WorldWideScience

Sample records for radiation protection professionals

  1. Radiation protection and certification of health professionals in Brazil

    International Nuclear Information System (INIS)

    Luz, C.P.V. Castro; Sá, L.V.; Delgado, J.U.

    2017-01-01

    Radiation protection has three pillars: justification, optimization and dose limitation. The safe use of ionizing radiation is established by the dose limits resulting from exposure of the public and worker, justification and optimization for medical exposures. In Brazil, there are at least 200,000 professionals working in medical facilities involving the use of ionizing radiation. There are standards of radiation protection that establish the obligation of performance of professionals certified in the facilities through criteria pre-established in Specific Norms. Certification in radiation protection assesses the skills, knowledge and skills of professionals. A detailed research, classification and analysis of the requirements required by the regulatory body for professional performance in this area was carried out, as well as the skills and abilities required by the radiation protection standards in force in the country. The results obtained demonstrated that the certification process of these professionals aims at higher quality and optimization of the medical procedures performed. The direct beneficiaries of this process would be practitioners themselves and patients of medical practices involving the use of ionizing radiations. Certifying health care professionals in radiation protection would meet the demand for national standards and that require a performance control of those involved in medical treatments using ionizing radiations

  2. IAEA regional basic professional training on radiation protection

    International Nuclear Information System (INIS)

    1998-01-01

    This book contains the manuscripts of lectures of the Basic Professional Training Course on Radiation Protection which was organized and prepared on the basis of the standard syllabus put together in accordance with the recommendations of the International Basic safety standards for radiation protection against ionizing radiation and for safety of radiation sources (BSS). The course was intended to meet the educational and initial training requirements of personnel working in this field. The course is aimed at workers of a graduate level who are called on to take up position in the radiation protection field and who might someday become trainers in their home countries and institutions. Papers relevant to INIS are indexed separately

  3. Evaluation of radiation protection educational level of professional exposed workers

    International Nuclear Information System (INIS)

    Marinkovic, O.; Krstev, S.; Jovanovic, S.

    2006-01-01

    Full text: Serbia and Montenegro legislation concerning with radiation protection was upgrading after publication ICRP- 60 and B.S.S., No.115. Present Law on the Protection against Ionizing Radiation is in force from 1996. Among quite new issues in radiation protection regulations there was article relate to obligatory refresher training. Due to adverse political and economic situation through many years radiation protection regulations were not fulfill completely. The aim of this investigation was to get real view to education level of professional exposed workers. In Serbia and Montenegro the most of ionizing radiation sources are in medical use and the most exposed workers are radiographers and radiologists. The test was passed by 200 radiographers and 50 radiologists. Main groups of questions were: Radiation protection and safety; difference between safety and security; legislation: law and regulations; incidents, accidents and operational failures: recording, learning. Usually, knowledge from school pales. New quantities (as ambient and personal dose equivalent) are mostly unknown. It is easier to understand the real difference between safety and security than to understand linguistic differences. Discussing regulations workers are more interesting in syndicate regulations than radiation protection ones. Operational failures and incidents are hidden. Better to say: nobody dare to speak about them. The results imposed conclusion that regulatory body has to pay more attention to upraise safety culture and radiation protection education level of professional exposed workers. (authors)

  4. The recognition of radiation protection training as a professional specialty

    International Nuclear Information System (INIS)

    Touzet, R. E.

