WorldWideScience

Sample records for radiation protection radio

  1. Induction of radiation resistance and radio-protective mechanism. On the reactive oxygen and free radical

    International Nuclear Information System (INIS)

    Yukawa, Osami

    2003-01-01

    Radical scavenging system for reactive oxygen species (ROS) leading to radio-protection is reviewed on findings in animals, tissues and cells. Protection against oxygen toxicity in evolution can be seen in anaerobes' superoxide dismutase (SOD) over 3500 million years ago. ROS is generated endogenously and also by radiation. However, the intracellular sites of the generated ROS are different depending on its cause. The protection is done through enzymes like SOD, peroxidase, catalase, glutathione-related enzymes and through substances like GSH, α-tocopherol, ascorbic acid etc. Induction of ROS scavenging substances related with radio-resistance includes the responses to the low dose radiation (5-50 cGy) in those enzymes described above; to middle to high dose radiation (1-30 Gy) in a similar and in other unknown mechanisms; to exposure of ROS like H 2 O 2 at low concentration; and to antioxidant treatment. The cross-resistance between radiation and drugs suggests necessity of this induction. (N.I.)

  2. The Knowledge of Radiation and the Attitude Towards Radio-Protection among Urology Residents in India.

    Science.gov (United States)

    Jindal, Tarun

    2015-12-01

    Exposure to radiation is a hazard and precautions are necessary to limit it. This study was done to assess the knowledge of radiation and the attitude towards radio-protection among urology residents in India. A questionnaire was administered to assess the knowledge and attitude of urology residents who came from all over the country to attend a clinical meeting at Apollo Gleneagles Hospital, Kolkata, India. All the respondents agreed to being exposed to radiation, with 78.2% using radiation in more than five cases a week. Only 65.2% always took some steps for radio-protection. Lead aprons and thyroid shields were the most common radiation protection devices used. None of the residents ever used lead gloves or protective eye glasses or dosimeters. An 82.6% felt that they did not have adequate knowledge, 85.4% of residents did not receive any formal classes regarding the risk of radiation, 21.7% either rarely or never moved out of the operating room when the radiation was being used, 42.4% did not know that the SI unit of the equivalent absorbed dose of radiation & 52.1% did not know about the amount of radiation delivered to an adult during a contrast enhanced CT scan of the abdomen. Results of the present study reveal that the urology residents of India lack knowledge about the risks of radiation exposure. Majority of them did not take necessary precautions to limit their exposure to radiation.

  3. Radiation protection in radio-oncology

    International Nuclear Information System (INIS)

    Hartz, Juliane Marie; Joost, Sophie; Hildebrandt, Guido

    2017-01-01

    Based on the high technical status of radiation protection the occupational exposure of radiological personnel is no more of predominant importance. No defined dose limits exist for patients in the frame of therapeutic applications in contrary to the radiological personnel. As a consequence walk-downs radiotherapeutic institutions twice the year have been initiated in order to guarantee a maximum of radiation protection for patient's treatment. An actualization of radiation protection knowledge of the radiological personnel is required.

  4. Primordial aspects of Radio Protection and Radiation Hygiene Centre's activity during the period of 1995-2009

    International Nuclear Information System (INIS)

    Ursulean, I.; Coban, E.

    2009-01-01

    The article analyzes main directions of activity of the Radio Protection and Radiation Hygiene Centre of the National Scientific-Practical Centre of Preventive Medicine during the period 1995-2009. The general tendencies are scientific research of the effect of ionizing radiation on human organism, ensuring of radiation protection of the population, cooperation with IAEA, training of specialists, participation in regional projects, elaboration of legislative base in the area of radioprotection, radiation monitoring, etc.

  5. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Granier, R.; Gambini, D.-J.

    1990-01-01

    This book grew out of a series of courses in radiobiology and radiation protection which were given to students in schools for radiology technicians, radiation safety officers and to medical students. Topics covered include the sources of ionizing radiation and their interactions with matter; the detection and measurement of ionizing radiation; dosimetry; the biological effects of ionizing radiation; the effects of ionizing radiation on the human body; natural radioexposure; medical radio-exposure; industrial radioexposure of electronuclear origin; radioexposure due to experimental nuclear explosions; radiation protection; and accidents with external and/or internal radio-exposure. (UK)

  6. Synthesis of the scientific French speaking days on numerical codes in radiation protection, in radio physics and in dosimetry

    International Nuclear Information System (INIS)

    Paul, D.; Makovicka, L.; Ricard, M.

    2005-01-01

    Synthesis of the scientific French speaking days on numerical codes in radiation protection, in radio-physics and in dosimetry. The paper carries the title of 'French speaking' scientific days co-organized on October 2-3, 2003 in Sochaux by the SFRP, SFPM and FIRAM societies. It has for objective to establish the scientific balance sheet of this international event, to give the synthesis of current tendencies in the field of the development and of the use of the numerical codes in radiation protection, in radio-physics and in dosimetry. (author)

  7. Epidemiological and radio-biological studies in high background radiation areas of Kerala coast: implications in radiation protection science and human health

    International Nuclear Information System (INIS)

    Das, Birajalaxmi

    2018-01-01

    Till date, Linear No Threshold hypothesis (LNT) is well accepted in radiation protection science in spite of its limitations. However, dose response studies using multiple biological end points from high-background radiation areas have challenged the linearity. Radio-biological and epidemiological studies from high level natural radiation areas of Kerala coast showed non-linearity as well as efficient repair of DNA damage in HLNRA indicating that dose limits for public exposure needs to be revisited which may have implications in radiation protection science, human health and low dose radiation biology. However, further studies using high throughput approach is required to identify chronic radiation signatures in human population exposed to elevated level of natural background radiation

  8. Course of radiation protection: technical level

    International Nuclear Information System (INIS)

    2002-01-01

    The course handbook on radiation protection and nuclear safety, technical level prepared by scientists of the Nuclear Regulatory Authority (ARN) of the Argentina Republic, describes the subjects in 19 chapters and 2 annexes. These topics detailed in the text have the following aspects: radioactivity elements, interaction of the radiation and the matter, radio dosimetry, internal contamination dosimetry, principles of radiation detection, biological radiation effects, fundamentals of radiation protection, dose limits, optimization, occupational exposure, radiation shielding, radioactive waste management, criticality accidents, safe transport of radioactive materials, regulatory aspects

  9. Meta-analysis of dragon’s blood resin extract as radio-protective agent

    Directory of Open Access Journals (Sweden)

    Subaika Mahmood

    2017-09-01

    Full Text Available In health sciences, much efforts had been made in past years to explore the radio-protective agents from natural resources due to rapid exposure of radiations to environment such as space traveling, radiotherapy and largely growing telecommunication industry. It becomes crucial to find natural sources for radio-protection. In correspondence, dragon’s blood (DB is a traditional Chinese medicinal plant that possesses great medicinal values due to the presence of several phenolic compounds. For a long time, DB has been used in treatment of blood stasis, inflammation, oxidative stress, immune suppression and tumors, but recently it has been extensively used as radio-protective agent. There is no comprehensive review on radio- protective characterization of DB resin extract in literature. In our review, an attempt has been made to highlight unique and inherent radio-protection in liver, brain, kidney, lung, spleen and cerebrum. This review will help people in exploring the radioactive protectants from natural resources.

  10. Radiation protection in radio-oncology; Strahlenschutz in der Radioonkologie

    Energy Technology Data Exchange (ETDEWEB)

    Hartz, Juliane Marie; Joost, Sophie; Hildebrandt, Guido [Universitaetsmedizin Rostock (Germany). Klinik und Poliklinik fuer Strahlentherapie

    2017-07-01

    Based on the high technical status of radiation protection the occupational exposure of radiological personnel is no more of predominant importance. No defined dose limits exist for patients in the frame of therapeutic applications in contrary to the radiological personnel. As a consequence walk-downs radiotherapeutic institutions twice the year have been initiated in order to guarantee a maximum of radiation protection for patient's treatment. An actualization of radiation protection knowledge of the radiological personnel is required.

  11. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  12. Radio protective effects of some medicinal plants

    International Nuclear Information System (INIS)

    Barupal, G.K.

    2012-01-01

    Many plants are known to have beneficial therapeutic effects as noted in the traditional Indian system of medicine, Ayurveda and used since time immemorial for curing diseases. Even today, nearly 70% of the world's population is dependent on plants for handling their health related problems and plants have been utilized successfully for the treatment of free radical-mediated diseases in human such as Rheumatoid arthritis, Atherosclerosis, Cancer, Alzheimer's disease, Parkinson's disease, aging and several other conditions including inflammatory diseases. Plant extracts eliciting radio protective efficacy contain a plethora of compounds including antioxidants, immunostimulants, cell proliferation stimulators, anti-inflammatory and antimicrobial agent, some of which may act in isolation as well as in combination with other constituents from the same plants. Glycyrrhiza glabra, Allium sepa, Allium sativum, Aloe arborescens, Amaranthus paniculatus, Curcuma longa, Moringa olefera and Syzygium cumini are some important radio protective plants. Alium sativum has been reported to possess antioxidant antimicrobial, antitumor, antimutagenic and anti-inflammatory properties. Aloe arborescens acts as a cell proliferate, healer and allergy reducer. Amaranthus paniculatus is used for purifying blood and treating scrofulous sores. Curcuma longa is widely used in antitumor and antibacterial activities. Leaf extract of Moringa oleifera is significantly used in nervous debility and healing of wound. Chlorella is well known nutrient dense superfood that contains 60% protein, 18 amino acids (including all the essential amino acids), more than 20 vitamins and minerals. Chlorell has been used to treat cancer and also protect the body from the effects of cancer radiation treatment due to its chlorophyll in abundance level. However they have little attention for their radio protective as well as antioxidant. There is an urgent need to develop newer, more efficient and reliable bioassays

  13. External dosimetry - Applications to radiation protection

    International Nuclear Information System (INIS)

    Faussot, Alain

    2011-01-01

    Dosimetry is the essential component of radiation protection. It allows to determine by calculation and measurement the absorbed dose value, i.e. the energy amounts deposited in matter by ionizing radiations. It deals also with the irradiation effects on living organisms and with their biological consequences. This reference book gathers all the necessary information to understand and master the external dosimetry and the metrology of ionizing radiations, from the effects of radiations to the calibration of radiation protection devices. The first part is devoted to physical dosimetry and allows to obtain in a rigorous manner the mathematical formalisms leading to the absorbed dose for different ionizing radiation fields. The second part presents the biological effects of ionizing radiations on living matter and the determination of a set of specific radiation protection concepts and data to express the 'risk' to develop a radio-induced cancer. The third part deals with the metrology of ionizing radiations through the standardized study of the methods used for the calibration of radiation protection equipments. Some practical exercises with their corrections are proposed at the end of each chapter

  14. Obligations and responsibilities in radiation protection in the medical field

    International Nuclear Information System (INIS)

    2011-01-01

    This document briefly presents the various obligations and responsibilities of the various actors involved in or concerned by radiation protection in the medical field: the hospital administration (with respect to workers and patients), the physician (authorization and declaration, justification, optimization), the medical electro-radiology operator, the person with expertise in medical radio-physics (PSRPM), the radio-pharmacist (he is required in nuclear medicine with internal use of pharmaceutical product), the personnel with expertise in radiation protection (PCR), and other health professionals

  15. The South African Forum for Radiation Protection

    International Nuclear Information System (INIS)

    Basson, J.K.; Le Roux, P.R.

    1993-01-01

    The use of ionising radiation in South Africa since the turn of the century was initially limited to x-rays and radium, with predominant applications in medicine for diagnosis and therapy. Since 1948 artificial radio-isotopes have been increasingly available and such applications have been widely extended to industry, agriculture and science. Initially, the Council for Scientific and Industrial Research developed radiation protection in South Africa. It was later recommended that an independent forum, the South African Forum for Radiation Protection, be established. The activities of the Forum are described

  16. Evaluation of radio protective activity of Averrhoa carambola leaves extract in Wistar rats

    International Nuclear Information System (INIS)

    Kavitha, K.R.

    2012-01-01

    Averrhoa carambola (oxalidaceae) also known as a star fruit, is cultivated extensively in India for its edible fruits. In India the ripe fruit or the juice may be taken to counteract fever. The crushed leaves or shoots are applied externally in the treatment of chickenpox, ringworm, tinia, cold and head ache. A mixture of leaves and fruits can be used to arrest vomiting and to treat fever. The present study was designed to investigate the A.carambola leaves ethanolic extract for radio protective activity. Male wistar rats were divided into 3 groups; Control, post-radiation group and preradiation group. Ethanolic extract 500 mg/kg for 15 days. Each group contained six rats. The parameters studied are haematological studies, to study the radio protective effect before and after radiation, analysis of DNA damage in control and experimental groups, assessment of nephritic damage by histopathology. All the animals were observed for 15 days for any sign of radiation sickness, morbidity, behavioural toxicity, urination and defection pattern or mortality, which showed no changes. Observation revealed that all the above conditions were normal. This study has not shown any hazardous effects on the animals and hence might be said to have radio protective effect, which will be discussed during the presentation. (author)

  17. Radio protective effects of selenium on rats

    International Nuclear Information System (INIS)

    Bakir, A.; Alya, G

    2005-11-01

    Potential radio-protective effects of different selenium supplement concentrations of 4, 8, 15 and 30 ppm were evaluated in rats. Four groups of rats were administered different concentrations of selenium in drinking water for 30 days before irradiation starting from the ablactation which considered as day 0. The results showed that the sodium selenite of 4 ppm and 8 ppm enhance the 30-day survival of irradiated rats at 7 Gy ( sup 6 sup 0 Co source, whole body irradiation dose rate of 1 Gy x min sup - sup 1) compared to the control group. The mean cumulated probability of survival of rats was 69%+-6 (mean+-S.E.) and 77%+-6 in 4 and 8 ppm groups, respectively, versus 42%+-9 for control group (P<0.001). It was also indicated that sodium selenite with concentrations of 15 and 30 ppm had no significant reduction in mortality. The mean cumulated probability of survival of rats was 50%+-12 (P=0.39) and 49%+-14 (P=0.04), respectively. The toxic effects of selenium were observed at 15 ppm and 30 ppm, survivals after 30 days of selenium intake were 76% and 46%, respectively. It was concluded that 4 and 8 ppm sodium selenite have a radio-protective effect. 15 and 30 ppm sodium selenite had no radio-protective effects in rats, this may be due to a synergism of toxicity and radiation effects. (author)

  18. Report by the work-group on radiation protection in interventional radiology. Recommendations related to the improvement of radiation protection in interventional radiology

    International Nuclear Information System (INIS)

    2010-01-01

    This report aims at proposing recommendations for the improvement of the quality of radiation protection of workers and patients in the field of interventional radiology. These recommendations concern the training of health personnel, the application of the optimization principle to health professionals and patients, dosimetry and the definition of diagnosis reference levels. More particularly, these recommendations concern professions involved in interventional radiology, and take into account the experience of other European Union State members and recommendations made by the IAEA. The authors analyze the equipment, radiological actions, procedures and doses, practitioners, equipment used for radio-guided interventions. They discuss doses received by patients, patient monitoring and radio-induced lesions. Then, they address the role and training of the different interveners in radiation protection, the equipment maintenance issue, and personnel dosimetry and protection

  19. Patients radiation protection in medical imaging. Conference proceedings

    International Nuclear Information System (INIS)

    2011-12-01

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  20. Days of Radiation Protection 2001. Conference Proceedings of the 24th Days of Radiation Protection

    International Nuclear Information System (INIS)

    Bohunice NPP

    2001-11-01

    Already the 24 th annual international conference 'Days of Protection from Radiation' was taking place in Jan Sverma Hotel in Demaenova dolina on 26-29 November 2001. More than 180 participants from the Slovak Republic and the Czech Republic participated in the meetings of experts on protection from radiation. Representative of IAEA Division for Protection from Radiation and the representatives of several European companies securing the project, advisory and supplier's activities in dosimetry of ionising radiation also participated in the conference. The participants discussed in 7 expert panels the issue of protection from radiation in the legislative field, in the nuclear facilities operation and in medicine. The expert part of the other panels concerned the issues of ionising radiation impact on the environment and working environment, natural radio-nuclides, including radon and biologic impacts of radiation. One separate panel was dedicated to device techniques and methods of dosimetry of ionising radiation. More than 45 expert lectures and more than 40 poster presentations were presented at the conference during 3 days. The exhibition and presentation of measuring technique products and devices and of materials used in the area of radiation protection and nuclear medicine was prepared during the course of the conference. Participation in the conference showed that a great interest in problems of protection from radiation persists. This was proved by rich lecturing activity and wide discussions on the floor and during the poster presentations. Participants were satisfied since the organisers of the event prepared a worthy event with the rich expert themes at a good organisational and social level in a beautiful environment of Low Tatras

  1. Protective role of plants against harmful radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Shreesh Kumar; Kumar, Pawan; Singh, Abhishek; Kumar, Vikas; Bharti, Navaldey [Department of Applied Plant Science-Horticulture, Babasaheb Bhimrao Ambedkar University, Lucknow (India)

    2012-07-01

    The rapid technological advancement has increased human exposure to ionizing radiations enormously. Ionizing radiations produces deleterious effects in the living organisms. Widespread use of radiation in diagnosis therapy, industry, energy sector and inadvertent exposure during air and space travel, nuclear accidents and nuclear terror attacks requires safeguard against human exposures. Lead shielding and other physical measures can be used in such situations but with difficulty to manage; thus pharmacological intervention could be the most prudent strategy to protect humans against the harmful effect of ionizing radiations. These pharmacological agents are radioprotectives; The development of radioprotective agents has been the subject of intense research in view of their potential for use within a radiation environment. However, no ideal, safe synthetic radio protectors are available to date, so the search for alternative sources including plants has been ongoing. In Ayurveda, the traditional Indian system of medicine, several plants have been used to treat free radical-mediated ailments and, therefore, it is logical to expect that such plants may also render some protection against radiation damage. This all is due to antioxidant enzymes, nitroxides, and melatonin, antiemetic, anti-inflammatory. haemopoitic and immunostimulant compounds. Some of the plants which are found to be radioprotective are Centella asiatica, Ginkgo biloba, Hippophae rhamnoides, Ocimum sanctum, Podophyllurn hexandrum, Tinospora cordifolia, Emblica officinalis, Phyllanthus amarus, etc. So there is an urgent need to identify and characterize the many of the plants in relation to the radioprotection. Besides these medicinal plants there are also some fruits and vegetables which are having good response against harmful radiations such as Kiwifruit Actinidia deliciosa (Actinidaceae), Cape Gooseberry Physalis peruviana (Solanaceae). They protect against the radiation-induced damage by

  2. Protective role of plants against harmful radiation

    International Nuclear Information System (INIS)

    Gautam, Shreesh Kumar; Kumar, Pawan; Singh, Abhishek; Kumar, Vikas; Bharti, Navaldey

    2012-01-01

    The rapid technological advancement has increased human exposure to ionizing radiations enormously. Ionizing radiations produces deleterious effects in the living organisms. Widespread use of radiation in diagnosis therapy, industry, energy sector and inadvertent exposure during air and space travel, nuclear accidents and nuclear terror attacks requires safeguard against human exposures. Lead shielding and other physical measures can be used in such situations but with difficulty to manage; thus pharmacological intervention could be the most prudent strategy to protect humans against the harmful effect of ionizing radiations. These pharmacological agents are radioprotectives; The development of radioprotective agents has been the subject of intense research in view of their potential for use within a radiation environment. However, no ideal, safe synthetic radio protectors are available to date, so the search for alternative sources including plants has been ongoing. In Ayurveda, the traditional Indian system of medicine, several plants have been used to treat free radical-mediated ailments and, therefore, it is logical to expect that such plants may also render some protection against radiation damage. This all is due to antioxidant enzymes, nitroxides, and melatonin, antiemetic, anti-inflammatory. haemopoitic and immunostimulant compounds. Some of the plants which are found to be radioprotective are Centella asiatica, Ginkgo biloba, Hippophae rhamnoides, Ocimum sanctum, Podophyllurn hexandrum, Tinospora cordifolia, Emblica officinalis, Phyllanthus amarus, etc. So there is an urgent need to identify and characterize the many of the plants in relation to the radioprotection. Besides these medicinal plants there are also some fruits and vegetables which are having good response against harmful radiations such as Kiwifruit Actinidia deliciosa (Actinidaceae), Cape Gooseberry Physalis peruviana (Solanaceae). They protect against the radiation-induced damage by

  3. Application to an Internet site in radiation protection

    International Nuclear Information System (INIS)

    Gambini, D.J.; Baum, T.P.; Spector, M.; Elgard, M.C.; Mechaly, Y.; Grainer, R.; Barritault, L.

    1997-01-01

    Training specialists in medical radiation protection is ensured by the Continuous Training Center of University Rene Descartes since 1990. The necessity of updating knowledge has urged us to develop an Internet site (http://www.citi2.fr/RADIO). Besides the mandatory functions of the educational management (secretariat, information on the stages, registrations, etc.) this site provides: 1. Practical information (addresses of administrative and technical organisms, presentation of radiation protection programs); 2. Scientific information (bibliographic bulletin of the EDF service of radiation protection, updated every two months, description of recent radiation protection works); 3. Institutional documentation (analysis of recent basic texts, ICRP publications, European directives). The interrogation of general interest asked via e-mail and forum allowing communication between experts, graduated students and the education faculty will be available on the site. The communication will be augmented by tele-formation modules for continuous distant training

  4. Evaluation of the radiation exposure. Recommendation of the radiation protection commission

    International Nuclear Information System (INIS)

    Baldauf, Daniela

    2014-01-01

    The recommendation of the Strahlenschutzkommission (radiation protection commission) deals with the realistic requirements for the radiation exposure assessment based on radio-ecological modeling. The recommendation is applicable for all exposure situations that can be derived from FEP (features, events processes) exposure scenarios. In this case the exposure scenario consists of natural and technical features and a set of processes and events that can influence the radiation exposure of the population. The report includes the scientific justification, the previous procedure in Germany and abroad (EURATOM, France, UK, Ukraine, USA).

  5. Importance of plants in radiation protection

    International Nuclear Information System (INIS)

    Rawat, Shalini

    2015-01-01

    Radioactive substances from nuclear programme structures are one of the major toxicant causing serious health hazards. These manmade radiations include X-ray machines radioactive fall-outs, nuclear reactor waste, TV, computers etc. Effect of radiation may be somatic and genetic. Most genetic effects are brought by manmade radiations. Plants on one hand using the electromagnetic radiation from sun for one of the most important vital activity of earth called Photosynthesis and on the other hand protecting us from harmful radiations. There are however, many natural compounds with radio-protective activity. Such compounds include sulfhydryl-containing compounds and anti-oxidant nutrients such as vitamins C and E, beta-carotene, N-acetylcysteine and selenium, along with a range of phytochemicals found in plants such as Ginkgo biloba, Vitis vinifera (Grape), Ocimum sanctum (Tulsi or holy basil). Some plants have capacity to absorb harmful radiation of computers like Aloe, Cactus, etc. Such study can be helpful in minimizing radiation pollution. Present review paper emphasizing Botanical, Ecological and Economic aspects of some plants. (author)

  6. Anti-apoptotic peptides protect against radiation-induced cell death

    International Nuclear Information System (INIS)

    McConnell, Kevin W.; Muenzer, Jared T.; Chang, Kathy C.; Davis, Chris G.; McDunn, Jonathan E.; Coopersmith, Craig M.; Hilliard, Carolyn A.; Hotchkiss, Richard S.; Grigsby, Perry W.; Hunt, Clayton R.

    2007-01-01

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15 Gy radiation. In mice exposed to 5 Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues

  7. A knowledge and awareness level survey of radiation protection among the radiation workers in Henan Province

    International Nuclear Information System (INIS)

    Cheng, Xiao-jun; Tian, Chong-bin; Zhang, Qin-fu; Liu, Cheng; Ding, Li

    2008-01-01

    Full text: Objective: To reveal the knowledge and awareness level of radiation protection among radiation workers in Henan province and to explore the methods to improve it. Methods: A questionnaire survey was carried out among 208 radiation workers. Results: The correct rate of the answer to radiation protection knowledge from radiation workers in Henan province is 53.78%. Most of them (88.9%) realized that it is important to protect patients and their companions. They adhere to the principles of justification of medial exposure and optimization of radiation protection and follow the management system of radiation protection. However, a few workers didn't follow the principles strictly. Sometime, during the radio diagnosis and radiotherapy services, the patients and their companions were not well protected from the radiation, and some patients were given unnecessary X-ray examine. Even worse, some workers did not attach importance to the regulations of radiation protection and disobey them frequently. Again, some hospital leaders disregard the regulation of radiation protection and didn't follow the regulation of health surveillance and radiation protection monitoring properly. And those behaviors and attitude, in fact, influence some workers' attitude to radiation protection. Conclusion: The level of radiation protection knowledge and awareness among the radiation workers in Henan province needs to be improved. It is necessary to strengthen radiation protection knowledge by strengthening training, and to improve safety awareness among the radiation staff, and, more important, the hospital leaders as well. (author)

  8. Radiation Protection Training in Intracoronary Brachytherapy

    International Nuclear Information System (INIS)

    Prieto, C.; Vano, E.; Fernandez, J. M.; Sabate, M.; Galvan, C.; Meiggs, L.; Corral, J. M.

    2003-01-01

    To report the educational objectives and contents on Radiation Protection (RP) for the practice of Intracoronary Brachytherapy (ICB) procedures. The wide international experience on training programs for ICB as well as our own experience organizing several courses aimed at Cardiologists, Radio therapists and Medical Physicists has been used to elaborate specific RP objectives and contents. The objectives, differentiated for Cardiologists, Radio therapists, Medical Physicists, Nurses and Technicians, pretend to guarantee the safety and RP of both patient and staff in the procedures of ICB. The objectives are necessarily different because their RP formation and their role in the procedure are different. The general topics included in RP training programmes for ICB could be: general topics on RP (Interaction of radiation and matter, RP principles, radiobiology, etc), principles of operation of ICB and interventional X-ray equipment, quantification of radiation dose and risks, optimisation of protection of staff and patients, accidents and emergencies, regulations, responsibilities, quality assurance program, handling of ICB sources, installation and commissioning. Training programs based on the objectives presented in this paper would encourage positive safety culture in ICB and can also be used as a starting point by the Regulatory Authority for the authorization of new Installations and credentialing of professionals involved in this technique as well as for the continuous education of the staff involved. (Author) 10 refs

  9. An outlook to radiation protection development

    International Nuclear Information System (INIS)

    Martincic, R.; Strohal, P.

    1996-01-01

    Radiation protection and safety have developed over many decades as the effects of ionizing radiation have been better and better understood. Some events in the last decade had essential impact on radiation protection policy/philosophy and related safety standards. Among them are available data of some long term radio-epidemiological studies of populations exposed to radiation. Investigations of the survivors of the atomic bombing of Hiroshima and Nagasaki illustrated that exposure to radiation has also a potential for the delayed induction of malignancies. They also showed that irradiation of pregnant women may result with certain mental damage in foetus. Several big radiation accidents which appeared in the last decade also had an impact on developments in radiation protection philosophy and practices. A well known Chernobyl accident showed that limited knowledge was available at the time of the accident on transfer of radionuclides in a specific environment, radioecological effects and pathways of highly radioactive atmospheric precipitation generated during the accident on various components of the environment. New scientific data indicated also that in some parts of human environment there are measurable effects of chronic exposure resulting from natural radiation. UNSCEAR is periodically publishing the most valuable set of data as compilation, and disseminates information on the health effects of radiation and on levels of radiation exposure due to different sources. These data are also the best guidelines for the necessary improvements and updating of radiation protection practices and philosophies. The latest ICRP-60 publication and recently issued International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources are reflecting many of the above mentioned findings. On the other hand the use of radiation sources is increasing day by day, and many new facilities applying radiation in radiotherapy

  10. Eighth meeting of the radiation protection-skilled persons - Conference proceedings

    International Nuclear Information System (INIS)

    Juhel, Thierry; Lahaye, Thierry; Rousse, Carole; Perrin, Marie-Line; Billarand, Yann; Scanff, Pascale; Celier, David; El Jammal, Marie-Helene; Jacob, Sophie; Vecchiola, Sophie; Bulla, Giuseppina; Guillalmon, Christophe; Mechin, Guillaume; Guersen, Joel; Blaise, Philipp; Ammerich, Marc; Bordy, Jean-Marc; Sevestre, Bernard; Massiot, Philippe; Michel, Xavier; Raffoux, Yann; Kernisant, Billy; Lefaure, Christian; Balduyck, Sebastien; Wassilieff, Serge; Ouabdelkader, Said; Lecu, Alexis; Roy, Catherine; Pigree, Gilbert; Barbey, Pierre; Bergeron, Christophe; Schieber, Caroline

    2012-12-01

    This eighth meeting of the radiation protection skilled persons celebrated the 15. anniversary of this type of meetings. It is the occasion for radiation protection specialists to share information and their experience on various topics, in particular the recent evolutions of the regulation. This document gathers the available presentations given during this conference: 1 - Opening talk (T. Juhel); 2 - Regulatory evolutions in the domain of protection of workers exposed to ionising radiations (T. Lahaye); 3 - Evolution of the regulatory documents on the basis of the French public health law (C. Rousse); 4 - Relations between IRSN and Companies - regulatory obligations from the perspective of the radiation protection-skilled person (Y. Billarand); 5 - IRSN's follow up of workers' exposure (P. Scanff); 6 - Contribution of a 18 F preparation and injection system to the radiation protection of workers (D. Celier); 7 - Workplace analysis in interventional radiology (G. Bulla, C. Guillalmon); 8 - Interest of Workplace analyses in risk information (G. Mechin); 9 - Running of a joint operators/contractors club of radiation protection skilled persons at the scale of a CEA centre (P. Blaise); 10 - Radiological exposure of the maintenance personnel of aerial monitoring radars (X. Michel); 11 - The IRSN barometer (M.H. El Jammal); 12 - An original network of professional radiation protection: the GoogleGroup for dental radiation protection-skilled persons (Y. Raffoux); 13 - Cirkus radiation protection association - a portal for a practical and operational radiation protection (B. Kernisant); 14 - Situation of networks - what do we do in a network? What is the role of the national coordination? (S. Balduyck, C. Lefaure); 15 - Update on the situation at Fukushima (M. Ammerich); 15 - Radio-induced cataracts: why lowering the eye lens legal limit? (S. Wassilieff); 16 - O'CLOC study - Radio-induced cataracts among interventional Cardiologists (S. Jacob); 17 - Photon dosimetry of

  11. Criteria for radiological protection against exposure to natural radiation

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan

    2012-01-01

    Ionizing radiation includes natural radiation which has been part cosmic radiation. Radon in homes, irradiation, gamma, among others, they have also been part of ionizing radiation. The activities that have lead to natural radiation materials are: mining and processing of uranium, radio application and thorium, phosphate industry, mining and smelting of metals, oil and gas extraction, coal mining and power generation, rare earth industry and titanium, zirconium and ceramics, building materials, waste water purification. Therefore, different criteria for radiation protection have had to create against exposure to natural radiation. Distinct rules and regulations to control were created in that sense [es

  12. Operational radiation protection and radiation protection training

    International Nuclear Information System (INIS)

    Kraus, W.

    1989-01-01

    The radiation protection system in the German Democratic Republic (GDR) is reviewed. The competent authority (the SAAS) and its systems of licensing and supervision are described. Discussion covers the role of the Radiation Protection Officer, the types of radiation monitoring, medical surveillance programs and the classification of workers and work areas. Unusual occurrences in the GDR, 1963-1976, are presented and the occupational radiation protection problems at some specific types of workplaces are discussed. The GDR's system of training in radiation protection and nuclear safety is described. 5 figs., 18 tabs

  13. Evaluation of radiation protection conditions in intraoral radiology

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, Cristiano; Barros, Frieda Saicla; Rocha, Anna Silvia Penteado Setti da, E-mail: miguel_cristianoch@yahoo.com.br [Universidade Tecnologica Federal do Parana (PPGEB/UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Biomedica; Tilly Junior, Joao Gilberto [Universidade Federal do Parana (UNIR/UFPR), Curitiba, PR (Brazil). Hospital de Clinicas. Unidade de Imagem e Radioterapia; Almeida, Claudio Domingues de [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Medica

    2016-04-15

    Introduction: The dental radiology represents about 20% of human exposure to radiation in radio diagnostic. Although the doses practiced in intraoral dentistry are considered low, they should not be ignored due to the volume of the performed procedures. This study presents the radiation protection conditions for intraoral radiology in Curitiba - PR. Methods: Data was collected through a quantitative field research of a descriptive nature during the period between September of 2013 and December of 2014. The survey sample consisted of 97 dentists and 130 intraoral equipment. The data related to the equipment was collected using structured questions and quality control evaluations. The evaluations of the entrance skin dose, the size of the radiation field and the total filtration were performed with dosimetry kits provided and evaluated by IRD/CNEN. The exposure time and voltage were measured using noninvasive detectors. The occupational dose was verified by thermoluminescent dosimeters. The existence of personal protection equipment, the type of image processing and knowledge of dentists about radiation protection were verified through the application of a questionnaire. Results: Among the survey's results, it is important to emphasize that 90% of the evaluated equipment do not meet all the requirements of the Brazilian radiation protection standards. Conclusion: The lack of knowledge about radiation protection, the poor operating conditions of the equipment, and the image processing through visual method are mainly responsible for the unnecessary exposure of patients to ionizing radiation. (author)

  14. Astronomers Win Protection for Key Part of Radio Spectrum

    Science.gov (United States)

    2000-06-01

    International Telecommunication Union meet to painstakingly parcel out the radio frequency spectrum between radio-based applications such as personal communications, satellite broadcasting, GPS and amateur radio, and the sciences of radio astronomy, earth exploration and deep space research. The WRC also coordinates sharing between services in the same radio bands. WRC decisions are incorporated into the Radio Regulations that govern radio services worldwide. The new spectrum allocations for radio astronomy are the first since 1979. Millimeter-wave astronomy was then in its infancy and many of its needs were not yet known. As astronomers began to explore this region of the spectrum they found spectral lines from many interesting molecules in space. Many of those lines had not fallen into the areas originally set aside for astronomy, but most will be under the new allocations. "It's a win for millimeter-wave science," said Dr. John Whiteoak of the Australia Telescope National Facility, Australian delegate to WRC-00. "This secures its future." The protection is a significant step for both existing millimeter-wave telescopes and new ones such as the Atacama Large Millimeter Array (ALMA) now being planned by a U.S.-European consortium. Even at its isolated site in Chile's Atacama desert, ALMA would be vulnerable to interference from satellite emissions. Sensitive radio astronomy receivers are blinded by these emissions, just as an optical telescope would be by a searchlight. "There is more energy at millimeter and sub-millimeter wavelengths washing through the Universe than there is of light or any other kind of radiation," said ALMA Project Scientist, Dr. Al Wootten of the National Radio Astronomy Observatory. "Imaging the sources of this energy can tell us a great deal about the formation of stars and galaxies, and even planets." "But the Earth's atmosphere isn't very kind to us - it has only a few windows at these frequencies, and not very transparent ones at that. They are

  15. Radiation transformation studies: are they relevant to radiation protection problems?

    International Nuclear Information System (INIS)

    Seymour, C.B.; Mothersill, C.

    1988-01-01

    Because of the difficulties of studying radio-carcinogenesis in humans, several in vitro systems are utilised. These cell transformation systems are reviewed, with particular emphasis on their relevance to human radiological protection problems. Most available systems use rodent fibroblasts. These are discussed in detail. Attention is drawn to certain artefacts which can cause problems with interpretation of such data. The relevance of these systems is questionable because of species differences, particularly concerning life span and because most human tumours are derived from epithelial cells. New epithelial culture systems and three-dimensional tissue culture methods becoming available are discussed in the light of their potential for addressing radiation protection problems. (author)

  16. The Radio Protection and Radiation Hygiene Centre activity during the period of 1995-2003

    International Nuclear Information System (INIS)

    Ghetoi, Z.

    2009-01-01

    During the period of 1995-2003 the Radiation Protection and Hygiene Department has developed regulating documentation and has defined the priorities of its activity: personnel training, authorization of radiation monitoring laboratories, foundation of facilities and equipment, which would be responsible for modern requirements, cooperation with IAEA and other government and non-government organizations, elaboration of legislative documents and standard acts in the field of radiation protection and studying of medical and biological effects of ionizing radiations after the accident at Chernobyl NPP

  17. Differential biological effects of iodoacetate in mammalian cell lines; radio sensitization and radio protection

    International Nuclear Information System (INIS)

    Yadav, Usha; Anjaria, K.B.; Desai, Utkarsha N.; Chaurasia, Rajesh K.; Shirsath, K.B.; Bhat, Nagesh N.; Balakrishnan, Sreedevi; Sapra, B.K.; Nairy, Rajesha

    2014-01-01

    There are several studies where it has been shown that Iodoacetate (IA) possesses in vivo anti-tumor activity. The fact that it is a model glycolytic inhibitor makes it more interesting. As seen in recent trends, glycolytic inhibitors are emerging as new strategy for cancer therapeutic research taking advantage of glycolytic phenotype of cancerous tissues. IA has been reported to have radioprotective effects in yeast cells and human lymphocytes. Biological effects of IA in response to radiation in mammalian cell lines are not well documented. We screened IA for cytotoxicity using clonogenic assay at different concentrations ranging from 0.1 to 2.5 μg/ml using three different mammalian cell lines; A-549 (human lung carcinoma cell line), MCF-7 (human mammary cancer cell line) and a noncancerous CHO (Chinese hamster ovary cell line). For studying radioprotective/radio sensitizing efficacy, cells were exposed to 4 Gy of 60 Co-γ radiation using a teletherapy source at a dose rate of 1 Gy/min, following which IA post-treatment was carried out. Clonogenic and micronucleus assay were performed to assess radioprotection/sensitization. The results indicated that IA was highly cytotoxic in cancerous cell lines A-549 (IC 50 =1.25 μg/ml) and MCF-7 (IC 50 = 1.9 μg/ml). In contrast, it was totally non-toxic in non-cancerous cell line, viz. CHO, in the same concentration range. In addition, IA exhibited radio protective effect in CHO cell line, whereas in other two cancer cell lines, viz. A-549 and MCF-7, radio sensitizing effect was seen as judged by induction of cell killing and micronuclei. In conclusion, lA, a model glycolytic inhibitor, was found to be selectively cytotoxic in cancer cells as compared to normal cells. Further, it reduced radiation induced damage (micronuclei and cell killing) in normal cells but increased it in cancer cells indicating its potential use in cancer therapy. (author)

  18. Earth as a radio source: terrestrial kilometric radiation. Progress report

    International Nuclear Information System (INIS)

    Gurnett, D.A.

    1974-02-01

    Radio wave experiments on the IMP-6 and 8 satellites have shown that the earth emits very intense electromagnetic radiation in the frequency range from about 50 kHz to 500 kHz. A peak intensity the total power emitted in this frequency range is about 1 billion watts. The earth is, therefore, a very intense planetary radio source, with a total power output comparable to the decametric radio emission from Jupiter. This radio emission from the earth is referred to as terrestrial kilometric radiation. Terrestrial kilometric radiation appears to originate from low altitudes (less than 3.0 Re) in the auroral region. Possible mechanisms which can explain the generation and propagation of the terrestrial kilometric radiation are discussed. (U.S.)

  19. Development of Radio Frequency Antenna Radiation Simulation Software

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Rozaimah Abd Rahim; Noor Ezati Shuib; Wan Saffiey Wan Abdullah

    2014-01-01

    Antennas are widely used national wide for radio frequency propagation especially for communication system. Radio frequency is electromagnetic spectrum from 10 kHz to 300 GHz and non-ionizing. These radiation exposures to human being have radiation hazard risk. This software was under development using LabVIEW for radio frequency exposure calculation. For the first phase of this development, software purposely to calculate possible maximum exposure for quick base station assessment, using prediction methods. This software also can be used for educational purpose. Some results of this software are comparing with commercial IXUS and free ware NEC software. (author)

  20. The Duty of the ANARAP-MAD for the Development of Radiation Protection in Madagascar

    International Nuclear Information System (INIS)

    Ratovonjanahary, F.

    2010-01-01

    Association NAtionale de Radio Protection-MADagascar (ANARAP-MAD), to develop the radiation protection in Madagascar; to promote the radiation protection in Madagascar; to set up links with international institutions dealing with the same objectives (I.A.E.A., W.H.O., etc...); to care for the enforcement of the regulation in radiation protection; to propose improvements and amendments; to find solutions to problems relevant to the enforcement of the regulation; to inform and to train in the field of radiation protection; to contribute in the development of the science, all activities carried out by the association are based on the existing legislation in the country. Despite the insufficiency of financial support, the ANARAP-MAD had always made an effort to carry out activities for the development of radiation protection infrastructure in Madagascar. The main problem is also that the regulatory Authority is not yet operational. However, the ANARAP-MAD, with the support of the Madagascar-INSTN, has the challenge to effectively promoting radiation protection in Madagascar

  1. Radiation protection program at an accelerator facility complex

    International Nuclear Information System (INIS)

    Ramanuja, Jaya

    2007-01-01

    Broad aspects of Radiation Protection Program at the Tyco Healthcare/Mallinckrodt Inc. will be presented with emphasis on Occupational dose, Public dose and ALARA program. Regulatory requirements, compliance and radio nuclides of concern for external exposure and internal contamination will be discussed. The facility is subject to in depth annual inspections by the Nuclear Regulatory Commission (NRC) to ensure compliance with regulations and operating license requirements. The facility is required to have an emergency contingency plan in place. A simulated emergency drill scenario is witnessed and graded by the NRC and state inspectors, with full participation by the fire department and the local hospital. Radiation Safety Officer (RSO) is in charge of all radiological aspects of the facility, and reports to the plant manager directly. The RSO or any of his staff has the authority to stop a job if there is a radiological concern. The Radiation protection organization interfaces with Production, QA and Engineering and ensures there is no conflict with Industrial Safety, OSHA and FDA requirements. Any employee has the right to call the regulatory officials if he/she has a concern. Operational aspects of Radiation protection program such as radiological survey, contamination control and limits, air sample survey, radio active waste processing and record retention requirements are per plant procedures and regulatory requirements. Shielding and administrative requirements for designing a modification to an existing design or a new lab/hot cell is subject to in-depth review and approval by Radiation Safety Committee. Each department has a Dose Reduction Subcommittee which meets periodically to discuss if any changes in procedures or facility can be made to decrease the dose. The subcommittee also trends the dose to ensure it is trending downward. Even though 99 Mo/ 99m TC generators are manufactured at the facility, majority of the dose is from cyclotron maintenance

  2. Radiation protection - Revision of French radiation protection regulations (1988)

    International Nuclear Information System (INIS)

    Mayoux, J.C.

    1989-01-01

    This article analyses the recent amendments to the 1966 and 1975 Decrees on general radiation protection principles and radiation protection of workers in large nuclear installations respectively and also describes national radiation protection law. In particular, the amendments incorporate the revised EURATOM basic radiation protection standards and the new international units (sievert and becquerel replace rem and curie) in the Decrees. (NEA) [fr

  3. Obligations and responsibilities in radiation protection in the medical field; Obligations et responsabilites en radioprotection dans le domaine medical

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This document briefly presents the various obligations and responsibilities of the various actors involved in or concerned by radiation protection in the medical field: the hospital administration (with respect to workers and patients), the physician (authorization and declaration, justification, optimization), the medical electro-radiology operator, the person with expertise in medical radio-physics (PSRPM), the radio-pharmacist (he is required in nuclear medicine with internal use of pharmaceutical product), the personnel with expertise in radiation protection (PCR), and other health professionals

  4. Some practical applications of fundamental standards in radiation protection

    International Nuclear Information System (INIS)

    Duhamel, Francis; Lavie, Jean-Marie

    1964-05-01

    After some general considerations on the recommendations made by the International Commission on Radiological Protection (ICRP) regarding standards of internal or external exposure of organs or tissues to different types of radiations, and a recall of the main problems raised by acute radio-exposures (dose assessment in case of accident, assessment of the dose due to an emergency intervention in case of accident, classification of radio-elements), this report describes how ICRP recommendations have been implemented by the CEA, and tries to relate the problem of acute radio-exposures to the problem of chronic radio-exposures. This study is limited to the case of workers and to internal contamination by inhalation, but can be easily extended to other groups or other contamination types. The authors thus recall some fundamental data and definitions regarding values recommended by the ICRP for chronic radio-exposure and for acute exposure (acceptable exposure, accidental exposure, concerted exposure, units), present and comment how standards are practically applied for dose calculation and assessment. Formulas allow a quick assessment of radiological consequences of an acute radio-exposure, or vice-versa [fr

  5. Focus radiation protection

    International Nuclear Information System (INIS)

    Ebermann, Lutz

    2016-01-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  6. Atoms, radiation, and radiation protection

    International Nuclear Information System (INIS)

    Turner, J.E.

    1986-01-01

    This book describes basic atomic and nuclear structure, the physical processes that result in the emission of ionizing radiations, and external and internal radiation protection criteria, standards, and practices from the standpoint of their underlying physical and biological basis. The sources and properties of ionizing radiation-charged particles, photons, and neutrons-and their interactions with matter are discussed in detail. The underlying physical principles of radiation detection and systems for radiation dosimetry are presented. Topics considered include atomic physics and radiation; atomic structure and radiation; the nucleus and nuclear radiation; interaction of heavy charged particles with matter; interaction of beta particles with matter; phenomena associated with charged-particle tracks; interaction of photons with matter; neutrons, fission and criticality; methods of radiation detection; radiation dosimetry; chemical and biological effects of radiation; radiation protection criteria and standards; external radiation protection; and internal dosimetry and radiation protection

  7. Fifth meeting of persons competent in radiation protection

    International Nuclear Information System (INIS)

    2007-01-01

    During this meeting will successively be approached: the statutory frame, the practical guide for the realization of the dosimetry studies of work stations presenting a risk of exposure to ionizing radiations, a study of post in conventional and interventional radiology, study of post in interventional cardiology, the roles and the missions of the P.C.R. (person competent in radiation protection) in a subcontractor company in I.N.B. (base nuclear installation), the application of the zoning order for the activities of industrial radiography, the evolution of the statutory measures in protection of the workers against the dangers of ionizing radiations, all which concerns the P.C.R. (training, missions, certification, educational role), the controls of radioprotection, the external controls of radioprotection, the surveillance of working zones, surveillance of effluents,management of the radioactive waste and effluents, classification of the personnel and the surveillance of the exposure, dosimetry by radio photo luminescence, the systeme S.I.S.E.R.I.. (N.C.)

