% of its flexural strength after 100 MGy irradiation; this GFRP is thus considered the most promising material for superconducting magnet systems.

  13. Study of multidrug resistance and radioresistance

    International Nuclear Information System (INIS)

    Kang, Yoon Koo; Yoo, Young Do

    1999-04-01

    We investigated the mechanism of 5-FU, adriamycin, radiation resistance in Korean gastric cancer cells. First we investigated the relation between Rb and multidrug resistance. Rb stable transfectants exhibited 5- to 10- fold more resistance to adriamycin than the control cells. These Rb transfectants showed increased MDR1 expression. We also investigated up-regulation in radiation-resistant tumor tissues. HSP27, MRP-8, GST, and NKEF-B were up-regulated in radiation resistant tumor. Expression of NKEF-B was also increased by radiation exposure in Head and Neck cells. These results demonstrated that NKEF-B is a stress response protein and it may have an important role in radiation resistance

  14. Structural Component Fabrication and Characterization of Advanced Radiation Resistant ODS Steel for Next Generation Nuclear Systems

    International Nuclear Information System (INIS)

    Noh, Sang Hoon; Kim, Young Chun; Jin, Hyun Ju; Choi, Byoung Kwon; Kang, Suk Hoon; Kim, Tae Kyu

    2016-01-01

    In a sodium-cooled fast reactor (SFR), the coolant outlet temperature and peak temperature of the fuel cladding tube will be about 545 .deg. C and 700 .deg. C with 250 dpa of a very high neutron dose rate. To realize this system, it is necessary to develop an advanced structural material having high creep and irradiation resistance at high temperatures. Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling severely occurred to 120dpa at high temperatures and this eventually leads to a decrease of the mechanical properties and dimensional stability. Advanced radiation resistant ODS steel (ARROS) has been newly developed for the in-core structural components in SFR, which has very attractive microstructures to achieve both superior creep and radiation resistances at high temperatures [4]. Nevertheless, the use of ARROS as a structural material essentially requires the fabrication technology development for component parts such as sheet, plate and tube. In this study, plates and tubes were tentatively fabricated with a newly developed alloy, ARROS. Microstructures as well as mechanical properties were also investigated to determine the optimized condition of the fabrication processes.

  15. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    Energy Technology Data Exchange (ETDEWEB)

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  16. RAD18 mediates resistance to ionizing radiation in human glioma cells

    International Nuclear Information System (INIS)

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi; Yue, Wu

    2014-01-01

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM

  17. Improvement of radiation resistance of polypropylene by blending with polyethylene and polystyrene

    International Nuclear Information System (INIS)

    Al Aji, Z.

    2001-01-01

    The use of polypropylene in production of medical component and packaging materials makes it an interesting material for applied research. Since the use of ethylene oxide for sterilization of medical components will be forbidden in the next future because of its carcinogens effect. Therefore, another alternative sterilization methods are required. The use of Gamma radiation is already established for sterilization of some medical components, this technique causes change in the physical mechanical properties of polypropylene, which makes the addition of stabilizers necessary. In this work, blends of domestically used polymers, polypropylene, linear low-density polyethylene, and polystyrene/butadiene were prepared in order to improve the radiation resistance of polypropylene; naphthalene was also used as an additive

  18. Some resistance mechanisms to ultraviolet radiation; Algunos mecanismos de resistencia a radiacion ultravioleta

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-12-15

    The cyclical exposure of bacterial cells to the ultraviolet light (UV) it has as consequence an increment in the resistance to the lethal effects of this type of radiation, increment that happens as a result of a selection process of favorable genetic mutations induced by the same UV light. With object to study the reproducibility of the genetic changes and the associate mechanisms to the resistance to UV in the bacteria Escherichia coli, was irradiated cyclically with UV light five different derived cultures of a single clone, being obtained five stumps with different resistance grades. The genetic mapping Hfr revealed that so much the mutation events like of selection that took place during the adaptation to the UV irradiation, happened of random manner, that is to say, each one of the resistant stumps it is the result of the unspecified selection of mutations arisen at random in different genes related with the repair and duplication of the DNA. (Author)

  19. Theoretical optimization of base doping concentration for radiation resistance of InGaP subcells of InGaP/GaAs/Ge based on minority-carrier lifetime

    International Nuclear Information System (INIS)

    Elfiky, Dalia; Yamaguchi, Masafumi; Sasaki, Takuo

    2010-01-01

    One of the fundamental objectives for research and development of space solar cells is to improve their radiation resistance. InGaP solar cells with low base carrier concentrations under low-energy proton irradiations have shown high radiation resistances. In this study, an analytical model for low-energy proton radiation damage to InGaP subcells based on a fundamental approach for radiative and nonradiative recombinations has been proposed. The radiation resistance of InGaP subcells as a function of base carrier concentration has been analyzed by using the radiative recombination lifetime and damage coefficient K for the minority-carrier lifetime of InGaP. Numerical analysis shows that an InGaP solar cell with a lower base carrier concentration is more radiation-resistant. Satisfactory agreements between analytical and experimental results have been obtained, and these results show the validity of the analytical procedure. The damage coefficients for minority-carrier diffusion length and carrier removal rate with low-energy proton irradiations have been observed to be dependent on carrier concentration through this study. As physical mechanisms behind the difference observed between the radiation-resistant properties of various base doping concentrations, two mechanisms, namely, the effect of a depletion layer as a carrier collection layer and generation of the impurity-related complex defects due to low-energy protons stopping within the active region, have been proposed. (author)

  20. Clinical and histological study of radiation-resistant cancer of the larynx

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K [Osaka Univ. (Japan). Faculty of Medicine

    1979-02-01

    In its early stage, cancer of the larynx is treated mainly by irradiation. A clinical and histological study of the radiation-resistant cancer of the larynx is reported. From 1958 to 1976, 1190 patients with squamous cell carcinoma of the larynx were treated at the Department of Otolaryngology, Osaka University Hospital. Among them, 597 patients (50.2%) were treated by radiation therapy. In 180 patients who had developed local recurrence after initial irradiation, partial or total laryngectomies were performed and 5-year crude survival rates were 71.3%. Gross examination of the specimens and histological studies were performed on these cases, as well as microangiography. The majority of recurrent glottic cancers were located at the anterior commissure and had some subglottic extention. In the supraglottic cancers, marked invasion to the pre-epiglottic space, perichondritis, and edema of the arytenoids were observed. These findings suggested that the unsuccessful radiation therapy was due to the diagnostic failure of the tumor extention. Fixation of the affected vocal cords and ulcer formation were also observed. Histologically, cancer cells invaded deeply the surrounding tissues as scattered cancer nests with marked hypoxic stromal reaction. This study suggests that radiation therapy should be the initial but non-repetitive treatment of choice for earlystage laryngeal cancers.

  1. Simulation of Radiation Heat Transfer in a VAR Furnace Using an Electrical Resistance Network

    Science.gov (United States)

    Ballantyne, A. Stewart

    The use of electrical resistance networks to simulate heat transfer is a well known analytical technique that greatly simplifies the solution of radiation heat transfer problems. In a VAR furnace, radiative heat transfer occurs between the ingot, electrode, and crucible wall; and the arc when the latter is present during melting. To explore the relative heat exchange between these elements, a resistive network model was developed to simulate the heat exchange between the electrode, ingot, and crucible with and without the presence of an arc. This model was then combined with an ingot model to simulate the VAR process and permit a comparison between calculated and observed results during steady state melting. Results from simulations of a variety of alloys of different sizes have demonstrated the validity of the model. Subsequent simulations demonstrate the application of the model to the optimization of both steady state and hot top melt practices, and raises questions concerning heat flux assumptions at the ingot top surface.

  2. Gamma radiation shielding materials improved with burning resistance

    International Nuclear Information System (INIS)

    Nakamura, Michio; Nakamura, Ken-ichi; Yukawa, Katsunori.

    1985-01-01

    Purpose: To obtain gamma irradiation shielding materials excellent in workability and resistant to burning by using a two component type room temperature vulcanizing silicon rubber composition as the base material. Method: Silicon rubber comprising a diorganopolysiloxane polymer, an alkyl silicate as a crosslinker and a suitable sulfurdizing catalyst, for example, a carboxylate is mixed with iron powder and silicon oxide powder as reinforcing and flame retardant material and applied with molding. The iron powder and the silica rocks powder have grain size of 50 - 150 μm and 1 - 70 μm and charged by the amount of from 55 to 60 % by weight and from 20 to 25 % by weight respectively. The fluidizing property is impaired if the particle size of the silica rocks powder is less than 1 μm and, while on the other hand, no desired specific gravity of a predetermined value can be obtained for the molding product if the filled amount of the iron powder is less than 55 %. The oxygen index of the molding product is 45 to improve the burning resistance. The materials are excellent in the air-tightness, gamma radiation shielding performance, elasticity and workability required for the cable penetrations in a nuclear power plant and they generate noxious gases neither. (Kawakami, Y.)

  3. Resistance of human erythrocytes containing elevated levels of vitamin E to radiation-induced hemolysis

    International Nuclear Information System (INIS)

    Brown, M.A.

    1983-01-01

    Human erythrocytes were isolated from the blood of healthy donors and then incubated in the presence of suspensions of alpha-tocopherol for 30 min at 37 degrees C. Unabsorbed tocopherol was removed by centrifugation using several washes of isotonic phosphate-buffered saline. Washed erythrocytes were resuspended to 0.05%. Hct and exposed to hemolyzing doses of 60 Co gamma radiation, and hemolysis was monitored continuously by light scattering at 700 nm in a recording spectrophotometer. The extent of hemolysis with time was sigmoid and data analysis was carried out on the time taken for 50% hemolysis to occur (t50%). The vitamin E content of erythrocytes was significantly elevated by the incubation procedure and resulted in the cells exhibiting a significantly increased resistance to hemolysis as reflected by the extended t50% values. Oral supplementation of 500 IU of vitamin E per day to eight normal human subjects for a period of 16 days also resulted in their washed erythrocytes exhibiting a significant increase in resistance to radiation-induced hemolysis. When comparing vitamin E incubated cells with control cells, both the dose-reducing factor (DRF) and the time for 50% hemolysis quotient (Qt50%) were observed to increase with increasing radiation dose

  4. Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase IIα expression

    International Nuclear Information System (INIS)

    Henness, Sheridan; Davey, Mary W.; Harvie, Rozelle M.; Davey, Ross A.

    2002-01-01

    Purpose: After standard treatment with chemotherapy and radiotherapy, small-cell lung cancer (SCLC) often develops resistance to both treatments. Our aims were to establish if fractionated radiation treatment alone would induce radiation and drug resistance in the H69 SCLC cell line, and to determine the mechanisms of resistance. Methods and Materials: H69 SCLC cells were treated with fractionated X-rays to an accumulated dose of 37.5 Gy over 8 months to produce the H69/R38 subline. Drug and radiation resistance was determined using the MTT (3,-4,5 dimethylthiazol-2,5 diphenyltetrazolium bromide) cell viability assay. Protein expression was analyzed by Western blot. Results: The H69/R38 subline was resistant to radiation (2.0 ± 0.2-fold, p<0.0001), cisplatin (14 ± 7-fold, p < 0.001), daunorubicin (6 ± 3-fold, p<0.05), and navelbine (1.7 ± 0.15-fold, p<0.02). This was associated with increased expression of the multidrug resistance-associated proteins, MRP1 and MRP2, and topoisomerase IIα and decreased expression of glutathione-S-transferase π (GSTπ) and bcl-2 and decreased cisplatin accumulation. Treatment with 4 Gy of X-rays produced a 66% decrease in MRP2 in the H69 cells with no change in the H69/R38 cells. This treatment also caused a 5-fold increase in topoisomerase IIα in the H69/R38 cells compared with a 1.5-fold increase in the H69 cells. Conclusions: Fractionated radiation alone can lead to the development of stable radiation and drug resistance and an altered response to radiation in SCLC cells

  5. Studies of antibiotic resistant mutants of Bacteroides fragilis obtained by Cs-137 ionizing radiation

    International Nuclear Information System (INIS)

    Azghani, A.O.

    1986-01-01

    The genus Bacteroides is an obligate anaerobic bacillus normally found in the upper respiratory tract, the colon, and the genitourinary system. The project reported here was undertaken because of the high frequency of hospital infections attributed to B. fragilis, and the increased resistance of the bacteria to commonly used antibiotics. Cs-137 gamma irradiation was used to induce antibiotic resistant mutants in B. fragilis in the presence of Escherichia coli B/r membrane fragments, employed as reducing agent. Based on a dose-survival curve, an effective radiation dose of 1.54 x 10 4 R (3.99 C/Kg) was used to induce mutations to rifampicin and tetracycline resistance in the test organism. The antibiotic resistant mutants of B. fragilis were utilized to reveal the mechanism by which this group of organisms becomes resistant to select chemotherapeutic agents. Studies on tetracycline resistant mutants of B. fragilis isolated after irradiation, suggest that the resistance to this antibiotic is associated with the outer membrane permeability. The difference in inhibitory action of rifampicin on RNA polymerase activity, from rifampicin sensitive and resistant strains of B. fragilis, reveals that this enzyme is a possible suitable target for inhibition of bacterial growth in anaerobes by rifampicin

  6. The Survival and Resistance of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae to Simulated Outer Space Solar Radiation.

    Science.gov (United States)

    Leuko, S; Domingos, C; Parpart, A; Reitz, G; Rettberg, P

    2015-11-01

    Solar radiation is among the most prominent stress factors organisms face during space travel and possibly on other planets. Our analysis of three different halophilic archaea, namely Halobacterium salinarum NRC-1, Halococcus morrhuae, and Halococcus hamelinensis, which were exposed to simulated solar radiation in either dried or liquid state, showed tremendous differences in tolerance and survivability. We found that Hcc. hamelinensis is not able to withstand high fluences of simulated solar radiation compared to the other tested organisms. These results can be correlated to significant differences in genomic integrity following exposure, as visualized by random amplified polymorphic DNA (RAPD)-PCR. In contrast to the other two tested strains, Hcc. hamelinensis accumulates compatible solutes such as trehalose for osmoprotection. The addition of 100 mM trehalose to the growth medium of Hcc. hamelinensis improved its survivability following exposure. Exposure of cells in liquid at different temperatures suggests that Hbt. salinarum NRC-1 is actively repairing cellular and DNA damage during exposure, whereas Hcc. morrhuae exhibits no difference in survival. For Hcc. morrhuae, the high resistance against simulated solar radiation may be explained with the formation of cell clusters. Our experiments showed that these clusters shield cells on the inside against simulated solar radiation, which results in better survival rates at higher fluences when compared to Hbt. salinarum NRC-1 and Hcc. hamelinensis. Overall, this study shows that some halophilic archaea are highly resistant to simulated solar radiation and that they are of high astrobiological significance. Halophiles-Solar radiation-Stress resistance-Survival.

  7. The origin of polarized blackbody radiation from resistively heated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Aliev, Ali E.; Kuznetsov, Alexander A.

    2008-01-01

    We observed very pronounced polarization of light emitted by highly aligned free-standing multiwall carbon nanotube (MWNT) sheet in axial direction which is turned to the perpendicular polarization when a number of layers are increased. The radiation spectrum of resistively heated MWNT sheet closely follows to the Plank's blackbody radiation distribution. The obtained polarization features can be described by a classical dielectric cylindrical shell model, taking into consideration the contribution of delocalized π-electrons (π surface plasmons). In absorption (emission) the optical transverse polarizability, which is much smaller than longitudinal one, is substantially suppressed by depolarization effect due to screening by induced charges. This phenomenon suggests very simple and precise method to estimate the alignment of nanotubes in bundles or large assemblies

  8. Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis

    Science.gov (United States)

    Billi, D.; Friedmann, E. I.; Hofer, K. G.; Caiola, M. G.; Ocampo-Friedmann, R.

    2000-01-01

    The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.

  9. Effect of fractionated radiation on multidrug resistance in human ovarian cancer

    International Nuclear Information System (INIS)

    Kong Dejuan; Liu Xiaodong; Liang Bing; Jia Lili; Ma Shumei

    2012-01-01

    Objective: To investigate the effect of different subtypes of fractionated doses on multidrug resistance in ovarian cancer cells. Methods: The human ovarian cancer cell lines SKOV3 and its drug-resistant subtype SKVCR were divided into four groups i.e., sham-irradiated, single dose (10 Gy), fractionated dose (2 Gy × 5) and multi-fractionated dose (1 Gy × 2 × 5). Cell sensitivity to vincristine (VCR), etoposide (VP-16), pirarubicin (THP) and cisplatin (DDP) was measured by MTT assay. Western blot was applied to detect the expression of P-gp after irradiation. Results: The doubling time of SKVCR was about 1.8-fold of that of SKOV3 cells. P-gp was expressed in SKVCR but not in SKOV3. IC 50 values of SKVCR were higher than those of SKOV3. To SKOV3 cells, single dose irradiation decreased cell sensitivity to THP and DDP and fractionated irradiation decreased cell sensitivity to VCR, THP and VP-16. Multi-fractionated irradiation decreased cell sensitivity to VP-16. In SKVCR cells, all these irradiation treatments increased cell sensitivity to VCR and VP-16 but not to DDP. In addition, single and fractionated irradiation decreased P-gp expression in SKVCR cells. Conclusions: Single, fractionated and multi-fractionated radiation induced chemotherapy resistance in SKOV3 cells, while reversed drug resistance to VCR and VP-16 in SKVCR cells. (authors)

  10. Radiation-resistant requirements analysis of device and control component for advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tai Gil; Park, G. Y.; Kim, S. Y.; Lee, J. Y.; Kim, S. H.; Yoon, J. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    It is known that high levels of radiation can cause significant damage by altering the properties of materials. A practical understanding of the effects of radiation - how radiation affects various types of materials and components - is required to design equipment to operate reliably in a gamma radiation environment. When designing equipment to operate in a high gamma radiation environment, such as will be present in a nuclear spent fuel handling facility, several important steps should be followed. In order to active test of the advanced spent fuel management process, the radiation-resistant analysis of the device and control component for active test which is concerned about the radiation environment is conducted. Also the system design process is analysis and reviewed. In the foreign literature, 'threshold' values are generally reported. the threshold values are normally the dose required to begin degradation in a particular material property. The radiation effect analysis for the device of vol-oxidation and metalization, which are main device for the advanced spent fuel management process, is performed by the SCALE 4.4 code. 5 refs., 4 figs., 13 tabs. (Author)

  11. Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210Po source.

    Science.gov (United States)

    Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak

    2018-02-01

    Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest.

  13. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  14. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Science.gov (United States)

    Mikestikova, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A radiation hard n+-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the "ATLAS ITk Strip Sensor collaboration" and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in "punch-through protection" (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×1016 neq/cm2, by reactor neutron fluence of 1×1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07.

  15. Tamper and radiation resistant instrumentation for safeguarding special nuclear materials

    International Nuclear Information System (INIS)

    Parsons, B.B.; Wells, J.L.

    1977-01-01

    A tamper-resistant liquid level/accountability instrumentation system for safeguards use has been developed and tested. The tests demonstrate the accuracy of liquid level measurement using TDR (Time Domain Reflectometry) techniques and the accuracy of differential pressure and temperature measurements utilizing a custom designed liquid level sensor probe. The calibrated liquid level, differential pressure, and temperature data provide sufficient information to accurately determine volume, density, and specific gravity. Test solutions used include ordinary tap water, diluted nitric acid in varying concentrations, and diluted uranium trioxide also in varying concentrations. System operations and preliminary test results conducted at the General Electric Midwest Fuel Recovery Plant and the National Bureau of Standards, respectively, suggest that the system will provide the safeguards inspector with an additional tool for real-time independent verification of normal operations and special nuclear materials accountancy data for chemical reprocessing plants. This paper discusses the system design concepts, including a brief description of the tamper and radiation resistant features, the preliminary test results, and the significance of the work

  16. Studies on the flame and radiation resistant modification of wires and cables for nuclear power generation plants

    International Nuclear Information System (INIS)

    Hagiwara, Miyuki; Morita, Yosuke; Udagawa, Akira; Oda, Eisuke; Fujimura, Shunichi.

    1982-08-01

    For the use in the light-water nuclear power generation plants, wires and cables are required to keep high flame retardancy and superior resistivity against heat and radiation throughout the whole period of service. They are expected, further, to fulfill their functions even under LOCA conditions. The present work aimed to provide new technology to give flame and radiation resistancy to insulating materials for the cables which are used under the above requirements. For the improvement of flame retardancy and the elongation of life time, polymerizable flame retardants were examined their applicability to ethylene-propylene-diene rubber. Various polymerizable flame retardants were first synthesized, and their performance was analyzed, especially, as to the relationship between molecular structure and their effectiveness. As a guiding principle for developing of a high performance flame and radiation resistant reagent, it was suggested that the back born of the reagent molecule should be constructed by carbon-carbon bond including fused aromatic rings and groups which can undergo polymerization by radical initiators. After careful consideration and detailed experimental work, condensed bromoacenaphthylene (con-BACN) was shown to have an effectiveness enough for the present purpose. Its satisfactory performance was also shown by making cables of a practical size using con-BACN, and by carrying out various performance tests based substantially on IEEE standards. (author)

  17. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells

    International Nuclear Information System (INIS)

    Chadderton, Naomi; Cowen, Rachel L.; Sheppard, Freda C.D.; Robinson, Suzanne; Greco, Olga; Scott, Simon D.; Stratford, Ian J.; Patterson, Adam V.; Williams, Kaye J.

    2005-01-01

    Purpose: Tumor hypoxia is unequivocally linked to poor radiotherapy outcome. This study aimed to identify enhancer sequences that respond maximally to a combination of radiation and hypoxia for use in genetic radiotherapy approaches. Methods and materials: The influence of radiation (5 Gy) and hypoxia (1% O 2 ) on reporter-gene expression driven by hypoxia (HRE) and radiation (Egr-1) responsive elements was evaluated in tumor cells grown as monolayers or multicellular spheroids. Hypoxia-inducible factor-1α (HIF-1α) and HIF-2α protein expression was monitored in parallel. Results: Of the sequences tested, an HRE from the phosphoglycerate kinase-1 gene (PGK-18[5+]) was maximally induced in response to hypoxia plus radiation in all 5 cell lines tested. The additional radiation treatment afforded a significant increase in the induction of PGK-18[5+] compared with hypoxia alone in 3 cell lines. HIF-1α/2α were induced by radiation but combined hypoxia/radiation treatment did not yield a further increase. The dual responsive nature of HREs was maintained when spheroids were irradiated after delivery of HRE constructs in a replication-deficient adenovirus. Conclusions: Hypoxia-responsive enhancer element sequences are dually responsive to combined radiation and hypoxic treatment. Their use in genetic radiotherapy in vivo could maximize expression in the most radio-resistant population at the time of radiation and also exploit microenvironmental changes after radiotherapy to yield additional switch-on

  18. Preparation and characteristics of a flexible neutron and γ-ray shielding and radiation-resistant material reinforced by benzophenone

    Directory of Open Access Journals (Sweden)

    Pin Gong

    2018-04-01

    Full Text Available With a highly functional methyl vinyl silicone rubber (VMQ matrix and filler materials of B4C, PbO, and benzophenone (BP and through powder surface modification, silicone rubber mixing, and vulcanized molding, a flexible radiation shielding and resistant composite was prepared in the study. The dispersion property of the powder in the matrix filler was improved by powder surface modification. BP was added into the matrix to enhance the radiation resistance performance of the composites. After irradiation, the tensile strength, elongation, and tear strength of the composites decreased, while the Shore hardness of the composites and the crosslinking density of the VMQ matrix increased. Moreover, the composites with BP showed better mechanical properties and smaller crosslinking density than those without BP after irradiation. The initial degradation temperatures of the composites containing BP before and after irradiation were 323.6°C and 335.3°C, respectively. The transmission of neutrons for a 2-mm thick sample was only 0.12 for an Am–Be neutron source. The transmission of γ-rays with energies of 0.662, 1.173, and 1.332 MeV for 2-cm thick samples were 0.7, 0.782, and 0.795, respectively. Keywords: Flexible Composite, Neutron Shielding, Radiation Resistance, γ-ray Shielding

  19. Radiation chemical transformations of some polyarylates by γ-radiation in vacuum

    International Nuclear Information System (INIS)

    Lyashevich, V.V.; Korshak, V.V.; Rodeh, V.V.; Timofeeva, G.I.

    1976-01-01

    A study was made of ageing by radiation of F-2 and D-9 polyarylates using γ-radiation in vacuum. Their high resistance to radiation was indicated. It was found that γ-radiation on polymers caused competing reactions to take place resulting in macromolecular breakdown and structure formation, which in the end produced threedimensional network formation. The initial formation of gel fractions was preceded by the formation of branched macromolecules. The radiation resistance of polyarylates depends on the type of lateral substituent at the central carbon atom of the initial bis-phenol and increases in the presence of a fluorene ring in the lateral chain. The radiation resistance of a lactone ring is lower than that of an ether bond of the main chain. It was shown that 0-hydroxy-ketone structures were formed in the polyarylates examined as a result of regrouping due to radiation. A basic system is proposed for chemical conversion of polyarylates by radiation

  20. Assessment of the radiation resistance of some aromatic polyesters

    International Nuclear Information System (INIS)

    Choi, E.J.; Hill, D.J.T.; Kim, K.Y.

    1998-01-01

    Full text: For many applications, polyesters have more useful properties than vinyl polymers, and they can be degraded to their monomer components and recycled. In addition, aromatic polyesters are known to display a resistance to high temperatures and high-energy ionizing radiation. Recently, we have reported the γ-radiolysis for some aromatic polyesters at low radiation dose; The G-values of radical formation at 77 K were determined to be in the range 0.38∼0.46 for the polyesters of bisphenol A with fluorine substitution at isopropylidene units and in the range 0.71∼1.18 for the polyesters of halogenated bisphenol A with decamethylene segments. While the radiation sensitivities of the latter polymers were dependent on the position and content of halogen substitution, those of the former polymers were slightly dependent on these factors as assessed by the G-values at 77 K. We also have studied the radiolysis of the commercial aromatic polyesters (UP) and polycarbonate (PC). UP has been found to be more radiation stable than PC with respect to the total yield of radicals formed. The G-values for radical formation at 77K was determined to be 0.31 and 0.5 for UP and PC, respectively. In this work, we have prepared poly(ethylene-, butylene- or decalene-terephthalate)s (PET, PBT or PDT) and poly(ethylene-, buthylene- or decalene-2,6-naphthalenedicarboxylate)s (PEN, PBN or PDN) by standard melt polymerization methods, and have examined their γ-radiolysis at 77 K or room temperature, and in vacuum or air, through the applications of ESR spectroscopy and thermal analysis. Inherent viscosities of the polyesters used for the radiation studies were in the range of 0.16∼0.69 dL/g. The values of G(R) indicates that PEN-related polymers have more radiation stable than PET-related polymers and the E, B and D order is one of decreasing stability as one might expect. The significant decrease in the G(R)-values of the polyester being in the range of 0.1∼0.41 at 77 K by

  1. PROSPECTIVE EVALUATION OF AN IN VITRO RADIATION RESISTANCE ASSAY IN LOCALLY ADVANCED CANCER OF THE UTERINE CERVIX: A SOUTHWEST ONCOLOGY GROUP STUDY

    Science.gov (United States)

    Randall, Leslie M; Monk, Bradley J; Moon, James; Parker, Ricardo; Al-Ghazi, Muthana; Wilczynski, Sharon; Fruehauf, John P; Markman, Maurie; Burger, Robert A

    2010-01-01

    Objectives To investigate the feasibility of performing a fresh-tissue, in vitro radiation resistance assay (IVRRA) in a cooperative group setting and to assess the association of IVRRA results with clinical outcomes. Methods Women with Stages IIB-IVA carcinoma of the uterine cervix without obvious para-aortic lymphadenopathy on imaging were eligible. Primary tumor biopsies were shipped to a central testing facility where agar-based cell suspensions were exposed to 300 cGy of RT ± cisplatin and cultured for 5 days. 3H-thymidine incorporation was used to determine percent cell inhibition (PCI) of test specimen compared to that of the untreated control. Tumors were considered to exhibit extreme radiation resistance (ERR), intermediate radiation resistance (IRR) or low radiation resistance (LRR) based on a standard data set from 39 previously studied specimens. Standardized doses of external beam radiation and intracavitary brachytherapy, when feasible, in addition to platinum-based chemotherapy were mandated. Progression-free survival (PFS) was the primary endpoint. Clinical response and overall survival (OS) were secondary endpoints. Clinical investigators were blinded to assay data and vice versa. Results Thirty-six patients were enrolled, but analysis was limited to 17 patients whose specimens were adequate for IVRRA. The median follow-up time was 40 months. There was no association between IVRRA and response. In the Cox model, IRR/ERR tumors showed worse PFS [HR=11.2 (95% CI 1.3–96, p=0.03)] and worse OS [HR=11.7 (95% CI 1.4–99.6, p=0.03)] compared to LRR tumors when IVRRA was performed with RT alone, but there were no associations between IVRRA and PFS or OS when cisplatin was added to the IVRRA. Conclusions IVRRA (RT alone) results correlated with PFS and OS in this prospective trial, but follow-up trials are indicated to address feasibility and to confirm results in an expanded cohort. If confirmed, IVRRA could potentially direct molecular identification

  2. Effect of aromatic compounds on radiation resistance of polymers studied by optical emission

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Hagiwara, Miyuki

    1987-10-01

    To clarify the effects of condensed bromoacenaphthylene (con-BACN) as a newly developed flame retardant on the radiation resistance of ethylene-propylene-diene-terpolymer (EPDM), optical emission behavior of aromatic compounds, acenaphthylene and acenaphthene as model compound of con-BACN was studied. The energy absorbed in polymer matrix is transferred to the aromatic molecules very fast within 1 ns, and introduces excited states of aromatic compound. The fluorescence from naphthalene units of the additives with peak at 337 and 350 nm (named AT emission band) was observed in EPDM containing acenaphthene or acenaphthylene. When aromatic peroxide was used as a crosslinking agent, another emission band (Xn band) was observed at 400 nm. It was found that these emission bands play a role in trapping sites in which a part of radiation energy release in the form of fluorescence. The energy level of the excited state was correlated to the radiation stability measured with coloration and oxidation reaction of the polymer. Furthermore, acenaphthylene having a reactive vinyl bond forms excimer emission band Ex whose level is lower than those of AT and Xn bands, and therefore, enhances radiation stability of matrix polymer by giving effective routes for energy release. (author)

  3. Resistance Exercise and Inflammation in Breast Cancer Patients Undergoing Adjuvant Radiation Therapy: Mediation Analysis From a Randomized, Controlled Intervention Trial

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Martina E., E-mail: m.schmidt@dkfz.de [Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg (Germany); Meynköhn, Anna; Habermann, Nina [Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg (Germany); Wiskemann, Joachim [Division of Medical Oncology, National Center for Tumor Diseases and University Hospital, Heidelberg (Germany); Oelmann, Jan; Hof, Holger; Wessels, Sabine [Department of Radiation Oncology, National Center for Tumor Diseases and University Hospital, Heidelberg (Germany); Klassen, Oliver [Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg (Germany); Debus, Jürgen; Potthoff, Karin [Department of Radiation Oncology, National Center for Tumor Diseases and University Hospital, Heidelberg (Germany); Steindorf, Karen; Ulrich, Cornelia M. [Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg (Germany)

    2016-02-01

    Purpose: To explore the mediating role of inflammatory parameters in the development of fatigue, pain, and potentially related depressive symptoms during radiation therapy for breast cancer and its mitigation by resistance exercise. Methods and Materials: Breast cancer patients scheduled for adjuvant radiation therapy were randomized to 12-week progressive resistance exercise training (EX) or a relaxation control group. Interleukin-6 (IL-6) and interleukin-1 receptor antagonist (IL-1ra) were measured in serum samples collected before, at the end, and 6 weeks after radiation therapy from 103 chemotherapy-naïve participants. Fatigue was assessed with the multidimensional Fatigue Assessment Questionnaire, pain with the European Organization for Research and Treatment of Cancer QLQ-C30, and depressive symptoms with the Center for Epidemiologic Studies Depression Scale. Analysis of covariance models, partial correlations, Freedman-Schatzkin tests, and R{sup 2} effect-size measures for mediation were calculated. Results: The analysis of covariance models revealed a significant intervention effect on IL-6 (P=.010) and the IL-6/IL-1ra ratio (P=.018), characterized by a marked increase during radiation therapy among controls, but no significant change in EX. Interleukin-1 receptor antagonist did not change significantly in either group (P=.88). Increased IL-6 and IL-6/IL-1ra levels at the end of radiation therapy were significantly associated with increased physical fatigue and pain 6 weeks after radiation. We observed significant partial mediation by IL-6 and IL-6/IL-1ra of the effect of resistance exercise on physical fatigue (Freedman-Schatzkin P=.023 and P<.001) and pain (both P<.001). Hereby IL-6 and IL-6/IL-1ra mediated between 15% and 24% of the variance of physical fatigue and pain explained by the intervention. Conclusions: This randomized, controlled trial showed a significantly increased proinflammatory cytokine level after adjuvant radiation therapy in breast

  4. Resistance Exercise and Inflammation in Breast Cancer Patients Undergoing Adjuvant Radiation Therapy: Mediation Analysis From a Randomized, Controlled Intervention Trial

    International Nuclear Information System (INIS)

    Schmidt, Martina E.; Meynköhn, Anna; Habermann, Nina; Wiskemann, Joachim; Oelmann, Jan; Hof, Holger; Wessels, Sabine; Klassen, Oliver; Debus, Jürgen; Potthoff, Karin; Steindorf, Karen; Ulrich, Cornelia M.

