WorldWideScience

Sample records for radiation protection regulations

  1. Radiation protection and regulations for the nuclear medicine physician.

    Science.gov (United States)

    Chen, Man Yu

    2014-05-01

    As authorized users of radioactive material, nuclear medicine (NM) physicians play a leading role in the use and management of these agents. Regarding patient management, NM physicians are responsible for ensuring both the appropriateness of exams and the associated patient doses. Along with radiologists, NM physicians are the ones developing and implementing processes that provide guidance to and dialog with referring physicians to ensure that patients receive the most appropriate type of imaging exams. Regarding regulatory compliance, in collaboration with radiation safety officers, NM physicians are the ones educating their staff about principles of radiation protection and radiation safety with adherence to regulations from agencies such as the Nuclear Regulatory Commission, the Department of Transportation, the Environmental Protection Agency, and the Food and Drug Administration. On occasion, these regulations and standards can be difficult to comprehend. This article is intended to serve as a condensed guide for NM physicians who are in the process of applying for a radioactive materials license, establishing a new radiation protection program, or want to ensure continued compliance and maintenance of safety and security of licensed materials in the clinical or research settings. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. [Radiation protection. Implications for clinical practice on the new regulations governing roentgen ray irradiation and radioprotection].

    Science.gov (United States)

    Nestle, U; Berlich, J

    2006-08-01

    In 2001 or 2002, the legislator made substantial alterations to the "Röntgenverordnung" [regulations governing use of roentgen ray radiation] and "Strahlenschutzverordnung" [regulations governing radiation protection]. This was done to bring German law in line with EU Directives 96/29/Euratom (basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation) and 97/43/Euratom (health protection of individuals against the dangers of ionizing radiation in relation to medical exposure). Proper use of radiation in medicine requires that those involved in its application are aware of the biological effect of radiation. When staff and others are protected good organization and appropriate technology at the workplace can achieve a great deal. In the new directives, the radiation protection for the patient is quantified and the responsibility of the physician is clearly pointed out. The most important aim is uniform quality throughout Europe in radiological diagnosis and radiation protection.

  3. Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M

    2002-04-01

    Major achievements of SCK-CEN's Radiation Protection Department in 2001 are described. The main areas for R and D of the department are enviromnental remediation, emergency planning, radiation protection research, low-level radioactvity measurements, safeguards and physics measurements, decision strategy research and policy support and social sciences in nuclear research. Main achievements for 2001 in these areas are reported.

  4. Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M

    2001-04-01

    Major achievements of SCK-CEN's Radiation Protection Department in 2000 are described. The main areas for R and D of the department remain neutron dosimetry and neutron activation analysis, safeguards information handling and non-destructive assay techniques. Further activities include low-level radioactivity measurements in environmental and biological samples and radiation protection research. Finally, achievements in decision strategy research and social sciences in nuclear research are reported.

  5. Radiation protection and the safe use of X-ray equipment: Laws, regulations and responsibilities

    Directory of Open Access Journals (Sweden)

    Charles Petrus Herbst

    2012-06-01

    Full Text Available Lately, South Africa’s regulatory framework for electromagnetic medical devices has come under considerable pressure. In this article the legislative framework and regulatory infrastructure are scrutinized, by looking at how the legislature has given form to protective measures against ionizing radiation. Although the Hazardous Substances Act provides for effective protection against radiation, poor administration led to insufficient staffing levels, uncertainty about Regulations and licensing conditions and therefore undermines a sound radiation protection infrastructure. The legal basis of enforcing licensing conditions through a website without proper consultation with interested and affected parties is questionable and ineffective in controlling radiation levels. Effective and legal radiation control is possible by activating the National Advisory Committee on Electronic Products provided for in Regulation R326 published in 1979, but never implemented. The possible impact of annual quality assurance tests currently enforced through licensing conditions on the radiation dose of the population is not cost effective as new training and accreditation structures had to be created. The fact that generally more than 80% of overexposures are caused by human error is a clear indication that training of the daily users of X-ray equipment should be emphasized and not the training and accreditation of the technicians responsible for a single quality assurance test per year. Constructive engagement with the professional bodies involved in the medical use of X-rays through a National Advisory Committee on Electronic Products may be a cost effective solution for lowering radiation dose to the population.

  6. [Radiation protection in orthopaedics: implications for clinical practice of the new regulations governing roentgen ray irradiation and radioprotection].

    Science.gov (United States)

    Nestle, U; Berlich, J

    2006-05-01

    In 2001 or 2002, the legislator made substantial alterations to the "Röntgenverordnung" [regulations governing use of roentgen ray radiation] and "Strahlenschutzverordnung" [regulations governing radiation protection]. This was done to bring German law in line with EU Directives 96/29/Euratom (basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation) and 97/43/Euratom (health protection of individuals against the dangers of ionizing radiation in relation to medical exposure). Proper use of radiation in medicine requires that those involved in its application are aware of the biological effects of radiation. When staff and others are protected good organization and appropriate technology at the workplace can achieve a great deal. In the new directives, the radiation protection for the patient is quantified and the responsibility of the physician is clearly pointed out. The most important aim is uniform quality throughout Europe in radiological diagnosis and radiation protection.

  7. The general principles of radiation protection and regulation; Les principes generaux de la radioprotection et la reglementation

    Energy Technology Data Exchange (ETDEWEB)

    Aurengo, A. [Societe Francaise de Radioprotection, 34 - Montpellier (France); Cesarini, J.P. [Societe Francaise de Radioprotection, Section Rayonnements non ionisants, 75 - Paris (France); Lecomte, J.F.; Barbier, G.; Crescini, D.; Biau, A. [CEA Fontenay aux Roses, Institut de Radioprotection et de Surete Nucleaire IRSN, 92 (France); Blain, A. [FRAMATOME, Dir. Combustible Nucleaire, Dept. Radioprotection Securite, 69 - Lyon (France); Bailloeuil, C.; Gonin, M. [Electricite de France, EDF-SCAST, 75 - Paris (France); Bergot, D. [Ministere des Affaires Sociales, du Travail et de la Solidarite, Dir. des Relations du Travail, 75 - Paris (France)

    2003-07-01

    Seven articles constitute this chapter about the radiation protection and the regulation. Radiological risk, reduction of public exposure to ultraviolet radiations, regulation for the radon, evolution of the French legislation against the dangers of ionizing radiations, the medical follow up after the professional life, the information system to reproduce the dosimetric data of workers, proposition of a scale to classify the radiations incidents in function of their seriousness. (N.C.)

  8. Radiation protection in dental surgery: regulation approach; Radioprotection en cabinet dentaire: approche de la reglementation

    Energy Technology Data Exchange (ETDEWEB)

    Becquet, H

    2000-07-01

    This work deals with the regulatory aspects and measures of radiation protection in dental surgery in order to reduce the exposure of patients and surgeons to ionizing radiations during the use of radiographic apparatuses. (J.S.)

  9. Russian-Norwegian Cooperation In Regulation of the Public Radiation Protection in the Northwest Russia - 12440

    Energy Technology Data Exchange (ETDEWEB)

    Shandala, Nataliya; Seregin, Vladimir; Titov, Alexey; Kryuchkov, Viktor; Chizhov, Konstantin [Burnasyan Federal Medical Biophysical Center, Moscow (Russian Federation); Sneve, Malgorzata [Norwegian Radiation Protection Authority, Oslo (Norway)

    2012-07-01

    }Cs, {sup 90}Sr and {sup 60}Co in samples of soil, vegetation, seawater, seaweeds, bottom sediments, invertebrates and vertebrates, gamma dose rate values - are integrated in the database, which is the component of the geo-information system. The developed regulative and methodical documents and the geo-information system have been introduced in Regional Management-120 under FMBA of Russia, which is responsible for the radiation safety supervision, Centre of Hygiene and Epidemiology-120 under FMBA of Russia, which carries out regulatory radiation control, and in the operating organization involved in the STS remediation and responsible for radiation protection of workers and public. The works completed have permitted to solve the majority of problems in enhancement of radiation and hygienic supervision of SevRAO operation. However, some relevant questions in this area need additional efforts. In particular, in the course of specification of the design solutions, obtaining additional data on the radiation situation parameters and clarification of the prognostic assessments, the necessity will certainly arise to amend the regulatory documents taking the adopted design solutions into account. We are on the way to real results. Much has been done for the first time, and although it is difficult to foresee all future problems and challenges, our knowledge, experience and close cooperation permit to assess the prospects confidently. (authors)

  10. Level of compliance with the radiation protection regulation--a survey among Norwegian hospitals and X-ray institutes.

    Science.gov (United States)

    Friberg, E G; Widmark, A; Solberg, M; Wøhni, T

    2011-09-01

    To identify the level of compliance with the new radiation protection regulation among Norwegian health care enterprises (HCEs). Totally, 41 HCEs were authorised to use advanced X-ray equipment for medical purposes during 2005-07. Follow-up inspections with 14 HCEs were carried out during 2007-09. Main topics for the inspections were those requirements identified as most challenging to implement in the authorisation process. Totally, 192 non-conformities with the regulation were revealed during the authorisation process. The inspections revealed that 93 % of the inspected HCEs had non-conformities with the regulation. Most common non-conformities dealt with skills in radiation protection, establishment of local diagnostic reference levels, access to medical physicists and performance of quality control of X-ray equipment. Inspections are an effective tool for implementation of regulation the requirements at the HCEs, thus improving radiation protection awareness.

  11. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  12. Ethical issues in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Lars (ed.)

    2000-03-15

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report.

  13. Conflicting paradigms in radiation protection: 20 Questions with answers from the regulator, the health physicist, the scientist, and the lawyers

    Energy Technology Data Exchange (ETDEWEB)

    Strom, D.J.; Stansbury, P.S. [Pacific Northwest Lab., Richland, WA (United States); Porter, S.W. Jr. [Porter Consultants, Inc., Ardmore, PA (United States)

    1995-01-01

    George Orwell`s {open_quotes}doublethink{close_quotes} should be generalized to {open_quotes}polythink{close_quotes} to describe the multiplicity of views that radiation protection professionals must simultaneously accommodate. The paradigms, that is, organizing principles and beliefs, that (1) regulators, (2) operational health physicists, (3) scientists, (4) lawyers for the defendant, and (5) lawyers for the plaintiff use in their approaches to radiation protection are presented. What we believe as scientists often conflicts with what we do for purposes of radiation protection. What we need to do merely to protect humankind and the environment from harmful effects of radiation is far less than what we must do to satisfy the regulator, whose paradigm has checklists, score-keeping, and penalties. In the hands of lawyers, our work must overcome different challenges. Even if the paradigms of the operational health physicist, the scientist, and the regulator match, the odds against the lawyers paradigms also matching are astronomical. The differing paradigms are illustrated by example questions and answers. It is important for educators, trainers, and health physicists to recognize and separate the score-keeping, practice, science, and legal issues in health physics.

  14. Radar commentary: Use of linear no-threshold hypothesis in radiation protection regulation in the United States.

    Science.gov (United States)

    Siegel, Jeffry A; Stabin, Michael G

    2012-01-01

    Radiation protection recommendations advanced by the International Commission on Radiological Protection and National Council on Radiation Protection and Measurements, and many times adopted into regulations by the United States Nuclear Regulatory Commission, need to be based on scientifically justified assumptions and conclusions. The linear no-threshold model assigns risk to every radiation exposure above zero dose and is the current basis for setting radiation protection standards worldwide. This hypothesis is vigorously challenged by many individuals but just as vigorously defended in spite of the uncertainties surrounding health effects at low dose levels. It is clear that at radiation doses below 100 mSv, the effects, if any, are so low as to be unobservable and perhaps, therefore, unknowable. However, the linear no-threshold hypothesis is used routinely to formulate regulatory dose limits for workers and the general public and to derive stochastic radiogenic risk estimates at low doses. This note will show that while the linear no-threshold hypothesis may play a legitimate role in setting radiation protection standards and operating policies, such as establishing dose limits or as part of an operational "as low as is reasonably achievable" (ALARA) policy, it is inappropriate for use in estimating possible cancer risks associated with low-level radiation exposures. It will also demonstrate that the raising, not lowering, of current regulatory dose limits is more solidly supported by the actual observed data on radiation dose and effects. The authors submit that the misuse of the linear no-threshold model for predicting radiation effects in exposed individuals and populations should be discontinued.

  15. Radiation Protection Handbook

    Science.gov (United States)

    1972-01-01

    A handbook which sets forth the Kennedy Space Center radiation protection policy is presented. The book also covers administrative direction and guidance on organizational and procedural requirements of the program. Only ionizing radiation is covered.

  16. DRUGS FOR RADIATION PROTECTION,

    Science.gov (United States)

    Radiation Protection , pub. 1961), are not repeated. Bibliographical data are compiled at the end of the book; references are listed alphabetically and...reference book of 1961 are not given. Because of the great influence of the oxygen effect on the action of drugs for radiation protection , the

  17. Ethics and radiation protection.

    Science.gov (United States)

    Hansson, Sven Ove

    2007-06-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle.

  18. Physics for radiation protection

    CERN Document Server

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  19. Radiation Protection Group

    CERN Document Server

    2006-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to inform you that the Radioactive Waste Treatment Centre will be closed on the afternoon of Tuesday 19 December 2006. Thank-you for your understanding.

  20. Regulation of radiation protective agents on cell damage induced by reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Si Eun; Ju, Eun Mi; Gao, Eu Feng [Kyung Hee University, Seoul (Korea)

    2002-04-01

    In this study, we developed candidates of new radio-protective agents and elucidated the regulation mechanism of these candidates on cell damage induced by reactive oxygen species. The methanol extracts and ethylacetate fractions of NP-1, NP-5, NP-7, NP-11, NP-12 and NP-14 showed higher radical scavenging activity. The extracts of NP-7, NP-12 and NP-14 showed strong protective effect against oxidative damage induced by UV and H{sub 2}O{sub 2}. The most of samples enhanced SOD, CAT and GPX activity in V79-4 cells. The protective effect of samples on H{sub 2}O{sub 2}-induced apoptosis was observed with microscope and flow cytometer. Cells exposed to H{sub 2}O{sub 2} exhibit distinct morphological features of programmed cell death, such as nuclear fragmentation and increase in the percentage of cells with a sub-G1 DNA content. However, cells which was pretreated with samples significantly reduced the characteristics of apoptotic cells. Their morphological observation and DNA profiles were similar to those of the control cells. NP-14 which had excellent antioxidant activity restored G2/M arrest induced by oxidative stress. These data suggested that natural medicinal plants protected H{sub 2}O{sub 2}-induced apoptosis. 42 refs., 29 figs., 11 tabs. (Author)

  1. Radiation protection and instrumentation

    Science.gov (United States)

    Bailey, J. V.

    1975-01-01

    Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.

  2. The Swedish radiation protection institute's regulations on x-ray diagnostics; issued on April 28, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    These regulations are applicable to practices with ionising radiation with respect to medical and dental diagnostics by means of external radiation sources like x-rays or radioactive substances. The regulations are also applicable to medical or dental use of such radiation sources for planning and guidance, for research and for legal and insurance related examinations.

  3. Radioactivity in drinking water: regulations, monitoring results and radiation protection issues

    Directory of Open Access Journals (Sweden)

    Cristina Nuccetelli

    2012-12-01

    Full Text Available INTRODUCTION: Drinking waters usually contain several natural radionuclides: tritium, radon, radium, uranium isotopes, etc. Their concentrations vary widely since they depend on the nature of the aquifer, namely, the prevailing lithology and whether there is air in it or not. AIMS: In this work a broad overview of the radioactivity in drinking water is presented: national and international regulations, for limiting the presence of radioactivity in waters intended for human consumption; results of extensive campaigns for monitoring radioactivity in drinking waters, including mineral bottled waters, carried out throughout the world in recent years; a draft of guidelines for the planning of campaigns to measure radioactivity in drinking water proposed by the Environmental Protection Agency (ARPA of Lombardia.

  4. Radiation Protection in Canada

    Science.gov (United States)

    Bird, P. M.

    1964-01-01

    The current status of radiation protection in Canada is discussed in the last of a three-part series. Particular emphasis has been placed on the role of the Radiation Protection Division of the Department of National Health and Welfare. A radioactive fallout study program has been established involving the systematic collection of air and precipitation samples from 24 locations, soil samples from 23 locations, fresh-milk samples from 16 locations, wheat samples from nine areas and human-bone specimens from various hospitals throughout Canada. A whole-body-counting facility and a special study of fallout in Northern areas have also been initiated. For any age group, the highest average strontium-90 concentration in human bone so far reported has been less than four picocuries per gram of calcium compared with the maximum permissible level of 67 derived from the International Committee on Radiation Protection (ICRP) recommendations. By the end of 1963 a general downward trend of levels of radioactivity detected in other parts of the program has been observed. Programs to assess the contribution to the radiation exposure of members of the population from medical x-rays, nuclear reactor operations and natural background-radiation sources have also been described. The annual genetically significant dose from diagnostic x-ray examinations in Canadian public hospitals has been estimated to be 25.8 mrem. Results from the reactor-environment monitoring programs have not suggested the presence of radioactivity beyond that contributed from fallout. PMID:14143681

  5. Focus radiation protection; Schwerpunkt Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Ebermann, Lutz (comp.)

    2016-07-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  6. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1.

  7. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  8. New general radiation protection training course

    CERN Multimedia

    2008-01-01

    Some members of CERN personnel, including users, may have to work in supervised or controlled radiation areas, or may be involved in activities involving the use of radioactive sources. According to CERN Safety Rules all persons whose work may be associated with ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, the basic principles of radiation protection and the relevant radiation protection regulations as well as safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses for its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This new ½ day cours...

  9. New general radiation protection training course

    CERN Multimedia

    2008-01-01

    Some members of CERN personnel, users included, may have to work in supervised or controlled radiation areas, or may be concerned with activities involving the use of radioactive sources. According to CERN Safety rules all persons whose work may encounter ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, about the basic principles of radiation protection and of the relevant radiation protection regulations as well as about safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses addressed to its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This...

  10. Regulations concerning radiation protection and survey; Donnees de la surveillance et regles qui en resultent en matiere de protection contre les rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Duhamel; Lavie; Fitoussi [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The many and always increasing applications of Atomic Energy for peaceful uses set many safety and security problems relatively to the workers, populations, and locating of the sites in general. A comparative study of the radiation hazards to which the people working in the 'Commissariat a l'energie atomique' installations were exposed during 1957 and the results obtained concerning individual and collective safety and security were extremely satisfactory owing to a continuous control and supervision. 2. However a few contamination and irradiation incidents - exposed subsequently as well as the way they were dealt with - show the necessity of a circumstantial regulation inside of an atomic center to establish the responsibility of the service in charge of the control of the radiation and the responsibility of the services using radioactive products with regard to contamination by radioactive materials. 3. Abstract of the different practical safety and security regulations concerning holding, manipulation, transport and stocking of radioactive materials. Pursuant to the recommendations of the International Commission on Radiologic Protection, the radioelements are classified according to the danger that can occur from them in comparison with the Pu with regard to: - radioactive noxiousness; specific activity per unit of mass; contamination hazards. 4. The service in charge of radiation protection plays the important part of a technical adviser for the construction of specialized laboratories and sees to the keeping of protection regulations. 5. Data essential to radiation protection are given to the people using radioactive materials; particularly: - a table of the radioisotopes and the hazards occurring from them; - radiation hazards regarding {gamma} ray emitted by irradiated Pu; - radiation hazards regarding {gamma} ray emitted by irradiated Th. 6. As the hazards occasioned by irradiated uranium have already been studied, the case of a low and

  11. Biological basis of radiation protection needs rejuvenation.

    Science.gov (United States)

    Paunesku, Tatjana; Haley, Benjamin; Brooks, Antone; Woloschak, Gayle E

    2017-10-01

    Human beings encounter radiation in many different situations - from proximity to radioactive waste sites to participation in medical procedures using X-rays etc. Limits for radiation exposures are legally regulated; however, current radiation protection policy does not explicitly acknowledge that biological, cellular and molecular effects of low doses and low dose rates of radiation differ from effects induced by medium and high dose radiation exposures. Recent technical developments in biology and medicine, from single cell techniques to big data computational research, have enabled new approaches for study of biology of low doses of radiation. Results of the work done so far support the idea that low doses of radiation have effects that differ from those associated with high dose exposures; this work, however, is far from sufficient for the development of a new theoretical framework needed for the understanding of low dose radiation exposures. Mechanistic understanding of radiation effects at low doses is necessary in order to develop better radiation protection policy.

  12. Radiation protection in odontology: French regulation and new European standards; La radioprotection en odontologie: reglementation francaise et nouvelles normes europeennes

    Energy Technology Data Exchange (ETDEWEB)

    Foucart, J.M

    2004-07-01

    This a point on the regulatory evolutions in the field of radiation protection in the daily practice of odontology, consecutive to the transposition in French law of European directives. This work proposes practical cards to manage installation in radiodiagnosis in order to protect professional personnel and patients. (N.C.)

  13. Radiation protection research

    Energy Technology Data Exchange (ETDEWEB)

    Vanmarcke, H

    2002-04-01

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised.

  14. The principles of radiation protection; Les principes de la radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of radiation protection is to avoid or to reduce the risks linked to ionizing radiation. In order to reduce these risks, the radiation protection uses three great principles: justification, optimization and limitation of radiation doses. to apply these principles, the radiation protection has regulatory and technical means adapted to three different categories of people: public, patients and workers. The nuclear safety authority elaborates the regulation, and carries out monitoring of the reliable application of radiation protection system. (N.C.)

  15. Radiation protection considerations

    CERN Document Server

    Adorisio, C; Urscheler, C; Vincke, H

    2015-01-01

    This chapter summarizes the legal Radiation Protection (RP) framework to be considered in the design of HiLumi LHC. It details design limits and constraints, dose objectives and explains how the As Low As Reasonably Achievable (ALARA) approach is formalized at CERN. Furthermore, features of the FLUKA Monte Carlo code are summarized that are of relevance for RP studies. Results of FLUKA simulations for residual dose rates during Long Shutdown 1 (LS1) are compared to measurements demonstrating good agreement and providing proof for the accuracy of FLUKA predictions for future shutdowns. Finally, an outlook for the residual dose rate evolution until LS3 is given.

  16. New regulations in the German Radiation Protection Ordinance. What do the changes mean?; Neues in der Strahlenschutzverordnung. Was bringt die Aenderung?

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Angela [Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH, Eggenstein-Leopoldshafen (Germany); Fehringer, Franz [Berufsgenossenschaft Energie Textil Elektro, Koeln (Germany). Inst. fuer Strahlenschutz; Feldmann, Ulrike [Wirtschaftsverband Kernbrennstoff-Kreislauf und Kerntechnik e.V., Berlin (Germany)] [and others

    2012-11-01

    Since November 1{sup st} 2011, several new regulations have become effective in the Radiation Protection Ordinance, that are described here first as a general overview and then in more detail. The first part of the contribution compiles the non-medical and the second one the medical applications. (orig.)

  17. Pregnancy and Radiation Protection

    Science.gov (United States)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  18. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  19. The Swedish radiation protection institute's regulations on general obligations in medical and dental practices using ionising radiation; issued on April 28, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    These regulations are applicable to medical and dental practices with ionising radiation used for medical exposures. The regulations are also applicable to exposures of persons who knowingly and willingly, other than as part of their occupation, support and comfort patients undergoing medical exposure.

  20. Nanocomposites for electromagnetic radiation protection

    Science.gov (United States)

    Petrunin, V. F.

    2016-12-01

    Specific features that characterize nanoparticles and which are due to their small size and allow one to enhance the interaction between the electromagnetic radiation and nanostructured materials and to develop the effective protection of man and equipment against harmful uncontrolled radiation are reported. Examples of the development of nanocomposite radar absorbing materials that can be used for protection of man and equipment are presented.

  1. Nanocomposites for electromagnetic radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Petrunin, V. F., E-mail: VFPetrunin@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    Specific features that characterize nanoparticles and which are due to their small size and allow one to enhance the interaction between the electromagnetic radiation and nanostructured materials and to develop the effective protection of man and equipment against harmful uncontrolled radiation are reported. Examples of the development of nanocomposite radar absorbing materials that can be used for protection of man and equipment are presented.

  2. Ethical problems in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards.

  3. Obligatory Radiation Protection Course

    CERN Multimedia

    SC Unit

    2008-01-01

    Since February 2008, participation in the radiation protection course has been a prerequisite for obtaining a CERN personal dosimeter for all Staff Members and Users. All Staff and Users holding a personal dosimeter were informed by the Bulletin and by a personal e-mail sent in February 2008 that they were required to participate in the course before the annual exchange of their dosimeter. Many people had not done so by that time and the Dosimetry Service exceptionally classified them for 2 months as short-term visitors (VCT), a category of monitored personnel to whom the training requirement does not presently apply. As all personnel concerned have since had time to participate in an RP course, this "grace period" will no longer be granted as of 1 October 2008 and the RP course must be completed before the personal dosimeter is exchanged. For newcomers to CERN, and for those returning to CERN after an absence of more than 1 year, one registration as a VCT for two months ...

  4. An introduction to radiation protection

    CERN Document Server

    Martin, Alan; Beach, Karen; Cole, Peter

    2012-01-01

    The sixth edition of this established text takes the reader through the general background to the subject, the technical principles underlying the control of radiation hazards, radiation detection and measurement and the biological effects of radiation. These are followed by a consideration of radiation protection issues in the nuclear industry, the non-nuclear sector and the medical field. Further specialised topics include risk assessment, waste management and decommissioning, radiological incidents and emergencies, relevant legislation and organizational issues.

  5. Federal Guidance for Radiation Protection

    Science.gov (United States)

    EPA produces federal guidance technical reports, which standardize dose and risk assessment and issues radiation protection guidance to federal agencies. This page provides links to federal guidance policy recommendations and technical reports.

  6. Radiation protection for veterinary practices

    Energy Technology Data Exchange (ETDEWEB)

    Wheelton, R.; McCaffery, A. (National Radiological Protection Board, Glasgow (United Kingdom). Scottish Centre)

    1993-01-01

    This brief article discusses radiation protection for diagnostic radiography in veterinary practices. It includes aspects such as a radiation protection adviser, personal dosimetry but in particular a Veterinary Monitoring Service, developed by the NRPB, which offers veterinary practitioners the convenience of making simple but essential measurements for themselves using photographic films contained in a 'vet pack' to determine the operating condition of their X-ray machine. (U.K.).

  7. 78 FR 5813 - 2013 Assuring Radiation Protection

    Science.gov (United States)

    2013-01-28

    ...The Food and Drug Administration (FDA) is announcing the availability of grant funds for the support of the Center for Devices and Radiological Health (CDRH) radiation protection program. The goal of the 2013 Assuring Radiation Protection will be to coordinate Federal, State, and Tribal activities to achieve effective solutions to present and future radiation control problems. The recipient of this cooperative agreement award will be expected to obtain the States' cooperation and participation on committees and working groups established to deal with individual problems. The recipient will also plan and facilitate an annual meeting and develop and offer educational activities to demonstrate mutually beneficial techniques, procedures, and systems relevant to the mission of assuring radiation protection. The recipient will establish committees, in accordance with Federal statutes and regulations, to address, evaluate, and propose solutions for a wide range of radiation health and protection issues. Examples of relevant areas already identified to be of interest include, but are not limited to: (1) The application of x-rays to the healing arts; (2) the application of non-medical ionizing radiation and medical/non- medical non-ionizing radiation; and (3) the control and mitigation of radiation exposure from all sources.

  8. Developing A Radiation Protection Hub.

    Science.gov (United States)

    Hertel, Nolan E

    2017-02-01

    The Where are the Radiation Professionals (WARP)? statement issued by the National Council on Radiation Protection and Measurements estimates that in 10 y, there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low-volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have been disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic, and training communities. The goal of such a consortium would be to engage in research, education, and training of the next generation of radiation protection professionals. Furthermore, the consortium could bring together the strengths of different universities, national laboratory programs, and other entities in a strategic manner to accomplish a multifaceted research, educational, and training agenda. This vision would forge a working and funded relationship between major research universities, national laboratories, 4-y degree institutions, technical colleges, and other partners.

  9. Radiation Protection Research: Radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Desaintes, C

    2000-07-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported.

  10. 76 FR 20489 - Occupational Radiation Protection

    Science.gov (United States)

    2011-04-13

    ..., Nuclear power plants and reactors, Nuclear safety, Occupational safety and health, Radiation protection.... Background The requirements in title 10, Code of Federal Regulations, part 835 (10 CFR part 835... immersed in a cloud of airborne radioactivity. A third commenter agreed with DOE's approach. III. Approval...

  11. Conditions for radiation protection in industrial radiography

    CERN Document Server

    1999-01-01

    The leaflet specifies radiation protection requirements for industrial radiography in Norway. The regulations are directed towards companies using or distributing sealed radioactive sources, x-ray equipment or accelerators in non-destructive material testing (NDT). Technical requirements to the equipment, as well as administrative requirements for use, licensing, qualifications, handling of accidents etc. are given. (Author)

  12. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Soeren [Lund Univ., Skane Univ. Hospital Malmoe (Sweden). Medical Radiation Physics; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH, Neuherberg (Germany)

    2013-07-01

    Addresses all aspects of radiation protection in nuclear medicine. Covers current technologies and principles. An ideal textbook for students and a ready source of information for nuclear medicine specialists and medical physics experts. One of a series of three books on the fundamentals of modern nuclear medicine (physics, safety, and imaging). This book explains clearly and in detail all aspects of radiation protection in nuclear medicine. After an introductory chapter on the general role of radiation protection, measurement quantities and units are discussed, and detectors and dosimeters, described. Radiation biology and radiation dosimetry are then addressed, with the inclusion of a chapter specifically devoted to biology and dosimetry for the lens of the eye. Discussion of radiation doses to patients and to embryos, fetuses, and children forms a central part of the book. Phantom models, biokinetic models, calculations, and software solutions are all considered, and a further chapter focuses on quality assurance and reference levels. Occupational exposure also receives detailed attention. Exposure resulting from the production, labeling, and injection of radiopharmaceuticals and from contact with patients is discussed and shielding calculations are explained. The book closes by considering exposure of the public and summarizing the ''rules of thumb'' for radiation protection in nuclear medicine. This is an ideal textbook for students and a ready source of useful information for nuclear medicine specialists and medical physics experts.

  13. Management information system on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela, E-mail: pabloag@cdtn.b, E-mail: lss@cdtn.b, E-mail: gmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  14. [Radiation protection in interventional radiology].

    Science.gov (United States)

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses.

  15. Regulatory System of Radiation Protection in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Tang, F. T.; Huang, C. C.

    2004-07-01

    After the radioactive contaminated buildings incident occurred in Taiwan in 1993, the competent authority for radiation protection the Atomic Energy Council (AEC) started to review the structured problem of radiation protection regulatory system. Through several years' investigation and study, the AEC has improved two important tools in radiation protection regulatory system, i.e., control regulations and actual practice, and made them more rigorous and efficient. This paper will make a brief introduction of the efforts that Taiwan has made in this respect. Taiwan's radiation protection control was based on the Atomic Energy Law promulgated in 1968, but the control idea and authorization scope were not sufficient to appropriately respond to the highly developed economy and democracy in Taiwan. After several years' legislative process, the Ionizing Radiation Protection Law (IRP Law) was promulgated and entered into force on February 1, 2003. This IRP Law specifically emphasizes categorized risk management of radiation sources, establishment of personnel licenses and training system, enhancement of public safety control, and implementation of quality assurance program for medical exposure. The Legislative Yuan (Congress) fully authorized the competent authority to establish various technological control regulations according to control necessity without prior review by the Legislative Yuan in advance. As to the penalties of the violations of the IRP Law, the AEC adopts high-rated administrative fines and applies the Criminal Law to those who seriously contaminate the environment. In actual practice, the AEC has constructed a Radiation Protection Control Information System compatible with the IRP Law that fully combines the functions of computers and Internet. The information of facility operators who own radiation sources, radiation protection specialists, and operating personnel are entered into this system, starting from the submission of application

  16. Radiation Protection Elephants in the Room

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, R. J.

    2004-07-01

    As our system of radiological protection evolves, several significant issues loom within radiation protection discussions and publications. These issues influence the nature of epidemiological and radiobiological research and the establishment of radiation protection recommendations, standards, and regulations. These issues are like the proverbial ''elephants in the room''. They are large, and it is unwise to ignore them. This paper discusses the impact of three young elephants as they make their presence increasingly obvious: increased cancer susceptibility from early-life exposure to radiation, terrorism and fear of radiation, and patient safety. Increased cancer susceptibility from early-life exposure to radiation is emerging as a discussion topic related to the safety of computed tomography (CT) and other medical modalities. Shortly after publication of CT dose data, manufacturers were helping to reduce doses to children by increasing flexibility for adjustment of technique factors. Also, radiation epidemiological data are being used in the development of guidance on exposure to chemical carcinogens during early life. Re-emergence of public fear of radiation has been fueled by threats of radiological dispersion devises and confusing messages about personal decontamination, emergency room acceptance or rejection of contaminated victims, and environmental clean-up. Finally, several professional publications have characterized risk of medical radiation exposure in terms of patient deaths even though epidemiological data do not support such conclusions. All three of these elephants require excellent science and sophisticated data analysis to coax them from the room. Anecdotal communications that confuse the public should be avoided. These are not the only elephants in the room, but these three are making their presence increasingly obvious. This paper discusses the need for radiation protection professionals to rely on good science in the

  17. New regulations for radiation protection for work involving radioactive fallout emitted by the TEPCO Fukushima Daiichi APP accident: application expansion to recovery and reconstruction work.

    Science.gov (United States)

    Yasui, Shojiro

    2014-01-01

    The accident at the Fukushima Daiichi Atomic Power Plant that accompanied the Great East Japan Earthquake on March 11, 2011 released a large amount of radioactive material. To rehabilitate the contaminated areas, the government of Japan decided to carry out decontamination work. In April 2012, the Nuclear Emergency Response Headquarters (NERH) started dividing the restricted areas into three sub-areas based on the ambient dose rate. In accordance with the rearrangement of the restricted area, NERH decided to allow resumption of business activities, including manufacturing and farming, as well as operation of hospitals, welfare facilities, and shops and related subordinate tasks, such as maintenance, repair, and transportation. As a result, the government needed regulations for radiation protection for workers engaged in those activities. The issues that arose in the deliberation of the regulations were distilled into two points: 1) whether radiation protection systems established for a planned exposure situation should apply to construction and agricultural work activities in an existing exposure situation, and 2) how to simplify the regulation in accordance with the nature of the work activities. Further research and development concerning the following issues are warranted: a) the relationship between the radioactive concentrations of materials handled and the risk of internal exposure, and b) the relationship between the radioactive concentration of the soil and the surface contamination level.

  18. Developing a Radiation Protection Hub

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Nolan E [ORNL

    2017-01-01

    The WARP report issued by the NCRP study committee estimates that in ten years there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have been disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic and training communities. The goal of such a consortium would be to engage in research, education and training of the next generation of radiation protection professionals. Furthermore the consortium could bring together the strengths of different universities, national laboratory programs and other entities in a strategic manner to accomplish a multifaceted research, educational and training agenda. This vision would forge a working and funded relationship between major research universities, national labs, four-year degree institutes, technical colleges and other partners.

  19. 1993 Radiation Protection Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  20. Activities of Radiation Protection Centre in 2000

    CERN Document Server

    Radiat. Prot. Cent. Vilnius

    2001-01-01

    Description of the activities of Radiation Protection Centre in 2000 is presented. Radiation Protection Centre is responsible for radiation protection issues. Currently there are six departments at Radiation Protection Centre: two in Vilnius - Department of Radiation Protection Supervision and Control and Department of Programs and Expertise, and four in the districts. Brief information on subject controlled by each departments is provided focusing on main achievements and events.

  1. [Radiation protection in interventional cardiology].

    Science.gov (United States)

    Durán, Ariel

    2015-01-01

    INTERVENTIONAL: cardiology progress makes each year a greater number of procedures and increasing complexity with a very good success rate. The problem is that this progress brings greater dose of radiation not only for the patient but to occupationally exposed workers as well. Simple methods for reducing or minimizing occupational radiation dose include: minimizing fluoroscopy time and the number of acquired images; using available patient dose reduction technologies; using good imaging-chain geometry; collimating; avoiding high-scatter areas; using protective shielding; using imaging equipment whose performance is controlled through a quality assurance programme; and wearing personal dosimeters so that you know your dose. Effective use of these methods requires both appropriate education and training in radiation protection for all interventional cardiology personnel, and the availability and use of appropriate protective tools and equipment. Regular review and investigation of personnel monitoring results, accompanied as appropriate by changes in how procedures are performed and equipment used, will ensure continual improvement in the practice of radiation protection in the interventional suite. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  2. Modern principles of radiation protection of medical radiance exposed patients

    OpenAIRE

    A. I. Sevalnyev; A. V. Kutsak; Kostenetskyy, M. I.

    2013-01-01

    Introduction It is very important to determine effective protection from radiation for patients and to establish necessity of X-Ray examination because radiation doses are not regulated. International commission of radiation protection (ICRP) pays great attention to this question. ICRP published recommendations according to patient’s protection on medical irradiation.(ICRP Publication 84,85,86,87, 93, 102) Aim of the study: To create the scientific basis for creation of the nation...

  3. Modern principles of radiation protection of medical radiance exposed patients

    OpenAIRE

    A. I. Sevalnyev; A. V. Kutsak; Kostenetskyy, M. I.

    2013-01-01

    IntroductionIt is very important to determine effective protection from radiation for patients and to establish necessity of X-Ray examination because radiation doses are not regulated. International commission of radiation protection (ICRP) pays great attention to this question. ICRP published recommendations according to patient’s protection on medical irradiation.(ICRP Publication 84,85,86,87, 93, 102)Aim of the study:To create the scientific basis for creation of the national normative me...

  4. The gender problem in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Lars [Nobel Inst. of Physics, Stockholm (Sweden)

    2012-07-01

    Gender is a range of characteristics used to distinguish between males and females, particularly in the cases of men and women and the masculine and feminine attributes assigned to them. While the social sciences sometimes approach gender as a social construct, and some gender studies particularly do, research in the natural and medical sciences investigates whether biological differences in males and females influence the development of gender in humans. Radiation protection regulations also take into account the possibly different radiation risks of males and females. The following contribution investigates how far this is justified, and what are the consequences. (orig.)

  5. Radiation protection in medicine. Actual regulations and the new EU BSS; Strahlenschutz in der Medizin. Aktuelle Regelungen und die neuen EU-BSS

    Energy Technology Data Exchange (ETDEWEB)

    Loose, R. [Klinikum Nuernberg-Nord, Nuernberg (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Wucherer, M. [Klinikum Nuernberg, Nuernberg (Germany). Inst. fuer Medizinische Physik

    2013-07-01

    Medical radiation protection is based on the principles of justification, optimisation and dose limitation. Depending on the application, medical staff and patients are affected. The implementation of new basic safety standards (BSS) of the European Commission (EC) brings changes, which must be implemented into national law. They have varying effects depending on the type of application (radiology, nuclear medicine, radiation therapy) for all three principles of radiation protection. (orig.)

  6. [Radiation protection in radiation oncology. Yesterday, today, and tomorrow].

    Science.gov (United States)

    Herrmann, Th; Müller, R

    2012-11-01

    Publications about radiation protection issues are not very frequent in the 100-year-old history of Strahlentherapie und Onkologie. While at the beginning of the last century the problems of radiation protection were determined by the technical development of radiation therapy, the importance of radiation protection measures and knowledge about radiation protection by the persons involved has clearly increased. A new challenge is treating patients according to radiation safety issues to avoid the risk of stochastic late effects, such as radiation-induced secondary tumors.

  7. Regulation Of Nf=kb And Mnsod In Low Dose Radiation Induced Adaptive Protection Of Mouse And Human Skin Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jian Li

    2012-11-07

    A sampling of publications resulting from this grant is provided. One is on the subject of NF-κB-Mediated HER2 Overexpression in Radiation-Adaptive Resistance. Another is on NF-κB-mediated adaptive resistance to ionizing radiation.

  8. New Radiation Protection training room

    CERN Multimedia

    HSE Unit

    2013-01-01

    From now on, the theory and practical components of the Radiation Protection training, developed by the RP Group and offered by the HSE Unit’s Safety Training team to people working in a Controlled Radiation Area, will take place in a dedicated teaching room, designed specifically for this kind of training.   The new room is in the Safety Training Centre on the Prévessin site and has been open since 16 October. It has an adjoining workshop that, like the room itself, can accommodate up to 12 people. It is also equipped with an interactive board as well as instruments and detectors to test for ionising radiation. This room is located near the recently inaugurated LHC tunnel mock-up where practical training exercises can be carried out in conditions almost identical to those in the real tunnel. To consult the safety training catalogue and/or sign up for Radiation Protection training, please go to: https://cta.cern.ch For further information, please contact the Safety Trainin...

  9. Introduction to radiation protection practical knowledge for handling radioactive sources

    CERN Document Server

    Grupen, Claus

    2010-01-01

    The book presents an accessible account of the sources of ionising radiation and the methods of radiation protection. The basics of nuclear physics which are directly related to radiation protection are briefly discussed. The book describes the units of radiation protection, the measurement techniques, biological effects of radiation, environmental radiation, and many applications of radiation. For each chapter there is a problem section with full solutions. A detailed glossary and many useful information in appendixes complete the book. The author has addressed the issue of internationality to make sure that the text and, in particular, the complicated regulations can be easily interpreted not only in Europe and the United States but also in other countries. The subject of radiation protection requires a certain amount of mathematics. For those who have forgotten the basic rules of calculus a short refresher course in the form of a mathematical appendix is added.

  10. Space radiation protection: Destination Mars

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure.

  11. The Swedish radiation protection institute's regulations and general advice on nuclear medicine; issued on April 28, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    These regulations and general advice are applicable to nuclear medicine within human medical care. The regulations are also applicable to activities where radioactive substances are administered to individuals in connection to medical or biomedical research and medical examinations for insurance or legal purposes.

  12. Radiation Protection, Safety and Security Issues in Ghana.

    Science.gov (United States)

    Boadu, Mary; Emi-Reynolds, Geoffrey; Amoako, Joseph Kwabena; Akrobortu, Emmanuel; Hasford, Francis

    2016-11-01

    Although the use of radioisotopes in Ghana began in 1952, the Radiation Protection Board of Ghana was established in 1993 and served as the national competent authority for authorization and inspection of practices and activities involving radiation sources until 2015. The law has been superseded by an Act of Parliament, Act 895 of 2015, mandating the Nuclear Regulatory Authority of Ghana to take charge of the regulation of radiation sources and their applications. The Radiation Protection Institute in Ghana provided technical support to the regulatory authority. Regulatory and service activities that were undertaken by the Institute include issuance of permits for handling of a radiation sources, authorization and inspection of radiation sources, radiation safety assessment, safety assessment of cellular signal towers, and calibration of radiation-emitting equipment. Practices and activities involving application of radiation are brought under regulatory control in the country through supervision by the national competent authority.

  13. Assessment of radiation protection practices among radiographers ...

    African Journals Online (AJOL)

    Background: Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in ...

  14. Computer Based Radiation Protection- A New Cd-Rom

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, T.; Bammer, M.; Ablber, M.

    2004-07-01

    Within the next few years, there'll be a lot of new challenges required from radiation protection. According to EU regulation[1] and the new austrian radiation protection law [2] regular additional training are requested. Patients protection in diagnostic and therapeutic usage of ionising radiation gains also more and more importance.[3] Not really surprisingly, the general population is definitely highly aware of the risks coming with the usage of radionuclides and x-rays in medicine. Furthermore, the nuclear power plant in Temelin, near the austrian border initiated a lively discussion about risks, necessity and use of ionising radiation in medicine and industry. It turned out to be a really hard job handling these topics in public. A brilliant didactics based on independent information and viewpoints was required. ARC Seibersdorf Research GmbH, represented by the department of medical technical applications and the radiation protection academy, developed an interactive CD-ROM covering several applications: Basics on radiation protection for medical and technical personnel ; preparation for a radiation protection training. Repetition of the main topics for graduates of a radiation protection training. Basics on radiation protection and emergency management for medical staff as well as for the general public. (Author)

  15. Nevada National Security Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-04-30

    Title 10 Code of Federal Regulations (CFR) Part 835, “Occupational Radiation Protection,” establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada National Security Site (NNSS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operations, and environmental restoration off-site projects. This RPP section consists of general statements that are applicable to the NNSS as a whole. The RPP also includes a series of appendices which provide supporting detail for the associated NNSS Tennant Organizations (TOs). Appendix H, “Compliance Demonstration Table,” contains a cross-walk for the implementation of 10 CFR 835 requirements. This RPP does not contain any exemptions from the established 10 CFR 835 requirements. The RSPC and TOs are fully compliant with 10 CFR 835 and no additional funding is required in order to meet RPP commitments. No new programs or activities are needed to meet 10 CFR 835 requirements and there are no anticipated impacts to programs or activities that are not included in the RPP. There are no known constraints to implementing the RPP. No guides or technical standards are adopted in this RPP as a means to meet the requirements of 10 CFR 835.

  16. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  17. 78 FR 59982 - Revisions to Radiation Protection

    Science.gov (United States)

    2013-09-30

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing final revisions to the following sections of NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition'': Section 12.1, ``Assuring that Occupational Radiation Exposures Are As Low As Is Reasonably Achievable,'' Section 12.2, ``Radiation Sources,'' Section 12.3 -12.4, ``Radiation Protection Design Features,'' and Section 12.5, ``Operational Radiation Protection Program.''

  18. Biological research for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  19. Evaluation of radiation protection principles observance in Iranian dental schools

    Directory of Open Access Journals (Sweden)

    GhazikhanlouSani K.

    2009-12-01

    Full Text Available "nBackground and Aim: In recent decades many guidelines has been conducted by radiation protection organizations about radiation protection in dentistry. This study was designed to evaluate the observance of these guidelines in educational clinics of all dental schools in Iran."nMaterials and Methods: In this cross-sectional study a questionnaire based on National Radiation Protection guidelines was conducted. The questionnaire consisted of questions about radiation protection principles in dental radiography that is needed for patients and personnel protection and quality control of radiological instruments. The questionnaires were completed by the responsible person of each radiology department of dental schools (18 schools. After gathering the data, the results were compared with radiation protection standards."nResults: There was proper condition in the case of the existence of radiation protection facilities, such as lead apron, thyroid shield and lead impacted walls. However, personnel rarely use these facilities. Usage of high speed films and existence of automatic processor in dental schools was an appreciable point. The main problem was related to the lack of regular quality control programs."nConclusion: The observance of radiation protection regulations in radiology departments of dental schools was proper. But majority of departments had no regular quality control programs; and the use of digital systems in dental radiography was not common.

  20. Radiation protection culture: a global challenge.

    Science.gov (United States)

    Michel, Rolf; Henrichs, Klaus; Wernli, Christian

    2015-04-01

    The central motto 'Radiation Protection Culture-A Global Challenge' of the fourth European IRPA Congress is discussed on the basis of the IRPA Guiding Principles Establishing a Radiation Protection Culture and the contributions presented in the plenary sessions of the conference. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Radiation Protection Research Needs Workshop: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, Shaheen A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davis, Jason [Oak Ridge Associated Univ., Oak Ridge, TN (United States); Hertel, Nolan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abelquist, Eric [Oak Ridge Associated Univ., Oak Ridge, TN (United States)

    2017-09-01

    In order to protect humans and the environment when using ionizing radiation for the advancement and benefit of society, accurately quantifying radiation and its potential effects remains the driver for ensuring the safety and secure use of nuclear and radiological applications of technology. In the realm of radiation protection and its various applications with the nuclear fuel cycle, (nuclear) medicine, emergency response, national defense, and space exploration, the scientific and research needs to support state and federal radiation protection needs in the United States in each of these areas are still deficient.

  2. Radiation protection guidelines for space missions

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs.

  3. Role of the International Radiation Protection Association.

    Science.gov (United States)

    Kase, Kenneth R; Metcalf, Phil

    2011-01-01

    Global concerns over energy supply and climate change have given rise to an increase in uranium prospecting, mining and extraction. The changing world economy is spreading the use of advanced nuclear and radiation-related technologies to many parts of the world, giving rise to global initiatives on nuclear energy and operation of nuclear fuel cycle facilities. The emerging global nuclear safety regime promotes and encourages high standards of radiation safety worldwide. These developments call for increasing capacity and capabilities in radiation protection expertise and continue to present both challenges and opportunities to the International Radiation Protection Association (IRPA), an association of 46 societies representing 58 countries with an individual membership of approximately 17,000. IRPA's objectives include: (1) assisting the development of competent radiation protection programs; (2) fostering the exchange of scientific and technical information through its international and regional congresses; (3) promoting the scientific and professional recognition of the radiation protection expert; and (4) supporting continuing education programs at each IRPA congress. IRPA has adopted a Code of Ethics and Guiding Principles for the Conduct of Stakeholder Engagement. Recently work began to develop guidance for maintaining and improving current levels of radiation protection and transferring this culture to future radiation protection professionals. These IRPA projects are developed through the Associate Society Forum discussions that are held at each IRPA international and regional congress. Finally, IRPA maintains a close working relationship with various international organizations and is also represented on the Inter-Agency Committee on Radiation Safety. Copyright © 2010 Health Physics Society

  4. Chronic Low Dose Rate Ionizing Radiation Exposure Induces Premature Senescence in Human Fibroblasts that Correlates with Up Regulation of Proteins Involved in Protection against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Olga Loseva

    2014-07-01

    Full Text Available The risks of non-cancerous diseases associated with exposure to low doses of radiation are at present not validated by epidemiological data, and pose a great challenge to the scientific community of radiation protection research. Here, we show that premature senescence is induced in human fibroblasts when exposed to chronic low dose rate (LDR exposure (5 or 15 mGy/h of gamma rays from a 137Cs source. Using a proteomic approach we determined differentially expressed proteins in cells after chronic LDR radiation compared to control cells. We identified numerous proteins involved in protection against oxidative stress, suggesting that these pathways protect against premature senescence. In order to further study the role of oxidative stress for radiation induced premature senescence, we also used human fibroblasts, isolated from a patient with a congenital deficiency in glutathione synthetase (GS. We found that these GS deficient cells entered premature senescence after a significantly shorter time of chronic LDR exposure as compared to the GS proficient cells. In conclusion, we show that chronic LDR exposure induces premature senescence in human fibroblasts, and propose that a stress induced increase in reactive oxygen species (ROS is mechanistically involved.