  8. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1975-01-01

    Physical and radiological terms, quantities, and units. Basic principles of radiation protection (ICRP, IAEA, EURATOM, FRG). Biological effects of ionizing radiation. Objectives of practical radiation protection. (HP) [de

  9. Post-graduate course on radiation protection and nuclear safety. Vol. 1,2

    International Nuclear Information System (INIS)

    1998-01-01

    The course handbook on radiation protection and nuclear safety containing two parts some was prepared mainly by scientists of the Nuclear Regulatory Authority (ARN) of the Argentine Republic, under the auspices of the International Atomic Energy Agency. The contents o this handbook have the principals aspects: radiation detection, radio dosimetry, biological effects of the ionizing radiation, occupational exposure, environmental effects, contamination and decontamination, radioactive waste management, transport of radioactive materials, medical and industrial applications and the Argentine regulatory system

  10. Radio-adaptation: cellular and molecular features of a response to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Rigaud, O.

    1998-01-01

    It is well established that sublethal doses of DNA damaging agents induce protective mechanisms against a subsequent high dose treatment ; for instance, the phenomenon of radio-adaptation in the case of ionizing radiations. Since the early observation described in 1984, numerous studies have confirmed the radio-adaptive response in terms of reduction of chromosomal breaks for varied biological models in vitro and in vivo. Evidence for an adaptive response against the induction of gene mutations and the lethal effect is clearly demonstrated. This paper reviews the experimental results describing various aspects of these adaptive responses expressed on these different biological end-points. The molecular mechanism underlying radio-adaptation still remains nuclear. The development of this phenomenon requires de novo synthesis of transcripts and proteins during the time interval between the two doses. Some data are consistent with the hypotheses that these gene products would be involved in the activation of DNA repair pathways and antioxidant systems. However, a major question still remains unanswered; indeed, it is not clear whether or not the radio-adaptation could affect the estimation of cancer risk related with low level exposure to ionizing radiation, a major concern in radioprotection. Until such data are available, it is yet unwise to evoke the beneficial effects of radio-adaptation. (authors)

  11. Radiation protection

    International Nuclear Information System (INIS)

    Jain, Aman; Sharma, Shivam; Parasher, Abhishek

    2014-01-01

    Radiation dose measurement, field of radiobiology, is considered to be critical factor for optimizing radiation protection to the health care practitioners, patients and the public. This lead to equipment that has dose - area product meters permanently installed. In many countries and even institution, the range of equipment is vast and with the opportunity for radiation protection and dose recording varies considerably. Practitioners must move with the changed demands of radiation protection but in many cases without assistance of modern advancements in technology Keeping the three basic safety measures Time, Dose and Shielding we can say 'Optimum dose is safe dose' instead of 'No dose is safe dose'. The purpose enclosed within the title 'Radiation Protection'. The use of radiation is expanding widely everyday around the world and crossing boundaries of medical imaging, diagnostic and. The way to get the ''As low as reasonably achievable' is only achievable by using methodology of radiation protection and to bring the concern of general public and practitioners over the hazards of un-necessary radiation dose. Three basic principles of radiation protection are time, distance and shielding. By minimizing the exposure time increasing the distance and including the shielding we can reduce the optimum range of dose. The ability of shielding material to attenuate radiation is generally given as half value layer. This is the thickness of the material which will reduce the amount of radiation by 50%. Lab coat and gloves must be worn when handling radioactive material or when working in a labeled radiation work area. Safety glasses or other appropriate splash shields should be used when handling radioactive material. 1. Reached to low dose level to occupational workers, public as per prescribed dose limit. 2. By mean of ALARA principle we achieved the protection from radiation besides us using the radiation for our benefit

  12. Concepts of radiation protection

    International Nuclear Information System (INIS)

    2013-01-01

    This seventh chapter presents the concepts and principles of safety and radiation protection, emergency situations; NORM and TENORM; radiation protection care; radiation protection plan; activities of the radiation protection service; practical rules of radiation protection and the radiation symbol

  13. UV light induced DNA damages and the radiation protection effects of Lingzi mushroom extract

    International Nuclear Information System (INIS)

    Vo Thi Thuong Lan; Dinh Ba Tuan; Ta Bich Thuan; Tran Bang Diep; Tran Minh Quynh

    2016-01-01

    UV light has strongly influenced on the growth of E. coli as well as caused DNA damages. Configurations of both genomic DNA and pUC 19 plasmids extracted from E. coli were significantly changed by the exposure to UV light of 254 nm and DLT, an extract of Ganoderma lucidum Lingzi mushroom. The results also revealed the radio-protective effects of DLT to UV radiation. By adding 2% DLT to its culturing suspension, the growth of E. coli was significantly decreased, whereas a low DLT amount of about 0.5% slightly improved its growth, indicated that the DLT extract can be used as a promising protective substance against UV radiation. At the molecular level, the radio-protective effects of DLT were observed for both UV treated DNA and protein. Thus, DLT can protect DNA in vivo, but not in vitro. This effect was also observed for Taq polymerase, suggested that the radioprotection effect of DLT may due to it accelerated the degradation of radicals or species that produced in the suspensions during UV exposure. (author)

  14. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  15. Seventh meeting of radiation protection skilled persons

    International Nuclear Information System (INIS)

    Juhel, Th.; Briandchamplong, J.; Gambini, D.J.; Ammerich, M.; Aubert, B.; Barbey, P.; Biau, A.; Bruchet, H.; Capelle, M.H.; Flon, E.; Gauron, Ch.; Gravelotte, D.; Guerin, Ch.; Le Denmat, D.; Lemoine, Th.; Lombard, J.; Lucas, St.; Menechal, Ph.; Mignien, S.; Million, M.; Mozziconacci, J.G.; Prevot, S.; Radecki, J.J.; Rigaud, S.; Taillandier, P.; Timbert, M.; Vidal, J.P.; Bardelay, Ch.; Lahaye, Th.; Balduyck, S.; Chasson, E.; Rehel, J.L.; Chatellier, Ch.; Barret, Ch.; Guersen, J.; Degrange, J.P.; Sevestre, B.; Lahaye, Th.; Rodde, S.; Marchal, C.; Lefaure, Ch.; Bouk'il, H.; Gneiting, M.; Auboiroux, B.; Riedel, A.; Feuardent, J.; Scanff, P.; Bof, M.; Lochard, J.; Godet, J.L.

    2011-01-01

    This document gathers the slides of the available presentations given during these conference days. Twenty-three presentations out of 25 are assembled in the document and deal with: 1 - the evolution of workers' international protection rules against ionizing radiation risks (C. Bardelay); 2 - presentation of the report of the working group on radiation protection (P. Barbey); 3 - position of the French nuclear safety authority and of the labor general direction about the position of permanent expert groups in radiation protection concerning the expected evolutions in the occupation and training of radioprotection skilled persons (RSP), (T. Lahaye); 4 - experience feedback: RSP in surgery operating theater - a sometimes delicate intervention (S. Balduyck); 5 - workplace analysis in dental surgery: constraints and specificities (D. Le Denmat); 6 - workplace analysis: tritium atmospheric contamination (S. Rigaud); 7 - revision of the NFC 15-160 standard relative to radiology facilities (J.L. Rehel); 8 - example of area tele-dosimetry usage - the Pitie Salpetriere hospital experiment (C. Chatellier and C. Barret); 9 - contribution of radio-attenuation lead gloves in interventional radiology (J. Guersen); 10 - zoning in the medical domain: encountered problems typology and evaluation of possible solutions (Degrange, J.P.); 11 - management of used sealed sources distributed by the CEA and CISBIO (B. Sevestre); 12 - how to perform a measurement in radiation protection - how about measurement uncertainty (M. Ammerich); 13 - national campaign of control about the application of workers radiation protection rules (T. Lahaye); 14 - transparency and inspection approach in local nuclear applications: gamma-graphy, research, nuclear medicine, interventional radiography and radiotherapy (S. Rodde and C. Marchal); 15 - local/regional networks of RSPs and radiation protection actors: 2008 audit results and recent evolutions (C. Lefaure); 16 - role and missions of the external RSP

  16. Radiation protection

    International Nuclear Information System (INIS)

    1989-01-01

    A NRPB leaflet in the 'At-a-Glance' series explains in a simple but scientifically accurate way what radiation is, the biological effects and the relative sensitivity of different parts of the human body. The leaflet then discusses radiation protection principles, radiation protection in the UK and finally the effectiveness of this radiation protection as judged by a breakdown of the total dose received by an average person in the UK, a heavy consumer of Cumbrian seafood, an average nuclear industry worker and an average person in Cornwall. (UK)

  17. Theoretical and practical investigation of the electromagnetic radiation fields from the Sabborah radio broadcasting station

    International Nuclear Information System (INIS)

    Kharita, M. H.; Abo Kasem, I.; Kattab, A.

    2008-01-01

    This work has special importance as it aims at the investigation of the electromagnetic radiation from the Sabborah radio broadcasting station. The report includes general introduction to the physics of the electromagnetic fields and the biological effects of these fields and consequently its health effects. The bases of the recommended exposure limits according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) have been discussed in addition to the theoretical and practical investigations. This report summarizes the results of this study and the final recommendations. (author)

  18. High beta radiation exposure of medical staff measures for optimisation of radiation protection

    International Nuclear Information System (INIS)

    Barth, I.; Rimpler, A.

    2006-01-01

    Full text of publication follows: New therapies applying beta radionuclides have been introduced in medicine in recent years, especially in nuclear medicine, e. g. radio-synoviorthesis, radioimmunotherapy and palliative pain therapy. The preparation of radiopharmaceuticals, their dispensary as well as injection require the handling of vials and syringes with high activities of beta emitters at small distances to the skin. Thus the medical staff may be exposed to a high level of beta radiation. Hence the local skin dose, Hp(0,07), was measured at these workplaces with thin-layer thermoluminescent dosemeters TLD (LiF:Mg,P,Cu) fixed to the tip of the fingers at both hands of the personnel. In addition, official beta/photon ring dosemeters were worn at the first knuckle of the index finger. Very high local skin doses were measured at the tip of index finger and thumb. The findings indicate that the exposure of the staff can exceed the annual dose limit for skin of 500 mSv when working at a low protection standard. By the use of appropriate shieldings and tools (e.g. tweezers or forceps) the exposure was reduced of more than one order of magnitude. The German dosimetry services provide official beta/photon ring dosemeters for routine monitoring of the extremity exposure of occupationally exposed persons. But even monitoring with these official dosemeters does not provide suitable results to control compliance with the dose limit in the majority of cases because they can mostly not be worn at the spot of highest beta exposure (finger tip). Therefore, a study was performed to identify the difference of readings of official ring dosemeters and the maximum local skin dose at the finger tips. At workplaces of radio-synoviorthesis a correction factor of 3 was determined provided that the staff worked at high radiation protection standard and the ring dosemeters were worn at the first knuckle of the index finger. The correction factor increases significantly when the radiation

  19. An Interfacing System for Radiation Surveillance Using a Radio Communication Network

    International Nuclear Information System (INIS)

    Arunsiri, T.; Punnachaiya, S.; Pattarasumun, A.

    1998-01-01

    The development of an interfacing system for environmental radiation surveillance using radio communication network is aimed to improve a way by which environmental radiation measurement is transmitted and reported from the regional area monitoring station network. This also includes an automatic warning of beacon status via the radio link network to the center of environmental radiation control when an abnormal radiation level is detected. The interfacing system was developed by simulating the EGAT radio link network, the NT 2612, and can be separated into two parts. The first part was for a mobile station which can manage the output data from the radiation measurement system in the standard form of RS-232, IEEE-488, BCD and analog signal. This was accomplished by modulating the signal in selected baud rates ranging from 150 to 9600 bps using an economical radio packet capable of identifying and recalling the station code number. The other part is the linking system between the output data and the microcomputer equipped with a software to manage and evaluate the data from 10 surveillance stations for convenient handing of data output, statistical analysis and transmitting warning signal. Data transmission was tested using a baud rate of 1200 bps and was found to contain no detectable error when digital signal was transmitted while analog signal transmission resulted in deviations of less than ± 0.003%. The development of this radio link system provides a future trend for the environmental radiation monitoring network for countries with nuclear power plants or neighboring countries needed to continuously monitor for any abnormal radiation level in the environment. In case that the radiation surveillance system detects a high level of radiation, a warning signal will be transmitted and appropriate actions may be immediately exercised to control impacts of radiation on environment and living things according to international guidelines

  20. Radiation. Protection. Health. Proceedings

    International Nuclear Information System (INIS)

    Hajek, Michael; Maringer, Franz Josef; Steurer, Andreas; Schwaiger, Martina; Timal, Guenter

    2015-01-01

    The topics of the meeting are the diagnostic and therapeutic application of ionizing radiations, the application of radiation in research, industry and engineering and radiation protection. The volume includes the following chapters: Radiation protection and society, radiation protection infrastructure, population and environment, metrology and measuring techniques, 1. Workshop on population and environment, NORM and radon, 2. Update: dose - extent of damage - limiting value definition, radiation protection for personnel (except medicine), radiation protection in medicine.

  1. Radiation protection principles

    International Nuclear Information System (INIS)

    Ismail Bahari

    2007-01-01

    The presentation outlines the aspects of radiation protection principles. It discussed the following subjects; radiation hazards and risk, the objectives of radiation protection, three principles of the system - justification of practice, optimization of protection and safety, dose limit

  2. A performance study of radio-opaque personal protective fabrics for the reduction of transmittance of gamma-rays and neutrons

    International Nuclear Information System (INIS)

    Corcoran, E.C.; William Forest; Robert Horton; Kelly, D.G.; Kristine Mattson; Curtis McDonald; Nielsen, K.S.; Kristin Topping; Weir, R.D.; Andre Yonkeu

    2012-01-01

    Commercial radio-opaque combat (CRC) fabrics, for incorporation into personal protective equipment used by first responders and armed forces, are marketed as having the ability to provide a level of protection against specific types of radiation. For a CRC material, a standard combat uniform and a multi-layered chemical, biological, radiological, nuclear (CBRN) protective material, the present work examines chemical composition and radiation protection against gamma-rays and neutron fluxes. Significant reduction in gamma-ray transmittance occurs only for the CRC fabric (46-514 keV) with gamma-ray attenuation coefficients of 3.10 to 2 g -1 . Reduction in neutron transmittance, for all three fabrics, could not be assessed with certainty as the measured transmittance was obscured by large statistical uncertainties. (author)

  3. Organization of medical physics and radiation protection: return on experience from some French and foreign health establishments. Report nr 306

    International Nuclear Information System (INIS)

    Badajoz, C.; Bataille, C.; Drouet, F.; Schieber, C.

    2009-04-01

    After having recalled the French legal context related to the missions of experts in radiation protection and of experts in medical radio-physics, as well as to the organization of medical physics and radiation protection, this report proposes a global analysis of the organization noticed in several visited units (in different health establishments in France, Switzerland and Spain) and of their actions regarding workers' and patients' radiation protection. Good practices have been identified and recommendations are made

  4. Radiation Protection Ordinance. Preventive Radiation Protection Act. 3. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1990-01-01

    This 3rd edition presents the official explanations of the legislative intent behind the Radiation Protection Ordinance of 1976 and the 2nd amending ordinance, and the commentaries which as usual refer to the legal aspects and the related medical, scientific, and technical aspects. As a consequence of the reactor accident at Chernobyl, the existing radiation protection law has been extended by the Act for Preventive Measures for Pretection of the Population Against the Hazards of Ionizing Radiation (Preventive Radiation Protection Act), establishing preventive legal provisions and measures, so that this new edition has likewise been extended by commentaries on the Protective Radiation Protection Act and an introduction to the new area of law. The material also includes the Act for Establishment of a Federal Office for Radiation Protection, of October 9, 1989, which amended the Atomic Energy Act and the Preventive Radiation Protection Act. The correction of the Radiation Protection Ordinance of October 16, 1989 (BGBl. I p. 1926) has been incorporated into the text of the amended version of the Radiation Protection Ordinance. Court decisions and literature referred to cover material published up to the first months of 1989. (orig.) [de

  5. Strengthening the radiation protection culture: a priority of EDF radiation protection policy

    International Nuclear Information System (INIS)

    Garcier, Y.

    2006-01-01

    Full text of publication follows: In order to improve the management of radiation protection at EDF nuclear power plants, the Human Factors Group of the Research and Development Division of EDF has performed some studies on the appropriation process of the radiation protection requirements. These studies have notably shown that an efficient application of the radiation protection requirements lies on a comprehension by all workers of the meaning of these requirements. Furthermore, they should not be applied under the constraint or because of the fear of a sanction, but the workers need to perceive and understand the benefits in terms of protection associated with the radiation protection requirements. The strengthening of the radiation protection culture is therefore a key element of the radiation protection policy developed by EDF. This culture lies on an awareness of the health risks potentially associated with low levels of ionising radiations, as well as on the knowledge of tools, techniques and good practices developed to control the level of exposures and improve the radiation protection. Various type of actions have been undertaken to reinforce among the relevant players (exposed and non-exposed workers, contractors, all levels of management,... ) an awareness of radiation protection in order to integrate it in their day to day work: elaboration of a 'radiation protection system of reference' explaining how the radiation protection regulatory requirements are applied at EDF, publication of a 'radiation protection handbook' available for all workers (including contractors), training sessions, creation of networks of specialists from the various nuclear power plants on specific radiation protection issues, organisation of feed-back experience forum, etc. Beyond these specific actions, i t is also important to ensure a support and an assistance on the field by dedicated specialists. In this perspective, the health physicists have to play a key role in order to

  6. Radio -Protective Role of Zinc Administration Pre-Exposure to Gamma-Irradiation in Male Albino Mice

    International Nuclear Information System (INIS)

    El-Dawy, H.A.; Aly El-Sayed, S.M.

    2004-01-01

    This study was performed to evaluate the potency of zinc chloride injected subcutaneously (30 mg/kg b.w.) in male albino mice as a radio-protective agent pre exposure to gamma-irradiation. The investigation of the radio-protective role of zinc chloride was accomplished through measuring the levels of sex hormones, and observation of the chromosomal aberrations and sperm-head abnormalities after exposure to gamma-irradiation. The average of abnormal cells with chromosomal aberration and abnormal sperm % on the 7 th and 21 th days were 32% and 40%, and 14% and 22% respectively in mice exposed to radiation alone compared to 12% and 16%, and 5% and 12% respectively in mice treated with zinc chloride pre-irradiation. Treatment of mice with zinc chloride pre-irradiation induced significant amelioration in FSH and LH hormone levels on the 7 th day only of experimentation period, and showed non-significant amelioration in testosterone level

  7. Patients radiation protection in medical imaging. Conference proceedings; Radioprotection des patients en imagerie medicale. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  8. Radiation protection in the field of environmental protection

    International Nuclear Information System (INIS)

    Zhao Yamin

    2003-01-01

    The relationship of radiation protection with environmental protection, the sources that may give rise to the environmental radiation contamination, and the system of radiation protection and the fundamental principles and requirements for radiation environmental management are introduced. Some special radiation protection problems faced with in the radiation environmental management are discussed. (author)

  9. Radio-exposure tied to human activities other than medical uses of ionizing radiation, the functioning or nuclear power plants, or experimental atomic explosions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The chapter deals only with the radio-exposure of the general public. Here the authors shall deal with the radio-exposure connected with the activities of two kinds of establishment: factories which prepare, manufacture, or transform radioactive substances, with the exception of nuclear power plants and their associated installations; and establishments which make use of techniques. The ever-expanding employment of radio-isotopes and radiation in industry is explained by the development of new applications and the increasing reliability of these materials. This technology presents many advantages. It allows one to economize on raw material as well as energy, to improve the quality of products while making these installations safer when functioning, and to protect the environment. The applications of radio-isotopes and radiation are varied, contributing to the efficiency of many industrial operations. The fundamental properties of the radio-elements are employed: the detectability over some distance of the radiations emitted by their chemical biological and thermic effects; and the identical behavior of different isotopes of the same element

  10. Training in radiation protection

    International Nuclear Information System (INIS)

    Schreiber, F.

    1998-01-01

    Persons who are exposed to ionizing radiation at their workplace have to be trained in radiation protection. According to the Radiation Protection Ordinance the person with responsibility in radiation protection has to guarantee that the training is performed twice a year. Our training material was created especially for the persons defined in the Radiation Protection Ordinance and the X-ray Ordinance. It enables persons who teach (generally the radiation protection officer) to perform the training without tedious study and preparation of the documents. Our material is not just another textbook for radiation protection but rather a folder with colour transparencies and explanatory texts which make a difference in volume and price in comparison to other existing materials. (orig.) [de

  11. Radiation protection seminar

    International Nuclear Information System (INIS)

    2012-01-01

    The Radiation Protection Seminar, was organized by the Argentina Association of Biology and Nuclear Medicine, and Bacon Laboratory, the 20 june 2012, in the Buenos Aires city of Argentina. In this event were presented some papers on the following topics: methods of decontamination, radiation protection of patients; concepts of radiation protection and dosimetry.

  12. Experiences with the inspection of x-ray diagnostic workplaces in the radio hygienic subcentre of Gyoer

    International Nuclear Information System (INIS)

    Giczi, F.; Halmai, O.; Farkas, I.; Ballay, L.; Pellet, S.

    1996-01-01

    The authors present present their experiences obtained in the course of the inspection of x-ray diagnostic departments. The protocol for radiation protection survey worked out by the Operational Radiological Department of the National research Institute for Radiobiology and Radio hygiene (NRIRR) has been used. The general radiation protection conditions of x-ray diagnostic workplaces in the region of Gyoer Radio hygienic Subcentre (GyRS) are evaluated. Highlights of typical non compliancies and evaluation of dose and dose rate values measured are summarised. With regard to general radiation protection conditions of x-ray diagnostic workplaces, the following conclusions can be drawn. The optimal performance of x-ray equipment and radiation safety cannot be achieved without regular inspection and quality control activity. Radio hygienic conditions are also highly affected by the professional and radiation protection education and skill of department staff, particularly radiation protection officers and radiologists, which have to improved by regular training. (author). 8 refs., 5 figs., 4 tabs

  13. Promoting fluoroscopic personal radiation protection equipment: unfamiliarity, facts and fears

    International Nuclear Information System (INIS)

    Balter, Stephen

    2017-01-01

    An incomplete understanding of risk can cause inappropriate fear. Personal protective equipment (PPE) offered for the prevention of brain cancer in interventional fluoroscopists (IR-PPE). Similar items are offered for cell-phone use (RF-PPE). Publications on fluoroscopy staff brain cancer and similar papers on cell-phone induced brain cancer were reviewed. An internet safety product search was performed, which resulted in many tens of thousands of hits. Vendor claims for either ionizing radiation or radio frequency products seldom addressed the magnitude of the risk. Individuals and institutions can buy a wide variety of safety goods. Any purchase of radioprotective equipment reduces the funds available to mitigate other safety risks. The estimated cost of averting an actuarial fatal brain cancer appears to be in the order of magnitude $10 000 000-$100 000 000. Unwarranted radiation fears should not drive the radiation protection system to the point of decreasing overall safety. (authors)

  14. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-15

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives.

  15. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    International Nuclear Information System (INIS)

    2008-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  16. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    1976-06-01

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  17. The Radiation Protection Act

    International Nuclear Information System (INIS)

    Persson, L.

    1989-01-01

    The new Radiation Protection Act (1988:220) entered into force in Sweden on July 1st, 1988. This book presents the Act as well as certain regulations connected to it. As previously, the main responsibility for public radiation protection will rest with one central radiation protection authority. According to the 1988 Act, the general obligations with regard to radiation protection will place a greater responsibility than in the past on persons carrying out activities involving radiation. Under the act, it is possible to adjust the licensing and supervisory procedures to the level of danger of the radiation source and the need for adequate competence, etc. The Act recognises standardised approval procedures combined with technical regulations for areas where the risks are well known. The Act contains several rules providing for more effective supervision. The supervising authority may in particular decide on the necessary regulations and prohibitions for each individual case. The possibilities of using penal provisions have been extended and a rule on the mandatory execution of orders has been introduced. The Ordinance on Radiation Protection (1988:293) designates the National Institute of Radiation Protection (SSI) as the central authority referred to in the Radiation Protection Act. The book also gives a historic review of radiation protection laws in Sweden, lists regulations issued by SSI and presents explanations of radiation effects and international norms in the area. (author)

  18. Radiation protection in Sudan

    International Nuclear Information System (INIS)

    Elamin, O.I.; Hajmusa, E.A.; Shaddad, I.A.

    2001-01-01

    The regulatory framework as established by the Sudan Atomic Energy Commission (SAEC) Act, promulgated in 1996, is described in the report. Three levels of responsibility in meeting radiation protection requirements are established: the Board, the Radiation Protection Technical Committee as the competent authority in the field of radiation protection, and the SAEC Department of Radiation Protection and Environmental Monitoring as the implementing technical body. The report also refers to environmental activities, patient doses in diagnostic radiology, the management of disused sources, emergency preparedness and orphan sources, and the national training activities in the radiation protection field. (author)

  19. The physics of radiation protection

    International Nuclear Information System (INIS)

    Doerschel, B.; Schuricht, V.; Steuer, J.

    1996-01-01

    The book is aimed at both practising specialists and scientists wishing to learn about the fundamental science of radiation protection. The first part of the book, 'Physical Fundamentals of Radiation Protection', presents a concise description of radiation sources and radiation fields, interaction of radiation with matter, radiation effects and radiation damage, basic concept of radiation protection, radiation exposure of man, radiation protection measuring techniques and physical fundamentals for limiting radiation exposure. The second part, 'Calculational Exercises for Radiation Protection' is intended to supplement the first part by carrying out relevant calculations, amending and adding special aspects and to give guidance in solving practical problems. The book is written for scientists as well as for students and staff working in nuclear facilities, hospitals and institutions responsible for radiation and environmental protection. (UK)

  20. Focus radiation protection; Schwerpunkt Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Ebermann, Lutz (comp.)

    2016-07-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  1. The radiation protection effects of TMG to the embryonic effects on the organogenesis stage in ICR mice

    International Nuclear Information System (INIS)

    Santokuya, Takumi; Gu, Yeunhwa; Suzuki, Ikukatsu; Hasegawa, Takeo; Yamamoto, Youichi; Iwasa, Toshihiro; Yanagisawa, Takaharu

    1999-01-01

    The Organogenesis stage is the most important from the viewpoint of ionizing protection. Many physical and chemical agents in the environment can effect an embryo. Fetal deaths were classified as Preimplantation, Embryonic and Fetal. We studied an excuse as a radio protective agent of the high malformation of the sensitivity most by using TMG to the radiation. This study aimed at obtaining the information to provide it for the fetus' protection to the various environmental radiations. As for Preimplantation death, there was a statistical difference the 2.0Gy Group in comparison with the control group (p<0.05). Embryonic death, a statistical difference was recognized as in all the treatment groups (p<0.001). But, as for the TMG+radiation group, Malformation rate decreased to 1/2. As for Fetal body weight, a statistical difference was recognized in radiation group, the radiation+TMG infusion group chisels for medical use (p<0.05). Therefore, TMG protecting effect to the radiation was made clear by this research

  2. Radiation protection

    International Nuclear Information System (INIS)

    Ures Pantazi, M.

    1994-01-01

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection

  3. Radiation Protection

    International Nuclear Information System (INIS)

    Loos, M.

    2002-01-01

    Major achievements of SCK-CEN's Radiation Protection Department in 2001 are described. The main areas for R and D of the department are enviromnental remediation, emergency planning, radiation protection research, low-level radioactvity measurements, safeguards and physics measurements, decision strategy research and policy support and social sciences in nuclear research. Main achievements for 2001 in these areas are reported

  4. The national radiation protection infrastructure

    International Nuclear Information System (INIS)

    Mastauskas, A.

    1999-01-01

    The state system of radiation protection is still being created after Lithuania regained its independancy and in connection with recommendations laid in the ICRP-60 publication and requirements of legislation of European Community. A new regulation institutions was established and a number of laws and regulations related to radiation protection was prepared. The Radiation Protection Centre of Ministry of Health is the regulatory authority responsible for radiation protection of public and of workers using sources of ionizing radiation in Lithuania. A new Radiation Protection Law, Nuclear Energy Law, Radioactive Waste Management Law and different regulations was approved. Preparation of legislation, creation of state system of radiation protection and its upgrading allow to presume that the necessary level of radiation protection is to be achieved. (au)

  5. Occupational exposure to radio frequency/microwave radiation and the risk of brain tumors

    DEFF Research Database (Denmark)

    Berg, Gabriele; Spallek, Jacob; Schüz, Joachim

    2006-01-01

    It is still under debate whether occupational exposure to radio frequency/microwave electromagnetic fields (RF/MW-EMF) contributes to the development of brain tumors. This analysis examined the role of occupational RF/MW-EMF exposure in the risk of glioma and meningioma. A population-based, case....... "High" exposure was defined as an occupational exposure that may exceed the RF/MW-EMF exposure limits for the general public recommended by the International Commission on Non-Ionizing Radiation Protection. Multiple conditional logistic regressions were performed separately for glioma and meningioma...

  6. Radiation protection medical care of radiation workers

    International Nuclear Information System (INIS)

    Walt, H.

    1988-01-01

    Radiation protection medical care for radiation workers is part of the extensive programme protecting people against dangers emanating from the peaceful application of ionizing radiation. Thus it is a special field of occupational health care and emergency medicine in case of radiation accidents. It has proved helpful in preventing radiation damage as well as in early detection, treatment, after-care, and expert assessment. The medical checks include pre-employment and follow-up examinations, continued long-range medical care as well as specific monitoring of individuals and defined groups of workers. Three levels of action are involved: works medical officers specialized in radiation protection, the Institute of Medicine at the National Board for Atomic Safety and Radiation Protection, and a network of clinical departments specialized in handling cases of acute radiation damage. An account is given of categories, types, and methods of examinations for radiation workers and operators. (author)

  7. Paradigms of modern radio-biology

    International Nuclear Information System (INIS)

    Grodzins'kij, D.M.

    2005-01-01

    The basic paradigms of modern radio-biology are considered as models of pictures of essence of radio-biology problems and methods of their decision. It is marked on absolute heuristics of these ascending conceptual assertions and their assistance to subsequent development of experimental science. That has the concrete display in the decision of actual tasks of protection of people from action of ionizing radiation

  8. Radio protective effect of black mulberry extract on radiation-induced damage in bone marrow cells and liver in the rat

    Science.gov (United States)

    Ghasemnezhad Targhi, Reza; Homayoun, Mansour; Mansouri, Somaieh; Soukhtanloo, Mohammad; Soleymanifard, Shokouhozaman; Seghatoleslam, Masoumeh

    2017-01-01

    Ionizing radiation by producing free radicals induces tissue oxidative stress and has clastogenic and cytotoxic effects. The radio protective effect of black mulberry extract (BME) has been investigated on liver tissue and bone marrow cells in the rat. Intraperitoneal (ip) administration of 200 mg/kg BME three days before and three days after 3 Gy and 6 Gy gamma irradiation significantly reduced the frequencies of micro nucleated polychromatic erythrocytes (MnPCEs) and micro nucleated norm chromatic erythrocyte (MnNCEs) and increased PCE/PCE+NCE ratio in rat bone marrow compared to the non-treated irradiated groups. Moreover, this concentration of BME extract decreased the level of malondialdehyde (MDA) and superoxide dismutase (SOD), as well as enhanced the total thiol content and catalase activity in rat's liver compared to the non-treated irradiated groups. It seems that BME extract with antioxidant activity reduced the genotoxicity and cytotoxicity induced by gamma irradiation in bone marrow cells and liver in the rat.

  9. Radiation protection in Bolivia

    International Nuclear Information System (INIS)

    Miranda Cuadros, A.A.

    2001-01-01

    Radiation protection in Bolivia has gone through a number of stages. Initially, in the 1970s, the focus was mainly on the analysis of environmental sources resulting from the nuclear tests carried out by France in the Pacific Ocean. Subsequently, the focus switched somewhat to radiation protection in connection with the mining of uranium and in the area of public health. During the third stage, radiation protection in other areas became important as the use of radiation sources was introduced. Finally, during the present -- fourth -- stage, radiation protection regulations are being introduced and mechanisms for the control of radiation sources are being established. (author)

  10. Radiation protection textbook

    International Nuclear Information System (INIS)

    Gambini, D.J.; Granier, R.

    2007-01-01

    This textbook of radiation protection presents the scientific bases, legal and statutory measures and technical means of implementation of the radioprotection in the medical and industrial sectors, research and nuclear installations. It collects the practical information (organization, analysis of post, prevention, evaluation and risks management, the controls, the training and the information) usually scattered and the theoretical knowledge allowing every person using ionizing radiation: To analyze jobs in controlled areas, to watch the respect for the current regulations, to participate in the training and in the information of the staffs exposed to intervene in accidental situation. This third edition is widely updated and enriched by the most recent scientific and legal data concerning, notably, the human exposure, the dosimetry, the optimization of the radiation protection and the epidemiological inquiries. The contents is as follows: physics of ionizing radiation, ionizing radiation: origin and interaction with matter, dosimetry and protection against ionizing radiation, detection and measurement of ionizing radiation, radiobiology, legal measures relative to radiation protection, human exposure of natural origin, human exposure of artificial origin, medical, dental and veterinarian radiology, radiotherapy, utilization of unsealed sources in medicine and research, electronuclear industry, non nuclear industrial and aeronautical activities exposing to ionizing radiation, accidental exposures. (N.C.)

  11. Radiation protection forum

    International Nuclear Information System (INIS)

    Cabral, W.

    2010-01-01

    The National Director of the Nuclear Regulatory Authority and Radiation Protection of Uruguay in the first forum for radiation protection set out the following themes: activity of regulatory body, radiation safety, physical security, safeguards, legal framework, committed substantive program, use of radiation, risks and benefits, major sources of radiation, the national regulatory framework, national inventory of sources, inspections, licensing, import and export of sources control , radioactive transport, materials safety, agreements, information and teaching, radiological emergencies and prompt response.

  12. Radiation protection law

    International Nuclear Information System (INIS)

    Hebert, J.

    1981-01-01

    This article first reviews the general radiation protection law at international and national level, with particular reference to the recommendations of the International Commission on Radiological Protection (ICRP) which, although not mandatory, are nevertheless taken into consideration by international organisations establishing basic radiation protection standards such as the UN, IAEA, NEA and Euratom, at Community level, and by national legislation. These standards are therefore remarkably harmonized. Radiation protection rule applied in France for the different activities and uses of radioactive substances are then described, and finally, a description is given of the regulations governing artificial radioisotopes and radioactive effluents. (NEA) [fr

  13. Seeds of Camargue rice (Oryza Sativa L. Var Cigalon) and their responses to exposure to 60-Co gamma radiations. Study of the natural phenomenon of radiation protection

    International Nuclear Information System (INIS)

    Bayonove-Barthelemy, Jacqueline

    1978-01-01

    Within the frame of a project aiming at improving a technique of experimental mutagenesis (seed processing by cobalt-60 gamma rays), this research thesis reports the radiobiological characterization of Cigalon rice seeds, the adjustment of techniques of radiation protection, and the definition of processing and irradiation conditions which could reduce the undesirable physiological effects of cobalt-60 gamma radiation on rice seeds. The author reports the study of variations of physiological radio-sensitivity. Damages are assessed by comparing the growth of irradiated seeds with that of non-irradiated seeds. The mechanism of radiation natural protection is studied by comparing an inhibition in distilled water at two temperatures (5 and 24 C) with that obtained with cysteamine (an efficient radiation protection compound)

  14. Radiation protection standards

    International Nuclear Information System (INIS)

    Koelzer, W.

    1980-01-01

    The present paper deals with: Objectives and basic concepts of radiation protection, basic radiobiological considerations, the ICRP system of dose limitation and with operational radiation protection (limits, reference levels, occupational exposure). (RW)

  15. Non-Ionizing Radiation: Nature and Protection

    International Nuclear Information System (INIS)

    Abukasem, E.; Abdemalek, H.; Mosbah, D. S.

    2011-01-01

    Last century, the humanity witnessed a vast development, after the industrial revolution, in many aspects of life. There was a real revolution in world of communications, the electromagnetic waves were produced and used in many applications like wireless communications, radio and television transmissions, information transfer, medical diagnosis and many other useful applications. Non-ionizing radiation, the radiation which has no enough energy to remove an electron from an atom, becomes indispensable life necessity and currently it is a subject of public debate about its effects and hazards on human life and environments. The Arab Atomic Energy Agency recognized this fact and tried to raise the public awareness towards by organizing seminars, workshops and expert meetings in the Arab region in order to study the theoretical and applies aspects of this type of radiation as well as to shed the light on its possible hazards and effects on human life. This booklet came as a result of many expert meetings to be an Arabic simple and comprehensive guide line about the nature of and the different methods of protection from its possible effects and hazards.(author)

  16. Ionizing radiation exposure in interventional cardiology: current radiation protection practice of invasive cardiology operators in Lithuania.

    Science.gov (United States)

    Valuckiene, Zivile; Jurenas, Martynas; Cibulskaite, Inga

    2016-09-01

    Ionizing radiation management is among the most important safety issues in interventional cardiology. Multiple radiation protection measures allow the minimization of x-ray exposure during interventional procedures. Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Interventional cardiologists of five cardiac centres were interviewed by anonymized questionnaire, addressing personal use of protective garments, shielding, table/detector positioning, frame rate (FR), resolution, field of view adjustment and collimation. Effective patient doses were compared between operators who work with and without x-ray optimization. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)-portable barriers; 12.9% (n  =  4)-abdominal patient's shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a 'store fluoro' option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions. Many of the ionizing radiation exposure reduction tools and techniques are underused by a considerable proportion of interventional cardiology operators. The application of basic radiation protection tools and

  17. Radiation exposure by radio-iodine release of the planned nuclear power plant Wyhl

    Energy Technology Data Exchange (ETDEWEB)

    Bleck-Neuhaus, J

    1981-01-01

    The radioecology of iodine-131 in the off-air of a nuclear power plant is subject to investigation of the critical exposure pathway air - pasture ground - cow - milk. According to the findings on the factors influencing the radiation exposure of man presented in scientific publication we have to deviate today from static equilibrium models. Such models can no longer satisfy at the present state of the art. The viewing of the short-term time behaviour of the radioecological parameter that is imperative with iodine-131 shows that the conventional calculation, chiefly with mean values of many years, does not satisfy the requirements to replace the calculation of the radiation exposure at the most unfavourable points of exposure demanded by the Radiation Protection Ordinance. This report proves that in a number of possible events under normal operating conditions the radiation exposure is far more important and the limiting dose rates are unmistakably exceeded. If favourable conditions coincide it can in fact be expected that the radiation exposure by radio iodine remains below the limiting close rate.

  18. Radiation protection in nuclear reactors

    International Nuclear Information System (INIS)

    El-Ashkar, Mohamed

    2008-01-01

    Full text: People are exposed to ionizing radiation in many different forms: cosmic rays that penetrate earth atmosphere or radiation from soil and mineral resources are natural forms of ionizing radiation. Other forms are produced artificially using radioactive materials for various beneficial applications in medicine, industry and other fields. The greatest concerns about ionizing radiation are tied to its potential health effects and a system of radiation protection has been developed to protect people from harmful radiation. The promotion of radiation protection is one of the International Atomic Energy Agency main activities. Radiation protection concerns the protection of workers, members of public, and patients undergoing diagnosis and therapy against the harmful effects of ionizing radiation. The report covers the responsibility of radiation protection officer in Egypt Second Research Reactor (ETRR-2) in Inshas - Egypt, also presents the protection against ionizing radiation from external sources, including types of radiation, sources of radiation (natural - artificial), and measuring units of dose equivalent rate. Also covers the biological effects of ionizing radiation, personal monitoring and radiation survey instruments and safe transport of radioactive materials. The report describes the Egypt Second Research Reactor (ETRR-2), the survey instruments used, also presents the results obtained and gave a relations between different categories of data. (author)

  19. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1976-01-01

    The lecture is divided into five sections. The introduction deals with the physical and radiological terms, quantities and units. Then the basic principles of radiological protection are discussed. In the third section attention is paid to the biological effects of ionizing radiation. The fourth section deals with the objectives of practical radiological protection. Finally the emergency measures are discussed to be taken in radiation accidents. (HP) [de

  20. Interpreting radiative efficiency in radio-loud AGNs

    Science.gov (United States)

    Hardcastle, Martin

    2018-04-01

    Radiative efficiency in radio-loud active galactic nuclei is governed by the accretion rate onto the central black hole rather than directly by the type of accreted matter; while it correlates with real differences in host galaxies and environments, it does not provide unambiguous information about particular objects.

  1. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  2. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  3. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  4. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  5. Comments to the German society's for radiation protection (Gesellschaft fur Strahlenschutz) proposed principles for radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    2002-01-01

    The German Society for Radiation Protection (in German Gesellschaft fur Strahlenschutz) is a separate society for radiation protection in Germany in addition to the leading society named Association of German and Swiss Radiation Protection Specialists (in German Fachverband fur Strahlenschutz). The Society is an international professional society. There are several hundreds members of the German Society for Radiation Protection. The German Society for Radiation Protection is not a member of IRPA (the International Radiation Protection Society). The IRPA member is the Association of German and Swiss Radiation Protection Specialists. According to information given on the web site of the Society for Radiation Protection (www.gfstrahlenschutz.de) the Society was founded in 1990 because in the opinion of the founding members the older professional societies and associations have not adequately considered and implemented the present knowledge of radiation risks and radiation protection. In accordance with its statutes the society pursues besides other aims the best possible protection of humans and the environment from the detrimental action of ionising and non-ionising radiation. The dealing with ionising and non-ionising radiation can according to the Society only be justified on the basis of biological and medical state of the art knowledge

  6. What is good radiation protection?

    International Nuclear Information System (INIS)

    Lorenz, B.

    2016-01-01

    Radiation protection is based on the ICRP-System with its pillars justification, limitation and optimization. From this radiation protection should be the same irrespective of the application of radiation. But radiation protection in the nuclear industry is much different from the use of radiation sources or X-ray units. This is by far not due to the different technologies. It originates from the different interpretation of the system. For one person good radiation protection would mean to have no radiation exposures, to avoid radiation at all as best option and to use it only if there are no alternatives. For another person the best radiation protection would be the one which does not produce much efforts and costs. So what is reasonable? In reality the first interpretation prevails, at least in Germany. A change is needed. If we continue to exercise radiation protection as we do it today the beneficial application of radiation will be restricted unduly and might become impossible at all. A stronger orientation towards the naturally occurring radiation would help instead to regulate natural radiation in the same way as it is done for artificial radiation. The system of ICRP has to be changed fundamentally.

  7. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    International Nuclear Information System (INIS)

    2003-07-01

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The

  8. The principles of radiation protection

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of radiation protection is to avoid or to reduce the risks linked to ionizing radiation. In order to reduce these risks, the radiation protection uses three great principles: justification, optimization and limitation of radiation doses. to apply these principles, the radiation protection has regulatory and technical means adapted to three different categories of people: public, patients and workers. The nuclear safety authority elaborates the regulation, and carries out monitoring of the reliable application of radiation protection system. (N.C.)

  9. Principles of Radiation Protection Concepts

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli

    2004-01-01

    The contents of this chapter are follows - Radiation Protection Concepts: justification, dose limitation, optimisation, potential exposures, situation requiring intervention; Special Considerations. Protection from Radiation Hazards, Remove the Hazard, Prevent the Hazard, Guard the Worker, Implementation of Radiation Protection and Safety Measures, Distance, Shielding, Time, Monitoring Programme, Safety System. Radiation Protection in Radiological Service: Specific Requirement in Diagnostic Radiological Service

  10. The influence of continuum radiation fields on hydrogen radio recombination lines

    Science.gov (United States)

    Prozesky, Andri; Smits, Derck P.

    2018-05-01

    Calculations of hydrogen departure coefficients using a model with the angular momentum quantum levels resolved that includes the effects of external radiation fields are presented. The stimulating processes are important at radio frequencies and can influence level populations. New numerical techniques with a solid mathematical basis have been incorporated into the model to ensure convergence of the solution. Our results differ from previous results by up to 20 per cent. A direct solver with a similar accuracy but more efficient than the iterative method is used to evaluate the influence of continuum radiation on the hydrogen population structure. The effects on departure coefficients of continuum radiation from dust, the cosmic microwave background, the stellar ionising radiation, and free-free radiation are quantified. Tables of emission and absorption coefficients for interpreting observed radio recombination lines are provided.

  11. Foundations of radiation physics and radiation protection. 5. ed.

    International Nuclear Information System (INIS)

    Krieger, Hanno

    2017-01-01

    The following topics are dealt with: Types of radiation and radiation fields, the atomic structure, radioactive decays, decay law, natural and artificial radioactivity, interactions of ionizing photon radiation, attenuation of neutral-particle beams, interactions of neutron radiation, interactions of charged particles, ionization and energy transfer, radiation doses, radiation protection phantoms, foundations of the radiation biology of cells, effects and risks of ionizing radiation, radiation expositions of men with ionizing radiation, radiation protection law, practical radiation protection against ionizing radiations, radiation eposures in medical radiology. (HSI)

  12. Radiation Protection Training in Lithuania

    International Nuclear Information System (INIS)

    Jankauskiene, D.