    2003-01-01

    After Chernobyl accident, the radiation protection training was recognized as a professional specialty. To improve this training we focussed the project in 3 points: - The recognition of radiation protective in the legislation. - Stablishment of minimum programs - Different categories: nuclear facilities, radioisotopes and radiopharmaceuticals

  5. Professional radiation protection societies and the international organizations – exploiting the synergies

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, Phil

    2013-07-01

    Radiation protection covers many disciplines from science through philosophy to law, and interacts with many human activities and endeavors. Professional societies for radiation protection were established and evolved throughout the second half of the twentieth century in many countries, and presently represent more than twenty thousand professionals working in more than fifty countries. During the same period a number of international organizations were established, some devoted to radiation safety, others with a role to play in radiation safety; such organizations being either independent non-governmental organizations or intergovernmental organizations of both regional and international dimensions. The national, regional and international radiation protection societies and associations have become the vehicle to provide this conduit from the profession to the international organizations. This is achieved by IRPA having representation within the relevant committees of the various international bodies, such as the Radiation Safety Standards Committee (RASSC) of the IAEA. At a national level radiation protection professionals can gain access to all international developments in radiation protection through the national societies and their interactions with IRPA and also as individual members of IRPA. The possibility to provide consolidated comment and feedback to the international organizations through national societies provides excellent opportunities for societies to organize national workshops and discussion platforms on all important areas of radiation protection.

  6. Knowledge in Radiation Protection: a Survey of Professionals in Medical Imaging, Radiation Therapy and Nuclear Medicine Units in Yaounde

    International Nuclear Information System (INIS)

    Ongolo-Zogo, P.; Nguehouo, M.B.; Yomi, J.; Nko'o Amven, S.

    2013-01-01

    Medical use of ionizing radiation is now the most common radiation source of the population at the global level. The knowledge and practices of health professionals working with X-rays determine the level and quality of implementation of internationally and nationally recommended measures for radiation protection of patients and workers. The level of implementation and enforcement of international recommendations in African countries is an issue of concern due to weak laws and regulations and regulatory bodies. We report the results of a cross-sectional survey of health professionals working with ionizing radiation in Yaounde, the capital city of Cameroon. More than 50% of these professionals have a moderate level of knowledge of the norms and principles of radiation protection and more than 80% have never attended a continuing professional development workshop on radiation protection. (authors)

  7. IRPA's contribution to E and T activities for radiation protection professionals

    International Nuclear Information System (INIS)

    Gallego, E.; Hefner, A.

    2009-01-01

    The International Radiation Protection Association (IRPA) promotes excellence in the practice of radiation protection through national and regional Associate Societies for radiation protection professionals. IRPA has recently prepared and E and T Plan structured around three main lines: the cooperation with international and regional organizations dealing with E and T in Radiation Protection; the internal stimulation of E and T by organizing discussion forums during IRPA Congresses; and the stimulation and support to the organization of E and T activities either by IRPA or by its Associate Societies. The main innovations are in the possibility of undertaking common activities by two or more Associate Societies; the promotion of E and T networks sharing language or regional proximity; and the emergence of activities to attract young generations to the profession. (authors)

  8. Views from the japanese nuclear industry and radiation protection professionals on the draft ICRP recommendations

    International Nuclear Information System (INIS)

    Yonekura, Y.; Choi, H.S.; Muto, S.; Oda, K.; Ishiguchi, T.

    2007-01-01

    The views of the Japanese nuclear industry, radiation protection professionals, and medical professionals on the concepts of the draft recommendations were presented. Specific concerns and suggestions were expressed in each of these fields based on practical considerations and experiences in operational radiation protection. It was noted that there is no need to complicate the current system, in particular without effectively expressed and rational reasoning. However, in general, speakers and participants in these discussions showed an understanding of ICRP publications. (authors)

  9. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  10. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  11. Stablishment and maintenance of professional recognition in radiation protection

    International Nuclear Information System (INIS)

    Masse, F.X.

    1994-01-01

    Recognition of qualified experts in radiation protection is an issue IRPA has been concerned with from its inception. It has long been known that the recognition mechanism differs widely throughout the world community and IRPA Associated Societies have each dealt with the needs of their members in this regard in their own way. Some unification of the recognition of qualified radiation protection experts was first through to be important with the organization of the Commission of the European Communities, anticipating the need for such expertise to be able to move freely within the EC states. A number of attempts have been made to determine the feasibility of such standardization by first inter comparing the existing systems internationally. Such intercomparisons have only verified the wide diversity of existing recognition systems, confirming the difficulty that would be associated with any standardization attempt. We are therefore shifting our focus to the issue of professional education and training as a means of gradual standardization in the profession. (Author)

  12. New infrastructures for training in radiation protection

    International Nuclear Information System (INIS)

    Marco, M.; Rodriguez, M.; Van der Steen, J.