  5. Radiation protection in medicine: ethical framework revisited.

    Science.gov (United States)

    Malone, J F

    2009-07-01

    The ethical framework within which medicine operates has changed radically over the last two decades. This has been stimulated by events leading to controversy, such as the infant organ retention scandals; concerns about blood products; self regulation of medical practice in the wake of the Harold Shipman Enquiry in the UK; and many other events. It has become obvious following investigations and/or public enquiries that a gap has opened up between what is acceptable to the public on the one hand, and what appears reasonable to, or is at least accepted by, the professionals involved on the other. This paper reviews these issues and some conclusions of a workshop held to consider them. It places the developments in the context of the idea that the approach to problems and communication in a group of people/professionals such as doctors, radiologists, radiation protection specialists, or even the general public may be regarded as a 'culture'. Current practice of radiation protection in medicine is examined in the light of these considerations.

  6. European activities in radiation protection in medicine.

    Science.gov (United States)

    Simeonov, Georgi

    2015-07-01

    The recently published Council Directive 2013/59/Euratom ('new European Basic Safety Standards', EU BSS) modernises and consolidates the European radiation protection legislation by taking into account the latest scientific knowledge, technological progress and experience with implementing the current legislation and by merging five existing Directives into a single piece of legislation. The new European BSS repeal previous European legislation on which the national systems for radiation protection in medicine of the 28 European Union (EU) Member States are based, including the 96/29/Euratom 'BSS' and the 97/43/Euratom 'Medical Exposure' Directives. While most of the elements of the previous legislation have been kept, there are several legal changes that will have important influence over the regulation and practice in the field all over Europe-these include, among others: (i) strengthening the implementation of the justification principle and expanding it to medically exposed asymptomatic individuals, (ii) more attention to interventional radiology, (iii) new requirements for dose recording and reporting, (iv) increased role of the medical physics expert in imaging, (v) new set of requirements for preventing and following up on accidents and (vi) new set of requirements for procedures where radiological equipment is used on people for non-medical purposes (non-medical imaging exposure). The EU Member States have to enforce the new EU BSS before January 2018 and bring into force the laws, regulations and administrative provisions necessary to comply with it. The European Commission has certain legal obligations and powers to verify the compliance of the national measures with the EU laws and, wherever necessary, issue recommendations to, or open infringement cases against, national governments. In order to ensure timely and coordinated implementation of the new European legal requirements for radiation protection, the Commission is launching several actions

  7. 10 CFR 20.1101 - Radiation protection programs.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement a radiation protection program commensurate...

  8. Nevada Test Site Radiation Protection Program - Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  9. Protection of DNA damage by radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Oh, Tae Jung

    1998-12-01

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents.

  10. Radiation protection textbook; Manuel pratique de radioprotection (3. Ed.)

    Energy Technology Data Exchange (ETDEWEB)

    Gambini, D.J.; Granier, R

    2007-07-01

    This textbook of radiation protection presents the scientific bases, legal and statutory measures and technical means of implementation of the radioprotection in the medical and industrial sectors, research and nuclear installations. It collects the practical information (organization, analysis of post, prevention, evaluation and risks management, the controls, the training and the information) usually scattered and the theoretical knowledge allowing every person using ionizing radiation: To analyze jobs in controlled areas, to watch the respect for the current regulations, to participate in the training and in the information of the staffs exposed to intervene in accidental situation. This third edition is widely updated and enriched by the most recent scientific and legal data concerning, notably, the human exposure, the dosimetry, the optimization of the radiation protection and the epidemiological inquiries. The contents is as follows: physics of ionizing radiation, ionizing radiation: origin and interaction with matter, dosimetry and protection against ionizing radiation, detection and measurement of ionizing radiation, radiobiology, legal measures relative to radiation protection, human exposure of natural origin, human exposure of artificial origin, medical, dental and veterinarian radiology, radiotherapy, utilization of unsealed sources in medicine and research, electronuclear industry, non nuclear industrial and aeronautical activities exposing to ionizing radiation, accidental exposures. (N.C.)

  11. 6. national congress of radiation protection S.F.R.P. 2007; 6. congres national de radioprotection S.F.R.P. 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This congress tackles the following subjects: individual dosimetry for external irradiation, update of arrangements in the public health code relative to the radiation protection, implementation of zoning decree, regulation, radiation protection in professional area, radiation protection in ITER, non ionizing radiation, radiation protection in accident situation, biological radiation effects, radiation protection for patients, dosimetry, environmental exposure, radiation protection and radioactive waste management. (N.C.)

  12. Management information system applied to radiation protection services

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela; Figueiredo, Arthur, E-mail: pabloag@cdtn.br, E-mail: lss@cdtn.br, E-mail: gmf@cdtn.br, E-mail: arthurqof@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    An effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. The complex and multisource information flux from all radiation protection activities on nuclear organizations requires a robust tool/system to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Those organized and processed data are useful to reach a successful management and to support the human decision-making on nuclear organization. This paper presents recent improvements on a management information system based on the radiation protection directives and regulations from Brazilian regulatory body. This radiation protection control system is applied to any radiation protection services and research institutes subjected to Brazilian nuclear regulation and is a powerful tool for continuous management, not only indicating how the health and safety activities are going, but why they are not going as well as planned showing up the critical points. (author)

  13. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...

  14. The Future of Radiation Protection: Handbook and Companion Poster

    Science.gov (United States)

    The Future of Radiation Protection: 2025 is a report on challenges the radiation protection community will confront over the generation ahead. The companion poster is also available, Radiation Protection at EPA: Over the Decades.

  15. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  16. Protection contre les radiations recommandations

    CERN Document Server

    Claude, A; Kipfer, P; Bacq, Z

    Considérations générales ; mesures de sécurité vis-à-vis des sources de rayonnement externes ; mesures de sécurité vis-à-vis des radioisotopes ; étude spéciale de la protection dans quelques cas particuliers ; mesures de sécurité vis-à-vis des neutrons ; mesures de protection pour les appareils de supervoltage ; appareils physiques de mesure et de contrôle pour la protection.

  17. 49 CFR 193.2057 - Thermal radiation protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Thermal radiation protection. 193.2057 Section 193.2057 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...

  18. Development of radiation protection and measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    1997-07-01

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.

  19. 48 CFR 952.223-72 - Radiation protection and nuclear criticality.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Radiation protection and nuclear criticality. 952.223-72 Section 952.223-72 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.223-72 Radiation protection and nuclear...

  20. The use of roentgen diagnostics in chiropractor activities. Project based survey according to new regulations regarding radiation protection and use of radiation; Bruk av roentgendiagnostikk i norske kiropraktorvirksomheter. Prosjektrettet tilsyn etter ny forskrift om straalevern og bruk av straaling

    Energy Technology Data Exchange (ETDEWEB)

    Raaum, Aud; Widmark, Anders

    2005-12-15

    An audit has been performed in 17 chiropractic enterprises according to new radiation protection legislation. Before the audits a survey of the use of diagnostic imaging in Norwegian chiropractic enterprises was carried out. This report summarizes the results of the survey and the findings at the audits. (Author)

  1. Third conference on radiation protection and dosimetry. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  2. National congress of radiation protection; Congres national de radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  3. 10 CFR 20.2102 - Records of radiation protection programs.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the radiation protection program, including: (1) The...

  4. 10 CFR 835.101 - Radiation protection programs.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Radiation protection programs. 835.101 Section 835.101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Management and Administrative Requirements § 835.101 Radiation protection programs. (a) A DOE activity shall be conducted in compliance with a documented radiation protection program (RPP) a...

  5. Proceedings of the third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R.E.; Sims, C.S.; Casson, W.H. [eds.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  6. Radiological evaluation of an industrial complex of phosphate fertilizer production in response to the current regulations on health protection against ionizing radiation; Evaluacion radiologica de un complejo industrial de produccion de fertilizantes fosfatado al actual reglamento sobre proteccion sanitaria contra radiaciones ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Mosqueda Pena, F.; Bolivar Raya, J. P.

    2011-07-01

    We performed a comprehensive study of the radioactive and radiological follow NORM industrial complex, in addition to that regulation, the Criteria for radiological protection against exposure to natural radiation issued by the Nuclear Safety Council (CSN).

  7. Melatonin as Protection Against Radiation Injury

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P H; Rosenberg, J.

    2016-01-01

    Introduction: Radiation is widely used in the treatment of various cancers and in radiological imaging procedures. Ionizing radiation causes adverse effects, leading to decreased quality of life in patients, by releasing free radicals that cause oxidative stress and tissue damage. The sleep...... radiation damage. Methods: A systematic literature search was performed and included experimental or clinical studies written in English that investigated the protective effects of melatonin against gamma or X-ray irradiation in vivo. Studies were excluded if patients were treated with chemotherapy......-hormone melatonin is a free radical scavenger, and induces several anti-oxidative enzymes. This review investigates the scientific literature on the protective effects of melatonin against exposure to ionizing radiation, and discusses the clinical potential of melatonin as prophylactic treatment against ionizing...

  8. Neutron spectrometry for radiation protection purposes

    CERN Document Server

    McDonald, J C; Alberts, W G

    2002-01-01

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is advantageous to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here.

  9. Radiation Protection at Light Water Reactors

    CERN Document Server

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  10. Fundamentals of health physics for the radiation-protection officer

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  11. Thermoluminescence Dosimetry Applied to Radiation Protection

    DEFF Research Database (Denmark)

    Christensen, Poul; Bøtter-Jensen, Lars; Majborn, Benny

    1982-01-01

    This is a general review of the present state of the development and application of thermoluminescence dosimetry (TLD) for radiation protection purposes. A description is given of commonly used thermoluminescent dosimeters and their main dosimetric properties, e.g. energy response, dose range......, fading, and LET dependence. The applications of thermoluminescence dosimetry in routine personnel monitoring, accident dosimetry, u.v. radiation dosimetry, and environmental monitoring are discussed with particular emphasis on current problems in routine personnel monitoring. Finally, the present state...

  12. Current trends in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Metivier, H.; Arranz, L.; Gallego, E.; Sugier, A

    2004-07-01

    Organizers of the 11. IRPA International Congress have wished to take advantage of this occasion to launch a new series of books dedicated to review the current important problems of concerns in radioprotection. The four editors have combined their efforts to assemble within this book contributions from the worldwide and most famous specialists in their respective fields. Their signatures lead to the insurance of a first class information. all aspects of radioprotection are treated, through synthetic articles accessible to all. Very didactic, this book will be useful to radioprotection professionals willing to take the stake of all aspects within their profession, but also to engineers, physicists, physicians, researchers, and non-specialist people who will find here a thorough synthesis of all aspects of radiological protection. (author)

  13. Management of ionizing radiation injuries and illnesses, part 1: physics, radiation protection, and radiation instrumentation.

    Science.gov (United States)

    Christensen, Doran M; Jenkins, Mark S; Sugarman, Stephen L; Glassman, Erik S

    2014-03-01

    Ionizing radiation injuries and illnesses are exceedingly rare; therefore, most physicians have never managed such conditions. When confronted with a possible radiation injury or illness, most physicians must seek specialty consultation. Protection of responders, health care workers, and patients is an absolute priority for the delivery of medical care. Management of ionizing radiation injuries and illnesses, as well as radiation protection, requires a basic understanding of physics. Also, to provide a greater measure of safety when working with radioactive materials, instrumentation for detection and identification of radiation is needed. Because any health care professional could face a radiation emergency, it is imperative that all institutions have emergency response plans in place before an incident occurs. The present article is an introduction to basic physics, ionizing radiation, radiation protection, and radiation instrumentation, and it provides a basis for management of the consequences of a radiologic or nuclear incident.

  14. Building Protection Against External Ionizing Fallout Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Michael B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steven G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    A nuclear explosion has the potential to injure or kill tens to hundreds of thousands of people through exposure to fallout (external gamma) radiation. Existing buildings can protect their occupants (reducing external radiation exposures) by placing material and distance between fallout particles and indoor individuals. This protection is not well captured in current fallout risk assessment models and so the US Department of Defense is implementing the Regional Shelter Analysis methodology to improve the ability of the Hazard Prediction and Assessment Capability (HPAC) model to account for building protection. This report supports the HPAC improvement effort by identifying a set of building attributes (next page) that, when collectively specified, are sufficient to calculate reasonably accurate, i.e., within a factor of 2, fallout shelter quality estimates for many individual buildings. The set of building attributes were determined by first identifying the key physics controlling building protection from fallout radiation and then assessing which building attributes are relevant to the identified physics. This approach was evaluated by developing a screening model (PFscreen) based on the identified physics and comparing the screening model results against the set of existing independent experimental, theoretical, and modeled building protection estimates. In the interests of transparency, we have developed a benchmark dataset containing (a) most of the relevant primary experimental data published by prior generations of fallout protection scientists as well as (b) the screening model results.

  15. Consequences of the new radiation protection law on the radiation protection register and the occupational radiation protection; Auswirkungen des neuen Strahlenschutzgesetzes auf das Strahlenschutzregister und die berufliche Strahlenueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Frasch, Gerhard

    2017-08-01

    The implementation of the guideline 2013/59/EURATOM has been performed in the new radiation protection law. The most important consequences of the new radiation protection law for the occupational radiation protection are the following: the introduction of an explicit personal indicator and the actualization of occupational categories for employees. These facts require technical and administrative reorganization in data transmission of the licensee to the regulatory monitoring executive and the radiation protection register.

  16. European radiation protection in the Essen practice test; Europaeischer Strahlenschutz im Essener Praxistest

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Bernd; Ludwig, Sabine; Peinsipp, Norbert (eds.)

    2013-07-01

    The proceeding of the meeting European radiation protection in the Essen practice test includes contributions to the following issues: basic radiation protection standards; clearance values and permitted activities; optimization, guidance values for dose limits; radon and radiation protection standards; radiation protection - eye lens; RPE (radiation protection expert)/RPO (radiation protection officer); environmental radiation protection; radiation protection in medicine.

  17. Radiation Protection for the Fluoroscopy Operator and Staff.

    Science.gov (United States)

    Meisinger, Quinn C; Stahl, Cosette M; Andre, Michael P; Kinney, Thomas B; Newton, Isabel G

    2016-10-01

    The purposes of this article are to review available data regarding the range of protection devices and garments with a focus on eye protection and to summarize techniques for reducing scatter radiation exposure. Fluoroscopy operators and staff can greatly reduce their radiation exposure by wearing properly fitted protective garments, positioning protective devices to block scatter radiation, and adhering to good radiation practices. By understanding the essentials of radiation physics, protective equipment, and the features of each imaging system, operators and staff can capitalize on opportunities for radiation protection while minimizing ergonomic strain. Practicing and promoting a culture of radiation safety can help fluoroscopy operators and staff enjoy long, productive careers helping patients.

  18. 76 FR 4258 - Occupational Radiation Protection; Revision

    Science.gov (United States)

    2011-01-25

    ...The Department of Energy (DOE) proposes to revise the values in an appendix to its Occupational Radiation Protection requirements. The derived air concentration values for air immersion are calculated using several parameters. One of these, exposure time, is better represented by the hours in the workday, rather than the hours in a calendar day, and is therefore used in the revised calculations.

  19. Radiation Protection Section (SC/SL/RP)

    CERN Multimedia

    2006-01-01

    We should like to inform you that the Radiation Protection Section (SC/SL/RP) located on the Prévessin site has moved from Building 865 (ground floor) to new premises in Wing A of Building 892 (second floor). Telephone numbers remain the same. SC/SL/RP section

  20. Special radiation protection aspects of medical accelerators

    CERN Document Server

    Silari, Marco

    2001-01-01

    Radiation protection aspects relevant to medical accelerators are discussed. An overview is first given of general safety requirements. Next. shielding and labyrinth design are discussed in some detail for the various types of accelerators, devoting more attention to hadron machines as they are far less conventional than electron linear accelerators. Some specific aspects related to patient protection are also addressed. Finally, induced radioactivity in accelerator components and shielding walls is briefly discussed. Three classes of machines are considered: (1) medical electron linacs for 'conventional' radiation therapy. (2) low energy cyclotrons for production of radionuclides mainly for medical diagnostics and (3) medium energy cyclotrons and synchrotrons for advanced radiation therapy with protons or light ion beams (hadron therapy). (51 refs).

  1. Historical trends in radiation protection, policy and communications: 1964 to the present.

    Science.gov (United States)

    Locke, Paul A

    2015-02-01

    The past 50 y have seen substantial developments in radiation epidemiology, technology, dosimetry, regulations, and protection efforts. During the last five decades, radiation communication has also evolved, growing more sophisticated as communication science and practice have advanced and matured. This talk covers the trends in radiation protection over the past 50 y, illustrated by progress in science and practice of risk communication and changes in societal expectations, and examines challenges that will confront radiation risk communication in the future.

  2. Radiation protection in Swiss nuclear installations; Strahlenschutz in Schweizer Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J.; Brunell, M. [Eidgenoessisches Nuklearsicherheitsinspektorat ENSI, Brugg (Switzerland)

    2015-07-01

    Well developed measures on operational radiation protection within Swiss nuclear installations will be presented. The focus lays on competent authority actions. Results of the last ten years, including events on radiation issues, will be discussed. Finally a view on challenges for radiation protection personnel with respect to a renewed Swiss radiation protection legislation based on recent ICRP recommendations will be given.

  3. CERN radiation protection (RP) calibration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Fabio

    2016-04-14

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation

  4. Review on radiation protection in diagnostic radiology

    Directory of Open Access Journals (Sweden)

    Vahid Karami

    2016-10-01

    Full Text Available Discovery of x-ray and using of it for medical imaging have produced tremendous outcomes for diagnosis and treatment of diseases. More than 10 million diagnostic radiological procedures and 100,000 nuclear medicine exams are being performed daily around the world. According to the national commission on radiological protection and measurements (NCRP-report 160, medical x-ray is contribute to approximately 95% of all radiological examinations that is responsible for 74% of the collective dose to the US population. Despite of unique benefits of ionizing radiations, in the field of radiation protection, they are associated with potential risks such as cancer and genetically abnormalities. The cancer risk attributable to diagnostic radiology is estimated about 0.6% to 3%. It is estimated that the radiation dose from diagnostic x-ray procedures are annually responsible for 7,587 and 5,695 cases of radiation induced cancer in the population of Japan and US, respectively. Although the radiation dose associated with most radiological procedures are very low, but rapid increasing use of radiography procedures during two past decades have been concerned due to the cancer risk associated with ionizing radiations. On the base of linear no-threshold (LNT model of dose-response curve, any level of exposure is dangerous. Deoxyribonucleic acid (DNA is the main target of ionizing radiation. For radiological exposure with low dose, the stochastic effects such as genetic damages and leukemia are concerned. According to the recommendations of the radiation protection regulatory organizations, radiological procedure must be done with respect to social and economic factors in which exposure of patient and population kept as low as reasonable and achievable. Hence, prescription of a radiological test is acceptable only when its advantages are higher than its damages. Optimizing the different parameters such as: collimating the primary beam field to the area of

  5. Chemical protection against ionizing radiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  6. Critical Issues in Radiation Protection Knowledge Management for Preserving Radiation Protection Research and Development Capabilities.

    Science.gov (United States)

    Dewji, Shaheen Azim

    2017-02-01

    As a hub of domestic radiation protection capabilities, Oak Ridge National Laboratory's Center for Radiation Protection Knowledge has a mandate to develop and actuate a formal knowledge management (KM) effort. This KM approach exceeds recruitment and training efforts but focuses on formalized strategies for knowledge transfer from outgoing subject matter experts in radiation protection to incoming generations. It is envisioned that such an effort will provide one avenue for preserving domestic capabilities to support stakeholder needs in the federal government and the nuclear industry while continuing to lead and innovate in research and development on a global scale. However, in the absence of broader coordination within the United States, preservation of radiation protection knowledge continues to be in jeopardy in the absence of a dedicated KM effort.

  7. Biological research for the radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Chan Kug; Shim, Hae Won; Jung, Il Lae; Byun, Hee Sun; Moon, Myung Sook; Cho, Hye Jeong; Kim, Jin Sik

    2003-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about polyamine effect on cell death triggered ionizing radiation, H{sub 2}O{sub 2} and toxic agents. In this paper, to elucidate the role of polyamines as mediator in lysosomal damage and stress(H{sub 2}O{sub 2})- induced apoptosis, we utilized {alpha}-DiFluoroMethylOrnithine (DFMO), which inhibited ornithine decarboxylase and depleted intracellular putrescine, and investigated the effects of polyamine on the apoptosis caused by H{sub 2}O{sub 2}, ionizing radiation and paraquat. We also showed that MGBG, inhibitor of polyamine biosynthesis, treatment affected intracellular redox steady states, intracellular ROS levels and protein oxidation. Thereafter we also investigated whether MGBG may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation or H{sub 2}O{sub 2} because such compounds are able to potentiate the cell-killing effects. In addition, ceruloplasmin and thioredoxin, possible antioxidant proteins, were shown to have protective effect on radiation- or H{sub 2}O{sub 2}(or chemicals)-induced macromolecular damage or cell death.

  8. Radiation Protection Using Carbon Nanotube Derivatives

    Science.gov (United States)

    Conyers, Jodie L., Jr.; Moore, Valerie C.; Casscells, S. Ward

    2010-01-01

    BHA and BHT are well-known food preservatives that are excellent radical scavengers. These compounds, attached to single-walled carbon nanotubes (SWNTs), could serve as excellent radical traps. The amino-BHT groups can be associated with SWNTs that have carbolyxic acid groups via acid-base association or via covalent association. The material can be used as a means of radiation protection or cellular stress mitigation via a sequence of quenching radical species using nano-engineered scaffolds of SWNTs and their derivatives. It works by reducing the number of free radicals within or nearby a cell, tissue, organ, or living organism. This reduces the risk of damage to DNA and other cellular components that can lead to chronic and/or acute pathologies, including (but not limited to) cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. These derivatives can show an unusually high scavenging ability, which could prove efficacious in protecting living systems from radical-induced decay. This technique could be used to protect healthy cells in a living biological system from the effects of radiation therapy. It could also be used as a prophylactic or antidote for radiation exposure due to accidental, terrorist, or wartime use of radiation- containing weapons; high-altitude or space travel (where radiation exposure is generally higher than desired); or in any scenario where exposure to radiation is expected or anticipated. This invention s ultimate use will be dependent on the utility in an overall biological system where many levels of toxicity have to be evaluated. This can only be assessed at a later stage. In vitro toxicity will first be assessed, followed by in vivo non-mammalian screening in zebra fish for toxicity and therapeutic efficacy.

  9. Antihistamine provides sex-specific radiation protection. [Ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, G.A.

    1981-04-01

    Rats suffer an early transient performance decrement immediately after a sufficiently large dose of ionizing radiation. However, it has been shown that males experience a more severe incapacitation than females. This sex difference has been attributed to the low estrogen levels in the male. In support of this notion, supplemental estrogens in castrated male rats have produced less-severe performance decrements post-irradiation. Antihistamines have also previously been shown to alleviate radiation's effect on behavior. The present study revealed that antihistamines are only effective in altering the behavioral incapacitation of sexually intact male subjects. This contrasts with previous work which indicates that estrogens can only benefit gonadectomized rats. These findings suggest that different mechanisms may underlie antihistamine and estrogen radiation protection.

  10. Science Goals in Radiation Protection for Exploration

    Science.gov (United States)

    Cucinotta, Francs A.

    2008-01-01

    Space radiation presents major challenges to future missions to the Earth s moon or Mars. Health risks of concern include cancer, degenerative and performance risks to the central nervous system, heart and lens, and the acute radiation syndromes. The galactic cosmic rays (GCR) contain high energy and charge (HZE) nuclei, which have been shown to cause qualitatively distinct biological damage compared to terresterial radiation, such as X-rays or gamma-rays, causing risk estimates to be highly uncertain. The biological effects of solar particle events (SPE) are similar to terresterial radiation except for their biological dose-rate modifiers; however the onset and size of SPEs are difficult to predict. The high energies of GCR reduce the effectiveness of shielding, while SPE s can be shielded however the current gap in radiobiological knowledge hinders optimization. Methods used to project risks on Earth must be modified because of the large uncertainties in projecting health risks from space radiation, and thus impact mission requirements and costs. We describe NASA s unique approach to radiation safety that applies probabilistic risk assessments and uncertainty based criteria within the occupational health program for astronauts and to mission design. The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in radiation risk projection models. Exploration science goals in radiation protection are centered on ground-based research to achieve the necessary biological knowledge, and in the development of new technologies to improve SPE monitoring and optimize shielding. Radiobiology research is centered on a ground based program investigating the radiobiology of high-energy protons and HZE nuclei at the NASA Space Radiation Laboratory

  11. Antihistamine provides sex-specific radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, G.A.

    1981-04-01

    Rats suffer an early transient performance decrement immediately after a sufficiently large dose of ionizing radiation. However, it has been shown that males experience a more severe incapacitation than females. This sex difference has been attributed to the low estrogen levels in the male. In support of this notion, supplemental estrogens in castrated male rats have produced less-severe performance decrements post-irradiation. Antihistamines have also previously been shown to alleviate radiation's effect on behavior. The present study revealed that antihistamines are only effective in altering the behavioral incapacitation of sexually intact male subjects. This contrasts with previous work which indicates that estrogens can only benefit gonadectomized rats. These findings suggest that different mechanisms may underly antihistamine and estrogen radiation protection.

  12. Evaluation of surgical gloves for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Antolin, E.; Rot, M.J.; Ordonez, J.; Arranz, L.; Sastre, J.M.; Ferrer, N.; Andres, J.C. de [Hospital Ramon y Ca jal, Servicio de Radiofisica y Proteccion Radiologica, Madrid (Spain)

    2006-07-01

    Full text of publication follows: Accumulated doses in hands during interventionist cardiology and radiological procedures can reach high values, and even go beyond legal limits for exposed professionals after years of work, unless they use specific radiation protection methods. An important protection mean for hands is the use of surgical gloves that attenuate the radiation while maintaining the tactile sensitivity demanded by physicians.There is a wide variety of commercialized gloves for radiation protection, with different advantages and disadvantages for various uses. In this paper nine different models of gloves have been evaluated for testing its attenuation capacity for several voltages, the maintenance of tactile sensitivity, its resistance to elongation, and the apparition of pores after successive sterilizing processes. It is very important that they do not lose its initial characteristics after processes of sterilization in order to optimize the product effective cost. The attenuation values have been measured under the voltages of 60, 70, 80 and 90 KVp obtaining very different values at each voltage with different gloves. The values measured range between 34 % before any supplementary sterilization with one model of glove (for 90 KVp), and 57 % after four sterilization processes with another glove (for 60 KVp). Some gloves lose its attenuation capacity after successive sterilizations, having not been found an y significant relation with their composition. The tactile sensitivity, a decisive factor for its users, decreases as its attenuation capacity increases, and remains mostly constant after being sterilized. The tests performed allow to conclude a set of fi nal results that can facilitate the choice of the most suitable gloves according to the practical applications (the priorities being the radiation protection and the tactile sensitivity)

  13. Training in Radiation Protection for Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E.; Guibelalde, E.

    2002-07-01

    Several potential problems have been detected in the safety aspects for the practice of interventional radiology procedures: a) An important increase in the number cases and their complexity and the corresponding increase of installations and specialists involved; b) New X ray systems more sophisticated, with advanced operational possibilities, requiring special skills in the operators to obtain the expected benefits;c) New medical specialists arriving to the interventional arena to profit the benefits of the interventional techniques without previous experience in radiation protection. For that reason, education and training is one of the basic areas in any optimisation programme in radiation protection (RP). the medical field and especially interventional radiology requires actions to promote and to profit the benefit of the new emerging technologies for training (Internet, electronic books, etc). The EC has recently sponsored the MARTIR programme (Multimedia and Audio-visual Radiation Protection Training in Interventional Radiology) with the production of two videos on basic aspects of RP and quality control and one interactive CD-ROM to allow tailored individual training programmes. those educational tools are being distributed cost free in the main European languages. To go ahead with these actions, the EC has decided to promote during 2002, a forum with the main Medical European Societies involved in these interventional procedures. (Author)

  14. Prevent Eye Damage: Protect Yourself from UV Radiation

    Science.gov (United States)

    PREVENT EYE DAMAGE Protect Yourself from UV Radiation M ost Americans understand the link between ultraviolet (UV) radiation and skin cancer. Many are less aware of the connection between UV radiation ...

  15. Radiation protection in connection with the decommissioning of nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This document presents the SSI preliminary views and position concerning the decommissioning of nuclear plants. To prevent the exposure of the decommissioning personnel and the general public to unacceptable levels of radiation and to protect the environment and future generations, it is SSI`s task to formulate and issue the necessary terms and regulations with which the reactor licensees must comply during the decommissioning work. The views and principles presented here are the basis of SSI`s continued work on guidelines and regulations for the decommissioning of nuclear plants.

  16. Uncertainty Analysis in Space Radiation Protection

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  17. Federal Directions in Radiation Regulations: Making the "Old" New Again.

    Science.gov (United States)

    Edwards, Jonathan D

    2016-02-01

    The radiation regulatory scheme in the United States must periodically evolve and adapt to ensure that public health, workers, and the environment are properly protected in view of accepted societal values and the advance of science, technology, and medical practices. Federal regulators must use best judgment in weighing a multitude of factors and considerations. In the early 21st century, a few dependable but tired and antiquated "workhorses" of regulation have been reworked already--but many more remain that likely need reworking. Three primary points of discussion on current directional influences on federal radiation regulation merit examination: • In 2015, what are the stressors driving societal and policy changes and how might these dynamics be forcing reexamination of old regulations? • What are the things that make a "good" regulation and an effective rule? • What are the thorny issues that the federal government is wrestling with and what are some of the notable activities in federal radiation regulations and guidance that are underway? This journal article was presented at the 2015 Annual Meeting of the National Council on Radiation Protection and Measurements and served as a broad overview of federal regulatory actions and issues.

  18. 10 CFR 35.26 - Radiation protection program changes.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection program changes. 35.26 Section 35.26 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Administrative Requirements § 35.26 Radiation protection program changes. (a) A licensee may revise its radiation protection program without Commission approval if— (1)...

  19. Fortieth Lauriston S. Taylor Lecture: Radiation Protection and Regulatory Science.

    Science.gov (United States)

    Poston, John W

    2017-02-01

    It took about 30 y after Wilhelm Konrad Roentgen's discovery of x rays and Henri Becquerel's discovery of natural radioactivity for scientists in the civilized world to formulate recommendations on exposure to ionizing radiation. We know of these efforts today because the organizations that resulted from the concerns raised in 1928 at the Second International Congress of Radiology still play a role in radiation protection. The organizations are known today as the International Commission on Radiological Protection and, in the United States, the National Council on Radiation Protection and Measurements (NCRP). Today, as we have many times in the past, we honor Dr. Lauriston Sale Taylor, the U.S. representative to the 1928 Congress, for his dedication and leadership in the early growth of NCRP. NCRP's mission is "to support radiation protection by providing independent scientific analysis, information, and recommendations that represent the consensus of leading scientists." The developments in science and technology, including radiation protection, are occurring so rapidly that NCRP is challenged to provide its advice and guidance at a faster pace than ever before. NCRP's role has also expanded as the Council considers newer uses and applications of ionizing radiation in research and medicine as well as the response to nuclear or radiological terrorism. In such a technical world, new areas have been established to deal with the nexus of science and regulation, especially in the United States. Lord Ernest Rutherford supposedly said, "That which is not measurable is not science. That which is not physics is stamp collecting." I wonder what he would say if he were alive today as now many embrace a new field called "regulatory science." This term was suggested by Professor Mitsuru Uchiyama in Japan in 1987 and was reviewed in literature published in English in 1996. Some have attributed a similar idea to Dr. Alvin Weinberg, for many years Director of the Oak Ridge

  20. [The new law on radiation protection as a consequence of the EU safety standard of 2013].

    Science.gov (United States)

    Layer, G

    2017-07-01

    The transformation of a European guideline (2013/59/Euratom) from 2013 into national law requires adaptation of the national statutory regulations. This year, all areas of protection from ionizing radiation will be subject to the new radiation protection law (StrlSchG). Through this, the German X‑ray and Radiation Protection Acts will be combined to form a higher level of authority. The main parts of the StrlSchG will receive a new classification and will be organized according to the exposure scenario: radiation protection in planned exposure scenarios, radiation protection in emergency exposure scenarios, radiation protection in existing exposure scenarios, and the regulation of overall exposure scenarios. The most important or modified regulated points for radiology are concerned with early recognition, where the application of X‑ray or nuclear radiation is permitted in principle under certain conditions; the consultation of medical physics experts in all diagnostic investigative procedures involving radiation and applications for radiological intervention that are linked to high doses in the person under investigation; teleradiology, another special case of the application of X‑rays in humans that requires approval, now with the "required" technical qualification in radiation protection, formerly with the "full" technical qualification, in addition to research, the simplified approval procedure being substituted with a notification procedure.Furthermore, in contrast to previous regulations, those tasked with radiation protection can contact the regulators directly in the case of conflict, which indicates considerable reinforcement of their authority.The only dose limit that will be considerably reduced is the organ-specific equivalent dose of the eye lens, where the highest value will be reduced from 150 to 20 mSv per year in those who are exposed to radiation professionally.

  1. Workstations studies and radiation protection; Etudes de postes et radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, T. [Direction des relations du travail, 75 - Paris (France); Donadille, L.; Rehel, J.L.; Paquet, F. [Institut de Radioprotection et de Surete Nucleaire, 92 - Fontenay-aux-Roses (France); Beneli, C. [Paris-5 Univ., 75 (France); Cordoliani, Y.S. [Societe Francaise de Radioprotection, 92 - Fontenay-aux-Roses (France); Vrigneaud, J.M. [Assistance Publique - Hopitaux de Paris, 75 (France); Gauron, C. [Institut National de Recherche et de Securite, 75 - Paris (France); Petrequin, A.; Frison, D. [Association des Medecins du Travail des Salaries du Nucleaire (France); Jeannin, B. [Electricite de France (EDF), 75 - Paris (France); Charles, D. [Polinorsud (France); Carballeda, G. [cabinet Indigo Ergonomie, 33 - Merignac (France); Crouail, P. [Centre d' Etude sur l' Evaluation de la Protection dans le Domaine Nucleaire, 92 - Fontenay-aux-Roses (France); Valot, C. [IMASSA, 91 - Bretigny-sur-Orge (France)

    2006-07-01

    This day on the workstations studies for the workers follow-up, was organised by the research and health section. Devoted to the company doctors, for the competent persons in radiation protection, for the engineers of safety, it presented examples of methodologies and applications in the medical, industrial domain and the research, so contributing to a better understanding and an application of regulatory measures. The analysis of the workstation has to allow a reduction of the exposures and the risks and lead to the optimization of the medical follow-up. The agenda of this day included the different subjects as follow: evolution of the regulation in matter of demarcation of the regulated zones where the measures of workers protection are strengthened; presentation of the I.R.S.N. guide of help to the realization of a workstation study; implementation of a workstation study: case of radiology; the workstation studies in the research area; Is it necessary to impose the operational dosimetry in the services of radiodiagnostic? The experience feedback of a competent person in radiation protection (P.C.R.) in a hospital environment; radiation protection: elaboration of a good practices guide in medical field; the activities file in nuclear power plant: an evaluation tool of risks for the prevention. Methodological presentation and examples; insulated workstation study; the experience feedback of a provider; Contribution of the ergonomics to the determiners characterization in the ionizing radiation exposure situations;The workstations studies for the internal contamination in the fuel cycle facilities and the consideration of the results in the medical follow-up; R.E.L.I.R. necessity of workstation studies; the consideration of the human factor. (N.C.)

  2. Environmental protection in the frame of radiation protection. Recommendation of the Commission on radiological protection including justification and explanation; Schutz der Umwelt im Strahlenschutz. Empfehlung der Strahlenschutzkommission mit Begruendung und Erlaeuterung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-01-15

    The environmental protection is part of the radiation protection but without defined regulations concerning the protection of non-human species and the ecological systems. In 2008 the SSK (Strahlenschutzkommission) was asked to elaborate measures for environmental radiation protection. Part of the recommendation was the application of sustainability concepts on radioactive materials.

  3. Radiation protection technician job task analysis manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-03-01

    This manual was developed to assist all DOE contractors in the design and conduct of job task analysis (JTA) for the radiation protection technician. Experience throughout the nuclear industry and the DOE system has indicated that the quality and efficiency in conducting a JTA at most sites is greatly enhanced by using a generic task list for the position, and clearly written guidelines on the JTA process. This manual is designed to provide this information for personnel to use in developing and conducting site-specific JTAs. (VC)

  4. New radiation protection calibration facility at CERN.

    Science.gov (United States)

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Radiation protection enrollments and degrees, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Little, J R; Shirley, D L; Blair, L M

    1982-05-01

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 61 U.S. universities offering degree programs in radiation protection or related areas that would enable students to work in the health physics field. The report includes historical survey data for the last decade and provides information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students.

  6. Educational programme on radiation protection for veterinary medicine specialists

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, G.; Popovic, D. [School of Veterinary Medicine, Dept. of Radiology and Radiation Hygiene and Dept. of Physics, Belgrade (Yugoslavia)

    1992-07-01

    The education of radiation protection for veterinary medicine specialists on the University of Belgrade is integrated both in regular graduate studies and in postgraduate studies. Within the graduate studies, students attend courses in physics and biophysics and in radiation hygiene. During postgraduate or specialistic veterinary medicine studies, veterinary medicine specialists expand their knowledge in radiation protection through a number of courses on radiation biophysics, radioecology, nuclear instrumentation and environmental protection. (author)

  7. Limiting value definition in radiation protection physics, legislation and toxicology. Fundamentals, contrasts, perspectives; Grenzwertbildung im Strahlenschutz. Physik, Recht, Toxikologie. Grundlagen, Kontraste, Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Smeddinck, Ulrich; Koenig, Claudia (eds.)

    2016-07-01

    The volume is the documentation of an ENTRIA workshop discussion on limiting value definition in radiation protection including the following contributions: Introduction in radiation protection -fundamentals concepts of limiting values, heterogeneity; evaluation standards for dose in radiation protection in the context of final repository search; definition of limiting values in toxicology; public participation to limiting value definition - a perspective for the radiation protection regulation; actual developments in radiation protection.

  8. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    Science.gov (United States)

    Vaz, Pedro

    2014-11-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose-response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  9. IX Congress of Spanish radiation protection Society (Bilbao, May-2002); IX Congreso de la Sociedad espanola de proteccion radiologica (Bilbao, Mayo 2002)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The present book contains the papers presented to the IX Congress of Spanish Radiation Protection Society. The main sessions were : 1.- Scientific area of Radiation Protection and Regulation, Social aspects, Radioactive waste management and Dismantling. 2.- Radiation protection in Medical applications. 3.- Physics of radiations and their measurements.

  10. Proceedings of the second conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R. E.; Sims, C. S. [eds.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  11. An assessment of radiation protection practices in radiological ...

    African Journals Online (AJOL)

    Radiation protection practices are essential in ensuring that the detrimental effects of exposure to ionising radiation are minimised. Equipment quality assurance, personnel training and staff dose monitoring have been highlighted as important practices in medical radiation protection. The study was aimed at assessing ...

  12. Survey of radiation protection facilities in some parts of Nigeria ...

    African Journals Online (AJOL)

    Lead aprons were readily available in all the centers. Thermoluminent Dosimetres were available only at the teaching hospitals. It is concluded therefore, that the levels of radiation protection facilities in these centers are below expectation. Radiation Monitoring is almost non-existent. Key Words: Radiation protection, facility ...

  13. Protection from solar ultraviolet radiation by clothing

    Energy Technology Data Exchange (ETDEWEB)

    Pailthorpe, M. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 `Sun Protective Clothing - Evaluation and Classification` specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia`s most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 `sunsuits` have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin.

  14. Relevant aspects of radiation protection in oil and gas well logging.

    Science.gov (United States)

    Gomes, R S; Lopes Gomes, J D R; Costa, M L L; Miranda, M V F E S

    2013-12-01

    Radiation sources have being widely used in industrial applications, but their inappropriate use presents a large potential for hazards to human health and the environment. These hazards can be minimised by development of specific radiation protection rules and adequate procedures for the handling, use and storage of radiation sources, which should be established in a national normative framework. Recently, due to discovery of new oil and gas reservoirs on the Brazilian continental shelf, especially in deep water and the pre-salt layer, there has been a large and rapid increase in the use of radiation sources for well logging. Generic radiation protection regulations have been used for licensing the use of radiation sources for well logging, but these are not comprehensive or technically suitable for this purpose. Therefore it is necessary to establish specific Brazilian safety regulations for this purpose. In this work, an assessment is presented of the relevant radiation protection aspects of nuclear well logging not covered by generic regulations, with the aim of contributing to the future development of specific safety regulations for the licensing of radioactive facilities for oil and gas well logging in Brazil. The conclusions of this work relate to four areas, which include the specific requirements to control (1) radiation sources, (2) radiation survey meters and (3) access to radiation workplaces and (4) to control and identify the workers who are occupationally exposed.

  15. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements.

  16. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Rehani, M. [Massachusetts General Hospital (United States)

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  17. MO-E-213-03: Newer Radiation Protection Requirements in Last Decade

    Energy Technology Data Exchange (ETDEWEB)

    Clements, J. [Kaiser Permanente (United States)

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  18. Guideline for radiation protection in veterinary medicine. Guideline relating to the Ordinance for Protection Against Damage Through Ionising Radiation (Radiation Protection Ordinance - StrlSchV) and the Ordinance for Protection Against X-Ray Radiation (X-Ray Ordinance - RoeV); Richtlinie Strahlenschutz in der Tierheilkunde. Richtlinie zur Verordnung ueber den Schutz vor Schaeden durch ionisierende Strahlen (Strahlenschutzverordnung - StrlSchV) und zur Verordnung ueber den Schutz vor Roentgenstrahlen (Roentgenverordnung - RoeV)

    Energy Technology Data Exchange (ETDEWEB)

    Michalczak, H.

    2005-05-15

    The Guideline on ''Radiation Protection in Veterinary Medicine'' primarily addresses the supreme Land authorities that are responsible for radiation protection. Its purpose is to harmonise the radiation protection procedures employed by the Laender, thus establishing a nationwide uniform system for monitoring the handling of radioactive substances and ionising radiation applications in veterinary medicine on the basis of the legal regulations in force. In addition the guideline is intended to serve veterinary staff as a source of practical information which explains the radiation protection requirements stipulated by the legal regulations and technical rules. This concerns in particular the rules for the acquisition of the necessary radiation protection skills or the necessary knowledge of radiation protection by the veterinary surgeon performing the application or the staff cooperation in the application.

  19. New regulations for radiation protection for work involving radioactive fallout emitted by the TEPCO Fukushima Daiichi APP accident--disposal of contaminated soil and wastes.

    Science.gov (United States)

    Yasui, Shojiro

    2014-01-01

    The accident at the Fukushima Daiichi Atomic Power Plant that accompanied the Great East Japan Earthquake on March 11, 2011, released a large amount of radioactive material. To rehabilitate the contaminated areas, the government of Japan decided to carry out decontamination work and manage the waste resulting from decontamination. In the summer of 2013, the Ministry of the Environment planned to begin a full-scale process for waste disposal of contaminated soil and wastes removed as part of the decontamination work. The existing regulations were not developed to address such a large amount of contaminated wastes. The Ministry of Health, Labour and Welfare (MHLW), therefore, had to amend the existing regulations for waste disposal workers. The amendment of the general regulation targeted the areas where the existing exposure situation overlaps the planned exposure situation. The MHLW established the demarcation lines between the two regulations to be applied in each situation. The amendment was also intended to establish provisions for the operation of waste disposal facilities that handle large amounts of contaminated materials. Deliberation concerning the regulation was conducted when the facilities were under design; hence, necessary adjustments should be made as needed during the operation of the facilities.

  20. Lack of radiation protection for endoscopists performing endoscopic retrograde cholangiopancreatography.

    Science.gov (United States)

    Son, Byoung Kwan; Lee, Kyu Taek; Kim, Jae Seon; Lee, Seung Ok

    2011-12-01

    ERCP using fluoroscopy should be practiced with an adequate radiation protection. However, the awareness of gastrointestinal endoscopists to radiation protection was considered insufficient. In Korea, a country with a rapid increase the number of ERCP procedures, there is no data about radiation protection practices for gastrointestinal endoscopists. The purpose of this study was to investigate current clinical practices and the awareness on radiation protection in ERCP performing physicians in Korea. An anonymous questionnaire regarding radiation protection practices was mailed to 100 members of Korean Pancreatobiliary Association who was porforming ERCP. The questionnaire included ERCP volume of each endoscopist, use of protection devices such as apron, thyroid shield, lead glasses and any mobile shield for scattered radiation, and whether they monitored their own radiation exposure dosage. All respondents wore lead aprons during ERCP. While 52.5% of endoscopists answered that they always wear thyroid guards, 26.9% rarely or never wore it. Only 14% wore lead glasses during the procedure and 69% never wore it. The preparation rates of mobile shields or lead curtains were only 14% and 24%, respectively. Only 10% of endoscopists attached an X-ray badge and 66.7% never used it. Moreover, 75% of endoscopists responded that they did not monitor their own exposure dose to radiation during ERCP. The lack of radiation protection of ERCP endoscopists in Korea was seemed serious. Awareness of radiation hazard should be more concerned and educated in parallel with the preparation of radiation protection equipments.

  1. The radiation protection officer in medicine and engineering; Der Strahlenschutzbeauftragte in Medizin und Technik

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, H.

    2006-08-15

    Subjects: Function and tasks of the radiation protection officers; Behaviour in radiation protection areas; Radiation protection in practice; Staff training and motivation; Measuring equipment; Radiation protection plans - structural, apparative and staff-related; Explanations of radiation protection legislation. This practical guide makes the many requirements on radiation protection easier and more transparent. (orig.)

  2. The radiation protection officer in medicine and engineering; Der Strahlenschutzbeauftragte in Medizin und Technik

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-01

    Subjects: Function and tasks of the radiation protection officers; Behaviour in radiation protection areas; Radiation protection in practice; Staff training and motivation; Measuring equipment; Radiation protection plans - structural, apparative and staff-related; Explanations of radiation protection legislation. This practical guide makes the many requirements on radiation protection easier and more transparent. (orig.)

  3. Standard Guide for Radiation Protection Program for Decommissioning Operations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  4. Radiation Protection and Architecture Utilizing High Temperature Superconducting Magnets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Active radiation shielding concepts have been studied for many decades as a means to protect crew from deep space radiation environments. These studies yield...

  5. BEIR-III report and its implications for radiation protection and public health policy

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1980-03-01

    A general background is given of the implications the BEIR-III Report may have on societal decision-making in the regulation of activities concerned with the health effects of low-level radiation. The scientific basis for establishing appropriate radiation protection guides are discussed. (ACR)

  6. Space Radiation Protection, Space Weather, and Exploration

    Science.gov (United States)

    Zapp, Neal; Fry, Dan; Lee, Kerry

    2010-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during a deep space exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between research and operations . The real, practical work to enable a permanent human presence away from Earth has already begun

  7. Space Weather Status for Exploration Radiation Protection

    Science.gov (United States)

    Fry, Dan J.; Lee, Kerry; Zapp, Neal; Barzilla, Janet; Dunegan, Audrey; Johnson, Steve; Stoffle, Nicholas

    2011-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and in free space, for example, may differ by orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for the ability to conduct exploration operations. We present a current status of developing operational concepts for manned exploration and expectations for asset viability and available predictive and characterization toolsets.

  8. Project Radiation protection East. Status Report, July 1997

    Energy Technology Data Exchange (ETDEWEB)

    Snihs, J.O.; Sundewall, H.; Grapengiesser, S. [STEGRA Consultants (Sweden); Bennerstedt, T. [TeknoTelje (Sweden)

    1997-12-01

    Project Radiation Protection East is a Swedish program for radiation protection work in Central and Eastern Europe. The projects are assessed, planned and performed in close cooperation with partner organizations in the East. Since 1994 radiation protection cooperation concerning the former Soviet Navy training reactors in Paldiski, Estonia, is included in the project. This report presents a summary over some 140 projects, their status, allocated funds and their distribution over countries and project areas. 12 tabs.