    2003-01-01

    Radiation Protection Training is an important component of Radiation Protection and serves for human radiation safety. According to the Lithuanian Law on Radiation Protection the legal persons and enterprises without the status of legal persons to conduct practices with sources or which workers work under exposure must organize at their own expenses a compulsory training and assessment of knowledge of the workers engaging in activities with the sources and radiation protection officers. Such training has been started in 1999. In Lithuania there are few institutions executing Radiation Protection training. Under requirements of legal act On Frequency and Procedure of Compulsory Training and Assessment Knowledge of the Workers Engage in Activities with the Sources of Ionising Radiation and Radiation Protection Officers these institutions have to prepare and coordinate training programs with the Radiation Protection Center. There are adopted different educating programs for Radiation Protection Training to the Workers and Radiation Protection Officers depending on character of work and danger of sources. The duration of Training is from 30 to 270 hours. The Training shall be renewed every five years passing 30 hors course. To ensure the adequate quality of training a great deal of attention is paid to qualifying the lectures. For this purpose, it was established an Evaluation commission to estimate the adequacy of lecturer's knowledge to requirements of Training programs. After passing exams the lectures get the qualification confirming certificates. The main task of our days is to establish and arrange the National Training Centre on Radiation Protection Training that would satisfy requirements and recommendations of legal documents of IAEA and EU for such kind of institutions of institutions. (Author)

  13. Practical radiation protection

    International Nuclear Information System (INIS)

    Brouwer, G.; Van den Eijnde, J.H.G.M.

    1997-01-01

    This textbook aims at providing sufficient knowledge and insight to carry out correctly radiation protection activities and operations. The subjects are appropriate for the training of radiation protection experts for the levels 5A (encapsulated sources, X rays) and 5B (open sources, laboratory activities)

  14. Perspectives for environmental radiation protection in EU radiation protection legislation

    International Nuclear Information System (INIS)

    Janssens, A.

    2000-01-01

    The basis of EU radiation protection legislation is the EURATOM Trealy. It is discussed whether the Treaty offers a legal basis for the protection of the natural environment. The incorporation of provisions pertaining to the nuclear fuel cycle or to radioactive substances in general environmental legislation is explained, as well as the possible implications of international conventions subscribed by the European Union. The European Commission is in the process of developing an overall approach to risk analysis for the protection of health, consumer interests, and the environment. It is examined to what extent the consideration of the impact of radiation on the natural environment fits in the overall framework and whether the principles underlying classical radiation protection are applicable to biota. Specific attention is given to situations where high levels of environmental radioactivity would require intervention. (Author)

  15. Philosophy of radiological protection and radiation hazard protection law

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kawano, Takao

    2013-01-01

    The radiation protection and the human safety in radiation facilities are strictly controlled by law. There are rules on the radiation measurement, too. In the present review, philosophy of the radiological protection and the radiation hazard protection law is outlined with reference to ICRP recommendations. (J.P.N.)

  16. Radiation Protection Proclamation

    International Nuclear Information System (INIS)

    1993-01-01

    A proclamation of the Government of Ethiopia, cited as the radiation protection proclamation number 79/1993 was prepared with the objective to establish a national radiation protection authority that formulates policies, controls and supervises activities involving all sources of radiation and lay down laws governing such activities in order to ensure public safety against associated hazards while allowing radiation related activities to be carried out for the benefit of the public . The Authority is guided by an inter-ministerial board and is accountable to the Ethiopian Science and Technology Commission

  17. National congress of radiation protection

    International Nuclear Information System (INIS)

    2001-01-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  18. Instructed officers Radiation Protection

    International Nuclear Information System (INIS)

    2007-01-01

    This law contains instructions on the prevention of radiological and contains 4 articles Article I: describe the responsibilities of the institutions that operate within the scope of radiological protection in terms of the number of radiation protection officers and personal Supervisors who available in the practices radiation field. Article II: talking about the conditions of radiation protection officers that must be available in the main officers and working field in larg institutions and thecondition of specific requirements for large enterprises of work permits in the field of radiological work that issued by the Council. Article III: the functions and duties of officers in the prevention of radiological oversee the development of radiation protection programmes in the planning stages, construction and preparing the rules of local labour and what it lead of such tasks.Article IV: radiation protection officers powers: to modify and approve the programme of prevention and radiation safety at the company, stop any unsafe steps, amend the steps of the usage, operation of materials, devices and so on

  19. Radiation exposure and radiation protection

    International Nuclear Information System (INIS)

    Heuck, F.; Scherer, E.

    1985-01-01

    The present volume is devoted to the radiation hazards and the protective measures which can be taken. It describes the current state of knowledge on the changes which exposure to ionizing rays and other forms of physical energy can induce in organs and tissues, in the functional units and systems of the organism. Special attention is paid to general cellular radiation biology and radiation pathology and to general questions of the biological effects of densely ionizing particle radiation, in order to achieve a better all-round understanding of the effects of radiation on the living organism. Aside from the overviews dealing with the effects of radiation on the abdominal organs, urinary tract, lungs, cerebral and nervous tissue, bones, and skin, the discussion continues with the lymphatic system, the bone marrow as a bloodforming organ, and the various phases of reaction in the reproductive organs, including damage and subsequent regeneration. A special section deals with environmental radiation hazards, including exposure to natural radiation and the dangers of working with radioactive substances, and examines radiation catastrophes from the medical point of view. Not only reactor accidents are covered, but also nuclear explosions, with exhaustive discussion of possible damage and treatment. The state of knowledge on chemical protection against radiation is reviewed in detail. Finally, there is thorough treatment of the mechanism of the substances used for protection against radiation damage in man and of experience concerning this subject to date. In the final section of the book the problems of combined radiotherapy are discussed. The improvement in the efficacy of tumor radiotherapy by means of heavy particles is elucidated, and the significance of the efficacy of tumor therapy using electron-affinitive substances is explained. There is also discussion of the simultaneous use of radiation and pharmaceuticals in the treatment of tumors. (orig./MG) [de

  20. Phosphorus-32: practical radiation protection

    International Nuclear Information System (INIS)

    Ballance, P.E.; Morgan, J.

    1987-01-01

    This monograph offers practical advice to Radiation Protection Advisors, Radiation Protection Supervisors and Research Supervisors, together with research workers, particularly those in the field of molecular biological research. The subject is dealt with under the following headings: physical properties, radiation and measurement methods, radiation units, phosphorus metabolism and health risks, protection standards and practical radiation protection, administrative arrangements, accidents, decontamination, emergency procedures, a basic written system for radiochemical work, with specialised recommendations for 32 P, and guidance notes of accident situations involving 32 P. (U.K.)

  1. Optimisation of radiation protection

    International Nuclear Information System (INIS)

    1988-01-01

    Optimisation of radiation protection is one of the key elements in the current radiation protection philosophy. The present system of dose limitation was issued in 1977 by the International Commission on Radiological Protection (ICRP) and includes, in addition to the requirements of justification of practices and limitation of individual doses, the requirement that all exposures be kept as low as is reasonably achievable, taking social and economic factors into account. This last principle is usually referred to as optimisation of radiation protection, or the ALARA principle. The NEA Committee on Radiation Protection and Public Health (CRPPH) organised an ad hoc meeting, in liaison with the NEA committees on the safety of nuclear installations and radioactive waste management. Separate abstracts were prepared for individual papers presented at the meeting

  2. Radio frequency radiation (RFR) from TV and radio transmitters at a pilot region in Turkey

    International Nuclear Information System (INIS)

    Sirav, B.; Seyhan, N.

    2009-01-01

    For the last 30 y, the biological effects of non-ionising radiation (NIR: 0-300 GHz) have been a major topic in bio-electromagnetism. Since the number of radiofrequency (RF) systems operating in this frequency range has shown an incredible increase over the last few decades, the dangers of exposure to the fields generated thereby has become an important public health issue. In this study, the aim was to evaluate the level of RF electromagnetic radiation in Yenimahalle Sentepe Dededoruk Hill in Ankara (Turkey) that is a multiple-transmitter site hosting 64 different TV and radio towers and one base station for mobile phone communication. The site has been of interest as it is nearby a residential community. Within the technical input data available on 31 of the radio and TV transmitters, the calculated radiation level in this particular region was found to be approximately four times higher than the permitted standards of Turkey, which are the same as the ICNIRP standards. Electromagnetic field measurement is needed in the site. (authors)

  3. Radio frequency radiation (RFR) from TV and radio transmitters at a pilot region in Turkey.

    Science.gov (United States)

    Sirav, Bahriye; Seyhan, Nesrin

    2009-09-01

    For the last 30 y, the biological effects of non-ionising radiation (NIR: 0-300 GHz) have been a major topic in bioelectromagnetism. Since the number of radiofrequency (RF) systems operating in this frequency range has shown an incredible increase over the last few decades, the dangers of exposure to the fields generated thereby has become an important public health issue. In this study, the aim was to evaluate the level of RF electromagnetic radiation in Yenimahalle Sentepe Dededoruk Hill in Ankara, Turkey that is a multiple-transmitter site hosting 64 different TV and radio towers and one base station for mobile phone communication. The site has been of interest as it is nearby a residential community. Within the technical input data available on 31 of the radio and TV transmitters, the calculated radiation level in this particular region was found to be approximately four times higher than the permitted standards of Turkey, which are the same as the ICNIRP standards. Electromagnetic field measurement is needed in the site.

  4. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  5. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system

  6. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system. 8 refs

  7. Radiation and toxix materials

    International Nuclear Information System (INIS)

    Antipov, V.V.; Belkin, V.I.; Davydov, B.I.; Kustov, V.V.; Ushakov, I.B.

    1986-01-01

    General radiobiological concepts in aviation medicine related to the biological effect of ionizing radiation on flying factors are presented. Principles of standartization, permissible doses, general principles of radiation protection and prophylaxis of aviation personnel are described. Characteristics of radio emission, microwaves, procedure of their measurements are given. Pathophysiology of electromagnetic radiation is presented. Problems on radiation protection, technical and organization problems on electromagnetic radiation protection, as well as technology in aviation are discussed

  8. Radiation protection in hospitals

    International Nuclear Information System (INIS)

    MOuld, R.F.

    1985-01-01

    A book on radiation protection in hospitals has been written to cater for readers with different backgrounds, training and needs by providing an elementary radiation physics text in Part I and an advanced, comprehensive Part II relating to specific medical applications of X-rays and of radioactivity. Part I includes information on basic radiation physics, radiation risk, radiation absorption and attenuation, radiation measurement, radiation shielding and classification of radiation workers. Part II includes information on radiation protection in external beam radiotherapy, interstitial source radiotherapy, intracavitary radiotherapy, radioactive iodine-131 radiotherapy, nuclear medicine diagnostics and diagnostic radiology. (U.K.)

  9. Radiation protection training in Switzerland

    International Nuclear Information System (INIS)

    Pfeiffer, H.J.

    1999-01-01

    An increasing number of radiation protection experts and of professionally exposed workers is temporarily or permanently working in a country other than the one where they received their radiation protection education or training. They all face the problem and the difficulties of recognition of radiation protection training programs by other countries. For this reason the German-Swiss Radiation Protection Association (Fachverband fuer Strahlenschutz; FS) made a proposal to IRPA for an action on the mutual recognition of radiation protection education in Europe. In a first step contacts were made with two other European Associations of France and UK in order to establish a joint working group. (orig.) [de

  10. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    This textbook is addressed to all those concerned with the protection of radiation workers. It provides full coverage of the implications of radiation in exposed workers, and, after a chapter outlining, in simple terms, the basic facts about radiation, deals with measurement of ionising radiation; radiation dosimetry; effectiveness of absorbed dose; general biological effects of ionising radiation; somatic effects of radiation; the acute radiation syndrome; other somatic effects; hereditary effects; radiation protection standards and regulations; radiation protection; medical supervision of radiation workers; general methods of diagnosis and treatment; metabolism and health problems of some radioisotopes; plutonium and other transuranium elements; radiation accidents; emergency plans and medical care; atomic power plants; medico-legal problems

  11. Radiation Protection Infrastructure In Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, R.; Ratovonjanahary, J.F.; Zafimanjato, J.L.R.; Randriantseheno, H.F.; Ramanandraibe, M.J.; Randriantsizafy, D.R.

    2008-01-01

    Radiation sources are widely used in medicine, industry, research and education in Madagascar. Safety and security of these sources are the main statutory functions of the Regulatory Authority as defined by the regulations in Radiation Protection in Madagascar. These functions are carried out through the system of notification, authorization and inspection, inventory of radiation source and emergency preparedness. The law no 97-041 on radiation protection and radioactive waste management in Madagascar was promulgated on 2nd January 1998. It governs all activities related to the peaceful use of nuclear energy in Madagascar in order to protect the public, the environment and for the safety of radiation sources. This law complies with the International Basic Safety Standards for protection against ionising Radiation and for the Safety of Radiation Sources (BSS, IAEA Safety Series no 115). Following the promulgation of the law, four decrees have been enacted by the Malagasy Government. With an effective implementation of these decrees, the ANPSR will be the Highest Administrative Authority in the Field of Radiation Protection and Waste Management in Madagascar. This Regulatory Authority is supported by an Executive Secretariat, assisted by the OTR for Radiation Protection and the OCGDR for Managing Radioactive Waste.The paper includes an overview of the regulatory infrastructure and the organizations of radiation protection in Madagascar

  12. Radiation protection - thirty years after

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1989-01-01

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  13. Radiation protection - thirty years after

    Energy Technology Data Exchange (ETDEWEB)

    Ninkovic, M M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-07-01

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  14. ISO radiation protection standards

    International Nuclear Information System (INIS)

    Becker, K.; West, N.

    1981-01-01

    After a brief description of the International Organization for Standardization (ISO) and its Technical Committee (TC) 85 ''Nuclear Energy'', the work of its Sub-Committee (SC) 2 ''Radiation Protection'' is described in some detail. Several international standards on subjects closely related to radiation protection have already been published, for example ISO-361 (Basic radiation protection symbol), ISO-1757 (Photographic dosimeters), ISO-1758 and 1759 (Direct and indirect-reading pocket exposure meters), ISO-2889 (Sampling of airborne radioactive materials), ISO-4037 (X and gamma reference radiations for calibration) and ISO-4071 (Testing of exposure meters and dosimeters). TC 85/SC 2 has currently eight active Working Groups (WG) dealing with 14 standards projects, mostly in advanced stages, in such fields as neutron and beta reference radiations, and X and gamma radiations of high and low dose-rates and high energies for calibration purposes, reference radiations for surface contamination apparatus, ejection systems for gamma radiography apparatus, industrial and laboratory irradiators, lead shielding units, protective clothing, thermoluminescence dosemeters, radioelement gauges, and surface contamination and decontamination. (author)

  15. European Radiation Protection Course - Basics

    International Nuclear Information System (INIS)

    Massiot, Philippe; Ammerich, Marc; Viguier, Herve; Jimonet, Christine; Bruchet, Hugues; Vivier, Alain; Bodineau, Jean-Christophe; Etard, Cecile; Metivier, Henri; Moreau, Jean-Claude; Nourredine, Abdel-Mijd

    2014-01-01

    Radiation protection is a major challenge in the industrial applications of ionising radiation, both nuclear and non-nuclear, as well as in other areas such as the medical and research domains. The overall objective of this textbook is to participate to the development of European high-quality scheme and good practices for education and training in radiation protection (RP), coming from the new Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. These ERPTS (European Radiation Protection Training Scheme) reflects the needs of the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), specifically with respect to the Directive 2013/59/Euratom in all sectors where ionising radiation are applied. To reflect the RPE training scheme, six chapters have been developed in this textbook: Radioactivity and nuclear physics; Interaction of ionising radiation with matter; Dosimetry; Biological effects of ionising radiation; Detection and measurement of ionising radiation; Uses of sources of ionising radiation. The result is a homogeneous textbook, dealing with the ERPTS learning outcomes suggested by ENETRAPII project (European Network on Education and Training in Radiological Protection II) from the 7. Framework Programme. A cyber-book is also part of the whole training material to develop the concept of 'learning more' (http://www.rpe-training.eu). The production of this first module 'basics' training material, in the combined form of a textbook plus a cyber-book as learning tools, will contribute to facilitate mutual recognition and enhanced mobility of these professionals across the European Union. (authors)

  16. Radiation protection in radionuclide investigations

    International Nuclear Information System (INIS)

    Taylor, D.M.

    1985-01-01

    The subject is covered in sections: introduction; radiation and radioactivity; alpha particles; beta particles; neutrons; electromagnetic radiation; units of radioactivity and radiation; biological effects of radiation; the philosophy of radiation protection (ALARA principle); practical aspects of radiation protection; work with unsealed radiation sources; radionuclide studies in experimental animals; radiation safety during clinical investigations; legislative control of radiation work; radioactive waste disposal; emergency procedures; conclusion. (U.K.)

  17. Radiation protection housing

    Energy Technology Data Exchange (ETDEWEB)

    Maier, A

    1975-04-10

    The radiation protection housing consists of a foot rim with castor swivel wheels, a tubular frame tapering off at the top, and a crown. In the upper part of the tubular frame a lead glass window is permanently installed. The sides are covered with radiation attenuating curtains of leaded rubber. The housing has the shape of a truncated pyramid which can be dismantled into its constituent parts. It is used for protection from radiation encountered in X-ray facilities in dental radiology.

  18. Physics for radiation protection

    CERN Document Server

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  19. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Persson, Lars

    2000-03-01

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report

  20. Ethical issues in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Lars (ed.)

    2000-03-15

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report.

  1. Is radiation protection for the unborn child guaranteed by radiation protection for female workers?

    International Nuclear Information System (INIS)

    Nosske, C.; Karcher, K.

    2003-01-01

    ICRP Publication 88 recommends doses to embryo and fetus from intakes of radionuclides by the mother for various intake scenarios. Mainly by answering the question 'Is radiation protection for the unborn child guaranteed by radiation protection for female workers?' it has been assessed if the intake scenarios given in ICRP Publication 88 are adequate for radiation protection purposes. This is generally the case, but the consideration of an additional chronic intake scenario for early pregnancy would be helpful. It is demonstrated that following chronic intake by inhalation, for most radionuclides radiation protection for (female) workers is also adequate for protection of the unborn child, considered as a member of the public. However, there are a number of radionuclides for which possible intakes in routine operations should be more restricted (up to 1% of the annual limits on intake for workers in the case of nickel isotopes) to ensure radiation protection for the unborn child. (author)

  2. Optimization and radiation protection culture

    International Nuclear Information System (INIS)

    Jeon, In Young; Shin, Hyeong Ki; Lee, Chan Mi

    2013-01-01

    Safety culture or radiation protection culture is based in common on the term, 'culture'. Culture is defined as the learned, shared set of symbols and patterns of basic assumptions, which is invented, discovered, or developed by a given group as it learns to cope with its problem of external adaptation and internal integration. Safety culture generally refers to the attitude and behaviors affecting safety performance. The concept of 'Safety Culture' was introduced after the Chernobyl accident in 1986. For the accident, nuclear society reached the conclusion that the cause was the wrong management attitude of the NPP, that is, deficient 'Safety Culture'. Recently, 'Radiation Protection Culture' was introduced as the core concept of nuclear safety culture. There have been many efforts to establish definition and develop assessment tool for radiation protection culture in international level such as ICRP and IRPA as well as NRC. In the same context with the safety culture, radiation protection culture is defined as 'the core values and behaviors resulting from a collective commitment by leaders and individual's to emphasize safety over competing goals to ensure protection of people and the environment.' It is worthwhile to recognize that regulatory enforcement in establishing healthy radiation protection culture of operators should be minimized because culture is not in the domain of regulatory enforcement. However, as 'ALARA', the most important concept in radiation protection, may be successfully achieved only in well established radiation protection culture, the least regulatory intervention would be needed in promoting and nurturing radiation protection culture in licensee. In addition, the concept of radiation protection culture should be addressed in plant operational policy to achieve the goals of ALARA. The pre-condition of the successful radiation protection culture is a healthy organizational

  3. Optimization and radiation protection culture

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Young; Shin, Hyeong Ki; Lee, Chan Mi [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-04-15

    Safety culture or radiation protection culture is based in common on the term, 'culture'. Culture is defined as the learned, shared set of symbols and patterns of basic assumptions, which is invented, discovered, or developed by a given group as it learns to cope with its problem of external adaptation and internal integration. Safety culture generally refers to the attitude and behaviors affecting safety performance. The concept of 'Safety Culture' was introduced after the Chernobyl accident in 1986. For the accident, nuclear society reached the conclusion that the cause was the wrong management attitude of the NPP, that is, deficient 'Safety Culture'. Recently, 'Radiation Protection Culture' was introduced as the core concept of nuclear safety culture. There have been many efforts to establish definition and develop assessment tool for radiation protection culture in international level such as ICRP and IRPA as well as NRC. In the same context with the safety culture, radiation protection culture is defined as 'the core values and behaviors resulting from a collective commitment by leaders and individual's to emphasize safety over competing goals to ensure protection of people and the environment.' It is worthwhile to recognize that regulatory enforcement in establishing healthy radiation protection culture of operators should be minimized because culture is not in the domain of regulatory enforcement. However, as 'ALARA', the most important concept in radiation protection, may be successfully achieved only in well established radiation protection culture, the least regulatory intervention would be needed in promoting and nurturing radiation protection culture in licensee. In addition, the concept of radiation protection culture should be addressed in plant operational policy to achieve the goals of ALARA. The pre-condition of the successful radiation protection culture is a healthy organizational

  4. The scientific bases of radiation protection

    International Nuclear Information System (INIS)

    Cosset, J.M.; Boissiere, A.; Eschenbrenner, A.

    2003-01-01

    Six articles constitute this chapter about radiation protection. Double strand breaks induced by K events on DNA, effects of dose rate on double strand breaks make the object of two first articles. The study of speciation can give information in the field of internal dosimetry, it is the subject of the third article. The fourth article relates the work about the distribution profiles of iodine 127 and iodine 129 among thyroid of young rats born of mother deprived in steady iodine but contaminated by iodine 129 in a period varying from 489 hours (new born) to 21 days (adolescents) after the birth. The fifth article studies the interest of the expansion in vivo of haematopoietic cells for the treatment of radioinduced aplastic anemia. The last text is devoted to the genotoxic effects of radio frequencies. (N.C.)

  5. Manual on radiation protection in hospital and general practice. Volume 4. Radiation protection in dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Koren, K; Wuehrmann, A H

    1977-01-01

    The nine chapters of this manual on radiation protection in dentistry discuss the following topics: the need for radiation protection; delegation of responsibility; radiographic equipment; radiographic film; radiographic techniques; film processing and handling; patient doses; general radiation protection and monitoring; and educational standards. (HLW)

  6. Protection of radiation induced DNA and membrane damages by total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst.

    Science.gov (United States)

    Smina, T P; Maurya, D K; Devasagayam, T P A; Janardhanan, K K

    2015-05-25

    The total triterpenes isolated from the fruiting bodies of Ganoderma lucidum was examined for its potential to prevent γ-radiation induced membrane damage in rat liver mitochondria and microsomes. The effects of total triterpenes on γ-radiation-induced DNA strand breaks in pBR 322 plasmid DNA in vitro and human peripheral blood lymphocytes ex vivo were evaluated. The protective effect of total triterpenes against γ-radiation-induced micronuclei formations in mice bone marrow cells in vivo were also evaluated. The results indicated the significant effectiveness of Ganoderma triterpenes in protecting the DNA and membrane damages consequent to the hazardous effects of radiation. The findings suggest the potential use of Ganoderma triterpenes in radio therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Radiation Protection Ordinance 1989. Supplement with Radiation Protection Register Ordinance, general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance, general administration regulation pursuant to Sect. 62 sub-sect. radiation passport

    International Nuclear Information System (INIS)

    Veith, H.M.

    1990-01-01

    The addendum contains regulations issued supplementary to the Radiation Protection Ordinance: The Radiation Protection Register as of April 3, 1990 including the law on the setting up of a Federal Office on Radiation Protection; the general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance as of February 21, 1990; the general administration regulation pursuant to Sect. 62 sub-sect. 2 Radiation Protection Ordinance as of May 3, 1990 (AVV Radiation passport). The volume contains, apart from the legal texts, the appropriate decision by the Bundesrat, the official explanation from the Bundestag Publications as well as a comprehensive introduction into the new legal matter. (orig.) [de

  8. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  9. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  10. Understanding of radiation protection in medicine. Pt. 2. Occupational exposure and system of radiation protection

    International Nuclear Information System (INIS)

    Iida, Hiroji; Yamamoto, Tomoyuki; Shimada, Yasuhiro

    1997-01-01

    Using a questionnaire we investigated whether radiation protection is correctly understood by medical doctors (n=140) and nurses (n=496). Although medical exposure is usually understood by medical doctors and dentists, their knowledge was found to be insufficient. Sixty-eight percent of medical doctors and 50% of dentists did not know about the system of radiation protection. Dose monitoring was not correctly carried out by approximately 20% of medical staff members, and medical personnel generally complained of anxiety about occupational exposure rather than medical exposure. They did not receive sufficient education on radiation exposure and protection in school. In conclusion, the results of this questionnaire suggested that they do not have adequate knowledge about radiation exposure and protection. The lack of knowledge about protection results in anxiety about exposure. To protect oneself from occupational exposure, individual radiation doses must be monitored, and medical practice should be reconsidered based on the results of monitoring. To eliminate unnecessary medical and occupational exposure and to justify practices such as radiological examinations, radiation protection should be well understood and appropriately carried out by medical doctors and dentists. Therefore, the education of medical students on the subject of radiation protection is required as is postgraduate education for medical doctors, dentists and nurses. (author)

  11. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    International Nuclear Information System (INIS)

    Potiriadis, C.; Koukoliou, V.

    2002-01-01

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  12. Proceedings of the 10. national radiation protection congress

    International Nuclear Information System (INIS)

    Cousins, Claire; Ducou Le Pointe, Hubert; Lochard, Jacques; Vaillant, L.; Masse, Roland; Stricker, Laurent; Beaugelin-Seiller, K.; Garnier-Laplace, J.; Bernier, M.O.; Biau, A.; Bordy, J.M.; Laurier, D.; Guipaud, Olivier; Leuraud, Klervi; Rage, Estelle; Villeneuve, Sara; Clero, Enora; Samson, E.; Scanff, P.; Rannou, A.; Caldeira Ideias, P.; Paradis, H.; Boussetta, B.; Boyer, C.; Gontier, G.; Hemidy, P.Y.; Carreau Gaschereau, E.; Hartemann, P.; Menechal, P.; Mougniot, S.; Le Coz, E.; Le Goff, Pierre; Abela, G.; Chirent, T.; De Vita, A.; Drouet, F.; Hillaireau, B.; Marcillet, C.; Michoux, X.; Yadani, Fatima; Blanc, Pauline; Canal, E.; Perier, A.; Lahaye, T.; Andresz, Sylvain; Barbey, P.; Gagna, Gerald; Guetat, Ph.; Schneider, Thierry; Vaillant, Ludovic; Cherin, Herve; Roy, Catherine; Desbiolles, Alice; Roudier, Candice; Goria, Sarah; Stempfelet, Morgane; Monnereau, Alain; Lefranc, Agnes; Vacquier, Blandine; Baysson, H.; Etard, C.; Maurice, Jean-Baptiste; Milliat, Fabien; Moan, Gwennael; Petitguillaume, Alice; Roch, Patrice; Marie, Laurent; Dufay, Emilie; Magne, Isabelle; Mathieu, Peggy; Perrin, Anne; Veyret, Bernard; Clauss, Nicolas; Dabli, D.; Guillot, Sebastien; Kamoun, Hager; Mackowiak, Julien; Bensimon, Julie; Bez, Jeremy; Petitfrere, Michael

    2015-06-01

    The French Society of Radiation Protection (SFRP) celebrated its 50 anniversary at the occasion of the 10. national radiation protection (RP) congress. This document brings together the abstracts of the different talks given at the congress. A - Invited talks: A1 - Forward through the rearview mirror: Reflections on ICRP Past and Future (C. COUSINS); A3 - Origin and evolution of the intervening parties involvement approach in RP (J. LOCHARD); A4 - Knowledge influence and biological uncertainties on RP evolution (R. MASSE); A5 - RP history in nuclear industry: EDF an anticipation example (L. STRICKER); B - Tutorial presentations: B1 - Environment RP: towards its explicit integration in French law? (K. BEAUGELIN-SEILLER, J. GARNIER-LAPLACE); B2 - Scanner exposure in child and radio-induced risk: recent epidemiological results (M.O. BERNIER); B3 - Ionizing radiations professional exposure dose measurement: goals and evolutions (A. BIAU, J.M. BORDY); B4 - Workers RP at dismantling sites (B. BOUSSETTA, L. VAILLANT); B5 - Environment RP (part 2): EDF's methodology and experience feedback (C. BOYER, G. GONTIER, P.Y. HEMIDY); B6 - Revision of SCENIHR's 2009 opinion about the potential health impact of electromagnetic fields, from the 2011 European inaugural meeting to its 2015 publication (P. HARTEMANN); B8 - Advances in low dose epidemiological knowledge (D. LAURIER); B9 - Use of ionizing radiations at the operating theatre: what RP issues? (P. MENECHAL, S. MOUGNIOT); Session 1: RP regulations and standards, RP and society (6 presentations); Session 2: effects of Ionizing radiations on men and ecosystems (6 presentations); Session 3: patients RP (7 presentations); Session 4: Populations and ecosystems RP (4 presentations); Session 5: Occupational RP - Industry (8 presentations); Session 6: non-ionizing radiations (5 presentations); Session 7: Occupational RP - Medical (6 presentations); Session 8: Advances in dosimetry and metrology (4 presentations)

  13. Recent advances in radiation protection instrumentation

    International Nuclear Information System (INIS)

    Babu, D.A.R.

    2012-01-01

    Radiation protection instrumentation plays very important role in radiation protection and surveillance programme. Radiation detector, which appears at the frontal end of the instrument, is an essential component of these instruments. The instrumental requirement of protection level radiation monitoring is different from conventional radiation measuring instruments. Present paper discusses the new type of nuclear radiation detectors, new protection level instruments and associated electronic modules for various applications. Occupational exposure to ionizing radiation can occur in a range of industries, such as nuclear power plants; mining and milling; medical institutions; educational and research establishments; and nuclear fuel cycle facilities. Adequate radiation protection to workers is essential for the safe and acceptable use of radioactive materials for different applications. The radiation exposures to the individual radiation workers and records of their cumulative radiation doses need to be routinely monitored and recorded

  14. DNA Protection Protein, a Novel Mechanism of Radiation Tolerance: Lessons from Tardigrades.

    Science.gov (United States)

    Hashimoto, Takuma; Kunieda, Takekazu

    2017-06-15

    Genomic DNA stores all genetic information and is indispensable for maintenance of normal cellular activity and propagation. Radiation causes severe DNA lesions, including double-strand breaks, and leads to genome instability and even lethality. Regardless of the toxicity of radiation, some organisms exhibit extraordinary tolerance against radiation. These organisms are supposed to possess special mechanisms to mitigate radiation-induced DNA damages. Extensive study using radiotolerant bacteria suggested that effective protection of proteins and enhanced DNA repair system play important roles in tolerability against high-dose radiation. Recent studies using an extremotolerant animal, the tardigrade, provides new evidence that a tardigrade-unique DNA-associating protein, termed Dsup, suppresses the occurrence of DNA breaks by radiation in human-cultured cells. In this review, we provide a brief summary of the current knowledge on extremely radiotolerant animals, and present novel insights from the tardigrade research, which expand our understanding on molecular mechanism of exceptional radio-tolerability.

  15. Radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Brunner, H.

    1990-01-01

    Switzerland's present radiation protection regulations are based on only two paragraphs of the atomic law but have been very successful in practice. A new radiation protection law, separated from nuclear legislation and valid for all application of ionizing radiation and radioctive materials, was proposed and drafted by the Federal Commission on Radiation Protection and has now been accepted by parliament with only minor modifications. The draft of the revised regulations which also will cover all applications, should be ready for consultations next year. Both the law (which contains principles but no figures such as limits) and the regulations incorporate the latest state of ICRP recommendations and are formulated in such a way as to allow application of or quick adaptation to the new basic ICRP recommendation expected for 1991. The legislation is flexible, with a relatively low regulation density and leaves sufficient room for professional judgement on a case by case basis both for authorities and for the specialists responsible for radiation protection in practice. (orig./HSCH)

  16. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  17. Radiation protection glossary

    International Nuclear Information System (INIS)

    1986-01-01

    The glossary is intended to be used as a terminology standard for IAEA documentation on radiation protection. An effort has been made to use definitions contained in internationally accepted publications such as recommendations of the International Commission on Radiological Protection (ICRP), standards of the International Organization for Standardization (ISO) and of the International Electrotechnical Commission (IEC), reports of the International Commission on Radiation Units and Measurements (ICRU), with only slight modifications in order to tailor them more closely to IAEA needs. The glossary is restricted to ionizing radiation

  18. Radiation protection guidelines for radiation emergencies

    International Nuclear Information System (INIS)

    Lessard, E.T.; Meinhold, C.B.

    1986-01-01

    The system of dose limitation and present guidance for emergency workers and guidance for intervention on behalf of the public are discussed. There are three elements for the system of dose limitation: justification, optimization and dose limits. The first element is basically a political process in this country. Justification is based on a risk-benefit analysis, and justification of the use of radioactive materials or radiation is generally not within the authority of radiation protection managers. Radiation protection managers typically assess detriments or harm caused by radiation exposure and have very little expertise in assessing the benefits of a particular practice involving nuclear material

  19. Radiation Protection: Introduction

    International Nuclear Information System (INIS)

    Loos, M.

    2007-01-01

    As a federal research Centre, SCK-CEN has the statutory assignment to give priority to research related to safety, radioactive waste management, protection of man and environment, management of fissile and other strategic materials and social implications as part of the pursuit of sustainable development and to develop and gather the necessary knowledge and spread this knowledge through formation and communication. At the Division of Radiation Protection at SCK-CEN we are therefore active to maintain and enhance knowledge and expertise in each aspect of radiation protection: we study the risk of exposure - the way that radioactive materials spread in the environment and the potential for human contact - and the risk from exposure - how radiation affects human health; we perform health physics measurements; we are involved in emergency planning and preparedness and support to risk governance and decision taking. These activities are supported by radiation specific analysis and measurement techniques. These activities are not performed in isolation but in context of national and international collaborations or demands

  20. 33. Days of Radiation Protection. Presentations

    International Nuclear Information System (INIS)

    2011-11-01

    The publication has been set up as presentations of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on the current problems in radiation protection and radioecology. On the web-page totally 103 presentations or posters are published. The Conference consists of the following sections: (I) Effects of ionizing radiation (radiology, health effects, risk factors); (II) General aspects of radiation protection (recommendations and legislative in radiation protection); (III): Dosimetry and metrology of ionizing radiation (metrology, instrumentation, use of computational methods); (IV) Radiation protection in nuclear power industry (working environment in the nuclear industry, the impact on the environment, nuclear power shutdown management); (V) Emergency management (emergencies, accidents, waste); (VI) Radiation load and protection in diagnostics, nuclear medicine and radiation oncology (burden on patients, staff, size of population exposure from medical sources of ionizing radiation, security, and quality control, optimization); (VII) Natural sources of radiation in workplaces and the environment (radon and other radionuclides, the risk estimation, optimization); (VIII) Education (new trends in education of radiation experts, medical physicists and stake-holders).

  1. Concepts in radiation protection

    International Nuclear Information System (INIS)

    Oncescu, M.

    1996-01-01

    This monograph provides basic notions and principles in dosimetry and radiation protection in compliance with two fundamental works: IAEA Safety Series No.115 - International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - and Publication no. 60 of International Commission on Radiological Protection. After the review of quantities and units necessary in radiation protection, the book presents the new values of dose limits as well as the values of 'radiation weighting factor', 'tissue weighting factor' and 'conversion factor intake-dose' (committed effective dose per unit intake) by ingestion and inhalation for 30 most important radionuclides. The new values of dose limits, lower than the old values, are a challenge for the radiation protection, especially of the 'public' where the dose limit diminished by a factor of five relative to the earlier edition. The new value of dose limit for public, 1 mSv per year (obviously over the natural exposure of 2.4 mSv per year), imposes new action ways and levels in radiation protection, especially in some cases of exacerbated natural radioactivity. The book provides the calculus of external exposure with the Gamma constant expressed in adequate units, to make the calculation easier. In the calculus of protection shield for gamma sources one uses a method, which while approximate helps save time. The calculus of internal exposure is made using the conversion factor intake-dose. Finally, the 'dosimetric watch' of the natural and artificial radioactivity of the atmosphere, hydrosphere and biosphere is intended to comply with the International Basic Safety Standards. Each chapter ends with a set of illustrative problems which enhances the reader's understanding of underlying concepts and current methods used in the field

  2. Actual global problems of radiation protection

    International Nuclear Information System (INIS)

    Ninkovic, M.

    1995-01-01

    Personal views on some actual problems in radiation protection are given in this paper. Among these problems are: evolution methodology used in radiation protection regulations; radiation protection, nuclear energy and safety, and new approaches to the process of the hazardous substances management. An interesting fact relating to the X-ray, radiation protection and Nikola Tesla are given also. (author)

  3. Some perspectives on radiation protection

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1979-01-01

    A brief review of the history and organizational structure of the NCRP is given. Summaries are given of a number of NCRP radiation protection guides dealing with hazards from 85 Kr, radiation exposures from consumer products, basic radiation protection criteria, and doses from natural background radiation

  4. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    1983-06-01

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP) [de

  5. New aspects regarding to radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Shabestani Monfared, A.; Amiri, M.

    2002-01-01

    Introduction and objectives: The society has been concerned about nuclear energy usage and nuclear environment pollution for ages. The necessity of using radiation and its applications in modern life especially in medicine is undeniable. Some interesting properties such as the potential for non-destructive tests, detection simplicity, and penetrability into substances and having reactions with them cause radiation to be known as a useful tool for peace purposes. Nuclear weapons' experiments (1945-1973) and nuclear accidents in Three-Mile Island in USA, Goiania in Brazil and Chernobyl in Ukraine Republic have enhanced man's worries towards nuclear radiation and radioactivity in environment, and founding associations and groups which are against nuclear energy, such as green peace society, can be related with above mentioned concerns. Today, nuclear medicine has rapidly been developed so that in some cases plays a unique role in diagnosis but unfortunately in spite of diagnostic and therapeutic advantages, the term N UCLEAR c an induce worries in patients and society. In this article, base on new documents we intend to show that this worries has no scientific basis. Material and Methods: To produce a realistic view, regarding to radiation protection we used several ways such as natural origin of radiation, high natural background radiation areas' data non-linear dose-effect model, risk versus benefit, use of arbitrary unit for measurement of radiation, radio adaptive response and radiation hormesis. Discussion and conclusion: Harmful effects of radiation on biologic systems has obviously been shown, but most of related documents are based on receiving high doses in nuclear and atomic accidents and explosions and radiation protection regulations are based on this observations. So, it sometimes causes patients are afraid of low doses of radiation in medical diagnostic procedures so that some of them even resist against performing this procedures. Thus, being aware of

  6. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  7. Manual of Radiation Protection

    International Nuclear Information System (INIS)

    Gambini, D.J.; Granier, R.; Boisserie, G.

    1992-01-01

    This manual explains the principles and practice of radiation protection for those whose work in research, in the field of medicine or in the industry requires the use of radiation sources. It provides the information radiation users need to protect themselves and others and to understand and comply with international recommendations, regulations and legislation regarding the use of radionuclides and radiation machines. It is designed to teach a wide audience of doctors, biologists, research scientists, technicians, engineers, students and others

  8. Guideline for radiation protection in veterinary medicine. Guideline relating to the Ordinance for Protection Against Damage Through Ionising Radiation (Radiation Protection Ordinance - StrlSchV) and the Ordinance for Protection Against X-Ray Radiation (X-Ray Ordinance - RoeV)

    International Nuclear Information System (INIS)

    Michalczak, H.

    2005-05-01

    The Guideline on ''Radiation Protection in Veterinary Medicine'' primarily addresses the supreme Land authorities that are responsible for radiation protection. Its purpose is to harmonise the radiation protection procedures employed by the Laender, thus establishing a nationwide uniform system for monitoring the handling of radioactive substances and ionising radiation applications in veterinary medicine on the basis of the legal regulations in force. In addition the guideline is intended to serve veterinary staff as a source of practical information which explains the radiation protection requirements stipulated by the legal regulations and technical rules. This concerns in particular the rules for the acquisition of the necessary radiation protection skills or the necessary knowledge of radiation protection by the veterinary surgeon performing the application or the staff cooperation in the application

  9. Radiation Protection Dosimetry

    International Nuclear Information System (INIS)

    Kramer, H.M.; Schnuer, K.

    1992-01-01

    The contributions presented during the seminar provided clear evidence that radiation protection of the patient plays an increasingly important role for manufacturers of radiological equipment and for regulatory bodies, as well as for radiologists, doctors and assistants. The proceedings of this seminar reflect the activities and work in the field of radiation protection of the patient and initiate further action in order to harmonize dosimetric measurements and calculations, to ameliorate education and training, to improve the technical standards of the equipment and to give a push to a more effective use of ionising radiation in the medical sector

  10. Foundations for radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    Full text; In 1996, the IAEA published the latest edition of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards or BSS) comprising basic requirements to be filled in all activities involving radiation exposure. The standards define internationally harmonized requirements and provide practical guidance for public authorities and services, employers and workers, specialized radiation protection bodies, enterprises and health and safety communities. In the same year, the IAEA, through the technical cooperation programme, launched the Model Project on Upgrading Radiation Protection Infrastructure, a global initiative designed to help Member States establish the infrastructure needed to adhere to the BSS. To address the complexity of this task, the radiation protection team identified key elements, known as Thematic Safety Areas. These are: 1. Legislative Framework and Regulatory Infrastructure, Draft and put into effect radiation protection laws and regulations and establish and empower a national regulatory authority. 2. Occupational Exposure Control Protect the health and safety of each individual who faces the risk of radiation exposure in the workplace through individual and workplace monitoring programmes, including dose assessment, record keeping of doses and quality management. 3. Medical Exposure Control: Develop procedures and activities to control the exposure of patients undergoing diagnosis and/or treatment via diagnostic and interventional radiology, nuclear medicine or radiotherapy through staff training, provision of basic quality control equipment, and the establishment of quality assurance programmes. 4. Public and Environmental Exposure Control: Develop means to protect both the public and the environment including: a) programmes to register, inventory and provide safe storage of unused radioactive sources and material; b) procedures to control and safely

  11. Radiation protection optimization of workers

    International Nuclear Information System (INIS)

    Lochard, J.

    1994-11-01

    This report presents the contribution of CEPN (study center on protection evaluation in nuclear area) to the Days of the French Radiation Protection Society (SFRP) on optimization of workers radiation protection in electronuclear, industrial and medical areas

  12. On ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    1996-01-01

    From an ethical viewpoint the author surveys existing international radiation protection recommendations and standards. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the author discusses ethical thinking on seven key issues related to radiation protection and ethics. (author)

  13. Ethics and radiation protection

    International Nuclear Information System (INIS)

    Hansson, Sven Ove

    2007-01-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle

  14. Ethics and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Sven Ove [Department of Philosophy and the History of Technology, Royal Institute of Technology (KTH), Teknikringen 78 B, 2tr, SE-100 44 Stockholm (Sweden)

    2007-06-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle.

  15. Education in Radiation Protection

    International Nuclear Information System (INIS)

    Dodig, D.; Kasal, B.; Tezak, S.; Poropat, M.; Kubelka, D.

    2001-01-01

    Full text: This paper discussed the problem of the education in radiation protection. All aspects of education are included started with primary school and lasted with very specialised courses for the experts. In the last few years the lack of interest for education in radiation protection was recognised by many agencies included also IAEA and EU commission. In this paper the reasons for this situation will be presented and the way how to promote this subject again. It is not possible to prevent effects of radiation on environment and population if qualified and well educated experts do not exist. The situation in the field of education in radiation protection in Croatia will be presented, according to the new regulations in this field. (author)

  16. Jovian decametric radiation seen from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories

    Science.gov (United States)

    Imai, M.; Kurth, W. S.; Hospodarsky, G. B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Lecacheux, A.; Lamy, L.; Zarka, P.; Clarke, T. E.; Higgins, C. A.

    2017-09-01

    Jupiter's decametric (DAM) radiation is generated very close to the local gyrofrequency by the electron cyclotron maser instability (CMI). The first two-point common detections of Jovian DAM radiation were made using the Voyager spacecraft and ground-based radio observatories in early 1979, but, due to geometrical constraints and limited flyby duration, a full understanding of the latitudinal beaming of Jovian DAM radiation remains elusive. The stereoscopic DAM radiation viewed from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories provides a unique opportunity to analyze the CMI emission mechanism and beaming properties.

  17. A new career path in radiation protection training. Certified power plant shift supervisor. Radiation protection

    International Nuclear Information System (INIS)

    Terbeek, Christoph

    2011-01-01

    Apart from theoretical knowledge, effective day-to-day radiation protection operations also require a certain measure of practical experience. Therefore, the professional degree of 'Certified Radiation Worker', issued by the Chamber of Industry and Commerce (CIC) Aachen, Germany, established at an early stage. In order to provide experienced radiation protection specialists with an attractive career path, POWERTECH TRAINING CENTER e.V., in co-operation with VGB PowerTech. e.V., the Paul Scherrer Institute (Switzerland) and the Swiss Atomic Energy Agency (ENSI), has devised a new power plant shift supervisor training course specialising in radiation protection. The vocational training degree called 'Certified Power Plant Shift Supervisor - Radiation Protection' is awarded after successful completion of the advanced training examination conducted by the CIC in Essen, Germany. (orig.)

  18. Adaptation of the present concept of dosimetric radiation protection quantities for external radiation to radiation protection practice

    International Nuclear Information System (INIS)

    Boehm, J.; Thompson, I. M. G.

    2004-01-01

    The present concept of dosimetric radiation protection quantities for external radiation is reviewed. For everyday application of the concept some adaptations are recommended. The check of the compliance with dose limits should be performed either by the comparison with values of the respective operational quantities directly or by the calculation of the protection quantity by means of the operational quantity, the appertaining conversion coefficient and additional information of the radiation field. Only four operational quantities are regarded to be sufficient for most applications in radiation protection practice. The term equivalent should be used in the connection dose equivalent only. Proposals are made for names of frequently used operational quantities which are denoted up to now by symbols only. (authors)

  19. Romanian Radiation Protection Training Experience in Medical Field

    International Nuclear Information System (INIS)

    Steliana Popescu, F.; Milu, C.; Naghi, E.; Calugareanu, L.; Stroe, F. M.