    2016-01-01

    Purpose: To explore the mediating role of inflammatory parameters in the development of fatigue, pain, and potentially related depressive symptoms during radiation therapy for breast cancer and its mitigation by resistance exercise. Methods and Materials: Breast cancer patients scheduled for adjuvant radiation therapy were randomized to 12-week progressive resistance exercise training (EX) or a relaxation control group. Interleukin-6 (IL-6) and interleukin-1 receptor antagonist (IL-1ra) were measured in serum samples collected before, at the end, and 6 weeks after radiation therapy from 103 chemotherapy-naïve participants. Fatigue was assessed with the multidimensional Fatigue Assessment Questionnaire, pain with the European Organization for Research and Treatment of Cancer QLQ-C30, and depressive symptoms with the Center for Epidemiologic Studies Depression Scale. Analysis of covariance models, partial correlations, Freedman-Schatzkin tests, and R"2 effect-size measures for mediation were calculated. Results: The analysis of covariance models revealed a significant intervention effect on IL-6 (P=.010) and the IL-6/IL-1ra ratio (P=.018), characterized by a marked increase during radiation therapy among controls, but no significant change in EX. Interleukin-1 receptor antagonist did not change significantly in either group (P=.88). Increased IL-6 and IL-6/IL-1ra levels at the end of radiation therapy were significantly associated with increased physical fatigue and pain 6 weeks after radiation. We observed significant partial mediation by IL-6 and IL-6/IL-1ra of the effect of resistance exercise on physical fatigue (Freedman-Schatzkin P=.023 and P<.001) and pain (both P<.001). Hereby IL-6 and IL-6/IL-1ra mediated between 15% and 24% of the variance of physical fatigue and pain explained by the intervention. Conclusions: This randomized, controlled trial showed a significantly increased proinflammatory cytokine level after adjuvant radiation therapy in breast

  5. Heat enhancement of radiation resistivity of evaporated CsI, KI and KBr photocathodes

    CERN Document Server

    Tremsin, A S

    2000-01-01

    The photoemissive stability of as-deposited and heat-treated CsI, KI and KBr evaporated thin films under UV radiation is examined in this paper. After the deposition, some photocathodes were annealed for several hours at 90 deg. C in vacuum and their performance was then compared to the performance of non-heated samples. We observed that the post-evaporation thermal treatment not only increases the photoyield of CsI and KI photocathodes in the spectral range of 115-190 nm, but also reduces CsI, KI and KBr photocurrent degradation that occurs after UV irradiation. KBr evaporated layers appeared to be more radiation-resistant than CsI and KI layers. Post-deposition heat treatment did not result in any significant variation of KBr UV sensitivity.

  6. A study on the improvement of radiation-induced oxidation resistance for polypropylene and PVC materials

    International Nuclear Information System (INIS)

    Park, K. Z.; Jeong, K. S.; Cho, S. H.; Cho, Y. H.; Seok, H. C.

    2002-01-01

    The object of this project is to improve the stability and the economics by reducing the radiation-induced oxidation as a factor of degradation of polymer materials used under the radiation environment. In order to attain the objective of this study and to check the effect of diamond-like carbon (DLC) coating on the anti-oxidation reaction, polymer specimens such as Polyproplyene, PVC coating DLC thin layer were exposed to high level gamma radiation, and their irradiation effects were investigated. A plasma-enhanced chemical vapor deposition method was adopted in fabricating a DLC thin film on the polymer specimens, which were irradiated with the non-DLC film deposited specimens under the gamma radiation emitted from Co-60 source from 1 x 10 5 to 1 x 10 8 rads exposure. According to the characterization of irradiated specimens from the elapsed time of minimum 4 hours to a maximum of 105 days after the irradiation, the DLC deposition on the polymer surface was revealed to contribute to the improvement on the resistance of the radiation-induced oxidation in this study

  7. Radiation resistances and decontamination of common pathogenic bacteria contaminated in white scar oyster (Crassostrea belcheri) in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Thupila, Nunticha [Department of Fishery Products, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Rd. Ladyao, Chatuchak, Bangkok (Thailand); Ratana-arporn, Pattama, E-mail: ffispmr@ku.ac.t [Department of Fishery Products, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Rd. Ladyao, Chatuchak, Bangkok (Thailand); Wilaipun, Pongtep [Department of Fishery Products, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Rd. Ladyao, Chatuchak, Bangkok (Thailand)

    2011-07-15

    In Thailand, white scar oyster (Crassostrea belcheri) was ranked for premium quality, being most expensive and of high demand. This oyster is often eaten raw, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. As limited alternative methods are available to sterilize the oyster while preserving the raw characteristic, irradiation may be considered as an effective method for decontamination. In this study, the radiation resistance of pathogenic bacteria commonly contaminating the oyster and the optimum irradiation doses for sterilization of the most radiation resistant bacteria were investigated. The radiation decimal reduction doses (D{sub 10}) of Salmonella Weltevreden DMST 33380, Vibrio parahaemolyticus ATCC 17802 and Vibrio vulnificus DMST 5852 were determined in broth culture and inoculated oyster homogenate. The D{sub 10} values of S. Weltevreden, V. parahaemolyticus and V. vulnificus in broth culture were 0.154, 0.132 and 0.059 kGy, while those of inoculated oyster homogenate were 0.330, 0.159 and 0.140 kGy, respectively. It was found that among the pathogens tested, S. Weltevreden was proved to be the most resistant species. An irradiation dose of 1.5 kGy reduced the counts of 10{sup 5} CFU/g S. Weltevreden inoculated in oyster meat to an undetectable level. The present study indicated that a low-dose irradiation can improve the microbial quality of oyster and further reduce the risks from the food-borne pathogens without adversely affecting the sensory attributes.

  8. Radiation resistances and decontamination of common pathogenic bacteria contaminated in white scar oyster (Crassostrea belcheri) in Thailand

    International Nuclear Information System (INIS)

    Thupila, Nunticha; Ratana-arporn, Pattama; Wilaipun, Pongtep

    2011-01-01

    In Thailand, white scar oyster (Crassostrea belcheri) was ranked for premium quality, being most expensive and of high demand. This oyster is often eaten raw, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. As limited alternative methods are available to sterilize the oyster while preserving the raw characteristic, irradiation may be considered as an effective method for decontamination. In this study, the radiation resistance of pathogenic bacteria commonly contaminating the oyster and the optimum irradiation doses for sterilization of the most radiation resistant bacteria were investigated. The radiation decimal reduction doses (D 10 ) of Salmonella Weltevreden DMST 33380, Vibrio parahaemolyticus ATCC 17802 and Vibrio vulnificus DMST 5852 were determined in broth culture and inoculated oyster homogenate. The D 10 values of S. Weltevreden, V. parahaemolyticus and V. vulnificus in broth culture were 0.154, 0.132 and 0.059 kGy, while those of inoculated oyster homogenate were 0.330, 0.159 and 0.140 kGy, respectively. It was found that among the pathogens tested, S. Weltevreden was proved to be the most resistant species. An irradiation dose of 1.5 kGy reduced the counts of 10 5 CFU/g S. Weltevreden inoculated in oyster meat to an undetectable level. The present study indicated that a low-dose irradiation can improve the microbial quality of oyster and further reduce the risks from the food-borne pathogens without adversely affecting the sensory attributes.

  9. Radiation resistances and decontamination of common pathogenic bacteria contaminated in white scar oyster ( Crassostrea belcheri) in Thailand

    Science.gov (United States)

    Thupila, Nunticha; Ratana-arporn, Pattama; Wilaipun, Pongtep

    2011-07-01

    In Thailand, white scar oyster ( Crassostrea belcheri) was ranked for premium quality, being most expensive and of high demand. This oyster is often eaten raw, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. As limited alternative methods are available to sterilize the oyster while preserving the raw characteristic, irradiation may be considered as an effective method for decontamination. In this study, the radiation resistance of pathogenic bacteria commonly contaminating the oyster and the optimum irradiation doses for sterilization of the most radiation resistant bacteria were investigated. The radiation decimal reduction doses ( D10) of Salmonella Weltevreden DMST 33380, Vibrio parahaemolyticus ATCC 17802 and Vibrio vulnificus DMST 5852 were determined in broth culture and inoculated oyster homogenate. The D10 values of S. Weltevreden, V. parahaemolyticus and V. vulnificus in broth culture were 0.154, 0.132 and 0.059 kGy, while those of inoculated oyster homogenate were 0.330, 0.159 and 0.140 kGy, respectively. It was found that among the pathogens tested, S. Weltevreden was proved to be the most resistant species. An irradiation dose of 1.5 kGy reduced the counts of 10 5 CFU/g S. Weltevreden inoculated in oyster meat to an undetectable level. The present study indicated that a low-dose irradiation can improve the microbial quality of oyster and further reduce the risks from the food-borne pathogens without adversely affecting the sensory attributes.

  10. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, P.R.; Blackwell, J.M.; Bradley, D.J. (London School of Hygiene and Tropical Medicine (UK))

    1984-07-01

    Reciprocal radiation bone marrow chimaeras were made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage.

  11. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    International Nuclear Information System (INIS)

    Crocker, P.R.; Blackwell, J.M.; Bradley, D.J.

    1984-01-01

    Reciprocal radiation bone marrow chimaeras mere made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage. (author)

  12. Radiation resistance of the carbon fiber reinforced composite material with PEEK as the matrix resin

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-01-01

    In the fast breeder reactor etc. the structural materials are exposed to various environment, i.e., repeated high and low temperature, stress, etc. Irradiation effect (electron radiation) in the mechanical characteristic at low and high temperature has been studied in the PEEK-CF, polyarylether · ether · ketone - carbon fiber composite. Following are the results. (1) Radiation resistance of PEEK-CF is higher than that of PEEK-PES-CF, PEEK - polyethersulfone surface treated CF composite. In PEEK-PES-CF, PES is deteriorated by irradiation so the adhesive power lowers. (2) In the unirradiated PEEK-CF, its mechanical characteristic decreases beyond 140 deg C. With increase of the radiation dose, however, the characteristic rises. (3) Mechanical characteristic of PEEK-CF thus little drops by the heat treatment after the irradiation. (Mori, K.)

  13. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-01-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN - ) for murine Cu-Zn-SOD was determined to be 6.8 x 10 -6 M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied

  14. Radiation resistant low bandgap InGaAsP solar cell for multi-junction solar cells

    International Nuclear Information System (INIS)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Dharmaras, Nathaji; Yamada, Takashi; Tanabe, Tatsuya; Takagishi, Shigenori; Itoh, Hisayoshi; Ohshima, Takeshi

    2001-01-01

    We have explored the superior radiation tolerance of metal organic chemical vapor deposition (MOCVD) grown, low bandgap, (0.95eV) InGaAsP solar cells as compared to GaAs-on-Ge cells, after 1 MeV electron irradiation. The minority carrier injection due to forward bias and light illumination under low concentration ratio, can lead to enhanced recovery of radiation damage in InGaAsP n + -p junction solar cells. An injection anneal activation energy (0.58eV) of the defects involved in damage/recovery of the InGaAsP solar cells has been estimated from the resultant recovery of the solar cell properties following minority carrier injection. The results suggest that low bandgap radiation resistant InGaAsP (0.95eV) lattice matched to InP substrates provide an alternative to use as bottom cells in multi-junction solar cells instead of less radiation ressitant conventional GaAs based solar cells for space applications. (author)

  15. A study of radiation sensitivity and drug-resistance by DNA methylation in human tumor cell lines

    International Nuclear Information System (INIS)

    Jung, Il Lae; Kim, In Gyu; Kim, Kug Chan

    2009-12-01

    It has recently been known that functional loss of tumor suppressive genes may com from DNA methylation on the chromosome. This kind of tumorigenesis has became one of the major field related to the epigenetics, whose study would be an important fundamental approach in cancer therapy market. In this study, we firstly selected two radiation-resistant mutant H460 cells, which doesn't show any significant cytotoxic effect compared to their parental wild type H460. We found that the two mutants has decreased level of PTEN, whose expression has known to be related to the cell differentiation and growth. We also found that the level of PTEN was greatly different in two lung adenocarcinoma, H460 and A549, in which more radiation-resistant A549 cells showed the decreased PTEN expression. This difference in PTEN expression between two cells was resulted from their different methylation on 5 CpG islands. We expect to know more profoundly through investigating the PTEN-related downstream genes

  16. Radiation effects evaluation for electrons sheaf in packages resistance in a Lasioderma serricorne, Plodia interpunctella and Sitophilus zeamais

    International Nuclear Information System (INIS)

    Alves, Juliana Nazare

    2011-01-01

    The plagues of stored products consist of a man problem, depreciating products and causing economical damages. Among these curses we have Lasioderma serricorne (F. 1792), Sitophilus zeamais (M. 1855) and Plodia interpunctella (H. 1813) known by infesting stored products as: grains, brans, flours, coffee, tobacco, dried fruits and spices. These curses perforate and penetrate the packages, ovipositing over the substratum. In this context the package plays a fundamental part, preventing the contact and curses' proliferation in the packed product. So, to protect the packed product and to prolong its shelf life, the package should have good mechanical resistance to tension and perforation, good sealing, good barrier properties and should not transfer odors nor strange flavors to the packed product. The ionizing radiation can cause structural changes in polymer packages, these changes are caused by the scission processes and reticulation of the polymers chains. These are concurrent processes and the predominance of one over the other depends on the chemical structure of the polymer, the irradiation conditions and specific factors of the material that will absorb the energy. This work had the objective to evaluate the changes in mechanical properties of package structures used to store granola, cereal bar and pasta, as well as its resistance to perforation by L. serricorne, P. interpunctella and S. zeamais, when submitted to electrons sheaf radiation. In this methodology were used five structures of commercially utilized packages to store granola, cereal bar and pasta composed by (Polypropylene bi-oriented metallic/Polypropylene bi-oriented coextruded - BOPPmet/BOPP 50 μm), (Polypropylene bi-oriented/Polypropylene - BOPP/PP 50 μm), Poli (ethylene terephthalate) metallic/Polypropylene bi-oriented coextruded - PETmet/BOPP 32 μm), Poli (ethylene terephthalate) /Polypropylene - PET/PP1 72 μm), Poli (ethylene terephthalate)/Polypropylene - PET/PP2 32 μm). The structures

  17. Antimicrobial activity of silver nanoparticles synthesized using honey and gamma radiation against silver-resistant bacteria from wounds and burns

    Science.gov (United States)

    Hosny, A. M. S.; Kashef, M. T.; Rasmy, S. A.; Aboul-Magd, D. S.; El-Bazza, Z. E.

    2017-12-01

    Silver nanoparticles (AgNPs) are promising antimicrobial agents for treatment of wounds and burns. We synthesized AgNPs using honey at different pH values or with different gamma irradiation doses. The resulting nanoparticles were characterized by UV-vis spectroscopy, TEM, DLS and FTIR. Their antimicrobial activity, against standard bacterial strains and silver-resistant clinical isolates from infected wounds and burns, was evaluated in vitro through determination of their minimum inhibitory concentration (MIC). AgNPs prepared using 30 g of honey exposed to 5 kGy gamma radiation had the best physical characters regarding stability and uniformity of particle size and shape. They recorded the lowest MIC values against both the standard and silver-resistant isolates. In conclusion, honey and gamma radiation can be used in synthesis of highly stable pure AgNPs, without affecting the physico-chemical and antimicrobial activity of honey. This offered an advantage in terms of inhibition of silver-resistant bacteria isolates.

  18. Gamma-Ray Dosimetry System Using Radiation-Resistant Optical Fibers and a Luminescent Material

    International Nuclear Information System (INIS)

    Toh, K.; Nakamura, T.; Yamagishi, H.; Sakasai, K.; Soyama, K.; Shikama, T.; Nagata, S.

    2013-06-01

    Gamma-ray dosimetry system using radiation-resistant optical fibers and a luminescent material was developed for use in a damaged Fukushima Dai-ichi nuclear power plant. The system was designed to be compact and unnecessary of an external supply of electricity to a radiation sensor head with a contaminated working environment and restricted through-holes to a measurement point in the damaged reactor. The system can detect a gamma-ray dose rate at a measurement point using a couple of optical fibers and a luminescent material with a coincidence method. This system demonstrated a linear response with respect to the gamma-ray dose rate from 0.5 mGy/h to 0.1 Gy/h and the system had a capability to measure the dose rate of more than 10 2 Gy/h. (authors)

  19. Transcription and activity of antioxidant proteins after ionization irradiation of radiation-resistant and radiation-sensitive mice

    International Nuclear Information System (INIS)

    Hardmeier, R.

    1998-03-01

    The involvernent of antioxidant proteins catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH px), and thioredoxin (TRX) in radiobiological processes has been described at the enzyme activity level. We were interested in examining the transcription of these proteins in a mammalian system following ionizing irradiation. In order to answer the question whether radiation effects in sensitive mice (Balb/c) (RS) showed differences at the transcriptional level from radiation effects in resistant mice (C3H) (RR). We exposed the whole body of these strains to X/rays doses of 2, 4, and 6 Gy and sacrificed the animals 5, 15, and 30 minutes after irradiation. The mRNA was isolated from liver and hybrized with probes for antioxidant enzymes and thioredoxin, β-actin was used as a housekeeping gene control. Antioxidant enzyme activities were determined by standard assays. Parameters for aromatic hydroxylation (o-Tyr) and lipid peroxidation (MDA) were determined by HPLC methods. Antioxidant transcription was unchanged in contrast to antioxidant activities. SOD and CAT activities were elevated within 15 minutes in RR animals but not in RS at all radiation doses. Glutathione peroxidase activity was not different between RR and RS mice, and was only moderately elevated after irradiation. No significant differences were found between RR and RS animals at the oxidation level, although a radiation dose-dependent increase of oxidation products was detected in both groups. Quantification of thioredoxin mRNA revealed that RR mice transcribed this protein at a significantly higher level at an earlier time point (5 minutes) than did RS mice. This delay may well be responsible for the radioresistance although no quantitative differences were found. As unchanged transcription of antioxidant enzymes could not have been responsible for the increased antioxidant enzyme activities, preformed antioxidant enzymes may have been released by irradiation. This would be in agreement

  20. Oncogenes and radiation resistance - a review

    International Nuclear Information System (INIS)

    Dritschilo, A.

    1992-01-01

    Oncogenes exert their effects on the genetic programs of cells by regulating signal transduction pathways, resulting in multi-factorial genetic responses. By such actions, the genetic elements responsible for the cellular responses to ionizing radiation may be affected. Reports implicating the association of oncogene expression with modulation of the radiation response include the ras, raf, and myc genes. Experiments overexpressing H-ras and c-raf-1 using genetically engineered constructs result in enhanced post-radiation cellular survival. Conversely, inhibition of raf gene expression has resulted in relative radiation sensitization and delay of human squamous cell carcinoma tumor growth in nude mice. There appears to be a potential strategy for therapeutic intervention. The identification of genes that confer survival advantage following radiation exposure, and understanding their mechanisms of action, may permit a genetically based intervention for radiation sensitization. One such approach employs oligo-deoxynucleotides complementary to oncogene-encoded in RNA's (antisense DNA). (author)

  1. Investigating mechanical behavior and radiation resistant of fuel rods clad in nuclear power plant

    International Nuclear Information System (INIS)

    Sedgh Kerdar, A.

    1999-01-01

    The important factors for selection of material for use in nuclear reactors is similar to those for other engineering applications. There are however other parameters which are of importance when materials are going to be used in high radiation environments. These parameters are compatibility in intense nuclear radiation field, high resistance against corrosion and other characteristics such as thermal conductivity, machinability and suitable welding properties. This factors discussed in chapter one. In additions to the materials used as fuel, moderator, controls, etc., which have clear and stringent nuclear requirements, other materials may be necessary in a reactor to provide structural strength and other desired properties. For a materials used in a reactor core, the single most important property is its capacity for neutron absorption. Other properties, such as temperature and radiation stability, mechanical strength, corrosion resistance, etc., also receive much attention in selecting material for a specific application. Obviously, far more can be said about each of the potential metals than is possible in chapter two. We shall limit our attention to those metals of current nuclear interest, i.e., aluminium, beryllium magnesium, zirconium, austenitic stainless steels, nickel base alloys, and in factory metals (Nb and Mo). Interactions between matter and different radiations like Neutrons, protons, Gamma , Beta and Alpha rays in nuclear reactors induced important changes in properties of materials.There are five mechanism responsible for radiation induced changes in solids: ionization, vacancy formation, interstitial formation, creation of impurities caused by nuclear reactions and displacements spikes under the local thermal environment. Due to presence of many electrons in metals ionization does not play a major role in metals only the other four mechanisms are relevant to metals and their alloys. Generally speaking formation of many vacancies and

  2. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma.

    Science.gov (United States)

    Huang, Xin-Qiong; Chen, Xiang; Xie, Xiao-Xue; Zhou, Qin; Li, Kai; Li, Shan; Shen, Liang-Fang; Su, Juan

    2014-01-01

    The aim of this study was to investigate the association of CD147 and GLUT-1, which play important roles in glycolysis in response to radiotherapy and clinical outcomes in patients with locally advanced cervical squamous cell carcinoma (LACSCC). The records of 132 female patients who received primary radiation therapy to treat LACSCC at FIGO stages IB-IVA were retrospectively reviewed. Forty-seven patients with PFS (progression-free survival) of less than 36 months were regarded as radiation-resistant. Eighty-five patients with PFS longer than 36 months were regarded as radiation-sensitive. Using pretreatment paraffin-embedded tissues, we evaluated CD147 and GLUT-1 expression by immunohistochemistry. Overexpression of CD147, GLUT-1, and CD147 and GLUT-1 combined were 44.7%, 52.9% and 36.5%, respectively, in the radiation-sensitive group, and 91.5%, 89.4% and 83.0%, respectively, in the radiation-resistant group. The 5-year progress free survival (PFS) rates in the CD147-low, CD147-high, GLUT-1-low, GLUT-1-high, CD147- and/or GLUT-1-low and CD147- and GLUT-1- dual high expression groups were 66.79%, 87.10%, 52.78%, 85.82%, 55.94%, 82.90% and 50.82%, respectively. CD147 and GLUT-1 co-expression, FIGO stage and tumor diameter were independent poor prognostic factors for patients with LACSCC in multivariate Cox regression analysis. Patients with high expression of CD147 alone, GLUT-1 alone or co-expression of CD147 and GLUT-1 showed greater resistance to radiotherapy and a shorter PFS than those with low expression. In particular, co-expression of CD147 and GLUT-1 can be considered as a negative independent prognostic factor.

  3. Radiation protecting clothing materials

    International Nuclear Information System (INIS)

    Mio, Kotaro; Ijiri, Yasuo.

    1986-01-01

    Purpose: To provide radiation protecting clothing materials excellent in mechanical strength, corrosion resistance, flexibility and flexing strength. Constitution: The radiation protecting clothing materials according to this invention has pure lead sheets comprising a thin pure lead foil of 50 to 150 μm and radiation resistant organic materials, for example, polyethylene with high neutron shielding effect disposed to one or both surfaces thereof. The material are excellent in the repeating bending fatigue and mechanical strength, corrosion resistance and flexibility and, accordingly, radiation protecting clothings prepared by using them along or laminating them also possess these excellent characteristics. Further, they are excellent in the handlability, particularly, durability to the repeated holding and extension, as well as are preferable in the physical movability and feeling upon putting. The clothing materials may be cut into an appropriate size, or stitched into clothings made by radiation-resistant materials. In this case, pure lead sheets are used in lamination. (Horiuchi, T.)

  4. High conversion efficiency and high radiation resistance InP solar cells

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Itoh, Yoshio; Yamaguchi, Masafumi

    1987-01-01

    The fabrication of homojunction InP solar cells has been studied using impurity thermal diffusion, organometallic vapor phase epitaxy (OMVPE) and liquid phase epitaxy (LPE), and is discussed in this paper. Conversion efficiencies exceeding 20 % (AM1.5) are attained. These are the most efficient results ever reported for InP cells, and are comparable to those for GaAs cells. Electron and γ-ray irradiation studies have also been conducted for fabricated InP cells. The InP cells were found to have higher radiation resistance than GaAs cells. Through these studies, it has been demonstrated that the InP cells have excellent potential for space application. (author)

  5. Development of high voltage PEEK wire with radiation-resistance and cryogenic characteristics

    International Nuclear Information System (INIS)

    Fujita, T.; Hirata, T.; Araki, S.; Ohara, H.; Nishimura, H.

    1989-01-01

    High voltage electric wires insulated with highly-refined polyetheretherketone (PEEK) have been developed for the wiring in fusion reactors, where the wire is required to withstand high voltage under high vacuum up to 10 -5 Torr. The PEEK wires having the advantages of PEEK resin including superior radiation resistance and cryogenic characteristics are usable over a wide range of temperature and in radiation fields. The results of withstand voltage tests proved that the PEEK wires exceeding 0.8 mm in insulation thickness withstand such specified high voltage conditions as 24 kV for 1 minutes by 10 times and 6.6 kV for 110 hours. The results also revealed that the withstand voltage is improved by providing a jacket layer over the insulation and decreased by periodical voltage charge, by bending of the specimen and by water in the conductor. This paper deal with the withstand voltage test results under varied conditions of the PEEK wires. (author)

  6. The effect of cellular carotenoid levels in micrococcus luteus on resistance to gamma radiation

    International Nuclear Information System (INIS)

    Al-Wandawi, K. H.

    2000-01-01

    In the present study, a biological system was developed to link the cellular carotenoid levels to Gamma radiation resistance in bacteria for the frst time. thus, in a non-photosynrhetic bacterium, in Micrococcus Luteus an inverse relationship was found between the increase in diphenylamine (DPA) concentration (5.25 μg/ml culture) and the polar cellular carotenoid pigments (C-45 and C-50 carotenoids and their glucosides). It was also found that irradiation of cells with different carotenoid concentrations with doses of γ-radiation in the range of (0.2500 gray) under oxic, air and hypoxic conditions showed that carotenoid pigments offer no significant protection as they usually do in case of visible light. (author).15 refs., 5 figs., 3 tabs

  7. Stacking fault density as engineering criterion for resistance to radiation swelling of alloys' FCC- and BCC-lattice

    International Nuclear Information System (INIS)

    Zheltov, Yu.V.; Ageev, V.S.; Kolesnikov, Yu.G.

    1990-01-01

    The experimental data on influence of Mn, Cr, Ni, P, B, Ce alloying in austenitic and simultaneously Nb, V, B alloying in ferritic steels and also heat treatment on stacking fault density (SFD) are represented. In all cases besides influence of Cr in austenitic steel the increase of SFD is shown. The decrease of radiation swelling of industrial steels at the increase of their SFD, measured by X-rays, was studied. The tendency of increase of relative radiation swelling change at SFD increase at relative fluence rise is verified. It is shown that SFD may be a perspective proximate characteristics of choice of radiation-resistant steel melts within one steel quality. 14 refs.; 4 figs. (author)

  8. Studies on the relationship between the radiation resistance and glutathione content of human and rodent cells after treatment with dexamethasone in vitro

    International Nuclear Information System (INIS)

    Millar, B.C.; Jinks, S.

    1985-01-01

    a 20 pre-treatment of human cells from normal (foetal lung) or malignant origin (glioma, lines U118 MG and U251 MG and bladder carcinoma, line EJ) with dexamethasone failed to increase their radiation resistance in vitro despite a 2-fold increase in the GSH content of a glioma cell line, U251 MG, and a small but significant increase in the GSH content of EJ bladder carcinoma cells. In contrast, there was a correlation between an increase in radiation resistance and an elevated GSH content of rodent cells (Chinese hamster lung, line V-79-379A; ovary, line CHO; rat hepatoma line HTC, and mouse neuroblastoma, line NB413A) after a similar pre-treatment. The results suggest that enhancement of radiation resistance cannot be directly ascribed to an elevated GSH content in steroid-treated cells. On the bases of these data it is unlikely that the efficacy of radiotherapy will be diminished amongst patients receiving concomitant treatment with dexamethasone. However, in vivo testing is required to confirm these findings. (author)

  9. WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma.

    Science.gov (United States)

    Zhukova, Nataliya; Ramaswamy, Vijay; Remke, Marc; Martin, Dianna C; Castelo-Branco, Pedro; Zhang, Cindy H; Fraser, Michael; Tse, Ken; Poon, Raymond; Shih, David J H; Baskin, Berivan; Ray, Peter N; Bouffet, Eric; Dirks, Peter; von Bueren, Andre O; Pfaff, Elke; Korshunov, Andrey; Jones, David T W; Northcott, Paul A; Kool, Marcel; Pugh, Trevor J; Pomeroy, Scott L; Cho, Yoon-Jae; Pietsch, Torsten; Gessi, Marco; Rutkowski, Stefan; Bognár, Laszlo; Cho, Byung-Kyu; Eberhart, Charles G; Conter, Cecile Faure; Fouladi, Maryam; French, Pim J; Grajkowska, Wieslawa A; Gupta, Nalin; Hauser, Peter; Jabado, Nada; Vasiljevic, Alexandre; Jung, Shin; Kim, Seung-Ki; Klekner, Almos; Kumabe, Toshihiro; Lach, Boleslaw; Leonard, Jeffrey R; Liau, Linda M; Massimi, Luca; Pollack, Ian F; Ra, Young Shin; Rubin, Joshua B; Van Meir, Erwin G; Wang, Kyu-Chang; Weiss, William A; Zitterbart, Karel; Bristow, Robert G; Alman, Benjamin; Hawkins, Cynthia E; Malkin, David; Clifford, Steven C; Pfister, Stefan M; Taylor, Michael D; Tabori, Uri

    2014-12-24

    TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.