    2007-01-01

    In this work, an analysis of the new infrastructure used in the radiation protection training and professional education, which is developed nowadays, is carried out. CIEMAT has been making many efforts in the education and training of professionals at all levels, for years. At present CIEMAT is developing educational activities in radiation protection general courses and professionals updating courses. The newest strategies for the radiation protection learning are developing in collaboration with professional societies. These try to encourage the technology transference, the collaboration between the actors involved with the radiation protection and the new information technology implementation. (Author) 11 refs

  13. Comments to the German society's for radiation protection (Gesellschaft fur Strahlenschutz) proposed principles for radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    2002-01-01

    The German Society for Radiation Protection (in German Gesellschaft fur Strahlenschutz) is a separate society for radiation protection in Germany in addition to the leading society named Association of German and Swiss Radiation Protection Specialists (in German Fachverband fur Strahlenschutz). The Society is an international professional society. There are several hundreds members of the German Society for Radiation Protection. The German Society for Radiation Protection is not a member of IRPA (the International Radiation Protection Society). The IRPA member is the Association of German and Swiss Radiation Protection Specialists. According to information given on the web site of the Society for Radiation Protection (www.gfstrahlenschutz.de) the Society was founded in 1990 because in the opinion of the founding members the older professional societies and associations have not adequately considered and implemented the present knowledge of radiation risks and radiation protection. In accordance with its statutes the society pursues besides other aims the best possible protection of humans and the environment from the detrimental action of ionising and non-ionising radiation. The dealing with ionising and non-ionising radiation can according to the Society only be justified on the basis of biological and medical state of the art knowledge

  14. Development of a radiation protection training system and professional skills model in a multinational oil and gas industry

    International Nuclear Information System (INIS)

    Molteni, A.; Cerri, P.; Fresca Fantoni, R.

    2010-01-01

    The oil and gas industry makes extensive use of radioactive sources potentially dangerous to human health and to the environment if not properly controlled, including: industrial radiography, radioactive gauges, well logging activities, use of radiotracers. In addition, the accumulation of natural radionuclides (T.E.N.O.R.M.) may occur in the Oil and Gas extraction and treatment plants. Eni S.p.A. operates in more than 70 countries, with a staff of 79000 employees, in all climates and environments, including the most arduous conditions, and is continuously challenged to achieve high efficiency of operation while maintaining a high standard of safety, including the radiation protection aspects. Thus, in order to maintain the control over occupational exposures to radiation, to protect the public and the environment, and in order to deal with local rules and authorities, it has been developed a Radiation Protection Professional Model including three different roles (Radiation Protection Management, Radiation Protection Coordination and Operational Radiation Protection) that could be associated with the corresponding functions: Radiation Protection Expert, Radiation Protection Advisor, Radiation Protection Specialist. The Professional Model is a global Eni tool devoted to the know-how and the development of the human resources, including health, safety and environmental aspects, through the identification of detailed skills and knowledge. In order to provide the required knowledge to Eni workers all over the world, it has been developed a programme for education and training in radiation safety in collaboration with Eni Corporate University, the Eni company that manages orientation, recruitment, selection, training and Knowledge Management. Different training courses are organized to provide the training both for the Radiation Protection Coordination role (Radiation Protection Advisor course) and for the Operational Radiation Protection role (Radiation Protection

  15. Development of a radiation protection training system and professional skills model in a multinational oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Molteni, A.; Cerri, P.; Fresca Fantoni, R. [ENI S.P.A. exploration and production division, Radiation Protection Department, Via Emilia 1, 20097 San Donato Milanese (Italy)