    2003-01-01

    Studies conducted by the Institute of Public Health Bucharest during the last years emphasised the need of appropriate radioprotection training in the medical field. With the assistance of the International Atomic Energy Agency in Vienna, the Pilot Centre on Clinical Radio pathology in the Institute of Public Health-Bucharest, provided, from 2000 a 7 modular courses (40 hours each), covering the basic topics of ionizing radiation, biological and physical dosimetry, effects of exposure to ionising radiation, radioprotection concepts, planning and medical response in case of a nuclear accident or radiological emergency. The courses are opened for all health specialists, especially for occupational health physicians, focusing on health surveillance of radiation workers and medical management of overexposed workers. Each module is followed up by an examination and credits. The multidisciplinary team of instructors was trained within several train-the-trainers courses, organised by IAEA. The paper discusses the evaluation of these 3 years experience in training and its feedback impact, the aim of the program being to develop a knowledge in the spirit of the new patterns of radiological protection, both for safety and communication with the public. (Author)

  20. Use of Ionizing Radiations to Prepare Radiovaccines and Radio-Antigens

    International Nuclear Information System (INIS)

    Tumanyan, MA; Hruschev, V.G.

    1967-01-01

    The possibility of employing ionizing radiations at certain doses to kill micro-organisms was used to produce vaccines against intestinal infections, and also to obtain from these bacteria antigens capable of being used as chemical vaccines. Typhoid fever and dysentery radiovaccines and radio-antigens were prepared, and the effect of various gamma ray doses on their toxicity and their antigenic and immunogenic properties was tested. The doses used did not change properties of these products as compared with those of vaccines and antigens produced by normal means. The paper also discusses the possibility of using radiation to sterilize fabricated vaccines and antigens, including radiovaccines and radio-antigens, anitoxins, antitoxic serums and nutrient media for the culture of micro-organisms. Data on the irradiation apparatus used for these investigations are reported. (author) [ru

  1. Summary of radiation protection in exploitation

    International Nuclear Information System (INIS)

    Garcier, Yves; Guers, Rene; Bidard, Francoise; Colson, Philippe; Gonin, Michele; Delabre, Herve; Hemidy, Pierre-Yves; Corgnet, Bruno; Perrin, Marie-Claire; Phan Hoang, Long; Abela, Gonzague; Crepieux, Virginie; Guyot, Pierre; Haranger, Didier; Warembourg, Philippe

    2004-01-01

    This document proposes a large and detailed overview of notions and practices regarding radiation protection in relationship with an NPP exploitation framework. It presents the main notions: matter structure, radioactivity, interactions between matter and radiations, types of ionizing radiation, magnitudes and measurement units, exposure modes, main principles of radiation protection, means of protection against internal and external exposures. The second part proposes an overview of the origin of radiological risks in a nuclear power plant. This origin can be found in fission products, activation products, actinides, designed protections, or circuit contaminations. These radiological risks are more precisely identified and described in terms of detection and prevention (internal exposure risk, contamination risk, iodine-related risk, alpha radiation-related risk, access to the reactor building). The next part addresses the medical and radiological follow-up of exposed workers by a special medical control, by an individual exposure control, by a specific control of female personnel, and by attention to exceptional exposures. Measurement means are presented (detection principles, installation continuous control, workspaces control, personnel contamination control, follow-up of individual dose) as well as collective and individual protection means. The management of radiation protection is addressed through a presentation of decision and management structures for radiation protection, and of EDF objectives and ambitions in this domain. The organization of radiation protection during exploitation is described: responsibilities for radiation protection in a nuclear power station, requirements for workers, preparation of interventions in controlled zone, work execution in controlled zone, zone controls and radiological cleanness of installations. The two last chapters address issues and practices of radiation protection in the case of deconstruction or dismantling, and

  2. Software for radiation protection

    International Nuclear Information System (INIS)

    Graffunder, H.

    2002-01-01

    The software products presented are universally usable programs for radiation protection. The systems were designed in order to establish a comprehensive database specific to radiation protection and, on this basis, model in programs subjects of radiation protection. Development initially focused on the creation of the database. Each software product was to access the same nuclide-specific data; input errors and differences in spelling were to be excluded from the outset. This makes the products more compatible with each other and able to exchange data among each other. The software products are modular in design. Functions recurring in radiation protection are always treated the same way in different programs, and also represented the same way on the program surface. The recognition effect makes it easy for users to familiarize with the products quickly. All software products are written in German and are tailored to the administrative needs and codes and regulations in Germany and in Switzerland. (orig.) [de

  3. Radiation protection in medicine

    International Nuclear Information System (INIS)

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-01-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  4. Radiation protection in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-08-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  5. Radiation protection, optimization and justification

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Brisse, H.; Foucart, J.M.; Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C.; Rehel, J.L.; Talbot, A.; Aubert, B.; Scanff, P.; Roudier, C.; Donadieu, J.; Pirard, P.; Bar, O.; Maccia, C.; Benedittini, M.; Bouziane, T.; Brat, H.; Bricoult, M; Heuga, O.; Hauger, O.; Bonnefoy, O.; Diard, F.; Chateil, J.F.; Schramm, R.; Reisman, J.; Aubert, B.

    2005-01-01

    Nine articles in the field of radiation protection relative to the medical examinations concern the new legislation in radiation protection, the optimization of this one in order to reduce the radiation doses delivered to the patients, the side effects induced by irradiation and to give an evaluation of the medical exposure of french population to ionizing radiations. (N.C.)

  6. Procedure and methodology of Radiation Protection optimization

    International Nuclear Information System (INIS)

    Wang Hengde

    1995-01-01

    Optimization of Radiation Protection is one of the most important principles in the system of radiation protection. The paper introduces the basic principles of radiation protection optimization in general, and the procedure of implementing radiation protection optimization and methods of selecting the optimized radiation protection option in details, in accordance with ICRP 55. Finally, some economic concepts relating to estimation of costs are discussed briefly

  7. Radiation protection

    International Nuclear Information System (INIS)

    Kamalaksh Shenoy, K.

    2013-01-01

    Three main pillars underpin the IAEA's mission: Safety and Security - The IAEA helps countries to upgrade their infrastructure for nuclear and radiation safety and security, and to prepare for and respond to emergencies. Work is keyed to international conventions, the development of international standards and the application of these standards. The aim is to protect people and the environment from the harmful effects of exposure to ionizing radiation. Science and Technology - The IAEA is the world's focal point for mobilizing peaceful applications of nuclear science and technology for critical needs in developing countries. The work contributes to alleviating poverty, combating disease and pollution of the environment and to other goals of sustainable development. Safeguards and Verification - The IAEA is the nuclear inspectorate, with more than four decades of verification experience. Inspectors work to verify that nuclear material and activities are not diverted towards military purposes. Quantities and Units: Dose equivalent is the product of absorbed dose of radiation and quality factor (Q). For absorbed dose in rads, dose equivalent is in rems. If absorbed dose is in gray, the dose equivalent is in sievert. Quality factor is defined without reference to any particular biological end point. Quality factors are recommended by committees such as the International Commission on Radiological Protection (ICRP) or the National Council on Radiation Protection and Measurements (NCRP), based on experimental RBE values but with some judgment exercised. Effective Dose Equivalent: It is the sum of the weighted dose equivalents for all irradiated tissues, in which the weighting factors represent the different risks of each tissue to mortality from cancer and hereditary effects. Committed dose equivalent: It is the integral over 50 years of dose equivalent following the intake of a radionuclide. Collective effective dose equivalent: It is a quantity for a population and is

  8. Radiation protection of non-human species

    International Nuclear Information System (INIS)

    Leith, I.S.

    1993-01-01

    The effects of radiation on non-human species, both animals and plants, have long been investigated. In the disposal of radioactive wastes, the protection of non-human species has been investigated. Yet no radiation protection standard for exposure of animals and plants per se has been agreed. The International Commission on Radiological Protection has long taken the view that, if human beings are properly protected from radiation, other species will thereby be protected to the extent necessary for their preservation. However, the International Atomic Energy Agency has found it necessary to investigate the protection of non-human species where radioactivity is released to an environment unpopulated by human beings. It is proposed that the basis of such protection, and the knowledge of radiation effects on non-human species on which it is based, suggest a practical radiation protection standard for non-human species. (1 tab.)

  9. Agencies revise standards for radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article deals with a guideline, compiled by the IAEA, for radiation protection. The guidelines aim at the control of individual risk through specified limits, optimisation of protection and the justification of all practices involving exposure to radiation. The guideline is a revision of the 1967 publication of the IAEA, Basic safety standards for radiation protection. According to the document the main resposibility for radiation protection lies with the employer. The workers should be responsible for observing protection procedures and regulations for their own as well as others' safety

  10. Radiation protection technology. Specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). 2. rev. ed.

    International Nuclear Information System (INIS)

    Rahn, Hans-Joachim

    2012-01-01

    The specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). Covers the following issues: radiation protection - generally; licenses and notifications; scientific fundamentals; dosimetry, surveillance, control, documentation; technical radiation protection; radiation protection calculations.

  11. Radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E.A. [Lawrence Berkeley Lab., CA (United States); Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  12. Radiation protection in space

    International Nuclear Information System (INIS)

    Blakely, E.A.; Fry, R.J.M.

    1995-01-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space

  13. Study on radiation dose and its protection for the physician performing the retrograde urethrography for male

    International Nuclear Information System (INIS)

    Inui, Saburo; Suzuki, Toshiyuki; Kashino, Teiichi; Abe, Hitoshi.

    1982-01-01

    The status quo of the various techniques used in retrograde urethrography (R.U.) is examined by the questionnaire method with the data of radiation doses to medical personnels, and new methods are devised to reduce unnecessary radiation dose. Manual injection of the radio-opaquee contrast medium has been employed by 92.5% out of 8,259 physicians in 67 institutions. They expose themselves as well as patients to the radiation during the course of the examination. In most of these occasions the physician is not sufficiently protected from radiation leaving the possibility of his somatic damage. From these observations, the followings were studied: 1) Application of our newly developed protective barrier, exclusive for R.U., made of lead-impregnated acryl-resin plate (KYOW GLAS-XA). 2) Employment of the high speed screen made of rare earth metal. The results were encouraging in reducing the radiation exposure dose. In conclusion, the employment of the above two methods are efficient in obviating unnecessary radiation exposure to the physician during R.U. (author)

  14. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    Severitt, S.; Oehm, J.; Sobetzko, T.; Kloth, M.

    2012-01-01

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  15. Environmental radiation protection - a brief history

    International Nuclear Information System (INIS)

    Zapantis, A.P.

    2003-01-01

    The effects of ionising radiation on man has been studied intensely for decades, and the system of radiation protection for man has been continually refined in the light of those studies. That system assumes that if man is protected, non-human biota at the species level will also be adequately protected. However, an increasing recognition of the need to protect the environment, and international agreements signed in 1992, have resulted in that paradigm being questioned, with the onus shifting slowly towards demonstrating that the environment is protected. Further, radiation protection agencies and environmental protection agencies around the world have now started considering the issue of developing a system of radiation protection for the environment. The International Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA) are also active in this area. The purpose of this paper is to briefly outline some of the issues confronting environmental and radiation protection specialists, and to mention some of the initiatives being taken by the international community to resolve those issues

  16. Safety Culture on radiation protection

    International Nuclear Information System (INIS)

    Sollet, E.

    1996-01-01

    It can be defined radiation protection culture as the set of technical and social standards applied to the management of the operation of a nuclear facility concerning the reduction of the exposure to radiation of workers and members of the public, together with the behaviour and attitudes of the individuals from the organization towards that objective. Because the basic principles of radiation protection are self-evident and are totally justified, and the thesis drawn from the article is that no effective radiation protection culture yet exists within the organization, it must be concluded that what is wrong from the system are the attitudes and behavior of the individuals. In this article some factors and elements needed to motivate all persons within the organization towards the creation of a radiation protection culture are delineated and presented. (Author)

  17. Operational radiation protection: A guide to optimization

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs

  18. Consequences of the new radiation protection law on the radiation protection register and the occupational radiation protection; Auswirkungen des neuen Strahlenschutzgesetzes auf das Strahlenschutzregister und die berufliche Strahlenueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Frasch, Gerhard

    2017-08-01

    The implementation of the guideline 2013/59/EURATOM has been performed in the new radiation protection law. The most important consequences of the new radiation protection law for the occupational radiation protection are the following: the introduction of an explicit personal indicator and the actualization of occupational categories for employees. These facts require technical and administrative reorganization in data transmission of the licensee to the regulatory monitoring executive and the radiation protection register.

  19. Radiation protecting clothing materials

    International Nuclear Information System (INIS)

    Mio, Kotaro; Ijiri, Yasuo.

    1986-01-01

    Purpose: To provide radiation protecting clothing materials excellent in mechanical strength, corrosion resistance, flexibility and flexing strength. Constitution: The radiation protecting clothing materials according to this invention has pure lead sheets comprising a thin pure lead foil of 50 to 150 μm and radiation resistant organic materials, for example, polyethylene with high neutron shielding effect disposed to one or both surfaces thereof. The material are excellent in the repeating bending fatigue and mechanical strength, corrosion resistance and flexibility and, accordingly, radiation protecting clothings prepared by using them along or laminating them also possess these excellent characteristics. Further, they are excellent in the handlability, particularly, durability to the repeated holding and extension, as well as are preferable in the physical movability and feeling upon putting. The clothing materials may be cut into an appropriate size, or stitched into clothings made by radiation-resistant materials. In this case, pure lead sheets are used in lamination. (Horiuchi, T.)

  20. Radiation protection standards

    International Nuclear Information System (INIS)

    Fitch, J.

    1983-11-01

    Topics covered include biological radiation effects, radiation protection principles, recommendations of the ICRP and the National Health and Medical Research Council, and dose limits for individuals, particularly the limit applied to the inhalation of radon daughters

  1. Proceedings of Asia congress on radiation protection

    International Nuclear Information System (INIS)

    1993-01-01

    203 articles were collected in the proceedings. The contents of the proceedings included the principle and practices of radiation protection, biological effects of radiation, radiation monitoring, protection in medical and other fields, radiation dosimetry, nuclear energy and the environment, natural radiation, radioactive waste management, and other radiation protection issues

  2. State Radiation Protection Supervision and Control

    International Nuclear Information System (INIS)

    2003-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented

  3. State Radiation Protection Supervision and Control

    CERN Document Server

    2002-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented.

  4. Project Radiation protection, Annual report 1994

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1994-12-01

    According to the action plan for the period 1991-1995, the main objective of this project during 1994 was to provide operational basis, methods and procedures for solving the radiation protection problems that might appear under routine working conditions and handling of radiation sources. The aim was also to provide special methods for action in case of accidents that could affect the employed staff and the population. Overall activity was directed to maintaining and providing personnel, instrumentation, and methods for the following special radiation protection measures: operational control of the radiation field and contamination; calibration of the radiation and dosimetry instruments-secondary dosimetry metrology laboratory; instrumentation and measuring systems for radiation protection; control of environmental transfer of radioactive material; medical radiation protection [sr

  5. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Tadmor, J.; Schlesinger, T.; Lemesch, C.

    1980-01-01

    Various governmental agencies, including the Ministry of Health, the Ministry of Labor and the Israel AEC are responsible for the control of the use of radioactive materials and medical X-ray machines in Israel. Present legislation deals mainly with the legal aspects of the purchase, transport and possession of radioactive materials and the purchase and operation of medical X-ray machines. No legislation refers explicitly to the protection of the worker from ionizing (and non-ionizing) radiation. A special group of experts appointed by the Minister of Labor recently worked out a comprehensive draft law concerning all legal aspects of occupational radiation protection in Israel. Among the main chapters of the draft are: general radiation protection principles, national radiation protection standards, medical supervision of radiation workers, personal monitoring requirements. The present situation with regard to radiation hazard control in Israel and details of the proposed radiation protection law is discussed. (Author)

  6. Recommendations of International Commission of Radiation Protection 1990

    International Nuclear Information System (INIS)

    1995-01-01

    The book summarizes the recommendations on radiation protection of International of Radiation Protection. The main chapters are: 1.- Rates in radiation protection 2.- Biological aspects of radiation protection 3.- Framework of radiation protection. 4.- System of protection. 5.- Implantation of commission's recommendations. 6.- Summary of recommendations

  7. Radiation and radiation protection; Strahlung und Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2017-04-15

    The publication of the Bundesamt fuer Strahlenschutz covers the following issues: (i) Human beings in natural and artificial radiation fields; (ii) ionizing radiation: radioactivity and radiation, radiation exposure and doses; measurement of ionizing radiation, natural radiation sources, artificial radiation sources, ionizing radiation effects on human beings, applied radiation protection, radiation exposure of the German population, radiation doses in comparison; (iii) non-ionizing radiation; low-frequency electric and magnetic fields, high-frequency electromagnetic fields, optical radiation; (iiii) glossary, (iv) units and conversion.

  8. Regulations in radiation protection

    International Nuclear Information System (INIS)

    1986-01-01

    On the occasion of the twenty fifth anniversary of the Dutch Society for Radiation Protection, a symposium was held about Regulations in Radiation Protection. The program consisted of six contributions of which four are included in this publication. The posters presented are published in NVS-nieuws, 1985, vol. 11(5). (G.J.P.)

  9. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  10. Radiation protection; Proteccion Radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Ures Pantazi, M [Universidad de la Republica, Facultad de Quimica (Uruguay)

    1994-12-31

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection.

  11. New radiation protection legislation in Sweden

    International Nuclear Information System (INIS)

    Jender, M.; Persson, Lars

    1984-01-01

    The objective of the new Act is to protect humans, animals and the environment from the harmful effects of ionizing as well as non-ionizing radiation. As previously, the main responsibility for public radiation protection will rest with a single central radiation protection authority. According to the Act, the general obligations with regard to radiation protection will assign greater responsibility than in the past to persons carrying out activities involving radiation. Persons engaged in such activities will be responsible for the safe processing and storage of radioactive waste. The Act also contains rules governing decommissioning of technical equipment capable of generating radiation. The Act contains several rules providing for more effective supervision. The supervisory authority may, in particular, decide on the necessary regulations and prohibitions for each individual case. The scope for using penal provisions has been extended and a rule on the mandatory execution of orders regarding radiation protection measures has been introduced. (authors)

  12. History of radiation protection in the Czech Republic. Ten years of the National Radiation Protection Institute, 1995-2005

    International Nuclear Information System (INIS)

    Drabkova, A.

    2006-01-01

    The first part of the publication, highlighting the history of radiation protection in the country which today is the Czech Republic, is divided into the following sections: Inception of the field of science and applications 'Protection from ionizing radiation'; Beginnings of work with ionizing radiation in the Czech lands; Formulation of the first health physics and radiation protection requirements in the Czech lands; Beginnings of institutionalization of radiation protection in Czechoslovakia after World War II; The Clinic and Institute of Occupational Medicine in Prague; Institute of Occupational Hygiene and Occupational Diseases in Prague and the regional Institute of Occupational Hygiene and Occupational Diseases in Bratislava; Peaceful uses of atomic energy in Czechoslovakia; First man-made radioisotopes in Czechoslovakia; Health rules and standards applicable to work with ionizing radiation; The responsibilities of the Ministry of Health in the area of health physics and radiation protection within peaceful uses of atomic energy in the Czech Socialist Republic; Research Institute of Health Physics; Institute of Occupational Hygiene and Prevention of Occupational Diseases in the Mining and Processing of Radioactive Raw Materials; Health physics and radiation protection in sectorial and national research plans; Health Physics Centre, Institute of Hygiene and Epidemiology; National Radiation Protection Institute (as a subsidiary of the State Office for Nuclear Safety). The second part of the publication gives details of the recent history of the National Radiation Protection Institute. (P.A.)

  13. Evaluation of radio protective effects of Coriander (Coriandrum sativum L.) in male rats

    International Nuclear Information System (INIS)

    Farag, M.F.S.

    2013-01-01

    Radiation is one of the most widespread sources of environmental stress in living environment which cause oxidative stress and metabolic changes. The basic purpose of this work was to determine the radio protective ability of Coriander (Coriandrum sativum L.) seeds against whole body gamma irradiation of rats. The study was conducted on thirty two male rats which were classified into four equal groups. Control group: (normal, untreated). Coriander aqueous extract group (C.E.): rats received orally by gavage the aqueous extract of Coriander seed powder (300 mg/ kg b. wt. / day for 42 days). Irradiated group: rats were subjected to whole body irradiation at dose of 4 Gy delivered as a single exposure dose. Combined treatment group: rats received orally C.E. (300 mg/ kg b. wt. / day) for 42 days?at day 35 of C.E. treatment the rats were irradiated at dose level of 4 Gy. The animals exposed to gamma radiation showed a significant increase in serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), urea (U), creatinine (Cr), total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and tissue thiobarbituric acid reactive substance (TBARS). On the other hand, a significant decrease was recorded in serum total protein (T.P), albumin (Alb), high density lipoprotein cholesterol (HDL-C). A decrease of liver and kidney reduced glutathione (GSH) content, superoxides dismutase (SOD) and catalase (CAT) activities were reported. Treatment of rats with C.E. significantly reduced the radiation-induced serum biochemical disorders which was associated with significant amelioration in the oxidant / antioxidant status of liver and kidney tissues. It could be concluded that C.E. might protect from radiation induced damage due to its ability to scavenge free radicals.

  14. Judgement in achieving protection against radiation

    International Nuclear Information System (INIS)

    Taylor, L.S.

    1980-01-01

    This article includes the following topics: Ionizing radiation as a toxic agent; value judgement in establishing protection standards; origin of radiation protection standards; numerical radiation protection standards; exposure of populations; the proportional dose-effect relationship; assumptions involved in the proportional dose-effect relationship and a continued need for value judgement

  15. Critical Issues in Radiation Protection Knowledge Management for Preserving Radiation Protection Research and Development Capabilities.

    Science.gov (United States)

    Dewji, Shaheen Azim

    2017-02-01

    As a hub of domestic radiation protection capabilities, Oak Ridge National Laboratory's Center for Radiation Protection Knowledge has a mandate to develop and actuate a formal knowledge management (KM) effort. This KM approach exceeds recruitment and training efforts but focuses on formalized strategies for knowledge transfer from outgoing subject matter experts in radiation protection to incoming generations. It is envisioned that such an effort will provide one avenue for preserving domestic capabilities to support stakeholder needs in the federal government and the nuclear industry while continuing to lead and innovate in research and development on a global scale. However, in the absence of broader coordination within the United States, preservation of radiation protection knowledge continues to be in jeopardy in the absence of a dedicated KM effort.

  16. Precautionary radiation protection

    International Nuclear Information System (INIS)

    Heller, W.

    2006-01-01

    The German federal government annually reports about the development of radioactivity in the environment, providing the most important data and changes in environmental radioactivity and radiation exposure. These reports are based on the Act on Precautionary Protection of the Public against Radiation Exposure (Radiation Protection Provisions Act) of December 19, 1986 as a consequence of the Chernobyl reactor accident. The purpose of the Act is protection of the public from health hazards arising from a nuclear accident or any other event with comparable radiological consequences, and to create the foundations for correct evaluation of the risks resulting from specific radiation exposures. After 1986, the Act was soon given concrete shape by legal ordinances, which made it a workable tool. The following points, among others, can be summarized form the report for 2004: - The calculated natural and manmade overall exposure is 4.0 mSv/a, as in the previous year, and happens to be exactly the same figure as in the report for 1994. - The contribution to radiation exposure by nuclear power plants and other nuclear facilities is less than 0.01 mSv/a. Over a period of nearly twenty years, the Act and the annual reporting regime have proved to work. Standardized criteria prevent data abuse and misinterpretation, respectively. Definitions of limits have contributed to more transparency and more objectivity. (orig.)

  17. National Sessions of Radiation Protection

    International Nuclear Information System (INIS)

    Sociedad Argentina de Radioproteccion

    2012-01-01

    The Radioprotection Argentine Society (SAR) was organized the National Sessions on Radiation Protection 2012 in order to continue the exchange in the radiation protection community in the country, on work areas that present a challenge to the profession. The new recommendations of the ICRP and the IAEA Safety Standards (2011), among others, includes several topics that are necessary to develop. The SAR wants to encourage different organizations from Argentina, to submit projects that are developing in order to strengthen radiation protection.

  18. Radiation protection programme progress report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The progress report of the radiation protection programme outlines the research work carried out in 1988 under contracts between the Commission of the European Communities and research groups in the Member States. Results of more than 350 projects are reported. They are grouped into six sectors: Radiation dosimetry and its interpretation; Behaviour and control of radionuclides in the environment; Nonstochastic effects of ionizing radiation; Radiation carcinogenesis; Genetic effects of ionizing radiation; Evaluation of radiation risks and optimization of protection. Within the framework programme, the aim of this scientific research is to improve the conditions of life with respect to work and protection of man and his environment and to assure a safe production of energy, i.e.: (i) to improve methods necessary to protect workers and the population by updating the scientific basis for appropriate standards; (ii) to prevent and counteract harmful effects of radiation; (iii) to assess radiation risks and provide methods to cope with the consequences of radiation accidents

  19. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  20. Melatonin as Protection Against Radiation Injury

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P H; Rosenberg, J.

    2016-01-01

    Introduction: Radiation is widely used in the treatment of various cancers and in radiological imaging procedures. Ionizing radiation causes adverse effects, leading to decreased quality of life in patients, by releasing free radicals that cause oxidative stress and tissue damage. The sleep......-hormone melatonin is a free radical scavenger, and induces several anti-oxidative enzymes. This review investigates the scientific literature on the protective effects of melatonin against exposure to ionizing radiation, and discusses the clinical potential of melatonin as prophylactic treatment against ionizing...... and protected against radiation enteritis. These protective effects were only documented when melatonin was administered prior to exposure to ionizing radiation. Discussion: This review documents that melatonin effectively protects animals against injury to healthy tissues from ionizing radiation. However...

  1. Radiation protection in Qatar

    International Nuclear Information System (INIS)

    Al Maadheed, Khalid; Al Khatibeh, Ahmad

    2008-01-01

    Full text: The State of Qatar has become a member State of IAEA since 1974. Later the Department of Industrial Development (DID) beam the focal point and the competent authority regarding all aspects of the peaceful application of Nuclear Technology. In July, 2000 the Supreme Council was established and charged with all matters related to environmental protection. The Supreme Council joined the IAEA Projects on upgrading protection infrastructure in West Asia region. A preliminary research was initiated to discover where radiation sources are being used, and the legal framework, if any, to regulate their use. The research indicated that radiation sources were being used in the industrial practices (well logging, industrial radiography and nuclear gauges) and in medical practices (mainly diagnostic radiology). The research also indicated that there was virtually no legal framework to regulate them. In less than five years, the State of Qatar was able to issue the radiation protection law, three sets of regulations, namely: Radiation Protection Regulations, Radioactive Waste Management Regulations and the Safe Transport of Radioactive Materials Regulations. In addition, several specific regulation work, dose limits and radiation protection officers were issued. A radiation Protection Department, comprising three sections was established. We are providing individual exposure monitoring for most of the radiation workers in the public sector and some in the private sector. We have set up a proper licensing and inspections procedures, where our inspectors are enforcing the law. More recently, we established an early warning network for nuclear of radiological emergencies, consisting of 6 transplantable stations, five mobile stations and two navigating stations. This year, the network was augmented with five fixed station and an advanced early warning centre, which provides early warning via multiple means (MMS, Fax, E-mail and audio alarms). Last year we signed a nuclear

  2. New general radiation protection training course

    CERN Document Server

    2008-01-01

    Some members of CERN personnel, users included, may have to work in supervised or controlled radiation areas, or may be concerned with activities involving the use of radioactive sources. According to CERN Safety rules all persons whose work may encounter ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, about the basic principles of radiation protection and of the relevant radiation protection regulations as well as about safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses addressed to its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This...

  3. New general radiation protection training course

    CERN Multimedia

    2008-01-01

    Some members of CERN personnel, including users, may have to work in supervised or controlled radiation areas, or may be involved in activities involving the use of radioactive sources. According to CERN Safety Rules all persons whose work may be associated with ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, the basic principles of radiation protection and the relevant radiation protection regulations as well as safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses for its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This new ½ day cours...

  4. Radiation protection: Principles, recommendations and regulations

    International Nuclear Information System (INIS)

    Reitan, J.B.

    1989-01-01

    Radiation protection is a highly international dicipline with a high degree of international harmonization. Especially within the Nordic countries there is general agreement upon principles and standards, despite the actual practice may differ slightly. The basic recommendations of the International Commission on Radiological Protection (ICRP) are accepted by the regulatory bodies and should be followed by all users of radiation. The users are in principle responsible for the radiation protection standard and activities themselves. Because most companies or hospitals lack sufficient expertise by themselves, they must rely upon recommendations from others. Primarily they should contact the national radiation protection agency. However, due to the international harmonization of radiation protection, information from other national or international agencies may be used with confidence. All users of radiation in the Nordic countries are obliged to act according to recognition and assessment of both risks and benefits, and they are responsible for updating their knowledge

  5. Evidence that radio-sensitive cells are central to skin-phase protective immunity in CBA/Ca mice vaccinated with radiation-attenuated cercariae of Schistosoma mansoni as well as in naive mice protected with vaccine serum

    International Nuclear Information System (INIS)

    Delgado, V.S.; McLaren, D.J.

    1990-01-01

    Naive CBA/Ca mice and CBA/ca mice vaccinated 4 weeks previously with radiation-attenuated cercariae of Schistosoma mansoni were subjected to 550 rad of whole body (gamma) irradiation and then challenged 3 days later with normal cercariae. The perfusion recovery data showed that this procedure reduced the primary worm burden in naive mice by 22% and the challence worm burden in vaccinated mice by 82%. Irradiation also ablated the peripheral blood leucocytes of both mouse groups by 90-100% at the time of challenge. Histological data revealed that such treatment caused a dramatic change in number, size and leucocyte composition of cutaneous inflammatory skin reactions that characterize challenged vacccinated mice and are known to entrap invading larvae; cutaneous eosinophils were preferentially abolished by this treatment. Polyvaccine mouse serum that conferred protection passively upon naive recipient mice, failed to protect naive/irradiated mice when administered by the same protocol. Distraction of macrophages by treatment of mice with silica did not affect the establishment of a primary worm burden and reduced the protection exhibited by vaccinated mice by only 16%. These data indicade that radio-sensitive cells are important to both innate and specific acquired resistance in this mouse model and that macrophages contribute only marginally to the expression of vaccine immunity. (author)

  6. Fifth meeting of persons competent in radiation protection; Cinquiemes rencontres des personnes competentes en radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    During this meeting will successively be approached: the statutory frame, the practical guide for the realization of the dosimetry studies of work stations presenting a risk of exposure to ionizing radiations, a study of post in conventional and interventional radiology, study of post in interventional cardiology, the roles and the missions of the P.C.R. (person competent in radiation protection) in a subcontractor company in I.N.B. (base nuclear installation), the application of the zoning order for the activities of industrial radiography, the evolution of the statutory measures in protection of the workers against the dangers of ionizing radiations, all which concerns the P.C.R. (training, missions, certification, educational role), the controls of radioprotection, the external controls of radioprotection, the surveillance of working zones, surveillance of effluents,management of the radioactive waste and effluents, classification of the personnel and the surveillance of the exposure, dosimetry by radio photo luminescence, the systeme S.I.S.E.R.I.. (N.C.)

  7. Principles of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Karamourtzounis, J. N. [World Health Organization, Geneva (Switzerland)

    1969-05-15

    In the rapidly developing areas of occupational and public health devoted to the protection of people from both immediate and delayed harmful (and sometimes Irreversible) effects of radiation exposure, industrial hygienists, radiological physicists and radiologists must now assume the additional responsibility of protection against radiation. Everyone during his life will have had one or more X-rays taken for diagnostic purposes. The doses received, depending upon the site, are not harmful to the individual, from the genetic aspect, however, the increasing use of X-ray examinations does present a danger,since almost the whole population is involved. Rapid progress in the development of nuclear energy and the practical extension of its use in medicine, agriculture and industry are steadily increasing the potential danger of large groups of the population being exposed to radiation, and radiation hazards are becoming an important aspect of industrial and public hygiene. WHO is concerned with the overall evaluation of population exposure from peaceful uses of atomic energy and through medical practice, the evaluation of radiation risks,and the control of medical radiation exposure. WHO stimulates and provides technical assistance for the development of appropriate programs of radiation protection with respect to the agricultural, industrial and medical applications of radioisotopes. X-rays and radium. (author)

  8. Ethical problems in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards.

  9. Ethical problems in radiation protection

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards

  10. Radiation protection research and training programme review radiation protection programme 1960-89 synopsis of results 1985-89

    International Nuclear Information System (INIS)

    1990-01-01

    This document aims to trace the evolution of the CEC radiation protection programme over its 30 years of existence. During this time, research carried out in the framework of the Community programme has made major contributions to the scientific understanding of the action of ionizing radiation and the protection of man and his environment. This information was crucial for developing better radiation protection management for existing and new technologies and for providing the scientific basis for the regulatory activities of the Commission. One important feature of the programme was the success of bringing together scientists from different Member States to cooperate in the various fields of radiation protection and to integrate different areas of radiation protection research into a coherent approach. The structures thus developed within the programme have enabled research in radiation protection to be conducted in a cost-effective manner on behalf of the Member States. This document aims also to give a synopsis of the most important results of the 1985-89 radiation protection programme. This period was characterized by two challenges, the integration of two Member States into Community research and the impact of the Chernobyl accident. The programme has, in spite of reduced funding, continued to provide a high degree of expertise for the Community in the context of the needs in radiation protection. This has been explicity acknowledged in the evaluation of the 1980-89 programmes carried out by an independent panel

  11. 78 FR 59982 - Revisions to Radiation Protection

    Science.gov (United States)

    2013-09-30

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Revisions to Radiation Protection AGENCY: Nuclear..., ``Radiation Sources,'' Section 12.3 -12.4, ``Radiation Protection Design Features,'' and Section 12.5, ``Operational Radiation Protection Program.'' DATES: The effective date of this Standard Review Plan update is...

  12. Radiation protection technologist training and certification program

    International Nuclear Information System (INIS)

    1982-10-01

    The purpose of this program is to establish training requirements and methods for certifying the technical competence of Radiation Protection Technologists. This manual delineates general requirements as well as academic training, on-the-job training, area of facility training, and examination or evaluation requirements for Radiation Protection Trainees (Trainees), Junior Radiation Protection Technologists (JRPT), Radiation Protection Technologists (RPT), and Senior Radiation Protection Technologists (SRPT). This document also includes recertification requirements for SRPTs. The appendices include training course outlines, on-the-job training outlines, and training certification record forms

  13. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    Essential information on the health protection of radiation workers which has accumulated since the advent of nuclear fission thirty years ago is presented in simple terms. Basic facts on ionizing radiation, its measurement, and dosimetry are presented. Acute and chronic somatic and genetic effects are discussed with emphasis on prevention. Radiation protection standards and regulations are outlined, and methods for maintaining these standards are described. Diagnosis and treatment of radiation injury from external radiation and/or internally deposited radionuclides is considered generally as well as specifically for each radioisotope. The medical supervision of radiation workers, radiation accidents, atomic power plants, and medicolegal problems is also covered. (853 references) (U.S.)

  14. Critical issues in radiation protection knowledge management for preserving radiation protection research and development capabilities

    International Nuclear Information System (INIS)

    Dewji, Shaheen Azim

    2017-01-01

    As a hub of domestic radiation protection capabilities, Oak Ridge National Laboratory’s Center for Radiation Protection Knowledge has a mandate to develop and actuate a formal knowledge management (KM) effort. This KM approach exceeds recruitment and training efforts but focuses on formalized strategies for knowledge transfer from outgoing subject matter experts in radiation protection to incoming generations. It is envisioned that such an effort will provide one avenue for preserving domestic capabilities to support stakeholder needs in the federal government and the nuclear industry while continuing to lead and innovate in research and development on a global scale. Furthermore, in the absence of broader coordination within the United States, preservation of radiation protection knowledge continues to be in jeopardy in the absence of a dedicated KM effort.

  15. Radiation protection - radiographer's role and responsibilities

    International Nuclear Information System (INIS)

    Popli, P.K.

    2002-01-01

    Ever since discovery of x-rays, radiographers has been the prime user of radiation. With the passage of time, the harmful effects of radiation were detected. Some of radiographers, radiologists and public were affected by radiation, but today with enough knowledge of radiation, the prime responsibility of radiation protection lies with the radiographers only. The radiologist and physicist are also associated with radiation protection to some extent

  16. Radiation protection in the Brazilian universities

    International Nuclear Information System (INIS)

    Caballero, K.C.S.; Borges, J.C.

    1994-01-01

    A research covering 91 institutions was undertaken in order to elucidate how radiation protection were indeed fulfilled. A questionary including technical administrative and legal subjects was sent by mail and 36% of which were answered propitiating substantial data for analysis. Only in few cases universities have knowledge of basic procedures in radiation protection, claiming for the elaboration of a plan that could guide supervisors and workers in radiation protection in these institution. Based on the tree analysis technique proposed by IAEA, a Reference Radiation protection Program has been elaborated and proposed for Brazilian universities. (author). 14 refs, 1 figs

  17. The Addition of Manganese Porphyrins during Radiation Inhibits Prostate Cancer Growth and Simultaneously Protects Normal Prostate Tissue from Radiation Damage

    Directory of Open Access Journals (Sweden)

    Arpita Chatterjee

    2018-01-01

    Full Text Available Radiation therapy is commonly used for prostate cancer treatment; however, normal tissues can be damaged from the reactive oxygen species (ROS produced by radiation. In separate reports, we and others have shown that manganese porphyrins (MnPs, ROS scavengers, protect normal cells from radiation-induced damage but inhibit prostate cancer cell growth. However, there have been no studies demonstrating that MnPs protect normal tissues, while inhibiting tumor growth in the same model. LNCaP or PC3 cells were orthotopically implanted into athymic mice and treated with radiation (2 Gy, for 5 consecutive days in the presence or absence of MnPs. With radiation, MnPs enhanced overall life expectancy and significantly decreased the average tumor volume, as compared to the radiated alone group. MnPs enhanced lipid oxidation in tumor cells but reduced oxidative damage to normal prostate tissue adjacent to the prostate tumor in combination with radiation. Mechanistically, MnPs behave as pro-oxidants or antioxidants depending on the level of oxidative stress inside the treated cell. We found that MnPs act as pro-oxidants in prostate cancer cells, while in normal cells and tissues the MnPs act as antioxidants. For the first time, in the same in vivo model, this study reveals that MnPs enhance the tumoricidal effect of radiation and reduce oxidative damage to normal prostate tissue adjacent to the prostate tumor in the presence of radiation. This study suggests that MnPs are effective radio-protectors for radiation-mediated prostate cancer treatment.

  18. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.; Persson, L.

    1997-01-01

    In this note the authors survey existing international radiation-protection recommendations of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection and risk assessment/management, the authors review ethical thinking on five key issues related to radiation protection and ethics. They formulate each of these five issues in terms of alternative ethical stances: (1) Equity vs. Efficiency, (2) Health vs. Economics, (3) Individual Rights vs. Societal Benefits, (4) Due Process vs. Necessary Sacrifice, and (5) Stakeholder Consent vs. Management Decisions (authors)

  19. Radiation risks and radiation protection at CRNL

    International Nuclear Information System (INIS)

    Myers, D.K.

    1986-01-01

    Radiation exposure is an occupational hazard at CRNL. The predicted health effects of low levels of radiation are described and compared with other hazards of living. Data related to the health of radiation workers are also considered. Special attention is given to the expected effects of radiation on the unborn child. Measures taken to protect CRNL employees against undue occupational exposure to radiation are noted

  20. XXXVI. Days of Radiation Protection. Book of Abstracts

    International Nuclear Information System (INIS)

    2014-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 93 abstracts are published. The Conference consists of following sections: (I) General aspects and new trends of radiation protection); (II) Radiation protection in medicine; (III): Dosimetry and metrology of external and internal radiation exposure; (IV) Regulation of radiation exposure to natural sources and control of radon exposure; (V) Radiation protection in nuclear power plants, their decommissioning and waste management; (VI) Application of radiation protection standards in the emergency management; (VII) Biological effects of ionizing radiation and risk estimation; (VIII) Education and training in radiation protection in the light of new recommendations of EU, ICRP and IAEA.

  1. Radiation protection to firemen

    International Nuclear Information System (INIS)

    Almeida, E.S. de.

    1985-01-01

    The basic Knowledge about ionizing radiation oriented for firemen, are presented. The mainly damage and effects caused by radiation exposure as well as the method of radiation protection are described in simple words. The action to be taken in case of fire involving radiation such as vehicles transporting radioactive materials are emphasized. (author)

  2. Encouraging the radiation protection practice

    International Nuclear Information System (INIS)

    Silva, Natanael O.; Cunha, Paulo C.N.; Junior, Jose N.S.; Silva, Jessyca B.

    2013-01-01

    The radiological protection of workers occupationally exposed to ionizing radiation (X-ray diagnoses, Nuclear Medicine, Radiotherapy and Dental) is essential to minimize the appearance of radiation effects. The ways to reduce the potential for exposure of workers are: Time, Distance , and Shielding. The most important purpose of radiation protection is to provide safe conditions for activities involving ionizing radiation, basic safety conditions that must be observed in professional practice. The professional must have full knowledge of the subject and deepen in the revision of norms and guidelines related to radiation protection establish by the Vigilancia Sanitaria - ANVISA, and Comissao Nacional de Energia Nuclear - CNEN, Brazil. The study was conducted in a technical school for the Technical Training Course in Radiology, where the students are invited to think deeply about the radiation protection of themselves, the patients and the environment. Developed since July 2012, with the participation of 30 students, with a leading class -three teachers assisting in the development of the project . With this project there was an awareness of both students, as instructors stage accompanying the daily lives of students and their own colleagues. Following the same objective in 2013 the project continues with more adept at radioprotection

  3. Radiation protection day - Book of abstracts

    International Nuclear Information System (INIS)

    2000-06-01

    This document brings together the abstracts of all presentations given at the Radiation protection day organised in May 2000 by the French association for radiation protection techniques and sciences (ATSR) on the topic of the new European and French radiation protection regulations and their conditions of application in hospitals. Content: 1 - Presentation of the Office of Protection against Ionizing Radiations (O.P.R.I.), status of texts and evolution, practical implementation of operational dosimetry (Alain Valero, O.P.R.I.); 2 - Presentation of the Radiation Protection Service of the Army (S.P.R.A.) and its role in French army's hospitals (Jean-Baptiste Fleutot, S.P.R.A.); 3 - 96/29 European directive and water quality - transposition in French law (Daniel Robeau, I.P.S.N. Fontenay-Aux-Roses); 4 - Presentation of an automatized active dosimetry system (Michel Deron, G.E.M. System); 5 - Euratom 97/43 Directive from June 30, 1997 - assessment of the existing framework for patients protection in medical environment (Pierre Muglioni, APAVE Nord Ouest); 6 - Specificities of the ionising radiations risk in medical environment - presentation of a ionising radiations risk assessment grid (Marie-Christine Soula, Labour regional direction Ile de France); 7 - Low dose effects (B. Le Guen, E.D.F. G.D.F.); 8 - Operational dosimetry in the medical domain - the Saphydose dosemeter (Frederico Felix - Saphymo); 9 - Positrons and radiation protection (Luc Cinotti - C.E.R.M.E.P.); 10 - Workplace studies in medical environment - areas and personnel classification (Jean-Claude Houy, Sandrine Laugle, Eugene Marquis Cancer Centre Rennes); 11 - Experience feedback after 4 years of active dosimetry in a nuclear medicine service (Albert Lisbona, Centre Rene Gauducheau Nantes/Saint-Herblain); 12 - Operational dosimetry as it is performed today in CNRS laboratories (Helene Dossier - C.N.R.S. Orsay); 13 - Radiation protection in submarine naval forces (Pierre Laroche, Army's health service

  4. 8. national congress of radiation protection 'SFRP 2011' - Proceedings

    International Nuclear Information System (INIS)

    Souques, M.; Lambrozo, J.; Perrin, A.; Magne, I.; Bedja, M.; Fleury, G.; Le Brusquet, L.; Barbe, R.; Lahaye, T.; Laurier, D.; Tomasek, L.; Tirmarche, M.; Guseva Canu, I.; Garsi, J.P.; Caer-Lorho, S.; Jacob, S.; Acker, A.; Fernandez, F.; Bertho, J.M.; Synhaeve, N.; Stefani, J.; Desbree, A.; Blanchardon, E.; Dublineau, I.; Petitot, F.; Lestaevel, P.; Tourlonias, E.; Mazzucco, C.; Jacquinot, S.; Dhieux, B.; Delissen, O.; Tournier, B.; Gensdarmes, F.; Godet, J.L.; Perrin, M.L.; Saad, N.; Bardelay, C.; Voytchev, M.; Doursout, T.; Chapalain, E.; Dandrieux, G.; Cazala, C.; Gay, D.; Chabanis, O.; Palut-Laurent, O.; Ringeard, C.; Thomassin, A.; Roxin, A.M.; Gschwind, R.; Makovicka, L.; Roxin, I.; Henriet, J.; Martin, E.; Klopfenstein, J.F.; Lochard, J.; Guillaumont, R.; Marignac, Y.; Petitfrere, M.; Catelinois, O.; Devin, P.; Sene, M.; Barbey, P.; Reaud, C.; Schneider, T.; Achikian, S.; Le Clerc, A.; Rochereau, S.; Schneider, C.; Vigneron, H.; Charron, S.; Delattre, A.; Luccioni, C.; Monti, P.; Bernaud, J.Y.; Michielsen, N.; Bondiguel, S.; Bordy, J.M.; Daures, J.; Denoziere, M.; Gualdrini, G.; Mariotti, F.; Barre, A.; Beauval, A.; Davi, J.N.; Dupic, S.; Grincourt, D.; Kandil, A.; Marteel, C.; Vrammout, D.; Saintamon, F.; Aberkane, J.; Paquet, F.; Barbey, P.; Bardies, M.; Biau, A.; Blanchardon, E.; Chetioui, A.; Lebaron-Jacobs, L.; Pasquier, J.L.; Broggio, D.; Beurrier, J.; Farah, J.; Franck, D.; Sauget, M.; Bertrand, A.; Boveda, S.; Bar, O.; Brezin, A.; Maccia, C.; Bernier, M.O.; Struelens, L.; Carinou, E.; Dominiek, J.; Brodecki, M.; Donadille, L.; Ferrari, P.; Koukorava, C.; Krim, S.; Nikodemova, D.; Ruiz-Lopez, N.; Sans Merce, M.; Vanhavere, F.; Clairand, I.; Bordy, J.M.; Debroas, J.; Ginjaume, M.; Itie, C.; Krim, S.; Lebacq, A.L.; Martin, P.; Struelens, L.; Sans-Merce, M.; Vanhavere, F.; Gauron, C.; Wild, P.; Grzebyk, M.; Derock, C.; Champion, K.; Cohen, P.; Menez, C.; Tellart, A.S.; Thiel, H.; Pennarola, R.; Choudat, D.; Dillenseger, P.; Rehel, J.L.; Aubert, B.; Gagna, G.; Amabile, J.C.; Laroche, P.; Grandcoing, A.; Roch, P.; Challeton-de Vathaire, C.; Franck, D.; Roy, C.; Doucet, J.; Jancon, G.; Pelletier, B.; Marchal, C.; Megnigbeto, C.; Franchi, C.; Cillard, P.; Etard, C.; Sinno-Tellier, S.; Guersen, J.; Chabrot, P.; Cassagnes, L.; Gabrillargues, J.; Boyer, L.; Kien, N.; Schieber, C.; Almen, A.; Magne, S.; Spasic, E.; Ngo, C.; Bordy, J.M.; Carlan, L. de; Bridier, A.; Ginestet, C.; Malet, C.; Ferdinand, P.; Courdi, A.; Rucka, G.; Bondiau, P.Y.; Cazoulat, A.; Bohand, S.; Schoen, V.; Bey, E.; Roche, H.; Quesne, B.; Monier, C.; Leonard, J.G.; Cordier, G.; Gurriaran, R.; De Vismes, A.; Picolo, J.L.; Elbast, M.; Saudo, A.; Holler, V.; Blanchin, N.