  10. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    International Nuclear Information System (INIS)

    Bradshaw, Tyler J.; Bowen, Stephen R.; Deveau, Michael A.; Kubicek, Lyndsay; White, Pamela; Bentzen, Søren M.; Chappell, Richard J.; Forrest, Lisa J.; Jeraj, Robert

    2015-01-01

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV max ; SUV mean ) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R 2 . Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV mean (P=.018), and midtreatment FLT SUV max (P=.006). Large decreases in FLT SUV mean from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV max (P=.022) in combination with large FLT response from

  11. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Tyler J. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bowen, Stephen R. [Departments of Radiation Oncology and Radiology, University of Washington, Seattle, Washington (United States); Deveau, Michael A. [Department of Small Animal Clinical Sciences, Texas A& M University, College Station, Texas (United States); Kubicek, Lyndsay [Angell Animal Medical Center, Boston, Massachusetts (United States); White, Pamela [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bentzen, Søren M. [Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland (United States); Chappell, Richard J. [Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Forrest, Lisa J. [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Jeraj, Robert, E-mail: rjeraj@wisc.edu [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States)

    2015-03-15

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV{sub max}; SUV{sub mean}) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R{sup 2}. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV{sub mean} (P=.018), and midtreatment FLT SUV{sub max} (P=.006). Large decreases in FLT SUV{sub mean} from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV{sub max} (P=.022) in

  12. Electron-hole pairs generated in ZrO2 nanoparticle resist upon exposure to extreme ultraviolet radiation

    Science.gov (United States)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2018-02-01

    Metal oxide nanoparticle resists have attracted much attention as the next-generation resist used for the high-volume production of semiconductor devices. However, the sensitization mechanism of the metal oxide nanoparticle resists is unknown. Understanding the sensitization mechanism is important for the efficient development of resist materials. In this study, the energy deposition in a zirconium oxide (ZrO2) nanoparticle resist was investigated. The numbers of electron-hole pairs generated in a ZrO2 core and an methacrylic acid (MAA) ligand shell upon exposure to 1 mJ cm-2 (exposure dose) extreme ultraviolet (EUV) radiations were theoretically estimated to be 0.16 at most and 0.04-0.17 cm2 mJ-1, respectively. By comparing the calculated distribution of electron-hole pairs with the line-and-space patterns of the ZrO2 nanoparticle resist fabricated by an EUV exposure tool, the number of electron-hole pairs required for the solubility change of the resist films was estimated to be 1.3-2.2 per NP. NP denotes a nanoparticle consisting of a metal oxide core with a ligand shell. In the material design of metal oxide nanoparticle resists, it is important to efficiently use the electron-hole pairs generated in the metal oxide core for the chemical change of ligand molecules.

  13. Update on scribe–cleave–passivate (SCP) slim edge technology for silicon sensors: Automated processing and radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Fadeyev, V., E-mail: fadeyev@ucsc.edu [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Ely, S.; Galloway, Z.; Ngo, J.; Parker, C.; Sadrozinski, H.F.-W. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Christophersen, M.; Phlips, B.F. [U.S. Naval Research Laboratory, Code 7654, 4555 Overlook Avenue, Southwest Washington, DC 20375 (United States); Pellegrini, G.; Rafi, J.M.; Quirion, D. [Instituto de Microelectrónica de Barcelona, IMB-CNM-CSIC, Bellaterra, Barcelona (Spain); Dalla Betta, G.-F. [INFN and University of Trento, Via Sommarive, 14, 38123 Povo di Trento (Italy); Boscardin, M. [Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Povo di Trento (Italy); Casse, G. [Department of Physics, University of Liverpool, O. Lodge Laboratory, Oxford Street, Liverpool L69 7ZE (United Kingdom); Gorelov, I.; Hoeferkamp, M.; Metcalfe, J.; Seidel, S. [Department of Physics and Astronomy, University of New Mexico, MSC 07 4220, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Gaubas, E.; Ceponis, T. [Institute of Applied Research, Vilnius University, Sauletekio 9, LT-10222 Vilnius (Lithuania); and others

    2014-11-21

    We pursue scribe–cleave–passivate (SCP) technology for making “slim edge” sensors. The goal is to reduce the inactive region at the periphery of the devices while maintaining their performance. In this paper we report on two aspects of the current efforts. The first one involves fabrication options for mass production. We describe the automated cleaving tests and a simplified version of SCP post-processing of n-type devices. Another aspect is the radiation resistance of the passivation. We report on the radiation tests of n- and p-type devices with protons and neutrons.

  14. Physiologic mechanisms in radiation resistance

    International Nuclear Information System (INIS)

    Reichard, S.M.

    1976-01-01

    Some topics discussed are as follows: role of the reticuloendothelial system in the regeneration of the hematopoietic system; uptake of colloidal agents by liver and spleen cells following graded doses of x radiation; effects of x radiation on peritoneal macrophages of rats; stimulation of phagocytic activity of the reticuloendothelial system by estrogens, serum albumin, and bacterial endotoxins; and sequestration of particulate material within the reticuloendothelial organs following x irradiation

  15. Combination therapeutics of Nilotinib and radiation in acute lymphoblastic leukemia as an effective method against drug-resistance.

    Directory of Open Access Journals (Sweden)

    Kamran Kaveh

    2017-07-01

    Full Text Available Philadelphia chromosome-positive (Ph+ acute lymphoblastic leukemia (ALL is characterized by a very poor prognosis and a high likelihood of acquired chemo-resistance. Although tyrosine kinase inhibitor (TKI therapy has improved clinical outcome, most ALL patients relapse following treatment with TKI due to the development of resistance. We developed an in vitro model of Nilotinib-resistant Ph+ leukemia cells to investigate whether low dose radiation (LDR in combination with TKI therapy overcome chemo-resistance. Additionally, we developed a mathematical model, parameterized by cell viability experiments under Nilotinib treatment and LDR, to explain the cellular response to combination therapy. The addition of LDR significantly reduced drug resistance both in vitro and in computational model. Decreased expression level of phosphorylated AKT suggests that the combination treatment plays an important role in overcoming resistance through the AKT pathway. Model-predicted cellular responses to the combined therapy provide good agreement with experimental results. Augmentation of LDR and Nilotinib therapy seems to be beneficial to control Ph+ leukemia resistance and the quantitative model can determine optimal dosing schedule to enhance the effectiveness of the combination therapy.

  16. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko, E-mail: thirono@uni-bonn.de [Physikalisches Institute der Universität Bonn, Bonn (Germany); Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans [Physikalisches Institute der Universität Bonn, Bonn (Germany); Liu, Jian; Pangaud, Patrick [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Peric, Ivan [IPE, Karlsruher Institut für Technologie, Karlsruhe (Germany); Pohl, David-Leon [Physikalisches Institute der Universität Bonn, Bonn (Germany); Rozanov, Alexandre [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Rymaszewski, Piotr [Physikalisches Institute der Universität Bonn, Bonn (Germany); Wang, Anqing [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Wermes, Norbert [Physikalisches Institute der Universität Bonn, Bonn (Germany)

    2016-09-21

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  17. Radiation resistance of plastic solid

    International Nuclear Information System (INIS)

    Moriyama, Noboru; Dojiri, Shigeru; Wadachi, Yoshiki

    1985-01-01

    The radiation from nucleides contained in solidified wates have some effects on the degradation of the solidification materials. This report deals with effects of such radiation on the mechanical strength of waste-plastics composites and on the generation of gasses. It is shown that the mechanical strength of polyethylene and polyester solids will not decrease at a total absorbed dose of 10 6 rad, a dose which a low-level waste composite is expected to receive during an infinite period of time. Rather, it increases in the case of polyethylene. The amount of gas generated from degraded polyethylene is about three times as large as that from polyester, namely, about 6 l per 200 l drum can at 10 6 rad. Hydrogen accounts for about 80 % of the total gas generated from polyethylene. On the other hand, the gas from polyester solid mainly contains hydrogen, carbon dioxide, carbon monoxide and methane, with a composition greatly dependent on the type of the waste contained. It is concluded from these results that plastic materials can serve satisfactorily as for as the effects of radiation on their mechanical strength and gas generation are concerned. A more important problem still remaining to be solved is the effects of radiation on the leaching of radioactive nuclides. (Nogami, K.)

  18. Handling technique of spore-forming bacteria in radiation sterilization. 2. Determination of numbers and radiation resistance of spores

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko

    1994-01-01

    Stepwise ten-fold dilution of bacterial solution is required in the determination of bacterial spores. For this, the selection of diluted solution is important according to the purpose of experiment. First, the preparation of suspension of bacterial spores and selection of diluted solution are presented. Then, a method for determining the number of bacterial spores in materials is outlined in terms of dilution methods of bacterial solution (shaking and homogenization) and application method of diluted solution to the plating medium. Finally, a method for determining radiation resistance of spore-forming bacteria is explained according to the measurement conditions (suspension of bacterial spores and filters applied with bacterial spores). (N.K.)

  19. Handling technique of spore-forming bacteria in radiation sterilization. 2. Determination of numbers and radiation resistance of spores

    Energy Technology Data Exchange (ETDEWEB)

    Koshikawa, Tomihiko [Japan Radioisotope Association, Shiga (Japan). Koka Laboratory

    1994-12-01

    Stepwise ten-fold dilution of bacterial solution is required in the determination of bacterial spores. For this, the selection of diluted solution is important according to the purpose of experiment. First, the preparation of suspension of bacterial spores and selection of diluted solution are presented. Then, a method for determining the number of bacterial spores in materials is outlined in terms of dilution methods of bacterial solution (shaking and homogenization) and application method of diluted solution to the plating medium. Finally, a method for determining radiation resistance of spore-forming bacteria is explained according to the measurement conditions (suspension of bacterial spores and filters applied with bacterial spores). (N.K.).

  20. Development of TRAIL Resistance by Radiation-Induced Hypermethylation of DR4 CpG Island in Recurrent Laryngeal Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Lee, Jong Cheol; Lee, Won Hyeok; Min, Young Joo; Cha, Hee Jeong; Han, Myung Woul; Chang, Hyo Won; Kim, Sun-A; Choi, Seung-Ho; Kim, Seong Who; Kim, Sang Yoon

    2014-01-01

    Purpose: There are limited therapeutic options for patients with recurrent head and neck cancer after radiation therapy failure. To assess the use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) as a salvage chemotherapeutic agent for recurrent cancer after radiation failure, we investigated the effect of clinically relevant cumulative irradiation on TRAIL-induced apoptosis. Methods and Materials: Using a previously established HN3 cell line from a laryngeal carcinoma patient, we generated a chronically irradiated HN3R isogenic cell line. Viability and apoptosis in HN3 and HN3R cells treated with TRAIL were analyzed with MTS and PI/annexin V-FITC assays. Western blotting and flow cytometry were used to determine the underlying mechanism of TRAIL resistance. DR4 expression was semiquantitatively scored in a tissue microarray with 107 laryngeal cancer specimens. Methylation-specific polymerase chain reaction and bisulfite sequencing for DR4 were performed for genomic DNA isolated from each cell line. Results: HN3R cells were more resistant than HN3 cells to TRAIL-induced apoptosis because of significantly reduced levels of the DR4 receptor. The DR4 staining score in 37 salvage surgical specimens after radiation failure was lower in 70 surgical specimens without radiation treatment (3.03 ± 2.75 vs 5.46 ± 3.30, respectively; P<.001). HN3R cells had a methylated DR4 CpG island that was partially demethylated by the DNA demethylating agent 5-aza-2′-deoxycytidine. Conclusion: Epigenetic silencing of the TRAIL receptor by hypermethylation of a DR4 CpG island might be an underlying mechanism for TRAIL resistance in recurrent laryngeal carcinoma treated with radiation

  1. Cell death induced by ionizing radiations in human radio-resistant tumours: in-vitro and in-vivo study of mechanisms involved in its induction by different types of radiations and pharmacological modulation

    International Nuclear Information System (INIS)

    Altmeyer, Anais

    2010-01-01

    Whereas chemo-radiotherapy protocols revealed to be very efficient when taking tumours into care, the treatment of some tumours remains very limited due to their critical location or to the weak radio-sensitivity to conventional radiations. One way to work around this problem is to use high linear energy transfer radiations or hadron therapy, in combination with radio-sensitizers. This research thesis reports the assessment of radio-sensitizer effects of different molecules on human radio-resistant cell lines and more particularly the SK-Hep1 line from a hepatocellular carcinoma. In vitro studies have been performed and then in vivo studies by using fast neutron irradiation on a mice liver sample. Observations made by optic fibre confocal microscopy and transmission electronic microscopy confirmed in vitro observations: the prevailing cell death after such an irradiation is the autophagic cell death. It shows the importance of the autophagic phenomenon induced by radiations with high linear transfer energy. This could lead to new therapeutic protocols for radio-resistant cancers [fr

  2. Radiation-resistant composite scintillators based on GSO and GPS grains

    Energy Technology Data Exchange (ETDEWEB)

    Boyarintsev, A.Yu. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Galunov, N.Z. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); V.N. Karasin Kharkov National University, 4 Svobody Sq., 61022 Kharkiv (Ukraine); Gerasymov, Ia.V.; Karavaeva, N.L. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Krech, A.V., E-mail: AntonKrech@gmail.com [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Levchuk, L.G.; Popov, V.F. [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv (Ukraine); Sidletskiy, O.Ts. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Sorokin, P.V. [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv (Ukraine); Tarasenko, O.A. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine)

    2017-01-01

    The effect of irradiation on the scintillation light output, optical transmittance, and luminescent spectra of composite scintillators based on grains of single crystals Gd{sub 2}SiO{sub 5}:Ce (GSO) and Gd{sub 2}Si{sub 2}O{sub 7}:Ce (GPS) is studied. The dielectric gel Sylgard-184 is the base and the binder for the grains inside the composite scintillator. The paper presents and analyzes the results obtained for the scintillators exposed by 10 MeV electrons from the linear electron accelerator at room temperature. The exposure doses D≤250 Mrad. The dose rate is 0.2 or 1500 Mrad/h. The study has shown that the composite scintillators based on the grains of GSO and GPS are radiation-resistant over the range of the irradiation.

  3. Conceptual design of a versatile radiation tolerant integrated signal conditioning circuit for resistive sensors

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, P. [Katholieke Hogeschool Kempen, Kleinhoefstraat 4, B-2440 Geel (Belgium); Katholieke Universiteit Leuven, Dept. ESAT-MICAS, Kasteelpark Arenberg 10, B-3001 Heverlee (Belgium); SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Sterckx, J. [Katholieke Hogeschool Kempen, Kleinhoefstraat 4, B-2440 Geel (Belgium); Van Uffelen, M.; Damiani, C. [Fusion 4 Energy, Ed. B3, c/Josep, no 2, Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2011-07-01

    This paper presents the design of a radiation tolerant configurable discrete time CMOS signal conditioning circuit for use with resistive sensors like strain gauge pressure sensors. The circuit is intended to be used for remote handling in harsh environments in the International Thermonuclear Experimental fusion Reactor (ITER). The design features a 5 V differential preamplifier using a Correlated Double Sampling (CDS) architecture at a sample rate of 20 kHz and a 24 V discrete time post amplifier. The gain is digitally controllable between 27 and 400 in the preamplifier and between 1 and 8 in the post amplifier. The nominal input referred noise voltage is only 8.5 {mu}V while consuming only 1 mW. The circuit has a simulated radiation tolerance of more than 1 MGy. (authors)

  4. Design and characterization of radiation resistant integrated circuits for the LHC particle detectors using deep sub-micron CMOS technologies

    International Nuclear Information System (INIS)

    Anelli, Giovanni Maria

    2000-01-01

    The electronic circuits associated with the particle detectors of the CERN Large Hadron Collider (LHC) have to work in a highly radioactive environment. This work proposes a methodology allowing the design of radiation resistant integrated circuits using the commercial sub-micron CMOS technology. This method uses the intrinsic radiation resistance of ultra-thin grid oxides, the technology of enclosed layout transistors (ELT), and the protection rings to avoid the radio-induced creation of leakage currents. In order to check the radiation tolerance level, several test structures have been designed and tested with different radiation sources. These tests have permitted to study the physical phenomena responsible for the damages induced by the radiations and the possible remedies. Then, the particular characteristics of ELT transistors and their influence on the design of complex integrated circuits has been explored. The modeling of the W/L ratio, the asymmetries (for instance in the output conductance) and the performance of ELT couplings have never been studied yet. The noise performance of the 0.25 μ CMOS technology, used in the design of several integrated circuits of the LHC detectors, has been characterized before and after irradiation. Finally, two integrated circuits designed using the proposed method are presented. The first one is an analogic memory and the other is a circuit used for the reading of the signals of one of the LHC detectors. Both circuits were irradiated and have endured very high doses practically without any sign of performance degradation. (J.S.)

  5. Development of radiation resistant structural materials utilizing fission research reactors in Japan (Role of research reactors)

    International Nuclear Information System (INIS)

    Shikama, T.; Tanigawa, H.; Nozawa, T.; Muroga, T.; Aoyama, T.; Kawamura, H.; Ishihara, M.; Ito, C.; Kaneda, S.; Mimura, S.

    2009-01-01

    Structural materials for next-generation nuclear power systems should have a good radiation resistance, where the expected accumulation dose will largely exceed 10 dpa. Among several candidate materials, materials of five categories, 1. Austenitic steels, including high nickel alloys, 2. Low activation ferritic martensitic steels, 3. ODS steels (austenitic and ferritic), 4. Vanadium based alloys, 5. Silicon carbide composites (SiC/SiCf). All have been most extensively studied in Japan, in collaboration among industries, national institutes such as Japan Atomic Energy Agency (JAEA), National Institute for Fusion Science (NIFS) and National Institute for Materials Science (NIMS), and universities. The high nickel base alloys were studied for their low swelling behaviors mainly by the NIMS and the austenitic steels are studied for their reliable engineering data base and their reliable performance in irradiation environments mainly by the JAEA, mainly for their application in the near-term projects such as the ITER and the Sodium Cooled Fast Reactors. The most extensive studies are now concentrated on the Low Activation Ferritic Marsensitic steels and ODS steels, for their application in a demonstration fusion reactor and prototype sodium cooled fast reactors. Fundamental studies on radiation effects are carried out, mainly utilizing Japan Materials Testing Rector (JMTR) with its flexible irradiation ability, up to a few dpa. For higher dpa irradiation, a fast test reactor, JOYO is utilized up to several 10s dpa. Some international collaborations such as Japan/USA and Japan/France are effective to utilize reactors abroad, such as High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory, and sodium cooled high flux fast reactors in France. Silicon carbide based composites are extensively studied by university groups led by Kyoto University and the JAEA. For their performance in heavy irradiation environments, the Japan/USA collaboration plays an important role

  6. Development of bunchy top virus resistant banana cv lakatan in vitro culture and radiation technology

    International Nuclear Information System (INIS)

    Estrella, J.D.; Caymo, L.S.; Dizon, T.O.; Dela Cruz, F. Jr; Damasco, O.P.

    2002-01-01

    Bunchy to virus (BTV) is the most destructive virus disease of banana in the Philippines. Incorporation of resistance to this virus disease by conventional hybridization is not possible due to male and female sterility of most commercial banana cultivars. In vitro culture coupled with radiation technology can be used to develop BTV resistance in banana cv. Lakatan. The sensitivity of banana shot tip explants to gamma irradiation was determined by subjecting the shoot tips to varying doses (5, 10, 20, 25, 30, 40, 60, 80 and 100 Gy) of irradiation. The LD sub 50 for banana shoot tips determined by 50% reduction in growth and shoot proliferation, was observed to around 20-25 Gy. Bulk irradiation of shoot tip explants was conducted using 20-25 Gy. Irradiated cultures were multiplied for 3-5 cycles and plants regenerated were potted out and screened for BTV resistance. A total of 3,447 irradiated plants regenerated from the radiosensitivity experiment (1,847 plants) and bulk irradiation of 20/25 Gy (1,600 plants) were screened for BTV resistance in the greenhouse using artificial BTV inoculation using the aphid vector Pentalonia nigronervosa. One hundred eighteen plants or 3.4% (118/3,447) of the artificially irradiated plants showed seedling resistance after 4-7 months of evaluation. These plants were planted in the field and were subjected to natural BTV infection. To date, 85 (out of the 118) putative seedling resistant plants continuously expressed BTV resistance in the field after more than 10 months of evaluation. The absence of BTV infection in 39 putative resistant plants was confirmed by ELISA test. Suckers from selected putative resistance plants will be collected, propagated and evaluated for the second cycle stability of BTV resistance and detailed characterization of important horticultural traits

  7. Electrical resistivity of carbon black-filled high-density polyethylene (HDPE) composite containing radiation crosslinked HDPE particles

    International Nuclear Information System (INIS)

    Lee, M.-G.; Nho, Y.C.

    2001-01-01

    The room-temperature volume resistivity of high-density polyethylene (HDPE)-carbon black (CB) blends containing previously radiation crosslinked HDPE powder was studied. The results showed that the room-temperature volume resistivity decreases with increasing concentration of crosslinked HDPE powder. It is considered that the crosslinked HDPE particles act as a filler that increases the CB volume fraction in the HDPE matrix. The results of an optical microscope observation indicated that the crosslinked polymer particles are dispersed in the HDPE/CB composite. This effect of the crosslinked particles is attributed to the fact that the crosslinked mesh size of the HDPE particles is so small that the CB particles cannot go inside them. The effect of 60 Co γ-ray and electron beam (EB) irradiation on the positive temperature coefficient, negative temperature coefficient and electrical resistivity behavior of the blends were studied

  8. A study on radiation-resistance of PIC (polymer-impregnated concrete) for container of conditioning and disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Ishizaki, Kanjiro; Sudoh, Giichi; Araki, Kunio; Kasahara, Yuko.

    1983-01-01

    The radiation-resistance of PIC with test piece was evaluated by irradiation of gamma-rays. All the test pieces had JIS mortar size of 4 x 4 x 16 cm. JIS mortar and concrete were used as specimens. The maximum aggregate size of concrete was 10 mm. The specimens impregnated by MMA (methylmethacrylate) monomer and solution of 10% of PSt (polystyrene) in MMA monomer (MMA .PSt) were polymerized by irradiating for 5 hr at the dose rate of 1 MR (1 x 10 6 Roentgen)/hr. PIC specimens were exposed up to maximum 1000 MR to 60 Co gamma-rays in air and under water which simulate shallow land disposal and deep sea dumping conditions, respectively. The lowering of strength of the PIC exposed to gamma-rays under water was larger than that of the PIC in air. The improving effect of the added PSt on the radiation-resistance was observed. It was observed that the 50 MR-irradiated MMA.PSt-PIC under water, which had the residual compressive strength of 85%, was resistant to gamma-rays. When this residual strength was regarded as a limit of radiation-resistance in air, the limit of MMA and MMA.PSt-PIC were approximately 25 MR and 150 MR, respectively. The lowering of strength was mainly due to the deterioration of MMA polymer in PIC. The total exposure dose for PIC-container was estimated by assuming the conditions about the packaged radioactive wastes, dose rate, container and so on. The total exposure dose on PIC-container for 100 years became roughly 1.25 MR. Therefore, it is estimated that the PIC-containers for conditioning and disposal of low and intermediate level radioactive wastes have a sufficient resistance to radiation arising from wastes. (author)

  9. Radiation resistant, decontaminable and sealing jointing compounds for application in nuclear facilities

    International Nuclear Information System (INIS)

    Kunze, S.

    1991-09-01

    The sealing jointing compounds applied in practice and already examined for decontaminability will be presented here. Solvent-free sealing compounds, emulsifiable in water, with low molecular epoxy resins as binders, quite a number of curing versions, and little hygroscopic filler mixtures adapted in grain size have been tested with a view to ceramic tile jointing in nuclear facilities. The sealing compounds were examined before and after exposure to gamma irradiation (300 KGy energy dose) for decontaminability, color, gloss and resistance to decontaminants. Out of fourteeen compounds exhaustively investigated ten are very well decontaminable and four well decontaminable. After exposure to radiation no or only minor changes in color and gloss, respectively, were observed. Visible changes such as cracking, bubbles, etc. were not found and the resistance to decontaminants was neither affected. It has even been possible to replace in the well decontaminable sealing compounds developed until now part of the epoxy resin binder with elasticizing components such as Thiokol which is very important as a base material for sealing compounds in the construction industry, but difficult to decontaminate. (orig.) [de

  10. Resistance to infection with Eimeria vermiformis in mouse radiation chimeras is determined by donor bone-marrow cells

    International Nuclear Information System (INIS)

    Joysey, H.S.; Wakelin, D.; Rose, M.E.

    1988-01-01

    The course of infection with Eimeria vermiformis was determined in BALB/b, BALB/c, and C57BL/10ScSn (B10) mice and in radiation chimeras prepared from the H-2-compatible BALB/b and B10 mice. The BALB strains, irrespective of H-2 haplotype, were resistant, the B10 mice were susceptible, and in the chimeras infection was characterized by the genotype of the donated bone-marrow cells and not by the phenotype of the recipient. Thus, the genetic control of relative resistance or susceptibility to infection with this parasite is expressed through bone-marrow-derived cells

  11. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    International Nuclear Information System (INIS)

    Boyer, N.W.; Taylor, R.S.

    1980-01-01

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications

  12. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-01-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor β mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor β 1 and β 3 . Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor βmRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs

  13. Gamma radiation-induced mutant of NSIC RC144 with broad-spectrum resistance to bacterial blight

    International Nuclear Information System (INIS)

    Alfonso, A.A.; Avellanoza, E.S.; Miranda, R.T.; Espejo, E.O.; Garcia, N.S.

    2014-01-01

    Mutant lines derived from gamma radiation-treated commercial variety NSIC RC144 were produced and screened for novel resistance to bacterial blight, one of the most serious diseases of rice. Preliminary screening of a bulk M2 population through induced method using race 3 of the pathogen Xanthomonas oryzae pv. oryzae (Xoo) resulted in the selection of 89 resistant plants. Subsequent repeated bacterial blight screenings and generation advance for five seasons resulted in the selection of two highly resistant M7 sister lines whose origin can be traced to a single M2 plant. DNA fingerprinting using 63 genome-wide simple sequence repeat (SSR) markers revealed an identical pattern in these lines. Using the same set of markers, they also exhibited 98% similarity to wild type NSIC RC144 indicating that the resistance is due to mutation and not due to genetic admixture or seed impurity. Two seasons of bacterial blight screening using 14 local isolates representing ten races of Xoo revealed an identical reaction pattern in these lines. The reaction pattern was observed to be unique compared to known patterns in four IRBB isolines (IRBB 4, 5, 7 and 21) with strong resistant reaction to bacterial blight suggesting possible novel resistance. The susceptible reaction in F1 testcrosses using Xoo race 6 and the segregation patterns in two F2 populations that fit with the expected 3 susceptible: 1 resistant ratio (P = 0.4, ns) suggest a single-gene recessive mutation in these lines. These mutants are now being used as resistance donor in the breeding program while further molecular characterization to map and characterize the mutated gene is being pursued

  14. Effects of combinations of chemotherapy and radiation on the emergence of drug resistant cells in 9L rat brain tumor spheroids

    International Nuclear Information System (INIS)

    Tofilon, P.J.; Arundel, C.; Vines, C.M.

    1987-01-01

    Repeated administration of antineoplastic chemotherapeutic agents is generally considered to induce and/or select for drug resistant cells. The authors recently begun to investigate whether chemotherapy interdigitated with radiation can minimize or eliminate the emergence of drug resiistent cells in 9L rat brain tumor spheroids grown from defined mixtures of cells sensitive (9L) and resistant (R/sub 3/) to BCNU. In this experimental system, the sister chromatid exchange (SCE) assay is used to quantitate the proportions of sensitive and resistant cells within the spheroids. While 9L and R/sub 3/ cell have different sensitivities to BCNU, they are equally sensitive to radiation. Mixed-cell spheroids consisting of 1% R/sub 3/ cells were treated with three doses of BCNU (10 μM) every 72 hr resulting in a shift in the 9L to R/sub 3/ ratio to greater than 50% R/sub 3/ cells. The combined protocols to be investigated will involve γ rays administered either 36 hr before or after each BCNU treatment. By initiating these combined protocols on spheroids of different sizes, the effectiveness of each protocol is evaluated with respect to the number of resistant cells present

  15. Irradiation tests of a small-sized motor with radiation resistance

    International Nuclear Information System (INIS)

    Nakamichi, M.; Ishitsuka, E.; Shimakawa, S.; Kan, S.

    2007-01-01

    In the Test Blanket Module (TBM) of the International Thermonuclear Experimental Reactor (ITER), tritium production and release behavior will be studied using neutrons from fusion reactions, as the blanket development for a demonstration (DEMO) reactor. For development of the TBM, in-pile functional tests are planned, including an integrated irradiation experiment of a fusion blanket mock-up for pulsed operation simulating the ITER operation mode, using the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Agency (JAEA).Due to be installed in an irradiation rig, a small-sized motor has to be developed for rotating a neutron absorber with a window to realize the simulated pulse operation. Since degradation of materials of the motor may be caused by radiation damage due to neutron and gamma-ray irradiation, it is important to examine the soundness of the motor materials under the neutron and gamma irradiation.In the present study, a small-sized motor with increased radiation resistance was developed as follows. A design of a commercial alternate current (AC) servomotor was adopted in the base structure, and some components of the motor were replaced by those made of radiation-proof materials, through elimination of organic materials. Polyester-coated wire for field coil and epoxy for fixed resin were replaced by polyimide-coated wire and polysiloxane filled with MgO and Al 2 O 3 , respectively. Furthermore, inorganic lubricant (Mo-based coating of 4 micro meter in thickness) was treated on the surface of a gear, instead of organic (polyphenylether) oil.Radiation-induced degradation of the components of the developed small-sized motor was examined using JMTR and the Japan Research Reactor No.4 (JRR-4) of JAEA. The motor was operating normally up to a gamma-ray dose of 7 x 10 8 Gy, a fast neutron (E>1 MeV) fluence of 2 x 10 21 m -2 and a thermal neutron (E 22 m -2 . The irradiated gamma-ray dose for this motor is about 700 times as high as the operation

  16. Radiation-resistance test on optical fiber for artificial satellite

    International Nuclear Information System (INIS)

    Morita, Yosuke; Seguchi, Tadao; Mori, Tatsuo; Miyaji, Yuji.