  9. 77 FR 66650 - Proposed Revisions to Radiation Protection

    Science.gov (United States)

    2012-11-06

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is revising the following sections in Chapter 12, ``Radiation Protection'' and soliciting public comment on NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition,'' Section 12.1, ``Assuring that Occupational Radiation Exposures Are As Low As Is Reasonably Achievable,'' Section 12.2, ``Radiation Sources,'' 12.3-12.4, ``Radiation Protection Design Features,'' and Section 12.5, ``Operational Radiation Protection Program.''

  10. Novel Technology for Radiation Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation exposure to living tissue generates free radicals through ionizing reaction such as photoelectric effect, Compton and Auger effects.  Radiation...

  11. A review of welding radiation and associated protection measures

    Energy Technology Data Exchange (ETDEWEB)

    Tenkate, T.

    1996-10-01

    Welding processes emit electromagnetic radiation that poses risk to the eyes and skin of workers. This paper reviews the health effects associated with exposure to welding radiation, the types of radiation emitted and the factors that influence the radiation emission. Studies on personal ultraviolet radiation levels of workers exposed to welding are reviewed, and engineering and personal protective measures that limit welding radiation are discussed. These measures include the design of the work area, and the use of semi-transparent welding curtains, protective clothing, safety spectacles and welding helmets. 41 refs., 1 tab., 6 figs.

  12. Radiation Protection Guide (Occupational Safety and Health Guide [OSH Guide], Part 5) (CD-ROM)

    Science.gov (United States)

    Commission. It may be used in combination with an agency-specific manual. The Radiation Protection Guide is based on Title 10, Code of Federal Regulations (CFR), Parts 20 and 31....ELECTRONIC FILE CHARACTERISTICS: 1 file; MS Word (.DOC) in .zip file. PHYSICAL DESCRIPTION: 1 CD-ROM; 4 3/4 in.; 894 KB. ABSTRACT: The Radiation ... Protection Guide (OSH Guide, Part V) is intended for use by Federal agencies in assessing their compliance with the standards of the Nuclear Regulatory

  13. RADIATION PROTECTION OF BELARUS POPULATION OF AFTER THE CHERNOBYL DISASTER

    Directory of Open Access Journals (Sweden)

    Ja. E. Kenigsberg

    2014-01-01

    Full Text Available The  article  describes  the  evolution  of  the  formation  of  the  conceptual  approaches  and  regulation documents for the population radiation protection the after the Chernobyl disaster in Belarus. Zoning scheme showing Belarus contamination is given as well as the dynamics of the quantity of settlements located in the contaminated areas, and population living in them. The methodology of regulation of radionuclides content in the foodstuffs is stated. The data on the population effective exposure doses changing is given for the post-accident period.

  14. A novel complete radiation protection system eliminates physician radiation exposure and leaded aprons.

    Science.gov (United States)

    Fattal, Peter; Goldstein, James A

    2013-07-01

    Occupational health hazards associated with fluoroscopic-based procedures are well known, including a high prevalence of orthopedic problems, and those related to radiation exposure, particularly cancer and cataracts. This article reports the "first-in-man" clinical experience with a novel radiation protection system designed to eliminate radiation exposure to operators and thereby obviate the need for orthopedically burdensome leaded aprons. The Trinity Radiation Protection System consists of a combination of fixed shields, radiation drapes, and interconnecting flexible radiation resistant materials creating a complete radiation protection environment for the operators, yet maintaining full and unimpeded contact with the patient and total control of all operational elements of the catheterization equipment. This report constitutes an analysis of 19 nonrandomized cases in which operator radiation exposure data were collected (Trinity Radiation Protection System n = 10 cases versus standard shielding alone n = 9). In all cases performed with the Trinity System, there was neither any measurable significant radiation exposure in any anatomic region nor for the total case, whereas operators performing cases with standard shielding were exposed to radiation in all regions of their bodies (total per case exposure differences P radiation protection system described is the first to provide a complete radiation barrier that eliminates radiation exposure to operators, thereby obviating the need for orthopedically burdensome leaded aprons. This approach to radiation protection has promise to enhance the safety and occupational health of medical personnel in the catheterization laboratory. Copyright © 2012 Wiley Periodicals, Inc.

  15. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  16. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    Science.gov (United States)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  17. Improved Spacecraft Materials for Radiation Protection

    Science.gov (United States)

    Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Clowdsley, M. S.; Shinn, J. L.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann; Kim, M.-H. Y.; Heinbockel, John H.; Badhwar, Gautam D.

    2001-01-01

    Methods by which radiation shielding is optimized need to be developed and materials of improved shielding characteristics identified and validated. The galactic cosmic rays (GCR) are very penetrating and the energy absorbed by the astronaut behind the shield is nearly independent of shield composition and even the shield thickness. However, the mix of particles in the transmitted beam changes rapidly with shield material composition and thickness. This results in part from the breakup of the high-energy heavy ions of the GCR which make contributions to biological effects out of proportion to their deposited energy. So the mixture of particles in the radiation field changes with shielding and the control of risk contributions from dominant particle types is critical to reducing the hazard to the astronaut. The risk of biological injury for a given particle type depends on the type of biological effect and is specific to cell or tissue type. Thus, one is faced with choosing materials which may protect a given tissue against a given effect but leave unchanged or even increase the risk of other effects in the same tissue or increase the risks to other adjacent tissues of a different type in the same individual. The optimization of shield composition will then be tied to a specific tissue and risk to that tissue. Such peculiarities arise from the complicated mixture of particles, the nature of their biological response, and the details of their interaction with material constituents. Aside from the understanding of the biological response to specific components, one also needs an accurate understanding of the radiation emerging from the shield material. This latter subject has been a principal element of this project. In the past ten years our understanding of space radiation interactions with materials has changed radically, with a large impact on shield design. For example, the NCRP estimated that only 2 g/sq cm. of aluminum would be required to meet the annual 500 m

  18. Assessment of radiation protection practices among radiographers in Lagos, Nigeria

    Science.gov (United States)

    Eze, Cletus Uche; Abonyi, Livinus Chibuzo; Njoku, Jerome; Irurhe, Nicholas Kayode; Olowu, Oluwabola

    2013-01-01

    Background: Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. Materials and Methods: The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Results: Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Conclusion: Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation. PMID:24665152

  19. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements.

  20. The importance of microdosimetry for radiation biology and radiation protection

    NARCIS (Netherlands)

    Barendsen, G.W.

    1967-01-01

    In this contribution several features will be discussed of relations between biological effects produced by ionizing radiations and the spatial distributions of energy deposition of these radiations. Effects produced by high-LET radiations are generally found to be less dependent on dose-rate,

  1. Evolution of the radiation protection system; L'evolution du systeme de protection radiologique

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, R.H. [International Commission on Radiological Protection, Stockholm (Sweden); Schieber, C.; Cordoliani, Y.S. [Societe Francaise de Radioprotection, 92 - Fontenay aux Roses (France); Brechignac, F. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire, Dept. de Protection de l' Environnement, 13 - Saint Paul Lez Durance (France)

    2003-07-01

    The evolution of the system of radiological protection: justification for new ICRP recommendations, thoughts of the SFRP work group about the evolution of the system of radiation protection proposed by the ICRP, protection of environment against ionizing radiations seen by the ICRP are the three parts of this chapter. (N.C.)

  2. European cooperation in radiation protection in NORM-industries

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, Rainer [Nuclear Control and Consulting GmbH, Braunschweig (Germany); Pepin, Stephane [Federal Agency for Nuclear Control, Brussels (Belgium). Section Surveillance of the Territory and Natural Radiation; Wiegers, Rob [IBR Consult BV, Haelen (Netherlands)

    2017-10-01

    Noturally occurring radioactive materials, abbreviated NORM, have been incorporated into the European legislative framework of radiation protection With Directive 96/29/Euratom. Title VII of this directive pointed out that radiation protection has to be applied to ''work activities not covered by Article 2 [1] within which the presence of natural radiation sources leads to a significant increase in the exposure of workers or of members of the public which cannot be disregarded from the radiation protection point of view''. This new legal framework resulted in challenges for non-nuclear industries which process, treat or otherwise handle natural radiation sources. The natural radiation sources in these industries differ from the man-made radiation sources used in technical applications of radioactivity. In the non-nuclear industry, large volumes of raw materials with generally low activity concentration are processed.

  3. Common strategic research agenda for radiation protection in medicine.

    Science.gov (United States)

    2017-04-01

    Reflecting the change in funding strategies for European research projects, and the goal to jointly improve medical radiation protection through sustainable research efforts, five medical societies involved in the application of ionising radiation (European Association of Nuclear Medicine, EANM; European Federation of Organizations for Medical Physics. EFOMP; European Federation of Radiographer Societies, EFRS; European Society of Radiology, ESR; European Society for Radiotherapy and Oncology, ESTRO) have identified research areas of common interest and developed this first edition of the Common Strategic Research Agenda (SRA) for medical radiation protection. The research topics considered necessary and most urgent for effective medical care and efficient in terms of radiation protection are summarised in five main themes: 1. Measurement and quantification in the field of medical applications of ionising radiation 2. Normal tissue reactions, radiation-induced morbidity and long-term health problems 3. Optimisation of radiation exposure and harmonisation of practices 4. Justification of the use of ionising radiation in medical practice 5. Infrastructures for quality assurance The SRA is a living document; thus comments and suggestions by all stakeholders in medical radiation protection are welcome and will be dealt with by the European Alliance for Medical Radiation Protection Research (EURAMED) established by the above-mentioned societies. • Overcome the fragmentation of medical radiation protection research in Europe • Identify research areas of joint interest in the field of medical radiation protection • Improve the use of ionising radiation in medicine • Collect stakeholder feedback and seek consensus • Emphasise importance of clinical translation and evaluation of research results.

  4. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    other things. Up-to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements.

  5. [Determination of the need for solar UV radiation protection].

    Science.gov (United States)

    Letić, Milorad

    2010-01-01

    Effects of ultraviolet radiation on the skin, the eyes and the immune system are well known. The need for UV radiation protection is popularized by the introduction of UV index. Uneven intensity of UV radiation in different regions in different periods of the year and in different times of the day requires that recommendations for UV radiation protection are given for possible UV index values in those regions. The aim of the study is to establish a simple and consistent method for the determination of the need for UV radiation protection in Serbia where UV radiation intensity can be approximated as uniform. Possible values of UV index during the year and the sun elevation during the day in periods throughout the year were used for the determination of maximal possible UV index values. These values were compared to UV index forecasts regarding UV radiation protection. Maximal possible values for UV index were used for producing the colour graph. Colours on the graph indicate the need for UV radiation protection. Green--protection is not needed, yellow--protection is needed, red--protection is obligatory. Comparisons with the need for protection based on forecasts showed congruence in 97% of cases. The use of the graph for the determination of the need for UV radiation protection gives nearly the same results as recommendations based on UV index forecasts. The advantages of the graph are that it gives recommendations for the whole year, for the time intervals during the day in every period of the year and for the whole territory of Serbia.

  6. Radiation protection education and training infrastructure. Open and distance learning tools for training in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Marco, M.; Rodriguez, M.; Gonzalez Giralda, C.G.; Bailador Ferreras, A.B. [CIEMAT, Madrid (Spain); Coeck, M.C. [Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire, Mol (Belgium); Etard, C.E. [CEA Saclay, 91 - Gif sur Yvette (France). INSTN, Institut National des Sciences et Techniques Nucleaires; Moebius, S.M. [FZK -FTU, Munich (Germany); Schmitt-Hanning, A.S. [BfS, Karlsruhe (Germany); Luciani, A.I. [ENEA, Bologna (Italy); Van Der Steen, J.V. [NRG, Petten (Netherlands)

    2006-07-01

    Full text: A sustainable Education and Training (E.T.) infrastructure for Radiation Protection is an essential component to combat the decline in expertise and to ensure the continuation of the high level of radiation protection knowledge in the future. Such infrastructure has to be built in such a way that both the initial training (Education) and the unceasing maintenance of the level of competencies (referred to as 'Training') are available. The E.N.E.T.R.A.P. project intends to develop the E.T. infrastructure mentioned. To achieve the aims of the different tasks and activities, the work programme for the E.N.E.T.R.A.P. Network is divided in eight work packages developed by 11 partners: Each partner will assume responsibility for the W.P.s. C.I.E.M.A.T. is involved in the W.P.-5 'New concepts and new tools for an E.R.P.C.'. The tasks of the W.P.-5 are focussed in the investigation of the electronic tools used in R.P. training and education. This paper presents the first results of this working group. The first task is an approach to the development and usage of learning resources. A review on the e-learning methodologies, the present state of art and its evolution, are being carried out. Results will be used to select the best way to host learning activities in the framework of the E.N.E.T.R.A.P. project. Another important task is to identify, analyse and evaluate the Open and Distance learning tools and material existing for train ing in Radiation Protection. A review on the evolutions, approaches and methodologies aiming to provide education and training in radiation protection, will be carried out. The results of this task will be a summary of links referred to the most interesting R.P. e-learning. Finally, taking in account the previous results a pilot R.P. module of E.R.P.C. should be prepared. (authors)

  7. Radiation From Solar Activity | Radiation Protection | US EPA

    Science.gov (United States)

    2017-08-07

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  8. Knowledge plus Attitude in Radiation Protection; Aptitud mas Actitud en Proteccion Radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Velez, G. R.; Sanchez, G. D.

    2003-07-01

    Since the introduction of the Basic Safety Standards recommendations, the scope of the radiation protection was broadening. On behalf of the incorporation of radiation protection of the patient in medical exposures, the different groups of professionals involved: physicians, medical physicists, radiation protection officers, regulators, etc., have to work together. The objective of radiation protection, that is, to reduces doses from practices, to prevent potential exposures, to detect its occurrence as well as to evaluate and spread such abnormal situations, will be obtained only if it were possible to joint two basic conditions: knowledge and attitude. It should be well known the differences between the backgrounds needed to be for example, a medical physicist or an R.P.O., However, their attitude to solve an eventual problem involving radiation protection should be the same; as well as the behavior of the specialized physician and regulators, in order to add towards common goals. In this work, we show as an example the curricula contents about radiation protection of the cancer of medical physics in the Universidad Nacional de San Martin (UNSAM), and the corresponding module on medical exposures from the Post-Graduate course on Radiation Protection and Nuclear Safety, held since the 80s in Buenos Aires by the National Commission of Atomic Energy, ARN, IAEA, and the Universidad de Buenos Aires. On the other hand, we describe different attitudes which leads or could start major radiological accidents, regardless the level of knowledge in radiation protection. We conclude that the larger numbers of accidents are due to problems in the attitude than in the level of knowledge of the person involved. Consequently; we suggest emphasizing the discussion on how to generate positive attitudes in every professional involucrated, independently of its cognitive profile or level. (Author) 2 refs.

  9. Evolution of radiation protection training programmes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Monica, Rodriguez Suarez; Elvira, Hernando Velasco; Javier, Menarguez; Javier, Fernandez; Susana, Falcon; Mirian, Bravo [CIEMAT - Radiation Protection Training Unit ( IEE), Madrid (Spain)

    2006-07-01

    Education and training are an important tool to promote safety culture and to upgrade competence. In this sense, Radiation Protection (R.P.) training programmes are a major challenge in order to achieve occupational, public and environmental radiation protection in all applied fields of ionising radiation.The Spanish R.P. Education and Training system provides a solid and integrated educational model. The needs for a specialized training on R.P. for exposed workers appears into the Spanish regulation in 1964. Since then, a wide variety of R.P. initial, continuous and on the job training courses has been carried out, taking into account the diverse applied fields, the different levels of responsibilities, the technological and methodological advances, as well as the international trends. C.I.E.M.A.T., through the R.P. training Unit, has been organizing and developing most of the R.P. training in Spain since 1964, becoming a reference centre. The educational programmes are being continuously updating and improving in order to complete and adapt all R.P. training levels. Initial training, long-life training, updating or upgrading training, as well as other innovative courses related with R.P. are being offered by C.I.E.M.A.T. each year. Another important aspect of R.P. is the information and training to stake holders. C.I.E.M.A. T. is also working in this sense. The purpose of this paper is to analyse the evolution of R.P. training processes since 1964 in Spain, in order to conclude which are the future trends and the changes required to adapt the Spanish R.P. Education and Training system to the current needs and upcoming scene. (authors)

  10. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Salomaa, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  11. Radiation protection, radiation safety and radiation shielding assessment of HIE-ISOLDE.

    Science.gov (United States)

    Romanets, Y; Bernardes, A P; Dorsival, A; Gonçalves, I F; Kadi, Y; di Maria, S; Vaz, P; Vlachoudis, V; Vollaire, J

    2013-07-01

    The high intensity and energy ISOLDE (HIE-ISOLDE) project is an upgrade to the existing ISOLDE facility at CERN. The foreseen increase in the nominal intensity and the energy of the primary proton beam of the existing ISOLDE facility aims at increasing the intensity of the produced radioactive ion beams (RIBs). The currently existing ISOLDE facility uses the proton beam from the proton-synchrotron booster with an energy of 1.4 GeV and an intensity up to 2 μA. After upgrade (final stage), the HIE-ISOLDE facility is supposed to run at an energy up to 2 GeV and an intensity up to 4 μA. The foreseen upgrade imposes constrains, from the radiation protection and the radiation safety point of view, to the existing experimental and supply areas. Taking into account the upgraded energy and intensity of the primary proton beam, a new assessment of the radiation protection and radiation safety of the HIE-ISOLDE facility is necessary. Special attention must be devoted to the shielding assessment of the beam dumps and of the experimental areas. In this work the state-of-the-art Monte Carlo particle transport simulation program FLUKA was used to perform the computation of the ambient dose equivalent rate distribution and of the particle fluxes in the projected HIE-ISOLDE facility (taking into account the upgrade nominal primary proton beam energy and intensity) and the shielding assessment of the facility, with the aim of identifying in the existing facility (ISOLDE) the critical areas and locations where new or reinforced shielding may be necessary. The consequences of the upgraded proton beam parameters on the operational radiation protection of the facility were studied.

  12. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole

  13. Radiation protection education and training in Switzerland: What can be improved?; Strahlenschutzausbildung in der Schweiz. Was koennen wir noch verbessern?

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, Swen-Gunnar [Eidgenoessisches Nuklearsicherheitsinspektorat (ENSI), Villigen (Switzerland)

    2013-09-01

    In the frame of the amendment of the Swiss radiation protection regulations (StSV) the radiation protection education and training system is checked whether there is a need for improvement measures or the regulations have to be revised. Experiences, the comparison with other education and training systems and international developments were compiled and evaluated The responsible expert group with participants from authorities and instructors decided that no fundamental changes are necessary. In the contribution two items are discussed: The mandatory external consulting of licensees by acknowledged radiation protection experts - as required by the EU BSS (basic safety standards) with the definition of a radiation protection expert (RPE) - bears more disadvantages than advantages. On the other hand the improvement potential with respect to clearness and courtesy of requirements for radiation protection education and training in Switzerland were considered in the frame of WU-BSS revision.

  14. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    Science.gov (United States)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  15. Environmental Protection Agency, Office of Air and Radiation

    Science.gov (United States)

    ... 19, 2017 Web Snapshot . US EPA United States Environmental Protection Agency Search Search About EPA Contact Us ... Your UV Index Climate change National Analytical Radiation Environmental Laboratory National Vehicle and Fuel Emissions Laboratory National ...

  16. Simple Benchmark Specifications for Space Radiation Protection

    Science.gov (United States)

    Singleterry, Robert C. Jr.; Aghara, Sukesh K.

    2013-01-01

    This report defines space radiation benchmark specifications. This specification starts with simple, monoenergetic, mono-directional particles on slabs and progresses to human models in spacecraft. This report specifies the models and sources needed to what the team performing the benchmark needs to produce in a report. Also included are brief descriptions of how OLTARIS, the NASA Langley website for space radiation analysis, performs its analysis.

  17. Contextual Information for the Potential Enhancement of Annual Radiation Protection Program Review Reports.

    Science.gov (United States)

    Emery, Robert J; Gutiérrez, Janet M

    2017-08-01

    Organizations possessing sources of ionizing radiation are required to develop, document, and implement a "radiation protection program" that is commensurate with the scope and extent of permitted activities and sufficient to ensure compliance with basic radiation safety regulations. The radiation protection program must also be reviewed at least annually, assessing program content and implementation. A convenience sample assessment of web-accessible and voluntarily-submitted radiation protection program annual review reports revealed that while the reports consistently documented compliance with necessary regulatory elements, very few included any critical contextual information describing how important the ability to possess radiation sources was to the central mission of the organization. Information regarding how much radioactive material was currently possessed as compared to license limits was also missing. Summarized here are suggested contextual elements that can be considered for possible inclusion in annual radiation protection program reviews to enhance stakeholder understanding and appreciation of the importance of the ability to possess radiation sources and the importance of maintaining compliance with associated regulatory requirements.

  18. Evaluation of radiation protection conditions in intraoral radiology

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, Cristiano; Barros, Frieda Saicla; Rocha, Anna Silvia Penteado Setti da, E-mail: miguel_cristianoch@yahoo.com.br [Universidade Tecnologica Federal do Parana (PPGEB/UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Biomedica; Tilly Junior, Joao Gilberto [Universidade Federal do Parana (UNIR/UFPR), Curitiba, PR (Brazil). Hospital de Clinicas. Unidade de Imagem e Radioterapia; Almeida, Claudio Domingues de [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Medica

    2016-04-15

    Introduction: The dental radiology represents about 20% of human exposure to radiation in radio diagnostic. Although the doses practiced in intraoral dentistry are considered low, they should not be ignored due to the volume of the performed procedures. This study presents the radiation protection conditions for intraoral radiology in Curitiba - PR. Methods: Data was collected through a quantitative field research of a descriptive nature during the period between September of 2013 and December of 2014. The survey sample consisted of 97 dentists and 130 intraoral equipment. The data related to the equipment was collected using structured questions and quality control evaluations. The evaluations of the entrance skin dose, the size of the radiation field and the total filtration were performed with dosimetry kits provided and evaluated by IRD/CNEN. The exposure time and voltage were measured using noninvasive detectors. The occupational dose was verified by thermoluminescent dosimeters. The existence of personal protection equipment, the type of image processing and knowledge of dentists about radiation protection were verified through the application of a questionnaire. Results: Among the survey's results, it is important to emphasize that 90% of the evaluated equipment do not meet all the requirements of the Brazilian radiation protection standards. Conclusion: The lack of knowledge about radiation protection, the poor operating conditions of the equipment, and the image processing through visual method are mainly responsible for the unnecessary exposure of patients to ionizing radiation. (author)

  19. A regulatory perspective on whether the system of radiation protection is fit for purpose.

    Science.gov (United States)

    Boyd, M A

    2012-01-01

    The system of radiation protection has its origins in the early efforts to protect people from x rays and radium. It was at the Second International Congress of Radiology in Stockholm in 1928 where the first radiation protection recommendations were adopted. The system of protection steadily evolved as new sources of exposure arose and understanding of radiation-related health risks improved. Safeguarding against these risks has required regulators to set enforceable (i.e. measurable) standards. From erythema dose to tolerance dose, critical organ dose to effective dose equivalent, and now effective dose, the units used to set these limits have evolved along with the science underpinning them. Similarly, the definition of the person or group being protected has changed - from Standard Man to Reference Man to Reference Person, with age and gender differences now considered explicitly. As regulators look towards implementing the changes in the 2007 Recommendations of the International Commission on Radiological Protection (ICRP), there remain questions about how to translate an optimisation-based system of constraints and reference levels into the more familiar regime of enforceable limits. Nevertheless, as the new ICRP Recommendations are refinements of a system that did the job it was designed to do more than adequately, so too will the new system of radiation protection be fit for purpose. Copyright © 2012. Published by Elsevier Ltd.

  20. The radiation protection officer in medicine and engineering; Der Strahlenschutzbeauftragte in Medizin und Technik

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.G.; Wolf, H.

    2008-06-15

    The directory covers the duties and responsibilities of the radiation protection officer in medicine and engineering, the fundamentals of radiation protection (German radiation protection law, limiting values, fundamental physics, biological radiation effects of ionizing radiation, radon at the working place, radiation protection for neutron handling), the accomplishment of radiation protection (radiation protection in case of open radioactive source handling, application of encapsulated radioactive materials, operation of facilities generating ionizing radiation, employment in foreign facilities or institutions, technical X-ray facilities or interfering radiation, X-ray facility in medicine, quality assurance in nuclear medicine).

  1. Radiation protection in medical and biomedical research; Proteccion radiologica en la investigacion medica y biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Fuente Puch, A.E. de la, E-mail: andres@orasen.co.cuES [Centro Nacional de Seguridad Nuclear, La Habana (Cuba)

    2013-11-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation.

  2. Recommendations for occupational radiation protection in interventional cardiology.

    Science.gov (United States)

    Durán, Ariel; Hian, Sim Kui; Miller, Donald L; Le Heron, John; Padovani, Renato; Vano, Eliseo

    2013-07-01

    The radiation dose received by cardiologists during percutaneous coronary interventions, electrophysiology procedures and other interventional cardiology procedures can vary by more than an order of magnitude for the same type of procedure and for similar patient doses. There is particular concern regarding occupational dose to the lens of the eye. This document provides recommendations for occupational radiation protection for physicians and other staff in the interventional suite. Simple methods for reducing or minimizing occupational radiation dose include: minimizing fluoroscopy time and the number of acquired images; using available patient dose reduction technologies; using good imaging-chain geometry; collimating; avoiding high-scatter areas; using protective shielding; using imaging equipment whose performance is controlled through a quality assurance programme; and wearing personal dosimeters so that you know your dose. Effective use of these methods requires both appropriate education and training in radiation protection for all interventional cardiology personnel, and the availability of appropriate protective tools and equipment. Regular review and investigation of personnel monitoring results, accompanied as appropriate by changes in how procedures are performed and equipment used, will ensure continual improvement in the practice of radiation protection in the interventional suite. These recommendations for occupational radiation protection in interventional cardiology and electrophysiology have been endorsed by the Asian Pacific Society of Interventional Cardiology, the European Association of Percutaneous Cardiovascular Interventions, the Latin American Society of Interventional Cardiology, and the Society for Cardiovascular Angiography and Interventions. Copyright © 2013 Wiley Periodicals, Inc.

  3. Radiation Brain Drain? The Impact of Demographic Change on U.S. Radiation Protection.

    Science.gov (United States)

    Hricak, Hedvig; Dauer, Lawrence T

    2017-02-01

    The use of radiation has a substantial beneficial impact, particularly in the areas of medicine, energy production, basic science research, and industrial applications. Radiation protection knowledge and experience are required for acquiring and implementing scientific knowledge to protect workers, members of the public, and the environment from potential harmful effects of ionizing radiation while facilitating the beneficial use and development of radiation-based technologies. However, demographic changes are negatively impacting U.S. radiation protection and response capabilities. The number of radiation professionals continues to decrease even as the demand for such professionals is growing. These concerns are most pronounced in the medical, energy, research, and security arenas. Though the United States has been the world leader in radiation protection and radiation sciences for many years, the country has no strategic plan to ensure the maintenance of expertise in radiobiology, radiation physics, and radiation protection. Solving this problem will require a significant increase in federal and state funding as well as formal partnerships and initiatives among academia, professional societies, government, and the private sector.

  4. Occupational Radiation Exposure during Endoscopic Retrograde Cholangiopancreatography and Usefulness of Radiation Protective Curtains

    Directory of Open Access Journals (Sweden)

    Tomoyuki Minami

    2014-01-01

    Full Text Available Objective. To evaluate the effectiveness of radiation protective curtains in reducing the occupational radiation exposure of medical personnel. Methods. We studied medical staff members who had assisted in 80 consecutive therapeutic endoscopic retrograde cholangiopancreatography (ERCP procedures. Use of radiation protective curtains mounted to the X-ray tube was determined randomly for each procedure, and radiation doses were measured with electronic pocket dosimeters placed outside the protective apron. Results. When protective curtains were not used, the mean radiation doses to endoscopists, first assistants, second assistants, and nurses were 340.9, 27.5, 45.3, and 33.1 µSv, respectively; doses decreased to 42.6, 4.2, 13.1, and 10.6 µSv, respectively, when protective curtains were used (P<0.01. When the patient had to be restrained during ERCP (n=8, the radiation dose to second assistants without protective curtains increased by a factor of 9.95 (P<0.01 relative to cases in which restraint was not required. Conclusions. During ERCP, not only endoscopists, but also assistants and nurses were exposed to high doses of radiation. Radiation exposure to staff members during ERCP was reduced with the use of protective curtains.

  5. Radiation Protection in Medical Physics : Proceedings of the NATO Advanced Study Institute on Radiation Protection in Medical Physics Activities

    CERN Document Server

    Lemoigne, Yves

    2011-01-01

    This book introduces the fundamental aspects of Radiation Protection in Medical Physics and covers three main themes: General Radiation Protection Principles; Radiobiology Principles; Radiation Protection in Hospital Medical Physics. Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advances in the field. Some issues specific to the individual techniques are also treated, e.g. calculation of patient dose as well as that of workers in hospital, optimisation of equipment used, shielding design of radiation facilities, radiation in oncology such as use of brachytherapy in gynecology or interventional procedures. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehensive introduction to the field as well as a reliable overview of the most recent developments.

  6. Radiation protection during hybrid procedures: innovation creates new challenges.

    Science.gov (United States)

    Sawdy, Jaclynn M; Gocha, Mark D; Olshove, Vincent; Chisolm, Joanne L; Hill, Sharon L; Phillips, Alistair; Galantowicz, Mark; Cheatham, John P; Holzer, Ralf J

    2009-09-01

    The cooperation between interventional cardiologists and cardiothoracic surgeons has expanded the spectrum of treatment modalities for patients with congenital heart disease. These hybrid techniques have created new challenges, one of which being the provision of adequate but practical radiation protection. This study evaluates the use of a lightweight radiation protection drape (RADPAD) that may be suitable for shielding during hybrid procedures. To simulate a pediatric patient, an 8.7 liter water-filled tub was placed on an X-ray table and exposed to 10-second cine acquisition runs. Radiation exposure was measured at twelve specified locations around the table using a model with three different levels of radiation protection: no shielding, shielding using a traditional 0.35 mm lead-equivalent apron, and shielding using the 0.25 mm lead-equivalent RADPAD. The traditional lead apron and the RADPAD significantly reduced the amount of radiation dose when compared with no shielding. The standard lead apron provided slightly greater radiation protection than the RADPAD (0.000064 radiation absorbed dose [rad] vs. 0.000091 rad; p = 0.012). The measured rad was significantly higher on the right side of the table, and the measured radiation dose decreased significantly with increasing distance from the table. The RADPAD has been shown to function as an efficient shielding device, even though it does not quite match the protection that can be expected from a standard lead apron. It complies with regulatory radiation protection requirements and its lightweight and sterile use make it particularly useful during hybrid procedures in the operating room.

  7. Radiation protection enrollments and degrees, 1979 and 1980

    Energy Technology Data Exchange (ETDEWEB)

    Gove, R.M.; Little, J.R.; Shirley, D.L.

    1981-07-01

    Public concern over the effects of low-level radiation and other aspects of the use of nuclear energy has grown in recent years, and the demand for radiation protection has continued to increase. Radiation Protection Enrollments and Degrees presents the results of the latest survey of institutions offering degree programs in this field. Students obtaining such degrees are vital to the development of industry, medicine, research, power production, construction, and agriculture. These surveys assist state and federal governments in their search for such personnel.

  8. Countermeasure for Radiation Protection and Repair

    Science.gov (United States)

    2008-01-01

    Exposure to ionizing radiation during long-duration space missions is expected to cause short-term illness and increase long-term risk of cancer for astronauts. Radiation-induced free radicals overload the antioxidant defense mechanisms and lead to cellular damage at the membrane, enzyme, and chromosome levels. A large number of radioprotective agents were screened, but most had significant side effects. But there is increasing evidence that significant radioprotective benefit is achieved by increasing the dietary intake of foods with high antioxidant potential. Early plant-growing systems for space missions will be limited in both size and volume to minimize power and mass requirements. These systems will be well suited to producing plants containing high concentrations of bioprotective antioxidants. This project explored whether the production of bioprotective compounds could be increased by altering the lighting system, without increasing the space or power requirements for production, and evaluated the effects of environmental conditions (light quantity, light quality, and carbon dioxide [CO2] concentration) on the production of bioprotective compounds in lettuce, which provide a biological countermeasure for radiation exposure. The specific deliverables were to develop a database of bioprotectant compounds in plants that are suitable for use on longduration space missions, develop protocols for maintaining and increasing bioprotectant production under light emitting diodes (LEDs), recommend lighting requirements to produce dietary countermeasures of radiation, and publish results in the Journal of the American Society for Horticultural Science.

  9. Report on the PWR-radiation protection/ALARA Committee

    Energy Technology Data Exchange (ETDEWEB)

    Malone, D.J. [Consumers Power Co., Covert, MI (United States)

    1995-03-01

    In 1992, representatives from several utilities with operational Pressurized Water Reactors (PWR) formed the PWR-Radiation Protection/ALARA Committee. The mission of the Committee is to facilitate open communications between member utilities relative to radiation protection and ALARA issues such that cost effective dose reduction and radiation protection measures may be instituted. While industry deregulation appears inevitable and inter-utility competition is on the rise, Committee members are fully committed to sharing both positive and negative experiences for the benefit of the health and safety of the radiation worker. Committee meetings provide current operational experiences through members providing Plant status reports, and information relative to programmatic improvements through member presentations and topic specific workshops. The most recent Committee workshop was facilitated to provide members with defined experiences that provide cost effective ALARA performance.

  10. Radiation Protection and Dosimetry An Introduction to Health Physics

    CERN Document Server

    Stabin, Michael G

    2007-01-01

    This comprehensive text provides an overview of all relevant topics in the field of radiation protection (health physics). Radiation Protection and Dosimetry serves as an essential handbook for practicing health physics professionals, and is also ideal as a teaching text for courses at the university level. The book is organized to introduce the reader to basic principles of radiation decay and interactions, to review current knowledge and historical aspects of the biological effects of radiation, and to cover important operational topics such as radiation shielding and dosimetry. In addition to presenting the most up to date treatment of the topics and references to the literature, most chapters contain numerical problems with their solutions for use in teaching or self assessment. One chapter is devoted to Environmental Health Physics, which was written in collaboration with leading professionals in the area.

  11. [About Dose-Effect Relationship in the Environment Radiation Protection].

    Science.gov (United States)

    Udalova, A A

    2015-01-01

    One of the most important stages in the development of a methodology for the environment radiation protection is the assessment and justification of critical radiation exposure levels for ecosystem components. In this study application of the approach for critical dose level estimation is demonstrated on the example of the data about ionizing radiation effect on reproduction and survival of agricultural plants after acute and chronic exposures. Influence of the type of dose-effect relationship on the estimated values of the critical doses and dose rates is studied using three models (linear, logarithmic and logistic). The findings obtained do not provide any robust recommendations in favor of one of the three tested functions. The models of dose-effect relationship (threshold or non-threshold) and types of radiation-induced effects (stochastic and deterministic) are discussed from the viewpoint of developing a system for radiation protection of human and non-human biota.

  12. Wipe testing of sealed radiation sources using a radiation protection assistant robot

    Directory of Open Access Journals (Sweden)

    Zeb Jahan

    2009-01-01

    Full Text Available Sealed radiation sources are commonly used in different research institutes, industries, and hospitals. The sources of various strengths are manufactured in different sizes and shapes. It is a regulatory requirement that these sources must be monitored frequently for their integrity and to avoid any radiological contamination hazard. Mainly, a wipe test is recommended for the contamination detection due to the leakage of sealed radiation sources. A radiation protection assistant robot has been fabricated to execute different tasks in a hazardous radiation environment. In this study, the robot was used to conduct the wipe test of five sealed radiation sources. The sealed radiation sources were tested safely and securely without giving any radiation dose to the radiation worker. The radiation doses received by the robot gripper and waist during the wipe test were 3.4 Gy and 208.9 mGy, respectively.

  13. 15 CFR 30.17 - Customs and Border Protection regulations.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Customs and Border Protection regulations. 30.17 Section 30.17 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Requirements § 30.17 Customs and Border Protection regulations. Refer to the DHS's CBP regulations, 19 CFR 192...

  14. Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Sherin T.; Bergström, Petra; Hammarsten, Ola, E-mail: ola.hammarsten@clinchem.gu.se

    2014-05-01

    Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA and reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2′-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. - Highlights: • Repeated treatment with sulforaphane protects fibroblasts from ionizing radiation • Repeated sulforaphane treatment attenuates radiation induced ROS and DNA damage • Sulforaphane mediated protection is Nrf2 dependent.

  15. Encouraging the radiation protection practice; Incentivando a pratica da radioprotecao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natanael O.; Cunha, Paulo C.N., E-mail: natanfisio@hotmail.com, E-mail: paulo.cunha@hotmail.com [Universidade Estadual de Ciencias da Saude de Alagoas (UNCISAL), Maceio, AL (Brazil); Junior, Jose N.S.; Silva, Jessyca B., E-mail: nobertsilva@hotmail.com, E-mail: Jessyca.bs@hotmail.com [Escola Tecnica de Saude de Santa Barbara, Arapiraca, AL (Brazil)

    2013-07-01

    The radiological protection of workers occupationally exposed to ionizing radiation (X-ray diagnoses, Nuclear Medicine, Radiotherapy and Dental) is essential to minimize the appearance of radiation effects. The ways to reduce the potential for exposure of workers are: Time, Distance , and Shielding. The most important purpose of radiation protection is to provide safe conditions for activities involving ionizing radiation, basic safety conditions that must be observed in professional practice. The professional must have full knowledge of the subject and deepen in the revision of norms and guidelines related to radiation protection establish by the Vigilancia Sanitaria - ANVISA, and Comissao Nacional de Energia Nuclear - CNEN, Brazil. The study was conducted in a technical school for the Technical Training Course in Radiology, where the students are invited to think deeply about the radiation protection of themselves, the patients and the environment. Developed since July 2012, with the participation of 30 students, with a leading class -three teachers assisting in the development of the project . With this project there was an awareness of both students, as instructors stage accompanying the daily lives of students and their own colleagues. Following the same objective in 2013 the project continues with more adept at radioprotection.

  16. General tissue reactions and implications for radiation protection.

    Science.gov (United States)

    Miyazaki, S; Hill, C

    2015-06-01

    Non-cancer effects and risks at low doses from ionising radiation are controversial topics within the field of radiation protection. These issues are discussed in International Commission on Radiological Protection (ICRP) Publication 118, 'ICRP statement on tissue reactions'. Both non-cancer effects and risks are expected to become increasingly important to the system of radiation protection. Before this can happen, several factors must be considered: thorough characterisation of the relationship between dose and risk; verification of the biological mechanisms for any noted excess risk; and adjustment of noted excess risks through the use of a detriment factor. It is difficult to differentiate the relatively small risks associated with radiation from other risk factors in the low-dose region of the dose-response curve. Several recent papers have indicated the possibility of a non-linear dose-response relationship for non-cancer effects. In addition, there are still many uncertainties associated with the biological mechanisms for non-cancer effects. Finally, it is essential to consider the incorporation of detriment into a well-defined system of radiological protection. Given the recent interest in non-cancer effects, it is essential to facilitate discussions in order to define dose limits more clearly within the existing system of radiation protection for both cancer and non-cancer effects. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Radiation dose and radiation protection principle awareness: a survey among Nigerian paediatricians.

    Science.gov (United States)

    Famurewa, O C; Obiajunwa, P O; Elusiyan, J B; Ibitoye, B O

    2014-03-01

    This study is aimed at determining the knowledge of Paediatricians in Nigeria about the basic principle of radiation protection ALARA (As Low As Reasonably Achievable) and their knowledge of the radiation doses that children receive during some common radiological procedures. Two hundred and fifty questionnaires were circulated among paediatricians at the 2012 annual Paediatricians' Association of Nigeria Conference. The questionnaires contain 10 questions designed to asses the pediatricians' general knowledge on : ionising radiation and the risks, doses children receive during some common radiological procedures and awareness of the radiation protection principle, ALARA ( As Low As Reasonably Achievable). Of the 162 Paediatricians that participated, 69% named at least one non medical source of ionising radiation, 54.9% would not recommend CXR to screen an apparently healthy child for tuberculosis and 87% believe that children are at greater risk of adverse effects of ionising radiation. For dose estimation, 51.9% and 51.2% of the paediatricians underestimated doses received during Cranial and abdominal computerised tomography respectively while 13.6% and 37% respectively erroneously believed that abdominal ultrasound and brain magnetic resonance imaging utilise ionising radiation. 13.6% gave the correct meaning of the Acronym ALARA. The Paediatricians' knowledge about the basic principle of radiation protection ALARA and the doses that children receive during some common radiological procedures is poor. There is need to ensure adequate training on radiation hazards and protection at all levels of medical education.

  18. Carotenoids and protection against solar UV radiation.

    Science.gov (United States)

    Stahl, Wilhelm; Sies, Helmut

    2002-01-01

    Upon exposure to UV light photooxidative reactions are initiated which are damaging to biomolecules and affect the integrity of cells and tissues. Photooxidative damage plays a role in pathological processes and is involved in the development of disorders affecting the skin. When skin is exposed to UV light, erythema is observed as an initial reaction. Carotenoids like beta-carotene or lycopene are efficient antioxidants scavenging singlet molecular oxygen and peroxyl radicals generated in during photooxidation. When beta-carotene was applied as such or in combination with alpha-tocopherol for 12 weeks, erythema formation induced with a solar light simulator was diminished from week 8 on. Similar effects were also achieved with a diet rich in lycopene. Ingestion of tomato paste corresponding to a dose of 16 mg lycopene/ day over 10 weeks led to increases in serum levels of lycopene and total carotenoids in skin. At week 10, erythema formation was significantly lower in the group that ingested the tomato paste as compared to the control group. No significant difference was found at week 4 of treatment. Thus, protection against UV light-induced erythema can be achieved by ingestion of a commonly consumed dietary source of lycopene. Such protective effects of carotenoids were also demonstrated in cell culture. The in-vitro data indicate that there is an optimal level of protection for each carotenoid. Copyright 2002 S. Karger AG, Basel

  19. Standard Syllabus for Postgraduate Educational Courses in Radiation Protection and the Safe use of Radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Arias, C.; Biaggio, A.; Nasazzi, N.

    2004-07-01

    The International Atomic Energy Agency (IAEA) published the Standard Syllabus for Post Graduate Educational Courses in Radiation Protection and the Safety of Radiation Sources in 2002. Along more than two decades, Argentina has obtained valuable experience on building professional knowledge at postgraduate level in Radiation Protection and Nuclear Safety. Such experience made advisable to review the IAEA Standard Syllabus and to modify it accordingly. The whole content of the Standard Syllabus is included in the syllabus developed for the Argentinean Regional Post Graduate Course in Radiation Protection and Safety of Radiation Sources. But a few additional topics were incorporated and changes were introduced in the sequence of subjects. The paper describes those modifications and explains the pedagogic motivations that induce them. (Author) 3 refs.

  20. Proceedings of the Conference and Symposium Korean Association for Radiation Protection Fall Meeting 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-11-15

    This proceedings contains articles of the Korean Association for Radiation Protection Fall Meeting, 2014. It was held on Nov.19-21, 2014 in Jeju, Korea and subject of the Korean Association for Radiation Protection Fall Meeting 2014. This proceedings is comprised of 8 sessions. The main topic titles of session are as follows: Radiation protection 1, Medical treatment and Biology 1, Radiation measurement 1, Radiation environment and protection 1, Radiation protection 2, Medical treatment and Biology 2, Radiation Measurement 2, Radiation environment and protection 2.

  1. Radiation Protection in the NLC Test Accelerator at SLAC

    Science.gov (United States)

    Lavine, Theodore L.; Vylet, Vaclav

    1997-05-01

    This paper describes the elements of the design of the NLC Test Accelerator pertaining to ionizing radiation protection and safety. The NLC Test Accelerator is an accelerator physics research facility at SLAC designed to validate 2.6-cm microwave linear accelerator technology for a future high-energy linear collider (the "Next Linear Collider"). The NLC Test Accelerator is designed for average beam power levels up to 1.5 kW, at energies up to 1 GeV (roughly equivalent to 1/500 of an NLC linac). The design for radiation protection incorporates shielding, configuration controls, safety interlock systems for personnel protection and beam containment, and operations procedures. The design was guided by the DOE Accelerator Safety Order, internal Laboratory policy, and the general principle of keeping radiation doses as low as reasonably achievable.

  2. [Study on Intelligent Automatic Tracking Radiation Protection Curtain].

    Science.gov (United States)

    Zhao, Longyang; Han, Jindong; Ou, Minjian; Chen, Jinlong

    2015-09-01

    In order to overcome the shortcomings of traditional X-ray inspection taking passive protection mode, this paper combines the automatic control technology, puts forward a kind of active protection X-ray equipment. The device of automatic detection of patients receiving X-ray irradiation part, intelligent adjustment in patients and shooting device between automatic tracking radiation protection device height. The device has the advantages of automatic adjustment, anti-radiation device, reduce the height of non-irradiated area X-ray radiation and improve the work efficiency. Testing by the professional organization, the device can decrease more than 90% of X-ray dose for patients with non-irradiated area.

  3. Capturing opportunities and meeting challenges in radiation protection.

    Science.gov (United States)

    Kase, Kenneth R

    2015-02-01

    This summary of the 2014 Annual Meeting of the National Council on Radiation Protection and Measurement (NCRP) captures the opportunities presented during the Warren K. Sinclair Keynote Address, the Lauriston S. Taylor Lecture, and the six scientific sessions including the subsequent questions and answers. It captures the important issues that emerge in these opportunities and discusses the challenges that they bring to radiation protection. These opportunities arise in the basic sciences; in operational areas such as emerging technologies, preparing for the improbable but possible event, industry and medicine; and in education, communication and policy. The challenges include identifying the most important aspects of radiation protection and measurement, prioritizing them in accordance with the NCRP mission, and gaining support for the activities of the NCRP to address these issues in the fulfillment of its charter.

  4. Wipe testing of sealed radiation sources using a radiation protection assistant robot

    OpenAIRE

    Zeb Jahan; Rashid Farooq; Iqbal Naeem; Ahmad Nasir

    2009-01-01

    Sealed radiation sources are commonly used in different research institutes, industries, and hospitals. The sources of various strengths are manufactured in different sizes and shapes. It is a regulatory requirement that these sources must be monitored frequently for their integrity and to avoid any radiological contamination hazard. Mainly, a wipe test is recommended for the contamination detection due to the leakage of sealed radiation sources. A radiation protection assistant robot has bee...

  5. Contribution to developing the environment radiation protection methodology

    Energy Technology Data Exchange (ETDEWEB)

    Oudalova, A. [Institute of Atomic Power Engineering NRNU MEPhI (Russian Federation); Alexakhin, R.; Dubynina, M. [Russian Institute of Agricultural Radiology and Agroecology (Russian Federation)

    2014-07-01

    The environment sustainable development and biota protection, including the environment radiation protection are issues of nowadays interest in the society. An activity is ongoing on the development of a system of radiation protection for non-human biota. Anthropocentric and eco-centric principles are widely discussed. ICRP Publications 103, 108, 114 and many other reports and articles refer to the topic of environmental protection, reference animals and plants set, corresponding transfer parameters, dose models and derived consideration reference levels. There is still an open field for discussion of methods and approaches to get well-established procedure to assess environmental risks of radiation impacts to different organisms, populations and ecosystems. A huge work has been done by the ICRP and other organizations and research groups to develop and systematize approaches for this difficult subject. This activity, however, is not everywhere well-known and perceived, and more efforts are needed to bring ideas of eco-centric strategy in the environment radiation protection not only to public but to specialists in many countries as well. One of the main points of interest is an assessment of critical doses and doses rates for flora and fauna species. Some aspects of a possible procedure to find their estimates are studied in this work, including criteria for datasets of good quality, models of dose dependence, sensitivity of different umbrella endpoints and methods of original massive datasets treatment. Estimates are done based on information gathered in a database on radiation-induced effects in plants. Data on biological effects in plants (umbrella endpoints of reproductive potential, survival, morbidity, morphological, biochemical, and genetic effects) in dependence on dose and dose rates of ionizing radiation have been collected from reviewed publications and maintained in MS Access format. The database now contains about 7000 datasets and 25000 records

  6. Setting standards for radiation protection: A time for change

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, H.W.; Hickman, D.P.

    1996-01-01

    In 1950, the International Commission on Radiation Protection (ICRP) recommended that ``certain radiation effects are irreversible and cumulative.`` Furthermore, the ICRP ``strongly recommended that every effort be made to reduce exposures to all types of ionizing radiations to the lowest possible level.`` Then in 1954, the ICRP published its assumption that human response to ionizing radiation was linear with dose, together with the recommendation that exposures be kept as low as practicable. These concepts are still the foundation of radiation protection policy today, even though, as Evans has stated, ``The linear non-threshold (LNT) model was adopted specifically on a basis of mathematical simplicity, not from radio-biological data.... Groups responsible for setting standards for radiation protection should be abreast of new developments and new data as they are published; however, this does not seem to be the case. For example, there have been many reports in scientific, peer-reviewed, and other publications during the last three decades that have shown the LNT model and the policy of As Low As Reasonably Achievable (ALARA) to be invalid. However, none of these reports has been refuted or even discussed by standard-setting groups. We believe this mandates a change in the standard-setting process.