    2011-06-01

    radiation protection and related domains; 22 - O'CLOC study - cataracts in interventional cardiologists; 23 - Doses received in extremities and eye lens by medical personnel: results of the ORAMED European project; 24 - Use of operational dosemeters in interventional radiology/cardiology: results of the ORAMED European project; 25 - Sub-ungual multi-parametric capillaroscopy of occupational chronic exposure in interventional radiology; 26 - Example of workplace and zoning analysis in interventional neuro-radiology; 27 - Dosimetric study of various work places in prostate brachytherapy; 28 - Contribution to radiation protection of the partial redesigning of a nuclear medicine service; 29 - Committed effective doses evaluated by the IRSN after internal contamination of nuclear medicine personnel - 2006-2010 status; 30 - Why and how developing a quality approach in radiation protection?; 31 - 2011 status and perspectives of radiation protection in medical environment. The ASN's viewpoint; 32 - Doses in scanography: results of a multi-centric inquiry; 33 - Status of the optimization approach of patients dosimetry in interventional radiology at Clermont Ferrand univ. health centre; 34 - Can we define reference levels in interventional neuro-radiology with diagnostic and therapeutic purposes?; 35 - EMAN: implementation of an ALARA european network in the medical domain; 36 - In-vivo surface and intra-cavitary dosimetry in patient's radiotherapy using multi-channel OSL/FO technique; 37 - Estimation of secondary cancers after robotized stereotactic radiotherapy of lung cancer; 38 - Medical-surgical management of an injured person after radio-contamination by plutonium or americium (Percy area); 39 - Industrial radiography incident at Flamanville nuclear site; 40 - Incorporated activity mapping using Monte-Carlo simulations in case of complex contaminations; 41 - IRSN's metrology teams preparedness for crisis; 42 - Alpha irradiation problem following an internal contamination: dose

  5. New radiobiological, radiation risk and radiation protection paradigms

    International Nuclear Information System (INIS)

    Goodhead, Dudley T.

    2010-01-01

    The long-standing conventional paradigm for radiobiology has formed a logical basis for the standard paradigm for radiation risk of cancer and heritable effects and, from these paradigms, has developed the internationally applied system for radiation protection, but with many simplifications, assumptions and generalizations. A variety of additional radiobiological phenomena that do not conform to the standard paradigm for radiobiology may have potential implications for radiation risk and radiation protection. It is suggested, however, that the current state of knowledge is still insufficient for these phenomena, individually or collectively, to be formulated systematically into a new paradigm for radiobiology. Additionally, there is at present lack of direct evidence of their relevance to risk for human health, despite attractive hypotheses as to how they might be involved. Finally, it remains to be shown how incorporation of such phenomena into the paradigm for radiation protection would provide sufficient added value to offset disruption to the present widely applied system. Further research should aim for better mechanistic understanding of processes such as radiation-induced genomic instability (for all radiation types) and bystander effects (particularly for low-fluence high-LET particles) and also priority should be given to confirmation, or negation, of the relevance of the processes to human health risks from radiation.

  6. Basic principles of radiation protection in Canada

    International Nuclear Information System (INIS)

    1990-03-01

    The major goal of radiation protection in Canada is to ensure that individuals are adequately protected against the harm that might arise from unwarranted exposure to ionizing radiation. This report deals with the basic principles and organizations involved in protection against ionizing radiation. Three basic principles of radiation protection are: 1) that no practice shall be adopted unless its introduction produces a positive net benefit for society, 2) that all exposures shall be kept as low as reasonably achievable, relevant economic and social factors being taken into account, and 3) that doses to individuals should not exceed specified annual limits. The limit for radiation workers is currently 50 mSv per year, and exposures of the general public should not exceed a small fraction of that of radiation workers. Other specific areas in radiation protection which have received considerable attention in Canada include limitations on collective dose (the sum of the individual doses for all exposed individuals), exemption rules for extremely small radiation doses or amounts of radioactive materials, occupational hazards in uranium mining, and special rules for protection of the foetus in pregnant female radiation workers. Implementation of radiation protection principles in Canada devolves upon the Atomic Energy Control Board, the Department of National Health and Welfare, provincial authorities, licensees and radiation workers. A brief description is given of the roles of each of these groups

  7. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  8. New radiation protection law

    International Nuclear Information System (INIS)

    1985-01-01

    The structure of the existing legislation and its contents and aims are reconsidered. New rules which correspond to the present situation are to be established. Also the fundamental principles of the task and methods of radiation protection are to be changed. The main effort will be to create conditions so that all human beings will be protected against the harmful effects of radiation. The effects on plants, animals and on the environment should be considered as well. The legislation should include both ionizing and non-ionizing radiation. The main responsibility of protection should stay with the central authority. Licensing of apparatus, liability for medical applications and radioactive waste is discussed. Granting of permissions and control should be accomplished by the authority. Cooperation with other national and international authorities is dealt with. (G.B.)

  9. Radiation Protection Group annual report (1997)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1998-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  10. Radiation Protection Group annual report (1996)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1997-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  11. Radiation Protection Group annual report (1998)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1999-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  12. Radiation Protection Group annual report (1996)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1997-03-25

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  13. Radiation Protection Group annual report (1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1999-04-15

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  14. Radiation Protection Group annual report (1997)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1998-04-10

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  15. Radiation Protection Group annual report (1995)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1996-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1995. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  16. Radiation protection training for users of ionizing radiation in Hungary

    International Nuclear Information System (INIS)

    Pellet, S.; Giczi, F.; Elek, R.; Temesi, A.; Csizmadia, H.; Sera, E.

    2012-01-01

    According to the current and previous regulation related to the safety use of ionizing radiation, the personnel involved must obtain special qualification in radiation protection. In Hungary the radiation protection training are performed by appropriately certified training centers on basic, advanced and comprehensive levels. Certification of the training centers is given by the competent radiological health/radiation protection authority. The office of the Chief Medical Officer is the certifying authority for advanced and comprehensive levels training, as well as competent Regional Radiological Health Authority is responsible for basic level courses. The content and length of courses are specified in the regulation for all three levels of industrial, laboratory and medical users, in general. Some of the universities, technical and medical oriented are certified for advanced training for students as gradual course. Recently in Hungary there are 47 certified training centers for advanced and comprehensive courses, where the trainers should have a five years job experience in radiation protection and successful completion of comprehensive level course in radiation protection. (authors)

  17. Meeting Radiation Protection Requirements and Reducing Spacecraft Mass - A Multifunctional Materials Approach

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Reddell, Brandon; Rojdev, Kristina; Franklin, Jennifer

    2010-01-01

    Both crew and radio-sensitive systems, especially electronics must be protected from the effects of the space radiation environment. One method of mitigating this radiation exposure is to use passive-shielding materials. In previous vehicle designs such as the International Space Station (ISS), materials such as aluminum and polyethylene have been used as parasitic shielding to protect crew and electronics from exposure, but these designs add mass and decrease the amount of usable volume inside the vehicle. Thus, it is of interest to understand whether structural materials can also be designed to provide the radiation shielding capability needed for crew and electronics, while still providing weight savings and increased useable volume when compared against previous vehicle shielding designs. In this paper, we present calculations and analysis using the HZETRN (deterministic) and FLUKA (Monte Carlo) codes to investigate the radiation mitigation properties of these structural shielding materials, which includes graded-Z and composite materials. This work is also a follow-on to an earlier paper, that compared computational results for three radiation transport codes, HZETRN, HETC, and FLUKA, using the Feb. 1956 solar particle event (SPE) spectrum. In the following analysis, we consider the October 1989 Ground Level Enhanced (GLE) SPE as the input source term based on the Band function fitting method. Using HZETRN and FLUKA, parametric absorbed doses at the center of a hemispherical structure on the lunar surface are calculated for various thicknesses of graded-Z layups and an all-aluminum structure. HZETRN and FLUKA calculations are compared and are in reasonable (18% to 27%) agreement. Both codes are in agreement with respect to the predicted shielding material performance trends. The results from both HZETRN and FLUKA are analyzed and the radiation protection properties and potential weight savings of various materials and materials lay-ups are compared.

  18. Effects of the new radiation protection act on the radiation protection register and the monitoring of occupational radiation exposure

    International Nuclear Information System (INIS)

    Frasch, G.

    2016-01-01

    The implementation of DIRECTIVE 2013/59 / EURATOM (EURATOM Basic Safety Standards) is via the new radiation protection law and brings in the monitoring of occupational radiation among others two significant new features and changes: - Introduction of a unique personal identifier, - update of the occupational categories. Both require technical and organizational changes in the data transmission of the licensees to the dosimetry services and the radiation protection register.

  19. The development of radiation protection in Hungary

    International Nuclear Information System (INIS)

    Bisztray-Balku, S.; Bozoky, L.; Koblinger, L.

    1982-01-01

    This book contains the short history, development and present status of radiation protection and health physics in Hungary. The first chapter discusses the radiation protection standards and practices used in scientific, technical and medical radiology in this country, with their development history. The next chapter is devoted to the radiation protection techniques applied for medical uses of radioisotopes and accelerators including the organizational and management problems. The last chapter presents a review on radiation protection and health physics aspects of the Hungarian industry and agriculture, on radiation protection research and management, on instruments and dosimeters. A national bibliography on the subject up to 1979 is included. (Sz.J.)

  20. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    Fendel, H.; Stieve, F.E.

    1983-01-01

    Because of the high growth rate of cell systems in phases of radiation exposure radiological investigations on children should not be considered unless there is a strong indication. The National Council on Radiation Protection and Measurements has worked out recommendations on radiation protection which have been published as an NCRP report. This report is most important even outside the USA. The present translation is aimed to contribute to better understanding of the bases and aims of radiation protection during radiological investigations on children. It addresses not only those physicians who carry out radiological investigations on children themselves but also all physicians requiring such investigations. For these physicians, but also for parents who are worried about the radiation risk to their children the report should be a useful source of information and decision aid ensuring, on the one hand, that necessary radiological investigations are not shunned for unjustified fear of radiation and that, on the other hand, all unnecessary exposure of children to radiation is avoided. Thus, it is to be hoped, the quality of pediatric radiological diagnostics will be improved. (orig./MG) [de

  1. Sense and purpose of radiation protection training

    International Nuclear Information System (INIS)

    Malasek, A.

    1992-04-01

    Training in radiation protection is of great significance in connection with the activities of the executive, the federal army and emergency organizations in emergency operations for the protection of the population in the case of large-scale radioactive contamination due to diverse causes. The presently valid legal situation of radiation protection training is presented in connection with the expected modification in the amendment to the SSVO. The special situation of radiation protection training for the executive, the federal army and emergency organizations is described and discussed in connection with the new aspects outlined in the draft of the new radiation protection regulation. In conclusion, problems arising in the conveyance of basic knowledge in radiation protection are illustrated by means of a concrete example. (author)

  2. Radiation protection safety in Uganda -- Experience and prospects of the National Radiation Protection Service

    International Nuclear Information System (INIS)

    Kisolo, A.

    2001-01-01

    The Uganda National Radiation Protection Service (NRPS) is a technical body under the Atomic Energy Control Board, established by Law - the Atomic Energy Decree of 1972, Decree No. 12, to oversee and enforce safety of radiation sources, practices and workers; and to protect the patients, members of the public and the environment from the dangers of ionizing radiation and radioactive wastes. The Ionizing Radiation Regulations (Standards) - Statutory Instruments Supplement No. 21 of 1996 -- back up the Law. The Law requires all users, importers and operators of radiation sources and radioactive materials to notify the NRPS for registration and licensing. The NRPS is responsible for licensing and for the regulatory enforcement of compliance to the requirements for the safety of radiation sources and practices. There are about 200 diagnostic X-ray units, two radiotherapy centres, one nuclear medicine unit, several neutron probes, about three level gauges and two non-destructive testing sources and a number of small sealed sources in teaching and research institutions. About 50% of these sources have been entered in our inventory using the RAIS software provided by the IAEA. There are about 500 radiation workers and 250 underground miners. The NRPS covers about 50% of the radiation workers. It is planned that by June 2001, all occupational workers will be monitored, bringing coverage to 100%. The Government of Uganda is making the necessary legal, administrative and technical arrangements aimed at establishing the National Radiation Protection Commission as an autonomous regulatory authority. The Atomic Energy Decree of 1972 and Regulations of 1996 are being revised to provide for the National Radiation Protection Commission and to make it comply with the requirements of the International Basic Safety Standards Safety Series No. 115. (author)

  3. Activities of Moroccan Radiation Protection Association

    International Nuclear Information System (INIS)

    Choukri, A.

    2010-01-01

    Encourage activities and information exchange in the field of radiation protection and related areas; Assist in informing both the public and the professionals on the problems and requirements related to radiation protection for the protection of man and the environment; Promote professional training in radiation protection. The use of nuclear technology in medicine, agriculture and industry is very advanced in Morocco. This technological progress has been accompanied by fairly detailed legislation and significant involvement on the part of Morocco in international conventions and agreements

  4. Training in radiation protection and the safe use of radiation sources

    International Nuclear Information System (INIS)

    2001-01-01

    The need for education and training in the various disciplines of radiation protection has long been recognized by the IAEA, the International Labour Organization (ILO), the United Nations Educational, Scientific and Cultural Organization, the World Health Organization and the Pan American Health Organization (PAHO). This need has been partially met through the many training courses undertaken by these organizations, either individually or in collaboration. The IAEA has assisted developing Member States in the training of specialists in radiation protection and safety through its organized educational and specialized training courses, workshops, seminars, fellowships and scientific visits. Training is an important means of promoting safety culture and enhancing the level of competence of personnel involved in radiation protection activities, and has acquired a place in the IAEA's programme accordingly. For example, the IAEA Post-graduate Educational Course in Radiation Protection and the Safe Use of Radiation Sources is regularly offered in countries around the world, and has been provided in Arabic, English, French, Spanish and Russian. The training provided by the IAEA is primarily aimed at regulators, professionals working in radiation protection and those responsible for the development of training programmes in their own countries. The importance of adequate and appropriate training for all those working with ionizing radiation has been highlighted by the results of the IAEA's investigations of radiological accidents. A significant contributory factor in a number of the accidents has been a lack of adequate training, which gave rise to errors with serious consequences. This report provides assistance in organizing training and complying with the requirements on training of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The previous version of this report. Technical Reports

  5. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H 2 O 2 (toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H 2 O 2 )-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H 2 O 2 (or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  6. Radiation Protection. Chapter 24

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, D. [Ninewells Hospital, Dundee (United Kingdom); Collins, L. T. [Westmead Hospital, Sydney (Australia); Le Heron, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Chapter 21, in describing basic radiation biology and radiation effects, demonstrates the need to have a system of radiation protection that allows the many beneficial uses of radiation to be realized while ensuring detrimental radiation effects are either prevented or minimized. This can be achieved with the twin objectives of preventing the occurrence of deterministic effects and of limiting the probability of stochastic effects to a level that is considered acceptable. In a radiology facility, consideration needs to be given to the patient, the staff involved in performing the radiological procedures, members of the public and other staff that may be in the radiology facility, carers and comforters of patients undergoing procedures, and persons who may be undergoing a radiological procedure as part of a biomedical research project. This chapter discusses how the objectives given above are fulfilled through a system of radiation protection and how such a system should be applied practically in a radiology facility.

  7. Bioassay programs for radiation protection

    International Nuclear Information System (INIS)

    1979-01-01

    This report discusses the rationale for the establishment of bioassay programs as a means of protection for radiation workers in the nuclear industry. The bioassay program of the Radiation Protection Bureau is described for the years 1966-1978 and plans for future changes are outlined. (auth)

  8. Knowledge plus Attitude in Radiation Protection

    International Nuclear Information System (INIS)

    Velez, G. R.; Sanchez, G. D.

    2003-01-01

    Since the introduction of the Basic Safety Standards recommendations, the scope of the radiation protection was broadening. On behalf of the incorporation of radiation protection of the patient in medical exposures, the different groups of professionals involved: physicians, medical physicists, radiation protection officers, regulators, etc., have to work together. The objective of radiation protection, that is, to reduces doses from practices, to prevent potential exposures, to detect its occurrence as well as to evaluate and spread such abnormal situations, will be obtained only if it were possible to joint two basic conditions: knowledge and attitude. It should be well known the differences between the backgrounds needed to be for example, a medical physicist or an R.P.O., However, their attitude to solve an eventual problem involving radiation protection should be the same; as well as the behavior of the specialized physician and regulators, in order to add towards common goals. In this work, we show as an example the curricula contents about radiation protection of the cancer of medical physics in the Universidad Nacional de San Martin (UNSAM), and the corresponding module on medical exposures from the Post-Graduate course on Radiation Protection and Nuclear Safety, held since the 80s in Buenos Aires by the National Commission of Atomic Energy, ARN, IAEA, and the Universidad de Buenos Aires. On the other hand, we describe different attitudes which leads or could start major radiological accidents, regardless the level of knowledge in radiation protection. We conclude that the larger numbers of accidents are due to problems in the attitude than in the level of knowledge of the person involved. Consequently; we suggest emphasizing the discussion on how to generate positive attitudes in every professional involucrated, independently of its cognitive profile or level. (Author) 2 refs

  9. Radiation protection course for physicians. 3. rev. ed.

    International Nuclear Information System (INIS)

    Stieve, F.E.

    1979-01-01

    The regulations of the Radiation Protection Ordinance and the X-ray Ordinance concerning the expert training of radiological safety officers and health physicists working in hospitals and general practice require expert knowledge in radiation protection of these persons. Expert knowledge includes knowledge of radiation protection itself but also experience in the medical application of ionizing radiation and radioactive materials and experience required for judging the state of health of persons occupationally exposed to radiation. The discussions between lectures and participants of the radiation protection courses made it necessary to update the textbooks with regard to the latest state of knowledge in radiobiology, radiation hygiene, radiation protection, and legislation. (orig./HP) [de

  10. Medical aspects of radiation protection law contribution to Austrian radiation protection law

    International Nuclear Information System (INIS)

    Moser, B.

    1977-01-01

    Some medical aspects of the radiation protection law, esp. in conjunction with medical surveillance of persons exposed to radiation, are dealt with. The discussion refers to the countries of the European Community and Austria and Switzerland. (VJ) [de

  11. Coastal sea radiation environment and biodiversity protection

    International Nuclear Information System (INIS)

    Tang Senming; Shang Zhaorong

    2009-01-01

    This paper characterizes the types, trend and the potential of radiation contamination in the sea against the development of nuclear power stations. Combined with the present status of radioactive contamination and marine biodiversity in China seas, it is pointed out that non-human radiation protection should be considered on the bases of marine biodiversity protection. Besides, the reference species for marine radiation protection and some viewpoints on the work of marine radiation protection in China are pro- posed. (authors)

  12. Abstracts of 20. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    1988-01-01

    51 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, international activities in radiation protection, solid state dosimetry, models and calculation methods in radiation protection, and measuring techniques in radiation protection

  13. First Asian regional congress on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-12-01

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection.

  14. In-situ radiation dosimetry based on Radio-Fluorogenic Co-Polymerization

    NARCIS (Netherlands)

    Warman, J.M.; Luthjens, L.H.; De Haas, M.P.

    2009-01-01

    A fluorimetric method of radiation dosimetry is presented for which the intensity of the fluorescence of a (tissue equivalent) medium is linearly dependent on accumulated dose from a few Gray up to kiloGrays. The method is based on radio-fluorogenic co-polymerization (RFCP) in which a normally very

  15. XXXIX Days of Radiation Protection. Proceedings of Abstracts

    International Nuclear Information System (INIS)

    2018-01-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 91 abstracts are published. The Conference consists of following sections: (I) Radiation protection, consequences of implementation of the EU2013 / 59 directive in the Czech Republic and the Slovak Republic); (II) Radiation protection in the application of ionizing radiation in medicine; (III) Dosimetry and metrology of external and internal irradiation; (IV) Natural sources of ionizing radiation, national radon programs; (V) Nuclear energy, the concept of decommissioning of nuclear power plants in terms of radiation protection; (VI) Use of standards of radiation protection in emergency management; (VII) Biological effects of radiation and estimation of irradiation risk.

  16. State Supervision and Control of Radiation Protection

    CERN Document Server

    2001-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 1999-2001 is presented.

  17. Regulations for radiation protection in industrial radiography

    International Nuclear Information System (INIS)

    1974-01-01

    These Regulations specify that responsibility for applying radiation protection regulations in industrial radiography rests with the owner of the establishment who will designate a radiation protection officer to this effect. They provide for the organisation of radiation protection, including the measures to be observed, exposure limits, etc. The competent authority for these questions is the State Institute of Radiation Hygiene [fr

  18. Report of the work-group derived from the permanent radioprotection expert Group on the desirable evolutions for the functions and training of persons with expertise in radiation protection

    International Nuclear Information System (INIS)

    2010-01-01

    This report first discusses the issues of training in radiation protection within the French national context by distinguishing training in relationship with workers' radiation protection (internal training in radiation protection as foreseen in the French Work Code, training in the industrial field, training in the field of radioactive material transportation, training of the person with expertise in radiation protection or PCR), and training in relationship with patient radiation protection (training of the person specialised in medical radio-physics, training in patient radiation protection). It describes the situation and evolution perspectives at the European level by addressing the situation in different countries (Great-Britain, Belgium, Switzerland), the content of the 96/29/Euratom directive, the current evolutions in Europe (European platform EUTERP, European programs ENETRAP, transposition of the 2006-123-CE directive, the 2005-36-CE directive and its revision), and some international aspects. The authors discuss strengths and weaknesses of the person with expertise in radiation protection (PCR), and state reflections and recommendations regarding the evolution of the present PCR arrangement

  19. Radiation protection standards: a summary of the biological effects of ionising radiation and principles of radiation protection

    International Nuclear Information System (INIS)

    1994-01-01

    This leaflet in the NRPB At-a-Glance-Series briefly summarises the biological effects of radiation, harm and sensitivity to radiation, radiation protection principles, acceptability of risk and the control of doses to workers, the public and in medical procedures in the UK. (UK)

  20. Greetings from Austrian Radiation Protection Association

    International Nuclear Information System (INIS)

    Hajek, M.; Brandl, A.

    2015-01-01

    Austrian Radiation Protection Association (OVS) share with others a long-standing tradition of common endeavours and close collaboration. We have been and are able to influence the European radiation protection environment and IRPA initiatives and policies. We are intrigued by the breadth and comprehensive nature of the symposium programme, covering the most important sub-fields in our profession, and spanning topics from radiation dosimetry to radiobiology, from instrumentation and measurement to radioecology, and from radiation protection for workers and in medicine to our professional responsibilities towards the general public. These topics are timeless and current, providing testimony to the fact that the science of radiation protection is not exhausted. Novel applications of ionizing and non-ionizing radiation, including new modalities in the fields of medical therapy and diagnosis, a resurgence of nuclear energy generation in some parts of the globe, combined with increased efforts for decontamination and decommissioning of existing sites and facilities, they are all attest to the continued need for further research and our professional input and discussion. The national radiation protection associations will have a role to play in both, the advocacy of increased efforts to educate and train our future professionals and the retention of those professionals in our field.

  1. Radiation protection in education

    International Nuclear Information System (INIS)

    Viragh, Elemer

    1985-01-01

    The education of secondary school students in the fields of nuclear sciences was strictly limited according to the 9th recommendations of the ICRP issued in 1966 saying that people under age 18 are not allowed to deal with ionizing radiations. Due to the changes concerning the concept of radiation protection, new opportunities for teaching nuclear technology even in the secondary schools were opened. The 36th recommendations of the ICRP published in 1983 dealing with the maximum permissible doses and the measures taken for radiation protection should be kept in mind while organizing the education of the pupils between age 16 and 18. (V.N.)

  2. Radiation Protection in PET-CT

    International Nuclear Information System (INIS)

    2011-10-01

    The presentation is based on the following areas: radiological monitoring installations in the production of PET radiopharmaceuticals, personal dose, dosage advertising, nuclear medicine, PET, radiation protection of patients, requirements for medical practice, regulatory aspects, dose calculation, shields, quantities, center Cudim, cyclotron and synthesis of radiopharmaceuticals, biological effects of radiation protection practices.

  3. New trends in radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1977-10-01

    The introduction of new concepts such as the effective dose equivalent, the collective dose and the dose commitment, and the application of the basic principles of justification, optimization and individual dose limitation has had a major impact on the planning and implementation of radiation protection during the last few years. The basic principles are summarized in ICRP Publication 26. It is a chalenge to research in radiobiology, genetics and health physics to explore the scientific foundation of the current principles of radiation protection. The most interesting trend to-day, however, is the observation that the principles applied in radiation protection have now been generally recognized and accepted to the extent that they become utilized in the protection of man against non-radioactive carcinogenic substances and environmental pollutants. (author)

  4. First Asian regional congress on radiation protection

    International Nuclear Information System (INIS)

    Kumar, S.K.

    1975-01-01

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection. (S.K.K.)

  5. Radiation protection. The past and the future

    International Nuclear Information System (INIS)

    Michel, Rolf

    2016-01-01

    After a short summary of the history of radiation protection and its scientific basis a survey is given on the actual state of radiation protection, thereby entering into open questions like risk perception and communication with the general public. Finally, the future tasks of radiation protection are described.

  6. Ionizing radiation protection regulation in Canada: the role of the Federal Provincial Territorial Radiation Protection Committee

    International Nuclear Information System (INIS)

    Clement, Christopher H.

    2008-01-01

    Canada has one of the broadest and most mature nuclear industries in the world, and is a world leader in uranium mining, and in the production of medical radioisotopes. The Canadian nuclear industry also includes: uranium milling, refining, and fuel fabrication facilities; nuclear generating stations; research reactors and related facilities; waste management facilities; and the use of radioactive materials in medicine and industry. Regulation of this broad and dynamic industry is a complex and challenging task. Canada has a cooperative system for the regulation of ionizing radiation protection covering federal, provincial, territorial, and military jurisdictions. A Federal/Provincial/Territorial Radiation Protection Committee (FPTRPC) exists to aid in cooperation between the various agencies. Their mandate encompasses regulation and guidance on all aspects of radiation protection: federal and provincial; NORM and anthropogenic; ionizing and non-ionizing. The Canadian Nuclear Safety Commission (CNSC) is the federal nuclear regulator whose mandate includes radiation protection regulation of most occupational and public exposures. The CNSC does not regulate medical (patient) exposures, some aspects of NORM, or military applications. Provincial authorities are the primary regulators with respect to doses to patients and occupational doses arising from X-rays. Health Canada plays a role in X-ray device certification, development of national guidance (e.g. on radon) and direct regulation of certain federal facilities. NORM is regulated provincially, with varying regulatory mechanisms across the provinces and territories. Radiation protection regulation for National Defence and the Canadian Armed Forces is performed by the Director General Nuclear Safety. This paper gives an overview of the structure of the regulation of ionizing radiation protection in Canada, and shares lessons learned, particularly with respect to the usefulness of the FPTRPC in helping coordinate and

  7. Regional radiation protection initiatives by Australia

    International Nuclear Information System (INIS)

    Grey, J.

    1993-01-01

    Australia both through the auspices of the IAEA and from Government Aid Grants has contributed to the improvement of radiation protection throughout the Asia/Pacific region. The assistance has been in the form of training and improvement to radiation protection infrastructures. The presentation describes the objectives, scope and diversity of the radiation protection infrastructure program and the benefits to the large number of persons included in the program. An outline of the current IAEA program is also discussed together with an explanation of how the program will assist national regulators in the education of radiation workers, in hazardous operations such as industrial radiography

  8. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs

  9. Radiation protection education and training for physicians. Technical qualification for radiation protection and radiation protection instruction for physicians. More important than ever

    International Nuclear Information System (INIS)

    Loecker, Hubert

    2017-01-01

    The medical application of ionizing radiation - especially X-ray diagnostics - is contributing most of the civilizing radiation exposure of the population. More than 80 percent of occupationally exposed persons work in nuclear medicine. Therefore radiation protection in medicine and instruction and training of physicians is more important than ever.

  10. New legislative regulations for ensuring radiation protection using ionizing radiation sources in medicine

    International Nuclear Information System (INIS)

    Boehm, K.

    2018-01-01

    European Commission Directive No. 2013/59 / EURATOM laying down basic safety requirements for the provision of radiation protection regulates the provision of radiation protection for workers with radiation sources and residents in all areas of use of ionizing radiation sources. This Directive also addresses radiation protection in the use of ionizing radiation sources in medicine. The European Commission Directive regulates the requirements for radiation protection but also extends to its scope and provisions on the use of medical radiation sources (so-called m edical exposure ) in the scope of further legislation in the field of health care, which has to be amended and modified or possibly issued new. It was necessary in the preparation of the new act on radiation protection to amend simultaneously Act no. 576/2004 on the provision of health care and services related to provision of health care and Act no. 578/2004 on Health care Providers, Health care Professionals and Organizations in Health Care and to prepare a series of implementing regulations not only to the Law on Radiation Protection but also to the Laws governing the Provision of Health Care. The paper presents changes to existing legislation on radiation protection in medical radiation and new requirements for the construction and operation of health workplaces with radiation sources, the protection of the health of patients, the requirements for instrumentation used for medical radiation and radiological instrumentation tests. (authors)

  11. 7th Expert meeting radiation protection. International developments, waste management, challenges for the radiation protection in aging nuclear installations

    International Nuclear Information System (INIS)

    2010-01-01

    The proceedings of the 7th Expert meeting on radiation protection include contributions to the following topics: nuclear power and public opinion, IAEA safety standards, ISOE - information system on occupational exposure, European harmonization of the radiation protection education, WANO - challenges and results, CTBTO's global radiation measurement network, state of final radioactive waste disposal in Germany and worldwide, radioactive waste management and disposal in French NPPs, preparedness for final waste disposal in Schacht Konrad, actualization of the transport study Konrad, transport of NPPs' operational radioactive waste and waste from decommissioned reactor demolition to the final repository Konrad, qualification of radioactive waste casks for the final repository Konrad, radioactive waste disposal management concept in Switzerland, aging management and radiation protection, decontamination as effective measure for dose rate reduction - long-term and sustainable dose rate reduction by primary circuit decontamination, system and component decontamination for individual and collective dose reduction - practical examples, radiation protection map - electronic assistance for work planning, EPR dismantling already today? radiation protection register 2002-2010 - knowledge based on a decade of radiation monitoring, actual information on radiation protection in medicine, mobile telecommunication - actual research results.

  12. Radiation and man. From radiology to radiation protection

    International Nuclear Information System (INIS)

    2005-04-01

    Man first became aware of the invisible radiation surrounding him in 1895, when Wilhelm Roentgen showed that a photographic plate could be affected by an invisible radiation capable of passing through matter. He called this radiation 'X-rays' from X, the unknown. Doctors immediately saw the usefulness of this type of radiation and began to use it in medical research. This was the birth of radiology. 'Mankind has been exposed to radiation since his first appearance on Earth. We first became aware of this at the end of the 19. century'. However, it was not long before some of the doctors and radiologists treating their patients with X-rays began to fall ill. It began to be understood that exposure to high doses of radiation was dangerous and protective measures were necessary. From the 1920's onwards, international commissions were established to specify regulations for the use of radiation and for the radiological protection of personnel. (authors)

  13. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Tadmor, J.; Schlesinger, T.; Lemesch, C.

    1980-01-01

    A committee of experts appointed by the Minister of Labour and Social Affairs has proposed a comprehensive draft regulation, concerning the legal aspects of occupational radiation protection in Israel. The first section of the proposed regulation sets forth guidelines for control in facilities where workers handle radioactive materials or radiation equipment. This includes the duties of the managers of such places to ensure adequate radiation protection and also the maximum recommended doses (whole body and individual organs) for radiation workers. The second section deals with the monitoring regulations for radiation workers who may be exposed to doses in excess of 500 mRem/y. The third section outlines the nature of the mechanical supervision required, i.e. routine and special examinations. Finally the committee also proposed six miscellaneous recommendations for radiation protection. (UK)

  14. Training aspects contributing to radiation protection

    International Nuclear Information System (INIS)

    Gupta, M.S.

    2001-01-01

    Radiation Protection assumes special significance with increasing use of radioactive materials and processes. Scientific and industrial organisations dealing with radioactive materials have prime responsibility of ensuring effective control of all activities which may lead to radiation exposure. Training of all the persons involved in the work associated with radioactivity is absolutely necessary to develop radiation protection skill, radiation measurement proficiency and special precautions to be taken in abnormal situations. NPCIL having responsibility for design, construction, operation and de-commissioning of nuclear power plants, employs about 10,000 workers on several project/station sites all over the country. NPCIL has developed a good training system to accurately control the exposure of workers to radiation. This paper covers the system and other relevant details of radiation protection training organised by NPCIL. (author)

  15. In-Vitro Radio protective Role of Ferulic Acid in Cultured Lymphocytes

    International Nuclear Information System (INIS)

    Ahmed, M.M.; Al Fateh, N.M.; Tawfik, S.S.

    2010-01-01

    Ferulic acid (FA), C 10 H 10 O 4 is the most abundant, ubiquitous hydroxycinnamic acid derived from photochemical phenolic compounds. It is a major constituent of fruits and vegetables such as orange, tomato, carrot, sweet corn and rice bran. Gamma rays generate hydroxyl radicals in cells and cellular DNA damage which leads to genotoxicity and chromosome aberrations. To establish most effective protective support, we used two different concentrations of FA (5 and 10 μg/ ml) and 2 Gy dose of gamma-radiation. Cytogenetic analysis was evaluated using the analysis of structural chromosome aberration (CA) and cytokinesis block micronucleus assay (CBMN). The level of lipid peroxidation analyzed as thiobarbituric acid reactive substances (TBARS), total glutathione (GSH), the enzyme activities of lymphocytes defence mechanism: Superoxide dismutase (SOD), Catalase (CAT) and Glutathione peroxidase (GPx) were determined. The result obtained by all endpoints indicates acceptable toxicity profiles of FA in-vitro when compared with normal lymphocytes; irradiation at 2 Gy increased the MN and CA frequencies. Treatment with FA for 30 min before radiation exposure resulted in a significant decline both of MN and CA yields as FA concentration increased. The levels of TBARS and GSH were altered significantly whereas the levels of the enzymatic antioxidants were decreased in gamma-irradiated lymphocytes. Pretreatment with 10 μg/ ml of FA has attenuated the toxic effects of radiation more than FA (5 μg/ ml) by reduction in the TBARS level, restoration GSH contents and prevented the decreases in the radiation-induced SOD, CAT and GPx activities. These results lead us to the conclusion that FA has antimutagenic effect and benefit as a radio protector against oxidative stress involved by gamma-rays exposure

  16. Computer Based Radiation Protection- A New Cd-Rom

    International Nuclear Information System (INIS)

    Geringer, T.; Bammer, M.; Ablber, M.

    2004-01-01

    Within the next few years, there'll be a lot of new challenges required from radiation protection. According to EU regulation[1] and the new austrian radiation protection law [2] regular additional training are requested. Patients protection in diagnostic and therapeutic usage of ionising radiation gains also more and more importance.[3] Not really surprisingly, the general population is definitely highly aware of the risks coming with the usage of radionuclides and x-rays in medicine. Furthermore, the nuclear power plant in Temelin, near the austrian border initiated a lively discussion about risks, necessity and use of ionising radiation in medicine and industry. It turned out to be a really hard job handling these topics in public. A brilliant didactics based on independent information and viewpoints was required. ARC Seibersdorf Research GmbH, represented by the department of medical technical applications and the radiation protection academy, developed an interactive CD-ROM covering several applications: Basics on radiation protection for medical and technical personnel ; preparation for a radiation protection training. Repetition of the main topics for graduates of a radiation protection training. Basics on radiation protection and emergency management for medical staff as well as for the general public. (Author)

  17. Public understanding of radiation protection concepts

    International Nuclear Information System (INIS)

    1988-01-01

    The Chernobyl accident in April 1986 clearly showed that communication with the public was one of the areas where there was a strong need for improvement, particularly concerning the nature and extent of the information provided by national authorities. The countermeasures adopted by public health authorities also raised difficulties in terms of public understanding and acceptance due, in part, to the perception of discrepancies in national, regional or local response to the accident, but also to a more basic lack of comprehension of the complex radiation protection considerations involved. In an attempt to help improve the situation, the NEA Committee on Radiation Protection and Public Health decided to organise a Workshop on public communication in the event of a nuclear accident, centered on radiation protection issues. The purpose of this Workshop was to analyse appropriate methods and language to be used when explaining to the public the scientific concepts underlying radiation risks and radiation protection, and the technical rationale for the choice of protective actions in an emergency. Separate abstracts were prepared for individual papers presented at the meeting

  18. Radiation protection planning and management during revision

    International Nuclear Information System (INIS)

    Gewehr, K.

    1984-01-01

    During the operation of nuclear power plants it is normally possible for the in-house personnel to take care of arising radiation protection problems. However, in the comparatively short revision phases, the duties of radiation protection become much more varied. Additional trained radiation protection crews are needed at short notice. This is also the time in which the largest contributions are made to the annual cumulated doses of the personnel. Recent guidelines and rules trying to reduce the radiation exposure of personnel concentrate on this very point. The article outlines the radiation protection activities performed by the service personnel in the course of a steam generator check. (orig.) [de

  19. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  20. The development of radiation protection

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1981-01-01

    The harm that might be caused by radiation exposure was recognised within months of Rontgen's discovery of X-rays, and recommendations for protection of patients and workers with radiation were formulated first in 1928. In the light of increasing radiobiological, genetic and human epidemiological evidence, it became clear that there might be no threshold, below which harmful effects did not occur. Recommendation and practice in radiation protection reflected this opinion from the early 1950's, and emphasised the consequent need for minimising exposures, quantifying risks and revising the dose limits appropriate for internal radiation of body organs. (author)

  1. Enhancing radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    When a new radiotherapy center in Gezira, Sudan, delivers its first therapeutic dose to a cancer patient, two things happen: A young man begins to regain his health and looks forward to being better able to support his family and contribute to his community; and a developing nation realizes an important step toward deriving the social and economic benefits of nuclear science. The strategic application of nuclear technology in particular fields- human health, industry, food and agriculture, energy, water resources and environmental protection - has enormous potential to help shape the future of developing countries. But past radiological incidents, several of which involved high levels of exposure or death (Bolivia, Brazil, Cost Rica, Georgia, Ghana, Morocco, Panama and Thailand), underscore the inherent and very serious risks. For this reason, the IAEA's Departments of Technical Cooperation and Nuclear Safety and Security partner closely, particularly in the area of radiation protection. They strive to consider every minute detail in the equation that brings together radiation sources, modern technologies, people and the environment. Launched in 1996, the Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) aimed to help Member States: achieve capacities that underpin the safe and secure application of nuclear technologies; establish a legislative framework and regulatory infrastructure; develop exposure control mechanisms to protect workers, medical patients, the public and the environment; and achieve preparedness and planned response to radiological emergencies. In fact, the hospital scenario above typically marks several years of intense collaboration amongst scientists, legislators, regulators, politicians and administrators from both Member States and the IAEA, orchestrated and aided by regional managers and technical experts from the IAEA. As radiation protection team members can attest, every application of nuclear technology

  2. From regulations towards radiation protection culture

    International Nuclear Information System (INIS)

    Boehler, M.C.

    1996-01-01

    Compliance with the technical standards and specifications is a necessary but not sufficient condition for quality in radiation protection. Reaching this quality objective is not a matter of forcing improvements by a regulatory policy of reducing dose limits, but of promoting a real radiation protection culture. The spread of such a radiological protection culture encourages the deliberate adoption in everyday practice of behaviour likely to reduce exposure to ionizing radiation as loser as reasonably achievable. The aim of this paper is to demonstrate that the need to diffuse a radiological protection culture is inspired by the philosophy behind the system recommended by ICPR Publication 60 on the management of residual radiological risk and, in particular by the behavioural and incentive approach implied by the optimization principle. Special attention will be given to the fundamentals likely to contribute in a definition of radiation protection culture. (author)

  3. Radiation protection activities and status in Asia

    International Nuclear Information System (INIS)

    Strohal, P.

    1993-01-01

    The status of radiation protection practices in Asian countries is monitored by different means, e.g. the IAEA technical cooperation activities, by an overall assessment of conditions in a country by RAPAT missions, and on the basis of data collected through various regional activities. The radiation protection situation in Asia is very heterogeneous. There is a group of countries with very well developed radiation protection practices and advanced in the application of the Basic Safety Standards, but the majority of Asian member states still need improvement, several lacking the necessary fundamental infrastructure for radiation protection

  4. 100 years of ionizing radiation protection

    International Nuclear Information System (INIS)

    Baltrukiewicz, Z.; Musialowicz, T.

    1999-01-01

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  5. Chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1987-01-01

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  6. Manual for medical problems of radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The manual deals comprehensively and topically with the theoretical and practical fundamentals of radiation protection of the population considering the present knowledge in the fields of radiobiology and radiation protection medicine. The subject is covered under the following headings: (1) physics of ionizing radiations, (2) biological radiation effects, (3) the acute radiation syndrome, (4) medical treatment of the acute radiation syndrome, (5) combined radiation injuries, and (6) prophylaxis and therapy of injuries caused by fission products of nuclear explosions. The book is of interest to medical doctors, medical scientists, and students in medicine who have to acquire special knowledge in the field of radiation protection and it is of value as a reference book in daily routine

  7. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  8. Application of microprocessors to radiation protection measurements

    International Nuclear Information System (INIS)

    Zappe, D.; Meldes, C.

    1982-01-01

    In radiation protection measurements signals from radiation detectors or dosemeters have to be transformed into quantities relevant to radiation protection. In most cases this can only be done by taking into account various parameters (e.g. the quality factor). Moreover, the characteristics of the statistical laws of nuclear radiation emission have to be considered. These problems can properly be solved by microprocessors. After reviewing the main properties of microprocessors, some typical examples of applying them to problems of radiation protection measurement are given. (author)

  9. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  10. Radiation effects and radioprotectors

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, R.K., E-mail: dr_rajendra_purohit@yahoo.co.in [Radiation Biology Laboratory, Department of Zoology, Govt. Dungar College, Bikaner (India); Bugalia, Saroj [Department of Zoology, S.K. Kalyan College, Sikar (India); Dakshene, Monika [Department of Chemistry, Govt. College, Kota (India)

    2012-07-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio-protective

  11. Radiation effects and radioprotectors

    International Nuclear Information System (INIS)

    Purohit, R.K.; Bugalia, Saroj; Dakshene, Monika

    2012-01-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio-protective

  12. Seventh meeting of radiation protection skilled persons; Septiemes rencontres des personnes competentes en radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Juhel, Th.; Briandchamplong, J.; Gambini, D.J.; Ammerich, M.; Aubert, B.; Barbey, P.; Biau, A.; Bruchet, H.; Capelle, M.H.; Flon, E.; Gauron, Ch.; Gravelotte, D.; Guerin, Ch.; Le Denmat, D.; Lemoine, Th.; Lombard, J.; Lucas, St.; Menechal, Ph.; Mignien, S.; Million, M.; Mozziconacci, J.G.; Prevot, S.; Radecki, J.J.; Rigaud, S.; Taillandier, P.; Timbert, M.; Vidal, J.P.; Bardelay, Ch.; Lahaye, Th.; Balduyck, S.; Chasson, E.; Rehel, J.L.; Chatellier, Ch.; Barret, Ch.; Guersen, J.; Degrange, J.P.; Sevestre, B.; Lahaye, Th.; Rodde, S.; Marchal, C.; Lefaure, Ch.; Bouk' il, H.; Gneiting, M.; Auboiroux, B.; Riedel, A.; Feuardent, J.; Scanff, P.; Bof, M.; Lochard, J.; Godet, J.L.