    1985-01-01

    Radiation resistance of a prototype optical fiber for use in artificial satellites is investigated under a long-term irradiation of gamma rays at relatively low dose rates. The optical fiber tested is composed of a pure silica core and an F-doped cladding. Various aspects of the relations between induced loss and irradiation time are observed and results obtained are discussed. It is generally accepted that a satellite and its equipment should be resistant to a total dose of about 1 x 10 6 rad. In the present test, accordingly, gamma ray irradiation is performed up to a total dose of 1 x 10 6 rad at a dose rate of 1 x 10 4 rad/h (for 100 h), 3 x 10 3 rad/h (333 h) and 1 x 10 3 rad/h (1000 h), and it is shown that the loss induced in this fiber at these dose rates is 23.6 - 27.2, 16.9 - 21.6 and 12.5 - 13.5 dB/km, respectively. On the other hand, it has been reported that the loss induced at the dose rate of 1 x 10 6 rad/h (1 h) is about 600 dB/km, which is much larger than the above values. From these results, the loss at a dose rate of 100 rad/h, which would be expected in a satellite, is estimated at about 10 dB/km. It is concluded that this prototype fiber has a sufficient capability for satellite use with respect to induced loss. (Nogami, K.)

  17. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. [Lactobacillus sake; Lactobacillus curvatus; Lactobacillus farciminis; Staphylococcus aureus; Salmonella typimurium

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.W.; Holzapfel, W.H.; Niemand, J.G.

    1986-10-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp. one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four reference strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO/sub 2/, and N/sub 2/). Organisms exhibited the highest death rate (lowest D/sub 10/ values (doses required to reduce the logarithm of the bacterial population by 1) under CO/sub 2/ packaging conditions, but resistance to irradiation was increased under N/sub 2/. The D/sup 10/ values of the isolates were generally greater than those of the reference strains. The D/sup 10/ values were also higher (approximately two times) in meat than in a semisynthetic growth medium.

  18. Low dose radiation and plant growth

    International Nuclear Information System (INIS)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated

  19. Low dose radiation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated.

  20. Effect of gamma radiation on Campylobacter jejuni

    International Nuclear Information System (INIS)

    Lambert, J.D.; Maxcy, R.B.

    1984-01-01

    Radiation resistance of Campylobacter jejuni in broth, ground beef, and ground turkey meat was determined using dose levels from 0-200 Krad at -30 +/- 10 0 C, at 0-5 0 C, and at 30 +/- 10 0 C. Irradiation at -30 0 C increased radiation resistance of cultures in ground meats; broth cultures were not greatly influenced by temperature. The effect of culture age on radiation resistance was also evaluated using cells in various physiological phases. Age did not have a pronounced effect on radiation resistance. The largest D 10 value for C. jejuni was 32 Krad, which was less than D 10 values commonly reported for salmonellae. 20 references, 4 figures

  1. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    International Nuclear Information System (INIS)

    Alsner, Jan; Rodningen, Olaug K.; Overgaard, Jens

    2007-01-01

    Background and purpose: Differentially gene expression between patients with either very low or very high risk of radiation-induced fibrosis (RIF) in patient-derived fibroblasts after irradiation has previously been reported. In the present study, we are investigating the robustness of radiation-induced changes in gene expression in fibroblasts, whether differential expression is more pronounced when looking at the fold induction levels, taking into account the differences in background expression levels between patients, and whether there is a linear correlation between individual risk of RIF and changes in radiation-induced gene expression in fibroblasts. Material and methods: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3 x 3.5 Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy. Results: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk, there was no linear correlation between individual risk of RIF and differential expression of the genes investigated. Rather, differential gene expression could divide patients into two clearly separated groups, a larger, sensitive group and a smaller resistant group. Conclusions: Differential gene expression in irradiated fibroblasts might be an important tool in the identification of differences in the genetic background between patients with variable risk of RIF, and in the identification of new targets for prevention and intervention of the fibrotic process

  2. Magnetic Measuring Instrumentation with Radiation-Resistant Hall Sensors for Fusion Reactors: Experience of Testing at JET

    Czech Academy of Sciences Publication Activity Database

    Bolshakova, I.; Quercia, A.; Coccorese, V.; Murari, A.; Holyaka, R.; Ďuran, Ivan; Viererbl, L.; Konopleva, R.; Yerashok, V.

    2012-01-01

    Roč. 59, č. 4 (2012), s. 1224-1231 ISSN 0018-9499. [International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications. Ghent, 06.06.2011-09.06.2011] R&D Projects: GA ČR GAP205/10/2055 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma * tokamak * JET * Hall probes * radiation resistance Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.219, year: 2012

  3. Radiation detector arrangements and methods

    International Nuclear Information System (INIS)

    Jackson, J.

    1989-01-01

    The patent describes a radiation detector arrangement. It comprises at least one detector element in the form of a temperature-sensitive resistor whose electrical resistance changes in response to radiation incident on the detector element, the resistor having a high positive temperature coefficient of electrical resistance at a transition in its electrical conductance, circuit means for applying a voltage across the resistor during operation of the detector arrangement, and temperature-regulation means for regulating the temperature of the resistor so as to operate the resistor in the transition, characterised in that the temperature-regulation means comprises the resistor and the circuit means which passes sufficient current through the resistor by resistance heating to a position in the transition at which a further increase in its temperature in response to incident radiation reduces the resistance heating by reducing the current, thereby stabilizing the temperature of the resistor at the position. The positive temperature coefficient at the position being sufficiently high that the change in the resistance heating produced by a change in the temperature of the resistor at the position is larger than a change in power of the incident radiation required to produce that same change in temperature of the resistor in the absence of any change in resistance heating

  4. Autophagy contributes to resistance of tumor cells to ionizing radiation.

    Science.gov (United States)

    Chaachouay, Hassan; Ohneseit, Petra; Toulany, Mahmoud; Kehlbach, Rainer; Multhoff, Gabriele; Rodemann, H Peter

    2011-06-01

    Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. In vitro induction of variability through radiation for late blight resistance and heat tolerance in potato

    International Nuclear Information System (INIS)

    Gosal, S.S.; Das, A.; Gopal, J.; Minocha, J.L.; Chopra, H.R.; Dhaliwal, H.S.

    2001-01-01

    In vitro cultured shoots of potato, cvs. 'Kufri Jyoti' and 'Kufri Chandramukhi', were irradiated with 20 and 40 Gy gamma rays. Microtubers, obtained from MIV3 shoots multiplied in vitro, were planted in pots. The resulting plants were screened for resistance to late blight, using detached leaf method. In 'Kufri Chandramukhi', 42% plants and in 'Kufri Jyoti' 36% plants, obtained from 40 Gy treatment, showed resistance to late blight. The frequency of resistant plants was lower from 20 Gy treatment. The progenies of putatively resistant plants were grown in field, and inoculated with sporangial inoculum of late blight fungus. The field grown progeny segregated for disease resistance, and approximately 56% plants showed resistance. During the next propagation, the frequency of resistant plants increased to 72%. For developing heat tolerance, microtubers obtained from 20 and 40 Gy treatments and in vitro multiplied M 1 V 3 shoots were cultured at high temperature of 28C. In both varieties, the number of the microtubers per plant was highly reduced and the resulting microtubers had distorted shape but showed better germination (62%), even in early sowing at relatively higher temperature. Of the two radiation doses, the higher dose of 40 Gy gave better results in both the varieties. Heat tolerance was also assessed from chlorophyll persistence. The progenies from putative heat-tolerant plants were tested in field by planting at higher temperature in two subsequent generations. The heat tolerant plants segregated in each generation, but the frequency of heat-tolerant plants increased. (author)

  6. Electric-line-source illumination of a circular cylinder of lossless double-negative material: an investigation of near field, directivity, and radiation resistance

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2006-01-01

    the properties of the near field, inside as well as outside the cylinder, and the far-field. Third, the variations of these fields are examined, as well as the radiation resistance and radiation pattern, as functions of the geometrical and electromagnetic parameters of the configuration. It is demonstrated......This work investigates the properties of an antenna-like configuration with an electric line source radiating in the presence of a double-negative circular cylinder. First, the analytical eigenfunction-series solution is derived. Second, this solution is employed in numerical calculations to study...

  7. Ultrastructural investigation on radiation resistant microbial isolates of bacillus coagulans

    International Nuclear Information System (INIS)

    Tawfik, Z.S.

    1992-01-01

    Radiation resistant strains of bacillus coagulans were isolated from environmental atmospheric surrounding industrial cobalt-60 irradiator. D 1 0 value of the studied isolate was found to be 3.3 KGy. Ultrastructure studies were performed on control isolates as well as on isolates exposed to challenging doses of 12, 15 and 25 KGy. These dose values were delivered at two different dose rate values 40 Gy/min and 300 Gy/min. Ultrastructure studies showed small differences due to dose rate effect. These differences were not sufficient to cause lethality changes. It was demonstrated that the growing effect of dose value is concentrated on cellular material rather than on cellular membrane damages. The severeness of cell damage, due to received dose increase, was also demonstrated. Results suggest that repeated sub culturing may lead to repair of cell damage when it is subjected to sub sterilizing doses. This fact is of special interest when the sterilizing dose might be splitted in more than one fraction at different latent periods

  8. Atomistic simulations of the radiation resistance of oxides

    International Nuclear Information System (INIS)

    Chartier, A.; Van Brutzel, L.; Crocombette, J.-P.

    2012-01-01

    Fluorite compounds such as urania and ceria, or related compounds such as pyrochlores and also spinels show different behaviors under irradiations, which ranges from perfect radiation resistance to crystalline phase change or even complete amorphization depending on their structure and/or their composition. Displacement cascades – dedicated to the understanding of the ballistic regime and performed by empirical potentials molecular dynamics simulations – have revealed that the remaining damages of the above mentioned oxides are reduced to point defects unlike what is observed in zircon and zirconolite, which directly amorphize during the cascade. The variable behavior of these point defects is the key of the various responses of these materials to irradiations. This behavior can be investigated by two specific molecular dynamics methodologies that will be reviewed here: (i) the method of point defects accumulation as a function of temperature that gives access to the dose effects and to the critical doses for amorphization; (ii) the study Frenkel pairs life-time – i.e. their time of recombination as function of temperature – that may be used as a tool to understand the results obtained in displacements cascades or to identify the microscopic mechanisms responsible for the amorphization/re-crystallization during the point defects accumulations.

  9. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  10. Problems of photo-radiative action

    International Nuclear Information System (INIS)

    Milinchuk, V.K.

    1985-01-01

    The most interesting photo-radiation effects observed in the last few years are discussed, in particular, considerable reduction ip material radiation resistance under the combined effect of ionizing and visible radiation. Intermediate active particles are shown to absorb the light according to the mechanism of ''direct'' absorption and as a result of photo-sensibilization reactions as well. Channels of absorbed light energy dissipation depend on the nature and structure of the intermediate active particles, temperature, light radiation frequency and other parameters. Problems are considered which solution promotes further development of photo-radiation chemistry and that are important for such branches of modern physical chemistry as kinetics and mechanism of elementary processes in organic solids, radiation resistance and ageing of organic polymers

  11. Radioactive resistance of EEPROM components

    International Nuclear Information System (INIS)

    Loncar, B.; Novakovic, D.; Stankovic, S.; Osmokrovic, P.

    1999-01-01

    The aim of this paper is to examine the resistance of EEPROM components under the influence of gamma radiation. This paper is significant for military industry and space technology. Therefore the analysis of the degradation mechanisms of these components as well as the possibilities to increase their radiation resistance have been considered by many authors. Total dose results are presented for 28C64C EEPROM there is evidence that the first failure appeared for 1000 Gy total dose level. The obtained result are analyzed and explained theoretically via the interaction of gamma radiation with oxide layer. (author)

  12. Radiation microbiology relevant to radiation processing

    International Nuclear Information System (INIS)

    Tallentire, A.

    1979-01-01

    The subject is discussed under the following headings: typical background studies involving laboratory models (measurement of radiation responses of different organisms, alone or on or in products; isolation of radiation resistant organisms from products and product environments; measurement of levels of preirradiation microbial contamination ('bioburden')); supplementary studies involving naturally occurring microbial contaminants (unit medical products; microbiological quality assurance; products in bulk; animal diet study). (U.K.)

  13. Low Dose Total Body Irradiation Combined With Recombinant CD19-Ligand × Soluble TRAIL Fusion Protein is Highly Effective Against Radiation-resistant B-precursor Acute Lymphoblastic Leukemia in Mice

    Directory of Open Access Journals (Sweden)

    Fatih M. Uckun

    2015-04-01

    Full Text Available In high-risk remission B-precursor acute lymphoblastic leukemia (BPL patients, relapse rates have remained high post-hematopoietic stem cell transplantation (HSCT even after the use of very intensive total body irradiation (TBI-based conditioning regimens, especially in patients with a high “minimal residual disease” (MRD burden. New agents capable of killing radiation-resistant BPL cells and selectively augmenting their radiation sensitivity are therefore urgently needed. We report preclinical proof-of-principle that the potency of radiation therapy against BPL can be augmented by combining radiation with recombinant human CD19-Ligand × soluble TRAIL (“CD19L–sTRAIL” fusion protein. CD19L–sTRAIL consistently killed radiation-resistant primary leukemia cells from BPL patients as well as BPL xenograft cells and their leukemia-initiating in vivo clonogenic fraction. Low dose total body irradiation (TBI combined with CD19L–sTRAIL was highly effective against (1 xenografted CD19+ radiochemotherapy-resistant human BPL in NOD/SCID (NS mice challenged with an otherwise invariably fatal dose of xenograft cells derived from relapsed BPL patients as well as (2 radiation-resistant advanced stage CD19+ murine BPL with lymphomatous features in CD22ΔE12xBCR-ABL double transgenic mice. We hypothesize that the incorporation of CD19L–sTRAIL into the pre-transplant TBI regimens of patients with very high-risk BPL will improve their survival outcome after HSCT.

  14. Insects vis a vis radiations

    International Nuclear Information System (INIS)

    Srivastava, Meera

    2014-01-01

    Insects have turned out to be much more radiation resistant. For most insects a dose of about 500-700 Gy is required to kill them within a few weeks of exposure; although cockroaches require 900-1000 Gy. Killing insects in less than a few days requires much higher doses. These doses are for mature insects, the immature stages of some insects can be killed by doses as low as 40 Gy. Some insects can be sterilized at even lower doses, and this has application in insect control. Screw-worms, for example, can be sterilized with doses of 25-50 Gy. By contrast, doses as low as 3 Gy caused death of humans in Hiroshima and Nagasaki and doses of about 6 Gy caused death of fire fighters in the Chernobyl accident. It is not exactly certain what the basis is for the resistance of insects to ionizing radiation. It is not animal size by itself, nor lack of penetration. It is also not because of few dividing cells as these are more radiosensitive than non-dividing ones. The speculation that insects might have lower oxygen tensions, and the lack of oxygen is known to protect cells from radiation also does not work. Insect cells might have an enhanced capacity to repair radiation damage also could not be proven. The number of chromosomes influenced radio-sensitivity, and that insects had fewer chromosomes could be true. The radiation resistance is inherent to the cells, since cells derived from insects are also radiation resistant when grown in cell culture. For example, a dose of 60 Gy is required to produce a 80% kill of insect cells, while doses of 1-2 Gy are sufficient to generate this level of killing in mammalian cells. But, nevertheless, according to recent researches, radiation from Japan's leaking Fukushima nuclear plant has caused mutations in some butterflies. It is therefore clear that insects are resistant to ionizing radiation and that this resistance is an inherent property of their cells. But it is not clear exactly what the basis of this cellular resistance is

  15. Radioactive resistance of memory elements

    International Nuclear Information System (INIS)

    Loncar, B.; Stankovic, S.; Novakovic, D.; Osmokrovic, P.

    1998-01-01

    In this paper, the results of semiconductor memories radioactive resistance examination (EPROM and EEPROM) are presented. Performance of semiconductor memories is most important, when working under high risk condition where there is an influence of radiation. This research is particularly interesting for specific applications in military industry and space technology. Therefore, the analysis of the degradation mechanism of these components as well as the possibilities to increase their radiation resistivity have been considered by many authors. The aim of this work is the examination of the reliability of EPROM and EEPROM characteristics under radiation. Total dose results are presented for the JL 27C512D EPROM and ST 24C02 EEPROM. There is evidence that EPROM are more sensitive to y radiation than EEPROM. The results obtained are analyzed theoretically via the interaction of gamma radiation with oxide layer. (authors)

  16. High NOTCH activity induces radiation resistance in non small cell lung cancer

    International Nuclear Information System (INIS)

    Theys, Jan; Yahyanejad, Sanaz; Habets, Roger; Span, Paul; Dubois, Ludwig; Paesmans, Kim; Kattenbeld, Bo; Cleutjens, Jack; Groot, Arjan J.; Schuurbiers, Olga C.J.; Lambin, Philippe; Bussink, Jan; Vooijs, Marc

    2013-01-01

    Background and purpose: Patients with advanced NSCLC have survival rates <15%. The NOTCH pathway plays an important role during lung development and physiology but is often deregulated in lung cancer, making it a potential therapeutic target. We investigated NOTCH signaling in NSCLC and hypothesized that high NOTCH activity contributes to radiation resistance. Materials and methods: NOTCH signaling in NSCLC patient samples was investigated using quantitative RT-PCR. H460 NSCLC cells with either high or blocked NOTCH activity were generated and their radiation sensitivity monitored using clonogenic assays. In vivo, xenograft tumors were irradiated and response assessed using growth delay. Microenvironmental parameters were analyzed by immunohistochemistry. Results: Patients with high NOTCH activity in tumors showed significantly worse disease-free survival. In vitro, NOTCH activity did not affect the proliferation or intrinsic radiosensitivity of NSCLC cells. In contrast, xenografts with blocked NOTCH activity grew slower than wild type tumors. Tumors with high NOTCH activity grew significantly faster, were more hypoxic and showed a radioresistant phenotype. Conclusions: We demonstrate an important role for NOTCH in tumor growth and correlate high NOTCH activity with poor prognosis and radioresistance. Blocking NOTCH activity in NSCLC might be a promising intervention to improve outcome after radiotherapy

  17. Radiation damage studies on polystyrene-based scintillators

    International Nuclear Information System (INIS)

    Britvich, G.I.; Peresypkin, A.I.; Rykalin, V.I.

    1991-01-01

    The radiation resistance of polystyrene-based scintillators containing various scintillation dopes is reported. All samples were irradiated to 137 Cs gamma rays in air at room temperature. The examination of radiation resistance of about thirty fluorescence compounds has been made. The most radiation-hard fluores are X25, X31, 3HF and M3HF. 1 fig.; 6 tabs

  18. Effect of radiation on microbiologic characteristics of M. tuberculosis

    International Nuclear Information System (INIS)

    Zack, M.B.; Stottmeier, K.; Berg, G.; Kazemi, H.

    1974-01-01

    The effect of irradiation on mutation (expressing itself as drug resistance) and on viability of Mycobacterium tuberculosis was studied in vitro. Forty-two identical cultures of H37-Rv (M. tuberculosis) were exposed to different levels of cobalt radiation (10, 100, 1,000, 2,500, 5,000, 10,000, and 20,000 rads) with six samples used for each of the seven radiation levels. Equivalent samples exposed to zero rads and samples handled and stored identically formed the controls. Coded cultures were read in a double-blind fashion to determine the number of surviving organisms and sensitivities to nine different antituberculosis drugs. Organism viability began to decrease at radiation levels of 1,000 rads and decreased linearly with higher levels of radiation. Three of the 42 radiated cultures developed drug-resistant organisms (one to INH, one to PAS, a third to SM). This drug resistance occurred at levels of clinical significance (greater than 1 percent control) as well as in amounts exceeding probability values for chance resistance mutation. High radiation levels such as occur in radiotherapeutic doses decrease the viability of M. tuberculosis. Radiation may also induce genetic mutation expressed as primary drug resistance. (U.S.)

  19. Human genetic marker for resistance to radiations and chemicals. 1998 annual progress report

    International Nuclear Information System (INIS)

    Lieberman, H.B.

    1998-01-01

    'The broad objective of the project is to understand the molecular basis for the response of cells to radiations and chemicals, with the pragmatic goal of being able to identify human subpopulations that are exceptionally sensitive to DNA damaging agents. The project focuses on HRAD9, a human orthologue of the fission yeast Schizosaccharomyces pombe gene rad9. S. pombe rad9::ura4+ mutant cells are highly sensitive to ionizing radiation, UV and many chemicals, such as the DNA synthesis inhibitor hydroxyurea. They also lack the ability to delay cycling transiently in S phase or in G2 following a block in DNA replication or after incurring DNA damage, respectively -i.e., they lack checkpoint controls. The attempt by mutant cells to progress through mitosis in the absence of fully intact DNA accounts at least in part for their sensitivity to DNA damaging agents. Cells bearing rad9::ura4+ also aberrantly regulate UVDE, an enzyme that participates in a secondary DNA excision repair pathway. The key role played by S. pombe rad9 in promoting resistance to chemicals and radiations suggests that the evolutionarily conserved human cognate also has important functions in mammals. The first set of aims in this proposal centers on characterizing the structure and expression of HRAD9, to assess structure/function relationships and potentially link protein activity to a specific tissue. The next set of aims focuses on determining the role of HRAD9 in radio/chemoresponsiveness and cancer.'

  20. Conductive core of radiation-resistant high-pressure electric bushing, especially for nuclear technology

    International Nuclear Information System (INIS)

    Zajic, V.

    1981-01-01

    A radiation-resistant high-pressure electric bushing was developed featuring a conductive core consisting of a hollow moulding. At the point of attachment to the bushing insulator the core moulding is widened, thus forming a ring support of a diameter larger by at least 10% than the diameter of the conductive core cylindrical section. On the outer side of the pressure body the core cavity is narrowed and tightly closed with the conductor. On the side facing the medium of higher pressure, the conductive core is provided with a thread. Core manufacture and connection of the conductor to the bushing is very simple. The bushing can be used for an environment with pressures exceeding 10 MPa. (J.B.)

  1. Conductive core of radiation-resistant high-pressure electric bushing, especially for nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Zajic, V

    1981-09-01

    A radiation-resistant high-pressure electric bushing was developed featuring a conductive core consisting of a hollow moulding. At the point of attachment to the bushing insulator the core moulding is widened, thus forming a ring support of a diameter larger by at least 10% than the diameter of the conductive core cylindrical section. On the outer side of the pressure body the core cavity is narrowed and tightly closed with the conductor. On the side facing the medium of higher pressure, the conductive core is provided with a thread. Core manufacture and connection of the conductor to the bushing is very simple. The bushing can be used for an environment with pressures exceeding 10 MPa.

  2. Homozygous mutations in the Fhit gene results in resistance to ionizing radiation and inhibition of apoptosis

    International Nuclear Information System (INIS)

    Turner, B.C.; Potoczek, M.B.; Ottey, M.; Croce, C.M.; Huebner, K.

    2001-01-01

    radiation compared to parental mammalian cells expressing wild-type Fhit protein. Finally, we demonstrated that breast tumors from breast cancer patients with local breast tumor recurrences following breast conserving therapy more often lacked immunhistochemical detection of Fhit protein compared to tumors from breast cancer patients without local breast cancer recurrence (p=0.02). Interestingly, the adjacent benign regions of these sections contained similar levels of Fhit protein expression suggesting that a somatic alteration is critical in the clinical resistance to ionizing radiation observed in these patients. Apoptotic pathways regulating the aberrant response to DNA damage-induced apoptosis in Fhit knock-out cells are currently being studied. Conclusion: Mouse epithelial cells containing homozygous Fhit mutations are resistant to single fraction low and high dose ionizing radiation with decreased levels of radiation-induced apoptotic cell death. Breast tumors from women with local breast cancer recurrence following breast conserving therapy have low levels of Fhit protein. These findings may have important biologic and treatment implications including those for cancer patients with tumors having mutations in Fhit and suggest that treatment with ionizing radiation in these patients may not result in optimal responses

  3. Practical design for robot operating in radiation condition

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Isozaki, Yoshifumi

    2002-01-01

    It is proposed systematic design for radiation resistance robot based on irradiation test and estimating damage lifetime by reliable technology. Reducing design time and cost, key device IC is classified to non-exchange, no use and use after radiation test by analyzing robot function and IC function. Since the damage lifetime verified normal distribution under radiation test of IC, the proposed design method is effective for practical radiation resistance robot. (author)

  4. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  5. ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer

    Science.gov (United States)

    2016-05-01

    phenotype  in   preclinical  models  of  prostate  cancer,  2)  to  explore  the  mechanism  of  interaction  between   ERG  (the  predominant  ETS...established  this  axis  as  a  potential  therapeutic   target.         15. SUBJECT  TERMS Prostate cancer, ETS gene fusions, ERG , radiation resistance, DNA...interaction  between   ERG   (the   predominant   ETS   gene   fusion   product)   and   the   DNA   repair   protein   DNA-­PK,   and   3)   to

  6. Radio resistibility of micro-organism and sterilization by ionizing radiation

    International Nuclear Information System (INIS)

    Tran Que; Tran Tich Canh; Hoang Hung Tien; Le Xuan Tham; Le Thi Dinh

    2000-01-01

    Pasteur ella pestis is a radiosensitive bacterium. The irradiation of P. pestis by gamma rays for the investigation of radiation sterilization with dose rate of 261 rads/s calculated the values of D 10 = 5.668 Krads and D q = 4.044 Krads. The responsive curve of dose-survival effect had a simple phase, shoulder and none detail effect. The survival frequencies of P. pestis after doses 30 Krads fixed 3.45x10 -5 . Using the survival P. pestis isolated from the first exposure for the second exposure and third exposure showed that the survival frequencies after 3 times were stable with 3.45x10 -5 ± 0.87x10 -5 . The survival frequency of P. pestis at dose 30 Krads was clearly high after 4th exposing time. The small colony isolated after 4th exposing time was a resistant line to gamma rays. This line also was dispersed by specific phage. The responsive curve of dose-survival effects had a simple phase, shoulder and none detail effect. (author)

  7. Physiological and biochemical and resistance changes and issr polymorphic analysis exposed to 12C6+ heavy ion radiation on calla lily

    International Nuclear Information System (INIS)

    Chen Zhen; Xu Bingliang; Tian Gu; Pu Chongjian; Xu Qiong

    2013-01-01

    Physiological and biochemical changes and ISSR Polymorphic of calla lily caused by exposure to 12 C 6+ heavy-ion radiation were studied. The results showed that bulb germination rate and plant height had significant negative correlation with radiation dose, while MDA content had high significant positive correlation with radiation dose. With increasing radiation dose, the activities of CAT, POD and resistance showed a trend of decrease after an initial increasing. Optimum doses of irradiation were 10 ∼ 20 Gy. ISSR molecular marker of the control and variant plants induced by the 12 C 6+ heavy-ion radiation suggested that 121 bands were amplified with 22 ISSR primers among two calla lily varieties, 55 bands were polymorphic and the polymorphism rate reached to 45%, the 12 C 6+ heavy-ion radiation could cause mutation of genome DNA in calla lily. It is suggested that effect of irradiation on calla lily plant was damage and suppression. Optimum doses of irradiation of 12 C 6+ Heavy ion might be applied for breeding method on Calla lily. (authors)

  8. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations

    International Nuclear Information System (INIS)

    Friebe, B.; Hatchett, J.H.; Gill, B.S.; Mukai, Y.; Sebesta, E.E.

    1991-01-01

    A new Hessian fly (Mayetiola destructor) resistance gene derived from 'Balbo' rye and its transfer to hexaploid wheat via radiation-induced terminal and intercalary chromosomal translocations are described. Crosses between resistant 'Balbo' rye and susceptible 'Suwon 92' wheat and between the F1 amphidiploids and susceptible 'TAM 106' and 'Amigo' wheats produced resistant BC2F3 lines that were identified by C-banding analysis as being 6RL telocentric addition lines. Comparative chromosomal analyses and resistance tests revealed that the resistance gene is located on the 6RL telocentric chromosome. X-irradiated pollen of 6RL addition plants was used to fertilize plants of susceptible wheats 'TAM 106,' 'TAM 101,' and 'Vona.' After several generations of selection for resistance, new sublines were obtained that were homogeneous for resistance. Thirteen of these lines were analyzed by C-banding, and three different wheat-6RL chromosomal translocations (T) were identified. Wheat chromosomes involved in the translocations were 6B, 4B, and 4A. Almost the complete 6RL arm is present in T6BS · 6BL-6RL. Only the distal half of 6RL is present in T4BS · 4BL-6RL, which locates the resistance gene in the distal half of 6RL. Only a very small segment (ca 1.0 μm) of the distal region of 6RL is present in an intercalary translocation (Ti) Ti4AS · 4AL-6RL-4AL. The 6RL segment is inserted in the intercalary region between the centromere of chromosome 4A and the large proximal C-band of 4AL. The break-points of the translocations are outside the region of the centromere, indicating that they were induced by the X-ray treatment. All three translocations are cytologically stable and can be used directly in wheat breeding programs

  9. Effects of sulekang capsule in enhancement of resistance to radiation and regulating immunological function in mice

    International Nuclear Information System (INIS)

    Zhao Naikun; Zhou Ouliang; Du Weixia

    1990-01-01

    The effects of Sulekang capsule in enhancing the resistance to radiation and regulating the immunological function in mice were described. The results show that Sulekang capsule may lengthen the survival time (p 60 Co gamma rays. The experimental results of ANAE reaction show that the activety of T cells of normal or exposed mice may be enhanced by Sulekang capsule, which can control the decrease of both ANAE-positive cells and T cells in exposed mice. So it may enhance the immunological function on exposed animals

  10. Occurrence of Antibiotic resistance in some bacterial strains due to gamma radiation, heavy metals or food preservatives

    International Nuclear Information System (INIS)

    Mattar, Z.A.; Bashandy, A.S.

    2006-01-01

    The susceptibility of bacterial strains (B. cereus, Staph. aureus, Escherichia coli and Salmonella) against 10 different antibiotics that are commonly used against food borne pathogens was studied. All the tested strains were observed to tolerate up to 100 mg/l copper sulphate or lead acetate, and there was a positive correlations between the tolerance to high levels of Cu or Pb and multiple antibiotic resistance was investigated. When the food preservatives (potassium sorbate or sodium benzoate) were added to the growth medium at different concentrations, the bacterial strains were able to tolerate up to 1000 ppm potassium sorbate or sodium benzoate (MIC). The antibiotic resistance of these strains was increased when grown on media supplemented with the MIC of sodium sorbate or potassium benzoate. When these bacterial strains were irradiated at dose levels of 1 or 3 or 5 KGy and examined for antibiotic sensitivity, a correlation was observed between the increases of radiation dose up to 5 KGy and the antibiotic resistance in all the studied strains

  11. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans.