    2010-07-01

    The oil and gas industry makes extensive use of radioactive sources potentially dangerous to human health and to the environment if not properly controlled, including: industrial radiography, radioactive gauges, well logging activities, use of radiotracers. In addition, the accumulation of natural radionuclides (T.E.N.O.R.M.) may occur in the Oil and Gas extraction and treatment plants. Eni S.p.A. operates in more than 70 countries, with a staff of 79000 employees, in all climates and environments, including the most arduous conditions, and is continuously challenged to achieve high efficiency of operation while maintaining a high standard of safety, including the radiation protection aspects. Thus, in order to maintain the control over occupational exposures to radiation, to protect the public and the environment, and in order to deal with local rules and authorities, it has been developed a Radiation Protection Professional Model including three different roles (Radiation Protection Management, Radiation Protection Coordination and Operational Radiation Protection) that could be associated with the corresponding functions: Radiation Protection Expert, Radiation Protection Advisor, Radiation Protection Specialist. The Professional Model is a global Eni tool devoted to the know-how and the development of the human resources, including health, safety and environmental aspects, through the identification of detailed skills and knowledge. In order to provide the required knowledge to Eni workers all over the world, it has been developed a programme for education and training in radiation safety in collaboration with Eni Corporate University, the Eni company that manages orientation, recruitment, selection, training and Knowledge Management. Different training courses are organized to provide the training both for the Radiation Protection Coordination role (Radiation Protection Advisor course) and for the Operational Radiation Protection role (Radiation Protection

  16. Greetings from Austrian Radiation Protection Association

    International Nuclear Information System (INIS)

    Hajek, M.; Brandl, A.

    2015-01-01

    Austrian Radiation Protection Association (OVS) share with others a long-standing tradition of common endeavours and close collaboration. We have been and are able to influence the European radiation protection environment and IRPA initiatives and policies. We are intrigued by the breadth and comprehensive nature of the symposium programme, covering the most important sub-fields in our profession, and spanning topics from radiation dosimetry to radiobiology, from instrumentation and measurement to radioecology, and from radiation protection for workers and in medicine to our professional responsibilities towards the general public. These topics are timeless and current, providing testimony to the fact that the science of radiation protection is not exhausted. Novel applications of ionizing and non-ionizing radiation, including new modalities in the fields of medical therapy and diagnosis, a resurgence of nuclear energy generation in some parts of the globe, combined with increased efforts for decontamination and decommissioning of existing sites and facilities, they are all attest to the continued need for further research and our professional input and discussion. The national radiation protection associations will have a role to play in both, the advocacy of increased efforts to educate and train our future professionals and the retention of those professionals in our field.

  17. Activities of Moroccan Radiation Protection Association

    International Nuclear Information System (INIS)

    Choukri, A.

    2010-01-01

    Encourage activities and information exchange in the field of radiation protection and related areas; Assist in informing both the public and the professionals on the problems and requirements related to radiation protection for the protection of man and the environment; Promote professional training in radiation protection. The use of nuclear technology in medicine, agriculture and industry is very advanced in Morocco. This technological progress has been accompanied by fairly detailed legislation and significant involvement on the part of Morocco in international conventions and agreements

  18. Second Professional Specialization in Radiological Protection in Peru

    International Nuclear Information System (INIS)

    Medina-Gironzini, E.