    2011-07-01

    This document gathers the slides of the available presentations given during these conference days. Twenty-three presentations out of 25 are assembled in the document and deal with: 1 - the evolution of workers' international protection rules against ionizing radiation risks (C. Bardelay); 2 - presentation of the report of the working group on radiation protection (P. Barbey); 3 - position of the French nuclear safety authority and of the labor general direction about the position of permanent expert groups in radiation protection concerning the expected evolutions in the occupation and training of radioprotection skilled persons (RSP), (T. Lahaye); 4 - experience feedback: RSP in surgery operating theater - a sometimes delicate intervention (S. Balduyck); 5 - workplace analysis in dental surgery: constraints and specificities (D. Le Denmat); 6 - workplace analysis: tritium atmospheric contamination (S. Rigaud); 7 - revision of the NFC 15-160 standard relative to radiology facilities (J.L. Rehel); 8 - example of area tele-dosimetry usage - the Pitie Salpetriere hospital experiment (C. Chatellier and C. Barret); 9 - contribution of radio-attenuation lead gloves in interventional radiology (J. Guersen); 10 - zoning in the medical domain: encountered problems typology and evaluation of possible solutions (Degrange, J.P.); 11 - management of used sealed sources distributed by the CEA and CISBIO (B. Sevestre); 12 - how to perform a measurement in radiation protection - how about measurement uncertainty (M. Ammerich); 13 - national campaign of control about the application of workers radiation protection rules (T. Lahaye); 14 - transparency and inspection approach in local nuclear applications: gamma-graphy, research, nuclear medicine, interventional radiography and radiotherapy (S. Rodde and C. Marchal); 15 - local/regional networks of RSPs and radiation protection actors: 2008 audit results and recent evolutions (C. Lefaure); 16 - role and missions of the external

  13. Nuclear analysis methods. Rudiments of radiation protection

    International Nuclear Information System (INIS)

    Roth, E.

    1998-01-01

    The nuclear analysis methods are generally used to analyse radioactive elements but they can be used also for chemical analysis, with fields such analysis and characterization of traces. The principles of radiation protection are explained (ALARA), the biological effects of ionizing radiations are given, elements and units used in radiation protection are reminded in tables. A part of this article is devoted to how to use radiation protection in a nuclear analysis laboratory. (N.C.)

  14. Possible Explanation for Cancer in Rats due to Cell Phone Radio Frequency Radiation

    Science.gov (United States)

    Feldman, Bernard J.

    Very recently, the National Toxicology Program reported a correlation between exposure to whole body 900 MHz radio frequency radiation and cancer in the brains and hearts of Sprague Dawley male rats. Assuming that the National Toxicology Program is statistically significant, I propose the following explanation for these results. The neurons around the brain and heart form closed electrical circuits and, following Faraday's Law, 900 MHz radio frequency radiation induces 900 MHz electrical currents in these neural circuits. In turn, these 900 MHz currents in the neural circuits generate sufficient localized heat in the neural cells to shift the equilibrium concentration of carcinogenic radicals to higher levels and thus, to higher incidences of cancer.

  15. Radiation protection manual

    International Nuclear Information System (INIS)

    Spang, A.

    1983-01-01

    According to the Radiation Protection Ordinance, radiation protection experts directing or supervising the handling of radioactive materials must have expert knowledge. The concept of expert knowledge has been clearly defined by the Fachverband e.V. in a catalogue of instruction goals. The manual follows the principles of this catalogue; it presents the expert knowledge required in a total of 15 subject groups. There is an index which helps the reader to find his specific subject group and the knowledge required of him in this subject group. However, the manual gives only an outline of the subject matter in many instances and should therefore not be regarded as a textbook in the proper sense. (orig./HP) [de

  16. Radiation protection programme for nuclear gauges

    International Nuclear Information System (INIS)

    Muzongomerwa, A.

    2014-04-01

    Ionizing radiation including the use of nuclear gauges can be very hazardous to humans and steps must be taken to minimize the risks so as to prevent deterministic effects and limiting chances for stochastic effects. The availability of a Radiation Protection Programme and its effective implementation ensures appropriate safety and security provisions for sealed radiation sources and promotes a safety culture within a facility that utilizes these sources. This study aims at establishing a guide on the radiation protection programme in nuclear gauges that comply with national requirements derived from current international recommendations. Elements that form part of a radiation protection programme are covered in detail as well as recommendations. The overall objective is to protect people (operators and the public) and the environment from the harmful effects of these sources if they are not properly controlled. Nuclear gauges for well logging and X-ray based gauges are outside the scope of this study. (au)

  17. Preventive radiation protection in Hamburg

    International Nuclear Information System (INIS)

    Boikat, U.; Lauer, R.; Plath, S.; Sachde, Z.G.

    2001-01-01

    Monitoring of environmental radioactivity as well as complex investigations for precautionary radiation protection are carried out in Hamburg by two radiation monitoring labs. The spectrum of their tasks is specified by the media to be investigated. The tasks are originating from the Federal Precautionary Radiation Protection Act and from local needs. Mostly since a lot of years all interesting materials are analysed for their radioactivity content, as a safe and precautionary radiation protection demands. Until today samples show the influence of global nuclear weapon fallout of the period until 1964. Partly they show the radioactivity of Caesium originating from the Chernobyl accident. Since ten years the radioactivity contents in the material investigated are decreasing. Mostly the activity reached levels as at the end of 1985. The basic food stuff investigated in Hamburg can be considered as to be uncontaminated by radioactivity. With the introduction of the Federal Precautionary Radiation Protection Act, a series of new investigation programs and investigation methods were developed. This allows a better preparedness for extraordinary situations of increased radioactivity in the environment as 12 years ago. Thus a precise assessment of situations of increased radioactivity levels can be given together with coordinated and solid information to the public concerning provisions and actions. (orig.) [de

  18. Management information system on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela, E-mail: pabloag@cdtn.b, E-mail: lss@cdtn.b, E-mail: gmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  19. Management information system on radiation protection

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela

    2011-01-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  20. Regulatory requirements for radiation protection

    International Nuclear Information System (INIS)

    Mason, E.A.; Cunningham, R.E.; Hard, J.E.; Mattson, R.J.; Smith, R.D.; Peterson, H.T. Jr.

    1977-01-01

    Regulatory requirements for radiation protection have evolved and matured over several decades. Due to the wide adoption of recommendations of the International Commission on Radiation Protection (ICRP), there exists international agreement on the principles to be followed for radiation protection. This foundation will be increasingly important due to the growing need for international agreements and standards for radiation protection and radioactive materials management. During the infancy of the commercial nuclear industry, primary reliance was placed on the protection of the individual, both in the work force and as a member of the public. With the growth of nuclear power in the 1960's and 1970's, environmental impact assessments and expert reviews of bio-effects data have focused attention on statistical risks to large population groups and the use of the collective dose commitment concept to estimate potential effects. The potential release of long-lived radionuclides from the nuclear fuel cycle requires further consideration of radionuclide accumulation in the biosphere and calls for controls conceived and implemented at the international level. The initial development efforts for addressing these concerns already have been instituted by the ICRP and the IAEA. However, formal international agreements and a unified set of international standards may be required to implement the recommendations of these groups. Further international efforts in the field of radiation protection are also called for in developing waste management practices and radioactive effluent control technology, in site selection for fuel reprocessing plants and waste dispersal facilities, and for ensuring safe transport of high-level wastes in various forms. Since the regulation of very low dose rates and doses will be involved, it will be useful to reexamine dose-effect relationships and societal goals for health protection. Improved criteria and methodologies for ''as low as readily

  1. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Sacc, R.A.; Rubiolo, J.; Herrero, F.

    1998-01-01

    , workers and the public in general, maximizing the quality of the diagnostic information. To achieve this goal, external advise on quality control, radioprotection training, personal monitoring, environmental survey and technical supports must be added to the physician staff. In diagnostic areas, using radiography and computed tomography, the doses of the operators are 2 mSv/yr on average; in mammography and odontology they do not exceed 0.5 mSv/yr; in fluoroscopy they vary between 2 and 4 mSv/yr; in the services of radiotherapy and brachytherapy they vary between 1 and 2 mSv/yr, in spite of the high dose rates present, and finally in nuclear medicine the average doses are 1 mSv/yr. Bearing in mind, that the annual permissible weighed dose is 20 mSv/yr, the value of the dose absorbed by the professional that work in the areas, is optimal. The weak point of radiation protection philosophy in medical applications is in the work of interventional physicians who take part in a lot of angiography procedures for about half and hour with each patient. This staff, have no full time dedication like the radiologist physicians and therefore haven't enough knowledge about the radiations and besides they are outside the personal dosimetry systems. Actually they are the highest risk group among physicians who use ionizing radiations in routine work and to whom the efforts in radio sanitary policies must be directed. (author)

  2. Radiation protection legislation in the Nordic countries

    International Nuclear Information System (INIS)

    Persson, L.

    1992-01-01

    A close collaboration exists in the Nordic countries in the field of radiation protection. The radiation protection authorities attach major importance to a uniform interpretation of the international recommendations. The legal situation of the Nordic countries in the radiation protection field will be reviewed with the main emphasis on the new Swedish and Finnish laws. (author)

  3. The revised German radiation protection ordinance

    International Nuclear Information System (INIS)

    Palm, M.

    2002-01-01

    Since August 2001, German radiation protection law is governed by a new Radiation Protection Ordinance, implementing two new Euratom Directives and taking into account new scientific developments, which provides a comprehensive basis for the protection of man and the environment. The Ordinance has been completely restructured; however, it is still a very complex piece of legislation comprising 118 provisions and 14 annexes, some of them highly technical. Reduced dose limits for occupationally exposed persons and members of the public, a detailed provision on clearance of radioactive substances, a new part aiming at the protection of man and the environment against ionising radiation emanating from natural sources, and regulations dealing with the protection of consumers in connection with the addition of radioactive substances to consumer goods are some of the centre pieces of the new legislation which shall contribute significantly to the further prevention or at least minimisation of the adverse effects of radiation exposure. (orig.) [de

  4. The state of radiation protection in Iran

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1988-01-01

    Historically, radiation protection in Iran can be related to when the first x-ray machine was applied for medical diagnosis. However, organized activities were started with the establishment of the Tehran University Nuclear Center (TUNC) in 1959, and within a broader scope when AEOI research reactor went into operation in 1967. In 1974, the Atomic Energy Organization Law of Iran was ascribed the responsibility for radiological safety and protection to the AEOI. Then this responsibility was assigned by AEOI to the Radiation Protection Department (RPD), as the national authority. The RPD's organization and functions have been divided into three main RPD divisions: Radiation Protection Control; Radiation Dosimetry Research and Development and Services; and Radiological Protection of the Environment

  5. Radiation Protection Officer certification scheme. Malaysian experience

    International Nuclear Information System (INIS)

    Pungut, Noraishah; Razali, Noraini; Mod Ali, Noriah

    2011-01-01

    In Malaysia, the need for maintaining competency in radiation protection is emerging, focusing on the qualification of Radiation Protection Officers (RPO). Regulation 23 of Malaysian Radiation Protection (Basic Safety Standards) Regulations 1988, requires the applicant to employ an RPO, with the necessary knowledge, skill and training, enabling effective protection of individuals and minimizing danger to life, property and the environment for all activities sought to be licensed. An RPO must demonstrate the knowledge required, by attending RPO courses organised by an accredited agency and pass the RPO certification examination. Maintaining a high level of competency is crucial for future development of safe applications of ionising radiation. The major goal of training is to provide essential knowledge and skills and to foster correct attitudes on radiation protection and safe use of radiation sources. Assessment of the competency is through theoretical and practical examination. A standard criterion on the performance of the individuals evaluated has been established and only those who meet this criterion can be accepted as certified RPO. The National Committee for the Certification of Radiation Protection Officer (NCCRPO), comprising experts in various fields, is responsible to review and update requirements on competency of a certified RPO. With increasing number of candidates (i.e. 701 in 2008) and the international requirement for radioactive source security, it is incumbent upon the NCCRPO to improve the syllabus of the certification scheme. The introduction of a Radiation Protection Advisor (RPA) to provide service and advice to the radiation industry in Malaysia is also seriously considered. (author)

  6. Radiation Protection in Guatemala

    International Nuclear Information System (INIS)

    Carazo, N.

    1979-01-01

    The tasks connected with radiation protection are allocated to the National Institute for Nuclear Energy in Guatemala. Regulatory measures are further needed to identify the responsibilities of various authorities to ensure that all radiation workers are provided with personal dosemeters. (author)

  7. New infrastructures for training in radiation protection

    International Nuclear Information System (INIS)

    Marco, M.; Rodriguez, M.; Van der Steen, J.

    2007-01-01

    In this work, an analysis of the new infrastructure used in the radiation protection training and professional education, which is developed nowadays, is carried out. CIEMAT has been making many efforts in the education and training of professionals at all levels, for years. At present CIEMAT is developing educational activities in radiation protection general courses and professionals updating courses. The newest strategies for the radiation protection learning are developing in collaboration with professional societies. These try to encourage the technology transference, the collaboration between the actors involved with the radiation protection and the new information technology implementation. (Author) 11 refs

  8. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Saito, Kimiaki

    2007-01-01

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  9. Phytochemicals with radioprotection and radio-sensitizing potential

    International Nuclear Information System (INIS)

    Tripathi, Yamini B.

    2012-01-01

    Ionizing radiation induces DNA damage and are harmful to mankind. They act through free radical generation, which target the double bonds of all cellular macromolecules. The radiation damage may be classified as probabilistic or deterministic, depending on the dose of radiation exposure. Since radiation affects multiple organs so those drugs which protect many organs, would be more beneficial. In this process herbal extracts, which are cocktail of several phyto-chemicals, would be more promising. Initially sulphur containing bio-molecules were identified as radio-protector, but now many secondary metabolites from plant kingdom, have been reported to be radio-protective. They have different mechanism of action, but most of them either prevent the FR induced DNA damage or accelerate the DNA repair process. Aminofostine, WR-2721, 159243, 2926 are some of the examples. However they have limited use because of associated cytotoxicity. Eicosanoids, topoisornerase inhibitors (e.g. camptothecin, topotecan), and the hypoxia-activated anthraquinone AQ4N have shown radioprotecting potential. Several plant products, derived from Tulsi, Vinca alkaloids, taxans, turmeric, Rubia cordifolia, Semecarpus anacardium and several plants rich in polyphenols and flavones have shown hemotherapeutic potential. Similarly, Hippophae, rhodiola imbricata, Podophyllum hexandrum, Ocimum sancturn, Plumbago zeylanica etc have shown radioprotection. Rubia cordifolia has shown both chemotherapeutic and radioprotective property in rats and A-431 cells. Similarly Semecarpus anacardium extract has shown cell cycle arrest in DU-145 cells. (author)

  10. Phytochemicals with radioprotection and radio-sensitizing potential

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Yamini B., E-mail: yaminiok@yahoo.com [Dept. of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi (India)

    2012-07-01

    Ionizing radiation induces DNA damage and are harmful to mankind. They act through free radical generation, which target the double bonds of all cellular macromolecules. The radiation damage may be classified as probabilistic or deterministic, depending on the dose of radiation exposure. Since radiation affects multiple organs so those drugs which protect many organs, would be more beneficial. In this process herbal extracts, which are cocktail of several phyto-chemicals, would be more promising. Initially sulphur containing bio-molecules were identified as radio-protector, but now many secondary metabolites from plant kingdom, have been reported to be radio-protective. They have different mechanism of action, but most of them either prevent the FR induced DNA damage or accelerate the DNA repair process. Aminofostine, WR-2721, 159243, 2926 are some of the examples. However they have limited use because of associated cytotoxicity. Eicosanoids, topoisornerase inhibitors (e.g. camptothecin, topotecan), and the hypoxia-activated anthraquinone AQ4N have shown radioprotecting potential. Several plant products, derived from Tulsi, Vinca alkaloids, taxans, turmeric, Rubia cordifolia, Semecarpus anacardium and several plants rich in polyphenols and flavones have shown hemotherapeutic potential. Similarly, Hippophae, rhodiola imbricata, Podophyllum hexandrum, Ocimum sancturn, Plumbago zeylanica etc have shown radioprotection. Rubia cordifolia has shown both chemotherapeutic and radioprotective property in rats and A-431 cells. Similarly Semecarpus anacardium extract has shown cell cycle arrest in DU-145 cells. (author)

  11. The new radiation protection ordinance and its consequences in radiation therapy

    International Nuclear Information System (INIS)

    Wucherer, M.; Schmidt, T.

    2002-01-01

    The new radiation protection ordinance (StrlSchV) entails a number of additional or changed instructions. They require that personnel exposed to radiation at work be reclassified, or that personnel not exposed to radiation at work be classified as personnel exposed to radiation at work, that local dosage measurements be taken particularly in radiation therapy, in order to insure that the radiation protection areas prevailing to date can be maintained, that generally accessible areas be examined to determine whether with persons not exposed to radiation in the course of work, in the case of their prolonged presence there, 1 mSv per year is not exceeded, that instructions be put in writing, that at regular 5-year intervals the proficiency of physicians, specialists in medical physics and MTRAs be brought up to date and, that medical positions for radiooncologists be established. The stricter requirements in radiation protection are inevitably connected with greater expenditures and higher costs. These results of the new radiation protection ordinance are in direct opposition to the financial possibilities that are being restricted through budgeting and pressure on hospitals and practices to reduce costs. (orig.) [de

  12. CEC radiation protection research and training program

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1991-01-01

    The Radiation Protection Program (RPP), initiated as a consequence of the Euratom Treaty aims to promote: scientific knowledge to evaluate possible risks from low doses of natural, medical and man-made radiation; development of methods to assess radiological risks; incentive and support for cooperation between scientists of Member States; expertise in radiation protection by training scientists and the scientific basis for continual updating of the 'Basic Safety Standards', and the evolution of radiation protection concepts and practices. 3 refs

  13. Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt

    Science.gov (United States)

    Lou, Y.-Q.

    2017-09-01

    Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt Yu-Qing Lou* Physics Department, Tsinghua Centre for Astrophysics (THCA), Tsinghua-National Astronomical Observatories of China (NAOC) joint Research Centre for Astrophysics, Tsinghua University, Beijing 100084, China We describe the basic phenommenology of quasi-periodic 40 minute (QP-40) polar burst activities of Jupiter and their close correlation with the solar wind speed variations at the Jovian magnetosphere. Physically, relativistic electrons of QP-40 bursts most likely come from the circumpolar regions of the inner radiation belt (IRB) which gives off intense synchroton radio emissions in a wide wavelength range. Such relativistic electron bursts also give rise to beamed low-frequency radio bursts along polar magnetic field lines with distinct polarizations from Jupiter's two polar regions. Jovian aurora activities are expected to be also affected by such QP-40 burst activities. We present evidence of short-term (typical timescales shorter than an hour) variabilities of the IRB at 6cm wavelength and describe recent joint radio telescope observation campaign to monitor Jupiter in coordination with JUNO spacecraft. Except for low-frequency polarization features, we anticipate JUNO to detect QP-40 activities from both polar regions during the arrival of high-speed solar wind with intermittency. References 1. Y.-Q. Lou, The Astrophysical Journal, 548, 460 (2001). 2. Y.-Q. Lou, and C. Zheng, Mon. Not. Roy. Astron. Soc. Letters, 344, L1 (2003). 3. Y.-Q. Lou, H. G. Song, Y.Y. Liu, and M. Yang, Mon. Not. Roy. Astron. Soc. Letters, 421, L62 (2012). 4. Y.-Q. Lou, Geophysical Research Letters, 23, 609 (1996). 5. Y.-Q. Lou, Journal of Geophysical Research, 99, 14747 (1994). 6. G. R. Gladstone, et al., Nature, 415, 1000 (2002).

  14. The new German radiation protection ordinance

    International Nuclear Information System (INIS)

    Pfeffer, W.; Weimer, G.

    2003-01-01

    According to European law, the Basic Safety Standards (BSS) published by the European Council in 1996 and the Council Directive on health protection of individuals against dangers of ionising radiation in relation to medical exposure had to be transferred into national law within due time. In 2001 the new Ordinance for the Implementation of the Euratom Guidelines on Radiation Protection] was published, which replaces the old Radiation Protection Ordinance. The new German Ordinance adapts the European Directive to German law, covering the general principles but even giving more details in many fields of radiation protection. The BSS scope certainly is much broader than the prescriptions important for the field of radiation protection in nuclear power plants. According to the scope of this workshop on occupational exposure in nuclear power plants - and as the BSS most probably will be quite familiar to all of you - after a short general overview on relevant contents of the German Ordinance, this presentation will focus on the main issues important in the operation of NPP and especially on some areas which may give rise to necessary changes caused by the new Ordinance. (A.L.B.)

  15. Deviating measurements in radiation protection. Legal assessment of deviations in radiation protection measurements

    International Nuclear Information System (INIS)

    Hoegl, A.

    1996-01-01

    This study investigates how, from a legal point of view, deviations in radiation protection measurements should be treated in comparisons between measured results and limits stipulated by nuclear legislation or goods transport regulations. A case-by-case distinction is proposed which is based on the legal concequences of the respective measurement. Commentaries on nuclear law contain no references to the legal assessment of deviating measurements in radiation protection. The examples quoted in legal commentaries on civil and criminal proceedings of the way in which errors made in measurements for speed control and determinations of the alcohol content in the blood are to be taken into account, and a commentary on ozone legislation, are examined for analogies with radiation protection measurements. Leading cases in the nuclear field are evaluated in the light of the requirements applying in case of deviations in measurements. The final section summarizes the most important findings and conclusions. (orig.) [de

  16. The competent person in radiation protection: practical radiation protection for industry and research - unsealed sources

    International Nuclear Information System (INIS)

    Bruchet, H.

    2009-01-01

    The mission of the competent person in radiation protection has been broadly developed these last years to take an essential function in firm:study of working place, delimitation of regulated areas, monitoring of exposure, relations with authorities. The competent person in radiation protection must follow a training, defined by decree and shared in two parts: a theoretical part used as compulsory subjects and a practical part specific to the different sectors of activity (research, industry, medical centers, nuclear facilities) as well as the radiation use type. This volume corresponds to the practical module devoted to the industrial and research facilities concerned by the possession of management of sealed or unsealed sources. In accordance with the regulations stipulating that this module must allow to apply the theoretical knowledge to concrete situations in work. It includes eight chapters as following: radiation protection in industrial and research facilities, use of sources and associated risks, fitting out professional premises, evaluation of exposure, control of radiation protection; use of detection equipment and radioactive contamination and exposure measurement equipment, associated to methods and calculation tools; radioactive waste management; accidental or damaged situations management; methodology of working place analysis completed by the application to practical cases found in laboratories. (N.C.)

  17. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  18. Providing Radiation Protection Experts in the United Kingdom

    International Nuclear Information System (INIS)

    Partington, C.; Owen, D.

    2004-01-01

    The EEC Directive on Qualified Experts in Radiation Protection has been implemented in the United Kingdom by the Ionising Radiations Regulations 1999 (IRR99). These Regulations require Radiation Employers to appoint suitable Radiation Protection Advisers (RPA) who must be consulted in certain circumstances when starting work with, or using ionising radiations. Radiation Protection Advisers have to have a current certificate of competence and, to gain one of these, must have demonstrated their competence in one of two ways either by achieving a National Vocational Qualification in Radiation Protection Practice or by being Certificated by an Assessing Body. Assessing Bodies have to be recognised by the Health and Safety Executive, who undertake a rigorous assessment process to determine whether the proposed Assessing Body is fit to undertake RPA Assessments. By July 2003, only two such Assessing Bodies had been approved in the UK. These two Assessing Bodies are ? RPA 2000 a company established by the four leading Radiation Protection Professional Societies in the UK for assessing anyone in the UK as Radiation Protection Advisers, And ? BNFL established by BNFL to assess the competence of BNFL's own Radiation Protection Advisers. This paper will describe the standards against which Radiation Protection Advisers are assessed, the manner in which each of these two Assessing Bodies carry out the assessment process and their experience to date. The way in which Radiation Employers carry out the appointment process will also be described. Potential future developments of the Assessment Process and standards will also be discussed. (Author)

  19. Radiation protection - quality and metrology

    International Nuclear Information System (INIS)

    Broutin, J.P.

    2002-01-01

    The radiation protection gathers three occupations: radiation protection agents; environment agents ( control and monitoring); metrology agents ( activities measurement and calibration). The quality and the metrology constitute a contribution in the technique competence and the guarantee of the service quality. This article, after a historical aspect of quality and metrology in France explains the advantages of such a policy. (N.C.)

  20. Activities of Institute of Radiation Protection and Dosimety/Brazil as Technical and Scientific Support Organization on Occupational Radiation Protection

    International Nuclear Information System (INIS)

    Da Silva, F.C.A.; Ferreira, P.R.; Matta, L.E.C.; Peres, M.A.L.; Godoy, J.M.; Alencar, M.A.V.; Carlos, M.T.; Souza-Santos, D.; Leocadio, J.C.; Oliveira, M.S.

    2010-01-01

    There are, in Brazil, about 126,000 workers registered on National Dose Registry System (SRD/IRD) as occupationally exposed. They work on 4,000 radioactive installations, 20 nuclear fuel cycle installations and with 90,000 x-ray diagnostic devices. There are two main Regulatory Authorities to license and control these installations on nuclear and radioactive areas, and another Regulatory Authority that is responsible for safety and health protection of workers on their labour activities. Belonging to structure of the National Commission of Nuclear Energy (CNEN-Brazil) there is an Institute dedicated to radiation protection, dosimetry and metrology of ionizing radiation, that is the Institute of Radiation Protection and Dosimetry (IRD). This paper presents two main IRD activities related to occupational radiation protection that can be seen as example of technical and scientific support to Regulatory Authorities: the Radiation Overexposure Analysis that is performed by the Radiation Overexposure Analysis Group (GADE) and the Approval of Individual Monitoring Services and Calibration Laboratory of Equipment used in Radiation Protection that is performed by the Committee for the Evaluation of Essay and Calibration Services (CASEC). (author)

  1. Justification and optimization in radiation protection

    International Nuclear Information System (INIS)

    Beninson, D.

    1980-01-01

    Two requirements of the system recommended by the ICRP for radiation protection are discussed: 1) justification of practices involving radiation exposures and 2) optimization of the level of protection for such practices. The ICRP recommended the use of cost-benefit analysis in justification and optimization. The application of cost-benefit analysis and the quantification of the radiation detriment are also discussed. (H.K.)

  2. Blended learning specialists in radiation protection

    International Nuclear Information System (INIS)

    Mayo, P.; Campayo, J. M.; Verdu, G.

    2011-01-01

    In this paper, we present a blended learning Radiation Protection Technician through an approved degree from the Polytechnic University of Valencia, which covers the knowledge and skills of functions relating to operators and supervisors in various areas and skilled workers to be to perform their work in technical units or Radiation Protection Radiation Protection Services. The benefits of this work are those related to achieving quality training flexible and adapted to follow the check off the person conducting the course, adapted to internal and external training of the applicant companies.

  3. Radiation protection and the female worker

    International Nuclear Information System (INIS)

    Folsom, S.C.

    1983-01-01

    An influx of young women into industrial occupations has resulted in a reexamination of policy regarding fetal protection. Each of the Environmental Protection Agency's four alternatives, as listed in Federal Radiation Protection Guidance for Occupational Exposures, is examined and given a critique: voluntary limitation of radiation exposure to the unborn, voluntary sterilization by women, exclusion of child-bearing-age women from occupational tasks resulting in possible fetal exposure, and limiting the mandatory exposure limit for all workers. The author lists employers and women employees responsibilities in considering occupations with radiation risks. 1 reference

  4. Medical program in radiation protection from the Argentine Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Perez, M. R.; Gisone, P.; Di Trano, J.L.; Dubner, D.L.; Michelin, S.C.

    1998-01-01

    This program is carried out by the Radio pathology Laboratory, belonging to the Nuclear Regulatory Authority. The program includes the following aspects: 1) planning and organization of medical response in radiological emergencies. A three-level system of medical assistance has been developed considering: a- determination of each level of care and their potential roles; b- choice of medical facilities for medical assistance; c- preparedness for medical response (equipment s, logistic support, human resources, training). 2) scientific research activities related to radio pathology subjects: a- hematological indicators in radioinduced aplasia; b- biological and biophysical dosimeters; c- radiation effects on the developing brain. 3) edition of practical guidelines for diagnostic and treatment: a- external and internal radioactive contamination; b- acute radiation syndrome; c- radiological burns. 4) medical advising in radioprotection (risk assessment in radiation workers, medical exposures, potential effects of prenatal irradiation). 5) international interactions: activities related with the constitution of a Latin American radio pathology network, linkage with international reference centers. (author) [es

  5. Development of composition containing hesperidin for protection against radio-cellular damage

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hyun; Jang, Beom Su

    2013-09-15

    Now a days, ionizing radiation finds a broad range of applications in various industries. Ionizing radiation is also a powerful weapon in the treatment of various cancers. Despite has a good therapeutic index, radiotherapy can be caused tissue injury to normal tissues in long-term cancer survivors. Therefore, there is an urgent need to protect humans form the side effects of radiation exposure. The hesperidin was found to offer protection and treatment of disease caused oxidative stress against ionizing radiation for people and health professional undergoing radiological treatment. In this study, we develop the hesperidin formulation that can be mixed with other food and various drugs formulation. Therefore, it can be easily applied as a radiation protective agent for human. In addition, this emulsion technique can be expanded to others formula application.

  6. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements

  7. Questions concerning radiation protection in the field of radiometry

    International Nuclear Information System (INIS)

    Gruen, W.; Quednau, F.; Wels, Ch.

    1987-01-01

    Based on legal regulations, guidelines, and standards valid in the German Democratic Republic 105 questions concerning radiation protection are answered covering subjects indicated by the following key words and headings: radiometric gages, radiation protection measures, working within protected areas, legal provisions, responsible staff member, radiation protection officer, operating personnel, radiation protection instructions, safe keeping of radiation sources, leak testing, unusual occurrence, transport of radioactive materials, and ceasing of operation

  8. Gonad protective effect of radiation protective apron in chest radiography

    International Nuclear Information System (INIS)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-01-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28±2% and 39±4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few μGy even without a protector. Thus, the risk of a genetic effect would be as small as 10 -8 . Given that acceptable risk is below 10 -6 , we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography. (author)

  9. [Gonad protective effect of radiation protective apron in chest radiography].

    Science.gov (United States)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-12-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28+/-2% and 39+/-4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few microGy even without a protector. Thus, the risk of a genetic effect would be as small as 10(-8). Given that acceptable risk is below 10(-6), we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography.

  10. New Croatian Act on Ionizing Radiation Protection

    International Nuclear Information System (INIS)

    Grgic, S.

    1998-01-01

    According to the new Croatian Act on ionizing radiation protection which is in a final stage of genesis, Ministry of Health of the Republic of Croatia is the governmental body responsible for all aspects relating sources of ionizing radiation in Croatia: practices, licenses, users, transport, in medicine and industry as well, workers with sources of ionizing radiation, emergency preparedness in radiological accidents, storage of radioactive wastes, x-ray machines and other machines producing ionizing radiation and radioactive materials in the environment. Ministry of Health is responsible to the Government of the Republic of Croatia, closely collaborating with the Croatian Radiation Protection Institute, health institution for the performance of scientific and investigation activities in the field of radiation protection. Ministry of Health is also working together with the Croatian Institute for the Occupational Health. More emphasis has been laid on recent discussion among the world leading radiation protection experts on justification of the last recommendations of the ICRP 60 publication. (author)

  11. The German radiation protection standards

    International Nuclear Information System (INIS)

    Becker, Klaus; Neider, Rudolf

    1977-01-01

    The German Standards Institute (DIN Deutsches Institut fuer Normung, Berlin) is engaged in health physics standards development in the following committees. The Nuclear Standards Committee (NKe), which deals mainly with nuclear science and technology, the fuel cycle, and radiation protection techniques. The Radiology Standards Committee (FNR), whose responsibilities are traditionally the principles of radiation protection and dosimetry, applied medical dosimetry, and medical health physics. The German Electrotechnical Commission (DKE), which is concerned mostly with instrumentation standards. The Material Testing Committee (FNM), which is responsible for radiation protection in nonmedical radiography. The current body of over one hundred standards and draft standards was established to supplement the Federal German radiation protection legislation, because voluntary standards can deal in more detail with the specific practical problems. The number of standards is steadily expanding due to the vigorous efforts of about thirty working groups, consisting of essentially all leading German experts of this field. Work is supported by the industry and the Federal Government. A review of the present status and future plans, and of the international aspects with regard to European and world (ISO, etc.) standards will be presented

  12. The new operational quantities for radiation protection

    International Nuclear Information System (INIS)

    Kellerer, A.M.

    1985-01-01

    Philosophies and quantities for radiation protection have often been subjected to changes, and some of the developments are traced which ultimately led to recent proposals by ICRU. Development in the past has largely been towards clarification and generalisation of definitions. The present changes, however, reflect a more fundamental issue, the transition from the limitation system to the assessment system in radiation protection. The index quantities were suitable tools to ascertain compliance with the limitation system of radiation protection. The new quantities proposed by ICRU are suitable estimators for effective dose equivalent, which is an essential quantity in the assessment system of radiation protection. A synopsis of the definitions is given. (author)

  13. Developing a Radiation Protection Hub

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Nolan E [ORNL

    2017-01-01

    The WARP report issued by the NCRP study committee estimates that in ten years there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have been disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic and training communities. The goal of such a consortium would be to engage in research, education and training of the next generation of radiation protection professionals. Furthermore the consortium could bring together the strengths of different universities, national laboratory programs and other entities in a strategic manner to accomplish a multifaceted research, educational and training agenda. This vision would forge a working and funded relationship between major research universities, national labs, four-year degree institutes, technical colleges and other partners.

  14. Proceedings of the Tenth Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    2011-01-01

    The publication has been set up as proceedings of the Radiation Physics and Protection Conference.. The conference consists Natural Radiation Sources; Radiation Detection and Measurements; Applied Radiation Physics; Radiation Medical Physics and Biophysics; Radiation Dosimetry; Operational Radiation Protection; Radiation Shielding; Transport of Radioactive Materials; Nuclear and Radiation Physics; Medical Physics and Public Protection Against Radiological Attack. This conference consists of 402 p., figs., tabs., refs.

  15. Military radiation protection

    International Nuclear Information System (INIS)

    Harrison, J.

    1993-01-01

    The Ministry of Defence and the military in particular have a very strong commitment to radiation protection of personnel in war and peace. MOD endeavours to do better all the time because it is essential that the armed forces have the confidence to fulfil their role and this is best achieved by providing them with the best possible protection irrespective of the hazard. (author)

  16. Ecological radiation protection criteria for nuclear power

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1993-01-01

    By now a large quantity of radioactive hazards of all sizes and shapes has accumulated in Russia. They include RBMK, VVER, and BN (fast-neutron) nuclear power plants, nuclear fuel processing plants, radioactive waste dumps, ships with nuclear power units, etc. In order to evaluate the radioecological situation correctly, the characteristics of the radioactive contamination must be compiled in these areas with some system of criteria which will provide an acceptable level of ecological safety. Currently health criteria for radiation protection are, which are oriented to man's radiation protection, predominate. Here the concept of a thresholdless linear dose-response dependence, which has been confirmed experimentally only at rather high doses (above 1 Gy), is taken as the theoretical basis for evaluating and normalizing radiation effects. According to one opinion, protecting people against radiation is sufficient to protect other types of organisms, although they are not necessarily of the same species. However, from the viewpoint of ecology, this approach is incorrect, because it does not consider radiation dose differences between man and other living organisms. The article discusses dose-response dependences for various organisms, biological effects of ionizing radiation, and appropriate radiation protection criteria

  17. Post-graduate course on radiation protection and nuclear safety. Vol. 1,2; Curso de post-grado en proteccion radiologica y seguridad nuclear. Tomo 1,2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The course handbook on radiation protection and nuclear safety containing two parts some was prepared mainly by scientists of the Nuclear Regulatory Authority (ARN) of the Argentine Republic, under the auspices of the International Atomic Energy Agency. The contents o this handbook have the principals aspects: radiation detection, radio dosimetry, biological effects of the ionizing radiation, occupational exposure, environmental effects, contamination and decontamination, radioactive waste management, transport of radioactive materials, medical and industrial applications and the Argentine regulatory system.

  18. IRAS observations of radio-quiet and radio-loud quasars

    Science.gov (United States)

    Neugebauer, G.; Soifer, B. T.; Miley, G.; Habing, H. J.; Young, E.; Low, F. J.; Beichman, C. A.; Clegg, P. E.; Harris, S.; Rowan-Robinson, M.

    1984-01-01

    Observations from 12 to 100 microns are presented of two radio-quiet and three radio-loud quasars. Over this wavelength range, all five have grossly similar continuum energy distributions. The continua of the radio-loud quasars are consistent with synchrotron radiation. There is an indication, however, of excess 100 micron emission in the two radio-quiet quasars.

  19. Protective actions of sulfur amino acid-taurine: against in and off of radiation injury and beyond

    International Nuclear Information System (INIS)

    Gupta, Ramesh C.

    2012-01-01

    Chemicals are not single minded, yet in majority of cases biological activities are cumulate index of their physio-chemical nature. Taurine (2-amino ethane sulfonic acid) differs in its physical constituents to other neuro active amino acids in way of having 1.5 pka and 82 pkb showing more acidic and more basic than common neuro active amino acid like; aspartic acid, B Alanine and GABA. The intra molecular hydrogen bonding with lower proton affinity of the amino group in taurine than in GABA enables taurine ability to penetrate blood brain barrier, but at slower rate. Having sulphur, atom; adds addition value, as sulphur is necessary for sustaining the life processes. Sulphur containing amino acids (SAA) are not too many; generally SAA contains sulphur in their lower oxidation state (-2); for some reason sulphur in low oxidation state protects from oxygen toxicity and radiation damage. The composite effects of its distinct physical activities provided a label of meta-vitamin to indispensable amino acids with a wide spectrum of beneficial actions in diabetic to epilepsy, and from hypertension to ageing. It is well establish that high doses of ionized radiation leads to the enhanced leakage of taurine from the damage cells to extracellular fluid followed by increased urinary extraction. Radiation induced taurine depletion can itself have various harmful effects. Though taurine radio protective action mechanism is still incomplete but high level of taurine have been found in experimental studies with animals or in isolated cells exposed to high doses of ionization radiation. It is believe that taurine radio protective action is combination of multiple beneficial effects involving several action mechanism, during the exposure to ionizing radiation taurine may function as antioxidant, and in scavenging the harmful molecules, it is also possible that taurine may be helping to reduce the post traumatic inflammatory after radiation exposure or it may be participating to

  20. Application of radioprotectors in radiation protection

    International Nuclear Information System (INIS)

    Kljajic, R.R.; Masic, Z.S.

    2000-01-01

    Application of the ionizing radiation in almost all the fields of human activities enlarged the knowledge of their harming influence on the living beings. At the same time there have been many investigations of different chemical means that could successfully be used in protection from radiation. Until today several hundreds of different chemical compounds have been considered to be a potential chemical radioprotector. Analyzing the results of investigating great number of potential radioprotective compounds, it can be said that those containing sulfur provide the most effective protection. That are aminothiols, aminodisulphides, derivatives of thiourea, thiosulphuric and thiophosphate acid, dithiocarbamates, thiazolines, some of biogen amines and their derivates. Among the investigated compounds there is a certain number that, under some circumstances, has shown a protective effect on the experimental animals. In the work comparative investigation of the protective effect of cistaphosa (WR-638) and gamaphosa (WR-2721) have been researched on the big experimental animals, radiated with a high level of X-radiation. Well protective influence of both radioprotectors has been proven but gamafos showed higher efficiency. (author)

  1. Radiation Protection Elephants in the Room

    International Nuclear Information System (INIS)

    Vetter, R. J.

    2004-01-01

    As our system of radiological protection evolves, several significant issues loom within radiation protection discussions and publications. These issues influence the nature of epidemiological and radiobiological research and the establishment of radiation protection recommendations, standards, and regulations. These issues are like the proverbial e lephants in the room . They are large, and it is unwise to ignore them. This paper discusses the impact of three young elephants as they make their presence increasingly obvious: increased cancer susceptibility from early-life exposure to radiation, terrorism and fear of radiation, and patient safety. Increased cancer susceptibility from early-life exposure to radiation is emerging as a discussion topic related to the safety of computed tomography (CT) and other medical modalities. Shortly after publication of CT dose data, manufacturers were helping to reduce doses to children by increasing flexibility for adjustment of technique factors. Also, radiation epidemiological data are being used in the development of guidance on exposure to chemical carcinogens during early life. Re-emergence of public fear of radiation has been fueled by threats of radiological dispersion devises and confusing messages about personal decontamination, emergency room acceptance or rejection of contaminated victims, and environmental clean-up. Finally, several professional publications have characterized risk of medical radiation exposure in terms of patient deaths even though epidemiological data do not support such conclusions. All three of these elephants require excellent science and sophisticated data analysis to coax them from the room. Anecdotal communications that confuse the public should be avoided. These are not the only elephants in the room, but these three are making their presence increasingly obvious. This paper discusses the need for radiation protection professionals to rely on good science in the evolution of the system of

  2. Research priorities for occupational radiation protection

    International Nuclear Information System (INIS)

    1994-02-01

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided open-quotes smartclose quotes instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines

  3. Radiation protective clothing

    International Nuclear Information System (INIS)

    Fujinuma, Tadashi; Tamura, Shoji; Ijiri, Yasuo.

    1988-01-01

    Purpose: To obtain radiation protective clothings of excellent workability and durability. Constitution: Protective clothings of the present invention comprise shielding materials for the upper-half of the body having lead foils laminated on one surface and shielding materials for the lower-half of the body a resin sheet containing inorganic powders of high specific gravity. Such protective clothings have a frexibility capable of followings after the movement of the upper-half body and easily follow after the movement such as acute bending of the body near the waste in the lower-half body. (Kamimura, M.)

  4. On ethical issues in radiation protection. Radiation protection recommendations and standards seen from an ethical perspective

    International Nuclear Information System (INIS)

    Corbett, R.H.; Persson, L.

    2004-01-01

    International radiation protection recommendations and standards of the ICRP, the IAEA, the European Union and the ILO are surveyed from an ethical perspective. The authors come to the conclusion that the insights of ethical theories provide a number of ways in which current recommendations and standards for radiation protection could improve. (orig.) [de

  5. Radiation exposure and protection during angiography

    Energy Technology Data Exchange (ETDEWEB)

    Biazzi, L; Garbagna, P [Pavia Univ. (Italy)

    1979-05-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recommendations to reduce radiation exposure without prejudicing the exam results.

  6. Definitions, qualifications and requirements for radiation protection experts, radiation protection officers and radiation workers: results of the 2 nd EUTERP Workshop

    International Nuclear Information System (INIS)

    Draaisma, Folkert S.; Steen, Jan van der

    2008-01-01

    Full text: In Europe, a common vision for maintaining competence in radiation protection is emerging, focussing on a common denominator for qualification of radiation protection experts (RPEs) and radiation protection officers (RPOs) and for mutual recognition and mobility of these professionals across the European Union. Therefore, the European Commission, D.-G. Transport and Energy, has launched an initiative to establish a European Radiation Protection Training and Education Platform (EUTERP Platform). The objectives of the Platform can be summarised as: to facilitate the trans national access to vocational education and training; to better integrate education and training into occupational radiation protection infrastructures in the Member, Candidate and Associated States of the European Union. The Platform ensures a permanent dialogue between all involved parties by the use of its web site (www.euterp.eu), by issuing newsletters and by organising workshops. The first workshop has been held in Vilnius, 22-24 May 2007, and resulted in 8 recommendations to the European Commission, the IAEA, IRPA and national authorities. The recommendations were, a.o., dealing with: new definitions for the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), which should be used in the revision of both the EURATOM and the International BSS; developing guidance for a methodology to compare the quality of training courses and training material; developing guidance for a standardized methodology of assessing the recognition of RP professionals as a basis for future mutual recognition, based on a description of roles and duties, education, training and work experience; developing guidance for a formal recognition process of the competence of RPEs and RPOs. The second workshop will be held on 23-25 April 2008, again in Vilnius, and will specifically discuss the above-mentioned proposals for new definitions and guidance material. It is expected that the

  7. INES rating of radiation protection related events

    International Nuclear Information System (INIS)

    Hort, M.

    2009-01-01

    In this presentation, based on the draft Manual, a short review of the use of the INES rating of events concerning radiation protection is given, based on a new INES User's Manual edition. The presentation comprises a brief history of the scale development, general description of the scale and the main principles of the INES rating. Several examples of the use of the scale for radiation protection related events are mentioned. In the presentation, the term 'radiation protection related events' is used for radiation source and transport related events outside the nuclear installations. (authors)

  8. Radiation Protection Research Needs Workshop: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, Shaheen A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davis, Jason [Oak Ridge Associated Univ., Oak Ridge, TN (United States); Hertel, Nolan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abelquist, Eric [Oak Ridge Associated Univ., Oak Ridge, TN (United States)

    2017-09-01

    In order to protect humans and the environment when using ionizing radiation for the advancement and benefit of society, accurately quantifying radiation and its potential effects remains the driver for ensuring the safety and secure use of nuclear and radiological applications of technology. In the realm of radiation protection and its various applications with the nuclear fuel cycle, (nuclear) medicine, emergency response, national defense, and space exploration, the scientific and research needs to support state and federal radiation protection needs in the United States in each of these areas are still deficient.

  9. Modernization and consolidation of the European radiation protection legislation. The new EURATOM radiation protection basic safety standards

    International Nuclear Information System (INIS)

    Mundigl, S.

    2013-01-01

    With the development of new basic safety standards for the protection against the dangers arising from ionising radiation, foreseen in Article 2 and Article 30 of the Euratom Treaty, the European Commission modernises and consolidates the European radiation protection legislation. The new Directive offers in a single coherent document, basics safety standards for radiation protection which take account of the status-quo of science and technology, cover all relevant radiation sources, including natural radiation sources, integrate protection of workers, members of the public, patients and the environment, cover all exposure situations, planned, existing, emergency, and harmonise numerical values with international standards. After having received very positive opinions of the Article 31 Group of Experts and the European Economic and Social Committee, the proposed Directive has reached agreement in the Working Party on Atomic Questions of the European Council (WPAQ). The Opinion of the European Parliament is expected in September 2013, which would allow a publication of the Directive in the Official Journal of the European Union by the end of 2013. (orig.)