    Science.gov (United States)

    Hansen, M T

    1978-01-01

    The complexity of the genome of Micrococcus radiodurans was determined to be (2.0 +/- 0.3) X 10(9) daltons by DNA renaturation kinetics. The number of genome equivalents of DNA per cell was calculated from the complexity and the content of DNA. A lower limit of four genome equivalents per cell was approached with decreasing growth rate. Thus, no haploid stage appeared to be realized in this organism. The replication time was estimated from the kinetics and amount of residual DNA synthesis after inhibiting initiation of new rounds of replication. From this, the redundancy of terminal genetic markers was calculated to vary with growth rate from four to approximately eight copies per cell. All genetic material, including the least abundant, is thus multiply represented in each cell. The potential significance of the maintenance in each cell of multiple gene copies is discussed in relation to the extreme radiation resistance of M. radiodurans. PMID:649572

  12. Development of radiation-resistant magnet coils for high-intensity beam lines

    Science.gov (United States)

    Tanaka, K. H.; Yamanoi, Y.; Noumi, H.; Takasaki, M.; Saitoh, Y.; Kato, K.; Yokoi, T.; Tsukada, S.; Tanno, H.

    1994-07-01

    In connection with the Japanese Hadron Facility (JHF) project, the development of new types of radiation-resistant magnet coils has been continued at KEK. One major program is the design and production of a mineral insulation cable (MIC) with a larger maximum current. We have already developed a 2000A-class MIC having a square-cross-section hollow conductor. A sample magnet coil was fabricated with this MIC. Tests of its stability and reliability are under progress. We are now planning to develop a 3000A-class MIC. The other program is R/D work on a completely inorganic wrapping insulation material which can be used like the usual type glass-fiber tape pre-impregnated with epoxy-resin. After tests of the mechanical strength and electric insulation of many combinations of tapes and bonds, we found a pure (99%) alumina-fiber tape pre-impregnated with inorganic cement that is suitable for a magnet coil insulator after thermal curing.

  13. The improvement for fire retardant and radiation resistance characteristics of chloroprene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. Y.; Lee, C.; Kim, P. J.; Kim, J. H

    2004-04-01

    In the report, in order to improve the fire retardancy better Chloroprene Rubber (CR) after adding each fixed amount of inorganic metallic hydroxide, and then compared and assessed fire retardancy with electrical properties and mechanical properties we intended to choose the most excellent additives. Also according to Co{sup 60} {gamma}-ray irradiation, we compared electrical, echanical and fire retardant characteristics to analyse to have the additives of inorganic filler effect on CR's antirad characteristic. In result, CR containing inorganic additive, advanced considerably fire retardant characteristics, but seems to be tended to declined electrical and mechanical characteristics on the whole. In syntherically comparison, the specimen viewed the most excellent characteristics is CR containing Magnesium hydroxide. As to Co{sup 60} {gamma}-ray irradiated Chloroprene rubber containing inorganic additives, fire retardant characteristic are improved, but electrical and mechanical properties are deteriorated as a function of radiation dose. Comparing before irradiation and after irradiation, the best inorganic filler into CR consider Magnesium hydroxide. In this report, in case of adding 30 phr of inorganic filler to CR we observed fire retardancy and radiation resistance characteristics change in according to the kinds of additives, but the research for choosing the optimum amount of additives is considered to progress from now on as adjusting the amount of additives presented excellent characteristics.

  14. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  15. The resistive tearing instability for generalized resistivity models: Applications

    International Nuclear Information System (INIS)

    Birk, G.T.; Otto, A.

    1991-01-01

    The dispersion relation for the resistive tearing mode is investigated with a general form of the resistivity that allows for evaluating the dependence of the mode on the anomalous dissipation caused by the lower-hybrid-drift turbulence and the ion-acoustic turbulence. The coupling of the plasma dynamic and radiative processes due to a temperature-dependent Spitzer resistivity are also discussed. The dispersion relation is solved numerically for two-dimensional equilibrium configurations with applications to the Earth's magnetosphere and the solar corona. In the case of the parameter regimes of the magnetopause and the solar corona, growth rates that result in realistic time scales for the respective dynamic processes as flux transfer events and solar flares were found. Moreover, the influence of a nonvanishing component of the magnetic field normal to the current sheet on the dispersion relation is examined. The normal field component leads to overstable modes and the growth rate of the pure tearing mode is not altered, whereas the radiative tearing mode is damped effectively

  16. Mutation to ouabain-resistance in Chinese hamster cells: induction by ethyl methanesulphonate and lack of induction by ionising radiation

    International Nuclear Information System (INIS)

    Thacker, J.; Stephens, M.A.; Stretch, A.

    1978-01-01

    The spontaneous frequency of mutants resistant to growth inhibition by ouabian (OUAsup(R) mutants) was found to be about 5.10 -5 per viable cell in uncloned cultures of Chinese hamster V79-4 cells. In freshly-isolated clones or cultures started from a few cells this frequency was initially reduced to about 1.10 -6 in 1 mM ouabain. No increase in the frequency of OUAsup(R) mutants was found in cultures treated with γ-rays despite exploration of such variables as radiation dose, ouabain concentration, post-treatment interval before selection, cell density in selective medium, and clonal state of the cells at the time of adding ouabain (in situ vs. respreading method). A similar negative result was found for accelerated helium ions, for which the mutagenic effectiveness per unit dose has been shown to be about 10 times higher than γ-rays for the induction of thioguanine-resistant mutants in these cells. Recent evidence is reviewed in support of the suggestion that ionising radiation is unable to induce OUAsup(R) mutants because of the severity of the genetic damage it causes. (Auth.)

  17. Radiation related basic cancer research

    International Nuclear Information System (INIS)

    Lee, Seung Hoon; Yoo, Young Do; Hong, Seok Il

    2000-04-01

    We studied the mechanism of radiation-induced apoptosis, the factors involved signaling, and the establishment of radiation-resistant cell lines in this study. During the TGF beta-stimulated epithelial mesenchymal transition(EMT), actin rearrangement occurred first and fibronectin matrix assembly followed. These two events were considered independent since cytochalasin-D did not inhibit TGF stimulated matrix assembly and fibronectin supplementation did not induce EMT. During EMT, alpha 5 beta 1 integrin and alpha v integrin have increased but MMP activation was not accompanied, which suggest that induction of extracellular matrix and activation of integrins may be main contributor for the EMT. Serum depriving induced apoptosis of HUVECs was prevented by vascular endothelial growth factor(VEGF) and PMA. The apoptosis prevention by VEGF and PMA were conformed by DNA fragmentation assay. The p53 expression level was down regulated by VEGF and PMA compared with serum deprived HUVECs. However, VEGF and PMA induces c-Myc expression level on these cells. We made the 5 radiation-resistant clones from breast, lung and cervical cancer cells. More than 70%, 100% and 50% increased resistance was detected in breast cancer cells, lung cancer cells, and cervical cells, respectively. We carried out differential display-PCR to clone the radiation-resistant genes. 9 out of 10 genes were analyzed their sequence

  18. Radiation related basic cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Yoo, Young Do; Hong, Seok Il [and others

    2000-04-01

    We studied the mechanism of radiation-induced apoptosis, the factors involved signaling, and the establishment of radiation-resistant cell lines in this study. During the TGF beta-stimulated epithelial mesenchymal transition(EMT), actin rearrangement occurred first and fibronectin matrix assembly followed. These two events were considered independent since cytochalasin-D did not inhibit TGF stimulated matrix assembly and fibronectin supplementation did not induce EMT. During EMT, alpha 5 beta 1 integrin and alpha v integrin have increased but MMP activation was not accompanied, which suggest that induction of extracellular matrix and activation of integrins may be main contributor for the EMT. Serum depriving induced apoptosis of HUVECs was prevented by vascular endothelial growth factor(VEGF) and PMA. The apoptosis prevention by VEGF and PMA were conformed by DNA fragmentation assay. The p53 expression level was down regulated by VEGF and PMA compared with serum deprived HUVECs. However, VEGF and PMA induces c-Myc expression level on these cells. We made the 5 radiation-resistant clones from breast, lung and cervical cancer cells. More than 70%, 100% and 50% increased resistance was detected in breast cancer cells, lung cancer cells, and cervical cells, respectively. We carried out differential display-PCR to clone the radiation-resistant genes. 9 out of 10 genes were analyzed their sequence.

  19. Effect of gamma radiation on the toxicity of milbemectin and chlorfenapyr in acaricide resistant and susceptible strains of Tetranychus urticae Koch (Acari: Tetranychidae)

    Energy Technology Data Exchange (ETDEWEB)

    Nicastro, Roberto L.; Arthur, Valter; Machi, Andre R., E-mail: rnicastro@cena.usp.br, E-mail: arthur@cena.usp.br [Laboratorio de Radiobiologia e Ambiente (CENA/USP), Piracicaba, SP (Brazil); Sato, Mario E., E-mail: mesato@biologico.sp.gov.br [Laboratorio de Acarologia, Instituto Biologico, Campinas, SP (Brazil)

    2011-07-01

    The spider mite Tetranychus urticae Koch is considered one of the most important phytophagous mites, causing considerable damage in several agricultural crops. The aim of this study was to evaluate the effect of gamma radiation on the toxicity of the acaricides milbemectin and chlorfenapyr in resistant and susceptible strains of T. urticae. The R and S strains for milbemectin and chlorfenapyr were irradiated with gamma radiation at Gamma cell-220 source at doses of 5, 10, 20, 40 e 80 Gy. Five concentrations of milbemectin and chlorfenapyr were evaluated, making applications 24 hours after irradiation. Mites of the controls were sprayed with the same acaricide concentrations used for the R and S strains but they were not exposed to gamma radiation. Experiments on the effects of gamma radiation on the growth rates of mites for acaricide resistant and susceptible strains of T. urticae were also carried out. Tests with the Milbemectin S strain showed an increased susceptibility to the acaricide milbemectin, when the mites were irradiated (20 Gy), in comparison with the control (non irradiated mites). For the Milbemectin R strain, there was no significant influence of gamma irradiation on the toxicity of milbemectin to the mites of this strain. For the Chlorfenapyr S strain, the effect of gamma radiation was similar to that observed for Milbemectin S strain, with increased toxicity of chlorfenapyr to the mites of this susceptible strain. In the case of the Chlorfenapyr R strain, the mites exposed to gamma radiation showed to be more tolerant to chlorfenapyr, considering the LC{sub 10} values. The same trend was observed for the LC{sub 50} values, however, there was no significant difference with the control. The experiments showed that doses of 200 and 300 Gy eliminated the mite populations of acaricide resistant and susceptible strains of T. urticae, in a period of ten days. The dose of 100 Gy did not lead to total elimination of the mite populations, but reduced

  20. Effect of gamma radiation on the toxicity of milbemectin and chlorfenapyr in acaricide resistant and susceptible strains of Tetranychus urticae Koch (Acari: Tetranychidae)

    International Nuclear Information System (INIS)

    Nicastro, Roberto L.; Arthur, Valter; Machi, Andre R.; Sato, Mario E.

    2011-01-01

    The spider mite Tetranychus urticae Koch is considered one of the most important phytophagous mites, causing considerable damage in several agricultural crops. The aim of this study was to evaluate the effect of gamma radiation on the toxicity of the acaricides milbemectin and chlorfenapyr in resistant and susceptible strains of T. urticae. The R and S strains for milbemectin and chlorfenapyr were irradiated with gamma radiation at Gamma cell-220 source at doses of 5, 10, 20, 40 e 80 Gy. Five concentrations of milbemectin and chlorfenapyr were evaluated, making applications 24 hours after irradiation. Mites of the controls were sprayed with the same acaricide concentrations used for the R and S strains but they were not exposed to gamma radiation. Experiments on the effects of gamma radiation on the growth rates of mites for acaricide resistant and susceptible strains of T. urticae were also carried out. Tests with the Milbemectin S strain showed an increased susceptibility to the acaricide milbemectin, when the mites were irradiated (20 Gy), in comparison with the control (non irradiated mites). For the Milbemectin R strain, there was no significant influence of gamma irradiation on the toxicity of milbemectin to the mites of this strain. For the Chlorfenapyr S strain, the effect of gamma radiation was similar to that observed for Milbemectin S strain, with increased toxicity of chlorfenapyr to the mites of this susceptible strain. In the case of the Chlorfenapyr R strain, the mites exposed to gamma radiation showed to be more tolerant to chlorfenapyr, considering the LC 10 values. The same trend was observed for the LC 50 values, however, there was no significant difference with the control. The experiments showed that doses of 200 and 300 Gy eliminated the mite populations of acaricide resistant and susceptible strains of T. urticae, in a period of ten days. The dose of 100 Gy did not lead to total elimination of the mite populations, but reduced significantly

  1. Research on degradation of vacuum O-rings under gamma radiation

    CERN Document Server

    Ino, H; Saitô, Y; Kubo, T; Kinsho, M

    2003-01-01

    The high-intensity proton accelerator being constructed by JAERI and KEK will generates greater beam power than conventional accelerators. The radiation emission due to beam losses will therefore increase. Since vacuum O-rings installed in the accelerator will be degraded badly by the radiation, there is need to find an O-ring that has more resistant to radiation. To find an O-ring that has better radiation resistant than that of the fluororubber used for conventional accelerators in general, some O-rings which are expected to have enough resistant to the radiation were irradiated, and estimated a degradation by measurement of outgassing rate, hardness, permeation time of helium gas, and an outward observation. Most of the O-rings were irradiated in an oxygen free atmosphere and in the air. The irradiations were carried out at room temperature in Co-60 gamma irradiation facility until a dose of 1 MGy was reached. The radiation resistance of PURE-RUBBER O-ring showed somewhat better than that of the fluororubb...

  2. Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours

    International Nuclear Information System (INIS)

    Horsman, M.

    1996-01-01

    Oxygen deficient hypoxic cells, which are resistant to sparsely ionising radiation, have now been identified in most animal and some human solid tumours and will influence the response of those tumours to radiation treatment. This hypoxia can be either chronic, arising from an oxygen diffusion limitation, or acute, resulting from transient stoppages in microregional blood flow. Extensive experimental studies, especially in the last decade, have shown that nicotinamide and structurally related analogs can effectively sensitize murine tumours to both single and fractionated radiation treatments and that they do so in preference to the effects seen in mouse normal tissues. The earliest studies suggested that this enhancement of radiation damage was the result of an inhibition of the repair mechanisms. However, recent studies in mouse tumours have shown that these drugs prevent transient cessations in blood flow, thus inhibiting the development of acute hypoxia. This novel discovery led to the suggestion that the potential role of these agents as radiosensitizers would be when combined with treatments that overcame chronic hypoxia. The combined nicotinamide with hyperthermia proved that the enhancement of radiation damage by both agents together was greater than that seen with each agent alone. Similar results were later seen for nicotinamide combined with a perfluorochemical emulsion, carbogen breathing, and pentoxifylline, and in all these studies the effects in tumours were always greater than those seen in appropriate normal tissues. Of all the analogs, it is nicotinamide itself which has been the most extensively studied as a radiosensitizer in vivo and the one that shows the greatest effect in animal tumours. It is also an agent that has been well established clinically, with daily doses of up to 6 g, associated with a low incidence of side effects. This human dose is equivalent to 100-200 mg/kg in mice and such doses will maximally sensitize murine tumours to

  3. Ionizing Radiation Potentiates High Fat Diet-Induced Insulin Resistance and Reprograms Skeletal Muscle and Adipose Progenitor Cells

    DEFF Research Database (Denmark)

    Nylander, Vibe; Ingerslev, Lars R; Andersen, Emil

    2016-01-01

    Exposure to ionizing radiation increases the risk of chronic metabolic disorders such as insulin resistance and type 2 diabetes later in life. We hypothesized that irradiation reprograms the epigenome of metabolic progenitor cells, which could account for impaired metabolism after cancer treatment...... mice. Mice subjected to total body irradiation showed alterations in glucose metabolism and, when challenged with HFD, marked hyperinsulinemia. Insulin signaling was chronically disrupted in skeletal muscle and adipose progenitor cells collected from irradiated mice and differentiated in culture...

  4. Studies on radiation stability of polymers

    International Nuclear Information System (INIS)

    Jiazhen Sun; Xiaoguang Zhong

    1999-01-01

    Fluoropolyimide (FPI) is crosslinked by gamma-irradiation at high temperature. After crosslinking, the glass transition temperature is increased with increasing dose. High temperature tensile strength is also increased with increasing dose. The high temperature water resistance property is improved markedly. XPS results show that the fluoro-atom in the CF 3 group is decreased during radiation crosslinking of PFI, so the crosslinking reaction of PFI is thought to proceed through defluorination. Likewise, certain common polyolefins, such as polytetrafluoroethylene, which undergo primarily chain scission when irradiated at room temperature, can be crosslinked by irradiation at high temperature. This dramatically improves their subsequent radiation resistance. We have also been able to achieve improved radiation resistance by irradiation of certain blends of a predominantly scissioning polymer with a predominantly crosslinking polymer. (author)

  5. Radiation and temperature effects in gallium arsenide, indium phosphide, and silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Statler, R. L.

    1987-01-01

    The effects of radiation on performance are determined for both n+p and p+n GaAs and InP cells and for silicon n+p cells. It is found that the radiation resistance of InP is greater than that of both GaAs and Si under 1-MeV electron irradiation. For silicon, the observed decreased radiation resistance with decreased resistivity is attributed to the presence of a radiation-induced boron-oxygen defect. Comparison of radiation damage in both p+n and n+p GaAs cells yields a decreased radiation resistance for the n+p cell attributable to increased series resistance, decreased shunt resistance, and relatively greater losses in the cell's p-region. For InP, the n+p configuration is found to have greater radiation resistance than the p+n cell. The increased loss in this latter cell is attributed to losses in the cell's emitter region. Temperature dependency results are interpreted using a theoretical relation for dVoc/dT, which predicts that increased Voc should result in decreased numerical values for dPm/dT. The predicted correlation is observed for GaAs but not for InP, a result which is attributed to variations in cell processing.

  6. Application to the conservation of RF tags in the radiation environment

    International Nuclear Information System (INIS)

    Teraura, Nobuyuki; Ito, Kunio; Takahashi, Naoki; Sakurai, Kouichi

    2011-01-01

    RF tags that are implemented RFID technology as tag has been used in various fields. Tags have been developed, such as resistance to chemicals and high temperature resistant RF tags are also used in specialized fields. The RF tag apply to the existing nuclear field, had been concerned about the effects of radiation to the RF tags. Now, since the RF tag with a goal to develop radiation-proof, we have examined, such as applying for maintenance of nuclear facilities under radiation environment. We report the results and RF tags to be radiation resistant. (author)

  7. Radiation curable resistant coatings and their preparation

    International Nuclear Information System (INIS)

    Brack, K.

    1976-01-01

    A prepolymer containing unsaturated hydrocarbon groups is prepared and mixed on a roller mill with one or more acrylic ester monomers and various additives to make a coating formulation of a desired viscosity. In general, low viscosity formulations are used for overprint varnishes, on paper or foil, or with pigments, for certain types of printing inks. Higher viscosity formulations are used to apply thick films on panels, tiles, or other bodies. Thin films are cured to hardness by brief exposure to ultraviolet light. Thicker films require more energetic radiation such as plasma arc and electron beam radiation. The prepolymers particularly useful for making such radiation curable coatings are the reaction products of polyether polyols and bis- or polyisocyanates and hydroxy alkenes or acrylic (or methacrylic) hydroxy esters, and, likewise, reactive polyamides modified with dicarboxy alkenes, their anhydrides or esters. A small amount of wax incorporated in the coating formulations results in coatings with release characteristics similar to those of PTFE coatings. 10 claims

  8. Resistance of the Extreme Halophile Halobacterium sp. NRC-1 to Multiple Stresses

    International Nuclear Information System (INIS)

    Gygli, Patrick E.; Prajapati, Surendra; DeVeaux, Linda C.; DasSarma, Shiladitya; DasSarma, Priya; Mestari, Mohammed Amine; Wells, Douglas P.

    2009-01-01

    The model Archaeon Halobacterium sp. NRC-1 is an extreme halophile known for its resistance to multiple stressors, including electron-beam and ultraviolet radiation. It is a well-developed system with a completely sequenced genome and extensive post-genomic tools for the study of a variety of biological processes. To further understand the mechanisms of Halobacterium's, radiation resistance, we previously reported the selection for multiple independent highly resistant mutants using repeated exposure to high doses of 18-20 MeV electrons using a medical S-band Linac. Molecular analysis of the transcriptional profile of several of these mutants revealed a single common change: upregulation of the rfa3 operon. These genes encode proteins homologous to the subunits of eukaryotic Replication Protein A (RPA), a DNA binding protein with major roles in DNA replication, recombination, and repair. This operon has also been implicated in a somewhat lesser role in resistance of wild type Halobacterium to ultraviolet radiation, suggesting common mechanisms for resistance. To further understand the mechanism of radiation resistance in the mutant strains, we measured the survival after exposure to both electron-beam and ultraviolet radiation, UV-A, B, and C All mutant strains showed increased resistance to electrons when compared with the parent. However, the mutant strains do not display increased UV resistance, and in one case is more sensitive than the parent strain. Thus, the protective role of increased RPA expression within a cell may be specific to the DNA damage caused by the different physical effects induced by high energy electron-beam radiation.

  9. Radiation resistance and injury of Yersinia enterocolitica

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Rowley, D.B.

    1979-01-01

    The D values of Yersinia enterocolitica strains IP134, IP107, and WA, irradiated at 25 0 C in Trypticase soy broth, ranged from 9.7 to 11.8 krad. When irradiated in ground beef at 25 and -30 0 C, the D value of strain IP107 and 19.5 and 38.8 krad, respectively. Cells suspended in Trypticase soy broth were more sensitive to storage at -20 0 C than those mixed in ground beef. The percentages of inactivation and of injury (inability to form colonies in the presence of 3.0% NaCl) of cells stored in ground beef for 10 days at -20 0 C were 70 and 23%, respectively. Prior irradiation did not alter the cell's sensitivity to storage at -20 0 C, nor did storage at -20 0 C alter the cell's resistance to irradiation at 25 0 C. Added NaCl concentrations of up to 4.0% in Trypticase soy agar (TSA) (which contains 0.5% NaCl) had little effect on colony formation at 36 0 C of unirradiated Y. enterocolitica. With added 4.0% NaCl, 79% of the cells formed colonies at 36 0 C; with 5.0% NaCl added, no colonies were formed. Although 2.5% NaCl added to ground beef did not sensitize Y. enterocolitica cells to irradiation, when added to TSA it reduced the number of apparent radiation survivors. Cells uninjured by irradiation formed colonies on TSA when incubated at either 36 or 5 0 C. More survivors of an exposure to 60 krad were capable of recovery and forming colonies on TSA when incubated at 36 0 C for 1 day than at 5 0 C for 14 days. This difference in count was considered a manifestation of injury to certain survivors of irradiation

  10. Development of Radiation-Resistant In-Water Wireless Transmission System Using Light Emitting Diodes and Photo Diodes

    Science.gov (United States)

    Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.

    2016-10-01

    Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.

  11. Nucleotide fluctuation of radiation-resistant Halobacterium sp. NRC-1 single-stranded DNA-binding protein (RPA) genes

    Science.gov (United States)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Gadura, N.; Schneider, P.; Sullivan, R.; Flamholz, A.; Lieberman, D.; Cheung, T. D.

    2009-08-01

    The Single-Stranded DNA-Binding Protein (RPA) Genes in gamma ray radiation-resistant halophilic archaeon Halobacterium sp. NRC-1 were analyzed in terms of their nucleotide fluctuations. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis in this study. Fractal analysis using the Higuchi method gave fractal dimensions of 2.04 and 2.06 for the gene sequences VNG2160 and VNG2162, respectively. The 16S rRNA sequence has a fractal dimension of 1.99. The di-nucleotide Shannon entropy values were found to be negatively correlated with the observed fractal dimensions (R2~ 0.992, N=3). Inclusion of Deinococcus radiodurans Rad-A in the regression analysis decreases the R2 slightly to 0.98 (N=4). A third VNG2163 RPA gene of unknown function but with upregulation activity under irradiation was found to have a fractal dimension of 2.05 and a Shannon entropy of 3.77 bits. The above results are similar to those found in bacterial Deinococcus radiodurans and suggest that their high radiation resistance property would have favored selection of CG di-nucleotide pairs. The two transcription factors TbpD (VNG7114) and TfbA (VNG 2184) were also studied. Using VNG7114, VNG2184, and VNG2163; the regression analysis of fractal dimension versus Shannon entropy shows that R2 ~ 0.997 for N =3. The VNG2163 unknown function may be related to the pathways with transcriptions closely regulated to sequences VNG7114 and VNG2184.

  12. Characterization of the radiation resistance of ITER-relevant and innovative fiber composites for the ITER magnet system

    International Nuclear Information System (INIS)

    Bittner-Rohrhofer, K.

    2003-06-01

    The application of glass-fiber reinforced composites for the insulation of the superconducting magnet coils of the ITER (International Thermonuclear Experimental Reactor ) fusion device requires high material performance. The mechanical integrity of the insulation is influenced by the neutron- and g-environment and by the high mechanical stresses of the magnet system over the entire plant lifetime of 20 years. Materials suggested as insulation have to be investigated in extensive test programs with respect to the present ITER design criteria. In particular, the ultimate tensile strength as well as the interlaminar shear behavior will change under static and dynamic load (tension-tension fatigue) at 77 K after irradiation to the ITER design fluence level of 1x1022 m-2 (E620.1 MeV). Therefore, a frequency of 10 Hz and a ratio of 0.1 were chosen, in order to simulate the pulsed TOKAMAK-operation as closely as possible. Furthermore, the fatigue behavior of the material is investigated over more than 3x104 cycles, which is the ITER- relevant design fatigue limit. Basically, these insulation systems are based on combined glass-fiber/Kapton tapes, which are impregnated with di-functional DGEBA epoxy resins. Several mechanical investigations showed that the radiation resistance of these organic resins is dramatically affected by radiation at a neutron fluence of 1x1022 m-2 (E620.1 MeV). Moreover, the material strength after irradiation is strongly influenced by these factors: the winding direction of the tapes, the quality of fabrication and the drastic delamination process of the whole compound. Furthermore, the radiation induced damage of adhesives applied for supporting the interfacial bonding between the glass-fiber tape and Kapton has an adverse effect on the material performance. In addition, the poor interlaminar shear behavior does not fulfil the requirements of ITER. These test-results motivated for the development of innovative resin systems with higher stability

  13. Effects of gamma radiation on lichens and lichen-forming fungi and algae

    International Nuclear Information System (INIS)

    Erbisch, F.H.

    1977-06-01

    Initial literature reports indicated that lichens were highly resistant to gamma radiation. A series of experiments were undertaken to determine why lichens were so resistant. In experiments with Cladonia mitis, C. sylvatica, C. verticillata, Parmelia sulcata and P. subaurifera, using both acute and chronic radiation, it was found that these lichens were not highly resistant to gamma radiation. The lichens appeared to be resistant as long as they were in a dormant condition. But, when allowed to pass through a period which was suitable for growth, radiation damage was quickly manifested. Radiation damage was seen in various ways, including the change of thallus color, disintegration of phycobiant chloroplastids, coalescing of fungal hyphae, reduced CO 2 uptake, and reduction in thallus tensile strength

  14. Diffuse Reflectance Spectroscopy (DRS) of radiation-induced re-oxygenation in sensitive and resistant head and neck tumor xenografts

    Science.gov (United States)

    Dadgar, Sina; Rodríguez Troncoso, Joel; Rajaram, Narasimhan

    2018-02-01

    Currently, anatomical assessment of tumor volume performed several weeks after completion of treatment is the clinical standard to determine whether a cancer patient has responded to a treatment. However, functional changes within the tumor could potentially provide information regarding treatment resistance or response much earlier than anatomical changes. We have used diffuse reflectance spectroscopy to assess the short and long-term re-oxygenation kinetics of a human head and neck squamous cell carcinoma xenografts in response to radiation therapy. First, we injected UM-SCC-22B cell line into the flank of 50 mice to grow xenografts. Once the tumor volume reached 200 mm3 (designated as Day 1), the mice were distributed into radiation and control groups. Members of radiation group underwent a clinical dose of radiation of 2 Gy/day on Days 1, 4, 7, and 10 for a cumulative dose of 8 Gy. DRS spectra of these tumors were collected for 14 days during and after therapy, and the collected spectra of each tumor were converted to its optical properties using a lookup table-base inverse model. We found statistically significant differences in tumor growth rate between two groups which is in indication of the sensitivity of this cell line to radiation. We further acquired significantly different contents of hemoglobin and scattering magnitude and size in two groups. The scattering has previously been associated with necrosis. We furthermore found significantly different time-dependent changes in vascular oxygenation and tumor hemoglobin concentration in post-radiation days.

  15. Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores.

    Science.gov (United States)

    Zaghloul, Mohamed A S; Wang, Mohan; Huang, Sheng; Hnatovsky, Cyril; Grobnic, Dan; Mihailov, Stephen; Li, Ming-Jun; Carpenter, David; Hu, Lin-Wen; Daw, Joshua; Laffont, Guillaume; Nehr, Simon; Chen, Kevin P

    2018-04-30

    This paper reports the testing results of radiation resistant fiber Bragg grating (FBG) in random air-line (RAL) fibers in comparison with FBGs in other radiation-hardened fibers. FBGs in RAL fibers were fabricated by 80 fs ultrafast laser pulse using a phase mask approach. The fiber Bragg gratings tests were carried out in the core region of a 6 MW MIT research reactor (MITR) at a steady temperature above 600°C and an average fast neutron (>1 MeV) flux >1.2 × 10 14 n/cm 2 /s. Fifty five-day tests of FBG sensors showed less than 5 dB reduction in FBG peak strength after over 1 × 10 20 n/cm 2 of accumulated fast neutron dose. The radiation-induced compaction of FBG sensors produced less than 5.5 nm FBG wavelength shift toward shorter wavelength. To test temporal responses of FBG sensors, a number of reactor anomaly events were artificially created to abruptly change reactor power, temperature, and neutron flux over short periods of time. The thermal sensitivity and temporal responses of FBGs were determined at different accumulated doses of neutron flux. Results presented in this paper reveal that temperature-stable Type-II FBGs fabricated in radiation-hardened fibers can survive harsh in-pile conditions. Despite large parameter drift induced by strong nuclear radiation, further engineering and innovation on both optical fibers and fiber devices could lead to useful fiber sensors for various in-pile measurements to improve safety and efficiency of existing and next generation nuclear reactors.

  16. A study on the improvement of radiation resistance for polymer materials

    International Nuclear Information System (INIS)

    Park, K. J.; Cho, S. H.