    2004-01-01

    Considering that professionals with studies, training and experience in Radiological Protection as a Second Professional Specialization must be recognized, the Peruvian Institute of Nuclear Energy (IPEN), which is the institution responsible for the promotion and control of ionizing radiations in the country, has sign a specific agreement with the Universidad Nacional Mayor de San Marcos, in order to develop these courses. They are based on the content of the Post Graduate Course on Radiological Protection and Nuclear Safety of the Universidad de Buenos Aires, in Argentina, where more than 360 people from 27 different countries have been trained in the last 20 years. People who have a professional degree in Sciences or Engineering, and who fulfill the requirements demanded by the University, study this Second Professional Specialization in Radiological Protection. The studies last 2 years and the courses cover the following subjects: Nuclear Physics, Basic Mathematics, Basic Biology, Radiation Sources, Interaction between Radiation and Matter, Radiation Detection and Measurement, Biological effects of ionizing radiations, Radiological protection in the use of radiations in industry and medicine, Regulatory aspects, and nuclear safety - radiological protection interface. IPEN has taken the responsibility to carry out these studies due to its experience in the organization, together with different Universities, of six Masters in Nuclear Energy, four Masters in Medical Physics, one Master in Nuclear Physics, one Master in Nuclear Chemistry, and two Specialization in Nuclear Medicine. For this purpose, IPEN has the Superior Center of Nuclear Studies (CSEN), which has trained more than 2200 people in radiological protection in more than 30 years. CSEN is the first center in the country to train people in the area of nuclear energy and radiological protection. It has the best staff of professors with a both a great education and professional experience, as well as

  19. Second Professional Specialization in Radiological Protection in Peru

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Gironzini, E.

    2004-07-01

    Considering that professionals with studies, training and experience in Radiological Protection as a Second Professional Specialization must be recognized, the Peruvian Institute of Nuclear Energy (IPEN), which is the institution responsible for the promotion and control of ionizing radiations in the country, has sign a specific agreement with the Universidad Nacional Mayor de San Marcos, in order to develop these courses. They are based on the content of the Post Graduate Course on Radiological Protection and Nuclear Safety of the Universidad de Buenos Aires, in Argentina, where more than 360 people from 27 different countries have been trained in the last 20 years. People who have a professional degree in Sciences or Engineering, and who fulfill the requirements demanded by the University, study this Second Professional Specialization in Radiological Protection. The studies last 2 years and the courses cover the following subjects: Nuclear Physics, Basic Mathematics, Basic Biology, Radiation Sources, Interaction between Radiation and Matter, Radiation Detection and Measurement, Biological effects of ionizing radiations, Radiological protection in the use of radiations in industry and medicine, Regulatory aspects, and nuclear safety - radiological protection interface. IPEN has taken the responsibility to carry out these studies due to its experience in the organization, together with different Universities, of six Masters in Nuclear Energy, four Masters in Medical Physics, one Master in Nuclear Physics, one Master in Nuclear Chemistry, and two Specialization in Nuclear Medicine. For this purpose, IPEN has the Superior Center of Nuclear Studies (CSEN), which has trained more than 2200 people in radiological protection in more than 30 years. CSEN is the first center in the country to train people in the area of nuclear energy and radiological protection. It has the best staff of professors with a both a great education and professional experience, as well as

  20. On ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    1996-01-01

    From an ethical viewpoint the author surveys existing international radiation protection recommendations and standards. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the author discusses ethical thinking on seven key issues related to radiation protection and ethics. (author)

  1. Strategies for engaging with future radiation protection professionals: a public outreach case study

    International Nuclear Information System (INIS)

    Cole, P; Gornall, B T; Wood, M D; Whitcher, R; Bannon, A; Bloomer, S; Hunak, S; Fear, J; Hale, H; Humphries, J; Jones, C; Matthewman, C; Matthews, A; Slater, S; Stephens, C; Stewart, J

    2015-01-01

    It is evident that there is a nuclear skills shortage within the UK, and logically it can be assumed that the shortfall extends to the radiation protection arena. Plans for nuclear new-build and the decommissioning of existing nuclear sites will require many more people with radiological knowledge and practical competencies. This converts to a nuclear industry requirement in the order of 1000 new recruits per year over at least the next ten years, mainly as new apprentices and graduates. At the same time, the strong demand for persons with radiation protection know-how in the non-nuclear and health care sectors is unlikely to diminish.The task of filling this skills gap is a significant one and it will require a determined effort from many UK stakeholders. The Society for Radiological Protection (SRP) has adopted a strategy in recent years to help address this skills gap. The aim is to engage the interest of secondary school students in the science of radiation and inspire them to follow a career in radiation protection. This paper presents the reasoning behind this strategy and, in an ‘outreach case study’, describes the establishment of the annual SRP Schools Event. This event is becoming an important addition to the national efforts aimed at increasing the numbers of skilled UK radiation protection professionals over the forthcoming decades. (note)

  2. Perception of radiological technicians on radiation protection

    International Nuclear Information System (INIS)

    Viana, E.; Borges, L.M.; Camozzato, T.S.C.