  10. Research into radiation protection. 1994 Programme report. Report on radiation departmental research programme on radiation protection, sponsored by the Federal Ministry for the Environment, Nature Conservation and Reactor Safety, and placed under the administrative and subject competence of the Federal Radiation Protection Office

    International Nuclear Information System (INIS)

    Goedde, R.; Schmitt-Hannig, A.; Thieme, M.

    1994-10-01

    On behalf of the Ministery for Environment, Nature Conservation and Nuclear Safety (BMU), the Federal Office for Radiation Protection is placing research and study contracts in the field of radiation protection. The results of these projects are used for developing radiation protection rules and to fulfill the special radiation protection tasks of the BMU, required by law. Planning, expert and administrative management, placing, assistance as well as expert evaluation of the results from these research projects lies within the responsibility of the Federal Office for Radiation Protection. This report provides information on preliminary and final results of radiation protection projects within the BMU Department Research Programme of the year 1994. (orig.) [de

  11. Research into radiation protection. 1995 Programme report. Report on radiation departmental research programme on radiation protection, sponsored by the Federal Ministry for the Environment, Nature Conservation and Reactor Safety, and placed under the administrative and subject competence of the Federal Radiation Protection Office

    International Nuclear Information System (INIS)

    Thieme, M.; Goedde, R.; Schmitt-Hannig, A.

    1996-01-01

    On behalf of the Ministry for Environment, Nature Conservation and Nuclear Safety (BMU), the Federal Office for Radiation Protection is placing research and study contracts in the field of radiation protection. The results of these projects are used for developing radiation protection rules and to fulfill the special radiation protection tasks of the BMU, required by law. Planning, expert and administrative management, placing, assistance as well as expert evaluation of the results from these research projects lies within the responsibility of the Federal Office for Radiation Protection. This report provides information on preliminary and final results of radiation protection projects within the BMU Department Research Programme of the year 1995. (orig.) [de

  12. In-situ radiation dosimetry based on radio-fluorogenic co-polymerization

    International Nuclear Information System (INIS)

    Warman, John M; Luthjens, Leonard H; Haas, Matthijs P de

    2009-01-01

    A fluorimetric method of radiation dosimetry is presented for which the intensity of the fluorescence of a (tissue equivalent) medium is linearly dependent on accumulated dose from a few Gray up to kiloGrays. The method is based on radio-fluorogenic co-polymerization (RFCP) in which a normally very weakly fluorescent molecule becomes highly fluorescent when incorporated into a (radiation-initiated) growing polymer chain. The method is illustrated with results of in-situ measurements within the chamber of a cobalt-60 irradiator. It is proposed that RFCP could form the basis for fluorimetric multi-dimensional dose imaging.

  13. Lectures on radiation protection

    International Nuclear Information System (INIS)

    Wachsmann, F.; Consentius, K.

    1981-01-01

    All important subjects of radiation protection are presented in concise form; the explanations may serve as lecture manuscripts. The lectures are divided into 16 to 19 teaching units. Each teaching unit is supplemented by a slide to be projected on a screen while the text is read. This method of visual teaching has already been tried with good results in medicine and medical engineering. Pictures of the slides are given in the text so that the book may also be used for self-studies. The main facts are summarized at the end of each lesson. The finished book will consist of 8 lessons; the first three of these discuss 1. Radiation effects and hazards 2. Dose definitions and units and their role in radiology and radiation protection 3. Dose limits and legal specifications. (orig.) [de

  14. Radiation Protection Training in Spanish schools of medicine

    International Nuclear Information System (INIS)

    Ruiz-Cruces, R.; Perez Martinez, M.; Vano, E.; Hernandez Armas, J.; Diez de los Rios Delgado, A.

    2003-01-01

    Radiation Protection should be included in the programme of studies necessary to confer a bachelor's degree in Medicine, according to the Directive 97/43 Euratom on medical exposures and the Report RP116 published by the European commission on Education and Training in radiation protection for medical exposures. To analyse the present training programmes in radiation protection at the Medical School in different Spanish Universities. The syllabus and the contents of the subjects including radiation protection issues in 27 Spanish Schools of Medicine have been revised. Radiation protection subjects are obligatory at present, only at the Schools of Medicine from Cantabria and Malaga. There is a group of Schools of Medicine where radiation protection is an optional matter with an extension of 4,5 credits (45 hours). It also exists some topics in radiation protection in subjects dealing with Medical Physics and General Radiology (with a range value from 1 to 10 hours), in 10 Schools of Medicine. A wide dispersion among the contents of different subjects and the hours of training allocated by the different School are found. It should be useful the harmonization of the programmes. (Author)

  15. Radiation Protection in Paediatric Radiology

    International Nuclear Information System (INIS)

    2012-01-01

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on

  16. Quality management in radiation protection

    International Nuclear Information System (INIS)

    Baehrle, H.G.

    1997-01-01

    Quality Management in Radiation Protection Quality management (QM) in the field of Radiation Protection was discussed in a previous issue (2/97) using the example of QMS at the Paul Scherrer Institut (PSI). The present article describes the major features involved in the establishment of a functional QMS. Establishment of the QMS lead to a deeper understanding of administrative and operational aspects of the working methods involved. (orig.) [de

  17. Radiation protection for veterinary practices

    International Nuclear Information System (INIS)

    Wheelton, R.; McCaffery, A.

    1993-01-01

    This brief article discusses radiation protection for diagnostic radiography in veterinary practices. It includes aspects such as a radiation protection adviser, personal dosimetry but in particular a Veterinary Monitoring Service, developed by the NRPB, which offers veterinary practitioners the convenience of making simple but essential measurements for themselves using photographic films contained in a 'vet pack' to determine the operating condition of their X-ray machine. (U.K.)

  18. Practical radiation protection for radiography

    International Nuclear Information System (INIS)

    Hubbard, S.K.; Proudfoot, E.A.

    1978-01-01

    Nondestructive Testing Applications and Radiological Engineering at the Hanford Engineering Development Laboratory have developed radiation protection procedures, radiation work procedures, and safe practice procedures to assure safe operation for all radiographic work. The following topics are discussed: training in radiation safety; radiation exposure due to operations at Hanford; safeguards employed in laboratory radiography; field radiographic operations; and problems

  19. Radiation Protection: introduction

    International Nuclear Information System (INIS)

    Loos, M.

    2005-01-01

    The abstract gives an overview and introduction to the activities of SCK-CEN's Radiation Protection department. Main strategic developments and achievements in the field of life sciences, policy supports and medical applications are summarised

  20. What is good radiation protection?; Was ist guter Strahlenschutz?

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, B. [Lorenz Consulting, Essen (Germany)

    2016-07-01

    Radiation protection is based on the ICRP-System with its pillars justification, limitation and optimization. From this radiation protection should be the same irrespective of the application of radiation. But radiation protection in the nuclear industry is much different from the use of radiation sources or X-ray units. This is by far not due to the different technologies. It originates from the different interpretation of the system. For one person good radiation protection would mean to have no radiation exposures, to avoid radiation at all as best option and to use it only if there are no alternatives. For another person the best radiation protection would be the one which does not produce much efforts and costs. So what is reasonable? In reality the first interpretation prevails, at least in Germany. A change is needed. If we continue to exercise radiation protection as we do it today the beneficial application of radiation will be restricted unduly and might become impossible at all. A stronger orientation towards the naturally occurring radiation would help instead to regulate natural radiation in the same way as it is done for artificial radiation. The system of ICRP has to be changed fundamentally.

  1. Measurements and modeling for examination of magnitudes and thresholds and transitions of cellular radio-protective mechanisms

    International Nuclear Information System (INIS)

    Leonard, B.

    2007-01-01

    Complete text of publication follows. Purpose: To provide results of dose and dose rate measurements, modeling and analysis for the high Radon 'inverse' dose-rate effect (IDRE), adaptive response (AR) , Bystander Effects (BE), Hyper-radiosensitivity and dose induced radioresistance (HRS/IRR) and the low LET IDRE. Methods: Radon progeny particle diameters decrease at high Radon levels, due to increased neutralization rates. Underground miners data are used to confirm lung dose effects. An adaptive response Microdose Model formulated from the microdose concepts of Feinendegen and his cohorts, is extended to include BE and applied to IDRE, AR and BE experimental data. Results: Analysis of underground miners data conclusively supports a factor of 4.3 in lung dose from increased deposition in the nasel passages, negating BE as cause of the Lubin et al (1995) high Radon lung cancer IDRE. This negates support of BE as major concern at domestic Radon levels and high LET galactic radiations for manned Mars mission. AR Microdose Model use for mammography X-rays shows single Specific Energy Hits, at very low dose rates to the cell nucleus, activates AR protection against spontaneous neoplastic transformations of a factor of 2 further supporting Redpath (2007) of no deleterious cancer risk from mammography X-rays and a dose/dose-rate coupling. IRR in HRS/IRR is from increased repair capability 'triggered' at a very low dose of 15 cGy. The 'triggering' is shown in low LET IDRE with G2/M checkpoint arrest. The correlation suggest IRR in both HRS/IRR and low LET IDRE dose and dose rate radio-protection are from the activation of same increased repair rate protective mechanisms i.e. dose/dose-rate coupling. In examination of LDR Brachytherapy, it's plausible the high excess post-treatment complications, especially for cervix cancer, compared to HDR Brachytherapy is from a high-radiosensitivity for the decaying permanent implant sources below the IDRE threshold with a possible

  2. Rule concerning sanitary protection against ionizing radiations: novelties

    International Nuclear Information System (INIS)

    Bercedo, A.; Carmena, P.; Prieto, J. A.; Rubio, G.; Sollet, E.; Sustacha, D.

    2002-01-01

    Last July the a new legal Rule concerning Sanitary Protection against Ionising Radiation was published, as a transposition of the EU Directive about the Basic Norms related to the sanitary protection of workers and population against the risks resultant of the ionising radiation. The origin of this legislation goes back to the revision of the protection doctrine by the International Commission of Radiation Protection (ICRP) en the year 1990. El scope of the revised Rule is the regulation of the protection of population and workers against ionising radiation, the establishment of the national protection system with its exposition and dose limits and the correspondent penalty regime. It also modifies the maximum radiation dose limits and reinforces the application of the optimisation principle in the use of ionising radiation. In this article, the novelties introduced by the new Rule are commented in detail, ordered by the Titles I to IX in which the Rule is divided. (Author)

  3. Radiation exposure and protection during angiography

    International Nuclear Information System (INIS)

    Biazzi, L.; Garbagna, P.

    1979-01-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recomandations to reduce radiation exposure without prejudicing the exam results [fr

  4. Radiation protection in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    1978-01-01

    The tasks of radiation protection and nuclear safety to be looked after by the land Baden-Wuerttemberg consist essentially in licensing and control activities carried out by the Federal Government. With regard to radiation protection the focal points of the second medium-term programme of the Laender Government Baden-Wuerttemberg are: 1. the technical development plan 'power plant sites', 2. construction of nuclear power plants in the borderline areas of neighbouring foreign countries, 3. disposal of radioactive waste, 4. pollution protection measures against nuclear power plants, 5. safety measures when dealing with radioactive materials outside nuclear power plants. (GL) [de

  5. Evolution of Radiation Protection System in Kenya

    International Nuclear Information System (INIS)

    Maina, J. A. W.

    2004-01-01

    Promulgation of radiation protection legislation in Kenya dates back to 1982, was revised in 1985 and became operational in 1986. This law, the Radiation Protection Act, establishes the Radiation Protection Board as the National Regulatory Authority, with an executive Inspectorate headed by the Secretary to the Board. Subsidiary legislation on radiological practices and standards were subsequently published. The Inspectorate carries out the National programme for notification, authorization, inspection and enforcement. Nuclear applications for peaceful purposes in Kenya are on the increase in all major fields of socio-economic development. Provision of regulatory services, guidance and enforcement procedures, has had a net growth over the last fifteen years. However, staff retention has been declining over the years in a market where job opportunities, with relatively high incentives, are high either inside or outside the country. Human and equipment resource development has therefore not kept pace and this has hampered effective and efficient provision of services. The poor status of the economy has had its impact on delivery of quality, effective and efficient radiation protection services. Provision of radiation services and acquisition of radiation detection and measurement equipment in the country has been generally lacking dating as far back as 1995. During the period 1989 to present, Kenya's Regulatory Authority, the Radiation Protection Board, undertook to provide personal monitoring, quality assurance, radioanalysis, and equipment calibration. Over the years these services have stalled due to outdated equipment most of which have broken down. A maintenance and calibration service for nuclear equipment is an expensive cross-boarder issue. Budgetary constraints, insufficient human and equipment resources, and a perennial 'brain drain' has placed limitations to the effectiveness and efficiency of implementation of the National programmes and slowed the

  6. Radiation protection. Basic concepts of ICRP

    International Nuclear Information System (INIS)

    Saito, Tsutomu; Hirata, Hideki

    2014-01-01

    The title subject is easily explained. Main international organizations for radiation protection are United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), International Commission on Radiological Protection (ICRP) and International Atomic Energy Agency (IAEA). The UNSCEAR objectively summarizes and publishes scientific findings; ICRP, an NGO, takes part in recommending the radiological protection from the expertized aspect; and IAEA, a UN autonomy, aims at peaceful usage of atomic power. These organizations support the legal regulation and standard of nations. The purpose of the ICRP recommendation (Pub. 103, 2007) is to contribute to the appropriate protection of radiation hazardous effects, which are assumed to be linearly proportional (the model of linear no-threshold, LNT) that radiation risk exists even at the lowest dose. When a change in the single cell results in hazardous alteration, the causative effects are called stochastic effects, which include the mutation leading to cancer formation and genetic effect in offspring (not observed in man). ICRP says the validity of LNT for the stochastic effects essentially from the protective aspect, although epidemiological data support it at >100 mSv exposure. The deterministic effects are caused by loss of cell itself or of its function, where the threshold is defined to be the dose causing >1% of disorder or death. Radiation protective system against exposure is on the situation (programmed, emergent and natural), category (occupational, public and medical) and 3 principles of justification, optimization and application of dose limit. (T.T.)

  7. Radiation Protection Group

    CERN Document Server

    2006-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to inform you that the Radioactive Waste Treatment Centre will be closed on the afternoon of Tuesday 19 December 2006. Thank-you for your understanding.

  8. A National Institute of Radiation Protection and Nuclear Safety?

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    The practice of radiation protection within Australia is fragmented on a number of different levels. Each state has its own radiation protection organisation. Within the Commonwealth there is also a large number of bodies which deal with different aspects of radiation protection or nuclear safety. There is also an interest in occupational radiation protection by Departments responsible for Occupational Health and Safety. It is estimated that this fragmentation affects the practice of radiation protection at a State level and also the role which Australia can play internationally. The establishment of a National Institute of Radiation Protection and Nuclear Safety is therefore proposed. Possible structures and organizational arrangements for such an institute are discussed. 4 refs., 4 tabs., 3 figs

  9. Medical students' knowledge of ionizing radiation and radiation protection.

    Science.gov (United States)

    Hagi, Sarah K; Khafaji, Mawya A

    2011-05-01

    To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.

  10. Consequences of the new Slovenian legislation on radiation protection and nuclear safety for radiation protection training

    International Nuclear Information System (INIS)

    Kozelj, M.

    2004-01-01

    The paper presents brief description of the old Slovenian regulations and an overview of the new, harmonised regulations in the field of radiation protection training. The most important novelties were pointed out with possible consequences for the implementation of radiation protection training. Some suggestions on how to overcome transitional problems and how to improve training were also given. (author)

  11. Radiation protection program for assistance of victims of radiation accidents

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Costa Silva, L.H. da; Rosa, R.

    1991-11-01

    The principles aspects of a radiological protection program for hospitals in case of medical assistance to external and internal contaminated persons are showed. It is based on the experience obtained at Centro Medico Naval Marcilio Dias during the assistance to the victims of Goiania accident in 1987. This paper describes the basic infrastructure of a nursery and the radiation protection procedures for the access control of people and materials, area and personal monitoring, decontamination and the support activities such as calibration of radiation monitors and waste management. Is is also estimated the necessary radiation protection materials and the daily quantity of waste generated. (author)

  12. Current Trends in Radiation Protection Recommendations

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    2008-01-01

    The third generation of the ICRP recommendations was adopted in April 2007. The recommendations rely on situations (planned, emergency and existing), individual (occupational, public and patient) and radiation protection system (justification, optimization and dose limits). In the present work attention is paid to discuss the new recommendations and role of IAEA in updating its Basic Safety Standards for protection against ionizing radiation and safety of radiation sources and its impact for the national regulations

  13. Manual on radiation protection in hospitals and general practice. Basic protection requirements

    International Nuclear Information System (INIS)

    Braestrup, C.B.; Vikterloef, K.J.

    1974-01-01

    The manual as a whole deals with the radiation protection of patients, occupationally exposed persons, and the public. Volume 1, on basic protection requirements, is a general review common to all medical applications of ionizing radiation and radionuclides. Radiation protection is required for patients and staff, and with regard to medical research and chemical trials of new methods; radiation equipment and operating procedures are discussed in connection with diagnostic x-ray installations, x-ray beam therapy, gamma-ray installations for teletherapy, brachytherapy, unsealed sources for therapeutic use, and the diagnostic use of unsealed sources in nuclear medicine. In planning of radiation facilities, attention is paid to levels at which medical care is given, the centralization and decentralization of radiation facilities, diagnostic x-ray facilities and therapy facilities, and nuclear medicine and therapy with unsealed sources. Shielding design is discussed applicable to diagnostic radiology, radiotherapy, nuclear medicine and the therapeutic use of radionuclides. Assignment of responsibilities, legal responsibilities, safety checks, refresher courses and symposia are discussed in the context of organizing radiation protection. Radiation surveys are necessary, and such surveys are described for x-ray and gamma-ray beams, sealed radioactive sources and nuclear medicine. A whole section is devoted to personnel monitoring and health surveillance. An annex gives a list of commonly used radionuclides, another deals with the design of protective shielding

  14. Problems of radiation protection optimization

    International Nuclear Information System (INIS)

    Morkunas, G.

    2003-01-01

    One of the basic principles - optimization of radiation protection - is rather well understood by everybody engaged in protection of humans from ionizing radiation. However, the practical application of this principle is very problematic. This fact can be explained by vagueness of concept of dose constraints, possible legal consequences of any decision based on this principle, traditions of prescriptive system of radiation protection requirements in some countries, insufficiency of qualified expertise. The examples of optimization problems are the different attention given to different kinds of practices, not optimized application of remedial measures, strict requirements for radioactive contamination of imported products, uncertainties in optimization in medical applications of ionizing radiation. Such tools as international co-operation including regional networks of information exchange, training of qualified experts, identification of measurable indicators used for judging about the level of optimization may be the helpful practical means in solving of these problems. It is evident that the principle of optimization can not be replaced by any other alternative despite its complexity. The means for its practical implementation shall be searched for. (author)

  15. Radiation protection and environmental protection

    International Nuclear Information System (INIS)

    Xie Zi; Dong Liucan; Zhang Yongxing

    1994-01-01

    A collection of short papers is presented which review aspects of research in radiation and environmental protection carried out by the Chinese Institute of Atomic Energy in 1991. The topics covered are: the analysis of Po 210 in the gaseous effluent of coal-fired boilers; the determination of natural radionuclide levels in various industrial waste slags and management countermeasures; assessment of the collective radiation dose from natural sources for the Chinese population travelling by water; the preliminary environmental impact report for the multipurpose heavy water research reactor constructed by China for the Islamic Republic of Algeria. (UK)

  16. Radiation protection, public policies and education

    International Nuclear Information System (INIS)

    Alves, Simone F.; Jacomino, Vanusa M.F.; Barreto, Alberto A.

    2011-01-01

    The objective of this paper is to inform about the aspects of radiation protection public policies concerning the public spheres and the ordinary population. It is known that information has been considered a very important good in several knowledge areas. However, the efficiency of their transmission mechanisms should be periodically evaluated, checking existing critical and stagnation points. Nuclear area can be mentioned as a historically typical case, where the public policies assume relevant importance as tool for promotion, control and education of the population in general. Considering the polemic nature of such subject, it is clear that there is a need for conducting the construction of educational contents taking in account the educator training necessities. The addressing of radiation protection aspects applied to nuclear techniques conducts, for example, to the awareness on the benefits of radiation and its industrial and medical applications, which are established considering the worldwide adopted basic principles of radiation protection. Such questions, concerned with (or related to) public policies, establish a link between radiation protection and education, themes explored in this article to provide a better view of the current Brazilian scenario. (author)

  17. Quantitative risk in radiation protection standards

    International Nuclear Information System (INIS)

    Bond, V.P.

    1978-01-01

    The bases for developing quantitative assessment of exposure risks in the human being, and the several problems that accompany the assessment and introduction of the risk of exposure to high and low LET radiation into radiation protection, will be evaluated. The extension of the pioneering radiation protection philosophies to the control of other hazardous agents that cannot be eliminated from the environment will be discussed, as will the serious misunderstandings and misuse of concepts and facts that have inevitably surrounded the application to one agent alone, of the protection philosophy that must in time be applied to a broad spectrum of potentially hazardous agents. (orig.) [de

  18. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    Ylli, F.; Dollani, K.; Paci, R.

    2005-01-01

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  19. Discussion on several problems in evolution of radiation protection system

    International Nuclear Information System (INIS)

    Ziqiang, P.

    2004-01-01

    As viewed from the standpoint of radiation protection practice, it is necessary that the current system of radiological protection should be made more simple and coherent. The human-based protective measures alone are far from having met the requirements of environmental protection in many circumstances. Protecting the environment from ionising radiation would be implicated in radiation protection. Collective dose is an useful indicator, of which applicable extent should be defined. Using such an quantity could help improve radiation protection level, but applicable conditions should be indicated, temporal or spatial. Natural radiation is the largest contributor to the radiation exposure of human. Occupational exposure from natural radiation should be controlled, for occupations such as underground miners and air crew. Controlling both man-made and natural radiation exposure of pregnant women and children needs to be enhanced, especially radiological diagnosis and treatment. China radiation protection community, as a whole, is paying considerable attention to the ICRP's new Recommendations. Prof. Clarke's article 'A Report on Progress towards New Recommendations', a communication from the International Commission on Radiological Protection, has been translated into Chinese and published on Radiation Protection, the Official Journal of China Radiation Protection Society with a view of intensifying awareness of the new Recommendations within more radiation protection workers and people concerned. In addition, a special meeting was convened in early 2002 to address the comments on the new Recommendations. (author)

  20. Protective properties of radiation-modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Surnina, N.N.; Saltykova, L.A.; Strochkova, E.M.; Tatarenko, O.F.

    1986-09-01

    A study was made of the mass transfer of corrosive liquids and gases through polyethylene films modified by radiation surface grafting. Studies were performed on an unstabilized type A film with graft adhesion-active layer based on polymethacrylic acid. The protective properties of the polymer coating in corrosive fluids with low vapor tension were estimated by impedance measurements. Steel specimens with a protective coating of radiation-modified polyethylene film were exposed to 10% sulfuric acid at room temperature. The results indicated that the acid did not penetrate through to the metal surface. The films retain their protective properties and protect the metal from the acid. Radiation modification significantly improves the adhesion of polyethylene to metals without reducing physical and mechanical properties of the polymers. 50 references, 1 figure.

  1. Organization of radiation protection in German nuclear power stations

    International Nuclear Information System (INIS)

    1989-01-01

    Using the operating handbooks of the nuclear power stations in West Germany, an examination was carried out of how far the existing organisational structure for radiation protection fulfils the requirements for protection and whether a standardisation of the organisation would provide improvements for the protection of the personnel and for the practicability of the radiation protection organisation. In particular, the parts 'Personnel operating organisation', 'Radiation protection order' and 'Maintenance order' of the operating handbook were evaluated and an audit was made of the radiation protection organisation. In general, the result of the assessment is that the organisation of radiation protection does not contradict the orders, guidelines and regulations in any of the nuclear power stations examined. Corresponding to the possibilities of regulating details of the radiation protection organisation within the undertaking, the target of 'protection of the personnel against radioactive irradiation' is achieved by the various organisation structures which are largely equal to the given example. (orig./HP) [de

  2. Radiation protection and safety guide no. GRPB-G-1: qualification and certification of radiation protection personnel

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    A number of accidents with radiation sources are invariably due to human factors. The achievement and maintenance of proficiency in protection and safety in working with radiation devices is a necessary prerequisite. This guide specifies the national scheme and minimum requirements for qualification and certification of radiation protection personnel. The objective is to ensure adequate level of skilled personnel by continuous upgrading of knowledge and skill of personnel. The following sectors are covered by this guide: medicine, industry, research and training, nuclear facility operations, miscellaneous activities

  3. Establishments of scientific radiation protection management program

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1988-01-01

    Some aspects for establishing the radiation protection management program have been discussed. Radiation protection management program includes: definite aims of management, complete data register, strict supervision system, and scientific management methodology

  4. Chemical protection from high LET radiation

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Matsushita, Satoru; Kanai, Tatsuaki; Ohara, Hiroshi

    1992-01-01

    Radioprotection by WR151327 from high LET fast neutrons was investigated and compared with that from low LET radiation. Radiation damage in bone marrow, intestine, skin and leg length were all protected by a pretreatment with 400 mg/kg WR151327. Most prominent protection was observed for bone marrow, which gave a Dose Modifying Factor (DMF) of 2.2 against γ rays. Identical protection was observed between early and late radiation damage. WR151327 protected fast neutrons less efficiently than γ rays; 40% for bone marrow and 80% for skin leg. Pathological findings indicated that hyperplastic change in both dermis and epidermis associated with late skin shrinkage. Laser doppler flow-metry showed a good relationship between reduction of blood flow and late skin shrinkage. Irradiation of skin by heavy particle Carbon-12 indicated that skin shrinkage was modified by unirradiated surrounding normal tissues, which proposed a significant role of 'Volume Effect' in radiation damage. Tumor tissues were less protected by WR151327 than normal tissues. Dependence of radioprotection by WR151327 on tissue oxygen concentration is a probable reason to explain the difference between normal and tumor tissues. (author)

  5. Cost benefit analysis for optimization of radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1984-01-01

    ICRP recommends three basic principles for radiation protection. One is the justification of the source. Any use of radiation should be justified with regard to its benefit. The second is the optimization of radiation protection, i.e. all radiation exposure should be kept as low as resonably achievable. And the third principle is that there should be a limit for the radiation dose that any individual receives. Cost benefit assessment or cost benefit analysis is one tool to achieve the optimization, but the optimization is not identical with cost benefit analysis. Basically, in principle, the cost benefit analysis for the optimization of radiation protection is to find the minimum sum of the cost of protection and some cost of detriment. (Mori, K.)

  6. Radiation protection programme for LEU miniature source reactor

    International Nuclear Information System (INIS)

    Beinpuo, Ernest Sanyare Warmann

    2015-02-01

    A radiation protection program has been developed to promote radiation dose reduction. It emphasize radiological protection fundamentals geared at reducing radiation from the application of the research reactor at the reactor center of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission. The objectives of the radiation safety program are both to ensure that nuclear scientists and technicians are exposed to a minimum of ionizing radiation and to protect employees and facility users and surrounding community from any potentially harmful effects of nuclear research reactor at GAEC. The primary purpose of the radiation control program is to assure radiological safety of all personnel and the public to guarantee that ionizing radiation arising out of the operations of the Research Reactor at the Reactor Center does not adversely affect personnel, the general public or the environment. This program sets forth polices, regulations, and procedures approved by the Centers Radiation Control Committee. The regulations and procedures outlined in this program are intended to protect all individuals with a minimum of interference in their activities and are consistent with regulations of the Radiation Protection Board (RPB) applicable to ionizing radioactive producing devices. (au)

  7. Foundations of radiation physics and radiation protection. 5. ed.; Grundlagen der Strahlungsphysik und des Strahlenschutzes

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, Hanno

    2017-07-01

    The following topics are dealt with: Types of radiation and radiation fields, the atomic structure, radioactive decays, decay law, natural and artificial radioactivity, interactions of ionizing photon radiation, attenuation of neutral-particle beams, interactions of neutron radiation, interactions of charged particles, ionization and energy transfer, radiation doses, radiation protection phantoms, foundations of the radiation biology of cells, effects and risks of ionizing radiation, radiation expositions of men with ionizing radiation, radiation protection law, practical radiation protection against ionizing radiations, radiation eposures in medical radiology. (HSI)

  8. 6. national congress of radiation protection S.F.R.P. 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This congress tackles the following subjects: individual dosimetry for external irradiation, update of arrangements in the public health code relative to the radiation protection, implementation of zoning decree, regulation, radiation protection in professional area, radiation protection in ITER, non ionizing radiation, radiation protection in accident situation, biological radiation effects, radiation protection for patients, dosimetry, environmental exposure, radiation protection and radioactive waste management. (N.C.)

  9. Foundations of radiation physics and radiation protection. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Krieger, Hanno

    2009-01-01

    The book under consideration comprehensively reports on the physical, biological and legal fundamentals of the radiology. The book is divided into four large sections. The first section is concerned with the physical fundamentals of the radiology, the terms of the dose as well as the computation of the dose rate in radiation fields. The second section reports on the radiobiological and epidemiological fundamentals of the radiation protection as well as on the natural and civilization radiation exposure. The third section comprehensively describes the legal and practical aspects of radiation protection. The last section contains an updated appendix of tables with the most important fundamental data for the practical radiation protection

  10. Discussion on some problems in evolution of radiation protection system

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2003-01-01

    In radiation protection practice in China, the appropriate simplification and better coordination for the existing radiation protection system are necessary. The human-based protective measures alone could not meet the requirements of the environmental protection in many circumstances. Protecting the environment from ionizing radiation would be implicated in radiation protection. Collective dose is an useful index, its applicable scope should be well defined. Using such an quantity can help increase radiation protection level, but applicable conditions should be defined, such as time and space. Natural radiation is the largest contributor of the radiation exposure to human. Occupational exposure from natural radiation should be controlled, such as to underground miners and air crew. Controlling both man-made and natural radiation exposure to pregnant women and children needs to be enhanced, especially radiological diagnosis and therapy

  11. Radiation protection training: twenty year experience in Hungary

    International Nuclear Information System (INIS)

    Pellet, Sandor; Kanyar, Bela; Zagyvay, Peter; Solymosi, Jozsef; Bujtas, Tibor; Feher, Istvan; Giczi, Ferenc; Deme, Sandor; Uray, Istvan

    2008-01-01

    In Hungary, radiation protection training for radiation workers has been introduced in very early, just following the publication of the ICRP recommendation No. 26. Before that, in some of the institutions, radiation protection training was recommended for technicians and medical doctors working in nuclear medicine, X-ray diagnostic radiology and radiation therapy, as well as in some of industrial applications, but not on regular way. Since 1988, radiation protection training regulated by the Ministry of Health and required for all of the workers in radiation workplaces licensed by the authority the State Public Health and Medical Officers Service (SPHAMOS). Decree No. 16/2000. (VI. 8.) EuM of the Minister of Health on the enforcement of Clauses of the Nuclear Law 116/1996 regulates the radiation protection training of Radiation Workers (RW). Annex 4 of Decree sees radiation protection training and in-service training: Persons performing conducted work in the field of the use of the nuclear energy and any other work within legal relationship shall be educated in training and in-service training at an interval of 5 years. Three levels of the training introduced; basic, extended and comprehensive, based on radiation risk related to the given job. Several institutions are involved in performing radiation protection training, such universities, scientific institutions, Regional Radiological Health Centers (RRHC) of SPHAMOS, private enterprises etc. All training course material is subject to accreditation. Most of the faculties of the universities involved in training of natural sciences and engineering provide subjects on the fundamentals of dosimetry, radiobiology and radiation protection within the courses of physics, biophysics, chemistry, biology, ecology etc. These courses take 5-10 contact hours per week on average. The members of the Hungarian Committee of EUTERP Platform summarize their broad experience collected in the past 20 year. (author)

  12. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  13. The risk philosophy of radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1996-01-01

    The processes of risk assessment and risk evaluation are described. The assumptions behind current radiation risk assessments, which are focused on the probability of attributable death from radiation-induced cancer, are reviewed. These assessments involve projection models to take account of future cancer death in irradiated populations, the transfer of risk estimates between populations and the assumptions necessary to derive risk assessments for low radiation doses from actual observations at high doses. The paper ends with a presentation of the basic radiation protection recommendations of the International Commission on Radiological Protection (ICRP) in the context of a risk philosophy. (author)

  14. Regulatory System of Radiation Protection in Taiwan

    International Nuclear Information System (INIS)

    Tang, F. T.; Huang, C. C.

    2004-01-01

    After the radioactive contaminated buildings incident occurred in Taiwan in 1993, the competent authority for radiation protection the Atomic Energy Council (AEC) started to review the structured problem of radiation protection regulatory system. Through several years' investigation and study, the AEC has improved two important tools in radiation protection regulatory system, i.e., control regulations and actual practice, and made them more rigorous and efficient. This paper will make a brief introduction of the efforts that Taiwan has made in this respect. Taiwan's radiation protection control was based on the Atomic Energy Law promulgated in 1968, but the control idea and authorization scope were not sufficient to appropriately respond to the highly developed economy and democracy in Taiwan. After several years' legislative process, the Ionizing Radiation Protection Law (IRP Law) was promulgated and entered into force on February 1, 2003. This IRP Law specifically emphasizes categorized risk management of radiation sources, establishment of personnel licenses and training system, enhancement of public safety control, and implementation of quality assurance program for medical exposure. The Legislative Yuan (Congress) fully authorized the competent authority to establish various technological control regulations according to control necessity without prior review by the Legislative Yuan in advance. As to the penalties of the violations of the IRP Law, the AEC adopts high-rated administrative fines and applies the Criminal Law to those who seriously contaminate the environment. In actual practice, the AEC has constructed a Radiation Protection Control Information System compatible with the IRP Law that fully combines the functions of computers and Internet. The information of facility operators who own radiation sources, radiation protection specialists, and operating personnel are entered into this system, starting from the submission of application of the

  15. Ordinance of 12 January 1972 on Radiation Protection

    International Nuclear Information System (INIS)

    1972-01-01

    This Ordinance made under the 1969 Act on Radiation Protection aims to supplement the Act with many detailed provisions on protection against ionizing radiation. It is divided into 4 parts: the first covers definitions on radiation protection, which are generally the same as those of the 1969 Act; the second relates to radiation-emitting equipment, in particular X-ray devices and particle accelerators; the third concerns radioactive materials and the fourth nuclear installations. (NEA) [fr

  16. Radiation protection in a university TRIGA reactor

    International Nuclear Information System (INIS)

    Tschurlovits, M. . Author

    2004-01-01

    Radiation protection in a university institute operating a research reactor and other installations has different constraints as a larger facility. This is because the legal requirements apply in full, but the potential of exposure is low, and accesses has to be made available for students, but also for temporary workers. Some of the problems in practical radiation protection are addressed and solutions are discussed. In addition, experience with national radiation protection legislation recently to be issued is addressed and discussed. (author)

  17. Radiation protection in nuclear energy. V.1

    International Nuclear Information System (INIS)

    1988-01-01

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. A special session entitled ''The dose-response relationship: implications for nuclear energy'', and a panel on ''Radiation protection education and training'' were included in the conference programme. Refs, figs and tabs

  18. XXVII. Days of Radiation Protection. Conference Proceedings

    International Nuclear Information System (INIS)

    2005-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 83 papers are published

  19. Using a research reactor to teach practical radiation protection

    International Nuclear Information System (INIS)

    Musilek, A.; Steinhauser, G.

    2010-01-01

    To teach students about the practical handling of radioactive materials and the related radiation protection, it is advantageous to be able to produce radioactive material with specific properties. Through the neutron activation of specific samples, radio-nuclides can be produced that are precisely tailored for particular experiments, both in type of radiation (beta, gamma) as well as in activity and half-life. At the Atominstitut in Vienna, a 250 kW TRIGA Mark II research reactor is used for the production of these nuclides. In this paper, four practical exercises are presented, covering many questions and challenges that occur in radiation protection. The first exercise uses neutron activation of sodium-chloride to cover theoretical aspects of the calculation of dose rates (using dose rate constants) through the activation of Na-23, Cl-35 and Cl-37 (including cross sections, half-life, inverse square law), as well as a practical examination (handling of dose rate meters). The second exercise gives students the opportunity to decontaminate a laboratory after an incident under realistic circumstances. For this exercise, KNO 3 is activated in the reactor. The resulting K-nuclide produces no risk of inadequate decontamination for the laboratory, since the half-life of K-42 is only 12 h. The third exercise is designed to teach students how to deal with unsealed radioactive material by irradiation of ammonium dihydrogenphosphate. In this case, an only-beta-active (P-32) fertilizer is produced, which is applied to plants in subsequent chemical processing. In the following step, the 'quality of this fertilizer' is determined by measuring the absorbed activity of the plant leaves using a GM counter. The fourth exercise is another approach in working with unsealed radioactive material. It simulates the PUREX process to separate uranium from fission products using a liquid - liquid extraction. (authors)

  20. The Radiation Protection in Guatemala

    International Nuclear Information System (INIS)

    Guillen, J.A.

    1992-04-01

    A brief account of the activities on radiation safety carried out by the General Directorate of Nuclear Energy of Guatemala in the period 1991-1992 is presented. The activities are reported under organization, activities on occupational radiation protection in medicine, industry and research, personnel monitoring, radiation metrology, regulations and international cooperation are described

  1. Radiation in perspective applications, risks and protection

    International Nuclear Information System (INIS)

    1997-01-01

    Everyone on earth is exposed to natural radiation. Radiation produced artificially is no different, either in kind or in effect, from that originating naturally. Although radiation has many beneficial applications, throughout medicine, industry and research, it can be harmful to human beings who must be adequately protected from unnecessary or excessive exposures. For this purpose, a thorough system of international principles and standards and stringent national legislations have been put in place. Yet radiation continues to be the subject of much public fear and controversy. This clearly written report, intended for the nonspecialist reader, aims to contribute to an enlightened debate on this subject by presenting the most up-to-date and authoritative material on sources, uses and affects of radiation, and ways in which people are protected from its risks. It discusses the development of radiation protection measures, its internationally agreed principles, and also addresses social and economic issues such as ethical questions, risk perceptions, risk comparisons, public participation in decision-making and the cost of protection. (author)

  2. Radiation protection/shield design

    International Nuclear Information System (INIS)

    Disney, R.K.

    1977-01-01

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.) [de

  3. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  4. Evaluation of radiation protection in nuclear medicine diagnostic procedures

    International Nuclear Information System (INIS)

    Mohammed, Ezzeldien Mohammed Nour

    2013-05-01

    This study conducted to evaluate the radiation protection in nuclear medicine diagnostic procedures in four nuclear medicine departments in Sudan. The evaluated procedures followed in these departments were in accordance with the standards, International Recommendations and code of practice for radiation protection in nuclear medicine. The evolution included the optimum design for diagnostic nuclear medicine departments, dealing with radioactive sources, quality assurance and quality control, training and responsibilities for radiation worker taking into account economic factors in Sudan. Evaluation of radiation protection procedures in diagnostic investigations was carried out by taken direct measurements of dose rate and the contamination level in some areas where radiation sources, radiation workers and public are involved. Designated questionnaires covered thirteen areas of radiation protection based on inspection check list for nuclear medicine prepared by the International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine (AAPM) were used in the evaluation. This questionnaire has been Filled by Radiation Protection Officer (RPO), nuclear medicine technologist, nuclear medicine specialist in the nuclear medicine departments. Four hospitals, two governmental hospital and two private hospitals, have been assisted, the assessment shows that although the diagnostic nuclear medicine department in Sudan are not applying a fully safety and radiation protection procedures, but the level of radiation dose and the contamination level were found within acceptable limits. The private hospital D scored the higher level of protection (85.25%) while the governmental hospital C scored the lower level of protection (59.02%). Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a proper radiation protection

  5. Radiation protection at new reactors

    International Nuclear Information System (INIS)

    Brissaud, A.

    2000-01-01

    The theoretical knowledge and the feedback of operating experience concerning radiations in reactors is now considerable. It is available to the designer in the form of predictive softwares and data bases. Thus, it is possible to include the radiation protection component throughout all the design process. In France, the existing reactors have not been designed with quantified radiation protection targets, although considerable efforts have been made to reduce sources of radiation illustrated by the decrease of the average dose rates (typically a factor 5 between the first 900 MWe and the last 1300 MWe units). The EDF ALARA PROJECT has demonstrated that good practises, radiation protection awareness, careful work organization had a strong impact on operation and maintenance work volume. A decrease of the average collective dose by a factor 2 has been achieved without noticeable modifications of the units. In the case of new nuclear facilities projects (reactor, intermediate storage facility,...), or special operations (such as steam generator replacement), quantified radiation protection targets are included in terms of collective and average individual doses within the frame of a general optimization scheme. The target values by themselves are less important than the application of an optimization process throughout the design. This is because the optimization process requires to address all the components of the dose, particularly the work volume for operation and maintenance. A careful study of this parameter contributes to the economy of the project (suppression of unecessary tasks, time-saving ergonomy of work sites). This optimization process is currently applied to the design of the EPR. General radiation protection provisions have been addressed during the basic design phase by applying general rules aiming at the reduction of sources and dose rates. The basic design optimization phase has mainly dealt with the possibility to access the containment at full

  6. Management information system applied to radiation protection services

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela; Figueiredo, Arthur

    2013-01-01

    An effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. The complex and multisource information flux from all radiation protection activities on nuclear organizations requires a robust tool/system to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Those organized and processed data are useful to reach a successful management and to support the human decision-making on nuclear organization. This paper presents recent improvements on a management information system based on the radiation protection directives and regulations from Brazilian regulatory body. This radiation protection control system is applied to any radiation protection services and research institutes subjected to Brazilian nuclear regulation and is a powerful tool for continuous management, not only indicating how the health and safety activities are going, but why they are not going as well as planned showing up the critical points. (author)

  7. Management information system applied to radiation protection services

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela; Figueiredo, Arthur, E-mail: pabloag@cdtn.br, E-mail: lss@cdtn.br, E-mail: gmf@cdtn.br, E-mail: arthurqof@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    An effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. The complex and multisource information flux from all radiation protection activities on nuclear organizations requires a robust tool/system to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Those organized and processed data are useful to reach a successful management and to support the human decision-making on nuclear organization. This paper presents recent improvements on a management information system based on the radiation protection directives and regulations from Brazilian regulatory body. This radiation protection control system is applied to any radiation protection services and research institutes subjected to Brazilian nuclear regulation and is a powerful tool for continuous management, not only indicating how the health and safety activities are going, but why they are not going as well as planned showing up the critical points. (author)

  8. National congress of radiation protection; Congres national de radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  9. Radiation Protection of Environment under the Light of the New Concept of Radiation Protection of Non-Human Species

    International Nuclear Information System (INIS)

    Hansruedi Voelkle

    2006-01-01

    The purpose of this presentation is to discuss the question of whether radiation protection should be extended to plants and animals. Until now the recommendations of ICRP have been focused exclusively on the protection of man from ionizing radiation. It was assumed that, if man is protected, the quality of the living environment is not impaired. In recent years adequate principles, recommendations and laws have become necessary in order to protect the environment from man made toxins. These recommendations aimed to conserve plants and animals, to maintain the diversity of species, the health and status of natural habitats and the natural resources of our planet, to warrant natural evolution and selection processes in order to transmit a healthy world to future generations. Reflections have been made as to whether particular protection of fauna and flora from ionizing radiation should be included. This article presents some considerations from the point of view of operational radiation protection and some comments to the work already done by ICRP committee 5. The final purpose is to invite the audience to make its own reflections and to communicate any criticisms, comments or suggestions to committee 5 of ICRP. (author)

  10. Radiation Protection of Environment under the Light of the New Concept of Radiation Protection of Non-Human Species

    Energy Technology Data Exchange (ETDEWEB)

    Hansruedi Voelkle [Swiss Federal Office of Public Health, Environmental Radioactivity Section, c/o Physics Department, University of Fribourg Chemin du Musee 3, 1700 Fribourg (Switzerland)

    2006-07-01

    The purpose of this presentation is to discuss the question of whether radiation protection should be extended to plants and animals. Until now the recommendations of ICRP have been focused exclusively on the protection of man from ionizing radiation. It was assumed that, if man is protected, the quality of the living environment is not impaired. In recent years adequate principles, recommendations and laws have become necessary in order to protect the environment from man made toxins. These recommendations aimed to conserve plants and animals, to maintain the diversity of species, the health and status of natural habitats and the natural resources of our planet, to warrant natural evolution and selection processes in order to transmit a healthy world to future generations. Reflections have been made as to whether particular protection of fauna and flora from ionizing radiation should be included. This article presents some considerations from the point of view of operational radiation protection and some comments to the work already done by ICRP committee 5. The final purpose is to invite the audience to make its own reflections and to communicate any criticisms, comments or suggestions to committee 5 of ICRP. (author)

  11. Radiation Protection at Light Water Reactors

    CERN Document Server

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  12. [Radiation protection in interventional radiology].

    Science.gov (United States)

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses.

  13. Radiation Protection Legislation in the Nordic Countries

    International Nuclear Information System (INIS)

    Person, Lars.

    1990-01-01

    Recent alterations in the radiation protection laws of the Nordic countries are presented. The report amends the previous SS-report 87-37 with the title Radiation Protection and Atomic Energy Legislation in the Nordic Countries. (au)

  14. Radiation Protection Institute - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Radiation Protection Institute (RPI) of the Ghana Atomic Energy Commission was established to provide the scientific and technical support for executing the operational functions of the Radiation Protection Board. The operational activities of the Institute are listed. Also included in the report are the various research projects, training programmes and publications for the year 2015.

  15. The radiation protection infrastructure in Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, R.; Ratovonjanahary, J.F.; Randriantseheno, H.F.; Ramanandraibe, M.J.