  7. U.S. radiation protection: role of national and international recommendations and opportunities for collaboration (harmony, not dissonance).

    Science.gov (United States)

    Boyd, Michael A

    2015-02-01

    For much of the 20th century, U.S. radiation protection policies were similar to those elsewhere in the world, in large part because the International Commission on Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements (NCRP) were closely aligned. In the 1970s, several U.S. regulations were released at about the same time as the 1977 recommendations from ICRP. The regulatory development process in the United States can be lengthy with ample opportunities for public involvement. While such deliberation is essential and beneficial, the rulemaking process does not lend itself to making frequent technical updates to rules. For this reason, many of the current radiation protection regulations in the United States are out of step with current recommendations of the ICRP and NCRP. The U.S. Nuclear Regulatory Commission and the U.S. Environmental Protection Agency are considering updates to important radiation protection regulations. These regulatory development actions could present the United States with an opportunity for incorporating the latest science into the U.S. system of radiation protection and provide for consideration of the latest recommendations of ICRP and NCRP. In particular, a revision of the recommendations in NCRP Report No. 116 (Limitation of Exposure to Ionizing Radiation) could provide U.S. agencies with useful advice to be considered in these rulemakings.

  8. Radiation protection for the illegal governmental use of radiation sources. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.

    2000-07-01

    Probably for the first time, illegal governmental uses of radiation sources, including the administrative infrastructure such as special radiation protection regulation, an advisory body etc., have been documented by the evaluation of the documents of the Ministry of State Security in the former German Democratic Republic (East Germany). Over a thousand persons, but also documents, money bills etc. were marked with a wide variety of radionuclides and traced with specially developed detectors. Among the many different nuclides provided regularly from the Rossendorf Research Center near Dresden, in particular {sup 46}Sc was popular. (orig.) [German] 'Regierungskriminalitaet' kann man auch im deutschen Strahlenschutz finden. Anhand neuer Dokumentationen der so genannten Gauckbehoerden, ueber die auch schon fluechtig in der Presse berichtet und spekuliert wurde, lassen sich Einzelheiten ueber die Vorgehensweisen einfallsreicher Stasi-Mitarbeiter, die Stasi-eigene Strahlenschutzverordnung und Strahlenschutz-Kommission usw. rekonstruieren. Ueber 1.000 Personen, aber auch Gegenstaende, Dokumente, Geldscheine etc. wurden markiert, wobei unter einer Vielzahl der regelmaessig aus Rossendorf gelieferten Nukliden {sup 46}Sc besonders gern eingesetzt sowie in Dresden spezielle Nachweisgeraete entwickelt wurden. (orig.)

  9. Radiation Protection of Environment under the Light of the New Concept of Radiation Protection of Non-Human Species

    Energy Technology Data Exchange (ETDEWEB)

    Hansruedi Voelkle [Swiss Federal Office of Public Health, Environmental Radioactivity Section, c/o Physics Department, University of Fribourg Chemin du Musee 3, 1700 Fribourg (Switzerland)

    2006-07-01

    The purpose of this presentation is to discuss the question of whether radiation protection should be extended to plants and animals. Until now the recommendations of ICRP have been focused exclusively on the protection of man from ionizing radiation. It was assumed that, if man is protected, the quality of the living environment is not impaired. In recent years adequate principles, recommendations and laws have become necessary in order to protect the environment from man made toxins. These recommendations aimed to conserve plants and animals, to maintain the diversity of species, the health and status of natural habitats and the natural resources of our planet, to warrant natural evolution and selection processes in order to transmit a healthy world to future generations. Reflections have been made as to whether particular protection of fauna and flora from ionizing radiation should be included. This article presents some considerations from the point of view of operational radiation protection and some comments to the work already done by ICRP committee 5. The final purpose is to invite the audience to make its own reflections and to communicate any criticisms, comments or suggestions to committee 5 of ICRP. (author)

  10. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Ikuko Ito

    2015-12-01

    Full Text Available Urocanic acid is a major ultraviolet (UV-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs. We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2, and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation.

  11. Proceedings of the Conference and Symposium Korean Association for Radiation Protection Fall Meeting 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-12-15

    This proceedings contains articles of the Korean Association for Radiation Protection Fall Meeting, 2016. It was held on Dec. 1, 2016 Phoenix Island in Jeju, Korea and subject of the Korean Association for Radiation Protection Fall Meeting 2016. This proceedings is comprised of 5 sessions. The main topic titles of session are as follows: Radiation protection, Biotechnology of radiation, Radiation measurement, Radiation environment and prevention, Radiation epidemiography.

  12. Radiation protection education of executive authorities in Austria

    Energy Technology Data Exchange (ETDEWEB)

    Timal, Guenter [Federal Ministry of the Interior, Department for Civil Protection, Civil Protection School, Vienna (Austria)

    2000-05-01

    Legal basis and the self-protection of the own action forces are the reasons, why the executive authorities (Federal Police and Federal Gendarmerie) in Austria are engaged with radiation protection. The main task of education and training is delegated to the Civil Protection School, which belongs to the Department for Civil Protection in the Federal Ministry of the Interior. The possible missions range from control of transports with dangerous goods, accidents with radioactive materials, measurements after accidents in nuclear power plants, preventing illicit trafficking up to satellite crashes. The education is split in three sections, one week each, with two examinations. For preserving the standard of education and readiness for duty a regular further education and obligatory advanced training is a basic premise. The aim of the education is to educate autonomous and self dependent action-forces, which are under compliance of self-protection in a position, to detect radioactive sources or contamination, to measure them and to secure the dangerous zone. The programs of the education and training include theoretical instructions and practical exercises. The programs are currently evaluated and updated according to the latest standards to pedagogics, didactics and technology. This radiation protection education is offered in a modified form also to other action forces and authorities who were entrusted with tasks in radiation protection (e.g. fire brigade, red cross, telecommunications, customs, citizens of municipalities, provinces and ministries) to guarantee a most preferable basic training. The programs are supplemented by special courses, as for example radiation detection with helicopters supported with a GPS-airborne monitoring system or special instruction courses in connection with border protection monitors to prevent the illicit trafficking of radioactive sources or nuclear material. (author)

  13. X-ray technology and radiation protection in dentistry practice. 3. ed.; Roentgentechnik und Strahlenschutz in der Zahnaerztlichen Praxis. Ein Handbuch fuer Zahnaerztliche Fachangestellte

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, M.

    2012-07-01

    The booklet includes the following chapters: (1) General information on X-ray technology. (2) Contact with patients. (3) Hygienic measures in the X.ray diagnostics. (4) Fundamentals of radiation protection. (5) Dose units and their measurement. (6) X-ray devices and image receiver systems. (7) Imaging problems and image quality. (8) Radiation protection problems. (9) Quality assurance. (10) Fundamentals on the radiological setting technology. (11) Information of the Federal dentist's organization on quality assurance in dental X-ray technology. (12) Fundamentals of radiation biology. (13) Natural radiation sources. (14) Artificial radiation sources. (15) Legal regulations. (16) Physical quantities and units. (17) Basic knowledge on radiation protection.

  14. LLNL Radiation Protection Program (RPP) Rev 9.2, Implementation of 10 CFR 835, 'Occupational Radiation Protection'

    Energy Technology Data Exchange (ETDEWEB)

    Shingleton, K. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-15

    The Department of Energy (DOE) originally issued Part 10 CFR 835, Occupational Radiation Protection, on January 1, 1994. This regulation, hereafter referred to as “the Rule”, required DOE contractors to develop and maintain a DOE-approved Radiation Protection Program (RPP); DOE approved the initial Lawrence Livermore National Laboratory (LLNL) RPP (Rev 2) on 6/29/95. DOE issued a revision to the Rule on December 4, 1998 and approved LLNL’s revised RPP (Rev 7.1) on 11/18/99. DOE issued a second Rule revision on June 8, 2007 (effective July 9, 2007) and on June 13, 2008 approved LLNL’s RPP (Rev 9.0) which contained plans and measures for coming into compliance with the 2007 Rule changes. DOE issued a correction to the Rule on April 21, 2009.

  15. Radiation protection aspects of EMITEL Encyclopaedia of Medical Physics.

    Science.gov (United States)

    Stoeva, M; Tabakov, S; Lewis, C; Tabakova, V; Thurston, J; Smith, P

    2015-07-01

    The Encyclopaedia of Medical Physics EMITEL was developed under the EU pilot project European Medical Imaging Technology e-Encyclopaedia for Lifelong Learning. This large reference material includes 3400 articles on 2100 pages supported by thousands of illustrations. All materials are available free at the website, www.emitel2.eu. The articles are grouped in seven categories--physics of: X-ray diagnostic radiology, nuclear medicine, radiotherapy, magnetic resonance imaging, ultrasound imaging, radiation protection and general terms. The radiation protection part of EMITEL includes 450 articles. These were organised in several sub-groups including: nuclear and atomic physics; ionizing radiation interactions and biological effects; radiation detection and measurement; dosimetric quantities and units; and general radiation protection and international bodies. EMITEL project was developed over 3 y and attracted as contributors 250+ senior specialists from 35 countries. After its successful launching, EMITEL is actively used by thousands of professionals around the world. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Nuclear Technology Series. Course 17: Radiation Protection II.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Nuclear Technology Series. Course 2: Radiation Protection I.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  18. Image Gently: A campaign to promote radiation protection for ...

    African Journals Online (AJOL)

    The alliance focuses on increasing awareness and developing education materials that support the protection of children worldwide from unnecessary radiation in medicine. The alliance members work with agencies and regulatory bodies to improve standards and measures that are specific to children. The campaign has ...

  19. Radiation Protection Practices of Staff during Extra-Corporeal Shock ...

    African Journals Online (AJOL)

    Results: Only lead apron and lead gloves were used by the radiologists for radiation protection and shielding during fluoroscopy procedures. The fluoroscopy was the screen type with TV monitor. Multiple sessions were used in several patients with multiple pre- and post- treatment radiographic studies including contrast ...

  20. Image Gently: A campaign to promote radiation protection for ...

    African Journals Online (AJOL)

    2015-12-14

    Dec 14, 2015 ... developing education materials that support the protection of children worldwide from unnecessary radiation in medicine ... produced open source modules for all stakeholders regarding CT, fluoroscopy, nuclear medicine, interventional radiology ..... aapm.org/pubs/reports/rpt_204.pdf. Source: Image Gently.

  1. [Radiation protection provided by tungsten bismuth caps during interventional cardiology].

    Science.gov (United States)

    Ramos-Avasola, Sergio; Díaz, Natalia; Roldán, Reynaldo; Gamarra, Jorge; Catalán, Mónica

    2016-07-01

    The effectiveness against radiation of tungsten bismuth caps, used in interventional cardiology is not well known. To determine the degree of radiation protection conferred by these caps in real work conditions. We compared the gross electric charges received at brain lobe levels by three occupationally exposed professionals who participated in 22 consecutive procedures, inside and outside of the tungsten bismuth cap. The median electric charges outside and inside the cap were 3.71 (range 1.46-5.62) and 2.2 (range 1.29-3.93) nC, which correspond to a 40% radiation attenuation. However, the protection was heterogeneous. Tungsten bismuth caps provide an adequate attenuation, but its degree is heterogeneous.

  2. Radiation protection by ascorbic acid in sodium alginate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aliste, A.J.; Mastro, N.L. Del [Center of Radiation Technology, IPEN/CNEN/SP, University City, 05508-000 Sao Paulo (Brazil)]. E-mail: ajaliste@ipen.br

    2004-07-01

    Alginates are gelling hydrocolloids extracted from brown seaweed used widely in the nourishing and pharmaceutical industries. As alginic acid gellification retard food entrance in the stomach alginate is an additive used in diets. The objective of this work was to study the protective action of the ascorbic acid in alginate solutions against the action of {sup 60} Co gamma radiation. One % (w/v) solutions of alginate had been used and concentrations of ascorbic acid varied from 0 to 2.5% (w/v). The solutions were irradiated with doses up to 10 kGy. Viscosity/dose relationship and the p H of the solutions at 25 Centigrade were determined. Ascorbic acid behaved as an antioxidant against radiation oxidative shock in this model system of an irradiated viscous solution. Besides its radiation protective role on alginate solutions ascorbic acid promoted a viscosity increase in the range of concentrations employed. (Author)

  3. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    Science.gov (United States)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  4. Radiation Protection in Educational Institutions. Recommendations of the National Council on Radiation Protection and Measurements.

    Science.gov (United States)

    National Council on Radiation Protection and Measurements, Washington, DC.

    The problems involved when radiation-producing devices of our contemporary technology are used in the teaching of science at the high school and undergraduate college level are discussed. Information is provided on the hazards involved in the use of radiation-producing equipment or radioactive materials in science demonstrations and experiments…

  5. Twelve years of cooperation in the field of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grapengiesser, Sten; Bennerstedt, Torkel

    2005-06-01

    SSI has pursued an international cooperation program since 1992 within the field of radiation protection and emergency preparedness for radiation accidents with the three Baltic countries as main beneficiaries. As the Baltic countries are members of the EU since May 2004, this bilateral support will now be phased out and replaced with other forms of cooperation. During the years passed, a large number of activities have been launched with a total budget of some 14 million ECU. The Baltic radiation protection authorities have played a big role in the cooperation and Baltic ministries, universities, nuclear technology installations and other industries using radiation have also been engaged in the projects. SKI, SKB, Studsvik and the Swedish nuclear power plants should be mentioned as major cooperation partners on the Swedish side. During autumn 2004 when such a large coordinated work program was coming to an end, SSI decided to hold a seminar with the purpose to follow up experiences from the work and discuss coming forms of cooperation. The seminar took place on the 18 of November 2004 and gathered some 80 participants, 29 of which from the Baltic countries. It was opened by Lars-Erik Holm, the SSI Director General, and the three Baltic countries then presented their views and impressions from the passed years of cooperation. The seminar was concluded with a panel discussion on 'How to proceed from today's situation'. The result was that SSI invited to a new coordination meeting during autumn 2005 to follow up and discuss coordination of radiation protection around the Baltic Sea together with the other Nordic radiation protection authorities.

  6. Amendment of the guideline for physical radiation protection monitoring of internal exposure; Novellierung der Richtlinie fuer die physikalische Strahlen-Schutzkontrolle bei innerer Exposition

    Energy Technology Data Exchange (ETDEWEB)

    Scheler, R.; Dalheimer, A.; Dettmann, K.; Frasch, G.; Hartmann, M.; Koenig, K.; Nosske, D. [Bundesamt fuer Strahlenschutz Berlin/Oberschleissheim (Germany)

    2002-07-01

    The paper deals with the current status of the revised version of the Guideline for Radiation Protection Surveillance. The consequences of the amended Radiation Protection Ordinance of July 20, 2001, especially the reduced dose limits and the protection of the unborn child in case of occupational radiation exposure are discussed in detail. Moreover, a general survey of the intended regulations is given and the new content of the guideline is explained. (orig.)

  7. Calcium antagonists protect mice against lethal doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Floersheim, G.L. (University Hospitals, Basel (Switzerland). Dept. of Research)

    1992-11-01

    Currently available radioprotectors are poorly tolerated in man and the general use of aminothiol radioprotectors is compromised by side-effects. In a search for less toxic radioprotective agents, diltiazem, a calcium antagonist with a benzothiazepine structure, was found to protect mice against a lethal (LD[sub 100]) [gamma] radiation dose allowing survival of up to 93%. Dihydropyridine calcium antagonists such as nifedipine, nimodipine, isradipine and nitrendipine also provided radioprotection. Calcium antagonists might attenuate radiation-induced injury by inhibiting cellular calcium overload, subsequent to cell membrane damage caused by radiation-generated free radicals. In view of their good tolerance, calcium antagonists may be applied safely in situations of radiation exposure, including radiotherapy and internal radionuclide contamination. These calcium antagonists may also be viewed in other contexts where free radicals are implicated in pathological processes. (Author).

  8. Radiation protection monitoring zone population NPP according to experts in case of emergency.

    Science.gov (United States)

    Prilipko, V A; Shevchenko, K K

    2015-12-01

    The purpose of this study was to peer review the implementation of protective measures to limit public exposure surveillance zone NPP in case of emergency considering laws and regulations. Survey method using expert assessments were used. Experts were formed in four groups who are respon sible for radiation protection of various groups surveillance zone of RNPP. Requirements to selections experts were professional experience not less than 10 years, the profile and post. For primary empirical data was used simple ordering of values of an even or consistent comparison. According to experts, measures warning, provision of stable iodine preparations, provision of collective (protective constructions, hiding place) and personal protective equipment (clothing, gauze bandages, respirators, mask), material and technical equipment at the Rivne NPP could be significantly different in rural and urban sur veillance zone in the case of emergency. Group risk in case of an emergency, can become students of rural schools surveillance zone due to imperfect warning system and lack of shelter facilities. There is no consensus among experts on radiation protection assessments of various groups surveillance zone, including provision of means of individual and collective protection, preparedness protective actions in case of emergency. State radiation protection surveillance zone Rivne NPP, including a system of organizational, techni cal, biomedical, financial and economic measures to prevent and respond to the National Assembly, does not meet the laws of Ukraine "On Nuclear Energy Use and Radiation Safety" and "On protection of population and territories from emergency situations of technogenic and natural character ", requiring State Nuclear Regulatory Inspectorate (SNRI) of Ukraine on this question. V. A. Prilipko, K. K. Shevchenko.

  9. RADIATION PROTECTION IN CANADA. III. THE ROLE OF THE RADIATION PROTECTION DIVISION IN SAFEGUARDING THE HEALTH OF THE PUBLIC.

    Science.gov (United States)

    BIRD, P M

    1964-05-09

    The current status of radiation protection in Canada is discussed in the last of a three-part series. Particular emphasis has been placed on the role of the Radiation Protection Division of the Department of National Health and Welfare. A radioactive fallout study program has been established involving the systematic collection of air and precipitation samples from 24 locations, soil samples from 23 locations, fresh-milk samples from 16 locations, wheat samples from nine areas and human-bone specimens from various hospitals throughout Canada. A whole-body-counting facility and a special study of fallout in Northern areas have also been initiated. For any age group, the highest average strontium-90 concentration in human bone so far reported has been less than four picocuries per gram of calcium compared with the maximum permissible level of 67 derived from the International Committee on Radiation Protection (ICRP) recommendations. By the end of 1963 a general downward trend of levels of radioactivity detected in other parts of the program has been observed. Programs to assess the contribution to the radiation exposure of members of the population from medical x-rays, nuclear reactor operations and natural background-radiation sources have also been described. The annual genetically significant dose from diagnostic x-ray examinations in Canadian public hospitals has been estimated to be 25.8 mrem. Results from the reactor-environment monitoring programs have not suggested the presence of radioactivity beyond that contributed from fallout.

  10. Proceedings of the Conference and Symposium Korean Association for Radiation Protection Spring Meeting 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-04-15

    This proceedings contains articles of the Korean Association for Radiation Protection Spring Meeting, 2017. It was held on 13 April 2017 Gunsan Saemangeum Covention Center in Gunsan, Korea and subject of the Korean Association for Radiation Protection Spring Meeting 2017. This proceedings is comprised of 5 ssessions. The main topic titles of session are as follows: Radiation protection, Biotechnology of radiation, Radiation measurement and prevention, Radiation epidemiography.

  11. Proceedings of the Conference and Symposium Korean Association for Radiation Protection Spring Meeting 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-04-15

    This proceedings contains articles of the Korean Association for Radiation Protection Spring Meeting, 2016. It was held on Apr. 6-8, 2016 Daemyung Resort in Byeonsan, Korea and subject of the Korean Association for Radiation Protection Spring Meeting 2016. This proceedings is comprised of 4 sessions. The main topic titles of session are as follows: Radiation protection, Biotechnology of radiation, Radiation Measurement, Radiation environment and prevention.

  12. The study of the radiation protection of propolis to the radiation effects in mice

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.H.; Suzuki, Ikukatsu; Hasegawa, Takeo; Muto, H. [Suzuka Univ. of Medical Science, Mie (Japan); Yanagisawa, Takaharu; Iwasa, Toshihiro; Bamen, K.

    2000-05-01

    The profit which radiation brought to the Homo sapiens is very big. But, radiation has even harmful parameter for the human besides one case. After effect on man to the radiation is thought about, the individual of which sensibility is the highest is a fetus. Therefore, even an effects to this fetus is grasped precisely, and protection criterion and resource are decided from the viewpoint of the protection of radiation as well. If it does so, a child and maturitas aren't so difficult as in the protection of radiation and the managerial side. It was examined about control group, propolis administration chisels for medical use group, 1.5 Gy independent exposure group and propolis pluse 1.5 Gy group in this study. It was examined about the protection of radiation of propolis which to malformation, fetal death, arrested development, and so on in the organogenesis (8 days post conception) being done when sensibility is the highest against the teratogenesis. Preimplantation death rate was compared with the control group and the sham control group, and statistical significant difference wasn't recognized by a 1.5 Gy radiation independent exposure group, propolis administration 1.5 Gy radiation exposure group. As for the embryonic death rate, propolis was administered, and obviously embryonic death rate was poorer than the 1.5 Gy independent exposure group, and significant difference was recognized by a 1.5 Gy radiation exposure group (p<0.001). It has a 1.5 Gy radiation exposure group made clear by this research fetal death rate propolis administer more only 1.5 Gy exposure fetal death rate development low (p<0.001). Fetal death rate wasn't recognized by propolis administration group (Sham control). As for the teratogenesis rate, propolis was administered, and the teratogenesis rate of the 1.5 Gy radiation exposure group was higher than the 1.5 Gy radiation independent exposure group. But, this is thought anamorphosis appear by propolis administration so

  13. Job satisfaction and its relationship to Radiation Protection Knowledge, Attitude and Practice (RPKAP) of Iranian radiation workers.

    Science.gov (United States)

    Alavi, S S; Dabbagh, S T; Abbasi, M; Mehrdad, R

    2017-01-23

    This study aimed to find the association between job satisfaction and radiation protection knowledge, attitude and practice of medical radiation workers occupationally exposed to ionizing radiation. In this crosssectional study, 530 radiation workers affiliated to Tehran University of Medical Sciences completed a knowledge, attitude and practice questionnaire on protecting themselves against radiation and Job Descriptive Index as a job satisfaction measure during May to November 2014. Opportunities for promotion (84.2%) and payment (91.5%) were the most important factors for dissatisfaction. Radiation workers who were married, had more positive attitudes toward protecting themselves against radiation, and had higher level of education accounted for 15.8% of the total variance in predicting job satisfaction. In conclusion, medical radiation workers with a more positive attitude toward self-protection against radiation were more satisfied with their jobs. In radiation environments, improving staff attitudes toward their safety may be considered as a key strategy to increase job satisfaction.

  14. Proceedings of the Conference and Symposium Korean Association for Radiation Protection Spring Meeting 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-04-15

    This proceedings contains articles of the Korean Association for Radiation Protection Spring Meeting, 2015. It was held on Apr. 22-24, 2015 in Yeosu, Korea and subject of the Korean Association for Radiation Protection Spring Meeting 2014. This proceedings is comprised of 8 sessions. The main topic titles of session are as follows: Radiation protection 1, Medical treatment and Biology 1, Radiation Measurement 1, Radiation environment and disasters prevention 1, Radiation protection 2, Medical treatment and Biology 2, Radiation Measurement 2, Radiation environment and disasters prevention 2.

  15. Proceedings of the Conference and Symposium Korean Association for Radiation Protection Fall Meeting 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    This proceedings contains articles of the Korean Association for Radiation Protection Fall Meeting, 2015. It was held on Oct.23, 2015 Mayfield Hotel in Seoul, Korea and subject of the Korean Association for Radiation Protection Fall Meeting 2015. This proceedings is comprised of 8 sessions. The main topic titles of session are as follows: Radiation protection 1, Medical treatment and Biology 1, Radiation Measurement 1, Radiation environment and disasters prevention 1, Radiation protection 2, Medical treatment and Biology 2, Radiation Measurement 2, Radiation environment and disasters prevention 2.

  16. Radiation protection and radiation safety: CERN and its host states to sign a tripartite agreement.

    CERN Multimedia

    2010-01-01

    On 15 November CERN and its Host States will sign a tripartite agreement that replaces the existing bilateral agreements in matters of radiation protection and radiation safety at CERN. It will provide, for the first time, a single forum where the three parties will discuss how maximum overall safety can best be achieved in the specific CERN context.   CERN has always maintained close collaboration with its Host States in matters of safety. “The aim of this collaboration is especially to ensure best practice in the field of radiation protection and the safe operation of CERN’s facilities”, explains Ralf Trant, Head of the Occupational Health & Safety and Environmental Protection (HSE) Unit. Until today, CERN’s collaboration with its Host States was carried out under two sets of bilateral agreements: depending on which side of the French-Swiss border they were being carried out on, a different framework applied to the same activities. This approach has b...

  17. Environmental Regulation and Food Safety: Studies of Protection ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Environmental Regulation and Food Safety: Studies of Protection and Protectionism. Book cover Environmental Regulation and Food Safety: Studies of Protection and Protectionism. Directeur(s) : Veena Jha. Maison(s) d'édition : Edward Elgar, IDRC. 1 janvier 2006. ISBN : 184542512X. 250 pages. e-ISBN : 155250185X.

  18. Protecting Biodiversity: National Laws Regulating Access to Genetic ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2000-01-01

    Protecting Biodiversity: National Laws Regulating Access to Genetic Resources in the Americas. Book cover Protecting Biodiversity: National Laws Regulating Access to Genetic Resources in the Americas. Editor(s):. Susan P. Bass and Manuel Ruiz Muller. Publisher(s):. IDRC. January 1, 2000. ISBN: Out of print. 120 pages.

  19. Three Mile Island, Unit 2, radiation protection program: report of the special panel

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, C. B. [Brookhaven National Lab., Upton, NY (United States); Murphy, T. D. [Nuclear Regulatory Commission, Washington, DC (United States); Neely, D. R. [Nuclear Regulatory Commission, Washington, DC (United States); Kathren, R. L. [Batelle Pacific Northwest Lab. (United States); Rich, B. L. [Exxon Nuclear Idaho Co., Inc. ID (United States); Stone, G. F. [Tennessee Valley Authority, Chattanooga, TN (United States); Casey, W. R. [Brookhaven National Lab., Upton, NY (United States)

    1979-12-01

    A special panel was appointed by the Director of Nuclear Reactor Regulation, NRC, to review the radiation protection program at Three Mile Island Unit 2. The Panel confirmed several management and technical deficiencies in the program. Recent major GPU/Met Ed commitments and actions demonstrated a major change in management attitude. The Panel concluded that exposures to personnel can be maintained to as low as is reasonably achievable while limited preparatory recovery work continues and when further needed improvements are implemented as needed, the radiation safety program will be able to support major recovery activities.

  20. Assessing protection against radiation exposure after prostate (125)I brachytherapy.

    Science.gov (United States)

    Hanada, Takashi; Yorozu, Atsunori; Kikumura, Riki; Ohashi, Toshio; Shigematsu, Naoyuki

    2014-01-01

    To expand the radiation dose rate measurement data set by measuring radiation under various prostate (125)I brachytherapy situations. Measurements were obtained from 63 consecutive unselected patients at Tokyo Medical Center, Japan. Differences in factors during measurements, such as body postures, distances from the skin surface, and measurement directions were considered. Furthermore, shielding effects of lead-lined underwear, consisting mainly of 0.1-mm thickness of lead, were also assessed. Radiation exposure varies according to the patient's body posture, with results differing as much as approximately 40.0% in measured radiation dose rates at 30cm from the anterior skin surface. Weight, body mass index, and tissue thickness showed good correlations with measured radiation dose rates. The magnitude of radiation exposure attenuation by shielding was approximately 95.8%, similar to the attenuation ratio based on tissue measurements made in the lateral direction. The respective mean times required to reach 1mSv were 1.2, 7.6, and 65.4 days in the standing position and 0.6, 4.6, and 40.4 days in the supine position at the site of contact, and at 30 and 100cm from the anterior skin surface. This study obtained supplemental information pertaining to radiological protection and confirmed that shielding can be an effective tool for reducing exposures. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Legal regulation of air protection against pollution from stationary sources

    OpenAIRE

    Kunert, Petr

    2014-01-01

    The diploma thesis deals with legal regulation of air protection against pollution from stationary sources especially with the Act no. 201/2012 Coll. on the Protection of Air. The opening chapter introduces to the issues and systematics of the diploma thesis. The second chapter contains the overview of the most important pollutants with their impacts on human health and the environment. The third chapter concerns the international regulation of the air pollution protection including the Europ...

  2. Legal regulation of protection of animals against cruelty

    OpenAIRE

    Hasíková, Marie

    2015-01-01

    Diploma thesis: Legal regulation of protection of animals against cruelty This diploma thesis deals with national and transnational legal regulation of the protection of animals against cruelty. It comprises of four chapters. First chapter concerns ethical grounds of given issue and it provides analysis of term "animal welfare". Second chapter contains the most significant transnational legal rules of the protection of animals against cruelty adopted within the Council of Europe or the Europe...

  3. RADIATION ENVIRONMENT, ORGANIZATION AND PROVIDING OF POPULATION RADIATION PROTECTION CONTROL IN ST. PETBURG

    Directory of Open Access Journals (Sweden)

    I. A. Rakitin

    2008-01-01

    Full Text Available The article presents the analysis of radiation environment and work experience of Rospotrebnadzor Administration in St. Petersburg in the field of organizing of population radiation protection control and interaction with the local government executive bodies. It shows the level and structure of the city population collective doses from the main dose forming ionizing irradiation sources. It emphasizes the integrated method of solving the population exposure limitation issues based on the results of radiation-hygienic passport system and on the data from Uniform State System for Doses Control and Registration. The evaluation of the work being carried out is given.

  4. The recent priorities of radiation protection in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, K.; Drabova, D. [State Office for Nuclear Safety, Prague (Czech Republic)

    2006-07-01

    The radiation protection in Czech Republic is after ten years of the intensive development in the stage when the system is in reliable routine operation guaranteed by the highly developed infrastructure and legislation. Nevertheless the concerns and problems with the different level of the importance could be always identify. The priorities are set up and stepwise handled. Some of them need further discussions also on the international level where the national particular experiences should be reflected and best expressed in the form of the recommendations or guidance. It is obvious that the current challenges of radiation protection will merge more and more into the area of the management and searching of the processes of the effective control under the conditions given by the actual situation and needs. The possibilities of the society and interest of different stakeholders will play important role. (authors)

  5. Will radiation control be by reason or regulation

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.S.

    1988-08-01

    Following a very brief review of the development of our present radiation-protection philosophy, attention is directed to what the author sees as current problems. The only prognostication will be that at least certain of the problems outstanding or developing today will be among those that will have to be addressed in the coming four decades. For the past six decades, the major effort has been the development of the science and philosophy of radiation biology and its application to protection against radiation hazards, whether real or imagined. For three decades there has been public concern about radiation generally, the core of the problem being inadequate education of the public and the media on the subject. For a little over one decade, there has been rapidly developing growth of tort litigation generally, involving ionizing radiation in particular. These are the three major lines of attention in the radiation-protection area today; between two of them there are already some of the aspects of the arena. Behind all three lies an overwhelming lack of understanding by, and education of, the public, which shows mostly in the public fetish for absolute safety which, of course, cannot be. These must be the major concerns of the radiation-protection community in the coming four decades.

  6. Radiation protection studies for the SHiP facility

    CERN Document Server

    Strabel, Claudia Christina; Vincke, Helmut

    2015-01-01

    The enlarged scope of the recently proposed experiment to search for Heavy Neutral Leptons, SPSC-EOI-010, is a general purpose fixed target facility which in the initial phase is aimed at a general Search for Hidden Particles (SHiP) as well as tau neutrino physics. This report summarizes radiation protection considerations for the SHiP facility and the primary beam extraction for SHiP.

  7. Studies on chemical protectors against radiation, 33; Protective mechanisms of various compounds against skin injury induced by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yushi; Kumazawa, Noriko; Suzuki, Makoto; Wang Cheng-Ming; Ohta, Setsuko; Shinoda, Masato (Hoshi Univ., Tokyo (Japan))

    1991-01-01

    The radiation protective mechanisms on skin injury induced by soft X-irradiation were investigated by use of various radiation protective agents such as sulfur compounds (MEA, MEG, thiourea), nucleic acid constitutional compounds (adenosine, inosine), antioxidative compounds (sesamol, ferulic acid, ascorbic acid), crude drugs (Rosae Fructus, Anemarrhenae Rhizoma, Trapae Fructus, Forsythiae Fructus, Aloe arborescens). Scavenge action of activated oxygen, inhibitory effect of lipid peroxidation, induction of antioxidative protein and protective effect against damage of deoxyribonucleic acid and superoxide dismutase by X-irradiation were evaluated as the radiation protective mechanisms, and relationship between these results and protective effect of skin injury induced by radiation was studied. (author).

  8. PROTECTION FROM COSMIC RADIATION IN LONG-TERM MANNED SPACEFLIGHTS

    Directory of Open Access Journals (Sweden)

    Marco Durante

    2012-06-01

    Full Text Available Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of health risks. Even if uncertainties in risk assessment will be reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Unfortunately, passive (bulk shielding is currently unable to provide adequate protection, because cosmic rays have very high energy and nuclear fragmentation in the absorbers produce light fragments. Material science could provide new materials with better shielding properties for space radiation. Active (magnetic shielding could be an interesting alternative, pending technical improvements.

  9. [Protection of cadaver tissues exposed to high gamma radiation].

    Science.gov (United States)

    Matus-Jiménez, J; Flores-Fletes, J R; Carrillo, A

    2013-01-01

    Bone tissue is the most widely used tissue for the treatment of various conditions. As a result of this, allografts are used at an increasing frequency and processes for their harvest, preservation and sterilization have improved. The sterilization method that grants the greatest sterilization is high-dose gamma radiation, which destroys prions and any microorganism thus assuring that patients will not experience any infection. But given that radiation use has proven to deteriorate bone and tendon tissue, efforts have been made to protect the latter. One way to do this is a commercially available substance called Clearant. Studies conducted elsewhere have found that it does protect bone and tendon tissue. This study was therefore conducted with allograft samples exposed to high-dose radiation. Its purpose was to assess, with photon microscopy using various dyes and electron microscopy, the presence of color changes as well as the destruction of the anatomical structure. The same tissue was followed-up throughout the process until it was placed in the patient. The review found no structural changes in bone and tendon tissues exposed to high radiation doses (60 kilograys) when the Clearant process was used, and concluded that the former may be used safely in orthopedic or traumatologic diseases.

  10. Pharmacological Protection From Radiation {+-} Cisplatin-Induced Oral Mucositis

    Energy Technology Data Exchange (ETDEWEB)

    Cotrim, Ana P. [Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yoshikawa, Masanobu [Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa (Japan); Sunshine, Abraham N.; Zheng Changyu [Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B. [Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Baum, Bruce J., E-mail: bbaum@dir.nidcr.nih.gov [Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2012-07-15

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation {+-} cisplatin. Methods and Materials: Female C3H mice, {approx}8 weeks old, were irradiated with five fractionated doses {+-} cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 Multiplication-Sign 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  11. [Personnel requirements of medical radiation physics in radiotherapy in comparison to the current guidelines "radiation protection in medicine" : Special consideration of intensity-modulated radiation therapy].

    Science.gov (United States)

    Leetz, H-K; Eipper, H H; Gfirtner, H; Schneider, P; Welker, K

    2014-08-01

    In 1994 and 1998 reports on staffing levels in medical radiation physics for radiation therapy were published by the "Deutsche Gesellschaft für Medizinische Physik" (DGMP, German Society for Medical Physics). Because of the technical and methodological progress, changes in recommended qualifications of staff and new governmental regulations, it was necessary to establish new staffing levels. The data were derived from a new survey in clinics. Some of the previously established results from the old reports were adapted to the new conditions by conversion.The staffing requirements were normalized to main components as in the earlier reports resulting in a simple method for calculation of staffing levels. The results were compared with the requirements in the "Richtlinie Strahlenschutz in der Medizin" (guidelines on radiation protection in medicine) and showed satisfactory agreement.

  12. Novel Radiation Protection System Enabled by Hydrogen Enhanced Nano Fibers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for radiation protection in humans is critical to the success of the nation's continued presence in space. A new radiation protection system will be...

  13. Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation.

    Science.gov (United States)

    Mathew, Sherin T; Bergström, Petra; Hammarsten, Ola

    2014-05-01

    Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA and reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2'-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1-3. The government hasn't yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  15. Radiation protection: Radiation dose units and fundamentals. Correct use of radiation dose units, measurements, risk assessment; Dosisbegriffe und Grundlagen im Strahlenschutz. Dosisbegriffe richtig anwenden, Messgroessen bestimmen, Risiken bewerten

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, K.H.; Wolf, H.

    2005-07-01

    Radiation protection intends to prevent radiation damage by appropriate staff-related and technical measures in accordance with the specifications of the German X-Ray Ordinance (RoV) and Radiation Protection Ordinance (StrlSchV) and in agreement with the ICRLP (International Commission on Radiological Protection). They require that radiation use must be justified, exposure conditions must be optimised, and exposure times must be limited to the shortest time necessary. In practical use, this requires considerable practical and theoretical knowledge from the user concerning the physical properties of radiation sources, interactions with tissue and matter of different types of radiation, and biological effects of radiation. National and international organizations and committees have specified the knowledge which a user must have as follows: Physical fundamentals of radiation protection; Measuring quantities and specified standard units; Organisational and constructional radiation protection; Legal knowledge. (orig.)

  16. 10 CFR 35.2026 - Records of radiation protection program changes.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of radiation protection program changes. 35.2026 Section 35.2026 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2026 Records of radiation protection program changes. A licensee shall retain a record of each radiation protection program change made in accordance...

  17. A view from the UK III: radiation protection in Europe - medical issues

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, R.H.; Faulkner, K. [Freeman Hospital, Newcastle-upon-Tyne (United Kingdom). Dept. of Medical Physics

    1997-12-31

    Perhaps the major problem in the medical world is one of communication. While there is a clear chain of information dissemination in management circles, radiation protection is a Cinderella subject by comparison. There will be an important role for Radiation Protection Advisors (RPAs) and Radiation Protection Supervisors (RPSs) to interpret and review the new standards and apply them within their departments. (orig.)

  18. Radiation protection. The past and the future; Strahlenschutz. Vergangenheit und Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Rolf

    2016-11-01

    After a short summary of the history of radiation protection and its scientific basis a survey is given on the actual state of radiation protection, thereby entering into open questions like risk perception and communication with the general public. Finally, the future tasks of radiation protection are described.

  19. Studies on Radiation Protection Effect of the Beer

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jong Gi; Ha, Tae Young; Hwang, Chul; Hyan; Lee, Young Hwa [Dept. of Radiation Oncology, Busan National University Hospital, Busan (Korea, Republic of)

    2007-09-15

    In this study, it was investigated whether commercially produced beer is able to prevent a lymphocyte from radiation induced apoptosis. Whole blood samples were acquired from 5 healthy volunteers (male, 26-38 years old) and the lymphocyte were isolated by density gradient centrifugation. Radiation induced apoptosis of the lymphocyte were investigated by 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy to 5.0 Gy irradiation. In some experiments, the donor drunk beer and then blood samples were collected. In other experiments, melatonin or glycine betain was added to lymphocyte culture medium. Treated or untreated lymphocytes were cultured for 60 hours and radiation induced apoptosis of the lymphocyte was analyzed by annexin-V staining through flow cytometery. Relative radiation induced apoptosis ratio of the untreated lymphocytes is 1.22{+-}1.1, 1.22{+-}1.1, 1.38{+-}1.0, 1.47{+-}1.1, 1.50{+-}1.2 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively. Relative radiation induced apoptosis ratio of lymphocytes is isolated from beer drunken donors is 0.971.0, 0.991.0, 1.11{+-}0.9, 1.29{+-}1.1, 1.15{+-}1.1 by radiation doses respectively which are reduced 21.5% compared with untreated lymphocyte. Relative radiation induced apoptosis ratio of the lymphocytes is isolated from non-alcohol beer drunken donors is 1.22{+-}1.1, 1.17{+-}1.1, 1.13{+-}1.3, 1.38{+-}1.2, 1.32{+-}1.1 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively which are reduced 10.8% compared with the untreated lymphocyte. As a result, it is suggested that beer may protect the lymphocyte from radiation damage and inhibit apoptosis.

  20. Radiation protection in dental radiology - Recent advances and future directions.

    Science.gov (United States)

    Tsapaki, V

    2017-12-01

    Dental radiology uses X-ray technology to diagnose and design treatment of various clinical problems related to the oral cavity and surrounding tissues. As technology quickly evolves, there are numerous X-ray modalities using different tools in the attempt to best image and treat efficiently these diseases, disorders or other related clinical conditions. The reported numbers of dental X-rays, the fact that these may be under-reported in many countries and because dental X-rays are performed more on younger individuals, whose teeth and dentition are still developing, calls for increased need on radiation protection. The objectives of this paper are to report on the latest technology updates and related radiation protection issues, to present future directions and define gaps. Most of existing radiation protection national and international guidelines are more than a decade old. Update is needed to account for newer technologies such as cone beam computed tomography (CBCT) and digital imaging. Diagnostic Reference Levels (DRLs), a well established method for dose optimization, are not yet defined for CBCT and have to be set for various clinical indications. As far as shielding is concerned, recent data confirm that use of lead apron, even in pregnant patients, or gonadal shielding are not recommended, due to negligible radiation dose reduction. Thyroid lead shielding should be used in case the organ is in or close to the primary beam. Specifically for CBCT, leaded glasses, thyroid collars and collimation (smaller field of view (FOV) especially for paediatric patients) minimize the dose to organs outside the FOV. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. [Experimental and theoretical studies on radiation protective effect of a lighter non-lead protective apron].

    Science.gov (United States)

    Takano, Yoshihisa; Okazaki, Keiichiro; Ono, Koji; Kai, Michiaki

    2005-07-20

    Non-lead aprons using composite materials are often used for radiation protective aprons instead of heavy lead aprons. However, the protective effect of the lighter, non-lead aprons has not been well evaluated, and it is not yet clear how they compare with lead aprons. Therefore, we investigated the protective performance of non-lead aprons theoretically and experimentally by comparing them with lead aprons under clinical conditions. We measured the energy spectra for direct and scattered X-rays passing through protective aprons or not, and measured doses with glass dosimeters for validation of theoretical calculations based on the energy spectra. We found that the protective effect of non-lead aprons was higher than that of lead aprons at X-ray of tube voltages of 70-100 kV, which are often used for radiography and fluorography. This demonstrated that the non-lead aprons are more useful in many situations than heavy lead aprons.

  2. Meeting the Needs for Radiation Protection: Diagnostic Imaging.

    Science.gov (United States)

    Frush, Donald P

    2017-02-01

    Radiation and potential risk during medical imaging is one of the foremost issues for the imaging community. Because of this, there are growing demands for accountability, including appropriate use of ionizing radiation in diagnostic and image-guided procedures. Factors contributing to this include increasing use of medical imaging; increased scrutiny (from awareness to alarm) by patients/caregivers and the public over radiation risk; and mounting calls for accountability from regulatory, accrediting, healthcare coverage (e.g., Centers for Medicare and Medicaid Services), and advisory agencies and organizations as well as industry (e.g., NEMA XR-29, Standard Attributes on CT Equipment Related to Dose Optimization and Management). Current challenges include debates over uncertainty with risks with low-level radiation; lack of fully developed and targeted products for diagnostic imaging and radiation dose monitoring; lack of resources for and clarity surrounding dose monitoring programs; inconsistencies across and between practices for design, implementation and audit of dose monitoring programs; lack of interdisciplinary programs for radiation protection of patients; potential shortages in personnel for these and other consensus efforts; and training concerns as well as inconsistencies for competencies throughout medical providers' careers for radiation protection of patients. Medical care providers are currently in a purgatory between quality- and value-based imaging paradigms, a state that has yet to mature to reward this move to quality-based performance. There are also deficits in radiation expertise personnel in medicine. For example, health physics academic programs and graduates have recently declined, and medical physics residency openings are currently at a third of the number of graduates. However, leveraging solutions to the medical needs will require money and resources, beyond personnel alone. Energy and capital will need to be directed to

  3. Environmental protection and traffic regulation in Slovenia

    Directory of Open Access Journals (Sweden)

    Aljaš Plevnik

    1998-01-01

    Full Text Available The article summarises the proposed chapter on traffic in the National programme for environmental protection. The main theme focuses on the suggested goals and measures to reach sustainable development in Slovenia. The goals and measures are derived from the current situation and traffic development trends and their influence on the environment, from international guidelines and the current Slovene policies.

  4. Stakeholders and Radiation Protection in Today's World

    Energy Technology Data Exchange (ETDEWEB)

    Rick Jones, C. [Retired US DOE (United States); Lochard, J. [Centre d' Etude sur l' Evaluation de la Protection dans le Domaine Nucleaire, 92 - Fontenay aux Roses (France); Lazo, T. [OECD/NEA - Organisation for Economic Co-Operation and Development, Nuclear Energy Agency (OECD/NEA) 75 - Paris (France)

    2006-07-01

    In looking forward the C.R.P.P.H.(Nea 's Committee on radiation protection and public health) identified three influences that will condition the way we address emerging issues, and will alter how we address ongoing issues. These are the involvement of stakeholders in decision making processes, the evolution of radiological protection science and its changing place in risk assessment and management, and the experience gained in implementing the current system of radiological protection. First among there is the growing importance of stakeholder involvement in radiation protection decision making. This has affected the way that the principles of justification, optimization and limitation are viewed, the way the role of the radiation protection professional in risk assessment and management is viewed, and the relative importance of case specific circumstances in relation to harmonized, internationally accepted criteria. In the wake of this change, the international system of radiological protection is being updated by the ICRP, and discussions of the most appropriate direction to take are nearing their end. Second, radiological protection science continues to identify specific aspects that do not fit the conventional linear non threshold model, and which us to consider that, at the very least, the risks from different exposures and exposure situations may not be as simply and universally comparable assumed. This will affect the way that risks are managed, and all relevant stakeholder involvement processes. In addition, decisions relating to public, worker and environmental health and safety are increasingly seen as judgement social choices. Although such choices must be guided by an understanding of state-of-the-art scientific and its uncertainties, the final, choice will generally be made by society, not scientists. Third, since the issuance of ICRP Publication 60 in 1990, and the International Basic Safety Standards in 1996, extensive experience has been

  5. A training syllabus for radiation protection in dental radiology.

    Science.gov (United States)

    Gallagher, A; Dowling, A; Renehan, J; Clarke, D; Malone, J F

    2008-01-01

    The EU Council Directive 97/43/EURATOM (MED) states that Member States shall ensure that adequate theoretical and practical training is provided for dental practitioners working with ionising radiation; this also includes the provision of continuing education and training programmes, post-qualification. The area of dental radiology is specifically mentioned in this legally binding document. The Department of Medical Physics and Bioengineering, St James's Hospital, Dublin, is particularly interested in the area of radiation protection training and routinely provides educational courses both at national and international levels. A recent review of their dental radiation protection course was undertaken in conjunction with a number of Principal Dental Surgeons within the Health Service Executive in Ireland. The revised course was delivered to over 200 dental staff members at two separate meetings during 2006. The response from attendees was very positive. It is proposed to extend this course to other dental professionals, working both in the Irish private and public health sectors in the future.

  6. Radiation protection optimisation techniques and their application in industry

    Energy Technology Data Exchange (ETDEWEB)

    Lefaure, C

    1996-12-31

    Since the International Commission on Radiation Protection (ICRP) recommendation 60, the optimisation principle appears to be the core of the radiation protection system. In practice applying it, means implementing an approach both predictive and evolutionary - that relies essentially on a prudent and responsible state of mind. the formal expression of this process, called optimization procedure, implies and indispensable tool for its implementation: the system of monetary values for the unit of collective dose. During the last few years, feed ALARA principle means that a global work management approach must be adopted, considering together all factors contributing to radiation dose. In the nuclear field, the ALARA approach appears to be more successful when implemented in the framework of a managerial approach through structure ALARA programmes. Outside the nuclear industry it is necessary to clearly define priorities through generic optimisation studies and ALARA audits. At the international level much efforts remain to be done to expand efficiently the ALARA process to internal exposure as well as to public exposure. (author) 2 graphs, 5 figs., 3 tabs.

  7. A training syllabus for radiation protection in dental radiology.

    LENUS (Irish Health Repository)

    Gallagher, A

    2008-01-01

    The EU Council Directive 97\\/43\\/EURATOM (MED) states that Member States shall ensure that adequate theoretical and practical training is provided for dental practitioners working with ionising radiation; this also includes the provision of continuing education and training programmes, post-qualification. The area of dental radiology is specifically mentioned in this legally binding document. The Department of Medical Physics and Bioengineering, St James\\'s Hospital, Dublin, is particularly interested in the area of radiation protection training and routinely provides educational courses both at national and international levels. A recent review of their dental radiation protection course was undertaken in conjunction with a number of Principal Dental Surgeons within the Health Service Executive in Ireland. The revised course was delivered to over 200 dental staff members at two separate meetings during 2006. The response from attendees was very positive. It is proposed to extend this course to other dental professionals, working both in the Irish private and public health sectors in the future.