    2017-01-01

    The objective of this study was to know the professionals' perception of radiological techniques about radiation protection in the work process in Nuclear Medicine. The research was carried out with nine professionals of the radiological techniques of two private institutions located in the South of Brazil. An interview was applied through recording and transcription. The analysis of the data took place through a thematic analysis. The professionals' perception of radiological techniques regarding the radiological protection in the work process is evidenced when professionals mention the basic rules of radiation protection: time, shielding and distance as attitudes used to minimize the exposure to ionizing radiation. However, it was verified the fragility in the knowledge about the norms and legislation of the radiological protection

  3. Assessment of the international meeting of radiation protection professionals

    International Nuclear Information System (INIS)

    Nikodemova, Denisa; Cabanekova, Helena

    2012-01-01

    The conclusions from and main agenda of the conference are summarized. The conference was divided into 8 sections, dealing with biological effects of ionizing radiation, general aspects of radiation protection, dosimetry and metrology of ionizing radiation, radiation protection problems in nuclear power plants, management of nuclear radiation emergencies, radiation load of patients and staff during medical applications of ionizing radiation (radiodiagnosis, nuclear medicine and radiation oncology), control of exposure to radiation from natural sources in the environment and at workplaces, and education in radiation protection. The programme included round-table discussions devoted to the Fukushima nuclear power plant accident, optimization of the radiation load of children in radiology, and recent advances in the radon risk countermeasures area. (orig.)

  4. Radiation protection training in Switzerland

    International Nuclear Information System (INIS)

    Pfeiffer, H.J.

    1999-01-01

    An increasing number of radiation protection experts and of professionally exposed workers is temporarily or permanently working in a country other than the one where they received their radiation protection education or training. They all face the problem and the difficulties of recognition of radiation protection training programs by other countries. For this reason the German-Swiss Radiation Protection Association (Fachverband fuer Strahlenschutz; FS) made a proposal to IRPA for an action on the mutual recognition of radiation protection education in Europe. In a first step contacts were made with two other European Associations of France and UK in order to establish a joint working group. (orig.) [de

  5. Radiation protection and certification of health professionals in Brazil; Proteção radiológica e certificação de profissionais da saúde no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Luz, C.P.V. Castro; Sá, L.V.; Delgado, J.U., E-mail: camille@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Radiation protection has three pillars: justification, optimization and dose limitation. The safe use of ionizing radiation is established by the dose limits resulting from exposure of the public and worker, justification and optimization for medical exposures. In Brazil, there are at least 200,000 professionals working in medical facilities involving the use of ionizing radiation. There are standards of radiation protection that establish the obligation of performance of professionals certified in the facilities through criteria pre-established in Specific Norms. Certification in radiation protection assesses the skills, knowledge and skills of professionals. A detailed research, classification and analysis of the requirements required by the regulatory body for professional performance in this area was carried out, as well as the skills and abilities required by the radiation protection standards in force in the country. The results obtained demonstrated that the certification process of these professionals aims at higher quality and optimization of the medical procedures performed. The direct beneficiaries of this process would be practitioners themselves and patients of medical practices involving the use of ionizing radiations. Certifying health care professionals in radiation protection would meet the demand for national standards and that require a performance control of those involved in medical treatments using ionizing radiations.

  6. Encouraging the radiation protection practice

    International Nuclear Information System (INIS)

    Silva, Natanael O.; Cunha, Paulo C.N.; Junior, Jose N.S.; Silva, Jessyca B.