    1999-01-01

    DLC (Diamond-like carbon) thin film-deposited polycarbonate specimens were irradiated by high level gamma-ray and made observation of their irradiation effects. In order to do that, diamond-like carbon thin films were deposited on polycarbonate specimens by plasma-enhanced chemical vapor deposition, and then those specimens were irradiated in the high level irradiation facility in KAERI at the same dose rate of 10 6 rad. Relative concentration of free radicals generated during irradiation of the DLC-deposited and undeposited specimens was determined by the analysis of EPR (electron paramagnetic resonance) spectrum at the elapsed time of 4 hours and 2 months after irradiation of those specimens. As a result of the analysis, it was found that the radical concentration in the DLC-undeposited specimen at the elapsed time of 2 months reduced rapidly in 4 % compared with that at the elapsed time of 4 hours, whereas the concentration in the DLC-deposited specimens decreased slowly in the vicinity of 60 %. Consequently, DLC thin film-deposited polycarbonate specimens resulted in the increase of radiation-oxidation resistance

  17. Radiation hardening of InP solar cells for space applications

    International Nuclear Information System (INIS)

    Vilela, M. F.; Freundlich, A.; Monier, C.; Newman, F.; Aguilar, L.

    1998-01-01

    The aim of this work is to develop a radiation resistant thin InP-based solar cells for space applications on more mechanically resistant, lighter, and cheaper substrates. In this paper, we present the development of a p + /nn + InP-based solar cell structures with very thin emitter and base layers. A thin emitter helps to increase the collection of carriers generated by high energy incident photons from the solar spectrum. The use of a thin n base structure should improve the radiation resistance of this already radiation resistant technology. A remarkable improvement of high energy photons response is shown for InP solar cells with emitters 400 A thick

  18. Development of new materials by utilizing radiation crosslinking

    International Nuclear Information System (INIS)

    Ueno, Keiji; Uda, Yujiro; Suzuki, Shizuo

    1989-01-01

    About 30 years have elapsed since the cables by electron beam crosslinking were developed as the first industrial utilization of radiation in Japan. At present about 200 electron beam accelerators are used industrially in Japan, and cable industry ranks at the top, followed by foaming polyethylene and curing, and the preliminary vulcanization of tires. The effect of these irradiations is the reforming of polymers by radiation crosslinking. In cables, the heat resistance and chemical resistance of insulators are improved by radiation crosslinking. By applying radiation crosslinking to polyurethane elastomer, its weakest point, waterproof property, was improved. Moreover, by using this crosslinked polyurethane elastomer for cable coating, the reliability of the sensor cables for brake system was able to be remarkably improved. As another new application of radiation crosslinking process, the improvement of the heat resistance of engineering plasties was examined. The structure of radiation crosslinked urethane elastomer cables, their endurance in hot water and oil, and the life, and the characteristics of sensor cables are reported. Multi-functional monomers, the molecular structure, and the various characteristics of engineering plastics are described. (K.I.)

  19. Characterization and radiation response of a heat-resistant variant of V79 cells

    International Nuclear Information System (INIS)

    Campbell, S.D.; Kruuv, J.; Lepock, J.R.

    1983-01-01

    A thermoresistant variant of the established cell line V79-S171-W1 was isolated after treatment with nitrosoguanidine and repeated heat treatments at 42.6 to 43 degrees C, and showed an enhanced ability to survive at 42.6, 43.5, and 44.5 degrees C. The rates of inactivation of the normal and heat-resistant lines differed by approximately a factor of 2 over this temperature range. This level of thermoresistance was stable for the first 80 doublings, but was lost by 120 doublings. This may have been due to a reversion to the normal V79 line since there was no continuous selection pressure and the thermoresistant variant, which was designated at HR7, had a longer average doubling time. Transient thermotolerance was induced in both the V79 and HR7 cells by a 10-min exposure to 44.5 degrees C. After 3 hr incubation at 37 degrees C, both cell lines had an identical sensitivity to further exposure to 44.5 degrees C. Thus the long-term thermoresistance of the HR7 cells may be due to a permanent induction of a low level of thermotolerance. The (ionizing) radiation survival curves and the ability to repair sublethal radiation damage were identical for the thermoresistant variant and the parent cell line

  20. Protein function prediction involved on radio-resistant bacteria

    International Nuclear Information System (INIS)

    Mezhoud, Karim; Mankai, Houda; Sghaier, Haitham; Barkallah, Insaf

    2009-01-01

    Previously, we identified 58 proteins under positive selection in ionizing-radiation-resistant bacteria (IRRB) but absent in all ionizing-radiation-sensitive bacteria (IRSB). These are good reasons to believe these 58 proteins with their interactions with other proteins (interactomes) are a part of the answer to the question as to how IRRB resist to radiation, because our knowledge of interactomes of positively selected orphan proteins in IRRB might allow us to define cellular pathways important to ionizing-radiation resistance. Using the Database of Interacting Proteins and the PSIbase, we have predicted interactions of orthologs of the 58 proteins under positive selection in IRRB but absent in all IRSB. We used integrate experimental data sets with molecular interaction networks and protein structure prediction from databases. Among these, 18 proteins with their interactomes were identified in Deinococcus radiodurans R1. DNA checkpoint and repair, kinases pathways, energetic and nucleotide metabolisms were the important biological process that found. We predicted the interactomes of 58 proteins under positive selection in IRRB. It is hoped our data will provide new clues as to the cellular pathways that are important for ionizing-radiation resistance. We have identified news proteins involved on DNA management which were not previously mentioned. It is an important input in addition to protein that studied. It does still work to deepen our study on these new proteins

  1. Production of a nuclear radiation resistant and mechanically tough electrically insulating material

    International Nuclear Information System (INIS)

    Brechna, H.

    1975-01-01

    According to the invention, an electrically insulating material of high mechanical strength and resistance to nuclear radiation may be made of a hardenable plastic material coated on an inorganic supporting tissue. The synthetic resin serving as binder - duroplasts, e.g. epoxide resins, polyester resins or silicon resins - is heated, mixed with a catalyst, a wetting agent and a filler (and, if required, with 0.5-1.5 weight % thixotropic material) and coated, under reduced pressure (o.4 to 0.6 mm Hg), on the supporting tissue whose surface is cleaned before this by heating. It is then hardened. Hardening may also take place directly on the electric conductor to be insulated. One obtains a bubble-free wire coating. The inorganic supporting material is glas fibre tissue, also in combination with mica, while Al 2 O 3 , zirconium, zirconia, magnesium oxide, mica and silica (grain size 10-20 μ). The invention is illustrated by a number of examples. (UWI) [de

  2. X- and gamma-ray N+PP+ silicon detectors with high radiation resistance

    International Nuclear Information System (INIS)

    Petris, M.; Ruscu, R.; Moraru, R.; Cimpoca, V.

    1998-01-01

    We have investigated the use of p-type silicon detectors as starting material for X-and gamma-ray detectors because of several potential benefits it would bring: 1. high purity p-type silicon grown by the float-zone process exhibits better radial dopant uniformity than n-type float-zone silicon; 2. it is free of radiation damage due to the neutron transmutation doping process and behaves better in a radiation field because mainly acceptor like centers are created through the exposure and the bulk material type inversion does not occur as in the n-type silicon. But the p-type silicon, in combination with a passivating layer of silicon dioxide, leads to a more complex detector layout since the positive charge in the oxide causes an inversion in the surface layer under the silicon dioxide. Consequently, it would be expected that N + P diodes have a higher leakage current than P + N ones. All these facts have been demonstrated experimentally. These features set stringent requirements for the technology of p-type silicon detectors. Our work presents two new geometries and an improved technology for p-type high resistivity material to obtain low noise radiation detectors. Test structures were characterized before and after the gamma exposure with a cumulative dose in the range 10 4 - 5 x 10 6 rad ( 60 Co). Results indicate that proposed structures and their technology enable the development of reliable N + PP + silicon detectors. For some samples (0.8 - 12 mm 2 ), extremely low reverse currents were obtained and, in combination with a low noise charge preamplifier, the splitting of 241 Am X-ray lines was possible and also the Mn Kα line (5.9 keV) was extracted from the noise with a 1.9 keV FWHM at the room temperature. An experimental model of a nuclear probe based on these diodes was designed for X-ray detection applications. (authors)

  3. At the Crossroads of Cancer Stem Cells, Radiation Biology, and Radiation Oncology.

    Science.gov (United States)

    Gerweck, Leo E; Wakimoto, Hiroaki

    2016-03-01

    Reports that a small subset of tumor cells initiate and sustain tumor growth, are resistant to radiation and drugs, and bear specific markers have led to an explosion of cancer stem cell research. These reports imply that the evaluation of therapeutic response by changes in tumor volume is misleading, as volume changes reflect the response of the sensitive rather than the resistant tumorigenic cell population. The reports further suggest that the marker-based selection of the tumor cell population will facilitate the development of radiation treatment schedules, sensitizers, and drugs that specifically target the resistant tumorigenic cells that give rise to treatment failure. This review presents evidence that contests the observations that cancer stem cell markers reliably identify the subset of tumor cells that sustain tumor growth and that the marker-identified population is radioresistant relative to the marker-negative cells. Experimental studies show that cells and tumors that survive large radiation doses are not more radioresistant than unirradiated cells and tumors, and also show that the intrinsic radiosensitivity of unsorted colony-forming tumor cells, in combination with the fraction of unsorted tumor cells that are tumor initiating, predicts tumor radiocurability. ©2016 American Association for Cancer Research.

  4. The role of heat resistance in thermorestoration of hydrated bacterial spores

    International Nuclear Information System (INIS)

    Friedman, Y.S.; Grecz, N.

    1973-01-01

    This study for the first time presents evidence of the distinct role played in thermorestoration by cellular determinants such as the resistance to heat and radiation, and the ionic state of spores. In the past only radiochemical determinants associated with radical annealment have been studied in hydrated systems. The basic heat resistance of spores plays a significant role in the precipitous drop in spore survival due to 0.45 Mrad radiation plus heat above 65-75 0 C for B.cereus and 75-95 0 C for B.stearothermophilus. The effect of the spores radiation resistance was not distinct except in the frozen state and at the saturation plateau of thermorestoration where the radiation resistant B.cereus showed ca. 1 log cycle higher survival than the radiation sensitive B.stearothermophilus. When spores are chemically converted into their H + and Ca ++ ionic forms, the H + spores are distinctly more responsive than Ca ++ spores to processes of radical annealment responsible for thermorestoration in hydrated spore systems. At temperatures of extensive thermorestoration of water radicals, H + spores showed higher survival than Ca ++ spores. (F.J.)

  5. RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA Are Resistant to I-125 and Cs-131 Radiation

    Science.gov (United States)

    Li, Hui; Rychahou, Piotr G.; Cui, Zheng; Pi, Fengmei; Evers, B. Mark; Shu, Dan

    2015-01-01

    Radiation reagents that specifically target tumors are in high demand for the treatment of cancer. The emerging field of RNA nanotechnology might provide new opportunities for targeted radiation therapy. This study investigates whether chemically modified RNA nanoparticles derived from the packaging RNA (pRNA) three-way junction (3WJ) of phi29 DNA-packaging motor are resistant to potent I-125 and Cs-131 radiation, which is a prerequisite for utilizing these RNA nanoparticles as carriers for targeted radiation therapy. pRNA 3WJ nanoparticles were constructed and characterized, and the stability of these nanoparticles under I-125 and Cs-131 irradiation with clinically relevant doses was examined. RNA nanoparticles derived from the pRNA 3WJ targeted tumors specifically and they were stable under irradiation of I-125 and Cs-131 with clinically relevant doses ranging from 1 to 90 Gy over a significantly long time up to 20 days, while control plasmid DNA was damaged at 20 Gy or higher. PMID:26017686

  6. Overview of radiation effects on emerging non-volatile memory technologies

    Directory of Open Access Journals (Sweden)

    Fetahović Irfan S.

    2017-01-01

    Full Text Available In this paper we give an overview of radiation effects in emergent, non-volatile memory technologies. Investigations into radiation hardness of resistive random access memory, ferroelectric random access memory, magneto-resistive random access memory, and phase change memory are presented in cases where these memory devices were subjected to different types of radiation. The obtained results proved high radiation tolerance of studied devices making them good candidates for application in radiation-intensive environments. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 171007

  7. Influence of γ-ray radiation on the electrical properties of CuGaSe2

    International Nuclear Information System (INIS)

    Gasimov, I.K.; Kerimova, T.G.; Mamedova, I.A.

    2002-01-01

    The ternary A 1 B 3 C 3 6 compounds are perspective materials for creation on their base the high effective transformers of solar energy, photodetectors with the high efficiency. In this paper the results of the investigation of the short-circuit current dependence on the wavelength and influence of the γ-ray radiation on the electrical properties of the p-type CuGaSe 2 crystals have been reported. The (Co 60 ) with the quantum energy of 1.25 MeV was used as a g amma - ray source. The CnGaSe 2 crystals were obtained by the chemical transport reactions. Iodine crystalline was used as a transporter. The lattice parameters were determined by the X-ray method as a=5.607 Angstroms, c=10.99 Angstroms, c/a=l.96. The In-Ga eutectic contacts were put on the nature surfaces of the films for the earring out the measurements. The films with the ρ=10 2 -10 7 Ω·cm resistivity were investigated. The films one can divide into two group: low resistance ρ=10 2 -10 3 Ω·cm and high resistance ρ=10 5 -10 7 Ω·cm films. The inverse of the current is observed in the I ns ∼f(λ) short-circuit current dependence with the wavelength in the low resistance films. The inverse is not observed in the high resistance ones. The measurement of the resistivity of the CuGaSe 2 films radiated by γ-ray radiation were carried out at 77 K. The resistivity of the low-resistance films under the radiation up to 50 p/s changes slowly, then increases sharply and achieves the value ρ=10 6 Ω·cm. Beginning from 300 p/s the resistivity decreases. Further increasing of the power doesn't influence on the resistivity. The resistivity of the high resistance films decreases up to 10 6 Ω·cm at 100 p/s with the increasing of the dose of γ-ray radiation and then doesn't change with the radiation dose. The investigation of the temperature dependence of the resistivity in the low resistance films previously radiated under the γ-ray radiation showed that increasing of the γ-ray radiation doesn't almost

  8. γ radiation effects on Collembola

    International Nuclear Information System (INIS)

    Loring, S.J.

    1985-01-01

    Pitfall traps were used to collect surface-active Collembola at intervals of 10-100 m from a γ radiation source on Long Island, N.Y., during the summer of 1968. Thirty-two species of Collembola were collected along the radiation transect. Community diversities were similar at all intervals except 10 m. Collembola appeared resistant to γ radiation; only chronic, very high γ radiation exposure seriously affected population levels and community diversity of surface Collembola

  9. Radiation resistance of elastomeric O-rings in mixed neutron and gamma fields: Testing methodology and experimental results

    Science.gov (United States)

    Zenoni, A.; Bignotti, F.; Donzella, A.; Donzella, G.; Ferrari, M.; Pandini, S.; Andrighetto, A.; Ballan, M.; Corradetti, S.; Manzolaro, M.; Monetti, A.; Rossignoli, M.; Scarpa, D.; Alloni, D.; Prata, M.; Salvini, A.; Zelaschi, F.

    2017-11-01

    Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects

  10. Effects of ionizing radiation on modern ion exchange materials

    International Nuclear Information System (INIS)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included

  11. Effects of ionizing radiation on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Suhadi, F [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1976-10-01

    The differences of radiosensitivities among bacteria in addition to the dependence upon the species or strains also depends on the environmental condition during irradiation (temperature, medium, the presence of protective or sensitizing agents, the gas phase or atmosphere, and water activity, or degree of hydration) and on the effects of the environmental condition before and after irradiation treatment (temperature of incubation, age of culture and growth medium). In general, spores are more resistant to radiation than vegetatic bacteria, with the exception that a few cocci are the most radiation resistant bacteria (Micrococcus and Streptococcus). The application of ionizing radiation in the fields of microbiology supports the radiation sterilization of medical and pharmaceutical products. In addition, microbiological aspects of food preservation, especially radurization, radicidation, and immunization studies by using irradiated microorganisms, are also important.

  12. Transistor Small Signal Analysis under Radiation Effects

    International Nuclear Information System (INIS)

    Sharshar, K.A.A.

    2004-01-01

    A Small signal transistor parameters dedicate the operation of bipolar transistor before and after exposed to gamma radiation (1 Mrad up to 5 Mrads) and electron beam(1 MeV, 25 mA) with the same doses as a radiation sources, the electrical parameters of the device are changed. The circuit Model has been discussed.Parameters, such as internal emitter resistance (re), internal base resistance, internal collector resistance (re), emitter base photocurrent (Ippe) and base collector photocurrent (Ippe). These parameters affect on the operation of the device in its applications, which work as an effective element, such as current gain (hFE≡β)degradation it's and effective parameter in the device operation. Also the leakage currents (IcBO) and (IEBO) are most important parameters, Which increased with radiation doses. Theoretical representation of the change in the equivalent circuit for NPN and PNP bipolar transistor were discussed, the input and output parameters of the two types were discussed due to the change in small signal input resistance of the two types. The emitter resistance(re) were changed by the effect of gamma and electron beam irradiation, which makes a change in the role of matching impedances between transistor stages. Also the transistor stability factors S(Ico), S(VBE) and S(β are detected to indicate the transistor operations after exposed to radiation fields. In low doses the gain stability is modified due to recombination of induced charge generated during device fabrication. Also the load resistance values are connected to compensate the effect

  13. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation.

    Directory of Open Access Journals (Sweden)

    Hosam A Elbaz

    Full Text Available Radiotherapy is the treatment of choice for solid tumors including pancreatic cancer, but the effectiveness of treatment is limited by radiation resistance. Resistance to chemotherapy or radiotherapy is associated with reduced mitochondrial respiration and drugs that stimulate mitochondrial respiration may decrease radiation resistance. The objectives of this study were to evaluate the potential of (--epicatechin to stimulate mitochondrial respiration in cancer cells and to selectively sensitize cancer cells to radiation. We investigated the natural compound (--epicatechin for effects on mitochondrial respiration and radiation resistance of pancreatic and glioblastoma cancer cells using a Clark type oxygen electrode, clonogenic survival assays, and Western blot analyses. (--Epicatechin stimulated mitochondrial respiration and oxygen consumption in Panc-1 cells. Human normal fibroblasts were not affected. (--Epicatechin sensitized Panc-1, U87, and MIA PaCa-2 cells with an average radiation enhancement factor (REF of 1.7, 1.5, and 1.2, respectively. (--Epicatechin did not sensitize normal fibroblast cells to ionizing radiation with a REF of 0.9, suggesting cancer cell selectivity. (--Epicatechin enhanced Chk2 phosphorylation and p21 induction when combined with radiation in cancer, but not normal, cells. Taken together, (--epicatechin radiosensitized cancer cells, but not normal cells, and may be a promising candidate for pancreatic cancer treatment when combined with radiation.

  14. Noncontact sheet resistance measurement technique for wafer inspection

    Science.gov (United States)

    Kempa, Krzysztof; Rommel, J. Martin; Litovsky, Roman; Becla, Peter; Lojek, Bohumil; Bryson, Frank; Blake, Julian

    1995-12-01

    A new technique, MICROTHERM, has been developed for noncontact sheet resistance measurements of semiconductor wafers. It is based on the application of microwave energy to the wafer, and simultaneous detection of the infrared radiation resulting from ohmic heating. The pattern of the emitted radiation corresponds to the sheet resistance distribution across the wafer. This method is nondestructive, noncontact, and allows for measurements of very small areas (several square microns) of the wafer.

  15. Radiation hormesis in plant

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Lee, Byung Hun; Shin, In Chul; Lim, Young Taek

    2000-04-01

    This research was performed to investigate the effects of low dose γ-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as subsequent high doses of radiation or Phytophthora blight of pepper could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant (POD) were accomplished in the plant irradiated with different dose of γ-ray. (author)

  16. Radiation hormesis in plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Lee, Byung Hun; Shin, In Chul; Lim, Young Taek

    2000-04-01

    This research was performed to investigate the effects of low dose {gamma}-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as subsequent high doses of radiation or Phytophthora blight of pepper could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant (POD) were accomplished in the plant irradiated with different dose of {gamma}-ray. (author)

  17. Enhancement of viability of radiosensitive (PBMC and resistant (MDA-MB-231 clones in low-dose-rate cobalt-60 radiation therapy

    Directory of Open Access Journals (Sweden)

    Patrícia Lima Falcão

    2015-06-01

    Full Text Available Abstract Objective: In the present study, the authors investigated the in vitro behavior of radio-resistant breast adenocarcinoma (MDA-MB-231 cells line and radiosensitive peripheral blood mononuclear cells (PBMC, as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy. Materials and Methods: The cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min–1 and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed. Results: Radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB- 231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48–72 hours post-radiation. Conclusion: Low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer.

  18. Chinese hamster pleiotropic multidrug-resistant cells are not radioresistant

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Gamson, J.; Russo, A.; Friedman, N.; DeGraff, W.; Carmichael, J.; Glatstein, E.

    1988-01-01

    The inherent cellular radiosensitivity of a Chinese hamster ovary pleiotropic cell line that is multidrug resistant (CHRC5) was compared to that of its parental cell line (AuxB1). Radiation survival curve parameters n and D0 were 4.5 and 1.1 Gy, respectively, for the CHRC5 line and 5.0 and 1.2 Gy, respectively, for the parental line. Thus, the inherent radiosensitivity of the two lines was similar even though key intracellular free radical scavenging and detoxifying systems employing glutathione, glutathione transferase, and catalase produced enzyme levels that were 2.0-, 1.9-, and 1.9-fold higher, respectively, in the drug-resistant cell line. Glutathione depletion by buthionine sulfoximine resulted in the same extent of aerobic radiosensitization in both lines (approximately 10%). Incorporation of iododeoxyuridine into cellular DNA sensitized both cell lines to radiation. These studies indicate that pleiotropic drug resistance does not necessarily confer radiation resistance

  19. Resistance of lichens to simulated galactic cosmic radiation: limits of survival capacity and biosignature detection

    Science.gov (United States)

    de la Torre Noetzel, Rosa; Miller, Ana Z.; Cubero, Beatriz; Raguse, Marina; Meessen, Joachim

    2016-04-01

    Space constitutes an extremely harmful environment for survival of terrestrial organisms. Amongst extremophiles on Earth, lichens are one of the most resistant organisms to harsh terrestrial environments, as well as some species of microorganisms, such as bacteria (Moeller et al., 2010), criptoendolithic cyanobacteria and lithic fungi (de los Ríos et al. 2004). To study the survival capacity of lichens to the harmful radiation environment of space, we have selected the lichen Circinaria gyrosa, an astrobiological model defined by its high capacity of resistance to space conditions (De la Torre et al. 2010) and to a simulated Mars environment (Sanchez et al., 2012). Samples were irradiated with four types of space-relevant ionizing radiation in the STARLIFE campaign: helium and iron ion doses (up to 2,000 Gy), X-ray doses (up to 5,000 Gy) and ultra-high γ-ray doses (from 6 to 113 kGy). Results on resistance of C. gyrosa to space-relevant ionizing radiation and its post-irradiation viability were obtained by: (i) chlorophyll a fluorescence of photosystem II (PS II); (ii) epifluorescence microscopy; (iii) confocal laser-scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence showed no significant changes on the viability of C. gyrosa with increasing doses of helium and iron ions as well as X-rays. In contrast, γ-irradiation elicited significant dose-correlated effects as revealed by all applied techniques. Relevant is the presence of whewellite-like crystals, detected by FESEM on C. gyrosa thalli after high irradiation doses, which has been also identified in previous Mars simulation studies (Böttcher et al., 2014). These studies contribute to the better understanding of the adaptability of extremophile organisms to harsh environments, as well as to estimate the habitability of a planet's surface, like Mars; they will be important for planning experiments on the search of life

  20. Genetic variation in resistance to ionizing radiation

    International Nuclear Information System (INIS)

    Ayala, F.J.

    1991-01-01

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population ''null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD ''null'' allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele

  1. Evolution of insect pest and disease resistant, high-yielding and improved quality varieties of cotton by use of ionizing radiation. Part of a coordinated programme on the use of induced mutations for disease resistance in crop plants

    International Nuclear Information System (INIS)

    Vasti, S.M.

    1981-06-01

    Disease resistant, high yielding and higher quality cotton varieties were developed. 42 interspecific hybrid progenies of earlier crosses between Gossypium barbadense and Gossypium tomentosum or Gossypium barbadense and Gossypium hirsutum were included. Out of these, 22 progenies in F 3 generation were irradiated by gamma radiation doses of 20 and 25 kR. A list is given of interspecific hybrid progenies, as are the lists of boll rot susceptible and resistant plants in the irradiated and non-irradiated populations and/or successful crosses made between 1977 and 1978

  2. Genetic engineering of a radiation-resistant bacterium for biodegradation of mixed wastes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Lidstrom, M.E.

    1998-01-01

    'Because of their tolerance to very high levels of ionizing radiation, members of the genus Deinococcus have received considerable attention over the past years. The type species of the genus, Deinococcus radiodurans, has been studied extensively in several labs. Although researchers are only beginning to understand the mechanisms by which this Gram-positive bacterium is able to repair massive DNA damage after radiation dosages as high as 5 Mrad, it has become evident that its recombination machinery has several unique characteristics (1--4). The aim of the present studies is to engineer D. radiodurans into a detoxifier for bioremediation of complex waste mixtures, containing heavy metals, halo-organics and radionuclides, making use of its ability to be biologically active in environments where they will be exposed to high levels of radiation. For that purpose, the authors aim to clone and express several broad spectrum oxygenases and heavy metal resistance determinants, and test survival and activities of these strains in artificial mixtures of contaminants, designed to simulate DOE mixed waste streams. This report summarizes work after 0.5 year of a 3-year project. The initial studies have focused on the development of an insertional expression system for D. radiodurans R1. This effort has involved two parts, namely: (1) promoter analysis, and (2) development of insertion systems. Several studies have shown that the expression signals used by D. radiodurans differ considerably from those found in other bacteria. Although D. radiodurans contains a typical eubacterial RNA polymerase core enzyme (based on TBLASTN searches on the genome sequence), Escherichia coli promoters are not recognized in D. radiodurans and vice versa (5). To expand the basic understanding of the requirements for transcription, and to optimize expression of (heterologous) genes, they will follow two strategies. First, a promoter-probe vector is being developed for the selection of promoter

  3. Temperature radiation measuring equipment. Temperaturstrahlungsmessgeraet

    Energy Technology Data Exchange (ETDEWEB)

    Lotzer, W

    1981-01-22

    The invention is concerned with a temperature radiation measuring equipment for non-contact temperature measurement by the light intensity variation method, with a photoelectric resistance as the measuring element. By having a circuit with a transistor, the 'dark resistance' occurring in the course of time is compensated for and thus gives a genuine reading (ie. the voltage drop across the photoelectric resistance remains constant).

  4. The radiation chemistry of polymer composites

    International Nuclear Information System (INIS)

    Dole, M.

    1991-01-01

    With the use of plastics in the construction of space satellites which may be exposed in geosynchronous orbit to 100 MGy (10,000 Mrad) of high-energy radiation in 30 years of use, the effect of these radiations on the polymer becomes of practical importance. To understand the effects we consider first various radiation-resistant groups that are incorporated into the polymer and their relative effectiveness in reducing molecular scissions due to the radiation. The location of such groups in the polymer is also discussed. Next the chemical structures of a number of resins such as epoxies, polyimides, etc. are described followed by a detailed account of methods of improving the radiation resistance of plastics by the incorporation of carbon or glass fibers. Finally, the role of oxygen in causing chain scissions and other effects during irradiation which reduce the mechanical strength of the plastics and the fiber resin composites are also considered. (author)

  5. Role of 14-3-3σ in poor prognosis and in radiation and drug resistance of human pancreatic cancers

    International Nuclear Information System (INIS)

    Li, Zhaomin; Dong, Zizheng; Myer, David; Yip-Schneider, Michele; Liu, Jianguo; Cui, Ping; Schmidt, C Max; Zhang, Jian-Ting

    2010-01-01

    Pancreatic cancer is the fourth leading cause of death in the US. Unlike other solid tumors such as testicular cancer which are now curable, more than 90% of pancreatic cancer patients die due to lack of response to therapy. Recently, the level of 14-3-3σ mRNA was found to be increased in pancreatic cancers and this increased expression may contribute to the failure in treatment of pancreatic cancers. In the present study, we tested this hypothesis. Western blot analysis was used to determine 14-3-3σ protein level in fresh frozen tissues and was correlated to clinical outcome. A stable cell line expressing 14-3-3σ was established and the effect of 14-3-3σ over-expression on cellular response to radiation and anticancer drugs were tested using SRB assay and clonogenic assays. Cell cycle distribution and apoptosis analyses were performed using propidium iodide staining and PARP cleavage assays. We found that 14-3-3σ protein level was increased significantly in about 71% (17 of 24) of human pancreatic cancer tissues and that the 14-3-3σ protein level in cancers correlated with lymph node metastasis and poor prognosis. Furthermore, we demonstrated that over-expression of 14-3-3σ in a pancreatic cancer cell line caused resistance to γ-irradiation as well as anticancer drugs by causing resistance to treatment-induced apoptosis and G2/M arrest. The increased level of 14-3-3σ protein likely contributes to the poor clinical outcome of human pancreatic cancers by causing resistance to radiation and anticancer drugs. Thus, 14-3-3σ may serve as a prognosis marker predicting survival of pancreatic cancer patients and guide the clinical treatment of these patients

  6. Radiation resistance and injury of Yersinia enterocolitica

    Energy Technology Data Exchange (ETDEWEB)

    El-Zawahry, Y.A.; Rowley, D.B.

    1979-01-01

    The D values of Yersinia enterocolitica strains IP134, IP107, and WA, irradiated at 25/sup 0/C in Trypticase soy broth, ranged from 9.7 to 11.8 krad. When irradiated in ground beef at 25 and -30/sup 0/C, the D value of strain IP107 and 19.5 and 38.8 krad, respectively. Cells suspended in Trypticase soy broth were more sensitive to storage at -20/sup 0/C than those mixed in ground beef. The percentages of inactivation and of injury (inability to form colonies in the presence of 3.0% NaCl) of cells stored in ground beef for 10 days at -20/sup 0/C were 70 and 23%, respectively. Prior irradiation did not alter the cell's sensitivity to storage at -20/sup 0/C, nor did storage at -20/sup 0/C alter the cell's resistance to irradiation at 25/sup 0/C. Added NaCl concentrations of up to 4.0% in Trypticase soy agar (TSA) (which contains 0.5% NaCl) had little effect on colony formation at 36/sup 0/C of unirradiated Y. enterocolitica. With added 4.0% NaCl, 79% of the cells formed colonies at 36/sup 0/C; with 5.0% NaCl added, no colonies were formed. Although 2.5% NaCl added to ground beef did not sensitize Y. enterocolitica cells to irradiation, when added to TSA it reduced the number of apparent radiation survivors. Cells uninjured by irradiation formed colonies on TSA when incubated at either 36 or 5/sup 0/C. More survivors of an exposure to 60 krad were capable of recovery and forming colonies on TSA when incubated at 36/sup 0/C for 1 day than at 5/sup 0/C for 14 days. This difference in count was considered a manifestation of injury to certain survivors of irradiation.