  8. Highly Catalytic Nanodots with Renal Clearance for Radiation Protection

    CERN Document Server

    Zhang, Xiao-Dong; Wang, Junying; Yang, Jiang; Chen, Jie; Shen, Xiu; Deng, Jiao; Deng, Dehui; Long, Wei; Sun, Yuan-Ming; Liu, Changlong; Li, Meixian

    2016-01-01

    Ionizing radiation (gamma and x-ray) is widely used in industry and medicine, but it can also pose a significant hazardous effect on health and induce cancer, physical deformity and even death, due to DNA damages and invasion of free radicals. There is therefore an urgent unmet demand in designing highly efficient radioprotectants with synergetic integration of effective renal clearance and low toxicity. In this study, we designed ultrasmall (sub-5 nm) highly catalytically active and cysteine-protected MoS2 dots as radioprotectants and investigated their application in protection against ionizing radiation. In vivo preclinical studies showed that the surviving fraction of MoS2-treated mice can appreciably increase to up to 79 % when they were exposed to high-energy ionizing radiation. Furthermore, MoS2 dots can contribute in cleaning up the accumulated free radicals within the body, repairing DNA damages and recovering all vital chemical and biochemical indicators, suggesting their unique role as free radical...

  9. Considerations on radiation protection of aircraft crew in Brazil; Consideracoes a respeito de protecao radiologica de tripulacoes de aeronaves no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Federico, C.A.; Goncalez, O.L., E-mail: claudiofederico@ieav.cta.b, E-mail: odairl@ieav.cta.b [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados; Sordi, G.M.; Caldas, L.V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    This paper discuss the guidelines existing in the ICRP documents related to radiation protection applied to the aircraft crew and it is presented a brief report on the evolution of these studies in this field, and also the regulations already adopted by the integrating of the European Union, Canada and USA. Also, are presented some peculiarities of Brazilian air space and the legislation applied to work with ionizing radiation, discussing the general aspects of radiation protection applied to the aircraft crew in Brazil

  10. Ionizing radiation exposure in interventional cardiology: current radiation protection practice of invasive cardiology operators in Lithuania.

    Science.gov (United States)

    Valuckiene, Zivile; Jurenas, Martynas; Cibulskaite, Inga

    2016-09-01

    Ionizing radiation management is among the most important safety issues in interventional cardiology. Multiple radiation protection measures allow the minimization of x-ray exposure during interventional procedures. Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Interventional cardiologists of five cardiac centres were interviewed by anonymized questionnaire, addressing personal use of protective garments, shielding, table/detector positioning, frame rate (FR), resolution, field of view adjustment and collimation. Effective patient doses were compared between operators who work with and without x-ray optimization. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)-portable barriers; 12.9% (n  =  4)-abdominal patient's shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a 'store fluoro' option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions. Many of the ionizing radiation exposure reduction tools and techniques are underused by a considerable proportion of interventional cardiology operators. The application of basic radiation protection tools and

  11. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Casson, W.H.; Thein, C.M.; Bogard, J.S. [eds.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  12. Surgical Staff Radiation Protection During Fluoroscopy-Guided Urologic Interventions.

    Science.gov (United States)

    Galonnier, François; Traxer, Olivier; Rosec, Maeva; Terrasa, Jean-Baptiste; Gouezel, Pascal; Celier, David; Bassinet, Céline; Ruffion, Alain; Paparel, Philipe; Fiard, Gaelle; Terrier, Jean-Etienne

    2016-06-01

    Over the past 20 years, the use of fluoroscopy to guide urologic surgical interventions has been constantly growing. Thus, in their daily practice, urologists and other operating room (OR) staff are exposed to X-radiation increasingly frequently. This raises questions as to the risks they encounter and the actions needed to reduce them. Evaluate X-ray dose exposure in the members of the surgical team and determine urologist radioprotection knowledge and practices. A prospective bicenter study was conducted within AFUF (French urology resident association) and in association with The French Nuclear Safety Authority/The Institute for Radiological Protection and Nuclear Safety (ASN/IRSN). Radiation exposure was measured on 12 operators using dosimeters (seven per operator), in staff-occupied locations in the OR using ionization chambers, and on anthropomorphic phantoms. A survey was used to gather information on radiation knowledge and safety practices of the AFUF members. Annual whole-body radiation doses were low (0.1-0.8 millisieverts [mSv], mostly at around 0.3 mSv), and equivalent doses were low for the fingers (0.7-15 mSv, mostly at around 2.5 mSv), and low for the lens of the eye (0.3-2.3 mSv, mostly at around 0.7 mSv). In percutaneous nephrolithotomy, extremity doses were lower when the patient was placed in dorsal decubitus compared with ventral decubitus. Pulsed fluoroscopy reduced radiation dose exposure by a factor of 3 compared with continuous fluoroscopy with no image quality loss. Radiation safety practices were poor: only 15% of urologists wore dosimeters and only 5% had been trained in the handling of X-ray generators. In the present study, radiation exposure for urologists was low, but so was knowledge of radiation safety and optimization practices. This absence of training for radiation safety and reduction, teamed with novel techniques involving long fluoroscopy-guided interventions, could result in unnecessarily high exposure for patients and OR

  13. Radiation protection in interventional radiology; Strahlenschutz in der interventionellen Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Adamus, R.; Loose, R.; Galster, M. [Klinikum Nuernberg Nord, Institut fuer Diagnostische und Interventionelle Radiologie, Nuernberg (Germany); Wucherer, M. [Klinikum Nuernberg Nord, Institut fuer Medizinische Physik, Nuernberg (Germany); Uder, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Institut fuer Radiologie, Erlangen (Germany)

    2016-03-15

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x-ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X-ray protection measures plus lead-containing eyeglasses. (orig.) [German] Die Anwendung ionisierender Strahlung in der Medizin scheint sowohl fuer Patienten als auch fuer beruflich exponierte Personen sicher zu sein. Die interventionellen Entwicklungen der letzten Jahre mit sehr durchleuchtungs- und dosisintensiven Eingriffen erfordern allerdings eine Intensivierung des Strahlenschutzes. Es empfiehlt sich, die zur Verfuegung stehenden Moeglichkeiten auszuschoepfen. Neben den Geraeteoptionen muss der Strahlenschutz am Eingriffstisch durch Bleilamellenaufstecker und montiertes Bleiglas intensiv betrieben werden. Besonderen Fokus muss auf den Schutz der Augen zur Kataraktvermeidung gelegt werden. Da dessen Ausbildung nach neuen Erkenntnissen moeglicherweise nicht mehr deterministisch zu sehen ist, hat die Internationale Strahlenschutzkommission (IRCP) den Grenzwert von 150 auf 20 Mikrosievert (mSv)/Jahr erniedrigt. Messungen belegen, dass unter Einhaltung aller Strahlenschutzmassnahmen plus Bleiglasbrille dieser einzuhalten ist. (orig.)

  14. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of the workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.

  15. virtX: a CBT-system for mobile image intensifier systems to improve the radiation protection training

    OpenAIRE

    Dresing, Klaus; Stürmer, Klaus Michael; Plischke, Maik; Ahrens, Christoph Alexander; Duwenkamp, Christopher; Wagner, Markus; Bott, Oliver Johannes

    2009-01-01

    Background and objectives: The exposure of patient and personal produced by diagnostic medical X-ray techniques should be kept at a minimum according to governmental regulations like the Strahlenschutzverordnung in Germany. To achieve this, a professional and prudent use of the X-ray machine is indispensable. Currently this behavior is only taught theoretically, because training with real radiation is not an option. Therefore the question arises how the education in radiation protection can ...

  16. Ionizing radiation regulations and the dental practitioner: 1. The nature of ionizing radiation and its use in dentistry.

    Science.gov (United States)

    Rout, John; Brown, Jackie

    2012-04-01

    Legislation governing the use of ionizing radiation in the workplace and in medical treatment first became law in 1985 and 1988, being superseded by the Ionizing Radiations Regulations 1999 (IRR99) and the Ionizing Radiation (Medical Exposure) Regulations 2000, (IR(ME)R 2000), respectively. This legislation ensures a safe environment in which to work and receive treatment and requires that those involved in the radiographic process must be appropriately trained for the type of radiographic practice they perform. A list of the topics required is detailed in Schedule 2 of IR(ME)R 2000 and is paraphrased in Table 1, with the extent and amount of knowledge required depending on the type of radiographic practice undertaken. Virtually all dental practitioners undertake radiography as part of their clinical practice. Legislation requires that users of radiation, including dentists and members of the dental team, understand the basic principles of radiation physics, hazards and protection, and are able to undertake dental radiography safely with the production of high quality, diagnostic images.

  17. Los Alamos Science: Number 23, 1995. Radiation protection and the human radiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. [ed.

    1995-12-31

    There are a variety of myths and misconceptions about the ionizing radiation that surrounds and penetrates us all. Dispel a few of these by taking a leisurely tour of radiation and its properties, of the natural and man-made sources of ionizing radiation, and of the way doses are calculated. By damaging DNA and inducing genetic mutations, ionizing radiation can potentially initiate a cell on the road to cancer. The authors review what is currently known about regulation of cellular reproduction, DNA damage and repair, cellular defense mechanisms, and the specific cancer-causing genes that are susceptible to ionizing radiation. A rapid survey of the data on radiation effects in humans shows that high radiation doses increase the risk of cancer, whereas the effects of low doses are very difficult to detect. The hypothetical risks at low doses, which are estimated from the atomic-bomb survivors, are compared to the low-dose data so that the reader can assess the present level of uncertainty. As part of the openness initiative, ten individuals who have worked with plutonium during various periods in the Laboratory`s history were asked to share their experiences including their accidental intakes. The history and prognosis of people who have had plutonium exposures is discussed by the Laboratory`s leading epidemiologist.

  18. Comparison of radiation dose to operator between transradial and transfemoral coronary angiography with optimised radiation protection: a phantom study.

    Science.gov (United States)

    Liu, Huiliang; Jin, Zhigeng; Jing, Limin

    2014-03-01

    A growing concern in applying radial access in cardiac catheterisation is the increased operator radiation exposure. This study used an anthropomorphic phantom to simulate transradial and transfemoral coronary angiography with optimised radiation protection conditions. Operator radiation exposure was measured with thermoluminescent dosemeters at predefined locations. Compared with the femoral route, the radial route was associated with a dose decrease of 15 % at the operator's chest level with optimised radiation shielding. However, radiation exposure to the operator's hand remained significantly higher when applying radial access even with collective protective equipment used (by a factor of 2). Furthermore, the efficiency of operator radiation protection was found to be dependent on the tube incidence. Awareness should be raised about the significant increase of radiation exposure to operators' hands in transradial coronary angiography. Protection to reduce the dose level to the hands is necessary and should be further improved.

  19. Potential of herbs in skin protection from ultraviolet radiation

    Science.gov (United States)

    Korać, Radava R.; Khambholja, Kapil M.

    2011-01-01

    Herbs have been used in medicines and cosmetics from centuries. Their potential to treat different skin diseases, to adorn and improve the skin appearance is well-known. As ultraviolet (UV) radiation can cause sunburns, wrinkles, lower immunity against infections, premature aging, and cancer, there is permanent need for protection from UV radiation and prevention from their side effects. Herbs and herbal preparations have a high potential due to their antioxidant activity, primarily. Antioxidants such as vitamins (vitamin C, vitamin E), flavonoids, and phenolic acids play the main role in fighting against free radical species that are the main cause of numerous negative skin changes. Although isolated plant compounds have a high potential in protection of the skin, whole herbs extracts showed better potential due to their complex composition. Many studies showed that green and black tea (polyphenols) ameliorate adverse skin reactions following UV exposure. The gel from aloe is believed to stimulate skin and assist in new cell growth. Spectrophotometer testing indicates that as a concentrated extract of Krameria triandra it absorbs 25 to 30% of the amount of UV radiation typically absorbed by octyl methoxycinnamate. Sesame oil resists 30% of UV rays, while coconut, peanut, olive, and cottonseed oils block out about 20%. A “sclerojuglonic” compound which is forming from naphthoquinone and keratin is the reaction product that provides UV protection. Traditional use of plant in medication or beautification is the basis for researches and making new trends in cosmetics. This review covers all essential aspects of potential of herbs as radioprotective agents and its future prospects. PMID:22279374

  20. Amendments to ordinances in Radiation Protection Law; Novellierung der strahlenschutzrechtlichen Verordnungen

    Energy Technology Data Exchange (ETDEWEB)

    Heller, W.

    2007-05-15

    The last major reform of the German Radiation Protection Ordinance took place on July 26, 2001. The 'First Ordinance Amending Ordinances in Radiation Protection Law' now proposed is to cover primarily the necessary changes and supplements resulting from experience in the execution of the ordinances. They mainly relate to these issues: (1) the scope of application of the Radiation Protection Ordinance and of the x-ray Ordinance in medical research (2) the scope of application of the Radiation Protection Ordinance and the -ray Ordinance in unjustified types of activities (3) electronic communication ('e-government') (4) changes in the provisions about permits and announcements in the Radiation Protection Ordinance (5) new clearance levels in the Radiation Protection Ordinance (6) cross-border transports of 'NORM' materials (7) other changes in the scope of application of the Radiation Protection Ordinance (8) other changes in the x-ray area. (orig.)

  1. Down-regulation of PERK enhances resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu, E-mail: oommen1978@gmail.com; Prise, Kevin M.

    2013-11-08

    Highlights: •PERK enhances the sensitivity of cancer cells to ionizing radiation. •Down-regulation of PERK results in enhanced DNA repair. •Ionizing radiation-induced apoptosis is inhibited in PERK-down regulated cancer cells. -- Abstract: Although, ionizing radiation (IR) has been implicated to cause stress in endoplasmic reticulum (ER), how ER stress signaling and major ER stress sensors modulate cellular response to IR is unclear. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER transmembrane protein which initiates unfolded protein response (UPR) or ER stress signaling when ER homeostasis is disturbed. Here, we report that down-regulation of PERK resulted in increased clonogenic survival, enhanced DNA repair and reduced apoptosis in irradiated cancer cells. Our study demonstrated that PERK has a role in sensitizing cancer cells to IR.

  2. Radiation protection in medical centers : teletherapy service; Proteccion radiologica en centros hospitalarios : servicio de teleterapia

    Energy Technology Data Exchange (ETDEWEB)

    Resendiz G, G.; Perez P, M.; Figueroa M, E. [Clinica Medica Sur, Servicio de Radioterapia, Puente de Piedra No. 150, Col. Toriello Guerra, Mexico 14050 D. F. (Mexico)

    2008-12-15

    The General Regulation of Radiation Safety, it clearly provides the classification, requirements and obligations of the various figures relating to a radiation protection system, i.e., the occupationally exposed personnel, the radiation safety responsible, the legal representative, the type of installation, etc. For new installations, the shieldings calculation should be contained in the analytical report with due consideration of factors, such as those surrounding the areas classification based on the occupation type, the work load of the equipment and others. The operation license involves requirements such as the Report and the Radiation Safety Handbook, the Emergencies Plan, the establishment of register levels, investigation and intervention, the way it is carried out medical surveillance of the occupationally exposed personnel, and the description of the protection mechanisms and detection instrumentation and radiation measurement. Deserves mention the case when high readings are recorded in the personal dosimeters, which must submit to an interrogation to the employee, you must determine if it is an incorrect reading to the service provider, you must perform a medical exam blood cell count with relevant to the dose determination, may eventually can lead to a cytogenetic study and the determination to do if confirmed an unexpectedly high dose. Moreover, the technology evolution also implies the development of adaptation measures. For example, the Intensity Modulated Radiation Therapy, which is an advanced high-precision radiotherapy that uses X-ray accelerators for computer-controlled radiation doses precisely to a malignant tumor or specific areas within the tumor, taking into account requires regard to equipment, and space and shielding, time and staff hours for treatment, personnel training, materials for making images (such as two-dimensional arrangements of integrated circuits or diodes, films or portal images), the attention given by the engineers of

  3. Wound scabs protect regenerating tissue against harmful ultraviolet radiation.

    Science.gov (United States)

    van der Pol, E; Mudde, Y D; Coumans, F A W; van Leeuwen, T G; Sturk, A; Nieuwland, R

    2016-11-01

    Benefits attributed to wound scabs include prevention of blood loss and protection against infection. However, when formation of a wound scab is prevented, the risk of infection is reduced. Moreover, in the absence of a wound scab, wounds heal faster and scar formation is reduced. The question arises why we develop a wound scab. Here we show that wound scabs inhibit transmission of ultraviolet radiation (UVR). We compared the UVR transmittance of human wound scabs to sunscreen by measuring the sun protection factor (SPF) with diffuse transmittance spectroscopy. Three wound scabs showed SPFs of 70, 84, and 300, which is more effective than the most protective commercially available sun block. Because our results demonstrate that a wound scab offers natural protection against UVR, and because no beneficial trait is attributed to wound scabs, we hypothesize that the main function of wound scabs is to limit DNA damage in underlying cells during regeneration of wound tissue exposed to sunlight, thereby reducing the risk of developing skin cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Implementation of General Data Protection Regulation (GDPR) in Enterprises

    DEFF Research Database (Denmark)

    Khajuria, Samant; Sørensen, Lene Tolstrup; Skouby, Knud Erik

    2017-01-01

    It is impossible to keep the data secure and private when one can’t keep track of what they have, where it is and what its value is. After twenty years, Data protection Directive 95/46/EC (DPD) is finally phased out and replaced by General Data Protection Regulation (GDPR). This is a step towards...... the ongoing recognition of the value and importance of personal data. However, given the complexity and limited time frame for the implementation of the regulation brings many enterprises upside down and inside out as they implement change to bring themselves up to the standard required by the regulations...

  5. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    Science.gov (United States)

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  6. Review of Gender and Racial Diversity in Radiation Protection.

    Science.gov (United States)

    Gillenwalters, Elizabeth; Martinez, Nicole

    2017-04-01

    The rapidly changing demographics of the United States workforce include a large number of women and members of minority groups that are currently underrepresented in science and engineering-related education and careers. Recent research indicates that while singular incidents of sexism do exist, gender bias more often affects women in various subtle ways. The effects of stereotype threat and the lack of appropriate mentoring and female role models are samples of the possible factors contributing to performance and longevity for women in math-intensive fields. To address how this issue affects those in radiation protection, the current status of women in the field is reviewed as a progression through the scientific pipeline, from education and employment to positions in scientific bodies and professional recognition, with primary focus on American women and institutions. Racial diversity demographics are reviewed where available. Findings indicate women and minority racial groups are underrepresented in multiple aspects of education, research, and leadership. While gender diversity across the field has not yet reached gender parity, trending indicates that the percentage of women earning degrees in radiation protection has consistently increased over the last four decades. Diversity of racial groups, however, has remained fairly consistent and is well below national averages. Diverse perspectives have been documented in collective problem-solving to lead to more innovative solutions.

  7. NUCLEAR NEW BUILD-INTEGRATING CULTURAL DIFFERENCES IN RADIATION PROTECTION.

    Science.gov (United States)

    Haemmerli, Valentin; Bryant, Peter A; Cole, Peter

    2017-04-01

    Across the world, we are seeing a resurgence in Nuclear New Build. In the UK alone, plans are under way for the construction of 10 new reactors, using 4 different reactor designs all of which are to be provided by foreign vendors, and operated by 3 newly formed licensees within the UK. As these new licensees embark on the task of establishing themselves and progressing the design and build of these reactors, there are challenges faced in integrating the Radiation Protection Requirements and Culture from the various Foreign Investors and Vendors into the UK 'Context'. The following paper identifies the origin of the Radiation Protection Requirements within the UK and foreign investor/vendor countries, in an attempt to integrate them into the UK licensing and approval process. Thus, allowing due credit to be taken for the regulatory regime of the foreign countries where these reactors originate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Chronic low-dose radiation protects cells from high-dose radiation via increase of AKT expression by NF-{sub k}B

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung Sun; Seong, Ki Moon; Kim, Ji Young; Kim, Cha Soon; Yang, Kwang Hee; Nam, Seon Young [Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., LTD., Gyeongju (Korea, Republic of)

    2013-04-15

    Exposure to low-dose and low-dose rate of ionizing radiation is an important issue in radiation protection. Low-dose ionizing radiation has been observed to elicit distinctly different responses compared to high-dose radiation, in various biological systems including the reproductive, immune, and hematopoietic systems (Liu et al. 2006). Some data were reported that low-dose radiation could initiate beneficial effects by stimulating cell growth, DNA repair, activation of transcription factors and gene expression (Calabrese et al., 2004). Cells exposed to low-dose radiation can develop adaptive resistance to subsequent high-dose radiation induced DNA damage, gene mutation, and cell death. We previously reported that low-dose of ionizing radiation induced cell survival through the activation of AKT (protein kinase B, PKB) pathway (Park et al., 2009). AKT has been shown to be potently activated in response to a wide variety of growth factors and ionizing radiation. Cell survival against ionizing radiation seems to be associated with the activation of AKT pathway via phosphorylation of its downstream nuclear target molecules. In the present study, we examined the effects of chronic low-dose irradiation in human lung fibroblast cells. The aim was to explore the possibility of a low-dose radiation-induced adaptive cellular response against subsequent challenging high-dose irradiation. In the present study, we examined the regulatory mechanism responsible for cellular response induced by chronic low-dose of ionizing radiation in normal human cells. We found that the level of AKT protein was closely associated with cell survival. In addition, NF-{sub k}B activation by chronic low-dose radiation regulates AKT activation via gene expression and acinus expression. In conclusion, our data demonstrate that chronic low-dose radiation could inhibit the cell death induced by cytotoxic high-dose radiation through the modulation of the level of AKT and acinus proteins via NF-{sub k

  9. Inspection of cardiology departments in Norway: are they making it great in radiation protection?

    Science.gov (United States)

    Silkoset, R D; Widmark, A; Friberg, E G

    2015-07-01

    Staff involved in interventional cardiology receive the highest occupational doses in Norway, and skin burns of patients have been reported. To identify the level of radiation protection (RP) for patients and staff, and compliance with the RP regulation, the Norwegian Radiation Protection Authority carried out inspections. The inspections were conducted (2013-14) as quality system reviews, based on document reviews, interviews, on-site inspections and observations of interventional procedures. The inspections revealed that most of the hospitals had non-compliances according to the RP regulation. Most deviations were associated with education in RP and follow-up of patients who had received high radiation doses. Lack of systematic optimisation of procedures and estimation of eye lens doses to evaluate the risk for cataracts were also common. Inspections turned out to increase the awareness of RP in cardiology and are identified as an effective tool for improving RP. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Romanian Radiation Protection Training Experience in Medical Field

    Energy Technology Data Exchange (ETDEWEB)

    Steliana Popescu, F.; Milu, C.; Naghi, E.; Calugareanu, L.; Stroe, F. M.

    2003-07-01

    Studies conducted by the Institute of Public Health Bucharest during the last years emphasised the need of appropriate radioprotection training in the medical field. With the assistance of the International Atomic Energy Agency in Vienna, the Pilot Centre on Clinical Radio pathology in the Institute of Public Health-Bucharest, provided, from 2000 a 7 modular courses (40 hours each), covering the basic topics of ionizing radiation, biological and physical dosimetry, effects of exposure to ionising radiation, radioprotection concepts, planning and medical response in case of a nuclear accident or radiological emergency. The courses are opened for all health specialists, especially for occupational health physicians, focusing on health surveillance of radiation workers and medical management of overexposed workers. Each module is followed up by an examination and credits. The multidisciplinary team of instructors was trained within several train-the-trainers courses, organised by IAEA. The paper discusses the evaluation of these 3 years experience in training and its feedback impact, the aim of the program being to develop a knowledge in the spirit of the new patterns of radiological protection, both for safety and communication with the public. (Author)

  11. Radiation protection research projects. Program report 2015. Report on research program radiation protection of the Federal ministry for environment, nature conservation and reactor safety with technical and administrative steering by the Bundesamt fuer Strahlenschutz; Strahlenschutzforschung. Programmreport 2015. Bericht ueber das vom Bundesamt fuer Strahlenschutz fachlich begleitete und administrativ umgesetzte Forschungsprogramm Strahlenschutz des Bundesministeriums fuer Umwelt, Naturschutz, Bau und Reaktorsicherheit

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Hannig, Annemarie; Loebke-Reinl, Angelika; Peter, Josef; Goedde, Ralph; Hachenberger, Claudia; Trugenberger-Schnabel, Angela (comps.)

    2016-08-15

    On behalf of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) the Federal Office for Radiation Protection (BfS) awards research grants for projects in the field of radiation protection. The findings of these projects serve as decision aiding information in the development of radiation protection regulations as well as in the fulfilment of specific tasks in the field of radiation protection. The tasks of the Federal Office for Radiation Protection involve planning, technical and administrative preparation, awarding of contracts, general support as well as the technical evaluation of research and study projects. This report provides information on results, i. e. preliminary (in the form of status reports) and, where applicable, final results of radiation protection projects within the BMUB's Environmental Research Plan for the year 2015.

  12. Radiation protection in dental X-ray surgeries--still rooms for improvement.

    Science.gov (United States)

    Hart, G; Dugdale, M

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  13. Summary of: radiation protection in dental X-ray surgeries--still rooms for improvement.

    Science.gov (United States)

    Walker, Anne

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  14. Overview of novel techniques for radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, Stefano, E-mail: stefano.agosteo@polimi.i [Politecnico of Milano, Dipartimento di Energia, Sezione di Ingegneria Nucleare - CeSNEF, via Ponzio 34/3, 20133 Milano (Italy); INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2010-12-15

    Generally, the main approaches for assessing the radiation protection (RP) quantities in neutron fields are: i) the use of an instrument with a response to the protection quantity quasi-independent of energy; ii) neutron spectrometry; iii) microdosimetry. The techniques based on the first approach include rem-meters, superheated emulsions and the electronic personal dosemeters. Passive rem-meters have recently been developed for assessing the ambient dose equivalent in pulsed neutron fields around particle accelerators for hadrontherapy and research. Most of these instruments are characterised by a response extended to high-energies (up to a few GeV). An example is given by the GSI-ball, which employs a pair of LiF TLDs as a thermal neutron detector. It is likely that passive instruments will play a fundamental role also for monitoring the neutron fields generated by ultra-high intensity lasers, where the duration of a single pulse is of the order of hundreds femtoseconds. Arrays of tissue-equivalent proportional counters (TEPCs) of a millimetric/sub-millimetric physical size have been developed both for assessing the quality of therapeutic radiation beams and for estimating the RP quantities in low-intensity fields, which may limit the use of conventional microdosemeters. Very satisfactory results were obtained with GEM-based TEPCs and gas microstrip detectors (GMDs). Moreover, mini-TEPCs have been constructed and tested for measuring the quality of hadrontherapy beams (BNCT included). Silicon microdosemeters have also been demonstrated to be very promising for characterizing proton and ion beams for radiation therapy and for estimating the occurrence of single event effects in space applications.

  15. 10 CFR 35.24 - Authority and responsibilities for the radiation protection program.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Authority and responsibilities for the radiation protection program. 35.24 Section 35.24 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Administrative Requirements § 35.24 Authority and responsibilities for the radiation protection program. (a) In addition to the radiation...

  16. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Sisko Salomaa [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  17. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation.

    Directory of Open Access Journals (Sweden)

    Claudia Lange

    Full Text Available BACKGROUND: Successful treatment of acute radiation syndromes relies on immediate supportive care. In patients with limited hematopoietic recovery potential, hematopoietic stem cell (HSC transplantation is the only curative treatment option. Because of time consuming donor search and uncertain outcome we propose MSC treatment as an alternative treatment for severely radiation-affected individuals. METHODS AND FINDINGS: Mouse mesenchymal stromal cells (mMSCs were expanded from bone marrow, retrovirally labeled with eGFP (bulk cultures and cloned. Bulk and five selected clonal mMSCs populations were characterized in vitro for their multilineage differentiation potential and phenotype showing no contamination with hematopoietic cells. Lethally irradiated recipients were i.v. transplanted with bulk or clonal mMSCs. We found a long-term survival of recipients with fast hematopoietic recovery after the transplantation of MSCs exclusively without support by HSCs. Quantitative PCR based chimerism analysis detected eGFP-positive donor cells in peripheral blood immediately after injection and in lungs within 24 hours. However, no donor cells in any investigated tissue remained long-term. Despite the rapidly disappearing donor cells, microarray and quantitative RT-PCR gene expression analysis in the bone marrow of MSC-transplanted animals displayed enhanced regenerative features characterized by (i decreased proinflammatory, ECM formation and adhesion properties and (ii boosted anti-inflammation, detoxification, cell cycle and anti-oxidative stress control as compared to HSC-transplanted animals. CONCLUSIONS: Our data revealed that systemically administered MSCs provoke a protective mechanism counteracting the inflammatory events and also supporting detoxification and stress management after radiation exposure. Further our results suggest that MSCs, their release of trophic factors and their HSC-niche modulating activity rescue endogenous hematopoiesis

  18. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation.

    Science.gov (United States)

    Lange, Claudia; Brunswig-Spickenheier, Bärbel; Cappallo-Obermann, Heike; Eggert, Katharina; Gehling, Ursula M; Rudolph, Cornelia; Schlegelberger, Brigitte; Cornils, Kerstin; Zustin, Jozef; Spiess, Andrej-Nikolai; Zander, Axel R

    2011-01-05

    Successful treatment of acute radiation syndromes relies on immediate supportive care. In patients with limited hematopoietic recovery potential, hematopoietic stem cell (HSC) transplantation is the only curative treatment option. Because of time consuming donor search and uncertain outcome we propose MSC treatment as an alternative treatment for severely radiation-affected individuals. Mouse mesenchymal stromal cells (mMSCs) were expanded from bone marrow, retrovirally labeled with eGFP (bulk cultures) and cloned. Bulk and five selected clonal mMSCs populations were characterized in vitro for their multilineage differentiation potential and phenotype showing no contamination with hematopoietic cells. Lethally irradiated recipients were i.v. transplanted with bulk or clonal mMSCs. We found a long-term survival of recipients with fast hematopoietic recovery after the transplantation of MSCs exclusively without support by HSCs. Quantitative PCR based chimerism analysis detected eGFP-positive donor cells in peripheral blood immediately after injection and in lungs within 24 hours. However, no donor cells in any investigated tissue remained long-term. Despite the rapidly disappearing donor cells, microarray and quantitative RT-PCR gene expression analysis in the bone marrow of MSC-transplanted animals displayed enhanced regenerative features characterized by (i) decreased proinflammatory, ECM formation and adhesion properties and (ii) boosted anti-inflammation, detoxification, cell cycle and anti-oxidative stress control as compared to HSC-transplanted animals. Our data revealed that systemically administered MSCs provoke a protective mechanism counteracting the inflammatory events and also supporting detoxification and stress management after radiation exposure. Further our results suggest that MSCs, their release of trophic factors and their HSC-niche modulating activity rescue endogenous hematopoiesis thereby serving as fast and effective first-line treatment to

  19. Radiation terrorism: what society needs from the radiobiology-radiation protection and radiation oncology communities.

    Science.gov (United States)

    Coleman, C Norman; Parker, Gerald W

    2009-06-01

    Society's and individuals' concerns about the adverse effects from radiation are logically amplified many times when radiological terrorism is considered. The spectrum of events include industrial sabotage, the use of an explosive or non-explosive radiological dispersal device, the placement of a radiological exposure device in a public facility and the use of an improvised nuclear device. The consequences of an event relate to the physical and medical damage of the event itself, the financial impact, and the acute and long-term medical consequences, including fear of radiation-induced cancer. The magnitude of a state-sponsored nuclear event is so great that limited detailed response planning had been done in the past, as compared to the work now ongoing. Planning is done on the basis of scenario modelling. Medical response planning includes medical triage, distribution of victims to care by experienced physicians, developing medical countermeasures to mitigate or treat radiation injury, counselling and appropriately following exposed or potentially exposed people, and helping the local community develop confidence in their own response plan. Optimal response must be based on the best available science. This requires scientists who can define, prioritise and address the gaps in knowledge with the range of expertise from basic physics to biology to translational research to systems expertise to response planning to healthcare policy to communications. Not only are there unique needs and career opportunities, but there is also the opportunity for individuals to serve their communities and country with education regarding radiation effects and by formulating scientifically based government policy.

  20. Radiation terrorism: what society needs from the radiobiology-radiation protection and radiation oncology communities

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C Norman [Office of Preparedness and Emergency Response, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (United States); Parker, Gerald W [Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (United States)

    2009-06-01

    Society's and individuals' concerns about the adverse effects from radiation are logically amplified many times when radiological terrorism is considered. The spectrum of events include industrial sabotage, the use of an explosive or non-explosive radiological dispersal device, the placement of a radiological exposure device in a public facility and the use of an improvised nuclear device. The consequences of an event relate to the physical and medical damage of the event itself, the financial impact, and the acute and long-term medical consequences, including fear of radiation-induced cancer. The magnitude of a state-sponsored nuclear event is so great that limited detailed response planning had been done in the past, as compared to the work now ongoing. Planning is done on the basis of scenario modelling. Medical response planning includes medical triage, distribution of victims to care by experienced physicians, developing medical countermeasures to mitigate or treat radiation injury, counselling and appropriately following exposed or potentially exposed people, and helping the local community develop confidence in their own response plan. Optimal response must be based on the best available science. This requires scientists who can define, prioritise and address the gaps in knowledge with the range of expertise from basic physics to biology to translational research to systems expertise to response planning to healthcare policy to communications. Not only are there unique needs and career opportunities, but there is also the opportunity for individuals to serve their communities and country with education regarding radiation effects and by formulating scientifically based government policy.

  1. Review of the general regulation of radiological protection; Revision del reglamento general de seguridad radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Cortes C, A. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Area de Impacto Radiologico y Emergencias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2008-12-15

    As a result of advances in radiation protection at the international level, the National Commission of Nuclear Safety and Safeguards has been given the task of revising the General Regulation of Radiation Safety to cover such developments, especially those contained in the safety basic standards No. 115 of the IAEA, published in 1977. In addition, the working group has considered issues that need to be regulated to avoid unnecessary dose received by the public due to exposure to ionizing radiation. Related to the public exposure believes the preliminary deal with situations of chronic exposure in homes, as well as human activities involving natural sources of ionizing radiation exposure to cause the public to levels that exceed the dose limits laid down in the Regulation. It is also envisaged that they will be subject to monitoring by the Commission, the concentration levels due to radon in homes, radon outdoor, radio and radon in drinking water, and external radiation levels due to naturally occurring radionuclides in building materials. Thus, the processes that may be subject to surveillance by the National Commission of Nuclear Safety and Safeguards include water treatment, some metallurgical processes, some of the mining industry and some industrial processes in which waste increase activity concentration of naturally occurring radionuclides. With the revision of the General Regulation of Radiation Safety, certain standards must be reviewed and further developed such as the concentration of radon levels in homes room, outdoor radon, radon and radio in drinking water, radiation levels out sourcing due to naturally occurring radionuclides in building materials, and standards governing (and identify) the radioactive material generation in the processes mentioned previously. (Author)

  2. Protective microglia and its regulation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Weidong Le

    2016-09-01

    Full Text Available Microglia mediated neuroinflammation is a hallmark of Parkinson’s disease (PD. It has been reported that microglia in the brain of PD have both neurotoxic and neuroprotective effects, depending on the microglial activation states. In this review, we will focus on the recent research findings of the neuroprotective role of microglia-mediated neuroinflammation in PD. Accumulating new evidences have indicated that the protective mechanisms of microglia may result from its regulation of transrepression pathways via nuclear receptors, anti-inflammatory responses, neuron-microglia crosstalk, histone modification and microRNA regulation. All of these protective mechanisms of microglia orchestrate with each other to repress the production of neurotoxic inflammatory components. Since the detrimental effects of inflammation overwhelm the protective effects of microglia during the disease progression of PD, exploring an in-depth understanding of the protective mechanisms of microglia and promoting the transformation of beneficial microglia are urgently important for the treatment of PD.

  3. [Scrap metal and ionizing radiation hazard: prevention and protection].

    Science.gov (United States)

    Giugni, U

    2012-01-01

    The numerous accidents occurred in companies that melt scrap metals have shown that the hazard caused by the presence of radioactive materials--or 'orphan sources'--may have serious consequences on standard production, with great economic and social damage. Italian Legislative Decree No. 100/11 establishes the skills required for the safe management of scrap metals in the whole production cycle, thus requiring the involvement of experts in radiation protection. The paper details the procedures that shall be implemented in the companies that melt scrap metals. Said procedures involve several professional roles: managers, department heads and occupational physicians. The paper describes the general characteristics of the instruments used, staff training programs and the experience gained in 15 years of activity.

  4. Nuclear fragmentation measurements for hadrontherapy and space radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    De Napoli, M. [INFN - Sezione di Catania (Italy); Agodi, C.; Blancato, A. A.; Cavallaro, M.; Cirrone, G. A. P.; Cuttone, G.; Sardina, D.; Scuderi, V. [INFN - Laboratori Nazionali del Sud (Italy); Battistoni, G. [INFN - Sezione di Milano (Italy); Bondi, M.; Cappuzzello, F.; Carbone, D.; Nicolosi, D.; Raciti, G.; Tropea, S. [INFN - Laboratori Nazionali del Sud, Italy and Dipartimento di Fisica e Astronomia, Universita degli Studi di Catania (Italy); Giacoppo, F. [Department of Physics, University of Oslo (Norway); Morone, M. C. [Dipartimento di Biopatologia e Diagnostica per Immagini, Universita di Roma Tor Vergata (Italy); Pandola, L. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Rapisarda, E. [Nuclear and Radiation Physics Section, Katholieke Universiteit Leuven Celestijnenlaan Heverlee (Belgium); Romano, F. [INFN - Laboratori Nazionali del Sud (Italy) and Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi Roma (Italy); and others

    2013-04-19

    Nuclear fragmentation measurements are necessary in hadrontherapy and space radiation protection, to predict the effects of the ion nuclear interactions within the human body. Nowadays, a very limited set of carbon fragmentation cross sections has been measured and in particular, to our knowledge, no double differential fragmentation cross sections at intermediate energies are available in literature. We have measured the double differential cross sections and the angular distributions of the secondary fragments produced in the {sup 12}C fragmentation at 62 AMeV on a thin carbon target. The experimental data have been also used to benchmark the prediction capability of the Geant4 Monte Carlo code at intermediate energies, where it was never tested before.

  5. Register of legislative and regulatory dispositions relative to the radiation protection of the population and workers against the dangers of ionizing radiations; Recueil des dispositions legislatives et reglementaires concernant la protection de la population et des travailleurs contre les dangers des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-15

    This collection of legislative arrangements concerns the protection of population and workers against the risks of ionizing radiations. Each chapter is divided in two parts: a legislative part and a statutory or regulation part. We find the different chapters in relation with protection of populations, protection of workers, public health and labour laws. (N.C.)

  6. Radiation protection issues after 20 years of LHC operation

    CERN Document Server

    Forkel-Wirth, D.; Roesler, S.; Theis, C.; Ulrici, L.; Vincke, H.; Vincke, Hz.

    2011-01-01

    Since November 2009, the LHC commissioning progresses very well, both with proton and lead beams. It will continue in 2011 and nominal LHC operation is expected to be attained in 2013. In parallel, plans for various LHC upgrades are under discussion, suggesting a High-Luminosity (HL) upgrade first and a High-Energy (HE) upgrade in a later state. Whereas the upgrade in luminosity would require the modification of only some few key accelerator components like the inner triplets, the upgrade in beam energy from 7 TeV to 16.5 TeV would require the exchange of all dipoles and of numerous other accelerator components. The paper gives an overview of the radiation protection issues related to the dismantling of LHC components prior to the installation of the HE-LHC components, i.e. after about 20 years of LHC operation. Two main topics will be discussed: (i) the exposure of workers to ionizing radiation during the dismantling of dipoles, inner triplets or collimators and experiments and (ii) the production, condition...

  7. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  8. Workshop Euratom Directive 97/43. New trends in radiation protection in clinical practice, in research and in regulation; Giornata di studio La Direttiva Europea 97/43: nuovi orientamenti per la radioprotezione nella pratica clinica, nella ricerca e nel quadro normativo

    Energy Technology Data Exchange (ETDEWEB)

    Mazzei, F. [ed.] [Istituto Superiore di Sanita' , Rome (Italy). Lab. di Fisica

    1999-07-01

    The Euratom Directive 97/43 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure is presented. In particular the following topics are focused, with a multidisciplinary approach, on: diagnostic reference levels in radiodiagnostics and nuclear medicine; radiation protection in paediatrics, in interventional radiology and in computer tomography; radiation protection radiotherapy, radiation protection in medical research; radiation protection in prenatal and neonatal exposure; radiation protection in medical-legal exposures. [Italian] Il rapporto raccoglie una presentazione della Direttiva Euratom 97/43 riguardante la protezione sanitaria delle persone contro i pericoli delle radiazioni ionizzanti connessi a esposizioni mediche. In particolare sono affrontati in modo interdisciplinare i seguenti argomenti: livelli diagnostici di riferimento in radiodiagnostica e in medicina nucleare; radioprotezione nelle esposizioni in eta' pediatrica, in radiologica interventistica e in tomografia computerizzata; radioprotezione in radioterapia; radioprotezione nella ricerca scientifica clinica; radioprotezione nell'esposizione in eta' prenatale e neonatale; esposizioni potenziali e radioprotezione nelle esposizioni medico-legali.

  9. Knowledge of Radiation Hazards, Radiation Protection Practices and Clinical Profile of Health Workers in a Teaching Hospital in Northern Nigeria.

    Science.gov (United States)

    Awosan, K J; Ibrahim, Mto; Saidu, S A; Ma'aji, S M; Danfulani, M; Yunusa, E U; Ikhuenbor, D B; Ige, T A

    2016-08-01

    Use of ionizing radiation in medical imaging for diagnostic and interventional purposes has risen dramatically in recent years with a concomitant increase in exposure of patients and health workers to radiation hazards. To assess the knowledge of radiation hazards, radiation protection practices and clinical profile of health workers in UDUTH, Sokoto, Nigeria. A cross-sectional study was conducted among 110 Radiology, Radiotherapy and Dentistry staff selected by universal sampling technique. The study comprised of administration of standardized semi-structured pre-tested questionnaire (to obtain information on socio-demographic characteristics, knowledge of radiation hazards, and radiation protection practices of participants), clinical assessment (comprising of chest X-ray, abdominal ultrasound and laboratory investigation on hematological parameters), and evaluation of radiation exposure of participants (extracted from existing hospital records on their radiation exposure status). The participants were aged 20 to 65 years (mean = 34.04 ± 8.83), most of them were males (67.3%) and married (65.7%). Sixty five (59.1%) had good knowledge of radiation hazards, 58 (52.7%) had good knowledge of Personal Protective Devices (PPDs), less than a third, 30 (27.3%) consistently wore dosimeter, and very few (10.9% and below) consistently wore the various PPDs at work. The average annual radiation exposure over a 4 year period ranged from 0.0475mSv to 1.8725mSv. Only 1 (1.2%) of 86 participants had abnormal chest X-ray findings, 8 (9.4%) of 85 participants had abnormal abdominal ultrasound findings; while 17 (15.5%) and 11 (10.0%) of 110 participants had anemia and leucopenia respectively. This study demonstrated poor radiation protection practices despite good knowledge of radiation hazards among the participants, but radiation exposure and prevalence of abnormal clinical conditions were found to be low. Periodic in-service training and monitoring on radiation safety was

  10. Comparison between the Brazilian regulation of radioprotection and the recommendation of International Commission on Radiological Protection published in 2007; Comparacao entre a norma brasileira de radioprotecao e a recomendacao da International Commission on Radiological Protection publicadas em 2007

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner S.; Py Junior, Delcy A.; Dantas, Marcelino V.A.; Oliveira, Sergio Q. de, E-mail: wspereira@inb.gov.b, E-mail: delcy@inb.gov.b, E-mail: marcelino@inb.gov.b [Industrias Nucleares do Brasil (UTM/INB), Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerios; Kelecom, Alphonse [Universidade Federal Fluminense (LARARA/UFF), Niteroi, RJ (Brazil). Lab. de Radiobiologia e Radiometria; Mortagua, Valter Jose, E-mail: Valter@inb.gov.b [Industrias Nucleares do Brasil (USIN/INB), SP (Brazil). Usina de Interlagos

    2011-10-26

    This paper intends to compare the Brasilian basic regulation on radiological protection with the new recommendations of ICRP through existent differences. The main difference between the publication 60 and the publication 103 of the ICRP is the changing of concept of protection based on the process by use of practice and intervention concepts, to the protection based on the exposure situation, through the concepts of planned exposure, emergency and existent situation. For adequacy to the Brazilian regulation it is necessary to change its concept of protection and the values of radiation weighing and tissues, up dating of radiation detriments, besides to make clear the concept of environmental radioprotection

  11. Sestrin2 protects the myocardium against radiation-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yue-Can; Chi, Feng; Xing, Rui; Gao, Song; Chen, Jia-Jia; Duan, Qiong-Yu; Sun, Yu-Nan; Niu, Nan; Tang, Mei-Yue; Wu, Rong [Shengjing Hospital of China Medical University, Department of Medical Oncology, Cancer Center, Shenyang (China); Zeng, Jing [University of Washington School of Medicine, Department of Radiation Oncology, Seattle, WA (United States); Wang, Hong-Mei [Nanfang Hospital of Southern Medical University, Department of Radiation Oncology, Guangzhou (China)

    2016-05-15

    The purpose of this study was to investigate the role of Sestrin2 in response to radiation-induced injury to the heart and on the cardiomyopathy development in the mouse. Mice with genetic deletion of the Sestrin2 (Sestrin2 knockout mice [Sestrin2 KO]) and treatment with irradiation (22 or 15 Gy) were used as independent approaches to determine the role of Sestrin2. Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson's trichrome was used to assess myocardial fibrosis. Immunohistochemistry and Western blot were used to detect the capillary density. After 22 or 15 Gy irradiation, the LV ejection fraction (EF) was impaired in wt mice at 1 week and 4 months after irradiation when compared with sham irradiation. Compared to wt mice, Sestrin2 KO mice had significant reduction in reduced LVEF at 1 week and 4 months after irradiation. A significant increase in LV end-diastolic pressure and myocardial fibrosis and a significant decrease in capillary density were observed in irradiation-wt mice, as well as in irradiation-Sestrin2 KO mice. Sestrin2 involved in the regulation of cardiomyopathy (such as myocardial fibrosis) after irradiation. Overexpression of Sestrin2 might be useful in limiting radiation-induced myocardial injury. (orig.)

  12. Intercalated and Hydrogenated Carbon Nanofibers for Multifunctional Radiation Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Improvements in radiation shielding materials are needed to support NASA's human and robotic exploration programs. Shielding for both electromagnetic radiation...

  13. Delivering a radiation protection dividend: systemic capacity-building for the radiation safety profession in Africa

    Directory of Open Access Journals (Sweden)

    Julian Hilton

    2014-12-01

    Full Text Available Many African countries planning to enter the nuclear energy “family” have little or no experience of meeting associated radiation safety demands, whether operational or regulatory. Uses of radiation in medicine in the continent, whether for diagnostic or clinical purposes, are rapidly growing while the costs of equipment, and hence of access to services, are falling fast. In consequence, many patients and healthcare workers are facing a wide array of unfamiliar challenges, both operational and ethical, without any formal regulatory or professional framework for managing them safely. This, combined with heighted awareness of safety issues post Fukushima, means the already intense pressure on radiation safety professionals in such domains as NORM industries and security threatens to reach breaking point. A systematic competency-based capacity-building programme for RP professionals in Africa is required (Resolution of the Third AFRIRPA13 Regional Conference, Nairobi, September 2010. The goal is to meet recruitment and HR needs in the rapidly emerging radiation safety sector, while also addressing stakeholder concerns in respect of promoting and meeting professional and ethical standards. The desired outcome is an RP “dividend” to society as a whole. A curriculum model is presented, aligned to safety procedures and best practices such as Safety Integrity Level and Layer of Protection analysis; it emphasizes proactive risk communication both with direct and indirect stakeholders; and it outlines disciplinary options and procedures for managers and responsible persons for dealing with unsafe or dangerous behavior at work. This paper reports on progress to date. It presents a five-tier development pathway starting from a generic foundation course, suitable for all RP professionals, accompanied by specialist courses by domain, activity or industry. Delivery options are discussed. Part of the content has already been developed and delivered as

  14. Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

    1995-07-01

    This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

  15. Practical X-ray diagnostics orthopedics and trauma surgery. Indication, adjustment technique and radiation protection; Praktische Roentgendiagnostik Orthopaedie und Unfallchirurgie. Indikation, Einstelltechnik, Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Flechtenmacher, Johannes [Ortho-Zentrum am Ludwigsplatz, Karlsruhe (Germany); Sabo, Desiderius [Klinik St. Elisabeth, Heidelberg (Germany). Sportopaedic Heidelberg

    2014-07-01

    The book on X-ray diagnostics in orthopedics and trauma surgery includes the following chapters: 1. Introduction: radiation protection, equipment technology radiological diagnostics of skeleton carcinomas, specific aspects of trauma surgery, special aspects of skeleton radiology for children. 2. X-ray diagnostics of different anatomical regions: ankle joint, knee, hips and pelvis, hand and wrist joint, elbow, shoulder, spinal cord. 3. Appendix: radiation protection according to the X-ray regulations.