    2013-01-01

    The radiological protection of workers occupationally exposed to ionizing radiation (X-ray diagnoses, Nuclear Medicine, Radiotherapy and Dental) is essential to minimize the appearance of radiation effects. The ways to reduce the potential for exposure of workers are: Time, Distance , and Shielding. The most important purpose of radiation protection is to provide safe conditions for activities involving ionizing radiation, basic safety conditions that must be observed in professional practice. The professional must have full knowledge of the subject and deepen in the revision of norms and guidelines related to radiation protection establish by the Vigilancia Sanitaria - ANVISA, and Comissao Nacional de Energia Nuclear - CNEN, Brazil. The study was conducted in a technical school for the Technical Training Course in Radiology, where the students are invited to think deeply about the radiation protection of themselves, the patients and the environment. Developed since July 2012, with the participation of 30 students, with a leading class -three teachers assisting in the development of the project . With this project there was an awareness of both students, as instructors stage accompanying the daily lives of students and their own colleagues. Following the same objective in 2013 the project continues with more adept at radioprotection

  7. Physics for radiation protection

    CERN Document Server

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  8. Communication strengths and weaknesses of radiation protection professionals in the United States and Canada

    International Nuclear Information System (INIS)

    Johnson, R.H.; Petcovic, W.L.; Alexander, R.E.

    1988-01-01

    Effective health risk communication may well determine the future of peaceful applications of nuclear technology and the social acceptance of risks from radiation in medicine, research, and industry. However, radiation protection professionals who know how to quantify risks and provide appropriate safeguards have historically encountered great difficulties in communicating their risk perspectives to the concerned public. In the United States, organisations such as the Health Physics Society and the American Nuclear Society have traditionally attributed communication difficulties to the public's lack of technical understanding. This has led to the belief that if the public could be provided sufficient information or education, they would understand radiation issues and their concerns about radiation risks would be resolved. Consequently, these national organisations have established public information programs and speaker bureaus. These programs primarily focus on presentation of technically accurate data and attempt to foster understanding of radiation by analogies with background radiation or other sources of risks commonly accepted by society. This paper shows that such public information programs can at their best reach only about 25% of the general public. These programs could greatly enhance their effectiveness by learning the different ways that radiation professionals and the general public prefer to gather data and make decisions

  9. Radiation Protection in Paediatric Radiology

    International Nuclear Information System (INIS)

    2012-01-01

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on

  10. Professional exposure of medical workers: radiation levels, radiation risk and personal dose monitoring

    International Nuclear Information System (INIS)

    Bai Guang

    2005-01-01

    The application of radiation in the field of medicine is the most active area. Due to the rapid and strong development of intervention radiology at present near 20 years, particularly, the medical workers become a popularize group which most rapid increasing and also receiving the must high of professional exposure dose. Because, inter alias, radiation protection management nag training have not fully follow up, the aware of radioactive protection and appropriate approach have tot fully meet the development and need, the professional exposure dose received by medical workers, especially those being engaged in intervention radiology, are more higher, as well as have not yet fully receiving the complete personal dose monitoring, the medical workers become the population group which should be paid the most attention to. The writer would advice in this paper that all medical workers who being received a professional radiation exposure should pay more attention to the safety and healthy they by is strengthening radiation protection and receiving complete personal dose monitoring. (authors)

  11. The role of NCRRP in education and training on radiation protection

    International Nuclear Information System (INIS)

    Chobanova, N.