  7. CD44+CD24+ subset of PANC-1 cells exhibits radiation resistance via decreased levels of reactive oxygen species.

    Science.gov (United States)

    Wang, Lei; Li, Pengping; Hu, Wei; Xia, Youyou; Hu, Chenxi; Liu, Liang; Jiang, Xiaodong

    2017-08-01

    Emerging evidence has suggested that pancreatic adenocarcinoma is sustained by pancreatic cancer stem cells. The present study aimed to investigate the expression patterns of the pancreatic cancer stem cell surface markers cluster of differentiation CD44 and CD24 in a pancreatic adenocarcinoma cell line, and to investigate the possible mechanisms for their radiation resistance. Flow cytometry was used to analyze the expression patterns of CD44 and CD24 in the pancreatic adenocarcinoma PANC-1 cell line. In addition, a multi-target click model was used to fit cell survival curves and determine the sensitizer enhancement ratio. The apoptosis and cycle distribution of the four cell subsets was determined using flow cytometry, and the level of reactive oxygen species (ROS) was determined using the 2',7'-dichlorofluorescin diacetate probe. The present results identified that the ratios of CD44 + and CD24 + in the sorted PANC-1 cell line were 92.0 and 4.7%, respectively. Prior to radiation, no statistically significant differences were observed among the four groups. Following treatment with 6 MV of X-rays, the rate of apoptosis was decreased in the CD44 + CD24 + group compared with other subsets. The percentage of G0/G1 cells was highest in the CD44 + CD24 + group compared with the three other groups, which exhibited increased radiosensitivity. In addition, the level of ROS in the CD44 + CD24 + group was reduced compared with the other groups. In summary, the results of the present study indicated that CD44 + CD24 + exhibited stem cell properties. The lower level of ROS and apoptosis in CD44 + CD24 + cells may contribute to their resistance to radiation in pancreatic adenocarcinoma.

  8. Influence of fiber upon the radiation degradation of fiber-reinforced plastics

    International Nuclear Information System (INIS)

    Udagawa, Akira

    1992-01-01

    Influences of fiber upon the radiation degradation of fiber-reinforced plastics were investigated by using 2 MeV electrons. Radiation resistances were evaluated from the three-point bending strength of the fiber laminates which used bisphenol A-type epoxy resin as a matrix. Carbon fiber laminates had higher radiation resistance values than the laminates made of glass fiber. Model laminates using polyethylene as a matrix were prepared in order to examine the differences between carbon fiber and glass fiber filler, the relation between gel fraction and absorbed dose was established. When the polyethylene was filled in the carbon fiber, forming the gel was strikingly delayed. This result suggests that radiation protective action existing in carbon fiber to matrix resin is the main cause of the higher radiation resistance of carbon fiber reinforced plastics. (author)

  9. The essential role of the Deinococcus radiodurans ssb gene in cell survival and radiation tolerance.

    Directory of Open Access Journals (Sweden)

    J Scott Lockhart

    Full Text Available Recent evidence has implicated single-stranded DNA-binding protein (SSB expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans.

  10. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes. Final Report

    International Nuclear Information System (INIS)

    Lidstrom, Mary E.

    2003-01-01

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions

  11. Ultraviolet action spectra for aerobic and anaerobic inactivation of Escherichia coli strains specifically sensitive and resistant to near ultraviolet radiations

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.; Tuveson, R.W.

    1983-01-01

    Action spectra for the lethal effects of ultraviolet light (254-434 nm) irradiation delivered under aerobic or anaerobic conditions to Escherichia coli RT2 (specifically sensitive to near-UV radiation; > 320 nm) and E. coli RT4 (near-UV resistant) were prepared. Negligible oxygen dependence was observed for both strains below about 315 nm. The oxygen enhancement ratio (OER) for RT4 increased above this wavelength to the longest wavelength used, whereas for RT2 there was a greater increase in the OER to a large peak at 365 nm, then a progressive decrease at longer wavelengths. The results are consistent with the possibility that the sensitivity of strain RT2 to near-UV radiation may be due to hyperproduction of photosensitizer, operating via photodynamic type reactions involving excited species of oxygen. (author)

  12. Radiation treatment of foodstuffs

    International Nuclear Information System (INIS)

    Luther, T.; Huebner, G.

    1990-10-01

    In addition to fundamental demands on radiation and safety engineering of irradiation facilities, the necessity arises to optimize irradiation conditions by using facilities to capacity and thus reducing irradiation costs. The following subjects are dealt with in detail: rehabilitation of a pilot plant for radiation treatment of onions; examination of radiation resistance of components and equipment parts of food irradiation facilities; chemical dosimetry; relative measurement of the intensity of radioactive sources; thermo- and chemiluminescence to prove irradiation of foodstuffs; radiation induced sprout inhibition of potatoes; laboratory tests of delayed maturation of tomatoes; radiation treatment of strawberries; radiation treatment of forage; radiation induced sprout inhibition of acid-treated onions; radiation treatment of starch and potatoe products; radiation treatment of cosmetics; the universal radiation source UNI 88/26 for gamma irradiation facilities; microbiological aspects of food irradiation, and introduction of chicken irradiation on an industrial scale. (BBR) [de

  13. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery.

    Science.gov (United States)

    Cassier-Chauvat, Corinne; Dive, Vincent; Chauvat, Franck

    2017-02-01

    Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive ( 14 C) labeling of bioactive products, in order to facilitate the screening for new drugs.

  14. Development of radiation indicator plants by molecular breeding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jang-Ryol; Min, Sung-Ran; Jeong, Won-Joong; Kwak, Sang-Soo; Lee, Haeng-Soon; Kwon, Seok-Yoon; Pai, Hyun-Sook; Cho, Hye-Sun; In, Dong-Su; Oh, Seung-Chol; Park, Sang- Gyu; Woo, Je-Wook; Kin, Tae-Hwan; Park, Ju-Hyun; Kim, Chang-Sook [Korea Research Institute of Bioscience and Biotechnology, Taejeon (Korea)

    2001-04-01

    To develop the transgenic plants with low level of antioxidant enzyme, transgenic tobacco plants (157 plants) using 8 different plant expression vectors which have APX genes in sense or antisense orientation under the control of CaMV 35S promoter or stress-inducible SWPA2 promoter were developed. The insertion of transgene in transgenic plants was confirmed by PCR analysis. The total APX activities of transgenic plants were enhanced or reduced by introduction of APX gene in plants. To clone the radiation-responsive genes and their promoter from plants, the NeIF2Bb, one of radiation-responsive genes from tobacco plant was characterized using molecular and cell biological tools. Promoter of GST6, a radiation-responsive gene, was cloned using RT-PCR. The GST6 promoter sequence was analyzed, and known sequence motif was searched. To develop the remediation technology of radioactively contaminated soil using transgenic plants uranium reductase and radiation resistance genes have been introduced in tobacco and indian mustard plans. The uranium reductase and radiation resistance (RecA) genes were confirmed in transgenic tobacco and indian mustard plants by PCR analysis. Also, Gene expression of uranium reductase and radiation resistance were confirmed in transgenic indian mustard plants by northern blot analysis. 42 refs., 12 figs. (Author)

  15. Molecular dissection of the response of the rice Systemic Acquired Resistance Deficient 1 (SARD1) gene to different types of ionizing radiation.

    Science.gov (United States)

    Jung, In Jung; Hwang, Jung Eun; Han, Sung Min; Kim, Dong Sub; Ahn, Joon-Woo; Choi, Hong-Il; Kwon, Soon-Jae; Kang, Si-Yong; Kim, Jin-Baek

    2017-07-01

    Exposure to ionizing radiation induces plant defenses by regulating the expression of response genes. The systemic acquired resistance deficient 1 (SARD1) is a key gene in plant defense response. In this study, the function of Oryza sativa SARD1 (OsSARD1) was investigated after exposure of seeds/plants to ionizing radiation, jasmonic acid (JA) or salicylic acid (SA). Rice seeds exposed to two types of ionizing radiations (gamma ray [GR] and ion beam [IB]) were analyzed by quantitative reverse transcription PCR (qRT-PCR) to identify the genes that are altered in response to ionizing radiation. Then, OsSARD1-overexpressing homozygous Arabidopsis plants were generated to assess the effects of OsSARD1 in the response to irradiation. The phenotypes of these transgenic plants, as well as control plants, were monitored after GR irradiation at doses of 200 and 300 Gray (Gy). The OsSARD1 transcript was strongly downregulated after exposure to GR and IB irradiation. Previous phylogenetic analysis showed that the Arabidopsis SARD1 (AtSARD1) protein is closely related to Arabidopsis calmodulin-binding protein 60g (AtCBP60g), which is known to be required for activation of SA biosynthesis. In this study, phylogenetic analysis showed that OsSARD1 was grouped with AtSARD1. The OsSARD1 gene was induced after exposure to SA and JA. The biological phenotype of OsSARD1-overexpressing Arabidopsis plants was examined. OsSARD1-overexpressing plants displayed resistance to GR; in comparison with wild-type plants, the height and weight of OsSARD1-overexpressing plants were significantly greater after GR irradiation. In addition, OsSARD1 protein was abundantly accumulated in the nucleus. The results indicate that OsSARD1 plays an important role in the regulation of the defense responses to GR and IB irradiation and exhibits phytohormone induced expression.

  16. Evaluation of Mid-IR Laser radiation effect on 316l stainless steel corrosion resistance in physiological saline

    International Nuclear Information System (INIS)

    Khosroshahi, M.E.; Valanezhad, A.; Tavakoli, J.

    2004-01-01

    The effects of a short pulsed (∼ 400 ns ) multi line hydrogen fluoride laser radiation operating on average at 2.8 μm has been studied on 316l stainless steel in terms of optical and physical parameters. At low fluences ≤ 8 Jcm -2 (phase l) no morphological changes occurred at the surface and melting began at ∼ 8.8 Jcm -2 (phase l l) which continued up to about 30 Jcm -2 . In this range the melting zone was effectively produced by high temperature surface centres growth which subsequently joined these centres together. Thermal ablation via surface vaporization began at ∼ 33 Jcm -2 (phase lll). The results of scanning electron microscopy evaluation and corrosion resistance experiment which was carried out using Eg and G device with cyclic potentiodynamic polarization method in a physiological (Hank's) solution indicated that pitting corrosion sensitivity was decreased i.e.. enhancement of corrosion resistance. Also, the x-ray diffraction results showed a double increase of γ (lll) at microstructure, thus in effect a super austenite stainless steel was obtained at an optimized melting fluence

  17. Sensitivity of clostridium acetobutylicum to oxygen and ionizing radiation

    International Nuclear Information System (INIS)

    Sozer, A.C.; Adler, H.I.; Machanoff, R.; Haney, S.

    1984-01-01

    The authors are studying the sensitivity of four strains of the obligate anaerobe, Clostridium acetobutylicum, to oxygen and ionizing radiation. Anaerobic bacteria are useful for such studies because of the absence of elaborate oxygen detoxification mechanisms that are found in aerobes. Their experiments make use of sterile membrane fragments from Escherichia coli that rapidly remove molecular oxygen from media and permit growth of anaerobes without the use of reducing agents or anaerobic chambers. Of the four strains examined for sensitivity to ionizing radiation under anaerobic conditions, one has an LD/sub 50/ of -- 25 krads and the others have an LD/sub 50/ of -- 7 krads. The radiation resistant strain is also relatively resistant to oxygen exposure. Sensitivity to oxygen was determined by diluting cells in buffer at 28 0 and bubbling with air. An exposure to air for 40 min induced only slight inactivation in the radiation resistant strain. All strains are capable of removing oxygen from complex media but there is no apparent correlation between this oxygen consuming reaction and inactivation by either oxygen or radiation

  18. Risks for radiation workers

    International Nuclear Information System (INIS)

    Rotblat, J.

    1978-01-01

    The following topics are discussed: recommendations of the International Commission on Radiological Protection; methods for determining dose limits to workers; use of data from survivors of Hiroshima and Nagasaki for estimating risk factors; use of data from survivors of nuclear explosions in Marshall Islands, uranium miners, and patients exposed to diagnostic and therapeutic radiation; risk factors for radioinduced malignancies; evidence that risk factors for persons exposed to partial-body radiation and Japanese survivors are too low; greater resistance of A-bomb survivors to radiation; and radiation doses received by U.K. medical workers and by U.K. fuel reprocessing workers. It is suggested that the dose limit for radiation workers should be reduced by a factor of 5

  19. DNA damage response in a radiation resistant bacterium Deinococcus radiodurans: a paradigm shift

    International Nuclear Information System (INIS)

    Misra, H.S.

    2015-01-01

    Deinococcusradiodurans is best known for its extraordinary resistance to gamma radiation with its D 10 12kGy, and several other DNA damaging agents including desiccation to less than 5% humidity and chemical xenotoxicants. An efficient DNA double strand break (DSB) repair and its ability to protect biomolecules from oxidative damage are a few mechanisms attributed to these phenotypes in this bacterium. Although it regulates its proteome and transcriptome in response to DNA damage for its growth and survival, it lacks LexA mediated classical SOS response mechanism. Since LexA mediated damages response mechanism is highly and perhaps only, characterized DNA damage response processes in prokaryotes, this bacterium keeps us guessing how it responds to extreme doses of DNA damage. Interestingly, this bacterium encodes a large number of eukaryotic type serine threonine/tyrosine protein kinases (eST/YPK), phosphatases and response regulators and roles of eST/YPKs in cellular response to DNA damage and cell cycle regulations are well established in eukaryotes. Here, we characterized an antioxidant and DNA damage inducible eST/YPK (RqkA) and established its role in extraordinary radioresistance and DSB repair in this bacterium. We identified native phosphoprotein substrates for this kinase and demonstrated the involvement of some of these proteins phosphorylation in the regulation of DSB repair and growth under radiation stress. Findings suggesting the possible existence of eST/YPK mediated DNA damage response mechanism as an alternate to classical SOS response in this prokaryote would be discussed. (author)

  20. Evaluating the effect of gamma radiation (60Co) on protein arcelin and its influence in the resistance of Zabrotes subfasciatus (Boh., 1833) (Coleoptera: Bruchidae)

    International Nuclear Information System (INIS)

    Teixeira, Valeria Wanderley

    1998-01-01

    The objective of this research was to evaluate the effects of different gamma doses of Cobalt-60 on arcelin protein in the manifestation of resistance to Zabrotes subfasciatus (Boh., 1833). Seeds of four lines of Phaseolus vulgaris carriers of arcelin protein (Arcelin-1, Arcelin-2, Arcelin-3 and Arcelin-4) and a cultivar without this protein were used as control (IAC-Carioca Akyta) obtained from the Instituto Agronomico do Estado de Sao Paulo - Nucleo Experimental de Campinas (IAC), were irradiated in a source of Cobalt-60, of the panoramic type, from the Instituto de Pesquisas Energeticas e Nucleares/CNEN/SP. The activity was approximately 2218.79 Ci, and the dose rate 0.678 kGy/h. The doses used were 0; 0.25; 0.5; 1.0 and 2.0 kGy. The results showed that the radiation doses did not influence the parameters evaluated in the resistance because a high degree of antibiose in the Arcelin-1 and Arcelin-2 lines was maintained. The Arcelin-3 and Arcelin-4 lines also maintained their behavior less expressive of resistance by antibiose only prolonging the period from egg to adult. The electrophoretic analysis of the lines and cultivar were not changed in relation to the radiation doses. But there was a decrease in relation to the intensity of color of the bands (absorbance) with the increase of the doses. (author)

  1. Radiation-thermal transformation of degraded oils

    International Nuclear Information System (INIS)

    Guliyeva, N.G.; Aliyeva, S.F.

    2010-01-01

    Full text :In order to elucidate the role of radiation in the process of oil degradation in the environment, and to identify opportunities for application of radiation-chemical technology to clean oil-contaminated soil were studied some regularities of radiation-chemical transformations of oil samples taken from wells, as well as after long-term presence on the surface of the water and soil. The most high radiation resistances of oil are samples taken from surface water. This is due to structural changes in the process of oil degradation, namely an increase in their part of the radiation-resistant resins and aspartames. This is due to evaporation of light hydrocarbons and heavy destructive transformations under the influence of oxygen, microorganisms, as well as components of the surface layer of soil. This phenomenon is explained by the specificity of action of the beam of accelerated electrons, namely the possible heating of the reaction zone due to inhibition of the electron. In this case the acceleration of diffusion processes results in an increase in the yield of gases.

  2. Vasculatures in Tumors Growing From Preirradiated Tissues: Formed by Vasculogenesis and Resistant to Radiation and Antiangiogenic Therapy

    International Nuclear Information System (INIS)

    Chen, Fang-Hsin; Chiang, Chi-Shiun; Wang, Chun-Chieh; Fu, Sheng-Yung; Tsai, Chien-Sheng; Jung, Shih-Ming; Wen, Chih-Jen; Lee, Chung-Chi; Hong, Ji-Hong

    2011-01-01

    Purpose: To investigate vasculatures and microenvironment in tumors growing from preirradiated tissues (pre-IR tumors) and study the vascular responses of pre-IR tumors to radiation and antiangiogenic therapy. Methods and Materials: Transgenic adenocarcinoma of the mouse prostate C1 tumors were implanted into unirradiated or preirradiated tissues and examined for vascularity, hypoxia, and tumor-associated macrophage (TAM) infiltrates by immunohistochemistry. The origin of tumor endothelial cells was studied by green fluorescent protein-tagged bone marrow (GFP-BM) transplantation. The response of tumor endothelial cells to radiation and antiangiogenic agent was evaluated by apoptotic assay. Results: The pre-IR tumors had obvious tumor bed effects (TBE), with slower growth rate, lower microvascular density (MVD), and more necrotic and hypoxic fraction compared with control tumors. The vessels were dilated, tightly adhered with pericytes, and incorporated with transplanted GFP-BM cells. In addition, hypoxic regions became aggregated with TAM. As pre-IR tumors developed, the TBE was overcome at the tumor edge where the MVD increased, TAM did not aggregate, and the GFP-BM cells did not incorporate into the vessels. The vessels at tumor edge were more sensitive to the following ionizing radiation and antiangiogenic agent than those in the central low MVD regions. Conclusions: This study demonstrates that vasculatures in regions with TBE are mainly formed by vasculogenesis and resistant to radiation and antiangiogenic therapy. Tumor bed effects could be overcome at the edge of larger tumors, but where vasculatures are formed by angiogenesis and sensitive to both treatments. Vasculatures formed by vasculogenesis should be the crucial target for the treatment of recurrent tumors after radiotherapy.

  3. Heavy irradiation effects in radiation-resistant optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, Tatsuo [Tohoku Univ., Oarai, Ibaraki (Japan). Oarai Branch, Inst. for Materials Research

    1998-07-01

    Development of a system for optical measurements in a nuclear reactor has been progressing to investigate dynamic changes in a material caused by heavy irradiation. In such system, transfer of optical signals to out-pile measuring systems is being attempted by the use of optical fibers. In this report, the characteristics of optical fibers in the heavy irradiation field were summarized. It has been known that amorphous silica might produce radiolysis and structural defects by the exposure to ionizing radiation. The effects of heavy irradiation on molten silica were extremely complicated. A large intensity of visible light absorption occurred from an early time during start-up of the reactor. The absorption range was limited below 700 nm for the radiation associating fast neutron and the absorption was mostly attributed to non-bridging oxygen hole center. The depletion of optical transferring capacity under the radiation might be related to the internal stress. Therefore, it seems desirable to use optical fibers in the conditions without leading too much stress. (M.N.)

  4. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  5. Methodical features of selection of radiation-resistant semiconductor devices on the base of initial informative parameters; Metodicheskie osobennosti otbora radiatsionno-stojkikh poluprovodnikovykh priborov po nachal`nym informativnym parametram

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, Yu N [and others

    1994-12-31

    A method for evaluating the statistic interrelation of informational parameter initial values with radiation resistance of semiconducting devices using the information content factor which is invariant relative to the election scope and confidence probability is proposed.

  6. Toxicity of radiation-resistant strains of Bacillus thuringiensis (Berl.) to larval Plutella xylostella (L.)

    International Nuclear Information System (INIS)

    Jangi, M.S.; Ibrahim, Hasan

    1983-01-01

    A total of 24 isolates of Bacillus thuringiensis (Berliner), resistant to a γ-radiation dose of 100 krad, were screened for their toxicity to larval silkworms, Bombyxmori(L.), and 15 of them were subsequently tested for their toxicity to larval diamond-back moth, Plutella xylostella(L.). The LC 50 's of these isolates to B. mori ranged from 1.6 X 10 5 to 6.0 X 10 3 spores/mL or from 5.9 to 0.3 μg cellular protein/mL. The irradiation treatment produced isolates which were significantly more toxic to P. xylostella (LC 50 4 spores/mL or 3.7 μg cellular protein/mL) and/ or less toxic to B. mori (LC 50 > 2.3 X 10 4 spores/mL or 1.0 μg cellular protein/mL) than the parent commercial strain

  7. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    International Nuclear Information System (INIS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy

  8. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    Science.gov (United States)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  9. Raf oncogene is associated with a radiation-resistant human laryngeal cancer

    International Nuclear Information System (INIS)

    Kasid, U.; Pfeifer, A.; Weichselbaum, R.R.; Dritschilo, A.; Mark, G.E.

    1987-01-01

    In order to identify the genetic factors associated with the radiation-resistant human laryngeal carcinoma cell line (SQ-20B), tumor cell DNA was transfected into NIH/3T3 cells. A high incidence (six out of six) of raf sequences was found in transfected NIH/3T3 clones and the tumorigenic potential of SQ-20B DNA could be linked to genomic fragments that represent most of the kinase domain of human c-raf-1. An apparently unaltered 3.5-kilobase pair (kb) human c-raf transcript was identified in SQ-20B cells but was not observed in the transfected NIH/3T3 cell clones. Two new transcripts (4.2 kb and 2.6 kb) were found in tumorigenic clones; the large transcript was missing in a very poorly tumorigenic clone. Cytogenetic analysis indicated that the normal autosomes of chromosome 3 were absent in SQ-20B karyotypes and had formed apparently stable marker chromosomes. Unlike the recipient NIH/3T3 cell line, 30% of the transformed clone-1 metaphases had minute and double-minute chromosomes representative of amplified DNA sequences. The frequency of the c-raf-1 identification by NIH/3T3 transfection of SQ-20B DNA suggests the presence of some genetic abnormality within this locus

  10. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  11. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  12. Radiation induced microbial pesticide

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Young Keun; Kim, Jae Sung; Kim, Jin Kyu; Lee, Sang Jae

    2000-01-01

    To control plant pathogenic fungi, 4 strains of bacteria (K1, K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 13 kinds of fungi. Mutants of K1 and YS1 strains were induced by gamma-ray radiation and showed promising antifungal activities. These wild type and mutants showed resistant against more than 27 kinds of commercial pesticides among 30 kinds of commercial pesticides test particularly, YS1-1006 mutant strain showed resistant against hydrogen oxide. And mutants had increased antifungal activity against Botryoshaeria dothidea. These results suggested that radiation could be an useful method for the induction of functional mutants. (author)

  13. FtsZ from radiation resistant bacterium Deinococcus radiodurans is different from its characterized homologues

    International Nuclear Information System (INIS)

    Mehta, Kruti P.; Misra, H.S.

    2012-01-01

    Polymerization/depolymerization dynamics of FtsZ and its GTPase activity are interdependent and the regulation of these processes determines the growth rate in a bacterium. Deinococcus radiodurans R1 that is best known for its extraordinary radiation resistance and efficient DNA double strand break repair is a comparatively slow growing bacterium and its growth gets arrested in response to gamma radiation. Mechanisms of cell division and its regulation under gamma stressed growth condition would be worth investigating. Genome of this bacterium encodes at least all the known components of divisome. Recombinant FtsZ of D. radiodurans (drFtsZ) preferred Mg 2+ for its GTPase activity. Relatively a very low GTPase activity was observed in presence of Mn 2+ , Co 2+ and Ni 2+ while release of inorganic phosphate could not be detected in presence of other divalent ions including Ca 2+ . GTPase activity of drFtsZ was lower than E. coli but higher than Mycobacterium and it required both Mg 2+ and GTP for its polymerization. Its GTPase activity did not increase with increasing concentration of Mg 2+ and correlates with the bundling of protofilaments. Results obtained from transmission electron microscopy and sedimentation analysis supported the reciprocal correlation of polymerization/depolymerization with the levels of GTPase activity. Dynamic light scattering in presence of 5mM or higher concentration of Mg 2+ and Mn 2 showed a characteristic cyclic change in light scattering without addition of extra metal ion or GTP

  14. Radiation induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Otsuhata, Kazushige; Kudoh, Hisaaki; Seguchi, Tadao.

    1995-01-01

    The Irradiation temperature effect on polytetrafluoroethylene (PTFE) from room temperature to 380degC was investigated by tensile test and thermal analysis. The behavior of tensile properties and changes of crystallinity on irradiation indicated the formation of a network structure in PTFE by radiation induced crosslinking in inert gas in the molten state just above the melting temperature of PTFE (327degC). The crosslinked PTFE showed a much improved radiation resistance in an atmospheric radiation field. (author)

  15. Radiation hormesis in plant

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Cun, Ki Jung; Shin, In Chul; Lim, Young Taek

    1999-04-01

    This research was performed to investigate the effects of low dose γ-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as acid rain or soil types could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant enzyme (POD) were accomplished in the plant irradiated with difference dosage of γ-ray

  16. Radiation hormesis in plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Song, Hi Sup; Lee, Young Keun; Cun, Ki Jung; Shin, In Chul; Lim, Young Taek

    1999-04-01

    This research was performed to investigate the effects of low dose {gamma}-ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as acid rain or soil types could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant enzyme (POD) were accomplished in the plant irradiated with difference dosage of {gamma}-ray.

  17. Thermal stability of radiation-modified polyethylene

    International Nuclear Information System (INIS)

    Vinogradova, T.B.; Sirota, A.G.; Bal'tenas, R.A.; Stanyavichus, V.I.; Knebel'man, A.M.; Sil'chenko, S.A.

    1989-01-01

    In the work reported here, the authors investigated the thermooxidative resistance, at temperatures from 373 to 473 K, of polyethylene that had been cross-linked by exposure to radiation and formulated with various heat stabilizers. Thus, these studies of the thermooxidative resistance of polyethylene-based compositions that have been cross-linked by the radiation-chemical method have shown that, in this particular series of heat-stabilizers, the greatest effect at temperatures of 373-473 K is given by the FAU-13. The DTPhDMI has the greatest heat-stabilizing effect in the temperature interval 448-473 K, whereas the heat resistance of materials containing Diaphen NN or Phenozan-23 is higher at 373-423 K. These comparative results are in agreement with data for unirradiated and chemically cross-linked polyethylene

  18. Some notes on radiation immunology

    International Nuclear Information System (INIS)

    Sado, Toshihiko

    1977-01-01

    Immunological movement related to radiation immunology were reviewed. Basic items about cell mechanism of immunological reaction were explained, and then, relationship between immunity and radiation was given an outline. As to radiation effects on immunological lymphatic system, radiosensitivity of lymphocytes and immunological reaction, radiation effects on T and B cells, and radiosensitivity of lymphatic system, especially thymus were mentioned, and furthermore, delayed effects of radiation on immunological system were described. Radiation effects on relationship between bone marrow transplantation and genesis of reticulum cell tumor and delayed effects of radiation on them were mentioned, and genetic resistance against hematopoietic cell transplantation and its radiosensitivity were also described. Relationship between carcinogenesis due to radiation and immunity, and a state of specific immunological in an individual non-responsiveness having cancer, were also referred to. (Kanao, N.)

  19. Radiation studies on the microflora in a High-level radiation environment

    International Nuclear Information System (INIS)

    Zahiera, T.S.

    1988-01-01

    Radiation sensitivities of microflora in the air environment of the irradiation room of the 60 CO industrial irradiation facility of NCRRT was studied. The isolated microflora was identified to be the Gram positive micrococci, and the gram positive bacilli: coagulans and laterosporous. The study of the dose-survival counts dependence of the colonies showed the existance of the combination of at least two groups of micro-organisms with different sensitivities to radiation. The value of the radiation resistant group was found to be 2.2 10kGy. A method is presented to estimate the amount of each group in the initial culture. A study of the dependence of radiation lethality on the dose rate of radiation on the aerobic dry microbes showed no significant effect in the dose-rate range from 330 down to 44 Gy.min

  20. Radiation sensor

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1977-01-01

    Radiation sensor and thermocouple, respectively, which can be used for reactor in-core instrumentation. The radiation sensor consists of an inconel conductor wire and rhodium emitter wire, the thermocouple of two intertwined alumel or chromel wires. Both are arranged in the center of a metal tube relative to which they are separated by an insulator made of SiO 2 fibers. This insulator is first introduced as a loose fabric between the radiation sensor and the thermocouple, respectively, and the metal tube and then compacted to a density of 35-73% of pure SiO 2 by drawing the tube. There is no need for soldering or welding. The insulation resistivity at room temperature ist between 10 14 and 10 15 ohms. (ORU) [de

  1. Radiation damage in lithium-counterdoped N/P silicon solar cells

    Science.gov (United States)

    Hermann, A. M.; Swartz, C. K.; Brandhorst, H. W., Jr.; Weinberg, I.

    1980-01-01

    The radiation resistance and low-temperature annealing properties of lithium-counterdoped n(+)-p silicon solar cells are investigated. Cells fabricated from float zone and Czochralski grown silicon were irradiated with 1 MeV electrons and their performance compared to that of 0.35 ohm-cm control cells. The float zone cells demonstrated superior radiation resistance compared to the control cells, while no improvement was noted for the Czochralski grown cells. Annealing kinetics were found to lie between first and second order for relatively short times, and the most likely annealing mechanism was found to be the diffusion of lithium to defects with the subsequent neutralization of defects by combination with lithium. Cells with zero lithium gradients exhibited the best radiation resistance.

  2. Drug resistance following irradiation of RIF-1 tumors: Influence of the interval between irradiation and drug treatment

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Davies, B.M.; Moulder, J.E.