  16. Radiological Protection in Transition. Proceedings of the 14. Regular Meeting of the Nordic Society for Radiation Protection, NSFS

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, J.; Cederlund, T.; Drake, P.; Finne, I.E.; Glansholm, A.; Jaworska, A.; Paile, W.; Rahola, T. (eds.)

    2005-09-01

    These proceedings comprise the papers and posters presented at the 14th Regular Meeting of the Nordic Society for Radiation Protection, the theme of which was 'Radiological protection in transformation'. There were sessions on international developments and stakeholder involvement, on education, training, and measurements, on emergencies, on nuclear installations, on non-ionising radiation, on medical radiation, on industrial uses of radiation, on radiobiology, on natural sources of radiation, on non-nuclear waste, on NKS (Nordic Nuclear Safety Research), on radioecology and artificial radionuclides in the environment, and on regulatory and international activities. In addition to invited lectures and proffered papers, there were educational primer lessons in the mornings and several roundtable discussions. In all, there were almost 100 contributions from participants representing at least 10 different countries. The range of different topics covered, the scientific quality of the contributions, and the interest shown in this meeting reflect the high standing of radiological protection in the Nordic countries.

  17. Radiation protection in medical applications; La proteccion radiologica en las aplicaciones medicas

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado M, H. [Sociedad Mexicana de Seguridad Radiologica A. C., Mexico D. F. (Mexico)

    2008-12-15

    The justification of the practices is the fundamental principle on which rests the peaceful use of ionizing radiations. They actually contain as aspirations to improve the quality of people's lives, contributing to sustainable development through environmental protection, so that the sources security and the individuals protection will be conditions which are not and should can not be operated. For medical applications is a highly illustrative example of this, since both for the diagnosis and therapy, the goal is to achieve what is sought for the white tissue, secured the least possible damage to the neighboring tissues so that in turn reduce the negative effects for the patient. As a basis for achieving the above, it is essential to have qualified personnel in all areas incidents, for example users, workers, officials and staff members. There are a variety of specialists in the field of medical applications as, nuclear chemistry, nuclear engineering, radiation protection, medical physics, radiation physics and others. Among the human resource in the country must make up the majority are medical radiologists, highlighting gaps in the number of radiotherapy and nuclear medicine but specially in the medical physics, who is in some way from a special viewpoint of the formal school, new to the country. This is true for the number of facilities which are in the country. The radiation protection responsibilities in medical applications focus primarily on two figures: the radiology safety manager, who is primarily dedicated to the protection of occupationally exposed personnel and the public, and the medical physicist whose functions are geared towards the radiological protection of the patient. The principal legislation in the medical applications area has been enacted and is monitored by the Health Secretary and National Commission on Nuclear Safety and Safeguards, entities that have reached agreements to avoid overlap and over-regulation. Medical applications in

  18. Report on the BWR owners group radiation protection/ALARA Committee

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, L.R. [Commonwealth Edison Co., Downers Grove, IL (United States)

    1995-03-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements in relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming {open_quotes}World Class{close_quotes} performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance.

  19. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey.

    Science.gov (United States)

    Faggioni, Lorenzo; Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Caramella, Davide

    2017-01-01

    To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; Pradiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (Pradiation protection issues (Pradiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological examinations. Both undergraduate and postgraduate teaching needs to be effectively implemented with radiation safety courses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Non-medical application of radioactive materials or ionizing radiation. German legal regulations; Die Anwendung radioaktiver Stoffe oder ionisierender Strahlung ausserhalb der Medizin. Deutsche Rechtsvorschriften

    Energy Technology Data Exchange (ETDEWEB)

    Huhn, Walter [Ministerium fuer Arbeit, Integration und Soziales NRW, Duesseldorf (Germany); Lorenz, Bernd [Lorenz Consulting, Essen (Germany)

    2016-05-01

    Non-medical imaging is regulated in Germany since the 2011 radiation protection law amendment and the simultaneous X-ray regulation amendment based on the Euratom guideline 96/29. The regulations contain lists with justified and non-justified activities.

  1. Radiation protection considerations along a radioactive ion beam transport line

    Science.gov (United States)

    Sarchiapone, Lucia; Zafiropoulos, Demetre

    2016-09-01

    The goal of the SPES project is to produce accelerated radioactive ion beams for Physics studies at “Laboratori Nazionali di Legnaro” (INFN, Italy). This accelerator complex is scheduled to be built by 2016 for an effective operation in 2017. Radioactive species are produced in a uranium carbide target, by the interaction of 200 μA of protons at 40 MeV. All of the ionized species in the 1+ state come out of the target (ISOL method), and pass through a Wien filter for a first selection and an HMRS (high mass resolution spectrometer). Then they are transported by an electrostatic beam line toward a charge state breeder (where the 1+ to n+ multi-ionization takes place) before selection and reacceleration at the already existing superconducting linac. The work concerning dose evaluations, activation calculation, and radiation protection constraints related to the transport of the radioactive ion beam (RIB) from the target to the mass separator will be described in this paper. The FLUKA code has been used as tool for those calculations needing Monte Carlo simulations, in particular for the evaluation of the dose rate due to the presence of the radioactive beam in the selection/interaction points. The time evolution of a radionuclide inventory can be computed online with FLUKA for arbitrary irradiation profiles and decay times. The activity evolution is analytically evaluated through the implementation of the Bateman equations. Furthermore, the generation and transport of decay radiation (limited to gamma, beta- and beta+ emissions) is possible, referring to a dedicated database of decay emissions using mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency. When the use of Monte Carlo simulations was not feasible, the Bateman equations, or possible simplifications, have been used directly.

  2. Nuclear Safety and Radiation Protection in Europe - a common approach; Surete nucleaire et radioprotection en Europe - une approche commune

    Energy Technology Data Exchange (ETDEWEB)

    McGarry, Ann [Institut irlandais de protection radiologique - RPII (Ireland)

    2010-11-15

    In Europe, the European Union has adopted directives and implemented other measures which form the basis of a common approach to nuclear safety and radiation protection across all Member States. In particular, there are EU directives setting out radiation protection standards and establishing a Community framework for the nuclear safety of nuclear installations. There are also arrangements in place to provide for an effective response to nuclear emergencies and to facilitate high quality research into nuclear and radiation protection related topics. Inevitably the stage of development in each area is somewhat different, but generally progress is ongoing in each area. From the point of view of a small country like Ireland, the development of common standards and arrangements across Europe is beneficial as they are based on the best available knowledge and expertise; they provide for greater transparency; they facilitate public confidence and make best use of the available resources. However, there are some areas in which common approaches could be further advanced. For example, the medical exposure of patients is increasingly of concern across Europe and the further development of common approaches in this area would be helpful. It would also be useful to develop a more integrated approach to nuclear safety and radiation protection regulation and to better integrate nuclear and radiation issues with other public health and environment concerns. (author)

  3. Uncomfortable issues in radiation protection posed by low-dose radiobiology.

    Science.gov (United States)

    Mothersill, Carmel; Seymour, Colin

    2013-08-01

    This paper aims to stimulate discussion about the relevance for radiation protection of recent findings in low-dose radiobiology. Issues are raised which suggest that low-dose effects are much more complex than has been previously assumed. These include genomic instability, bystander effects, multiple stressor exposures and chronic exposures. To date, these have been accepted as being relevant issues, but there is no clear way to integrate knowledge about these effects into the existing radiation protection framework. A further issue which might actually lead to some fruitful approaches for human radiation protection is the need to develop a new framework for protecting non-human biota. The brainstorming that is being applied to develop effective and practical ways to protect ecosystems widens the debate from the narrow focus of human protection which is currently about protecting humans from radiation-induced cancers.

  4. Timing of Captopril Administration Determines Radiation Protection or Radiation Sensitization in a Murine Model of Total Body Irradiation

    Science.gov (United States)

    2010-04-01

    radioprotection , respectively, are defined as increased sensitivity or increased protection of cells, tissues, or organisms to gamma radiation, as a result of an...agent being administered before and/or after radiation exposure. We demonstrate that captopril can have either radiosensitizing or radioprotective ...administered captopril Figure 2. Treatment of mice with captopril following high-dose irradiation is radioprotective , whereas treatment prior to

  5. Radiation protection and mitigation potential of phenylbutyrate: delivered via oral administration.

    Science.gov (United States)

    Miller, Alexandra C; Rivas, Rafael; McMahon, Robert; Miller, Karvelisse; Tesoro, Leonard; Villa, Vilmar; Yanushkevich, Daminik; Lison, Paul

    2017-09-01

    Phenylbutyrate (PB), a histone deacetylase inhibitor (HDACi) has demonstrated radiation protection in both in vitro and in vivo models. Studies previously demonstrated that PB and other HDAC inhibitors could inhibit radiation lethality in vivo by subcutaneous (s.c) injection. The objective of this study was to test the ability of oral PB treatment to protect against or to mitigate acute gamma radiation-induced lethality in vivo. Human osteoblasts cells were used to evaluate radiation survival when PB was delivered pre- or post-radiation. A 30-day radiation lethality study was used to assess the radioprotective (pre-radiation) and radiomitigative (post-radiation) capability of PB. Possible mechanisms evaluated were antioxidant activity effects, HDAC inhibition, DNA damage, and hematological recovery. Treatment of HOS cells with PB 50 μM either before or after radiation increased radiation resistance as assessed by clonogenic survival. Western blot studies showed that PB treatment acetylated histones in vivo and ameliorated the radiation-induced reduction in acetylated histone-4 (H4). Pre-radiation oral administration of PB (10 mg/kg) provided radioprotection against gamma radiation (7-11.5 Gy) with a dose reduction factor of 1.25 (p = 0.001). PB oral administration post-radiation provided moderate radiation mitigation against gamma radiation (7-11.5 Gy) and demonstrated a dose reduction factor of 1.18 (p = 0.05). PB pre-radiation and post-radiation treatment was associated with significant elevations in neutrophils and platelets and attenuation of DNA damage. These results indicate that oral PB has potential as a radiation protector and a radiation mitigator and that potential mechanisms of action include attenuation of DNA damage, antioxidant activity, and bone marrow protection.

  6. Proceedings of the Conference and Symposium Korean Association for Radiation Protection Fall Meeting 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    This proceedings contains articles of the Korean Association for Radiation Protection Fall Meeting, 2011. It was held on Nov.17-18, 2011 the ocean resort in Yeosu, Korea and subject of the Korean Association for Radiation Protection Fall Meeting 2011. This proceedings is comprised of 14 sessions.

  7. 10 CFR 35.2024 - Records of authority and responsibilities for radiation protection programs.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of authority and responsibilities for radiation protection programs. 35.2024 Section 35.2024 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2024 Records of authority and responsibilities for radiation protection programs. (a) A licensee shall retain a record of...

  8. Radiation protection and the safe use of X-ray equipment: Laws ...

    African Journals Online (AJOL)

    Background. South Africa's regulatory framework for electromagnetic medical devices has come under considerable criticism. Here it is reviewed in terms of how it has given form to protective measures against ionising radiation. The Hazardous Substances Act provides for effective protection against radiation, but has been ...

  9. Development of qualitative evaluation of medical radiation protective apron

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hui Gyeom; Kim, Tae Hyung; So, Woon Young [Dept. of Radiological Science, Kangwon National University, Chuncheon (Korea, Republic of); Kim, Sang Hyun [Dept. of Radiological Science, Shinhan University, Uijeongbu (Korea, Republic of); Lee, Tae Hui [Dept. of Radiology, Wonju Medical Center, Wonju (Korea, Republic of); Kim, Seung Chul [Dept. of Health Science, Korea University, Seoul (Korea, Republic of); Kim, Jin Tae [Dept. of Materials Research Institute, Truabutment Korea Co., Ltd, Bucheon (Korea, Republic of)

    2017-09-15

    This study proposes effective quality control and maintenance method by developing a new qualitative evaluation method of apron for medical radiation protection. As an experimental material, one of 0.45 mm lead and 100 of 0.45 mm Pb aprons were used and irradiated under the conditions of a tube voltage of 75 kVp and a tube current of 12.5 mAs to obtain an image. and using the Image J program, PSNR values were compared and analyzed. The results showed that there were 40 aprons (less than 11dB), 55 aprons (less than 11dB, less than 30dB), and 5 aprons (30dB or more). In addition, the dose showed a normal distribution for the apron, and 5 aprons with PSNR less than 11dB and 30dB or more were selected and divided into 8 zones, and these groups were statistically significant.

  10. Ionizing and Nonionizing Radiation Protection. Module SH-35. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on ionizing and nonionizing radiation protection is one of 50 modules concerned with job safety and health. This module describes various types of ionizing and nonionizing radiation, and the situations in the workplace where potential hazards from radiation may exist. Following the introduction, 13 objectives (each keyed to a…

  11. Anti-apoptotic peptides protect against radiation-induced cell death.

    Science.gov (United States)

    McConnell, Kevin W; Muenzer, Jared T; Chang, Kathy C; Davis, Chris G; McDunn, Jonathan E; Coopersmith, Craig M; Hilliard, Carolyn A; Hotchkiss, Richard S; Grigsby, Perry W; Hunt, Clayton R

    2007-04-06

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15Gy radiation. In mice exposed to 5Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues.

  12. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger

    Science.gov (United States)

    Ungar, Eugene K.; Schunk, Richard G.

    2011-01-01

    An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.

  13. Protection, landscaping and regulation of agricultural land in Serbia

    OpenAIRE

    Popov Danica

    2014-01-01

    The subject of this article is protection, landscaping and regulation on agricultural land, based on The Agriculture Land Law in Serbia. Land is besides water and air the basic component of the environment. Bearing in mind the long-term processes of creation and development, land is the conditionally renewable resources. Land use, particularly in agricultural production, there is often a balance disorder of certain factors, which inevitably leads of damage. Land is in the nature of a slow lea...

  14. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  15. Meeting the Needs of the Nation for Radiation Protection: Summary of the 52nd Annual Meeting of the National Council on Radiation Protection and Measurements.

    Science.gov (United States)

    Toohey, Richard E

    2017-02-01

    The 52nd Annual Meeting of the National Council on Radiation Protection and Measurements (NCRP) was held in Bethesda, MD, 11-12 April 2016, on the topic of "Meeting National Needs for Radiation Protection." This meeting was an outgrowth of the NCRP initiative "Where are the Radiation Professionals?" (WARP), which addresses looming shortages in professional personnel trained in the radiological disciplines, including but not limited to health physics, radiological engineering, radiobiology, radiochemistry, radioecology, radiation emergency response; and the medical disciplines of diagnostic and interventional radiology, radiation oncology, nuclear medicine, and medical physics. A shortage of radiation professionals has been predicted for at least 20 y but now seems to be imminent. Obviously radiation professionals are needed for regulatory responsibilities at both state and federal levels, national defense, energy production, waste management, industrial applications, education, and medicine. Although the supply of radiation professionals in medicine appears to be adequate for the next decade or so, the use of radiation in medical diagnosis and therapy will continue to increase with the aging of the general population.

  16. From UV Protection to Protection in the Whole Spectral Range of the Solar Radiation: New Aspects of Sunscreen Development.

    Science.gov (United States)

    Zastrow, Leonhard; Meinke, Martina C; Albrecht, Stephanie; Patzelt, Alexa; Lademann, Juergen

    2017-01-01

    Sunscreens have been constantly improving in the past few years. Today, they provide an efficient protection not only in the UVB but also in the UVA spectral region of the solar radiation. Recently it could be demonstrated that 50% of all free radicals induced in the skin due to solar radiation are formed in the visible and infrared spectral region. The good protective efficacy of sunscreens in the UV region prompts people to stay much longer in the sun than if they had left their skin unprotected. However, as no protection in the visible and infrared spectral region is provided, high amounts of free radicals are induced here that could easily exceed the critical radical concentration. This chapter describes how the effect of sunscreens can be extended to cover also the visible and infrared spectral region of the solar radiation by adding pigments and antioxidants with high radical protection factors to the sunscreen formulations.

  17. Radiation exposure in gastroenterology: improving patient and staff protection.

    LENUS (Irish Health Repository)

    Ho, Immanuel K H

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  18. System 80+{trademark} standard design incorporates radiation protection lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Crom, T.D.; Naugle, C.L. [Duke Engineering & Services, Inc., Charlotte, NC (United States); Turk, R.S. [ABB Combustion Engineering Nuclear Power, Windsor, CT (United States)

    1995-03-01

    Many lessons have been learned from the current generation of nuclear plants in the area of radiation protection. The following paper will outline how the lessons learned have been incorporated into the design and operational philosophy of the System 80+{trademark} Standard Design currently under development by ABB Combustion Engineering (ABB-CE) with support from Duke Engineering and Services, Inc. and Stone and Webster Engineering Corporation in the Balance-of-Plant design. The System 80+{trademark} Standard Design is a complete nuclear power plant for national and international markets, designed in direct response to utility needs for the 1990`s, and scheduled for Nuclear Regulatory Commission (NRC) Design Certification under the new standardization rule (10 CFR Part 52). System 80+{trademark} is a natural extension of System 80{sup R} technology, an evolutionary change based on proven Nuclear Steam Supply System (NSSS) in operation at Palo Verde in Arizona and under construction at Yonggwang in the Republic of Korea. The System 80+{trademark} Containment and much of the Balance of Plant design is based upon Duke Power Company`s Cherokee Plant, which was partially constructed in the late 1970`s, but, was later canceled (due to rapid declined in electrical load growth). The System 80+{trademark} Standard Design meets the requirements given in the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Requirements Document. One of these requirements is to limit the occupational exposure to 100 person-rem/yr. This paper illustrates how this goal can be achieved through the incorporation of lessons learned, innovative design, and the implementation of a common sense approach to operation and maintenances practices.

  19. Performance of a radiation protection cabin during implantation of pacemakers or cardioverter defibrillators.

    Science.gov (United States)

    Ploux, Sylvain; Ritter, Philippe; Haïssaguerre, Michel; Clementy, Jacques; Bordachar, Pierre

    2010-04-01

    Pacemaker implants are associated with a high cumulative exposure of the operators to radiation. Standard radiation protection with lead aprons is incomplete and the cause of spine disorders. A radiation protection cabin offers complete protection by surrounding the operator, without requiring a lead apron. We randomly and evenly assigned 60 patients undergoing implantations of permanent pacemakers or cardioverter defibrillators (ICD) with (a) a radiation protection cabin (cabin group, n = 30) versus (b) standard protection with a 0.5 mm lead-equivalent apron (control group, n = 30). Radiation exposure was measured using personal electronic dosimeters placed on the thorax, back, and head of the operator. The patient, procedural, and device characteristics of the 2 study groups were similar. All procedures in the cabin group were performed as planned without increase in duration or complication rate compared with the control group. The mean radiation dose to the head, normalized for fluoroscopy duration, was significantly lower in the cabin (0.040 +/- 0.032 microSv/min) than in the control (1.138 +/- 0.560 microSv/min) group (p apron) were similar. The use of a radiation protection cabin markedly decreased the exposure of the operator to radiation, and eliminated the need to wear a lead apron, without increasing the procedural time or complication rate during implantation of pacemaker and ICD.

  20. [Evaluation of the knowledge of physicians prescribing CT examinations on the radiation protection of patients].

    Science.gov (United States)

    Gervaise, A; Esperabe-Vignau, F; Pernin, M; Naulet, P; Portron, Y; Lapierre-Combes, M

    2011-01-01

    To evaluate the knowledge of physicians prescribing CT examinations on the radiation protection of patients. A questionnaire was distributed to all clinicians on medical staff who prescribe CT examinations. Several questions related to their prescription pattern and their knowledge of radiation protection. Forty-four questionnaires were analyzed. While 70% of physicians claimed that they considered the risks from exposure to ionizing radiation when prescribing a CT examination, only 25% informed their patients about those risks. Knowledge of the radiation dose delivered during CT evaluation of the abdomen and pelvis was poorly understood and the risks related to small doses of radiation were grossly underestimated. Finally, only a third of clinicians had received training with regards to radiation protection. While most clinicians claim that they consider the risks from exposure to ionizing radiation when prescribing a CT examination, the risks are either not well known or not known at all. Increased formation of clinicians with regards to the radiation protection of patients, maybe through a dedicated clinical rotation while in medical school, could be a solution to improve the knowledge of hospital clinicians with regards to radiation protection. Copyright © 2011 Elsevier Masson SAS and Éditions françaises de radiologie. All rights reserved.

  1. The new radiation protection ordinance and its consequences in radiation therapy; Die neue Strahlenschutzverordnung und ihre Konsequenzen in der Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Wucherer, M.; Schmidt, T. [Klinikum Nuernberg (Germany). Inst. fuer Medizinische Physik

    2002-04-01

    The new radiation protection ordinance (StrlSchV) entails a number of additional or changed instructions. They require that personnel exposed to radiation at work be reclassified, or that personnel not exposed to radiation at work be classified as personnel exposed to radiation at work, that local dosage measurements be taken particularly in radiation therapy, in order to insure that the radiation protection areas prevailing to date can be maintained, that generally accessible areas be examined to determine whether with persons not exposed to radiation in the course of work, in the case of their prolonged presence there, 1 mSv per year is not exceeded, that instructions be put in writing, that at regular 5-year intervals the proficiency of physicians, specialists in medical physics and MTRAs be brought up to date and, that medical positions for radiooncologists be established. The stricter requirements in radiation protection are inevitably connected with greater expenditures and higher costs. These results of the new radiation protection ordinance are in direct opposition to the financial possibilities that are being restricted through budgeting and pressure on hospitals and practices to reduce costs. (orig.) [German] Die neue Strahlenschutzverordnung bringt eine Anzahl von zusaetzlichen bzw. veraenderten Auflagen mit sich. Es muessen beruflich strahlenexponiertes Personal neu eingestuft bzw. nicht beruflich strahlenexponiertes Personal zusaetzlich als beruflich strahlenexponiertes Personal eingestuft werden, Ortsdosismessungen insbesondere in der Strahlentherapie durchgefuehrt werden, um sicher zu stellen, dass die bisher geltenden Strahlenschutzbereiche beibehalten werden koennen, allgemein zugaengliche Verkehrsflaechen ueberprueft werden, ob bei Daueraufenthalt bei beruflich nicht strahlenexponierten Personen 1 mSv pro Jahr nicht ueberschritten wird, Arbeitsanweisung niedergeschrieben werden, regelmaessig aller 5 Jahre die Fachkunde bei Aerzten, Medizinphysik

  2. The protective effects of trace elements against side effects induced by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinimehr, Seyed Jaial [Dept. of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2015-06-15

    Trace elements play crucial role in the maintenance of genome stability in the cells. Many endogenous defense enzymes are containing trace elements such as superoxide dismutase and metalloproteins. These enzymes are contributing in the detoxification of reactive oxidative species (ROS) induced by ionizing radiation in the cells. Zinc, copper, manganese, and selenium are main trace elements that have protective roles against radiation-induced DNA damages. Trace elements in the free salt forms have protective effect against cell toxicity induced by oxidative stress, metal-complex are more active in the attenuation of ROS particularly through superoxide dismutase mimetic activity. Manganese-complexes in protection of normal cell against radiation without any protective effect on cancer cells are more interesting compounds in this topic. The aim of this paper to review the role of trace elements in protection cells against genotoxicity and side effects induced by ionizing radiation.

  3. Lauriston S. Taylor lecture: Radiation Protection and Public Policy in an Uncertain World.

    Science.gov (United States)

    Land, Charles E

    2011-11-01

    Ionizing radiation is a known, well-documented, and reasonably well-quantified human cancer risk factor based on a remarkably consistent body of dose-response information from epidemiological studies of exposed populations supported by experimental studies using animal and cellular models. This fact is largely ascribable to the relative ease, compared to other carcinogens, of estimating radiation dose to organs and local tissues. Statistical models for radiation-related cancer risk are increasingly relevant to both radiation protection policy and the adjudication of compensation claims for cancers diagnosed following occupational and environmental exposures to ionizing radiation, as discussed in a number of expert committee reports of national and international organizations concerned with radiation-related risks. These and other publications increasingly emphasize the relevance of well-quantified uncertainties in radiation-related risk projections, including upper and lower confidence or uncertainty bounds, for radiation protection. Finally, the wealth of detailed information provided by such quantitative uncertainty analysis approaches is highly relevant to radiation protection, which might be viewed as a political process that involves a diverse group of stakeholders who, individually, may be primarily concerned with avoiding possible radiation-related risks or with avoiding possibly unnecessary costs of risk reduction or unnecessary denial of benefits that require some radiation exposure, or with balancing both considerations to some degree.

  4. 4. European forum of radiation protection sciences. Proceedings; 4e Forum Europeen de radioprotectique. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    This 4. European forum of radiation protection sciences was the occasion for nuclear professionals to share their experience and to present the tools and techniques implemented in dismantling operations in the respect of radiation protection rules. This document brings together the abstracts and the available presentations given at this forum: 1 - Dismantling organisation and management - regulations: dismantling environment (A. Gay, Areva NC); Dismantling at the CEA (Ph. Guiberteau, DEN-Saclay); Optimisation of future dismantlement at the design and operation stage of facilities (P. Poncet, Areva); Action of the labour Ministry for workers radiation protection (T. Lahaye, DGT); 2 - Dismantling experience feedbacks 1: Radiation protection and dismantlement at Marcoule (J. Chardin, Areva NC); INB 106 dismantling (N. Pauwels, UDIL); Dismantling wastes management and valorisation of ALS and Saturne accelerators at Saclay (C. Salmon, CEA-Saclay); Chooz power plant deconstruction (L. Bardou, EDF); 3-4 - Dismantling projects: Phenix power plant dismantling (C. Beretti, CEA-Marcoule); Radiological characterization impact on the DGB project (H.C. Turbatte, F. Lemperiere, DGB Eurodif); Contribution of scientific calculations to reactor dismantling studies (A. Van Lauwe, CEA-Saclay); Acceptance committee of radiological cleansing companies (S. Faure, DPSN); Externalizing of the radiation protection skilled person (J.P. Piferrer, ATSR); International network of radiation protection professionals (G. Abela, EDF); 5 - Dismantling experience feedback 2: gloveboxes dismounting at La Hague plant (R. Choquet, P. Mougnard, Areva NC); Nuclear submarines dismantling in Russia (C. Deregel, Topp-Decide); Radioactive waste management of CERN accelerators (Y. Algoet, CERN); Nuclear facilities decommissioning (M. Berton, CEA, B. Marc, DRIM Sogeris); Asbestos removal in radiological environment (R. Blanc, Areva NC); 6-7-8 - Tools and methods: Aspilaser, decontamination by laser ablation (F

  5. ICNIRP Statement on Diagnostic Devices Using Non-ionizing Radiation: Existing Regulations and Potential Health Risks.

    Science.gov (United States)

    2017-03-01

    Use of non-ionizing radiation (NIR) for diagnostic purposes allows non-invasive assessment of the structure and function of the human body and is widely employed in medical care. ICNIRP has published previous statements about the protection of patients during medical magnetic resonance imaging (MRI), but diagnostic methods using other forms of NIR have not been considered. This statement reviews the range of diagnostic NIR devices currently used in clinical settings; documents the relevant regulations and policies covering patients and health care workers; reviews the evidence around potential health risks to patients and health care workers exposed to diagnostic NIR; and identifies situations of high NIR exposure from diagnostic devices in which patients or health care workers might not be adequately protected by current regulations. Diagnostic technologies were classified by the types of NIR that they employ. The aim was to describe the techniques in terms of general device categories which may encompass more specific devices or techniques with similar scientific principles. Relevant legally-binding regulations for protection of patients and workers and organizations responsible for those regulations were summarized. Review of the epidemiological evidence concerning health risks associated with exposure to diagnostic NIR highlighted a lack of data on potential risks to the fetus exposed to MRI during the first trimester, and on long-term health risks in workers exposed to MRI. Most of the relevant epidemiological evidence that is currently available relates to MRI or ultrasound. Exposure limits are needed for exposures from diagnostic technologies using optical radiation within the body. There is a lack of data regarding risk of congenital malformations following exposure to ultrasound in utero in the first trimester and also about the possible health effects of interactions between ultrasound and contrast media.

  6. ICNIRP Statement on Diagnostic Devices Using Non-ionizing Radiation: Existing Regulations and Potential Health Risks

    Science.gov (United States)

    2017-01-01

    Abstract Use of non-ionizing radiation (NIR) for diagnostic purposes allows non-invasive assessment of the structure and function of the human body and is widely employed in medical care. ICNIRP has published previous statements about the protection of patients during medical magnetic resonance imaging (MRI), but diagnostic methods using other forms of NIR have not been considered. This statement reviews the range of diagnostic NIR devices currently used in clinical settings; documents the relevant regulations and policies covering patients and health care workers; reviews the evidence around potential health risks to patients and health care workers exposed to diagnostic NIR; and identifies situations of high NIR exposure from diagnostic devices in which patients or health care workers might not be adequately protected by current regulations. Diagnostic technologies were classified by the types of NIR that they employ. The aim was to describe the techniques in terms of general device categories which may encompass more specific devices or techniques with similar scientific principles. Relevant legally-binding regulations for protection of patients and workers and organizations responsible for those regulations were summarized. Review of the epidemiological evidence concerning health risks associated with exposure to diagnostic NIR highlighted a lack of data on potential risks to the fetus exposed to MRI during the first trimester, and on long-term health risks in workers exposed to MRI. Most of the relevant epidemiological evidence that is currently available relates to MRI or ultrasound. Exposure limits are needed for exposures from diagnostic technologies using optical radiation within the body. There is a lack of data regarding risk of congenital malformations following exposure to ultrasound in utero in the first trimester and also about the possible health effects of interactions between ultrasound and contrast media. PMID:28121732

  7. [Data protection, radiation protection and copyright: Problems of transferring results in assessment practice].

    Science.gov (United States)

    Klemm, H-T

    2015-06-01

    In Germany, the medical assessor is subject to the law on contracts for work and services ("Werksvertragsrecht"). When a medical expert assesses a subject on behalf of a third party, there is no contractual relationship between them. In the field of private insurance law and in social insurance law, the medical expert is faced with various procedural requirements. Failing to meet these legal requirements often makes the assessment difficult or even impossible. The transfer of radiographs to the medical assessor is dealt with in the German X-ray regulations ("Röntgenverordnung"). The assessor, who is without doubt an examining doctor, has the right to have the radiographs temporarily made available (§ 28 et al.). Passing on the radiographs is all the more appropriate if by doing so additional X-ray examinations can be avoided. The right of access to medical data in the social security law, apart from X-ray regulations, is regulated by German Civil Code (BGB) § 810 and German Basic Law section 1 paragraph 1 in connection with section 2 paragraph 1 ("§ 810 BGB; Art. 1 Abs. 1, Art. 2 Abs. 1 GG"). In the absence of third party interest worthy of protection, the right of access to assessment records has to be granted to the subject, who will then authorize the examining medical expert to exercise this right. In private insurance law, only the private health insurance has its regulation concerning obtaining information about treatment or the access to medical assessments. In other types of insurance the medical assessor's right of access to medical examination data and/or the basis for medical findings can only be derived from secondary obligations as part of the insurance contract or directly from general constitutional personal rights.

  8. The radiation protection problems of high altitude and space flight

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1993-04-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  9. The radiation protection problems of high altitude and space flight

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  10. Research activities in radiation protection. Programme report 2000. Report on the departmental research programme of the Federal Ministry for Ecology, Nature Conservation and Reactor Safety (BMU), performed under the scientific and administrative project management of the Federal Office for Radiation Protection (BfS); Strahlenschutzforschung. Programmreport 2000. Bericht ueber das vom Bundesamt fuer Strahlenschutz fachlich und verwaltungsmaessig begleitete Ressortforschungsprogramm Strahlenschutz des Bundesministeriums fuer Umwelt, Naturschutz und Reaktorsicherheit

    Energy Technology Data Exchange (ETDEWEB)

    Donhaerl, W.; Goedde, R.; Schmitt-Hannig, A.; Williams, M. (comps.)

    2002-05-01

    The Federal Office of Radiation Protection awards research projects in the field of radiation protection on behalf of the Ministry of Environment, Nature Conservation and Nuclear Safety (BMU). The findings of these projects serve as decision-making aids in the development of radiation protection regulations as well as in the fulfilment of the BMU's specific tasks in the field of radiation protection. Planning, technical and administrative preparation, awarding of contracts, general support as well as technical evaluation of the research and study projects is the task of the Federal Office of Radiation Protection. The present report provides information on the preliminary and, where applicable, final results of radiation protection projects in the year 2000 within the BMU's Applied Research Programme. (orig.)

  11. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ricardo Bisquert

    2018-02-01

    Full Text Available Melatonin (Mel is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm. Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  12. Nrf2 Activation Protects against Solar-Simulated Ultraviolet Radiation in Mice and Humans.

    Science.gov (United States)

    Knatko, Elena V; Ibbotson, Sally H; Zhang, Ying; Higgins, Maureen; Fahey, Jed W; Talalay, Paul; Dawe, Robert S; Ferguson, James; Huang, Jeffrey T-J; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L; Honda, Tadashi; Proby, Charlotte M; Dinkova-Kostova, Albena T

    2015-06-01

    The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. ©2015 American Association for Cancer Research.

  13. Protecting Filipino Transnational Domestic Workers: Government Regulations and their Outcomes

    OpenAIRE

    Battistella, Graziano; Park, Jung Soo; Asis, Maruja M.B.

    2011-01-01

    This report presents the findings of a study which sought to examine the impact of Philippine government regulations on the status of Filipino domestic workers. The Migrants Workers and Overseas Filipinos Act of 1995 or RA 8042 and its amendments (RA 9422 in 2006 and RA 10022 in 2010) were aimed at enhancing the protection of migrant women, especially those in domestic work. Part I of the report discusses the regulatory framework set in place by the Philippine government for the purpose of pr...

  14. Soil structural quality assessment for soil protection regulation

    Science.gov (United States)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality

  15. Sun protection provided by regulation school uniforms in Australian schools: an opportunity to improve personal sun protection during childhood.

    Science.gov (United States)

    Turner, Denise; Harrison, Simone L

    2014-01-01

    Childhood sun exposure is linked to excessive pigmented mole development and melanoma risk. Clothing provides a physical barrier, protecting skin from ultraviolet radiation (UVR). Extending sleeves to elbow length and shorts to knee length has been shown to significantly reduce mole acquisition in preschoolers from tropical Queensland. We used publicly available uniform images and guidelines from primary schools in Townsville (latitude 19.25°S, n = 43 schools), Cairns (16.87°S, n = 46) and the Atherton Tablelands (17.26°S, n = 23) in tropical Australia to objectively determine the body surface proportion covered by regulation school uniforms. Uniforms of nongovernment, large (≥800 students), urban, educationally advantaged schools with comprehensive sun protection policies covered more skin than those of government schools (63.2% vs 62.0%; P schools (63.4% vs 62.3%; P = 0.009), rural (62.7% vs 61.9%; P = 0.002) and educationally disadvantaged schools (62.8% vs 62.3%; P school uniforms covered identical body surface proportions (62.4%, P = 0.084). Although wearing regulation school uniforms is mandatory at most Australian primary schools, this opportunity to improve children's sun protection is largely overlooked. Recent evidence suggests that even encouraging minor alterations to school uniforms (e.g. slightly longer sleeves/dresses/skirts/shorts) to increase skin coverage may reduce mole acquisition and melanoma risk, especially in high-risk populations. © 2014 The American Society of Photobiology.

  16. Evaluation of the radiation exposure. Recommendation of the radiation protection commission; Ermittlung der Strahlenexposition. Empfehlung der Strahlenschutzkommission

    Energy Technology Data Exchange (ETDEWEB)

    Baldauf, Daniela (comp.)

    2014-07-01

    The recommendation of the Strahlenschutzkommission (radiation protection commission) deals with the realistic requirements for the radiation exposure assessment based on radio-ecological modeling. The recommendation is applicable for all exposure situations that can be derived from FEP (features, events processes) exposure scenarios. In this case the exposure scenario consists of natural and technical features and a set of processes and events that can influence the radiation exposure of the population. The report includes the scientific justification, the previous procedure in Germany and abroad (EURATOM, France, UK, Ukraine, USA).

  17. Screening of new substances for radiation protection and technology development of efficacy improvement

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Sun; Park, Sun Young; Jang, Eun Jung [Kyonggi University, Suwon (Korea, Republic of)

    2005-03-15

    To evaluate the radioprotective efficacy of candidate compounds, we examined the effects of selenium compounds, melatonin, and propolis on the colony forming efficiency (CFE) of gamma-irradiated CHO cells. - Protective effects of selenium compounds against radiation-induced cytotoxicity Sodium selenite showed protective effects at low concentrations against radiation-induced toxicity in CHO cells, whereas its effects were weak at higher concentrations. Selenomethionine also reduced the radiation-induced cytotoxicity. Both of these compounds showed highest protective effects at the concentration of 1 uM. - Protective effects of melatonin against radiation-induced cytotoxicity Melatonin showed the protective effects against radiation-induced cytotoxicity, and the protection was highest at 1 mM concentration. - Protective effects of selenium compounds against hydrogen peroxide-induced cytotoxicity Propolis showed dose-dependent inhibition of hydrogen peroxide-induced cytotoxicity. In particular, the highest inhibition was observed when propolis were treated at 0.3 and 1 ng/ml 24h prior to the hydrogen peroxide treatment. The protective effects of propolis was observed only when it was pretreated at least 8 hours before hydrogen peroxide treatment.

  18. Advanced Structural Nanomaterials for Astronaut Radiation Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Zyvex in cooperation with Prairie View A&M (CARR) and Boeing will develop a space radiation shielding multi-functional material that will provide high energy...

  19. Advanced Radiation Protection (ARP): Thick GCR Shield Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Radiation Project to date has focused on SEP events.  For long duration missions outside Earth’s geomagnetic field, the galactic cosmic ray...

  20. ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE

    Science.gov (United States)

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...

  1. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeability

    NARCIS (Netherlands)

    Bröde, P.; Kuklane, K.; Candas, V.; Hartog, E.A. den; Griefahn, B.; Holmér, I.; Meinander, H.; Nocker, W.; Richards, M.; Havenith, G.

    2010-01-01

    The heat transferred through protective clothing under long wave radiation compared to a reference condition without radiant stress was determined in thermal manikin experiments. The influence of clothing insulation and reflectivity, and the interaction with wind and wet underclothing were

  2. Multilayer Polymeric Shielding to Protect Humans from Galactic Cosmic Radiation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Sub-topic X4.01, NASA has identified a need for advanced radiation-shielding materials and structures to protect humans from the hazards of galactic cosmic...

  3. How protective are the lead aprons we use against ionizing radiation?

    National Research Council Canada - National Science Library

    Orhan Oyar; Arzu Kislalioglu

      PURPOSE To evaluate, in terms of their protective features, the lead aprons used in areas working with ionizing radiation at a hospital by analyzing qualitative and quantitative aspects using a variety of methods...

  4. Abilities for radiological protection supervisor in the ionizing radiation for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, G.M., E-mail: adelia@atomo.com.b [ATOMO Radioprotecao e Seguranca Nuclear S/C Ltda., Sao Paulo, SP (Brazil); Sahyun, A., E-mail: gian@atomo.b [ABENDI - Associacao Brasileira de Ensaios Nao Destrutivos e Inspecao, Sao Paulo, SP (Brazil); Andreucci, R., E-mail: zzricardo.zzandreucci@Voith.co [Voith Hydro Ltda., Sao Paulo, SP (Brazil); Oliveira, P.G. [Multiend Ltda., Sao Paulo, SP (Brazil)

    2011-07-01

    The authors of this paper, has introduced an industrial training program for the R.P.E - Radiation Protection Expert to comply with contents of CNEN Standard NN 3.01 'Basic Guideline of Radiation Protection'. The 'training program' has been divided in four steps, based on: professional R.P.E work, knowledge level to perform his activities, education program and detailed basic bibliography. In the last congress we have presented a paper about the content of radiation protection training program. In this paper we will discuss the abilities that the supervisor need to obtain to perform the radiation protection report. We discuss the number of abilities for each one of the disciplines mentioned in the last paper and we provide some particular abilities. (author)

  5. MDP: A Deinococcus Mn2+-Decapeptide Complex Protects Mice from Ionizing Radiation

    National Research Council Canada - National Science Library

    Gupta, Paridhi; Gayen, Manoshi; Smith, Joan T; Gaidamakova, Elena K; Matrosova, Vera Y; Grichenko, Olga; Knollmann-Ritschel, Barbara; Daly, Michael J; Kiang, Juliann G; Maheshwari, Radha K

    2016-01-01

    .... The peptide-component (DEHGTAVMLK) of MDP applied here was selected from a group of synthetic peptides screened in vitro for their ability to protect cultured human cells and purified enzymes from extreme damage caused by ionizing radiation (IR...

  6. Beneficial effects of cellular autofluorescence following ionization radiation: hypothetical approaches for radiation protection and enhancing radiotherapy effectiveness.

    Science.gov (United States)

    Abdollahi, Hamid

    2015-03-01

    Ionization radiation (IR) is a main part of modern technologies with a double-edge sword manner. Finding the most feasible therapies to reduce adverse effects of IR and also enhancing radiotherapy effectiveness is a debating issue that has been challenged and studied for years. The main aim of the present hypothetical research was to theorize and suggest a new biological radiation protection approach and also increasing radiotherapy outcomes based on cellular autofluorescence following IR. In this hypothesis, we suggested that this cellular autofluorescence can activate some synthetic drugs called photo-activated agents that are injected in human body after radiation exposures scenarios. Photo activated agents can activate biological pathways such as DNA repair and immunostimulation pathways, bystander signals blocking, and so survive cells and tissues. In the other hand, light emitted by cellular response to radiation can be used as like as photodynamic therapy and therefore more cancer cells killing via apoptosis and necrosis. These ideas can be performed in future using more animal and in vivo/in vitro studies and clinical trials. In conclusion, cellular autofluorescence after radiation exposure can be used as a source for activation specific drugs for radiation protection and also radiation therapy effectiveness. These hypothetical therapeutic approaches can be served as personalized therapy based on individual radiosensitivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Base-Level Management of Laser Radiation Protection Program

    Science.gov (United States)

    1992-02-01

    gallium-aluminum-arsenide (GaAlAs), or alexandrite. Liquid materials that are used as active mediums include: rhodamine dye and coumarin . Section D...a source of radiation and the dye emits radiation at a longer wavelength. Coumarin dyes are useful as active media for emissions inthe blue to green...plastic, or quartz. Optical fibers have found uses in many areas including: industrial laser welding; medical surgery; dental work; product-code

  8. Comparison between Brazilian radiation protection standard and the recommendation of the International Commission on Radiological Protection published in 2007; Comparacao entre a norma brasileira de radioprotecao e a recomendacao da International Commission on Radiological Protection - ICRP, publicadas em 2007

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, W.S. [Industrias Nucleares do Brasil (INB), Itatiaia, RJ (Brazil). Fabrica do Combustivel Nuclear. Servico de Radioprotecao; Kelecom, A. [Universidade Federal Fluminense (LARARA-PLS/GETA/UFF), Niteroi, RJ (Brazil). Grupo de Estudos em Temas Ambientais. Lab. de Radiobiologia e Radiometria Pedro Lopes dos Santos; Pereira, J.R.S. [Universidade Veiga de Almeida (UVA), Rio de Janeiro, RJ (Brazil). Curso de Graduacao em Direito

    2015-07-01

    This study aims to evaluate the differences between the CNEN's standard and the publication of ICRP-103, analyzing the philosophy for radiation protection, dose limits and other relevant aspects of radiation protection.

  9. Status of radiation protection in various interventional cardiology procedures in the Asia Pacific region

    Science.gov (United States)

    Tsapaki, Virginia; Faruque Ghulam, Mohammed; Lim, Soo Teik; Ngo Minh, Hung; Nwe, Nwe; Sharma, Anil; Sim, Kui-Hian; Srimahachota, Suphot; Rehani, Madan Mohan

    2011-01-01

    Objective Increasing use of interventional procedures in cardiology with unknown levels of radiation protection in many countries of Asia-Pacific region necessitates the need for status assessment. The study was part of an International Atomic Energy Agency (IAEA) project for achieving improved radiation protection in interventional cardiology (IC) in developing countries. Design The survey covers 18 cardiac catheterisation laboratories in seven countries (Bangladesh, India, Malaysia, Myanmar, Singapore, Thailand and Vietnam). An important step was the creation of the ‘Asian network of Cardiologists in Radiation Protection’ and a newsletter. Data were collected on: radiation protection tools, number of IC laboratories, and annual number of various IC paediatric and adult procedures in the hospital and in the country. Patient radiation dose data were collected in terms of Kerma Area Product (KAP) and cumulative dose (CD). Results It is encouraging that protection devices for staff are largely used in the routine practice. Only 39% of the angiographic machines were equipped with a KAP meter. Operators' initial lack of awareness on radiation-protection optimisation improved significantly after participation in IAEA radiation-protection training. Only two out of five countries reporting patient percutaneous coronary intervention radiation-dose data were fully within the international guidance levels. Data from 51 patients who underwent multiple therapeutic procedures (median 2–3) indicated a total KAP reaching 995 Gy.cm2 (range 10.1–995) and CD 15.1 Gy (range 0.4–15.1), stressing the importance of dose monitoring and optimisation. Conclusions There is a need for interventional cardiology societies to play an active role in training actions and implementation of radiation protection. PMID:27325974

  10. Influence of the bee pollen pellets on an organism’s antioxidant protection system under radiation-toxicological exposure

    Directory of Open Access Journals (Sweden)

    O. V. Severynovs’ka

    2006-02-01

    Full Text Available The role of adaptogen (bee pollen pellets in a regulation of antioxidant protection of rat’s brain tissues under influence of low dose radiation and heavy metals mixture was studied. Complex of negative ecological factors deplete the fermentative chain of antioxidant protection that may result in decrease of organism’s adaptation capabilities. Application of bee pollen pellets as an adaptogen increases the level of general antioxidant activity in all brain parts under separate and combineв influence of heavy metals and radiation. Distinctions of the pollen pellets’ stimulating effect in different brain parts are caused by structure-functioning peculiarities of theу parts and their reactions to environmental factors.

  11. 38th Lauriston S. Taylor lecture: on the shoulders of giants - radiation protection over 50 years.

    Science.gov (United States)

    Mettler, Fred A

    2015-02-01

    Most advances in science, technology, and radiation protection are not truly new ideas but rather build upon a foundation of prior work and achievements by earlier generations of scientists and researchers. This paper summarizes major achievements over the last 50-70 y in the various areas involved in radiation protection as well as giving information about some of those who were, and are, significant contributors.

  12. Second meeting of competent persons in radiation protection; Deuxiemes rencontres des personnes competentes en radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This conference treats the subjects interesting the competent persons in radiation protection. It is divided in four sessions. The first one concerns the regulatory bases for the action of competent persons and includes three articles, the second one is about the operational dosimetry and includes six articles, the third session is devoted to the sources and waste management and represents two texts, the last and fourth session concerns the competent person in radiation protection and gives evidence. (N.C.)

  13. Controversial issues confronting the BEIR III committee: implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1981-05-01

    This paper reviews the state-of-the-art for conducting risk assessment studies, especially known and unknown factors relative to radioinduced cancer or other diseases, sources of scientific and epidemiological data, dose-response models used, and uncertainties which limit precision of estimation of excess radiation risks. These are related to decision making for radiation protection policy. (PSB)

  14. Information strategy and information products in radiation protection. A Norwegian RISKPERCOM study

    Energy Technology Data Exchange (ETDEWEB)

    Reitan, J.B.; Toennesen, A. [Statens Straalevern, Oesteraas (Norway); Waldahl, R. [Avdeling for media og kommunikasjon, Oslo Univ., Oslo (Norway)

    1998-02-01

    A short description of the national background for the radiation issue is presented together with a presentation of information strategy and analysis of the information products of the Norwegian Radiation Protection Authority. This is part of an international study. 35 refs.

  15. Proceedings of the Nordic society for radiation protection 12. ordinary meeting

    DEFF Research Database (Denmark)

    The key themes of teh 12th ordinary general meeting of the Nordic Society for Radiation Protection were: RADIATION - ENVIRONMENT - INFORMATION. A number of outstanding international experts accepted to contribute on the meetings first day with invited presentations, which focussed on these themes...

  16. Radiation and Reason Why radiation at modest dose rates is quite harmless and current radiation safety regulations are flawed

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Data on the impact of ionising radiation on life are examined in the light of evolutionary biology. This comparison confirms that fear of nuclear radiation is not justified by science itself; rather it originates in a failure of public trust in nuclear science, a relic of the international politics of the Cold War era. Current ionisation safety regulations appease this fear but without scientific support and they need fundamental reformulation. This should change the reaction to accidents like Fukushima, the cost of nuclear energy and the application of nuclear technology to the supply of food and fresh water. Such a boost to the world economy would require that more citizens study and appreciate the science involved – and then tell others -- not as much fun as the Higgs, perhaps, but no less important! www.radiationandreason.com

  17. A summary of recommendations for occupational radiation protection in interventional cardiology.

    Science.gov (United States)

    Durán, Ariel; Hian, Sim Kui; Miller, Donald L; Le Heron, John; Padovani, Renato; Vano, Eliseo

    2013-02-01

    The radiation dose received by cardiologists during percutaneous coronary interventions, electrophysiology procedures, and other interventional cardiology procedures can vary by more than an order of magnitude for the same type of procedure and for similar patient doses. There is particular concern regarding occupational dose to the lens of the eye. This document provides recommendations for occupational radiation protection for physicians and other staff in the interventional suite. Simple methods for reducing or minimizing occupational radiation dose include minimizing fluoroscopy time and the number of acquired images; using available patient dose reduction technologies; using good imaging-chain geometry; collimating; avoiding high-scatter areas; using protective shielding; using imaging equipment whose performance is controlled through a quality assurance program; and wearing personal dosimeters so that you know your dose. Effective use of these methods requires both appropriate education and training in radiation protection for all interventional cardiology personnel, and the availability of appropriate protective tools and equipment. Regular review and investigation of personnel monitoring results, accompanied as appropriate by changes in how procedures are performed and equipment used, will ensure continual improvement in the practice of radiation protection in the interventional suite. These recommendations for occupational radiation protection in interventional cardiology and electrophysiology have been endorsed by the Asian Pacific Society of Interventional Cardiology, the European Association of Percutaneous Cardiovascular Interventions, the Latin American Society of Interventional Cardiology, and the Society for Cardiovascular Angiography and Interventions. Copyright © 2012 Wiley Periodicals, Inc.