    2001-01-01

    Madagascar is participating in the Model Project RAF/9/024 on 'Upgrading Radiation Protection Infrastructure'. Its radiation protection legislation is based on the BSS. The efforts being made to upgrade the country's regulatory infrastructure and the problems encountered are described below, as is the national information and training programme for the authorities, the public, workers and students. (author)

  16. Radiation protection at the Cadarache research center

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    This article recalls the French law about radiation protection and its evolution due to the implementation of the 2013/59-EURATOM directive that separates the missions of counsel from the more operative missions of the person appointed as 'competent in radiation protection'. The organisation of the radiation protection of the Cadarache research center is presented. The issue of sub-contracting and the respect of an adequate standard of radioprotection is detailed since 2 facilities operated by AREVA are being dismantled on the site. (A.C.)

  17. An introduction to radiation protection principles

    International Nuclear Information System (INIS)

    Skinner, R.W.; Kalos, F.; Bond, J.A.

    1985-05-01

    The purpose of the document is to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to aquaint employees with CRNL's radiation and industrial safety organization

  18. Healing Arts Radiation Protection Act

    International Nuclear Information System (INIS)

    1984-07-01

    The Healing Arts Radiation Protection Act is concerned with regulating the registration, installation, operation, inspection and safety of X-ray machines. The Act provides for the establishment of the Healing Arts Radiation Protection Commission which is responsible for reporting on all the above matters to the Ontario Minister of Health. In addition the board is responsible for the continuing development of an X-ray safety code and for the submission of an annual report of their activities to the minister

  19. PET scan and radiation protection

    International Nuclear Information System (INIS)

    Montoya, F.; Lahmi, A.; Rousseau, A.

    2006-01-01

    The purpose was the optimization of the radiation protection during examinations with 18 F-FDG, The immediate validation by the D.G.S.N.R., the results of dosimetry (h.p.10 = 12 μ sievert (average value/ technician / day for 6 patients) demonstrate the efficiency of the implemented means. From the very beginning, the installation of a PET-scanner requires a multidisciplinary conception. This essential thought contributes to an optimal radiation protection of the entire personnel of the service. (N.C.)

  20. Abstracts of 21. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    1989-01-01

    45 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, chiefly problems of radiation detection and measuring techniques in radiation protection

  1. Epidemiology and Radiation Protection

    International Nuclear Information System (INIS)

    1987-01-01

    Epidemiology aims at providing direct evidence of the long term health effects in humans due to potentially dangerous exposures to various nuisance agents, including ionising radiation. Inappropriate interpretation and use of the results of epidemiological studies may result in inaccurate assessments of the risks associated with radiation exposure. This report presents the proceedings of a Workshop organised by the NEA to create an opportunity for epidemiologists and radiation protection specialists to exchange their experiences and views on the problems of methodology in epidemiological research and on the application of its results to the assessment of radiation risks

  2. Advances in radiation protection monitoring

    International Nuclear Information System (INIS)

    1978-01-01

    The requirement to keep radiation exposure as low as reasonably achievable, linked with the growing number of workers whose exposure to radiation must be strictly controlled, requires intensified efforts directed towards the provision of adequate radiation monitoring programmes. This symposium was intended to review the advances that have been made in methods, techniques and instrumentation for radiation protection monitoring. Thus the symposium complemented the detailed consideration that had already been given to two closely related topics, that of environmental monitoring and of monitoring radioactive airborne and liquid discharges from nuclear facilities. The first topic had been dealt with in detail in an Agency symposium held in November 1973 in Warsaw and the second was treated in an Agency symposium held in September 1977 in Portoroz. The present symposium covered a broad range of topics under the following main headings: Monitoring of external exposure (three sessions),Contamination monitoring (three sessions), Radiation monitoring programmes (one session), Calibration, and use of computers (two sessions). An introductory paper described the purpose of radiation protection monitoring and its historical development. It drew attention to the gradual change from the threshold dose hypothesis to the hypothesis of direct proportionality between dose and effect and discussed practical implications of the recommendations recently issued by the International Commission on Radiological Protection (ICRP). It became apparent that guidance on the application of these recommendations is urgently needed. This guidance is presently being prepared by ICRP

  3. Radiation protection and safety culture for cyclotron workers

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    1998-01-01

    The main aim of the present study is to review radiation protection and safety culture measures to be applied to cyclotron workers. The radiation protection (measures are based on Basic Safety standards for the protection) of the health of workers and the general public against the dangers arising from ionizing radiation, while the safety culture are based on IAEA publications

  4. Radiation protection and occupational health

    International Nuclear Information System (INIS)

    Cassels, B.M.; Carter, M.W.

    1992-01-01

    This paper examines trends in occupational and public health standard setting including those which apply to radiation protection practices. It is the authors' contention that while regulators, unions and employees demand higher standards of radiation protection and industry attempts to comply with tight controls of radiation exposure in the workplace, these standards are out of step with standards applied to health away from the workplace, recreational activity and other areas of industrial hygiene. The ultimate goal of an improvement in the health of the nation's workforce may no longer be visible because it has been submerged beneath the predominating concern for one aspect of health in the workplace. 35 refs., 5 tabs

  5. Radiation protection in nuclear energy. V.2

    International Nuclear Information System (INIS)

    1988-01-01

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. The highlights of the conference were the sessions on the interface between nuclear safety and radiation protection, the evolution of radiation protection principles, exemption rules and accident experiences. The special session on the practical implications of the linear dose-response relationships also provoked particular interest. Although the session on optimization and decision aiding did not reveal any new developments, it did indicate an increasing emphasis on the optimization of radiation protection. A clear trend towards attaining lower collective doses per unit practice over a given time period, despite the increase in nuclear power plant capacity, is also apparent, although very few data on job-related worker doses have been published to date in the open literature. From the regulators' viewpoint, a very strong desire was expressed for a move towards regulatory strategies that exempt practices and sources causing insignificant individual and collective doses. Refs, figs and tabs

  6. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    Relations between radiation risks and radiation protection measuring techniques are considered as components of the radiation risk. The influence of the exposure risk on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Based upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high exposure risk. As a consequence the following recommendations are presented: occupationally exposed persons with small exposure risk should be monitored using only a long-term desimeter (for instance a thermoluminescence desimeter). In the case of internal exposure, the surface and air contamination levels should be controlled so strictly that routine measurements of internal contamination need not be performed

  7. Regional and national radiation protection activities in Egypt

    International Nuclear Information System (INIS)

    Gomaa, M.A.M.

    2008-01-01

    Radiation protection activities in Egypt go back to 1957 where the Egyptian Atomic Energy Commission (EAEC) Law was issued. Radiation protection and civil defense department was one of EAEC eighth departments. Ionizing radiation law was issued in 1960 and its executive regulation in 1962. The main aim of the present work is to through some light on the current radiation protection activities in Egypt. This includes not only the role of governmental organizations but also to the non governmental organizations. Currently a new Nuclear Safety law is understudy. Regional activities such as holding the second all African IRPA regional radiation protection congress which was held in April 2007 and national training and workshops are held regularly through EAEA, AAEA and MERRCAC. (author)

  8. Radiation protection optimization using a knowledge based methodology

    International Nuclear Information System (INIS)

    Reyes-Jimenez, J.; Tsoukalas, L.H.

    1991-01-01

    This paper presents a knowledge based methodology for radiological planning and radiation protection optimization. The cost-benefit methodology described on International Commission of Radiation Protection Report No. 37 is employed within a knowledge based framework for the purpose of optimizing radiation protection and plan maintenance activities while optimizing radiation protection. 1, 2 The methodology is demonstrated through an application to a heating ventilation and air conditioning (HVAC) system. HVAC is used to reduce radioactivity concentration levels in selected contaminated multi-compartment models at nuclear power plants when higher than normal radiation levels are detected. The overall objective is to reduce personnel exposure resulting from airborne radioactivity, when routine or maintenance access is required in contaminated areas. 2 figs, 15 refs

  9. Preventive Radiation Protection Act

    International Nuclear Information System (INIS)

    Roewer, H.

    1988-01-01

    The commentary is intended to contribute to protection of the population by a practice-oriented discussion and explanation of questions arising in connection with the Preventive Radiation Protection Act. Leaving aside discussions about abandonment of nuclear power, or criticism from any legal point of view, the commentary adopts the practical approach that accepts, and tries to help implementing, the act as it is. It is a guide for readers who are not experts in the law and gives a line of orientation by means of explanations and sometimes by citations from other acts (in footnotes). The commentary also presents the EURATOM Directive No. 3954/87 dated 22 December 1987, the EC Directive No. 3955/87 dated 22 December 1987, and the EC Directive No. 1983/88 dated 5 July 1988. A tabular survey shows the system of duties and competences defined by the Preventive Radiation Protection Act. (RST) [de

  10. Standard radiation protection instructions. Vol. 1

    International Nuclear Information System (INIS)

    Schroeder, F.; Bauer, N.; Haug, T.; Koehler, G.; Poulheim, K.F.

    1992-01-01

    The booklet presents case-specific standard instructions compiled by the Arbeitskreis Ausbildung of the Fachverband Strahlenschutz (Radiation Protection Association) for: (1) work requiring a permit according to section 20 of the Radiation Protection Ordinance, performed by external personnel; (2) the installation, maintenance, transport and storage of ionization smoke detectors; (3) application of gamma-ray and X-ray equipment; (4) the testing of X-ray equipment and equipment emitting stray radiation at the stage of manufacturing; (5) application of Ni-63 electron capture detectors. (HP) [de

  11. Radiation Protection in Slovenia Over the Past Fifty Years (1963-2013) and the Slovenian Society of Radiation Protection

    International Nuclear Information System (INIS)

    Omahen, G.; Krizman, M.J.

    2013-01-01

    The use of the ionizing radiation sources in Slovenia started as early as 1900 when X-ray device was put in operation; the first radioactive source was used two years later. Artificial radioactive sources were introduced from 1954 onwards. The use of radioactive sources in industry started in the middle of the 1950's when industrial radiography was introduced due to strong metal industry in Slovenia. Four nuclear facilities were built in Slovenia: the research reactor TRIGA (1966), the Krško nuclear power plant (1983), the mining and milling uranium complex at Žirovski Vrh (1984) and the low and intermediate level radioactive waste storage (1986). The infrastructure of radiation protection (RP) in the former Yugoslavia was established as late as the first Law on RP was adopted in 1959, the competent authorities were defined and technical support organisations for RP were designated. But the whole infrastructure could not follow the rapid development of nuclear industry and the extent uses of sources. After joining EU, the changes in legislation made a significant shift ahead in radiation protection, as regards the quality of the implementation of radiation protection measures as the intensity of administrative and inspection controls. Slovenian Radiation Protection Society was established in 1981 during the 11th symposium of the Yugoslav Radiation Protection Society. The role of the Slovenian Society for Radiation Protection has never been significant, mostly due to a small critical mass of membership. This is sometimes advantageous since everyone knows each other and can easily come with the problem to be solved. This feature reduces the need for the Society to be active as a formal association. The main role of the Society is the distribution of actual information on RP and related important events.(author)

  12. National congress of radiation protection - Book of presentations (slides)

    International Nuclear Information System (INIS)

    2013-06-01

    This document brings together all the available presentations (slides) of the 9. French national congress of radiation protection. The congress comprised 9 tutorial sessions and 13 ordinary sessions. The tutorial sessions covered the following topics: T1 - Fukushima accident's consequences on terrestrial environment; T2 - The efficient dose: use and limitations in the industrial and medical domains; T3 - Revision of the NFC 15-160 standard relative to radiological facilities; T4 - Medical implants and low frequency electromagnetic fields; T5 - Report from the working group on radiological zoning; T6 - Incidents in medical environment; T7 - ADR: European agreement about the international road transport of dangerous goods; T8 - Cigeo project: industrial geologic disposal facility; T9 - Dose control in medical imaging: what progress since 2010? The ordinary sessions gathered fifty-nine presentations dealing with the following subjects: 1 - effects of ionising radiations on man and ecosystems; 2 - radiation protection regulation and standards; 3 - radiation protection in incident, accident and post-accident situation; 4 - radiation protection of populations and ecosystems; 5 - Radiation protection and society; 6/11 - Radiation protection of patients; 7/8 - Eye lens irradiation and dosimetry; 9 - Non-ionising radiations; 10/12 - Radiation protection in professional environments; 13 - advances in dosimetry and metrology

  13. Law of the Republic of Belarus about radiation protection of the population

    International Nuclear Information System (INIS)

    1998-01-01

    Law of Republic of Belarus about radiation protection of the population determines bases of legal regulation in the field of guarantee of radiation protection of the population and is directed on creation of conditions for protection of life and health of the people from harmful influence of ionising radiation. The law contains the following mail articles: Legal regulation in the field of guarantee of radiation protection; Principles of guarantee of radiation protection; Measures for guarantee of radiation protection; Functions of the state in the field of guarantee of radiation protection; System of the executive authority bodies in the field of guarantee of radiation protection; The state programs in the field of guarantee of radiation protection; State standardisation in the field of guarantee of radiation protection; Licensing of activity in sphere of handling with ionising radiation sources; Industrial control for guarantee of radiation protection; Estimation of a condition of radiation protection; Duties of the user for guarantee of radiation protection at handling with ionising radiation sources; Guarantee of radiation protection at influence of radon and gamma - radiation of natural radioisotopes; Guarantee of radiation protection at production of foodstuff and usage of drinking water; Guarantee of radiation protection of the citizens (patients) at a medical irradiation; Control and account of individual irradiation dozes; Protection of the population and workers (personnel) from radiation accident; Duties of the user of ionising radiation sources for guarantee of radiation protection at radiation accident; Standardisation of irradiation of the citizens attracted for liquidation of consequences of radiation accidents; Right of the citizens of Republic of Belarus, foreign citizens and persons without citizenship for radiation protection; Right of the citizens and public associations on receiving of information; The public control for guarantee of radiation

  14. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements

  15. Radiation protection at urological fluoroscopy working stations

    International Nuclear Information System (INIS)

    Forster, D.; Mohr, H.

    1979-01-01

    Two newly developed radiation protection devices for urological working stations are presented. The local dose to which doctor and assisting personnel are exposed during fluoroscopy and radiography was measured and the radiation burden with and without radiation protection determined. The studies show that without these devices organs such as the eyes are exposed, at a normal working distance from the table, to such an amount of scattered radiation as to reduce the permitted number of examinations per week. (Auth.)

  16. Survey of Radiation Protection Education and Training in Finland in 2003

    International Nuclear Information System (INIS)

    Havukainen, R.; Korpela, H.; Vaisala, S.; Piri, A.; Kettunen, E.

    2004-01-01

    The current state and need for radiation protection training in Finland have been surveyed by the Radiation and Nuclear Safety Authority STUK. The survey sought to determine whether the current requirements for radiation protection training had been met, and to promote radiation protection training. Details of the scope and quality of present radiation protection training were requested from all educational institutes and organizations providing radiation protection training. The survey covered both basic and further training, special training of radiation safety officers, and supplementary training. The questionnaire was sent to 77 educational organization units, 66 per cent of which responded. Radiation workers and radiation safety officers were asked about radiation protection knowledge and needs for additional training. The questionnaire was sent to 880 radiation users and 170 radiation safety officers, 70 per cent of whom responded. The survey covered all professional groups and fields of the use of ionizing radiation except nuclear energy. The amount of radiation protection training in basic and further (specialization) training in the same vocational or academic degree varied remarkably by educational organization. The average amounts of radiation protection included in most professional degrees met the requirements. 32 per cent of workers considered their radiation protection training inadequate for their duties, and 48 per cent had completed no supplementary training in radiation protection over the last five years. Nurses working in public sector hospitals and physicians working in health centres had the greatest need for radiation protection training. 78 per cent of radiation workers in industry felt that they had sufficient radiation protection training. Co-operation between educational organizations is necessary to harmonize radiation protection training. Guidance of the Ministry of Education (the competent authority for education) is needed in this

  17. Laser radiation protection

    International Nuclear Information System (INIS)

    Pantelic, D.; Muric, B.; Vasiljevic, D.

    2011-01-01

    We have presented the effects of laser radiation on human organism, with special emphasize on eye as the most sensitive organ. It was pointed-out that there are many parameters that should be taken into account when determining the level of protection from laser light. In that respect it is important to be aware of international standards that regulate this area. In addition, we have described a new material which efficiently protects human eye, by formation of microlens and carbonization. [sr

  18. Radiation protection problems with sealed Pu radiation sources

    International Nuclear Information System (INIS)

    Naumann, M.; Wels, C.

    1982-01-01

    A brief outline of the production methods and most important properties of Pu-238 and Pu-239 is given, followed by an overview of possibilities for utilizing the different types of radiation emitted, a description of problems involved in the safe handling of Pu radiation sources, and an assessment of the design principles for Pu-containing alpha, photon, neutron and energy sources from the radiation protection point of view. (author)

  19. Common strategic research agenda for radiation protection in medicine.

    Science.gov (United States)

    2017-04-01

    Reflecting the change in funding strategies for European research projects, and the goal to jointly improve medical radiation protection through sustainable research efforts, five medical societies involved in the application of ionising radiation (European Association of Nuclear Medicine, EANM; European Federation of Organizations for Medical Physics. EFOMP; European Federation of Radiographer Societies, EFRS; European Society of Radiology, ESR; European Society for Radiotherapy and Oncology, ESTRO) have identified research areas of common interest and developed this first edition of the Common Strategic Research Agenda (SRA) for medical radiation protection. The research topics considered necessary and most urgent for effective medical care and efficient in terms of radiation protection are summarised in five main themes: 1. Measurement and quantification in the field of medical applications of ionising radiation 2. Normal tissue reactions, radiation-induced morbidity and long-term health problems 3. Optimisation of radiation exposure and harmonisation of practices 4. Justification of the use of ionising radiation in medical practice 5. Infrastructures for quality assurance The SRA is a living document; thus comments and suggestions by all stakeholders in medical radiation protection are welcome and will be dealt with by the European Alliance for Medical Radiation Protection Research (EURAMED) established by the above-mentioned societies. • Overcome the fragmentation of medical radiation protection research in Europe • Identify research areas of joint interest in the field of medical radiation protection • Improve the use of ionising radiation in medicine • Collect stakeholder feedback and seek consensus • Emphasise importance of clinical translation and evaluation of research results.

  20. Manual on radiation protection in hospitals and general practice. Radiation protection in dentistry. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Koren, K [Statens Institutt for Straalehygiene, Oslo (Norway); Wuehrmann, A H [Alabama Univ., Birmingham (USA)

    1977-01-01

    The booklet deals with all aspects of the use of X rays in dentistry. The recommendations made are designed to reduce unnecessary exposure of the patient, will result in the production of superior radiographs and assist in eliminating unnecessary exposure of the operator himself. Separate chapters deal with the following topics: the need for radiation protection, delegation of responsibility, radiographic equipment, radiographic film, radiographic techniques, film processing and handling, patient doses (adults and children), general radiation protection and monitoring, educational standards.

  1. Operating experience and radiation protection problems in the working of the radio-metallurgy hot cell facilities at BARC

    International Nuclear Information System (INIS)

    Janardhanan, S.; Watamwar, S.B.; Mehta, S.K.; Pillai, P.M.B.; John, Jacob; Kutty, K.N.

    1977-01-01

    The Bhabha Atomic Research Centre at Bombay has six hot cell facilities for radiometallurgical investigations of irradiated/failed fuel elements. The hot cell facilities have been provided with certain built-in safety features, a ventilation system, radiation monitoring instruments for various purposes, a centralised air monitoring system and a central panel for display of various alarms. Procedures adopted for radiation protection and contamination control include : (1) radiation leak test for cells and filter efficiency evaluation before cell activation, (2) practices to be followed by frog suit personnel while working in hot cell areas, (3) receipt and handling of irradiated fuel elements, (4) cell filter change operation, (5) checks on high level drains and (6) effluent discharge and waste shipments. Operating experience in the working of these facilities along with radiation accident incidents is described. Data regarding release of activity during normal cell operations, dose rates during various metallurgical operations and personnel exposures are presented. (M.G.B.)

  2. Standards of radiation protection in Colombia

    International Nuclear Information System (INIS)

    Zamora, H.; Quintero, R.; Barreto, G.

    1988-01-01

    The theoretical information about radiation protection was reviewed; special attention to those principles considered of mayor importance by the international organizations experienced in the subject. Particular consideration is made in today's view on legal aspects, and finally, recommendations are made on the standard that should be taken into account in our country for a more rational application of the radiation protection system

  3. Radiation protection laws in the Nordic countries

    International Nuclear Information System (INIS)

    Persson, Lars

    1991-01-01

    Sweden has since 1988 a totally revised radiation protection law and Finland has recently enacted a new law. The legal situation of the Nordic countries in the radiation protection field is reviewed with the main emphasis on the Swedish law. (author)

  4. A European handbook for teachers on radiation and radiation protection

    International Nuclear Information System (INIS)

    Teunen, D.

    1994-01-01

    The Commission of the European Communities (Directorate General XI) has taken several initiatives to assist Member States, one of them being the development of a handbook for teachers on radiation and radiation protection, in order to give teachers a clear, scientifically valid and objective set of materials to enable those who so wish to includes courses on radiation protection in their teaching programmes. The draft handbook has been tested in five countries and is to be published in English and French in 1993. Translations in all Community languages are envisaged

  5. Radiation protection in veterinary medicine

    International Nuclear Information System (INIS)

    1991-01-01

    Diagnostic radiology is an essential part of present-day veterinary practice. The need for radiation protection exists because occupational exposure to ionizing radiation can result in deleterious effects that may manifest themselves not only in exposed individuals but in their descendants as well. These are respectively called somatic and genetic effects. Somatic effects are characterized by observable changes occurring in the body organs of the exposed individual. These changes may appear from within a few hours to many years later, depending on the amount and duration of exposure of the individual. In veterinary medicine, the possibility that anyone may be exposed to enough radiation to create somatic effect is extremely remote. Genetic effects are more a cause for concern at the lower doses used in veterinary radiology. Although the radiation doses may be small and appear to cause no observable damage, the probability of chromosomal damage in the germ cells, with the consequence of mutations, does exist. These mutations may give rise to genetic defects and therefore make these doses significant when applied to a large number of individuals. There are two main aspects of the problem to be considered. First, personnel working with X-ray equipment must be protected from excessive exposure to radiation during their work. Secondly, personnel in the vicinity of veterinary X-ray facilities and the general public require adequate protection

  6. Traceability of radiation protection instruments

    Science.gov (United States)

    Hino, Y.; Kurosawa, T.

    2007-08-01

    Radiation protection instruments are used in daily measurement of dose and activities in workplaces and environments for safety management. The requirements for calibration certificates with traceability are increasing for these instruments to ensure the consistency and reliabilities of the measurement results. The present traceability scheme of radiation protection instruments for dose and activity measurements is described with related IEC/ISO requirements. Some examples of desirable future calibration systems with recent new technologies are also discussed to establish the traceability with reasonable costs and reliabilities.

  7. Australia's proactive approach to radiation protection of the environment: how integrated is it with radiation protection of humans?

    Science.gov (United States)

    Hirth, G A; Grzechnik, M; Tinker, R; Larsson, C M

    2018-01-01

    Australia's regulatory framework has evolved over the past decade from the assumption that protection of humans implies protection of the environment to the situation now where radiological impacts on non-human species (wildlife) are considered in their own right. In an Australian context, there was a recognised need for specific national guidance on protection of non-human species, for which the uranium mining industry provides the major backdrop. National guidance supported by publications of the Australian Radiation Protection and Nuclear Safety Agency (Radiation Protection Series) provides clear and consistent advice to operators and regulators on protection of non-human species, including advice on specific assessment methods and models, and how these might be applied in an Australian context. These approaches and the supporting assessment tools provide a mechanism for industry to assess and demonstrate compliance with the environmental protection objectives of relevant legislation, and to meet stakeholder expectations that radiological protection of the environment is taken into consideration in accordance with international best practice. Experiences from the past 5-10 years, and examples of where the approach to radiation protection of the environment has been well integrated or presented some challenges will be discussed. Future challenges in addressing protection of the environment in existing exposure situations will also be discussed.

  8. Assessment of the international meeting of radiation protection professionals

    International Nuclear Information System (INIS)

    Nikodemova, Denisa; Cabanekova, Helena

    2012-01-01

    The conclusions from and main agenda of the conference are summarized. The conference was divided into 8 sections, dealing with biological effects of ionizing radiation, general aspects of radiation protection, dosimetry and metrology of ionizing radiation, radiation protection problems in nuclear power plants, management of nuclear radiation emergencies, radiation load of patients and staff during medical applications of ionizing radiation (radiodiagnosis, nuclear medicine and radiation oncology), control of exposure to radiation from natural sources in the environment and at workplaces, and education in radiation protection. The programme included round-table discussions devoted to the Fukushima nuclear power plant accident, optimization of the radiation load of children in radiology, and recent advances in the radon risk countermeasures area. (orig.)

  9. Environmental radiation protection. The new ICRP concept

    International Nuclear Information System (INIS)

    Kaps, C.; Lorenz, B.

    2013-01-01

    Protection of the environment regarding radiation protection was so far reduced to the concept: if man is protected the environment is protected well enough. This was derived from the radiosensitivity curve, according to which highly developed organisms are more sensible to radiation than less highly developed. ICRP publication 103 put this simple concept in question. Even before, ICRP set up a committee to discuss this theme. End of 2012 ICRP released a new concept of environmental protection regarding different exposure situations and brought it up for discussion in the internet. This concept is based on Reference Animals and Plants (RAPs) and analogous to the concept of the protection for man. The exposure for representative organisms regarding ionizing radiation shall be estimated and compared with Derived Consideration Reference Levels (DCRLs). If the DCRLs are reached or exceeded there is a need to react. This concept raises several questions. (orig.)

  10. Report on radiation protection in Croatia

    International Nuclear Information System (INIS)

    Dragan, K.; Svilicic, N.; Novakovic, M.; Franic, Z.

    2001-01-01

    The Ministry of Health in the Republic of Croatia is in charge of radiation protection, and the new Ionizing Radiation Protection Act defines the responsibilities of the different organizations and institutions. The report explains the existing national system of notification and registration in Croatia and some of the main provisions of the above referred Act. Reference is made to the national provisions for the management of disused sources, recovery or control of orphan sources, and to the national inventory of radiation sources in the country with the data collected during 1998 and 1999. (author)

  11. Radiation protection in the application of ionizing radiation in industry

    International Nuclear Information System (INIS)

    Mohamad Yusof Mohamad Ali

    1987-01-01

    There is a substantial increase in the use of ionizing radiation in industry throughout the country especially in the last five years or so. With this growth in the number of users and activity of sources used, and together with the introduction of the new Atomic Energy Licensing Act (AELA) in 1984, the question of radiation safety and protection of workers and members of the public in general, can no longer be taken lightly. It has to be dealt with effectively. In this paper, a general discussion and clarification on certain practical aspects of radiation protection as recommended by the International Atomic Energy Agency (IAEA) is presented. Amongst the topics chosen are those on area monitoring, personnel monitoring, leak testing of sealed sources and training of personnel. Also presented in the paper is a brief discussion about UTN's experience in giving out radiation protection services to various agencies throughout the country. (author)

  12. Radiation education versus 'radio-phobia' - public perception of radiation

    International Nuclear Information System (INIS)

    Goraczko, W.; Latek, S.

    1999-01-01

    In this article the author presents the basis and reasons of the public radio-phobia in Poland. He mentions about people mentality historically based the 'cold war' and Soviet's military and technologically domination in this part of Europe. Besides of the historical and sociological sources he pays attention on a few aspects, which - in his opinion - intensified the negative public responses: Chernobyl catastrophe, the coal-lobby influences, the political parties (not only 'green') games during election time, existing of old conventional coal power stations, accessibility of own cheap coal, cost of transformation from communistic to free-market economy, low-level of public pro-ecology thinking and so on. On the other hand the author describes some non-realistic attitudes of society - for example - they accept nuclear medicine while do not agree to develop nuclear power engineering. Finally he presents conclusions, which can change public perception of radiation. (author)

  13. Current trends in radiation protection in Egypt. Vol. 1

    International Nuclear Information System (INIS)

    Gomma, M.A.

    1996-01-01

    The treatise presents the development of radiation protection in egypt over the past four decades. The contents will include a historical synopsis, and the current state of art regarding competent authorities, the hierarchy involved, and the respective responsibilities. The recent publications of the international trends in radiation protection are also mentioned. The efforts made towards the implementation of the new recommendations on radiation protection, and updating of the radiation protection legislations are also discussed. The 1994 international safety standards, and the collective opinion of the committee on radiation protection and public health (CRPPH) of the organization for economic Co-operation and development of the Nuclear energy agency OECD/NEA are also summarized

  14. Current trends in radiation protection in Egypt. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Gomma, M A [Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The treatise presents the development of radiation protection in egypt over the past four decades. The contents will include a historical synopsis, and the current state of art regarding competent authorities, the hierarchy involved, and the respective responsibilities. The recent publications of the international trends in radiation protection are also mentioned. The efforts made towards the implementation of the new recommendations on radiation protection, and updating of the radiation protection legislations are also discussed. The 1994 international safety standards, and the collective opinion of the committee on radiation protection and public health (CRPPH) of the organization for economic Co-operation and development of the Nuclear energy agency OECD/NEA are also summarized.

  15. Radiation Protection Decree 27.9.1957/328

    International Nuclear Information System (INIS)

    1957-01-01

    This Decree as amended was made under the Radiation Protection Act 1957 and deals with the protection of workers against ionizing radiation. It specifies the licensing procedure required for possession, use, trade in, export and import of radioactive materials and equipment. (NEA) [fr

  16. IRPA Regional Congress on Radiation Protection in Central Europe

    International Nuclear Information System (INIS)

    2003-01-01

    The Congress proceedings included 93 papers. The IRPA Congress materials deals with progress the various IRPA initiatives to implement new radiation protection concepts. In accordance to this actual trends the main topics of the congress are 'Clearance levels and material release' and 'Environmental impact assessment of workplaces resp. facilities with radiation sources'. Papers and posters in all traditional radiation protection subjects (general aspects, biological effects of radiation, radiation protection in medicine, dosimetry, instrumentation, quality assurance)

  17. IRPA Regional Congress on Radiation Protection in Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The Congress proceedings included 93 papers. The IRPA Congress materials deals with progress the various IRPA initiatives to implement new radiation protection concepts. In accordance to this actual trends the main topics of the congress are 'Clearance levels and material release' and 'Environmental impact assessment of workplaces resp. facilities with radiation sources'. Papers and posters in all traditional radiation protection subjects (general aspects, biological effects of radiation, radiation protection in medicine, dosimetry, instrumentation, quality assurance)

  18. XXXIX Days of Radiation Protection. Proceedings of Presentations and Posters

    International Nuclear Information System (INIS)

    2018-01-01

    The publication has been set up as a proceedings of presented presentations and posters on the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 55 presentations and posters are included. The Conference consists of following sections: (I) Radiation protection, consequences of implementation of the EU2013/59 directive in the Czech Republic and the Slovak Republic); (II) Radiation protection in the application of ionizing radiation in medicine; (III) Dosimetry and metrology of external and internal irradiation; (IV) Natural sources of ionizing radiation, national radon programs; (V) Nuclear energy, the concept of decommissioning of nuclear power plants in terms of radiation protection; (VI) Use of standards of radiation protection in emergency management; (VII) Biological effects of radiation and estimation of irradiation risk.

  19. Training program in radiation protection: implantation in a radiation oncology department

    International Nuclear Information System (INIS)

    Chretien, Mario; Morrier, Janelle; Cote, Carl; Lavallee, Marie C.

    2008-01-01

    Full text: Purpose: To introduce the radiation protection training program implemented in the radiation oncology department of the Hotel-Dieu de Quebec. This program seeks to provide an adequate training for all the clinic workers and to fulfill Canadian Nuclear Safety Commission's (CNSC) legislations. Materials and Methods: The radiation protection training program implemented is based on the use of five different education modalities: 1) Oral presentations, when the objective of the formation is to inform a large number of persons about general topics; 2) Periodic journals are published bimonthly and distributed to members of the department. They aim to answer frequently asked questions on the radiation safety domain. Each journal contains one main subject which is vulgarized and short notices, these later added to inform the readers about the departmental news and developments in radiation safety; 3) Electronic self-training presentations are divided into several units. Topics, durations, complexity and evaluations are adapted for different worker groups; 4) Posters are strategically displayed in the department in order to be read by all the radiation oncology employees, even those who are not specialized in the radiation protection area; 5) Simulations are organized for specialised workers to practice and to develop their skills in radiation protection situations as emergencies. A registration method was developed to record all training performed by each member of the department. Results: The training program implemented follows the CNSC recommendations. It allows about 150 members of the department to receive proper radiation safety training. The oral presentations allow an interaction between the trainer and the workers. The periodic journals are simple to write while ensuring continuous training. They are also easy to read and to understand. The e-learning units and their associated evaluations can be done at any time and everywhere in the department. The

  20. Standard Guide for Radiation Protection Program for Decommissioning Operations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  1. Radiation protection for human population

    International Nuclear Information System (INIS)

    Kenigsberg, Ya.Eh.; Bogdevich, I.M.; Rolevich, I.V.; Sharovarov, G.A.; Skurat, V.V.

    1997-01-01

    Are given the results of researches carried out in Belarus in 1996 on the following directions: study of features of formation of the population irradiation doze; definition of collective irradiation dozes of the population of Belarus for 10 years after the Chernobyl accident and forecast of risk of radiation induced diseases; study of influence of the radioactive contamination on agricultural ecosystems; development of technologies of manufacture on the contaminated soils of plant and cattle-breeding production and food products with the permissible contents of radionuclides in according to the requirements of radiation protection; development and perfection of complex technologies, ways and means of decontamination, processing and burial of radioactive wastes; development and substantiation of actions for increase of radiation security of the population of Belarus; development of combined system of an estimation on problems of radiation protection of the population living on contaminated territories

  2. Future issues in radiation protection: a Canadian perspective

    International Nuclear Information System (INIS)

    Haynes, M.J.

    1993-01-01

    Radiation protection has always been a key effectiveness area in Ontario Hydro's nuclear power program. The overall collective and individual dose performance continues to be amongst the best in the world. However, several important issues are emerging and will continue to impact the way in which the radiation protection program is managed. These include proposed reductions in regulatory dose limits based on ICRP 60, worker and public perception of an increased level of radiation risk, an increased presence of organised labour in the formulation of radiation protection policy, our philosophy of self protection coming under challenge and the impact of heavily audited radiation protection practices and programs. Each of these issues will be discussed further in this paper. The Ontario Hydro ALARA program is briefly covered although it is considered not to be a future issue but rather a principle which has been incorporated into the design and operation of our stations for many years. (author). 10 figs

  3. Radiation protection in nuclear medicine: fundamentals and methods

    International Nuclear Information System (INIS)

    Kaul, A.; Roedler, H.D.; Freie Univ. Berlin

    1976-01-01

    Consequences for the protection of patients, protection of persons, and protection of the public are derived from the recommendations of the ICRP and the legal requirements for the handling of unsealed radioactive substances in diagnostics and therapy according to the First Radiation Protection Ordinance and its amended version, as well as from the 'guidelines for radiation protection when using radioactive substances in medicine'. (orig./LN) [de

  4. Cell death induced by ionizing radiations in human radio-resistant tumours: in-vitro and in-vivo study of mechanisms involved in its induction by different types of radiations and pharmacological modulation

    International Nuclear Information System (INIS)

    Altmeyer, Anais

    2010-01-01

    Whereas chemo-radiotherapy protocols revealed to be very efficient when taking tumours into care, the treatment of some tumours remains very limited due to their critical location or to the weak radio-sensitivity to conventional radiations. One way to work around this problem is to use high linear energy transfer radiations or hadron therapy, in combination with radio-sensitizers. This research thesis reports the assessment of radio-sensitizer effects of different molecules on human radio-resistant cell lines and more particularly the SK-Hep1 line from a hepatocellular carcinoma. In vitro studies have been performed and then in vivo studies by using fast neutron irradiation on a mice liver sample. Observations made by optic fibre confocal microscopy and transmission electronic microscopy confirmed in vitro observations: the prevailing cell death after such an irradiation is the autophagic cell death. It shows the importance of the autophagic phenomenon induced by radiations with high linear transfer energy. This could lead to new therapeutic protocols for radio-resistant cancers [fr

  5. Radiation protection training programmes Spanish approach

    International Nuclear Information System (INIS)

    Arboli, M. Marco; Suarez, M. Rodriguez; Cabrera, S. Falcon

    2002-01-01

    Radiation Protection Programmes are being considered the best way to promote safety culture and to spread and propagate European basic safety standards. It is widely accepted that training is an important tool to upgrade competence for radiation exposed workers. The Spanish Radiation Protection Education and Training Programmes provide a solid and integrated educational model, which takes into account the variety of applied fields, the different levels of responsibilities, the technological and methodological advances, as well as the international tendencies. The needs for a specialised training on Radiation Protection (RP) for exposed workers appears into the Spanish regulation in 1964. National initial training programmes are well established since 1972. Individual certifications, based on personal licences are required for exposed workers. The Spanish regulation also includes continuous and on the job RP training. The educational programmes are being continuously updating and improving. CIEMAT plays an important role in RP Spanish training, improving and modifying the previous RP courses and developing new programmes in order to complete the RP training levels. To achieve Radiation Protection objectives, new technological media for educational methods and material are taking into account. Nevertheless, Spanish RP education and training model has to be improved in some aspects. The purpose of this paper is to analyse the situation and the future needs to be considered in order to complete the RP training processes

  6. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...

  7. Comparison of Radiation Protection Training in European Countries

    International Nuclear Information System (INIS)

    Kozelj, M.

    2001-01-01

    Full text: Practice and implementation of radiation protection in European countries and in majority of other countries all over the world relies on common principles and recommendations established by international organisations. These principles and recommendations were incorporated in national legislation ensuring similar and compatible standards of protection for occupationally exposed workers and members of the public. One of the basic requirements derived from international recommendations is also formal request for training of occupationally exposed workers. The final goals of the training are defined only indirectly through standards of safety and protection. Therefore national regulation regarding radiation protection training in particular country is a result of general approach to education and training, historical circumstances, influence and importance of nuclear technology and other factors influencing health protection and national well-being in general. The result is variety of national regulations ranging from very stringent and detailed to rather general and flexible. Nevertheless, results of implemented training do not differ sufficiently to significantly affect achieved standards of radiation protection. According to available information European countries implement radiation protection training in dissimilar ways. Institutions and organisations involved, as well as form and duration of training varies from country to country. Therefore, it is not possible to determine common rules just by reviewing radiation protection training in different countries. It is the intention of this contribution to analyse and discuss available information regarding radiation protection training and point out the necessity of international co-operation in this field, especially in the sense of the future trends. (author)

  8. Cross stratum resources protection in fog-computing-based radio over fiber networks for 5G services

    Science.gov (United States)

    Guo, Shaoyong; Shao, Sujie; Wang, Yao; Yang, Hui

    2017-09-01

    In order to meet the requirement of internet of things (IoT) and 5G, the cloud radio access network is a paradigm which converges all base stations computational resources into a cloud baseband unit (BBU) pool, while the distributed radio frequency signals are collected by remote radio head (RRH). A precondition for centralized processing in the BBU pool is an interconnection fronthaul network with high capacity and low delay. However, it has become more complex and frequent in the interaction between RRH and BBU and resource scheduling among BBUs in cloud. Cloud radio over fiber network has been proposed in our previous work already. In order to overcome the complexity and latency, in this paper, we first present a novel cross stratum resources protection (CSRP) architecture in fog-computing-based radio over fiber networks (F-RoFN) for 5G services. Additionally, a cross stratum protection (CSP) scheme considering the network survivability is introduced in the proposed architecture. The CSRP with CSP scheme can effectively pull the remote processing resource locally to implement the cooperative radio resource management, enhance the responsiveness and resilience to the dynamic end-to-end 5G service demands, and globally optimize optical network, wireless and fog resources. The feasibility and efficiency of the proposed architecture with CSP scheme are verified on our software defined networking testbed in terms of service latency, transmission success rate, resource occupation rate and blocking probability.

  9. Flexibility in radiation protection legislation

    International Nuclear Information System (INIS)

    Beaver, P.F.; Gill, J.R.

    1980-01-01

    The UK approach to radiation protection legislation is described in detail. The advantages are outlined of a flexible approach whereby the objectives of the legislation are clearly identified but the means of achieving these are left open or qualified by terms such as 'where reasonably practicable'. The roles and viewpoints of management and unions in such an approach are discussed especially with respect to legislation such as the Health and Safety at Work Act. Specific topics include requirements for notification of use, criteria for controlled areas and the tasks of the radiation protection adviser. (UK)

  10. Neutron Spectrometry for Radiation Protection Purposes

    International Nuclear Information System (INIS)

    McDonald, Joseph C.

    2001-01-01

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is necessary to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here

  11. Neutron spectrometry for radiation protection purposes

    CERN Document Server

    McDonald, J C; Alberts, W G

    2002-01-01

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is advantageous to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here.

  12. Radiation protection programme for planned medical exposure situation

    International Nuclear Information System (INIS)

    Hanciles, Milford

    2016-04-01

    Radiation protection programme for planned medical exposure situation which involved diagnostic and interventional radiology was discussed. The radiation protection programme (RPP) should reflect the management’s commitment to radiation protection and safety through the management structure, policies, procedures and organizational arrangement commensurate with the nature and extent of the risk. Registrants and licensees should use the RPP as a tool for the development of a safety culture in diagnostic and interventional radiology departments .Recommendations are provided which when implemented in the education and training of radiographers, referral physician and all those involved in the use of ionizing radiation for diagnosis purposes will improve protection and safety of the occupationally exposed worker, the patient, the public and the environment. (au)

  13. Radiation protection for nurses

    Energy Technology Data Exchange (ETDEWEB)

    Mould, R F

    1978-01-01

    Various aspects of radiation protection relevant to nurses are presented. The different radioisotopes used in internal radiotherapy and scintiscanning techniques and any necessary precautions which should be observed when nursing these patients are described. General information is also given on nuclear and atomic terminology, the physical half-life of radioisotopes, radiation dose as a function of distance, shielding, film badges and the maximum permissible dose.

  14. Using computer-based training to facilitate radiation protection review

    International Nuclear Information System (INIS)

    Abercrombie, J.S.; Copenhaver, E.D.

    1989-01-01

    In a national laboratory setting, it is necessary to provide radiation protection overview and training to diverse parts of the laboratory population. This includes employees at research reactors, accelerators, waste facilities, radiochemical isotope processing, and analytical laboratories, among others. In addition, our own radiation protection and monitoring staffs must be trained. To assist in the implementation of this full range of training, ORNL has purchased prepackaged computer-based training in health physics and technical mathematics with training modules that can be selected from many topics. By selection of specific modules, appropriate radiation protection review packages can be determined to meet many individual program needs. Because our radiation protection personnel must have some previous radiation protection experience or the equivalent of an associate's degree in radiation protection for entry level, the computer-based training will serve primarily as review of major principles. Others may need very specific prior training to make the computer-based training effective in their work situations. 4 refs

  15. A critical review of the system of radiation protection

    International Nuclear Information System (INIS)

    2000-01-01

    Our modern, information society is increasingly interested in transparency and participation in many aspects of government, and this is particularly true in areas involving public health and environmental protection. Radiation protection is no exception to this trend. Scientific rationale that was once sufficient to explain radiation protection theory and practice is no longer adequate. The need to address and communicate theory, practice and the decision-making process to a wider audience has given rise to numerous debates and led the radiation protection community to revisit the framework of the system of radiation protection. The very fundamentals of the system of radiation protection continue to be questioned in a healthy fashion, and many aspects have been identified which could better serve stakeholders given some additional thought in the light of modern societal needs. This report is the summary of the NEA's first reflections in this area, and describes those aspects of the current international system of radiation protection that could be improved. Suggested directions for improvement are provided. (author)

  16. Radio galaxies radiation transfer, dynamics, stability and evolution of a synchrotron plasmon

    CERN Document Server

    Pacholczyk, A G

    1977-01-01

    Radio Galaxies: Radiation Transfer, Dynamics, Stability and Evolution of a Synchrotron Plasmon deals with the physics of a region in space containing magnetic field and thermal and relativistic particles (a plasmon). The synchrotron emission and absorption of this region are discussed, along with the properties of its spectrum; its linear and circular polarization; transfer of radiation through such a region; its dynamics and expansion; and interaction with external medium.Comprised of eight chapters, this volume explores the stability, turbulence, and acceleration of particles in a synchrotro

  17. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    Fuente Puch, A.E. de la

    2013-01-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  18. CERN radiation protection (RP) calibration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Fabio

    2016-04-14

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation

  19. Assuring the quality of practical radiation protection

    International Nuclear Information System (INIS)

    Neuburger, E.; Schroeder, H.J.

    1993-01-01

    There is no possibility in Germany to serve an apprenticeship in practical radiation protection in nuclear facilities. However, the scope of knowledge required for such activities is defined in a binding 'Directive about Ensuring the Knowledge Required in Persons otherwise Engaged in the Operation of Nuclear Power Plants'. That Directive by far exceeds the scope, in terms of safety, normally applied to a vocation or activity. The Directive implicitly contains three important provisions: Plant operators must ensure that radiation protection workers have all the knowledge they need to do their job safely; that radiation protection workers are autonomous, within certain limits, as a consequence of the depth of knowledge they have; that radiation protection workers are given formal advanced training possibilities. An examination to be taken by radiation protection workers before a Chamber of Industry and Commerce was introduced in 1982 in order to make available personnel trained in the whole range of possible activities as defined in the Directive referred to above. However, persons who have passed the exam before a Chamber of Commerce and Industry no longer automatically fulfill the criteria under the Directive after three years, but must undergo advanced training in a formal program. (orig.) [de

  20. A guide to practical radiation protection in medicine. X-Ray Ordinance. Radiation Protection Ordinance. Practice-oriented hints, comments, text compilation

    International Nuclear Information System (INIS)

    Fiebich, M.; Nischelsky, J.E.; Pfeiff, H.; Westermann, K.

    2003-01-01

    This loose-leaf collection has been compiled for users who have to implement the X-ray Ordinance and the Radiation Protection Ordinance at their place of work. It presents all acts, ordinances, safety guides, regulations and recommendations of relevance in connection with the above two ordinances, as well as practical instructions and the full text of technical codes. Radiation protection officers and other persons in charge of radiation protection will find the references, information and advice needed to solve problems encountered. (orig.) [de