    1990-01-01

    RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance is seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance

  3. Defect kinetics and resistance to amorphization in zirconium carbide

    International Nuclear Information System (INIS)

    Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2015-01-01

    To better understand the radiation response of zirconium carbide (ZrC), and in particular its excellent resistance to amorphization, we have used density functional theory methods to study the kinetics of point defects in ZrC. The migration barriers and recombination barriers of the simple point defects are calculated using the ab initio molecular dynamics simulation and the nudged elastic band method. These barriers are used to estimate C and Zr interstitial and vacancy diffusion and Frenkel pair recombination rates. A significant barrier for C Frenkel pair recombination is found but it is shown that a large concentration of C vacancies reduces this barrier dramatically, allowing facile healing of radiation damage. The mechanisms underlying high resistance to amorphization of ZrC were analyzed from the perspectives of structural, thermodynamic, chemical and kinetic properties. This study provides insights into the amorphization resistance of ZrC as well as a foundation for understanding general radiation damage in this material

  4. Evaluation of the electron beam radiation effects on the mechanical properties of the polypropylene

    International Nuclear Information System (INIS)

    Souza, Clecia M.; Moura, Esperidiana A.B.; Chinellato, Anne

    2009-01-01

    This paper studied the electron beam radiation effects on the mechanical properties of the polypropylene (PP) resin. The PP resin was submitted to 150-250 kGy radiation dose, at the dose rate of 14 kGy/s, room temperature and presence of air, using a 1.5 MeV electron accelerator. After the irradiation, the irradiated and non irradiated resin samples were submitted to the mechanical testes of traction resistance and impact Izod resistance. The results shown that the traction resistance at drainage of PP samples have not experienced significant modifications (p < 0.05) after the irradiation. However, the original PP rupture resistance (non irradiated samples) presented a gain up to 100 % as function of the applied radiation dose; the percentage of deformation in the rupture presented a reduction up to 65 % and the Izod impact resistance presented a reduction up to 70 % with the increase of the radiation dose (p < 0.05)

  5. Gel-based proteomic approach to unravel the extreme radiation resistance of deinococcus radiodurans

    International Nuclear Information System (INIS)

    Basu, Bhakti; Apte, Shree Kumar

    2013-01-01

    The extremophile, Deinococcus radiodurans, is endowed with an extraordinary DNA repair ability and oxidative stress alleviation mechanisms that render it virtually resistant to all types of DNA damaging stressors such as ionizing radiations, UV or years of desiccation. Following DNA damage, the microbe reassembles its complete genome from multiple DNA fragments with impeccable fidelity. The deinococcal genome encodes functional homologues of both prokaryotic and eukaryotic DNA repair pathways, such as RecFOR mediated homologous recombination (HR), nucleotide/base excision repair (NER/BER), strand annealing (SA) and non-homologous end joining (NHEJ), but lacks homologues for universal prokaryotic DNA repair pathways such as RecBCD mediated HR, photo-reactivation and SOS response. It also harbors multiple enzymatic and non-enzymatic oxidative stress defense mechanisms. Proteomic approaches were employed to study the response of D. radiodurans to LD50 dose of gamma irradiation during the post-irradiation growth arrest phase by two dimensional protein electrophoresis coupled with mass spectrometry to reveal kinetics and dynamics of DNA repair, oxidative stress alleviation and resynthesis of damaged proteins, preceding growth recovery

  6. Radiation-induced phase transformation in ferromagnetic perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Podsekin, A K; Dem' yanov, V V; Ivanova, V V; Venevtsev, Yu N [Nauchno-Issledovatel' skij Fiziko-Khimicheskij Inst., Moscow (USSR)

    1976-12-01

    An effect of neutron irradiation inducing a phase transition in ferromagnetic perovskite, Sr/sub 0.3/La/sub 0.7/MnO/sub 3/, has been discovered and studied. It is shown that a change in the Curie temperature is proportional to the dose of reactor irradiation. A decrease in the temperature of the phase transition with the concentration of radiation defects is accompanied by an increase in the electrical specific resistance and a change in the initial lattice parameters. It is shown that the radiation shift is due to at least two causes, viz. to an increase in the parameters of the elementary cell and the growth of the electrical specific resistance as a result of bounded electron states' forming on the radiation defects.

  7. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    Science.gov (United States)

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  8. Method of separate determination of high-ohmic sample resistance and contact resistance

    Directory of Open Access Journals (Sweden)

    Vadim A. Golubiatnikov

    2015-09-01

    Full Text Available A method of separate determination of two-pole sample volume resistance and contact resistance is suggested. The method is applicable to high-ohmic semiconductor samples: semi-insulating gallium arsenide, detector cadmium-zinc telluride (CZT, etc. The method is based on near-contact region illumination by monochromatic radiation of variable intensity from light emitting diodes with quantum energies exceeding the band gap of the material. It is necessary to obtain sample photo-current dependence upon light emitting diode current and to find the linear portion of this dependence. Extrapolation of this linear portion to the Y-axis gives the cut-off current. As the bias voltage is known, it is easy to calculate sample volume resistance. Then, using dark current value, one can determine the total contact resistance. The method was tested for n-type semi-insulating GaAs. The contact resistance value was shown to be approximately equal to the sample volume resistance. Thus, the influence of contacts must be taken into account when electrophysical data are analyzed.

  9. Toxicity of radiation-resistant strains of Bacillus thuringiensis (Berl. ) to larval Plutella xylostella (L. )

    Energy Technology Data Exchange (ETDEWEB)

    Jangi, M.S.; Ibrahim, H. (Faculty of Health Sciences, Universiti Kebangsaan, Malysia, Bangi, Selangor)

    1983-05-01

    A total of 24 isolates of Bacillus thuringiensis (Berliner), resistant to a ..gamma..-radiation dose of 100 krad, were screened for their toxicity to larval silkworms, Bombyxmori(L.), and 15 of them were subsequently tested for their toxicity to larval diamond-back moth, Plutella xylostella(L.). The LC/sub 50/'s of these isolates to B. mori ranged from 1.6 X 10/sup 5/ to 6.0 X 10/sup 3/ spores/mL or from 5.9 to 0.3 ..mu..g cellular protein/mL. The irradiation treatment produced isolates which were significantly more toxic to P. xylostella (LC/sub 50/ < 8.1 X 10/sup 4/ spores/mL or 3.7 ..mu..g cellular protein/mL) and/ or less toxic to B. mori (LC/sub 50/ > 2.3 X 10/sup 4/ spores/mL or 1.0 ..mu..g cellular protein/mL) than the parent commercial strain.

  10. Non-Linear Adaptive Phenomena Which Decrease The Risk of Infection After Pre-Exposure to Radiofrequency Radiation

    OpenAIRE

    Mortazavi, S.M.J.; Motamedifar, M.; Namdari, G.; Taheri, M.; Mortazavi, A.R.; Shokrpour, N.

    2013-01-01

    Substantial evidence indicates that adaptive response induced by low doses of ionizing radiation can result in resistance to the damage caused by a subsequently high-dose radiation or cause cross-resistance to other non-radiation stressors. Adaptive response contradicts the linear-non-threshold (LNT) dose-response model for ionizing radiation. We have previously reported that exposure of laboratory animals to radiofrequency radiation can induce a survival adaptive response. Furthermore, we ha...

  11. Radiation crosslinking of polymer materials

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2004-01-01

    It was found that some polyfunctional monomers (PFM) like triallyl isocyanurate (TAIC) and trimethallyl isocyanurate (TMAIC) when incorporated at low concentrations, are effective for promotion of crosslinking of biodegradable polymers such as polycaprolactone (PCL), poly(butylene succinate-co-adipate) (PBS) and poly(lactic acid) (PLA). PFM are kneaded with biodegradable polymers at molten condition before irradiation. Radiation crosslinking of PBS and PCL with 1% TAIC gave gel fractions of 80% at 20 kGy. This crosslinking is effective to improve deformation of biodegradable polymers at high temperature. The irradiated materials retained their biodegradability even after crosslinking when subjected to soil burial test. Irradiation at molten state (melting temperature, 340degC) led to crosslinking structures for polytetrafluoroethylene (PTFE). Crosslinked PTFE forms transparent films with high abrasion property and high radiation resistance. High-density polyethylene (HDPE) has a higher gel fraction in irradiation at molten state than irradiation at ordinary temperature. Crosslinked HDPE has been applied as knee joints in order to have high abrasion. Radiation crosslinked polycarbosilane (PCS) fiber gives high heat resistant silicon carbide (SiC) after firing. EB irradiation of PCS is effective to improve strength of product and to inhibit flow during carbonization. SiC, being resistant to high temperature will be applied in turbine and body of rockets. (author)

  12. Automated analysis of damages for radiation in plastics surfaces

    International Nuclear Information System (INIS)

    Andrade, C.; Camacho M, E.; Tavera, L.; Balcazar, M.

    1990-02-01

    Analysis of damages done by the radiation in a polymer characterized by optic properties of polished surfaces, of uniformity and chemical resistance that the acrylic; resistant until the 150 centigrade grades of temperature, and with an approximate weight of half of the glass. An objective of this work is the development of a method that analyze in automated form the superficial damages induced by radiation in plastic materials means an images analyst. (Author)

  13. Proliferation resistance of the lithium reduction process

    International Nuclear Information System (INIS)

    Ko, W. I.; Ha, J. H.; Lee, S. Y.; Song, D. Y.; Kim, H. D.; Park, S. W.

    2002-01-01

    This paper addresses the characteristics of proliferation resistance of the lithium reduction process and international domestic safeguarding methods. In addition to dealing with qualitative features of the proliferation resistance, this study is emphasizing on the quantitative analysis of radiation barrier, which could be a significant accessibility barrier if the field is high enough to force a theft to shield the object during a theft. From the radiation barrier analysis, it is indicated that whole-body radiation dose is about 20 rem/hr at one meter of smelt and ingot metal of 40 kgHM, which could be considered to be a significant reduction in risk of theft. For safeguarding of this process, we propose a NDA concept for nuclear material accounting which is to measure the amount of curium in the reduction metal and associated process samples using a neutron coincidence counter and then to convert the curium mass into special nuclear material with predetermined curium ratios. For this, a well-type neutron coincidence counter with substantial shielding to protect the system from high gamma radiation is conceptually designed

  14. Mass and overall optimization of radiator design

    Directory of Open Access Journals (Sweden)

    Shilo G. N.

    2011-04-01

    Full Text Available The models of finned radiator are formed by computing aided engineering systems. The relations between sizes of construction elements and boundaries of operability domain are obtained for radiators of minimal mass, minimal volume and minimal overall parameters. Iteration algorithm is used. The non-linear characteristics of weight functions and allowable input heat resistances of radiator are applied in the algorithm. Mass and overall parameters of standard and optimal radiator are defined by different strategies.

  15. Cross-Resistance of UV- or Chlorine Dioxide-Resistant Echovirus 11 to Other Disinfectants

    Directory of Open Access Journals (Sweden)

    Qingxia Zhong

    2017-10-01

    Full Text Available The emergence of waterborne viruses with resistance to disinfection has been demonstrated in the laboratory and in the environment. Yet, the implications of such resistance for virus control remain obscure. In this study we investigate if viruses with resistance to a given disinfection method exhibit cross-resistance to other disinfectants. Chlorine dioxide (ClO2- or UV-resistant populations of echovirus 11 were exposed to five inactivating treatments (free chlorine, ClO2, UV radiation, sunlight, and heat, and the extent of cross-resistance was determined. The ClO2-resistant population exhibited cross-resistance to free chlorine, but to none of the other inactivating treatments tested. We furthermore demonstrated that ClO2 and free chlorine act by a similar mechanism, in that they mainly inhibit the binding of echovirus 11 to its host cell. As such, viruses with host binding mechanisms that can withstand ClO2 treatment were also better able to withstand oxidation by free chlorine. Conversely, the UV-resistant population was not significantly cross-resistant to any other disinfection treatment. Overall, our results indicate that viruses with resistance to multiple disinfectants exist, but that they can be controlled by inactivating methods that operate by a distinctly different mechanism. We therefore suggest to utilize two disinfection barriers that act by different mechanisms in order to control disinfection-resistant viruses.

  16. Radiation hormesis in plant

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Lee, Young Keun; Lee, Sang Jae and others; Park, Youn Il; Kwon, Soon Tae

    2003-05-01

    This research was performed to investigate the effects of low dose gamma radiation on germination, early growth and yield in a wide range of vegetable crops. The stimulating effects of gamma radiation was evaluated through investigating germination rate, early growth and physiological activities such as enzyme activities, hormones and photosynthetic responses etc. Induction of increased shikonin production in the plants by low dose gamma radiation was challenged to open up the possibility of applying radiation hormesis to the industrial mass production system of the natural materials useful to humans. Effects of natural radiation emitted from solid ceramics was compared on the plants with those of low dose gamma radiation. Finally, activation of aged seeds by low dose gamma radiation, probably facilitating their commercial circulation in the agriculture, was challenged in association with an industrial seed company. Moreover, the shift in resistance of the crops to environmental stresses including UV and low temperature was addressed as well as DNA damage, repair and protein expression after gamma irradiation

  17. Compact synchrotron radiation depth lithography facility

    Science.gov (United States)

    Knüppel, O.; Kadereit, D.; Neff, B.; Hormes, J.

    1992-01-01

    X-ray depth lithography allows the fabrication of plastic microstructures with heights of up to 1 mm but with the smallest possible lateral dimensions of about 1 μm. A resist is irradiated with ``white'' synchrotron radiation through a mask that is partially covered with x-ray absorbing microstructures. The plastic microstructure is then obtained by a subsequent chemical development of the irradiated resist. In order to irradiate a reasonably large resist area, the mask and the resist have to be ``scanned'' across the vertically thin beam of the synchrotron radiation. A flexible, nonexpensive and compact scanner apparatus has been built for x-ray depth lithography at the beamline BN1 at ELSA (the 3.5 GeV Electron Stretcher and Accelerator at the Physikalisches Institut of Bonn University). Measurements with an electronic water level showed that the apparatus limits the scanner-induced structure precision to not more than 0.02 μm. The whole apparatus is installed in a vacuum chamber thus allowing lithography under different process gases and pressures.

  18. Radiation stability of anion-exchange resins based on epichlorohydrin and vinylpyridines

    International Nuclear Information System (INIS)

    Zainutdinov, S.S.; Dzhalilov, A.T.; Askarov, M.A.

    1983-01-01

    The vigorous development of nuclear technology and atomic energy and the hydrometallurgy of the rare and radioactive metals has made it necessary to create and use ion-exchange materials possessing a high resistance to the action of ionizing radiations and the temperature. In view of this, the necessity has arisen for obtaining ion-exchange materials possessing adequate radiation stability. The results of an investigation of the radiation stability of anion-exchange resins based on the products of spontaneous polymerization in the interaction of epichlorohydrin with vinylpyridines show that they possess higher radiation resistance than the industrial anion-exchange resin AN-31 used at the present time

  19. Radiation cured polyester compositions containing metal-properties

    Science.gov (United States)

    Szalińska, H.; Pietrzak, M.; Gonerski, A.

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them.

  20. Radiation cured polyester compositions containing metal-properties

    International Nuclear Information System (INIS)

    Szalinska, H.; Pietrzak, M.; Gonerski, A.

    1987-01-01

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60 Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them. (author)

  1. The selection and properties of epoxide resins used for the insulation of magnet systems in radiation environments

    International Nuclear Information System (INIS)

    Phillips, D.C.; Scott, J.M.; Goebel, K.; Schoenbacher, H.

    1981-01-01

    Laboratory tests have been carried out on five types of epoxy resins - four based on bisphenol A, one on hydantoin-bisphenol A - applicable in the construction of large magnet coils. Two of the resin compositions have already been used in large quantities as insulating material for magnets at the European Organization for Nuclear Research (CERN); the others were selected for comparison according to their good radiation resistance, good initial mechanical properties, and optimal properties for vacuum impregnation. Three types of tests are discussed in detail: creep, crack propagation (as a measure of toughness), and radiation resistance. The results show that the resin composition with hydantoin exhibits the best resistance to crack propagation but, on the other hand, the lowest resistance to ionizing radiation, and can therefore not be recommended for use in a radiation environment. Among the other materials based on biosphenol A, better toughness values were obtained with lower-cross-linked resin systems, whereas the radiation resistance is better for highly-cross-linked materials. It is concluded that a reasonable compromise combining good processing and operational properties with sufficiently high radiation resistance is obtained with a standard epoxy-resin-type bisphenol A with a specially formulated anhydride hardener and an amine-substituted phenol-type accelerator. (orig.)

  2. Radiation techology in cable making industry

    International Nuclear Information System (INIS)

    Kourim, P.; Vokal, A.

    1985-01-01

    Electron accelerators are used in radiation cross-linking of elastomer and thermoplastic layers of cable insulation and sheathing. Another application is cross-linking of insulation bands and moulded products to achieve thermal contractibility. Ionizing radiation is used for curing insulation lacquers on winding leads. In Czechoslovakia, problems of radiation curing of silicone rubber have been studied since 1973. Instrumentation has been installed including accelerators. The feasibility has also been studied of radiation cross-linking of insulation and semiconductor cable cores of hose-type trailing cables. Polyethylene mixes have been designed and prepared which are suitable for radiation cross-linking aimed at increasing thermal resistance above 100 degC. (M.D.)

  3. Insulating materials resistance in intense radiation beams

    International Nuclear Information System (INIS)

    Oproiu, Constantin; Martin, Diana; Scarlat, Florin; Timus, Dan; Brasoveanu, Mirela; Nemtanu, Monica

    2002-01-01

    The paper emphasizes the main changes of the mechanical and electrical properties of some organic insulating materials exposed to accelerated electron beams. These materials are liable to be used in nuclear plants and particle accelerators. The principal mechanical and electrical properties analyzed were: tensile strength, fracture strength, tearing on fracture, dielectric strength, electrical resistivity, dielectric constant and tangent angle of dielectric losses. (authors)

  4. Resistance to corrosion fatigue fracture in heat resistant steels and their welded joints

    International Nuclear Information System (INIS)

    Timofeev, B.T.; Fedorova, V.A.; Zvezdin, Yu.I.; Vajner, L.A.; Filatov, V.M.

    1987-01-01

    Experimental data on cyclic crack resistance of heat-resistant steels and their welded joints employed for production of the reactor bodies are for the first time generalized and systematized. The formula is suggested accounting for surface and inner defects to calculate the fatigue crack growth in the process of operation. This formula for surface defects regards also the effect of the corrosion factor. Mechanisms of the reactor water effect on the fatigue crack growth rate are considered as well as a combined effect of radiation and corrosive medium on this characteristic

  5. Hymenobacter swuensis sp. nov., a gamma-radiation-resistant bacteria isolated from mountain soil.

    Science.gov (United States)

    Lee, Jae-Jin; Srinivasan, Sathiyaraj; Lim, Sangyong; Joe, Minho; Lee, Sang Hee; Kwon, Shin Ae; Kwon, Yoon Jung; Lee, Jin; Choi, Jin Ju; Lee, Hye Min; Auh, Young Kyung; Kim, Myung Kyum

    2014-03-01

    Gram stain-negative and non-motile bacteria, designated as DY53(T) and DY43, were isolated from mountain soil in South Korea prior exposure with 5 kGy gamma radiation. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strains belonged to the family Cytophagaceae in the class Cytophagia. 16S rRNA gene sequence similarity of strains DY53(T) and DY43 was 100 %. The highest degrees of sequence similarities of strains DY53(T) and DY43 were found with Hymenobacter perfusus A1-12(T) (98.8 %), Hymenobacter rigui WPCB131(T) (98.5 %), H. yonginensis HMD1010(T) (97.9 %), H. xinjiangensis X2-1g(T) (96.6 %), and H. gelipurpurascens Txg1(T) (96.5 %). The DNA G+C content of the novel strains DY53(T) and DY43 were 59.5 mol%. Chemotaxonomic data revealed that strains possessed major fatty acids such as C₁₅:₀ iso, C₁₅:₀ anteiso, C₁₆:₁ ω5c, summed feature 3 (16:1 ω7c/ω6c), summed feature 4 (17:1 anteiso B/iso I) and C₁₇:₀ iso, and major polar lipid was phosphatidylethanolamine. The novel strains showed resistance to gamma radiation, with a D10 value (i.e., the dose required to reduce the bacterial population by tenfold) in excess of 5 kGy. Based on these data, strains DY53(T) and DY43 should be classified as representing a novel species, for which the name Hymenobacter swuensis sp. nov. is proposed, with the type strain DY53(T) (=KCTC 32018(T) = JCM 18582(T)) and DY43 (=KCTC 32010).

  6. Radiation Resistance of the U(Al, Si)3 Alloy: Ion-Induced Disordering

    Science.gov (United States)

    Yaniv, Gili; Horak, Pavel; Vacik, Jiri; Mykytenko, Natalia; Rafailov, Gennady; Dahan, Itzchak; Fuks, David; Kiv, Arik

    2018-01-01

    During the exploitation of nuclear reactors, various U-Al based ternary intermetallides are formed in the fuel-cladding interaction layer. Structure and physical properties of these intermetallides determine the radiation resistance of cladding and, ultimately, the reliability and lifetime of the nuclear reactor. In current research, U(Al, Si)3 composition was studied as a potential constituent of an interaction layer. Phase content of the alloy of an interest was ordered U(Al, Si)3, structure of which was reported earlier, and pure Al (constituting less than 20 vol % of the alloy). This alloy was investigated prior and after the irradiation performed by Ar ions at 30 keV. The irradiation was performed on the transmission electron microscopy (TEM, JEOL, Japan) samples, characterized before and after the irradiation process. Irradiation induced disorder accompanied by stress relief. Furthermore, it was found that there is a dose threshold for disordering of the crystalline matter in the irradiated region. Irradiation at doses equal or higher than this threshold resulted in almost solely disordered phase. Using the program “Stopping and Range of Ions in Matter” (SRIM), the parameters of penetration of Ar ions into the irradiated samples were estimated. Based on these estimations, the dose threshold for ion-induced disordering of the studied material was assessed. PMID:29393870

  7. Radiation-resistant device with tubes for the introduction of a liquid, e.g., blood into a container holding a radioactive source

    International Nuclear Information System (INIS)

    Rasmussen, I.

    1978-01-01

    The invention concerns a radiation-resistant device with tubing for the introduction/removal of a liquid (e.g. blood to and from a patient) via an at least partly curved channel into and out of a container holding a radioactive source. A break is made with the idea that it is necessary to use a circular-cylindrical tube as introduction device for the material to be irradiated. If made of materials suitable for the purpose, such tubing is safe and compressible in the longitudinal direction. The disadvantages and limitations of earlier constructions can be ascribed to this circumstance. A characteristic of the present invention is an elongated, pressure-resistant insertion ''cage'', flexible in at least one direction, used for the introduction of a minimum of one tubing into the container through the channel. The tubing enters and leaves at the same end of the insert cage. (BP)

  8. Radiation degradation of polymethacrylamide

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1984-01-01

    The effects of radiation on polymers have been studied for many years. When polymers are subjected to ultraviolet light or ionizing radiation, chain scission and crosslinking are possible. The radiation degradations of several methacrylate type polymers were investigated. The primary polymer studied was polymethacrylamide (PMAAm). Ultraviolet irradiated PMAAm yielded a five line ESR spectrum with 22 gauss splitting which is believed to arise from a polymeric radical ending with a methacrylamide unit. The results obtained indicate that polymethacrylamide is a polymer which undergoes main chain cleavage upon irradiation. As such this polymer may have potential applicability as a positive resist for fabrication of microelectronic devices

  9. Radiation Enhances Regulatory T Cell Representation

    Energy Technology Data Exchange (ETDEWEB)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Economou, James S. [Department of Surgical Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +} Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  10. Radiation Enhances Regulatory T Cell Representation

    International Nuclear Information System (INIS)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Dörthe

    2011-01-01

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4 + CD25 hi Foxp3 + lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4 + CD25 hi Foxp3 + Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  11. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    Kaur, Harbhajan; Lata, Poonam; Sharma, Ankush

    2012-01-01

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)

  12. Radiation curable hydantoin diacrylate compounds

    International Nuclear Information System (INIS)

    Seltzer, R.; DiPrima, J.F.

    1979-01-01

    The diacrylate compounds are liquid at room temperature, easily processable as adhesives, casting and laminating resins and when cured possess excellent resistance to water. These compositions are easily cured exposure to ionizing radiations

  13. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice

    International Nuclear Information System (INIS)

    Kim, Dongho; Song, Hyunpa; Lim, Sangyong; Yun, Hyejeong; Chung, Jinwoo

    2007-01-01

    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10 6 cfu/ml, and about 10 2 cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D 10 values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63±0.05 and 1.52±0.05 kGy, respectively. The D 10 value of the E. acetylicum was calculated as 0.65±0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period

  14. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice

    Science.gov (United States)

    Kim, Dongho; Song, Hyunpa; Lim, Sangyong; Yun, Hyejeong; Chung, Jinwoo

    2007-07-01

    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10 6 cfu/ml, and about 10 2 cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D10 values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63±0.05 and 1.52±0.05 kGy, respectively. The D10 value of the E. acetylicum was calculated as 0.65±0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period.

  15. Evolution of radiation resistant hollow fibers membranes for nuclear

    International Nuclear Information System (INIS)

    Neelam Kumari; Raut, D.R.; Bhardwaj, Y.K.; Mohapatra, P.K.

    2014-01-01

    We have evaluated hollow fiber supported liquid membrane (HFSLM) technique for the separation of actinides, fission products and other valuables from the nuclear waste solutions. In this technique, ligand responsible for separation of metal ion is held in tiny pores of membrane. Any drastic change as a consequence of irradiation, like change in pore size, change in hydrophobicity of polymeric material can be fatal for separation process as it may lead dislodging of carrier ligands from the pores. It was therefore needed to study the irradiation stability of hollow fibers. We have earlier showed that polypropylene fibers were stable up to 500 radiation dose and we therefore need to look into other options. In the present work, hollow fiber membranes made from polyether ether ketone (PEEK), polysulphone (PS). Polymers were evaluated for their radiation stability after exposing to varying absorbed dose of gamma radiation. The hollow fibers were irradiated to 100 KGy, 200 KGy, 500 KGy and 1000 KGy and its changes in hydrophobicity were measured using contact angle measurement studies

  16. Combination Treatment of Spores of Cl. Botulinum with Heat plus Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N.; Upadhyay, J.; Tang, T. C.; Lin, C. A. [Illinois Institute of Technology, Chicago, IL (United States)

    1967-11-15

    Radiation resistance of spores of Cl. botulinum is strongly affected by the temperature during irradiation. Very low radiation resistance was consistently observed at 0 Degree-Sign C when samples were in the liquid state. Below 0 Degree-Sign C, the resistance of spores increased because the solidly frozen medium presumably decreased the diffusion of free radicals. As temperature increased above 0 Degree-Sign C processes of radiation protection occurred. When spores were subjected to low levels of radiation (0.6-0.8 Mrad) the heat resistance of the surviving spores was very remarkedly decreased. Experiments were designed to study what kind of radiation damage, i.e. direct hit or indirect action, is responsible for the loss of heat resistance of spores. Indirect effects were reduced by freezing the medium and lowering the temperature during irradiation down to -196 Degree-Sign C. Spores of Cl. botulinum 33A in phosphate buffer were irradiated to 0.6, 0.8 and 1.0 Mrad at irradiation temperatures ranging from +25 to -196 Degree-Sign C and subsequently heated at 99 Degree-Sign C. Survival curves revealed that all spores irradiated at +25 and 0 Degree-Sign C were highly sensitive to heat with D{sub 10} = 5.5 min (after 0.6 Mrad), D{sub 10} = 3.0 min (after 0.8 Mrad) and D{sub 10} = 2.3 min (after 1.0 Mrad). For nonTirradiated controls D10 was 23 min. Pre-irradiation at -25 through -196 Degree-Sign C resulted in a much smaller loss of heat resistance with D{sub 10} clustering around 17.4 min (after 0.6 Mrad), 13. 5 min (after 0.8 Mrad) and 11.5 min (after 1.0 Mrad). Loss of heat resistance after pre-irradiation at +25 and 0 Degree-Sign C was highly influenced by the liquid state of suspending medium whereas at -25 through -196 Degree-Sign C it depended primarily on radiation dose. The mechanism of heat sensitization of spores seems to be related primarily to migrating active free radicals at +25 and 0 Degree-Sign C and to random splitting of molecular bonds at -25 to -196

  17. Radiation effects on insulators for superconducting magnets

    International Nuclear Information System (INIS)

    Kernohan, R.H.; Coltman, R.R. Jr.; Long, C.J.

    1978-01-01

    In order to determine the radiation stability of electrical insulation that could be used in a superconducting magnet for containment of the plasma in a fusion energy device, 55 specimens of eight types of organic insulation were irradiated to a dose of about 2 x 10 8 R (2 x 10 6 J/Kg) at a temperature of 4.8 K in the Low-Temperature Irradiation Facility in the Bulk Shielding Reactor at Oak Ridge National Laboratory. Four of the specimens were monitored for changes in electrical resistivity during the irradiation. The initial resistivities, which were of the order of 10 14 Ω cm, decreased to about 10 13 Ω cm under the influence of a weak radiation field. At full-power reactor operation (2 MW), the resistivities dropped to about 10 11 Ω cm, but changed little during the irradiation. After the irradiation the resistivities increased, but not to the initial values, because of residual radioactivity near or in the experiment assembly. Restoration to near the initial resistivity values was later observed upon warming the specimens to room temperature and purging the irradiation chamber. The latter result may be related to outgassing induced by the irradiation

  18. Radiation effects on power cables for nuclear power plants

    International Nuclear Information System (INIS)

    Arora, R.; Munshi, P.; Badshah, M.G.Q.

    1988-01-01

    A large number of power and control cables, insulated with organic/polymeric materials, are installed quite near the reactor in nuclear power plants. The reliability of electrical equipment, receiving power through these cables, is critically important for the design and safety of the power stations. The radiation intensity inside the containment varies significantly from one location to another. The extent of material degradation is associated with the local radiation intensity. The cables used in the nuclear environment require several unique properties, the most obvious of these being radiation resistance, fire resistance, and the ability to withstand the loss-of-coolant accident in a nuclear power plant as specified in Institute of Electrical and Electronics Engineers (IEEE) Standard 383. In this study, four specific electrical power cable samples insulated with polyethylene, polyvinyl chloride, ethylene propylene rubber, and silicone rubber were chosen to investigate the effect of radiation in reactor environments on the electrical properties of the samples. Voltage breakdown tests and dielectric loss factor (tan δ) and conductor resistance measurements were carried out on each sample before and after irradiating them to near lifetime doses at ambient temperatures in atmospheric conditions

  19. Development of a programming model for radiation-resistant software

    International Nuclear Information System (INIS)

    Eichhorn, G.; Piercey, R.B.

    1984-01-01

    The adverse effects of ionizing radiation on microelectronic systems include cumulative dosage effects, single-event upsets (SEU's) and latch-up. Most frequent, especially when the radiation environment includes heavy ions, are SEU's. Unfortunately SEU's are difficult to detect since they can be read (in RAM or ROM) as valid addresses. They can however be handled in software by proper techniques. The authors refer to their method as MRS - Maximally Redundant Software. The MRS programming model which the authors are developing uses multiply redundant boot blocks, majority voting, periodic refresh, and error recovery techniques to minimize the deleterious effects of SEU's. 1 figure

  20. Radiated power measurement with AXUV photodiodes in EAST tokamak

    International Nuclear Information System (INIS)

    Duan Yanmin; Hu Liqun; Du Wei; Mao Songtao; Chen Kaiyun; Zhang Jizhong

    2013-01-01

    The fast bolometer diagnostic system for absolute radiated power measurement on EAST tokamak is introduced, which is based on the absolute extreme ultraviolet (AXUV) photodiodes. The relative calibration of AXUV detectors is carried out using X-ray tube and standard luminance source in order to evaluate the sensitivity degradation caused by cumulative radiation damage during experiments. The calibration result shows a 23% sensitivity decrease in the X-ray range for the detector suffering ∼27000 discharges, but the sensitivity for the visible light changes little. The radiated power measured by AXUV photodiodes is compared with that measured by resistive bolometer. The total radiated power in main plasma deduced from AXUV detector is lower a factor of 1∼4 than that deduced from resistive bolometer. Some typical measurement results are also shown in this article. (author)