  18. Laser sources in dentistry and radiation safety regulations

    Science.gov (United States)

    De Luca, D.; Gaeta, G. M.; Lepore, M.

    2007-02-01

    Nowadays laser sources are largely adopted in dentistry due to their unique properties making them good candidates to substitute traditional scalpel and conventional diamond bur in the surgery of the soft and hard oral tissue, respectively. The large use of laser sources outside the research laboratories without the need of highly specialized personnel can ask for a widespread knowledge of safety issues related to this kind of equipment. The main hazard of accidental exposures regards eyes injury but increasing the power of the laser beam also skin can be involved. Safety legislations in Europe and U.S.A. take into account non ionizing radiations and laser radiation for the hazards for the health deriving from physical agents. Laser safety standards introduce 3 useful parameters for hazard characterization: "Accessible Emission Limit" (AEL), "Maximum Permissible Exposure" (MPE) and "Nominal Ocular Hazard Distance" (NOHD). We measured the MPE and NOHD for Er:YAG and other laser sources currently adopted in dentistry and we compared our results with data elaborated from standards in order to single out safe and comfortable working conditions. In fact an experimental assessment of the hazard parameters and the comparison with those of reference from safety standards turns out to be useful in order to estimate the residual hazard that can be still present after applying all the engineering protection and administrative rules.

  19. Radiation protection and communication. Sociology and communication impact in radiation protection; Radioprotection et Communication. Sociologie et impact de la communication en radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Berne, G. [CEA/Cadarache, Service de Protection contre les Rayonnements, 13 - Saint Paul lez Durance (France); Bicheron, G.; Franco, P. [CEA/Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, IPSN, 92 (France)] [and others

    2000-07-01

    Communication about nuclear energy was the subject of this conference. Different examples of communications are detailed in fields as different as impact of iodine 131 release in waste waters or public information about radiation protection, the north Cotentin radioecology group or what information to give to the patients in nuclear medicine. (N.C.)

  20. Up-Regulated ATF4 Expression Increases Cell Sensitivity to Apoptosis in Response to Radiation

    Directory of Open Access Journals (Sweden)

    Ying Zong

    2017-02-01

    Full Text Available Background/Aims: Activating transcription factor 4 (ATF4 is a member of the activating transcription factor family which regulates the expression of genes involved in amino acid metabolism, redox homeostasis and ER stress responses. ATF4 is also over-expressed in human solid tumors, although its effect on responsiveness to radiation is largely unexplored. Methods: Real-time PCR was used to detect ATF4 mRNA levels in cells treated with different doses of 60Coγ radiation. Cell viability was assayed using a cell counting kit. The cell cycle was analyzed using flow cytometry, and cell apoptosis was assayed using Annexin V-PI double labeling. Small interfering RNA (siRNA against ATF4 was transfected into ECV304 cells using Lipofectamine 2000. An ATF4 over-expression plasmid (p-ATF4-CGN was transfected into HEK293 cells that endogenously expressed low levels of ATF4. The levels of intracellular reactive oxygen species (ROS were measured using CM-H2DCFDA as a probe. Results: ATF4 mRNA and protein expression levels were higher after radiation and increased in a dose- and time-dependent manner in AHH1 lymphoblast cells (P < 0.05. An increase in ATF4 levels was also observed after radiation in primary murine spleen cells, human endothelial ECV304 cells, human liver LO2 cells, breast cancer MCF7 cells, and human hepatocellular carcinoma HEPG2 cells. No change was observed in human embryonic kidney 293 (HEK293 cells. Over-expressing ATF4 in HEK293 cells inhibited cell proliferation, increased cell apoptosis and significantly increased the proportion of cells in G1 phase. Conversely, when ATF4 expression was knocked down using siRNA in ECV304 cells, it protected the cells from radiation-induced apoptosis. These findings suggest that ATF4 may play a role in radiation-induced cell killing by inhibiting cell proliferation and promoting cell apoptosis. Conclusions: In this study, we found that radiation up-regulated the expression of ATF4. We used ATF4

  1. Radiation protection in brachytherapic treatment of prostatic carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Mannino, G.; Bona, R.; Occhipinti, A. [Catania Univ. Hospital, ' Vittorio Emanuele, Ferrarotto e Santo Bambino' (Italy); Testagrossa, B.; Vermiglio, G.; Tripepi, M.G. [Messina Univ., Dept. of Protezionistica Ambientale, Sanitaria, Sociale ed Industriale (Italy)

    2006-07-01

    Purpose: To evaluate absorbed doses for medical staff and general public deriving from prostate brachytherapy with I-125 seeds. Methods And Materials: Radiation exposure measurements were made for staff and on a subset of 64 patients of the 100 trans perineal I-125 implanted seeds implants at the Vittorio Emanuele, Ferrarotto e Santo Bambino Universitary Hospital. Results: Absorbed doses for operators are very low when using radiation safety devices. The exposure rate at the anterior skin surface due to I-125 implanted seeds ranged from 32 to 120 {mu}Sv/hour. Conclusions: The evaluation of dose measurements shows that radiation risk associated to this practice is very low, both for staff that for critical group of population, if they follow the specific radioprotection statements supplied by health physicists. (authors)

  2. Assessment of Radiographers’ Awareness about Radiation Protection Principles in Hospitals of Bandar Abbas, Iran

    Directory of Open Access Journals (Sweden)

    Erfaneh Kargar

    2017-03-01

    Full Text Available Introduction This study was conducted to evaluate the radiographers’ awareness of radiation protection principles in the radiology centers of the hospitals of Bandar Abbas, Iran. Materials and Methods This analytical cross-sectional study was conducted on 50 radiographers of three hospitals affiliated with Hormozgan University of Medical Sciences in 2015. The data were collected using a two-part questionnaire. The first part was related to the demographic information of the radiographers(i.e. age, gender, work experience, workplace, and passing related training courses. The second part consisted of questions related to the radiographers’ awareness in three fields of radiology physics, radiation protection, and hazards of radiation. Results According to the results of the present study, the mean total scores of the radiographers’ awareness about the radiology physics, radiation protection, and hazards of radiation was 18.41±1.14 out of 22. However, the radiographers’ awareness of the three investigated fields had no statistically significant relationships with the work experience (P=0.244 and gender (P=0.386. However, there was a significant relationship between the radiographers’ awareness about the radiation protection and their education level (P=0.034. Moreover, a significant association was found between the radiographers’ awareness and their workplace (P=0.009. Additionally, the participation in the radiation training courses was significantly correlated with the radiographers’ awareness regarding the radiation hazards (P=0.022. Conclusion According to the findings of the present study, the awareness level of the radiographers about the radiation protection principles was relatively good. However, it seems that the education level of the staff should be enhanced through holding regular short-term radiation training courses.

  3. RADIATION ACCIDENTS: EXPERIENCE OF MEDICAL PROTECTION AND MODERN STRATEGY OF PHARMACOLOGICAL MAINTENANCE

    Directory of Open Access Journals (Sweden)

    A. N. Grebenyuk

    2012-01-01

    Full Text Available Experience of medical protection at radiation accidents is analyzed. It is shown, that medicines that have been in the arsenal of medical service during the liquidation of consequences of the Chernobyl nuclear power plant accident satisfied their predestination in a whole and were rather effective for radiation protection. The modern strategy of pharmacological maintenance based on use of means and methods, allowing to keeping a life, health and professional serviceability of people in conditions of amazing action of a complex of factors of radiation accidents, is submitted.

  4. Application of Spanish legislation on radiation protection in contaminated soils; Aplicacion de la normativa espanola sobre suelos contaminados en proteccion radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Trueba Alonso, C.; Robles Atienza, B.

    2013-07-01

    As the developments that have led the regulations on contaminated soils conventional pollutants are more advanced than those due to radioactive contaminants, this work is a state of the art of the current situation and is framed within the developments in R and D for radiation protection of the public and the environment. (Author)

  5. S.F.R.P.99 national congress of radiation protection; S.F.R.P.99 congres national de radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This conference treats the problem of radiation protection, in nuclear industry, nuclear medicine. The new regulations lead to an improvement in that area. The question of low doses is discussed. The natural radioactivity is evoked with the radon and the perception of the nuclear risk by the public is the object of several reports. (N.C.)

  6. Optimization of the workers radiation protection in the electro nuclear, industrial and medical fields; Optimisation de la radioprotection des travailleurs dans les domaines electronucleaire, industriel et medical

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This conference is devoted to the radiation protection and the best way to optimize it. It reviews each area of the nuclear industry, and explores also the medical sector. Dosimetry, ALARA principle and new regulation are important points of this meeting. (N.C.)

  7. The new radiation protection ordinance: coming into effect and transitional provisions for nuclear medicine; Die neue Strahlenschutzverordnung: In-Kraft-Treten und Uebergangsbestimmungen fuer den nuklearmedizinischen Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, B. [Bundesamt fuer Strahlenschutz, Inst. fuer Strahlenhygiene, Oberschleissheim (Germany); Baller, M. [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2002-05-01

    The new radiation protection ordinance, which has come into effect with August 1{sup st}, 2001 implies some innovations, which are of relevance for nuclear medicine. This affects the allowance for handling with radioactive material, medical research, radioactive waste, expertise for radiation protection in medicine as well as regulations for radiation protection areas and dose limits. The regulations for application of radioactive material in humans in medicine have been changed too. This article gives an overview of the most relevant regulations, which have to be applied since the new radiation protection ordinance has come into effect. In addition, regulation are described for which transitional provisions exist including the time-limits which have to be considered. (orig.) [German] Die neue Strahlenschutzverordnung, die zum 1. August 2001 in Kraft getreten ist, bringt einige Neuerungen, die fuer Nuklearmediziner von Bedeutung sind. Dies betrifft die Umgangsgenehmigung, die medizinische Forschung, den radioaktiven Abfall, die Fachkunde sowie Regelungen zu den Strahlenschutzbereichen und den Grenzwerten. Neu sind ebenfalls Regelungen zur Anwendung am Menschen in der Heilkunde. In dem Artikel sind die wichtigsten Vorschriften dargestellt, die mit Inkrafttreten der Verordnung anzuwenden sind, fuer welche Vorschriften Uebergangsbestimmungen bestehen und welche Fristen hierbei zu beachten sind. (orig.)

  8. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    Science.gov (United States)

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  9. The system of radiation protection for neutrons: does it fit the purpose?

    Science.gov (United States)

    Thomas, David J

    2014-10-01

    The present system of radiation protection for neutrons is reviewed with particular reference to the development of the protection quantities and their relationships with the operational quantities. Some of the shortcomings of the system are outlined, and the difficulties of measuring the operational quantities. Suggestions are made for future developments. © Crown copyright 2013.

  10. The radiation protection and the radioactive wastes management; La radioprotection et la gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Servais, F. [CHR Hopital de Warquignies, Service de Medecine Nucleaire (Belgium); Woiche, Ch. [Universite Libre de Bruxelles, Service Interne et de Prevention et Protection (Belgium); Hunin, Ch. [Agence Federale de Controle Nucleaire, Service Controle Etablissements Classes, Brexelles (Belgium)] [and others

    2003-07-01

    This chapter concerns the radiation protection in relation with the radioactive waste management. Three articles make the matter of this file, the management of radioactive medical waste into hospitals, a new concept of waste storage on site, the protection devices on the long term with some lessons for the radioactive waste management. (N.C.)

  11. Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations.

    Science.gov (United States)

    Sánchez-Campillo, M; Gabaldon, J A; Castillo, J; Benavente-García, O; Del Baño, M J; Alcaraz, M; Vicente, V; Alvarez, N; Lozano, J A

    2009-02-01

    Solar UV and other ionizing radiations cause a generation of reactive oxygen species, induce cellular DNA damage and alter skin homeostasis. The use of exogenous antioxidants is increasingly frequents, we attempt to demonstrate that a rosmarinic acid extract acts as photo-protector; both free radical scavenger as an inducer of the body's own endogenous defence mechanisms by regulating tyrosinase activity and stimulating melanin production. Malonyldialdehyde formation (TBARS) was delayed when RA was used. The protection factor was 3.24 times vs AA. TEAC value for RA was 1.6 times vs AA. The radioprotective-antimutagenic effects of RA were measure using the micronucleus test. The level of micronucleous for treatments before irradiation was: RA [14]protective agent.

  12. ENTRIA workshop. Determine threshold values in radiation protection; ENTRIA - Werkstattgespraech. Grenzwertbildung im Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Diener, Lisa [Technische Univ. Braunschweig (Germany). Inst. fuer Rechtswissenschaften

    2015-03-15

    Threshold values affect our daily lives. Whether it concerns traffic or noise regulations, we all experience thresholds on a regular basis. But how are such values generated? The conference ''Determine Thres-hold Values in Radiation Protection'', taking place on January 27th 2015 in Braunschweig, focused on this question. The conference was undertaken in the context of the BMBF-funded interdisciplinary research project ''ENTRIA - Disposal Options for Radioactive Residues''. It aimed to stimulate a cross-disciplinary discussion. Spea-kers from different disciplinary backgrounds talked about topics like procedures of setting threshold values, standards for evaluating dosages, and public participation in the standardization of threshold values. Two major theses emerged: First, setting threshold values always requires considering contexts and protection targets. Second, existing uncertainties must be communicated in and with the public. Altogether, the conference offered lots of input and issues for discussion. In addition, it raised interesting and important questions for further and ongoing work in the research project ENTRIA.

  13. New nuclear build and evolving radiation protection challenges.

    Science.gov (United States)

    Lazo, Edward

    2011-01-01

    Radiological protection has continued to evolve in order to meet emerging challenges and will continue to do so. This paper will discuss the scientific and social challenges that will or may be faced by the radiological protection community in the coming 10 to 20 y and how these may affect what is expected to be a renewed interest in building and operating nuclear power plants for electricity generation. Copyright © 2010 Health Physics Society

  14. Radiation protection for the sentinel node procedure in breast cancer

    NARCIS (Netherlands)

    de Kanter, AY; Arends, PPAM; Eggermont, AMM; Wiggers, T

    Aims: The purpose of our study was to determine the radiation dose for those who are involved in the sentinel node procedure in breast cancer patients and testing of a theoretical model. Methods: We studied 12 consecutive breast cancer patients undergoing breast surgery, and a sentinel node

  15. Radiation Protection in the Application of Active Detection Technologies

    Science.gov (United States)

    2013-07-01

    medical diagnostics and therapeutics where the benefits are clear and the risks are knowingly assumed. Unlike radiation workers, such individuals are...Cancer (percent)a Risk of Birth Defect or Spontaneous Abortion for Exposed Embryo or Fetusb Risk of Deterministic Effectsc Examples of Individuals

  16. Modernisation and consolidation of the European radiation protection legislation: the new Euratom Basic Safety Standards Directive.

    Science.gov (United States)

    Mundigl, Stefan

    2015-04-01

    With the publication of new basic safety standards for the protection against the dangers arising from exposure to ionising radiation, foreseen in Article 2 and Article 30 of the Euratom Treaty, the European Commission modernises and consolidates the European radiation protection legislation. A revision of the Basic Safety Standards was needed in order (1) to take account of the scientific and technological progress since 1996 and (2) to consolidate the existing set of Euratom radiation protection legislation, merging five Directives and upgrading a recommendation to become legally binding. The new Directive offers in a single coherent document basics safety standards for radiation protection, which take account of the most recent advances in science and technology, cover all relevant radiation sources, including natural radiation sources, integrate protection of workers, members of the public, patients and the environment, cover all exposure situations, planned, existing, emergency, and harmonise numerical values with international standards. After the publication of the Directive in the beginning of 2014, Member States have 4 y to transpose the Directive into national legislation and to implement the requirements therein. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Experience in implementing ICRP recommendations: IRPA's perspective on the role of the radiation protection professional.

    Science.gov (United States)

    Kase, K R

    2012-01-01

    The International Radiation Protection Association (IRPA) has a membership of approximately 17,000 individuals who are members of 48 national societies in 60 countries worldwide. As such, IRPA's vision is to be recognised as the international voice of the radiation protection professional. This article will discuss elements of the outcome of the 12th International Congress of IRPA ('Focus on the future'), objectives and current activities of IRPA, criteria and priorities for the engagement of IRPA with international organisations, current IRPA initiatives in the areas of radiation protection culture and certification/qualification of radiation protection experts, planning for the 13th International Congress of IRPA, comments on the implementation of recent recommendations of the International Commission on Radiological Protection (ICRP), and suggestions about IRPA and ICRP collaboration in their implementation. IRPA recognises that ICRP is the international body to determine policy and to make recommendations for protection against ionising radiation, and IRPA is in a position to participate in and facilitate the implementation of those recommendations. Copyright © 2012. Published by Elsevier Ltd.

  18. Ionizing radiation regulations and the dental practitioner: 2. Regulations for the use of X-rays in dentistry.

    Science.gov (United States)

    Rout, John; Brown, Jackie

    2012-05-01

    The first article in this series covered radiation hazards and protection. To minimize the potential harmful effects of X-rays, legislation has been introduced by a number of countries including the European Union.

  19. A Hypothesis on Biological Protection from Space Radiation Through the Use of Therapeutic Gases

    Science.gov (United States)

    Schoenfeld, Michael

    2011-01-01

    This slide presentation proposes a hypothesis to use therapeutic gases in space to enhance the biological protection for astronauts from space radiation. The fundamental role in how radiation causes biological damage appears to be radiolysis, the dissociation of water by radiation. A chain of events appears to cause molecular and biological transformations that ultimately manifest into medical diseases. The hypothesis of this work is that applying medical gases may increase resistance to radiation, by possessing the chemical properties that effectively improve the radical scavenging and enhance bond repair and to induce biological processes which enhance and support natural resistance and repair mechanisms.

  20. Efficiency of lead aprons in blocking radiation − how protective are they?

    Directory of Open Access Journals (Sweden)

    Seung-Jae Hyun

    2016-05-01

    Interpretation: The 0.5 mm lead aprons blocked just over one third of the radiation scattered towards the surgeon. Use of robotic-guidance in a minimally invasive approach provided for a reduction of 62.5% of the overall radiation the surgeon was exposed to during open conventional approach. We conclude that reduced radiation use (e.g. by using robotic guidance is a more effective strategy for minimizing exposure to radiation than reliance on protection by lead aprons, and recommend utilization of practices and technologies that reduce the surgical team’s routine exposure to X-rays.

  1. Radiation protection effect by the combination of propolis and agaricus

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yeunhwa; Yamada, Katsunori; Ukawa, Yuuichi [Suzuka Univ. of Medical Science, Suzuka (Japan)] [and others

    2002-07-01

    The aims of the radioprotection are a human and the safety keeping of the environment. The leukocyte that much research is to do in the animals, and relations between the lymphocyte and the radiation are being made distinct until now. It paid attention to it in this determination stage, and lymphocyte toward the radiation was observed by using the ICR mice used for the lymphocyte simulation abundantly in this research. And, it was examined about the fetal effect toward the radiation. So, an excuse as a radioprotective agent of the effect on the fetus toward the radiation was examined experimentally by using the propolis and agaricus by this research. Therefore, it is a purpose to obtain information as a medicament of the radioprotection. ICR mice were used for the experiment. The pregnant mice were placed in plastic cages for radiation exposure, and were treated with a single whole-body X -radiation at 1 Gy and 2Gy with a dose rate of 35 cGy/min on 8 days after the conception. 100 mg/kg of propolis and agaricus. The total number of irradiated dams observed in this study was 40, a total of 38 non-irradiated control and sham control dams was also prepared, and 659 non-irradiated live fetuses served as controls. Statistical significant difference was recognized between the lymphocyte of the 1.0Gy and 2.0Gy group and the 1.0Gy and 2.0Gy + propolis and agaricus extracts of water solution administrated group toward the lymphocyte and embryonic death of control group and sham control group (p<0.01). But, when it was compared with the lymphocyte and embryonic death rate of the 1.0Gy and 2.0Gy group and the 1.0Gy and 2.0Gy + Propolis and agaricus group, the lymphocyte rate of the 1.0Gy and 2.0Gy + Propolis and agaricus group was decrease. And, if propolis and agaricus was administered, the embryo beyond the haploid number that did implantation was found out in the exposure beyond 1.0Gy or 2.0Gy.

  2. Comparison between Brazilian radiation protection norm and ICRP recommendations published in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de S.; Py Junior, Delcy de A., E-mail: pereiraws@gmail.com [Industrias Nucleares do Brasil (INB), Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerio. Servico de Radioprotecao. Grupo Multidisciplinar de Radioprotecao; Pereira, Juliana R. de S., E-mail: pereirarsj@gmail.com [Universidade Federal de Alfenas, Pocos de Caldas, MG (Brazil). Campus Pocos de Caldas; Kelecom, Alphonse, E-mail: akelecom@id.uff.br [Universidade Federal Fluminense (GETA/LARARA-PLS/UFF), Niteroi, RJ (Brazil). Laboratorio de Radiobiologia e Radiometria Pedro Lopes dos Santos. Grupo de Estudos em Temas Ambientais; Mortagua, Valter, E-mail: Valter@inb.gov.br [Usina de lnterlagos (USIN), Sao Paulo, SP (Brazil). Coordenacao

    2013-07-01

    In the year 2007, ICRP published a set of recommendations (The 2007 Recommendations of the International Commission on Radiological Protection, Publication 103), which changed some important concepts. This work aims to compare the Brazilian radiation protection basic norm with the new ICRP recommendations, by checking the existing differences. The main difference between ICRP publication 60 and ICRP publication 103 is the changing of the concept of protection based on process, by using the concepts of practice and intervention, to the protection based in the exposition situation, by using the concepts of planned exposure, emergency and existing situation. Other important difference lies in the values of the radiation and tissue weighting factors, in the quantities equivalent and effective dose, and updating the radiation detriment based on the latest available scientific information of the biology and physics of radiation exposure. At last, the demonstration of the environment radiation protection must be clear, and this concept is not found in Brazilian nuclear legislation. Also some similarities were found. The fundamental principles of the Brazilian norms are the same as that of ICRP 103, which are the justification principle, the optimization principle and the application of dose limits. The individual effective dose limit of Brazilian norm is the same of the ICRP 103, established as 20 mSv per year. In order to adequate the Brazilian norm it is necessary to change its concept of protection and the values of radiation and tissue weighting, and updating the radiation detriment, besides making clear the concept of protection of the environment. It is important to notice that although the Brazilian norm is not in complete agreement with all international recommendations, it must be completely followed as the norm which is in use in the country. (author)

  3. Protection Against Neutron Radiation Up to 30 Million Electron Volts

    Science.gov (United States)

    1957-11-22

    5.6 Scandium 22 Selenium 1n L Silicon 0.l 1,;o Silver f;0 .2, 2.9Sodium 0.1 4.1 ɚ Strontium . 16,* Sulfur 0..1 1Tantalum . .1.3 Thallium 3.3 6.; Tin...8217ses of A tomjic Enervy. p). .35-44 (Genteva, 1955). 151I William T. Ham. .Jr.. Radiation cataract . .AMA Arch. Ophth. 50. 618-643 (195:0). I 61 P. H...Abelson and P. G. Kruger., (’ylotc-on-intlnc-d radiation cataracts . Science 10. 6551 ( 1919). 171 NBS Tech. News Pill. 11. 17 ( 19-57); Radi: I\\ ;s.r68

  4. Shanghai Municipal Regulations for the protection of juveniles, 1987.

    Science.gov (United States)

    1988-01-01

    In 1987, Shanghai issued Regulations for the protection of juveniles (between six and 18 years old). The third chapter deals with the protection that the family is expected to provide young children and imposes on parents and guardians the duty to educate and supervise their children with the help of other adults in the household. Parents are required to protect the physical health of their children and to ensure that they attend school. In addition, parents must "educate their children for the nation" by encouraging "healthy thinking" and decorous behavior. Parents must monitor their children's daily life and social activities so that they do not consume alcohol or tobacco, are not exposed to "trashy materials," and do not congregate in "unsuitable recreation centers." If parents discover that other people are threatening or cheating their children or are encouraging their children to engage in crime, they should report the matter to the public security or civil administration organs; parents must concern themselves with the physical and psychological changes taking place in their children during puberty and educate and control the children if they engage in "early courtship." Parents must try to learn the "scientific methods" of educating their children, seek guidance in these matters from the appropriate family educational institutions, and not allow their children to live alone and unsupervised. They may not spoil their children, allow their children to engage in illegal activities, or shelter children who have committed illegal acts. These duties are imposed on the natural parents of children born out of wedlock, on stepparents in relation to their stepchildren, on adopters in relation to their adopted children, and on divorcees in relation to their children by the dissolved marriage. In addition, such parents must not discriminate against or maltreat or desert their children, and if, after divorce, the spouse who has been awarded custody proves unsuitable as

  5. Oceanic protection of prebiotic organic compounds from UV radiation.

    Science.gov (United States)

    Cleaves, H J; Miller, S L

    1998-06-23

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  6. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist.

    Science.gov (United States)

    Marichal, Daniel A; Anwar, Temoor; Kirsch, David; Clements, Jessica; Carlson, Luke; Savage, Clare; Rees, Chet R

    2011-04-01

    To evaluate the radiation protective characteristics of a system designed to enhance operator protection while eliminating weight to the body and allowing freedom of motion. Radiation doses to a mock interventionalist were measured with calibrated dosimeters in a clinical interventional suite. A standard lead apron (SLA; Pb equivalent, 0.5 mm) was compared with a suspended radiation protection system (ZeroGravity; Zgrav) that shields from the top of the head to the calves (except the right arm and left forearm) with a complex overhead motion system that eliminates weight on the operator and allows freedom of motion. Zgrav included a suspended lead apron with increased lead equivalency, greater length, proximal left arm and shoulder coverage, and a wraparound face shield of 0.5 mm Pb equivalency. A 26-cm-thick Lucite stack (ie, mock patient) created scatter during 10 controlled angiography sequences of 120 exposures each. Parameters included a field of view of 40 cm, table height of 94 cm, 124 cm from the tube to image intensifier, 50 cm from the image center to operator, 66 kVp, and 466-470 mA. Under identical conditions, average doses (SLA vs Zgrav) were 264 versus 3.4 (ratio, 78) to left axilla (P lead apron, the Zgrav system provided a 16-78-fold decrease in radiation exposure for a mock interventionalist in a simulated clinical setting. Copyright © 2011 SIR. Published by Elsevier Inc. All rights reserved.

  7. Wound scabs protect regenerating tissue against harmful ultraviolet radiation

    NARCIS (Netherlands)

    van der Pol, E.; Mudde, Y. D.; Coumans, F. A. W.; van Leeuwen, T. G.; Sturk, A.; Nieuwland, R.

    2016-01-01

    Benefits attributed to wound scabs include prevention of blood loss and protection against infection. However, when formation of a wound scab is prevented, the risk of infection is reduced. Moreover, in the absence of a wound scab, wounds heal faster and scar formation is reduced. The question

  8. DNA Protection Protein, a Novel Mechanism of Radiation Tolerance: Lessons from Tardigrades

    Directory of Open Access Journals (Sweden)

    Takuma Hashimoto

    2017-06-01

    Full Text Available Genomic DNA stores all genetic information and is indispensable for maintenance of normal cellular activity and propagation. Radiation causes severe DNA lesions, including double-strand breaks, and leads to genome instability and even lethality. Regardless of the toxicity of radiation, some organisms exhibit extraordinary tolerance against radiation. These organisms are supposed to possess special mechanisms to mitigate radiation-induced DNA damages. Extensive study using radiotolerant bacteria suggested that effective protection of proteins and enhanced DNA repair system play important roles in tolerability against high-dose radiation. Recent studies using an extremotolerant animal, the tardigrade, provides new evidence that a tardigrade-unique DNA-associating protein, termed Dsup, suppresses the occurrence of DNA breaks by radiation in human-cultured cells. In this review, we provide a brief summary of the current knowledge on extremely radiotolerant animals, and present novel insights from the tardigrade research, which expand our understanding on molecular mechanism of exceptional radio-tolerability.

  9. Reduction in radiation-induced brain injury by use of pentobarbital or lidocaine protection

    Energy Technology Data Exchange (ETDEWEB)

    Oldfield, E.H.; Friedman, R.; Kinsella, T.; Moquin, R.; Olson, J.J.; Orr, K.; DeLuca, A.M. (National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (USA))

    1990-05-01

    To determine if barbiturates would protect brain at high doses of radiation, survival rates in rats that received whole-brain x-irradiation during pentobarbital- or lidocaine-induced anesthesia were compared with those of control animals that received no medication and of animals anesthetized with ketamine. The animals were shielded so that respiratory and digestive tissues would not be damaged by the radiation. Survival rates in rats that received whole-brain irradiation as a single 7500-rad dose under pentobarbital- or lidocaine-induced anesthesia was increased from between from 0% and 20% to between 45% and 69% over the 40 days of observation compared with the other two groups (p less than 0.007). Ketamine anesthesia provided no protection. There were no notable differential effects upon non-neural tissues, suggesting that pentobarbital afforded protection through modulation of ambient neural activity during radiation exposure. Neural suppression during high-dose cranial irradiation protects brain from acute and early delayed radiation injury. Further development and application of this knowledge may reduce the incidence of radiation toxicity of the central nervous system (CNS) and may permit the safe use of otherwise unsafe doses of radiation in patients with CNS neoplasms.

  10. CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.

    Science.gov (United States)

    El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E; Shay, Jerry W

    2014-01-01

    Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.

  11. Radiation protection in interventional radiology: survey results of attitudes and use.

    Science.gov (United States)

    Lynskey, G Emmett; Powell, Daniel K; Dixon, Robert G; Silberzweig, James E

    2013-10-01

    To assess attitudes of interventional radiologists toward personal radiation protection and the use of radiation protection devices. Invitations to an anonymous online survey that comprised eight questions focused on operator attitudes toward radiation protection devices were sent via e-mail to the active membership of the Society of Interventional Radiology (SIR): a total of 3,158 e-mail invitations. A single reminder e-mail was sent. There were 504 survey responders (16% response rate). Reported radiation safety device use included lead apron (99%), thyroid shield (94%), leaded eyeglasses (54%), ceiling-suspended leaded shield (44%), rolling leaded shields (12%), ceiling-suspended/rolling lead-equivalent apron (4%), radiation-attenuating sterile surgical gloves (1%), and sterile lead-equivalent patient-mounted drape (4%). Reasons commonly cited for not using certain devices were comfort (eyewear), ease of use (mounted shields), and lack of availability (rolling/hanging shields and patient-mounted shields). Interventionalists have an array of tools from which to choose for personal radiation protection; however, for a variety of reasons related to lack of availability or choice, these tools are not universally employed. Further study may be of value to clarify why comfort was cited most often as the primary barrier to the use of protective eyewear and difficulty of use was cited as the primary barrier to use of mounted shields (despite reporting that concern for radiation-induced injury to the eye is paramount). It may also be of interest to further study why certain devices with demonstrable protection effects are not readily available, such as rolling/hanging and patient-mounted shields. © SIR, 2013.

  12. Strategies for engaging with future radiation protection professionals: a public outreach case study.

    Science.gov (United States)

    Cole, P; Gornall, B T; Wood, M D; Whitcher, R; Bannon, A; Bloomer, S; Fear, J; Hale, H; Humphries, J; Hunak, S; Jones, C; Matthewman, C; Matthews, A; Slater, S; Stephens, C; Stewart, J

    2015-12-01

    It is evident that there is a nuclear skills shortage within the UK, and logically it can be assumed that the shortfall extends to the radiation protection arena. Plans for nuclear new-build and the decommissioning of existing nuclear sites will require many more people with radiological knowledge and practical competencies. This converts to a nuclear industry requirement in the order of 1000 new recruits per year over at least the next ten years, mainly as new apprentices and graduates. At the same time, the strong demand for persons with radiation protection know-how in the non-nuclear and health care sectors is unlikely to diminish. The task of filling this skills gap is a significant one and it will require a determined effort from many UK stakeholders. The Society for Radiological Protection (SRP) has adopted a strategy in recent years to help address this skills gap. The aim is to engage the interest of secondary school students in the science of radiation and inspire them to follow a career in radiation protection. This paper presents the reasoning behind this strategy and, in an 'outreach case study', describes the establishment of the annual SRP Schools Event. This event is becoming an important addition to the national efforts aimed at increasing the numbers of skilled UK radiation protection professionals over the forthcoming decades.

  13. Medical radiation workers’ knowledge, attitude, and practice to protect themselves against ionizing radiation in Tehran Province, Iran

    Science.gov (United States)

    Alavi, Seyedeh Shohreh; Dabbagh, Sima Taghizadeh; Abbasi, Mahya; Mehrdad, Ramin

    2017-01-01

    BACKGROUND: Medical radiation workers are potentially at a risk of unwanted ionizing radiation exposures. This study assessed the radiation protection knowledge, attitude, and practice (RP-KAP) of health-care workers who are occupationally exposed to radiation regarding protecting themselves from radiation. MATERIALS AND METHODS: This study was cross-sectional in design and was carried out in 16 hospitals affiliated to the Tehran University of Medical Sciences between May and September 2014. Total health-care workers who were occupationally exposed to radiation comprising 670 individuals were included in the study based on census sampling method. In total, 413 individuals consented to complete an anonymous 32-item questionnaire comprising single best choice questions with a numerical value assigned to each correct answer. Each set of RP-KAP questions was scored and categorized as poor, medium, and good. The effect of independent variables for prediction of RP-KAP was explored using linear regression analyses. RESULTS: A significant number of participants had poor RP-knowledge (78.9%), RP-attitude (70.7%), and RP-practice (32.4%). Based on linear regression analyses, it was found that field of study (β = 0.1, P = 0.001), marital status (β = −0.14, P = 0.01), and level of education (β = 0.2, P knowledge. In-service RP-training (β = 0.1, P = 0.04) was associated with an increased RP-attitude. Being a woman (β = 0.2, P practice. CONCLUSION: In-service training with appropriate qualified and up-to-date materials based on radiation workers’ educational needs and approved protocols and guidelines is recommended. PMID:28616425

  14. Medical radiation workers' knowledge, attitude, and practice to protect themselves against ionizing radiation in Tehran Province, Iran.

    Science.gov (United States)

    Alavi, Seyedeh Shohreh; Dabbagh, Sima Taghizadeh; Abbasi, Mahya; Mehrdad, Ramin

    2017-01-01

    Medical radiation workers are potentially at a risk of unwanted ionizing radiation exposures. This study assessed the radiation protection knowledge, attitude, and practice (RP-KAP) of health-care workers who are occupationally exposed to radiation regarding protecting themselves from radiation. This study was cross-sectional in design and was carried out in 16 hospitals affiliated to the Tehran University of Medical Sciences between May and September 2014. Total health-care workers who were occupationally exposed to radiation comprising 670 individuals were included in the study based on census sampling method. In total, 413 individuals consented to complete an anonymous 32-item questionnaire comprising single best choice questions with a numerical value assigned to each correct answer. Each set of RP-KAP questions was scored and categorized as poor, medium, and good. The effect of independent variables for prediction of RP-KAP was explored using linear regression analyses. A significant number of participants had poor RP-knowledge (78.9%), RP-attitude (70.7%), and RP-practice (32.4%). Based on linear regression analyses, it was found that field of study (β = 0.1, P = 0.001), marital status (β = -0.14, P = 0.01), and level of education (β = 0.2, P knowledge. In-service RP-training (β = 0.1, P = 0.04) was associated with an increased RP-attitude. Being a woman (β = 0.2, P practice. In-service training with appropriate qualified and up-to-date materials based on radiation workers' educational needs and approved protocols and guidelines is recommended.

  15. CD47 Receptor Globally Regulates Metabolic Pathways That Control Resistance to Ionizing Radiation.

    Science.gov (United States)

    Miller, Thomas W; Soto-Pantoja, David R; Schwartz, Anthony L; Sipes, John M; DeGraff, William G; Ridnour, Lisa A; Wink, David A; Roberts, David D

    2015-10-09

    Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Radiation protection Group (SC/RP) desperately seeking...

    CERN Multimedia

    A. Hervé, Y. Donjoux / SC

    2006-01-01

    We are trying to trace two transit permits (passavants), which constitute the customs clearance documentation for two 'AD6'portable radiation detectors. The two permits (No. 1308 and No. 1309) were sent in the same internal mail envelope towards the middle of March 2006 but never reached their final destination. After weeks of searching in vain, we are now appealing for your help. If you have these two permits in your possession, please get in touch with us. Many thanks in advance. A.HERVE - SC/RP- ( 163168 / 70927) Y.DONJOUX - SC/RP - (160105 / 73171)

  17. Enzymological mechanism for the regulation of lanthanum chloride on flavonoid synthesis of soybean seedlings under enhanced ultraviolet-B radiation.

    Science.gov (United States)

    Fan, Caixia; Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2014-01-01

    In order to probe into the enzymological mechanism for the regulation of lanthanum chloride (LaCl3) on flavonoid synthesis in plants under enhanced ultraviolet-B (UV-B) radiation, the effects of LaCl₃ (20 and 60 mg l(-1)) on the content of flavonoids as well as the activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate : coenzyme A ligase (4CL), and chalcone synthase (CHS) in soybean seedlings under enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) were investigated. Enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) caused the increase in the content of flavonoids as well as the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of 20 mg l(-1) LaCl₃ also efficiently increased these indices, which promoted the flavonoid synthesis and provided protective effects for resisting enhanced UV-B radiation. On the contrary, the treatment of 60 mg l(-1) LaCl₃ decreased the content of flavonoids as well as the activities of C4H, 4CL, and CHS in soybean seedlings except increasing the activity of PAL, which were not beneficial to the flavonoid synthesis and provided negative effects for resisting enhanced UV-B radiation. In conclusion, enhanced UV-B radiation caused the increase in the flavonoid synthesis by promoting the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of LaCl₃ could change flavonoid synthesis in soybean seedlings under enhanced UV-B radiation by regulating the activities of PAL, C4H, 4CL, and CHS, which is an enzymological mechanism for the regulation of LaCl₃ on flavonoid synthesis in plants under enhanced UV-B radiation.

  18. The enhancemeny of anti-tumor effects, immuno-activity and radiation protection after injection of EF2001(Lactic bacteria)

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Morkkazu; Hasegawa, Takeo; Takahashi, Tohru [Graduate School of Health Science, Suzuka (Japan)] [and others

    2002-07-01

    EF2001 was made from Enterococcus Faecalis, and it has radiation protection effects by protection of the intestinal mucosa in the absorption function of the carcinogenesis materials. We used animals were C3H mice bearing SCC-VIII tumor. The results of this study confirmed, EF2001 has effect of radiation protection and EF2001 can absorption of carcinogenesis materials selectively.

  19. 49 CFR 192.355 - Customer meters and regulators: Protection from damage.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Customer meters and regulators: Protection from... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Customer Meters, Service Regulators, and Service Lines § 192.355 Customer meters and regulators: Protection from...

  20. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Science.gov (United States)

    Caresana, M.; Denker, A.; Esposito, A.; Ferrarini, M.; Golnik, N.; Hohmann, E.; Leuschner, A.; Luszik-Bhadra, M.; Manessi, G.; Mayer, S.; Ott, K.; Röhrich, J.; Silari, M.; Trompier, F.; Volnhals, M.; Wielunski, M.

    2014-02-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  1. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M., E-mail: marco.caresana@polimi.it [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Denker, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Esposito, A. [IFNF-LNF, FISMEL, via E. Fermi 40, 00044 Frascati (Italy); Ferrarini, M. [CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Golnik, N. [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Hohmann, E. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Leuschner, A. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Manessi, G. [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Mayer, S. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Ott, K. [Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str.15, 12489 Berlin (Germany); Röhrich, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Trompier, F. [Institute for Radiological Protection and Nuclear Safety, F-92262 Fontenay aux Roses (France); Volnhals, M.; Wielunski, M. [Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg (Germany)

    2014-02-11

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  2. Current knowledge on radon risk. Implications for practical radiation protection?

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Wolfgang-Ulrich [Universitaetsklinikum Essen, Institut fuer Medizinische Strahlenbiologie, Essen (Germany); Giussani, Augusto; Kreuzer, Michaela; Sobotzki, Christina [Federal Office for Radiation Protection, Oberschleissheim (Germany); Ruehm, Werner [German Research Center for Environmental Health, Institute of Radiation Protection, Helmholtz Zentrum Muenchen, Neuherberg (Germany); Lecomte, Jean-Francois [International Affaires Directorate, Institut de Radioprotection et de Surete Nucleaire, P.O. Box 17, Fontenay-aux-Roses (France); Harrison, John [Oxford Brookes University, Faculty of Health and Life Sciences, Oxford (United Kingdom); Breckow, Joachim [THM University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen (Germany)

    2016-08-15

    ICRP suggested a strategy based on the distinction between a protection approach for dwellings and one for workplaces in the previous recommendations on radon. Now, the Commission recommends an integrated approach for the protection against radon exposure in all buildings irrespective of their purpose and the status of their occupants. The strategy of protection in buildings, implemented through a national action plan, is based on the application of the optimisation principle below a derived reference level in concentration (maximum 300 Bq m{sup -3}). A problem, however, arises that due to new epidemiological findings and application of dosimetric models, ICRP 115 (Ann ICRP 40, 2010) presents nominal probability coefficients for radon exposure that are approximately by a factor of 2 larger than in the former recommendations of ICRP 65 (Ann ICRP 23, 1993). On the basis of the so-called epidemiological approach and the dosimetric approach, the doubling of risk per unit exposure is represented by a doubling of the dose coefficients, while the risk coefficient of ICRP 103 (2007) remains unchanged. Thus, an identical given radon exposure situation with the new dose coefficients would result in a doubling of dose compared with the former values. This is of serious conceptual implications. A possible solution of this problem was presented during the workshop. (orig.)

  3. Joint research towards a better radiation protection-highlights of the Fifth MELODI Workshop.

    Science.gov (United States)

    Aerts, A M; Impens, N R E N; Baatout, S; Benotmane, M A; Camps, J; Dabin, J M; Derradji, H; Grosche, B; Horemans, N; Jourdain, J-R; Moreels, M; Perko, T; Quintens, R; Repussard, J; Rühm, W; Schneider, T; Struelens, L; Hardeman, F

    2014-12-01

    MELODI is the European platform dedicated to low-dose radiation risk research. From 7 October through 10 October 2013 the Fifth MELODI Workshop took place in Brussels, Belgium. The workshop offered the opportunity to 221 unique participants originating from 22 countries worldwide to update their knowledge and discuss radiation research issues through 118 oral and 44 poster presentations. In addition, the MELODI 2013 workshop was reaching out to the broader radiation protection community, rather than only the low-dose community, with contributions from the fields of radioecology, emergency and recovery preparedness, and dosimetry. In this review, we summarise the major scientific conclusions of the workshop, which are important to keep the MELODI strategic research agenda up-to-date and which will serve to establish a joint radiation protection research roadmap for the future.

  4. Radiation doses of employees of a Nuclear Medicine Department after implementation of more rigorous radiation protection methods.

    Science.gov (United States)

    Piwowarska-Bilska, Hanna; Supinska, Aleksandra; Listewnik, Maria H; Zorga, Piotr; Birkenfeld, Bozena

    2013-11-01

    The appropriate radiation protection measures applied in departments of nuclear medicine should lead to a reduction in doses received by the employees. During 1991-2007, at the Department of Nuclear Medicine of Pomeranian Medical University (Szczecin, Poland), nurses received on average two-times higher (4.6 mSv) annual doses to the whole body than those received by radiopharmacy technicians. The purpose of this work was to examine whether implementation of changes in the radiation protection protocol will considerably influence the reduction in whole-body doses received by the staff that are the most exposed. A reduction in nurses' exposure by ~63 % took place in 2008-11, whereas the exposure of radiopharmacy technicians grew by no more than 22 % in comparison with that in the period 1991-2007. Proper reorganisation of the work in departments of nuclear medicine can considerably affect dose reduction and bring about equal distribution of the exposure.

  5. Knowledge, skills, and abilities for key radiation protection positions at DOE facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This document provides detailed qualification criteria for contractor key radiation protection personnel. Although federal key radiation protection positions are also identified, qualification standards for federal positions are provided in DOE O 360.1 and the DOE Technical Qualifications Program. Appendices B and D provide detailed listings for knowledge, skills, and abilities for contractor and DOE federal key radiation protection positions. This information may be used in developing position descriptions and individual development plans. Information provided in Appendix C may be useful in developing performance measures and assessing an individual`s performance in his or her specific position. Additionally, Federal personnel may use this information to augment their Office/facility qualification standards under the Technical Qualifications Program.

  6. Reflection Group on 'Ethical Choices in Radiation Protection'

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2000-07-01

    As part of SCK-CEN's social sciences and humanities programme, a reflection group on 'Ethical Choices in Radiation Protection' was created. The objectives of the reflection group are (1) to brainstorm on critical issues of radiation protection; (2) to create a discussion forum with a variety os SCK-CEN researchers and external experts; (3) to make value judgements and open questions in radiation protection explicit; (4) to create an output for a topical day or workshop by editing a 'cahier' of contributed articles and discussion reports; (5) to complement the output of the SCK-CEN contribution in international ALARA workshops. The programme, achievements and perspectives of the refection group are summarised.

  7. Radiation protection effects by the presence of diphenyl alkanes studied by pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshinobu; Okawa, Hiroyuki; Kojima, Takao; Yamamoto, Tadashi [Osaka Univ., Suita (Japan). Faculty of Engineering; Mizutani, Yasuhiro; Miki, Miyako; Kozawa, Takahiro; Yoshida, Yoichi; Tagawa, Seiichi

    1998-10-01

    The primary processes of the radiation protection effects have been studied by means of nanosecond pulse radiolysis. Three kinds of diphenyl alkanes (diphenylmethane, diphenylethane and diphenylpropane) and diphenyl were used as additives, and benzene was also used for comparison. Benzene had significant reactivities with singlet excited state (S{sub 1}) and cation radical of n-dodecane, but no reactivity with thermal electron, while biphenyl efficiently reacted with S{sub 1} state, cation radical and electron. All of the diphenyl alkanes used in this study exhibited almost the same reactivity as benzene. From these results, it can be expected that the radiation protection effects by diphenyl alkanes are similar to those by benzene and that the radiation protection effects by diphenyl alkanes and benzene are lower than those by biphenyl. (author)

  8. Shielding and radiation protection at the SSRL 3 GeV injector

    Energy Technology Data Exchange (ETDEWEB)

    Ipe, N.E.; Liu, J.C.

    1991-12-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) Injector is comprised of a linear accelerator (linac) capable of energies {le} 150 MeV, a 3 GeV booster synchrotron, and a beam line to transport the electrons into the storage ring SPEAR. The injector is shielded so that under normal operating conditions, the annual dose equivalent at the shield surface does not exceed 10 mSv. This paper describes the shielding and radiation protection at the injector.

  9. Experimental proposal Test of radiation protection instrumentation in HiRadMat

    OpenAIRE

    Charitonidis, Nikolaos; Silari, Marco; Manessi, Paolo Giacomo

    2012-01-01

    The knowledge of the response of radiation protection detectors in pulsed fields is very important, since this is a typical condition often encountered with stray radiation fields around particle accelerators at CERN and elsewhere. This document presents a proposal for testing a prototype detector and commercial instrumentation in use with the RAMSES monitoring system, due to the unique conditions that can be found in the HiRadMat facility. These tests can be extended to include instrumentati...

  10. A History of the International Commission on Non-Ionizing Radiation Protection.

    Science.gov (United States)

    Repacholi, M H

    2017-10-01

    Concern about health risks from exposure to non-ionizing radiation (NIR) commenced in the 1950s after tracking radars were first introduced during the Second World War. Soon after, research on possible biological effects of microwave radiation in the former Soviet Union and the U.S. led to public and worker exposure limits being much lower in Eastern European than in Western countries, mainly because of different protection philosophies. As public concern increased, national authorities began introducing legislation to limit NIR exposures from domestic microwave ovens and workplace devices such as visual display units. The International Radiation Protection Association (IRPA) was formed in 1966 to represent national radiation protection societies. To address NIR protection issues, IRPA established a Working Group in 1974, then a Study Group in 1975, and finally the International NIR Committee (INIRC) in 1977. INIRC's publications quickly became accepted worldwide, and it was logical that it should become an independent commission. IRPA finally established the International Commission on Non-Ionizing Radiation Protection (ICNIRP), chartering its remit in 1992, and defining NIR as electromagnetic radiation (ultraviolet, visible, infrared), electromagnetic waves and fields, and infra- and ultrasound. ICNIRP's guidelines have been incorporated into legislation or adopted as standards in many countries. While ICNIRP has been subjected to criticism and close scrutiny by the public, media, and activists, it has continued to issue well-received, independent, science-based protection advice. This paper summarizes events leading to the formation of ICNIRP, its key activities up to 2017, ICNIRP's 25th anniversary year, and its future challenges.

  11. Radiation protection in category III large gamma irradiators; Radioprotecao em irradiadores de grande porte de categoria III

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Neivaldo; Furlan, Gilberto Ribeiro, E-mail: neivaldo@cena.usp.b, E-mail: gilfurlan@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Itepan, Natanael Marcio, E-mail: natanael.itepan@unianhanguera.edu.b [Universidade Anhanguera, Goiania, GO (Brazil)

    2011-07-01

    This article discusses the advantages of category III large gamma irradiator compared to the others, with emphasis on aspects of radiological protection, in the industrial sector. This category is a kind of irradiators almost unknown to the regulators authorities and the industrial community, despite its simple construction and greater radiation safety intrinsic to the model, able to maintain an efficiency of productivity comparable to those of category IV. Worldwide, there are installed more than 200 category IV irradiators and there is none of a category III irradiator in operation. In a category III gamma irradiator, the source remains fixed in the bottom of the tank, always shielded by water, negating the exposition risk. Taking into account the benefits in relation to radiation safety, the category III large irradiators are highly recommended for industrial, commercial purposes or scientific research. (author)

  12. Search 40 Code of Federal Regulations (CFR): Protection of the Environment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Title 40 is the section of the Code of Federal Regulations (CFR) that deals with EPA's mission of protecting human health and the environment. This web page provides...

  13. Radiation protection program for early detection of breast cancer in a mammography facility

    Energy Technology Data Exchange (ETDEWEB)

    Mariana, Villagomez Casimiro, E-mail: marjim10-66@ciencias.unam.mx, E-mail: cesar@fisica.unam.mx; Cesar, Ruiz Trejo, E-mail: marjim10-66@ciencias.unam.mx, E-mail: cesar@fisica.unam.mx [Instituto de Física, UNAM. Cd. Universitaria, CP 04510 (Mexico); Ruby, Espejo Fonseca [Instituto de Enfermedades de la Mama FUCAM-AC, CP 04980 (Mexico)

    2014-11-07

    Mammography is the best tool for early detection of Breast Cancer. In this diagnostic radiology modality it is necessary to establish the criteria to ensure the proper use and operation of the equipment used to obtain mammographic images in order to contribute to the safe use of ionizing radiation. The aim of the work was to implement at FUCAM-AC the radiation protection program which must be established for patients and radiation workers according to Mexican standards [1–4]. To achieve this goal, radiation protection and quality control manuals were elaborated [5]. Furthermore, a quality control program (QCP) in the mammography systems (analog/digital), darkroom included, has been implemented. Daily sensitometry, non-variability of the image quality, visualizing artifacts, revision of the equipment mechanical stability, compression force and analysis of repetition studies are some of the QCP routine tests that must be performed by radiological technicians of this institution as a set of actions to ensure the protection of patients. Image quality and patients dose assessment were performed on 4 analog equipment installed in 2 mobile units. In relation to dose assessment, all equipment passed the acceptance criteria (<3 mGy per projection). The image quality test showed that most images (70%)– presented artifacts. A brief summary of the results of quality control tests applied to the equipment and film processor are presented. To maintain an adequate level of quality and safety at FUCAM-AC is necessary that the proposed radiation protection program in this work is applied.

  14. Protecting the radiation-damaged skin from friction: a mini review

    Energy Technology Data Exchange (ETDEWEB)

    Herst, Patries M [Department of Radiation Therapy, University of Otago, Wellington (New Zealand)

    2014-06-15

    Radiation-induced skin reactions are an unavoidable side effect of external beam radiation therapy, particularly in areas prone to friction and excess moisture such as the axilla, head and neck region, perineum and skin folds. Clinical studies investigating interventions for preventing or managing these reactions have largely focussed on formulations with moisturising, anti-inflammatory, anti-microbial and wound healing properties. However, none of these interventions has emerged as a consistent candidate for best practice. Much less emphasis has been placed on evaluating ways to protect the radiation-damaged skin from friction and excess moisture. This mini review analyses the clinical evidence for barrier products that form a protective layer by adhering very closely to the skin folds and do not cause further trauma to the radiation-damaged skin upon removal. A database search identified only two types of barrier products that fitted these criteria and these were tested in two case series and six controlled clinical trials. Friction protection was most effective when the interventions were used from the start of treatment and continued for several weeks after completion of treatment. Soft silicone dressings (Mepilex Lite and Mepitel Film) and Cavilon No Sting Barrier Film, but not Cavilon Moisturizing Barrier Cream, decreased skin reaction severity, most likely due to differences in formulation and skin build-up properties. It seems that prophylactic use of friction protection of areas at risk could be a worthwhile addition to routine care of radiation-damaged skin.

  15. [Radiation protection in orthopedic surgery at the Charles Nicolle hospital of Tunis].

    Science.gov (United States)

    Hager, Kamoun; Anissa, Boussaadoun; Khaled, Anis Kamoun; Mondher, Kooli; Azza, Hammou

    2014-05-01

    Orthopaedic theatre personnel (OTP) are exposed to ionizing radiation by the use of Image intensification in the operating room. But :The aims of this study are to determine OTP knowledge about ionizing radiation risks and the availability of radiation protection clothes, to propose appropriate corrective measures. methods: This descriptive study was performed during an orthopaedic operating theatre equipped with a mobile Image intensifier unit in Charles Nicolle hospital, in March 2010. We have performed an orthopaedic theatre visit to identify the availability of radiation protection clothes. We used a questionnaire in order to identity OTP knowledge about ionizing radiation. We established a global score of knowledge to classify our population. results: We identified 65 professionals exposed to ionizing radiation. 54 of them (83%) responded to our questionnaire. 65% were men and sex ratio was 0,54. The median of the age was 32 years (23-51). Orthopaedic theatre personnel were 35% surgeons, 32% nurses, 20% superior technicians and 13% service workers. The mean of the Global score of knowledge was 8,4 /20 (3,6 -15,2). The Kruskal-Wallis test showed that this score increases significantly with grade. Because availability of lead aprons, they were worn by 67% of the staff. In the present study, the results indicate insufficiency in OTP knowledge and in radioprotection tools availability. In order to minimize all unnecessary radiation, attempts should be made to increase orthopaedic theatre personnel knowledge about radiation protection. Safety culture is a referral method to reduce radiation exposure as low as possible.

  16. Performance of a radiation protection cabin during extraction of cardiac devices.

    Science.gov (United States)

    Ploux, Sylvain; Jesel, Laurence; Eschalier, Romain; Amraoui, Sana; Ritter, Philippe; Haïssaguerre, Michel; Bordachar, Pierre

    2014-12-01

    Operators who extract cardiac devices are exposed to considerable irradiation and excess risk of radiation-induced disorders. A dedicated radioprotection cabin was developed to offer complete protection against radiation. This randomized study was designed to ascertain the protection against radiation conferred by a radioprotection cabin and the safety during extraction of cardiac devices. Thirty-seven consecutive patients who presented with an indication for extraction of a cardiac device were randomly assigned to a standard extraction technique (n = 19), vs extraction with the use of a radiation protection cabin (n = 18). Fluoroscopic exposure was compared using electronic dosimeters placed on the thorax, back, foot, and head of the operator. The procedural times and total fluoroscopic exposure times and the complication rates were not significantly different between the 2 groups. The mean dose of radiation delivered to the thorax and back was similar in both groups (P = 0.3 and P = 0.8, respectively). In contrast, the mean doses of radiation delivered to the head and to the feet were respectively 68 and 390 times less in the cabin group than in the control group (P lead apron, without increasing procedural time or complication rate during cardiac device extraction. Copyright © 2014 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  17. Protection of DNA strand breakage by radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Shim, Hae Won

    1997-12-01

    Human ceruloplasmin, the plasma copper containing protein, is thought to play an essential role in iron metabolism, but it also has antioxidant properties. Ceruloplasmin directly scavenged hydroxyl radicals (.OH) generated in dithiothreitol/FeCl{sub 3} system besides inhibitory function of hydroxyl radical formation and lipid peroxidation. Polyamines, spermidine and spermine, significantly protected the supercoiled DNA strand breakage by hydroxyl radicals and DNA strand breakage by UV was highly protected by all four polyamines used in this study. In polyamine deficient mutant KL527. It was shown that cell survivability following UV irradiation was slightly increased by exogenous polyamines putrescine and spermidine supplement. However the cell survivability of wild type (MG 1655) was not influenced by polyamine supplement. In {gamma}-irradiated cells, cell survivability of polyamine-deficient mutant strain KL527 was significantly increased by exogenous putrescine supplement and that of wild type strain MG1655 was similar irrespective of polyamine supplement. These results implicate the possibility that polyamines play a potent role in radioprotection of cell and DNA level. (author). 32 refs., 8 figs

  18. Commercial Nuclear Power Industry: Assessing and Meeting the Radiation Protection Workforce Needs.

    Science.gov (United States)

    Hiatt, Jerry W

    2017-02-01

    This paper will provide an overview of the process used by the commercial nuclear power industry in assessing the status of existing industry staffing and projecting future supply demand needs. The most recent Nuclear Energy Institute-developed "Pipeline Survey Results" will be reviewed with specific emphasis on the radiation protection specialty. Both radiation protection technician and health physicist specialties will be discussed. The industry-initiated Nuclear Uniform Curriculum Program will be reviewed as an example of how the industry has addressed the need for developing additional resources. Furthermore, the reality of challenges encountered in maintaining the needed number of health physicists will also be discussed.

  19. Protection, landscaping and regulation of agricultural land in Serbia

    Directory of Open Access Journals (Sweden)

    Popov Danica

    2014-01-01

    Full Text Available The subject of this article is protection, landscaping and regulation on agricultural land, based on The Agriculture Land Law in Serbia. Land is besides water and air the basic component of the environment. Bearing in mind the long-term processes of creation and development, land is the conditionally renewable resources. Land use, particularly in agricultural production, there is often a balance disorder of certain factors, which inevitably leads of damage. Land is in the nature of a slow learner, but in the process of degradation quickly destroyed. The main impact on land, recognized in the EU and candidate countries include erosion, reduction in organic matter, contamination (local and diffuse, occupation of land by building (buildings road, compaction floods and avalanches, reduction of soil biodiversity and salinization. Inventory of the state of pollution and damage to land, the establishment of permanent monitoring and reporting system requirement for developing strategies and selection of measures of quality care and prevention of negative processes. The measures of landscaping in The Agricultural land Law are: linking of land plots, voluntary grouping of lad plots and melioration of land. The owner of agricultural land has an obligation to cultivate the land in accordance with the code of good agricultural practice, prescribed by the Law.

  20. General report on legal problems in radiation protection. Working group 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The legal implications and especially how some of the less definite concepts of the ICRP recommendations in Publication 60, issued in 1991, are given regulatory form are analysed. The preparation of the new EC directive on radiation protection and the attempt by IAEA and NEA to integrate the ICRP radiological protection principles with the nuclear safety principles are also examined. A special paragraph deals with long-debated question of exemptions. The report then analyses the right to be informed and the obligation to inform, in the field of radiation protection of the public, highlighting the different approaches in the regulatory systems developed during the past years at Community level and in the US. The problems of coordination between the provisions of the EC and the EURATOM treaties on environmental protection and radiation protection respectively, are then considered, partly with a view to the possible merging of these provisions into a single Treaty. Lastly, some considerations are developed concerning the different possible approaches to compensation for potentially radiation-induced diseases. 27 refs., 1 tab.

  1. Occupational exposure to solar radiation in Australia: who is exposed and what protection do they use?

    Science.gov (United States)

    Carey, Renee N; Glass, Deborah C; Peters, Susan; Reid, Alison; Benke, Geza; Driscoll, Timothy R; Fritschi, Lin

    2014-02-01

    Solar ultraviolet radiation (UVR) exposure is widely recognised as a leading cause of skin cancer, with outdoor workers being particularly at risk. Little is known on a national level about how many workers are exposed to solar radiation, the circumstances in which they are exposed, or their use of protective measures. The Australian Work Exposures Study (AWES) was a cross-sectional telephone survey of 5,023 Australian workers aged 18 to 65. A subset of 1,113 respondents who indicated they worked outdoors was asked about their exposure to solar radiation in terms of the amount of time they spent working outdoors, their working location and their use of sun protective measures. A total of 1,100 respondents (22% overall) were assessed as being exposed to solar radiation at work. Exposure was more likely among males and those residing in lower socioeconomic and regional areas. Sun protection was used by 95% of the respondents, although the level of protection varied among workers, with only 8.7% classified as fully protected. This study provides valuable information regarding solar exposure that has not previously been available. The results of this study will inform strategies for risk reduction. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  2. Summary of Building Protection Factor Studies for External Exposure to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Michael B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, Jave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-17

    Radiation dose assessments are used to help inform decisions to minimize health risks in the event of an atmospheric release of radioactivity including, for example, from a Radiological Dispersal Device, an Improvised Nuclear Device detonation, or a Nuclear Power Plant accident. During these incidents, radiation dose assessments for both indoor and outdoor populations are needed to make informed decisions. These dose assessments inform emergency plans and decisions including, for example, identifying areas in which people should be sheltered and determining when controlled population evacuations should be made. US dose assessment methodologies allow consideration of the protection, and therefore dose reduction, that buildings provide their occupants. However, these methodologies require an understanding of the protection provided by various building types that is currently lacking. To help address this need, Lawrence Livermore National Laboratory, in cooperation with Sandia National Laboratories and the Nuclear Regulatory Commission, was tasked with (a) identifying prior building protection studies, (b) extracting results relevant to US building construction, and (c) summarizing building protection by building type. This report focuses primarily on the protection against radiation from outdoor fallout particles (external gamma radiation).

  3. Vitamin E protects salivary glands dysfunction induced by ionizing radiation in rats.

    Science.gov (United States)

    Abedi, Seyed Mohammad; Yarmand, Fateme; Motallebnejad, Mina; Seyedmajidi, Maryam; Moslemi, Dariush; Ashrafpour, Manouchehr; Bijani, Ali; Moghadamnia, Aliakbar; Mardanshahi, Alireza; Hosseinimehr, Seyed Jalal

    2015-09-01

    The purpose of this study is to investigate the radioprotective effect of vitamin E as a natural product. Vitamin E protects the salivary glands dysfunction that is induced by ionizing radiation. It was analysed with radioisotope scintigraphy and then salivary gland to background counts ratio was calculated. Histopathological evaluation was performed. The rats were treated with vitamin E at dose of 400IU/kg 48, 24, and 1h before 15Gy gamma rays irradiation. The rats were evaluated for the salivary gland function through nuclear medicine protocol. Radiation causes significant salivary glands dysfunction at the 3rd and the 70th days with a reduction in radioactivity uptake in the salivary glands. Ratios of salivary gland to background radioactivities were 1.99±0.11, 1.58±0.08 and 1.92±0.04 for control, radiation, and vitamin E plus radiation groups, respectively. Vitamin E significantly improved salivary gland dysfunction induced by ionizing radiation in the rats. In conclusion, our results indicate protective effects of vitamin E against salivary gland dysfunction induced by gamma radiation. Thus, vitamin E is a promising radioprotective agent for patients who receive radiation in head and neck cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Investigation of epigenetic gene regulation in Arabidopsis modulated by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hye Ryun; Kim, Jae Sung; Lee, Myung Jin; Lee, Dong Joon; Kim, Young Min; Jung, Joon Yong; Han, Wan Keun; Kang, Soo Jin [Chungnam National University, Daejeon (Korea, Republic of)

    2011-12-15

    To investigate epigenetic gene regulation in Arabidopsis modulated by gamma radiation, we examined the changes in DNA methylation and histone modification after gamma radiation and investigated the effects of gamma radiation on epigenetic information and gene expression. We have selected 14 genes with changes in DNA methylation by gamma radiation, analyzed the changes of histone modification in the selected genes to reveal the relationship between DNA methylation and histone modification by gamma radiation. We have also analyzed the effects of gamma radiation on gene expression to investigate the relationship between epigenetic information and gene expression by gamma radiation. The results will be useful to reveal the effects of gamma radiation on DNA methylation, histone modification and gene expression. We anticipate that the information generated in this proposal will help to find out the mechanism underlying the changes in epigenetic information by gamma radiation

  5. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  6. Current problems of radiographic testing and radiation protection. Contributions; Aktuelle Fragen der Durchstrahlungspruefung und des Strahlenschutzes. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-01

    These seminar proceedings contain eight contributions in the form of summaries, some with PowerPoint slides, on the following topics: 1. Selected applications of radiographic testing in lightweight construction (T. Wenzel et al.); 2. X-ray computer tomography in lightweight construction (H.-J. Ullrich); 3. Testing of castings at Volkswagen using atline computer tomography (F. Hansen et al.), 4: Use of X-ray computer tomography for inspection of fibre-reinforced structures in the aerospace sector (T. Ullmann et al.); 5. New standards in digital radiography and for the phaseout of film radiography - from welding techniques to fibre composites (U. Ewert); 6. The current model approvals for nondestructive testing - what do the regulations require of the radiation protection supervisor and the radiation protection officer? (A. Lange); 7. Pulsed x-ray radiation - what measurement devices come into consideration? - current status and developments (F. Busch); 8. The revised EURATOM basic radiation protection standards - What changes await industrial radiography? [German] Diese Seminar-CD enthaelt acht Beitraege in Form von Kurzfassungen, zum Teil auch mit PowerPoint-Folien, zu folgenden Themen: 1. Ausgewaehlte Anwendungen der Durchstrahlungspruefung im Leichtbau (T. Wenzel et al.); 2. Roentgen-Computer-Tomographie im Leichtbau (H.-J. Ullrich); 3. Pruefung der Gussproduktion bei Volkswagen mit Hilfe der atline Computertomographie (F. Hansen et al.), 4: Einsatz der Roentgen-Computertomographie zur Untersuchung von Faserverbundstrukturen in der Luft- und Raumfahrt (T. Ullmann et al.); 5. Neue Standards zur Digitalen Radiographie und zum Filmersatz - von der Schweisstechnik bis zu Faserkompositen (U. Ewert); 6. Die aktuellen Muster-Genehmigungen in der ZfP - Was verlangen die Auflagen vom SSV und SSB? (A. Lange); 7. Gepulste Roentgenstrahlung - Welche Messgeraete waeren einsetzbar?. - Stand und Entwicklung (F. Busch); 8. Die neue EURATOM-Strahlenschutzgrundnorm - Welche

  7. Application of some magnetic nanocompounds in the protection against sun radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sincai, Mariana [Department of Cell Biology-Histology, Faculty of Veterinary Medicine, Calea Aradului no.119, Timisoara 19000 (Romania)]. E-mail: msincai@yahoo.com; Argherie, Diana [Department of Cell Biology-Histology, Faculty of Veterinary Medicine, Calea Aradului no.119, Timisoara 19000 (Romania); Ganga, Diana [Department of Cell Biology-Histology, Faculty of Veterinary Medicine, Calea Aradului no.119, Timisoara 19000 (Romania); Bica, Doina [Laboratory of Magnetic Fluids, Center for Fundamental and Advanced technical researches, Romanian Academy-Timisoara Branch (Romania); Vekas, Ladislau [Laboratory of Magnetic Fluids, Center for Fundamental and Advanced technical researches, Romanian Academy-Timisoara Branch (Romania)

    2007-04-15

    The protective effect of some magnetic nanocompounds against prolonged exposure to UV radiation was investigated. Research was carried in white mice whose auricles (ears) were treated with magnetic nanocompounds in various concentrations. After 8 h of exposure, small auricular fragments from treated and control animals were prepared for cytohistological studies. In animals treated with magnetic nanocompounds, no erythema or other UV-induced changes were noticed. The magnetic nanoparticles thus were UV protective and might be useful as a sunscreen.

  8. Protective clothing: Fire and radiation environments. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The bibliography contains citations concerning clothing design, fabrication, and testing for personal protection from exposure to flames and radiation. Citations discuss the treatment of fibers and textiles, testing for physiological tolerances, and methods of decontamination after exposure. Discussed also are user acceptance and proper use of protective clothing by firefighters, nuclear energy personnel, and others. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Radiation protection in a neonatal intensive care unit: a practical approach

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, M.B.; Carr, R.S. (Liverpool Maternity Hospital (UK))

    Improvements in radiation protection for low birth-weight, pre-term babies requiring X-ray examinations at the Liverpool Maternity Hospital are described. The use of a lead rubber collimator placed on top of the incubator in conjunction with a light beam diaphragm is shown to eliminate beam inaccuracies and to give a precise collimation of the X-ray beam. Details of improved protection for the chest and abdomen are given including the use of thyroid gland and gonad protectors.

  10. Application of some magnetic nanocompounds in the protection against sun radiation

    Science.gov (United States)

    Sincai, Mariana; Argherie, Diana; Ganga, Diana; Bica, Doina; Vekas, Ladislau

    2007-04-01

    The protective effect of some magnetic nanocompounds against prolonged exposure to UV radiation was investigated. Research was carried in white mice whose auricles (ears) were treated with magnetic nanocompounds in various concentrations. After 8 h of exposure, small auricular fragments from treated and control animals were prepared for cytohistological studies. In animals treated with magnetic nanocompounds, no erythema or other UV-induced changes were noticed. The magnetic nanoparticles thus were UV protective and might be useful as a sunscreen.

  11. Ccdc94 protects cells from ionizing radiation by inhibiting the expression of p53.

    Science.gov (United States)

    Sorrells, Shelly; Carbonneau, Seth; Harrington, Erik; Chen, Aye T; Hast, Bridgid; Milash, Brett; Pyati, Ujwal; Major, Michael B; Zhou, Yi; Zon, Leonard I; Stewart, Rodney A; Look, A Thomas; Jette, Cicely

    2012-01-01

    DNA double-strand breaks (DSBs) represent one of the most deleterious forms of DNA damage to a cell. In cancer therapy, induction of cell death by DNA DSBs by ionizing radiation (IR) and certain chemotherapies is thought to mediate the successful elimination of cancer cells. However, cancer cells often evolve to evade the cytotoxicity induced by DNA DSBs, thereby forming the basis for treatment resistance. As such, a better understanding of the DSB DNA damage response (DSB-DDR) pathway will facilitate the design of more effective strategies to overcome chemo- and radioresistance. To identify novel mechanisms that protect cells from the cytotoxic effects of DNA DSBs, we performed a forward genetic screen in zebrafish for recessive mutations that enhance the IR-induced apoptotic response. Here, we describe radiosensitizing mutation 7 (rs7), which causes a severe sensitivity of zebrafish embryonic neurons to IR-induced apoptosis and is required for the proper development of the central nervous system. The rs7 mutation disrupts the coding sequence of ccdc94, a highly conserved gene that has no previous links to the DSB-DDR pathway. We demonstrate that Ccdc94 is a functional member of the Prp19 complex and that genetic knockdown of core members of this complex causes increased sensitivity to IR-induced apoptosis. We further show that Ccdc94 and the Prp19 complex protect cells from IR-induced apoptosis by repressing the expression of p53 mRNA. In summary, we have identified a new gene regulating a dosage-sensitive response to DNA DSBs during embryonic development. Future studies in human cancer cells will determine whether pharmacological inactivation of CCDC94 reduces the threshold of the cancer cell apoptotic response.

  12. Ccdc94 protects cells from ionizing radiation by inhibiting the expression of p53.

    Directory of Open Access Journals (Sweden)

    Shelly Sorrells

    Full Text Available DNA double-strand breaks (DSBs represent one of the most deleterious forms of DNA damage to a cell. In cancer therapy, induction of cell death by DNA DSBs by ionizing radiation (IR and certain chemotherapies is thought to mediate the successful elimination of cancer cells. However, cancer cells often evolve to evade the cytotoxicity induced by DNA DSBs, thereby forming the basis for treatment resistance. As such, a better understanding of the DSB DNA damage response (DSB-DDR pathway will facilitate the design of more effective strategies to overcome chemo- and radioresistance. To identify novel mechanisms that protect cells from the cytotoxic effects of DNA DSBs, we performed a forward genetic screen in zebrafish for recessive mutations that enhance the IR-induced apoptotic response. Here, we describe radiosensitizing mutation 7 (rs7, which causes a severe sensitivity of zebrafish embryonic neurons to IR-induced apoptosis and is required for the proper development of the central nervous system. The rs7 mutation disrupts the coding sequence of ccdc94, a highly conserved gene that has no previous links to the DSB-DDR pathway. We demonstrate that Ccdc94 is a functional member of the Prp19 complex and that genetic knockdown of core members of this complex causes increased sensitivity to IR-induced apoptosis. We further show that Ccdc94 and the Prp19 complex protect cells from IR-induced apoptosis by repressing the expression of p53 mRNA. In summary, we have identified a new gene regulating a dosage-sensitive response to DNA DSBs during embryonic development. Future studies in human cancer cells will determine whether pharmacological inactivation of CCDC94 reduces the threshold of the cancer cell apoptotic response.

  13. Machine and radiation protection challenges of high energy/intensity accelerators: the role of Monte Carlo calculations

    Science.gov (United States)

    Cerutti, F.

    2017-09-01

    The role of Monte Carlo calculations in addressing machine protection and radiation protection challenges regarding accelerator design and operation is discussed, through an overview of different applications and validation examples especially referring to recent LHC measurements.

  14. Will it be a better world? The proposed EU Data Protection Regulation

    DEFF Research Database (Denmark)

    Blume, Peter Erik

    2012-01-01

    •This article concerns the proposal by the European Commission to govern data protection on the basis of a regulation. It considers arguments in favour and against using a regulation with respect to general data protection law. •A regulation sustains harmonization primarily in respect...... to transational data processing but cannot achieve the goal of full harmonization within the EU. •A regulation has several negative conseqwuensces for datta protection at the national level. It is furthermore assumed that the proposed Regulation will improve the position of datat subjects but it is disappointing...

  15. Protective role of hesperidin against γ-radiation-induced oxidative stress and apoptosis in rat testis.

    Science.gov (United States)

    Shaban, Nadia Z; Ahmed Zahran, Ahmed M; El-Rashidy, Fatma H; Abdo Kodous, Ahmad S

    2017-12-01

    Gamma (γ) ray, an electromagnetic radiation, is occasionally accompanying the emission of an alpha or beta particle. Exposure to such radiation can cause cellular changes such as mutations, chromosome aberration and cellular damage which depend upon the total amount of energy, duration of exposure and the dose. Ionizing radiation can impair spermatogenesis and can cause mutations in germ cells. In general, type B spermatogonia are sensitive to this type of radiation. The current study was carried out to evaluate the protective role of hesperidin (H), as a polyphenolic compound, on rat testis injury induced by γ-radiation. Rats were divided into groups including C group (control rats), R (irradiated) group (rats irradiated with γ-radiation), Vehicle (V) group (rats administered with dimethylsulfoxide "DMSO"), H group (rats administered with H only), HR and RH groups (rats treated with H before and after exposure to γ-radiation, respectively). Malondialdehyde (MDA: the end product of lipid peroxidation "LPO") and xanthine oxidase (XO: it generates reactive oxygen species "ROS") in testes homogenate as well as nitric oxide (NO: as ROS) in mitochondrial matrix were determined. The apoptotic markers including DNA-fragmentation (DNAF) in testes homogenate and calcium ions (Ca(2+)) in mitochondrial matrix were determined. Superoxide dismutase (SOD) and catalase (CAT) activities in testes homogenate, while reduced glutathione "GSH" in nuclear matrix were determined. Also histopathological examination for testes tissues through electron microscope was studied. Exposure of rats to γ-radiation (R group) increased the levels of MDA, NO, DNAF, Ca(2+) and XO activity, while it decreased GSH level, SOD and CAT activities as compared to the C groups; γ-radiation increased oxidative stress (OS), LPO, apoptosis and induced testes injuries. These results are in agreement with the histopathological examination. In contrast, treatment with H before or after exposure to γ-radiation

  16. Seventh meeting of radiation protection skilled persons; Septiemes rencontres des personnes competentes en radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Juhel, Th.; Briandchamplong, J.; Gambini, D.J.; Ammerich, M.; Aubert, B.; Barbey, P.; Biau, A.; Bruchet, H.; Capelle, M.H.; Flon, E.; Gauron, Ch.; Gravelotte, D.; Guerin, Ch.; Le Denmat, D.; Lemoine, Th.; Lombard, J.; Lucas, St.; Menechal, Ph.; Mignien, S.; Million, M.; Mozziconacci, J.G.; Prevot, S.; Radecki, J.J.; Rigaud, S.; Taillandier, P.; Timbert, M.; Vidal, J.P.; Bardelay, Ch.; Lahaye, Th.; Balduyck, S.; Chasson, E.; Rehel, J.L.; Chatellier, Ch.; Barret, Ch.; Guersen, J.; Degrange, J.P.; Sevestre, B.; Lahaye, Th.; Rodde, S.; Marchal, C.; Lefaure, Ch.; Bouk' il, H.; Gneiting, M.; Auboiroux, B.; Riedel, A.; Feuardent, J.; Scanff, P.; Bof, M.; Lochard, J.; Godet, J.L.

    2011-07-01

    This document gathers the slides of the available presentations given during these conference days. Twenty-three presentations out of 25 are assembled in the document and deal with: 1 - the evolution of workers' international protection rules against ionizing radiation risks (C. Bardelay); 2 - presentation of the report of the working group on radiation protection (P. Barbey); 3 - position of the French nuclear safety authority and of the labor general direction about the position of permanent expert groups in radiation protection concerning the expected evolutions in the occupation and training of radioprotection skilled persons (RSP), (T. Lahaye); 4 - experience feedback: RSP in surgery operating theater - a sometimes delicate intervention (S. Balduyck); 5 - workplace analysis in dental surgery: constraints and specificities (D. Le Denmat); 6 - workplace analysis: tritium atmospheric contamination (S. Rigaud); 7 - revision of the NFC 15-160 standard relative to radiology facilities (J.L. Rehel); 8 - example of area tele-dosimetry usage - the Pitie Salpetriere hospital experiment (C. Chatellier and C. Barret); 9 - contribution of radio-attenuation lead gloves in interventional radiology (J. Guersen); 10 - zoning in the medical domain: encountered problems typology and evaluation of possible solutions (Degrange, J.P.); 11 - management of used sealed sources distributed by the CEA and CISBIO (B. Sevestre); 12 - how to perform a measurement in radiation protection - how about measurement uncertainty (M. Ammerich); 13 - national campaign of control about the application of workers radiation protection rules (T. Lahaye); 14 - transparency and inspection approach in local nuclear applications: gamma-graphy, research, nuclear medicine, interventional radiography and radiotherapy (S. Rodde and C. Marchal); 15 - local/regional networks of RSPs and radiation protection actors: 2008 audit results and recent evolutions (C. Lefaure); 16 - role and missions of the external

  17. Protection of people and environment from radiation risk through good regulatory practice

    Science.gov (United States)

    Jais, Azlina Mohammad; Hassan, Najwa

    2017-01-01

    The term "good regulatory practice" has seen growing frequency of usage worldwide, especially since the 2011 Fukushima nuclear incident. However, the term appears quite ambiguous as it may mean differently to different people. This leads us to the first important question: what does "good regulatory practice" actually mean? When used in conjunction with the Fukushima incident, do we imply that there is an absence of "good regulatory practice" in the Japanese' Nuclear and Industry Safety Agency (NISA)? This is quite troubling. It is clear that the term should be defined formally so that our understanding of "good regulatory practice" can be standardized. There is still another important question beyond agreeing on what "good regulatory practice" is: is "good regulatory practice" specific to a region, or is it global? And is it applicable only to nuclear regulators, or to all types of regulators per se? This paper aims to deliberate on the above mentioned questions. Specifically, we hope to discuss the "good regulatory practice" for atomic energy activities in order to protect the people and the environment from radiation risk of such activities. By understanding what "good regulatory practice" truly means, a newcomer country such as Malaysia can quickly learn and adopt these practices so as to assure a competent national nuclear regulatory authority who will be responsible in ensuring the safety, security and safeguards of peaceful atomic energy activities in the country including nuclear liability. In understanding this concept, a holistic approach will be taken by looking into example of advanced and newcomer countries of various nuclear regulatory authorities all around the world. Then the paper will focus on the challenges that the current nuclear regulatory authority in Malaysia which is Atomic Energy Licensing Board has, its challenges to follow the concept of "good regulatory practice" and its ways to overcome it. This study explore the initiatives could be

  18. Some recent data on chemical protection against ionizing radiation

    Science.gov (United States)

    Fatome, M.; Laval, J. D.; Roman, V.

    Once introduced in the organism, the radioprotectors are fastly degraded and that increases their toxicity, shortens their duration of action and renders them inactive after oral delivery. So, it was tried to protect them by their incorporation in vectors. When a cysteamine-liposomal suspension was orally delivered, it showed a radioprotective activity for about 4 hours. By using 35 S cysteamine, it was noted that its plasmatic concentration was increased. Freeze-drying of these preparations was a good mean of conservation if the samples were stored at 4°C. A good and sustained activity was also obtained after oral delivery of WR-2721 entrapped in microspheres. Otherwise, it was shown that after interacting with the polar heads of phospholipids, under determined conditions of pH and in fluid phase, aminothiols can penetrate inside the membrane and be entrapped in the internal medium of liposomes and as they penetrate, they can lessen the diffusion of oxygen in the lipidic bilayers.

  19. Radiation protection education and training in Germany in the frame of the draft of the EU BSS (basic safety standards): how to deal with the RPE (radiation protection expert) and the RPO (radiation protection officer); Strahlenschutzaus- und -weiterbildung in Deutschland im Kontext des Entwurfs der EU-BSS. Wie gehen wir mit dem RPE und dem RPO um?

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Ulla [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Holl, Matthias [Strahlenschutzschulung, Andernach (Germany)

    2013-09-01

    The amendment of the EU-BSS (basic safety standards) is of great importance for the practical radiation protection concept. In the BSS the main functions in radiation protection and the respective requirements are defined for the radiation protection education and training system. This is supposed to allow the harmonization and comparability of the different systems established in the different European member states in order to perform mutual approvals of the education and training. The authors describe the German radiation protection organizations and the mandatory qualifications and responsibilities and compared these with the EU BSS requirements.

  20. Dying cells protect survivors from radiation-induced cell death in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amber Bilak

    2014-03-01

    Full Text Available We report a phenomenon wherein induction of cell death by a variety of means in wing imaginal discs of Drosophila larvae resulted in the activation of an anti-apoptotic microRNA, bantam. Cells in the vicinity of dying cells also become harder to kill by ionizing radiation (IR-induced apoptosis. Both ban activation and increased protection from IR required receptor tyrosine kinase Tie, which we identified in a genetic screen for modifiers of ban. tie mutants were hypersensitive to radiation, and radiation sensitivity of tie mutants was rescued by increased ban gene dosage. We propose that dying cells activate ban in surviving cells through Tie to make the latter cells harder to kill, thereby preserving tissues and ensuring organism survival. The protective effect we report differs from classical radiation bystander effect in which neighbors of irradiated cells become more prone to death. The protective effect also differs from the previously described effect of dying cells that results in proliferation of nearby cells in Drosophila larval discs. If conserved in mammals, a phenomenon in which dying cells make the rest harder to kill by IR could have implications for treatments that involve the sequential use of cytotoxic agents and radiation therapy.

  1. Radiation protection in nuclear facilities; Dossier: Radioprotection et installations nucleaires de base

    Energy Technology Data Exchange (ETDEWEB)

    Piechowski, J. [Direction Generale de la Sante, 75 - Paris (France); Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th [Centre d`Etude sur l`evaluation de la protection dans le domaine nucleaire (CEPN), 75 - Paris (France); Lecomte, J.F. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Massuelle, M.H.; Hubert, Ph. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire, Dept. de Protection de la Sante de l`Homme et de la Dosimetrie (DPHD); Delmont, D. [CEA Grenoble, 38 (France). Service de Protection contre les Rayonnements et de Surveillance de l`Environnement (SPRSE); Boitel, S.; Le Fauconnier, J.P. [CEA Centre d`Etudes de Valduc, 21 - Is-sur-Tille (France). Dept. de Support Technique et Administratif; Kalimbadjian, J. [Cogema la Hague, 50 (France). Service de Prevention et de Radioprotection; Laize, J. [Cogema la Hague, 50 (France). Groupe Radioprotection atelier T7; Blain, A. [Framatome, 69 - Lyon (France). Dept. Radioprotection Securite des Services Nucleaires; Cassou, M. [Electricite de France (EDF), 13 - Marseille (France). Projet RGV; Jacq, V.; Champion, D. [Ministere de l`Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75-Paris (France). Direction de la Surete des Installations Nucleaires; Spira, A.; Bouton, O. [Institut National de la Sante et de la Recherche Medicale (INSERM), Paris-11 Univ. (France); Sugier, A [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Bishop, A.J. [Commission de Controle de l`Energie Atomique, 75 - Paris (France); Zerbib, J.C. [Conseil superieur de la Surete et de l`information Nucleaires, 75 - Paris (France); Barbey, P. [Association pour le Controle de la Radioactivite dans l`Ouest, ACRO (France)

    1998-06-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.) 20 refs.

  2. The responsibility of the radiation protection expert; La responsabilite de la personne competente en radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Varescon, M. [AREVA NC, Direction Juridique, Departement Droit Nucleaire et de l' Environnement, 75 - Paris (France)

    2008-07-01

    After having recalled the two main different types of responsibility in the French law system (civil liability and criminal responsibility), and how criminal law has been gradually introduced in companies, the author analyzes and describes how the radiation protection expert's responsibility is tightly related to that of his employer, and how both can be committed on a disciplinary and criminal level

  3. Nuclear Technology Series. Radiation Protection Technician. A Suggested Program Planning Guide. Revised June 80.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary radiation protection technician program is designed for use with courses 17-22 of thirty-five included in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians, and operators; and to assist planners,…

  4. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    Science.gov (United States)

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  5. Radiation Protection Enrollments and Degrees. Enrollments--Fall 1973. Degrees Granted July 1965-June 1973.

    Science.gov (United States)

    Atomic Energy Commission, Washington, DC. Div. of Labor Relations.

    The demand for radiation protection personnel has increased during the past several years and can be expected to continue to increase for several years to come. This document gives the results of the latest survey of institutions offering degree programs in this field. Such a small segment of the total college enrollment is represented in health…

  6. 78 FR 19148 - Shielding and Radiation Protection Review Effort and Licensing Conditions for Dry Storage...

    Science.gov (United States)

    2013-03-29

    ...The U.S. Nuclear Regulatory Commission (NRC) requests public comment on Draft Spent Fuel Storage and Transportation Interim Staff Guidance No. 26A (SFST-ISG-26A), Revision 0, ``Shielding and Radiation Protection Review Effort and Licensing Conditions for 10 CFR Part 72 Applications.''

  7. A management system integrating radiation protection and safety supporting safety culture in the hospital.

    Science.gov (United States)

    Almén, A; Lundh, C

    2015-04-01

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Decreased risk of prostate cancer after skin cancer diagnosis: A protective role of ultraviolet radiation?

    NARCIS (Netherlands)

    E. de Vries (Esther); I. Soerjomataram (Isabelle); S. Houterman (Saskia); M.W.J. Louwman (Marieke); J.W.W. Coebergh (Jan Willem)

    2007-01-01

    textabstractUltraviolet radiation causes skin cancer but may protect against prostate cancer. The authors hypothesized that skin cancer patients had a lower prostate cancer incidence than the general population. In the southeastern part of the Netherlands, a population-based cohort of male skin

  9. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress

    NARCIS (Netherlands)

    Jansen, M.A.K.; Noort, van den R.E.; Tan, M.Y.A.; Prinsen, E.; Lagrimini, L.M.; Thorneley, R.N.F.

    2001-01-01

    We have studied the mechanism of UV protection in two duckweed species (Lemnaceae) by exploiting the UV sensitivity of photosystem II as an in situ sensor for radiation stress. A UV-tolerant Spirodela punctata G.F.W. Meyer ecotype had significantly higher indole-3-acetic acid (IAA) levels than a

  10. How protective are the lead aprons we use against ionizing radiation?

    Science.gov (United States)

    Oyar, Orhan; Kışlalıoğlu, Arzu

    2012-01-01

    To evaluate, in terms of their protective features, the lead aprons used in areas working with ionizing radiation at a hospital by analyzing qualitative and quantitative aspects using a variety of methods. Eighty-five protective lead aprons used in our hospital's clinics to work with ionizing radiation were analyzed in the radiology unit. Each apron was identified by registering the unit from which it had been obtained and by how long it had been used, its storage condition, and its lead thickness. X-ray films of the aprons, controlled according to their appearances, durability and cleanliness, were taken to evaluate their internal structure; their permeability was measured with electronic dosimeters in terms of their absorbent features. All of these data were compared with the results acquired from brand-new, Turkish Standards Institution approved aprons having different lead thicknesses. Regarding internal structure homogeneity, only 13 (15.3%) of 85 aprons were found to be at normal levels and usable. A total of 14 (16.5%) of the remaining 72 aprons' radiation absorptions were at normal levels, but folds were observed in their protective lead layers. The remaining 58 aprons (68.2%) were found to be defective. All of the aprons were considered to be defective in terms of their radiation permeability. All of the aprons were found insufficient for protection and were more radioparent than the defined limits; it was concluded that they must be replaced by new ones.

  11. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Flor, Rita de Cassia [Instituto Federal de Santa Catarina (IFSC), Florianopolis, SC (Brazil); Pereira, Aline Garcia, E-mail: aalinegp@gmail.co [Sinan Project - Sistema de Informacao de Agravos de Notificacao, Florianopolis, SC (Brazil)

    2011-03-15

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  12. Tea, coffee, and cocoa as ultraviolet radiation protectants for beet armyworm nucleopolyhedrovirus

    Science.gov (United States)

    The addition of 1% (wt/v) aqueous extracts of cocoa (Theobroma cacao L.) (Malvales: Malvaceae), coffee (Coffea arabica L.) (Gentianales: Rubiaceae), green, and black tea (Camellia sinensis L.) (Ericales: Theaceae) provided excellent ultraviolet (UV) radiation protection for the beet armyworm, Spodo...

  13. Guidance notes for the protection of persons against ionising radiations arising from veterinary use

    Energy Technology Data Exchange (ETDEWEB)

    Bland, W.F.

    1988-05-01

    New Guidance Notes for the protection of persons against ionizing radiations arising from veterinary use have been prepared by the NRPB and the Health and Safety Executive. A brief article outlines the main changes made to the 1983 Guidance Notes in updating to the New Guidance Notes. (U.K.).

  14. [Standards and guidelines of radiation protection and safety in dental X-ray examinations].

    Science.gov (United States)

    Guo, X L; Li, G; Cheng, Y; Yu, Q; Wang, H; Zhang, Z Y

    2017-12-09

    With the rapid development of imaging technology, the application of dental imaging in diagnosis, treatment planning, intraoperative surgical navigation, monitoring of treatment or lesion development and assessment of treatment outcomes is playing an essential role in oral healthcare. The increased total number of dental X-ray examinations is accompanied by a relatively significant increase in collective dose to patients as well as to dental healthcare workers, which is harmful to human bodies to a certain degree. Some radiation protection standards and guidelines in dental radiology have been published in European countries, US, Canada and Australia, etc. Adherence to these standards and guidelines helps to achieve images with diagnostic quality and avoid unnecessary and repeated exposures. However, no radiation protection standard or guideline with regard to dental X-ray examinations has been put in force so far in mainland China. Therefore, a literature review on available radiation protection standards and guidelines was conducted to provide reference to the development of radiation protection standards or guidelines in mainland China.

  15. Radiation Protection in Pediatric Radiology: Results of a Survey Among Dutch Hospitals.

    Science.gov (United States)

    Bijwaard, Harmen; Valk, Doreth; de Waard-Schalkx, Ischa

    2016-10-01

    A survey about radiation protection in pediatric radiology was conducted among 22 general and seven children's hospitals in the Netherlands. Questions concerned, for example, child protocols used for CT, fluoroscopy and x-ray imaging, number of images and scans made, radiation doses and measures taken to reduce these, special tools used for children, and quality assurance issues. The answers received from 27 hospitals indicate that radiation protection practices differ considerably between general and children's hospitals but also between the respective general and children's hospitals. It is recommended that hospitals consult each other to come up with more uniform best practices. Few hospitals were able to supply doses that can be compared to the national Diagnostic Reference Levels (DRLs). The ones that could be compared exceeded the DRLs in one in five cases, which is more than was expected beforehand.

  16. Building 772 - CERN’s new calibration facility for radiation protection instruments is ready to go

    CERN Multimedia

    2014-01-01

    Building 772 is becoming the new home of CERN’s calibration facility for radiation protection instrumentation. The new laboratory in Prévessin will be a state-of-the-art calibration facility and the first of its kind in both France and Switzerland, offering a wide range of possibilities with respect to radiation fields and instrumentation.   New four-axis calibration bench for radiation protection instruments.   Civil engineering work started in November 2013 in Prévessin and Building 772 is now finished and ready for inauguration. CERN’s calibration facility was previously located in Building 172 in Meyrin. Although still very accurate, the technology used was becoming obsolete and needed replacement. “Having considered different options, the decision was taken to build a new facility fully designed and conceived to meet all international safety and technical requirements of such a laboratory,” says Pie...

  17. Mitotic regulator Nlp interacts with XPA/ERCC1 complexes and regulates nucleotide excision repair (NER) in response to UV radiation.

    Science.gov (United States)

    Ma, Xiao-Juan; Shang, Li; Zhang, Wei-Min; Wang, Ming-Rong; Zhan, Qi-Min

    2016-04-10

    Cellular response to DNA damage, including ionizing radiation (IR) and UV radiation, is critical for the maintenance of genomic fidelity. Defects of DNA repair often result in genomic instability and malignant cell transformation. Centrosomal protein Nlp (ninein-like protein) has been characterized as an important cell cycle regulator that is required for proper mitotic progression. In this study, we demonstrate that Nlp is able to improve nucleotide excision repair (NER) activity and protects cells against UV radiation. Upon exposure of cells to UVC, Nlp is translocated into the nucleus. The C-terminus (1030-1382) of Nlp is necessary and sufficient for its nuclear import. Upon UVC radiation, Nlp interacts with XPA and ERCC1, and enhances their association. Interestingly, down-regulated expression of Nlp is found to be associated with human skin cancers, indicating that dysregulated Nlp might be related to the development of human skin cancers. Taken together, this study identifies mitotic protein Nlp as a new and important member of NER pathway and thus provides novel insights into understanding of regulatory machinery involved in NER. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Novel Indications for Commonly Used Medications as Radiation Protectants in Spaceflight.

    Science.gov (United States)

    McLaughlin, Mark F; Donoviel, Dorit B; Jones, Jeffrey A

    2017-07-01

    In the space environment, the traditional radioprotective principles of time, distance, and shielding become difficult to implement. Additionally, the complex radiation environment inherent in space, the chronic exposure timeframe, and the presence of numerous confounding variables complicate the process of creating appropriate risk models for astronaut exposure. Pharmaceutical options hold tremendous promise to attenuate acute and late effects of radiation exposure in the astronaut population. Pharmaceuticals currently approved for other indications may also offer radiation protection, modulation, or mitigation properties along with a well-established safety profile. Currently there are only three agents which have been clinically approved to be employed for radiation exposure, and these only for very narrow indications. This review identifies a number of agents currently approved by the U.S. Food and Drug Administration (FDA) which could warrant further investigation for use in astronauts. Specifically, we examine preclinical and clinical evidence for statins, nonsteroidal anti-inflammatory drugs (NSAIDs), angiotensin converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs), metformin, calcium channel blockers, β adrenergic receptor blockers, fingolimod, N-acetylcysteine, and pentoxifylline as potential radiation countermeasures.McLaughlin MF, Donoviel DB, Jones JA. Novel indications for commonly used medications as radiation protectants in spaceflight. Aerosp Med Hum Perform. 2017; 88(7):665-676.

  19. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    Science.gov (United States)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  20. [The protective effects of sodium selenite and aloin against ultraviolet A radiation].

    Science.gov (United States)

    Guo, Yu; Ji, Ran; Lü, Xi; Wan, Yi-feng; Jiang, Xian

    2011-01-01

    To investigate the protective effects of sodium selenite and aloin against ultraviolet A (UVA) radiation on the dermal fibroblasts including the suppression of proliferation, oxidative damage and collagen synthesis. Human dermal fibroblasts were divided into the negative control group, the positive control UVA radiation group, the sodium selenite treatment plus UVA radiation group and the aloin treatment plus UVA radiation group, which were incubated with sodium selenite or aloin and irradiated with 5 J/cm2 UVA respectively. The MTT spectrophotometry and biochemical assay were used to determine the proliferation, collagen level and the SOD and GSH-Px activity of the fibroblast cells after radiation. 5 J/cm2 UVA affect the proliferation, collage protein, SOD and GSH-Px activity in the fibroblast cells (P aloin (1-100 mg/L) could enhance the proliferation and the SOD and GSH-Px activity. A increased collagen synthesis in dose dependant manner was also observed (P aloin in a certain range of concentration have protective effects on ultraviolet radiation induced fibroblast proliferation inhibition, oxidative injury, and decreased collagen synthesis.