    2017-01-01

    Radiological protection is in constant motion, raised by new developments and research in the medical and industrial sectors. Radiation protection and safety associated with the application of ionizing radiation depends strongly on the skills and expertise of the professionals. The International Basic Safety Standard places great emphasis on education and training for all persons engaged in activities relevant to the protection and safety. For the professionals involved the most critical aspect it is the radiation protection. NCRRP is an established research center for education and training in radiation protection. Training is conducted by expert trainers with years of experience in the field of radiation protection. NCRRP organized courses and individual training on topics related to radiation protection: enhancing the qualifications of professionals from the medical and non medical fields; specialized training in radiation protection of different groups of professionals working with ionizing radiation sources; postgraduate education in radiation protection education of PhD within existing academic programs and give guidance to Master Students. In parallel the NCRRP aims to play a role in national and international policy through participation in European programs. Such is “CONCERT European Joint Programme for the integration of Radiation Protection Research”. The NCRRP develops, publish and distribute programs, newsletters, manuals and information materials for the benefit of the society. The implementation of a coherent approach to education and training becomes crucial in a world of dynamic markets and increasing workers’ mobility. Keywords: education, training, radiation protection, NCRRP

  12. A new career path in radiation protection training. Certified power plant shift supervisor. Radiation protection

    International Nuclear Information System (INIS)

    Terbeek, Christoph

    2011-01-01

    Apart from theoretical knowledge, effective day-to-day radiation protection operations also require a certain measure of practical experience. Therefore, the professional degree of 'Certified Radiation Worker', issued by the Chamber of Industry and Commerce (CIC) Aachen, Germany, established at an early stage. In order to provide experienced radiation protection specialists with an attractive career path, POWERTECH TRAINING CENTER e.V., in co-operation with VGB PowerTech. e.V., the Paul Scherrer Institute (Switzerland) and the Swiss Atomic Energy Agency (ENSI), has devised a new power plant shift supervisor training course specialising in radiation protection. The vocational training degree called 'Certified Power Plant Shift Supervisor - Radiation Protection' is awarded after successful completion of the advanced training examination conducted by the CIC in Essen, Germany. (orig.)

  13. Ethical problems in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards.

  14. Ethical problems in radiation protection

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards

  15. Radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Brunner, H.

    1990-01-01

    Switzerland's present radiation protection regulations are based on only two paragraphs of the atomic law but have been very successful in practice. A new radiation protection law, separated from nuclear legislation and valid for all application of ionizing radiation and radioctive materials, was proposed and drafted by the Federal Commission on Radiation Protection and has now been accepted by parliament with only minor modifications. The draft of the revised regulations which also will cover all applications, should be ready for consultations next year. Both the law (which contains principles but no figures such as limits) and the regulations incorporate the latest state of ICRP recommendations and are formulated in such a way as to allow application of or quick adaptation to the new basic ICRP recommendation expected for 1991. The legislation is flexible, with a relatively low regulation density and leaves sufficient room for professional judgement on a case by case basis both for authorities and for the specialists responsible for radiation protection in practice. (orig./HSCH)

  16. The International radiation protection association (IRPA) 2010-2011 strategic plan

    International Nuclear Information System (INIS)

    Kase, K.

    2010-01-01

    The membership of IRPA consists of 46 national or regional associate societies, 58 countries and about 17,000 individual members. The goals of IRPA strategic Plan 2008-2012 are: Promote excellence in the conduct of IRPA Promote excellence in national and regional associate societies Promote excellence in radiation protection professionals IRPA is recognized by its members and stakeholders as the international voice of the radiation protection profession. The role of IRPA is to: Provide a medium for communication and advancement of radiation protection throughout the world Encourage the establishment of radiation protection societies Support international meetings Encourage international publications dedicated to radiation protection Encourage the establishment and continuous review of universally acceptable radiation protection standards and recommendations Encourage professional enhancement

  17. Croatian Radiation Protection Association: From Yugoslavia to Europe

    International Nuclear Information System (INIS)

    Krajcar Bronic, I.; Miljanic, S.; Ranogajec-Komor, M.

    2013-01-01

    On the occasion of the fifty years of organised radiation protection activities at the area known as f ormer Yugoslavia , the professional activities and achievements in this field are presented in this paper. Croatian Radiation Protection Association (CRPA, www.hdzz.hr) was founded in 1979. In 1992 it became a regular member of the International Radiation Protection Association (IRPA). The main activities of CRPA members are: scientific research, participation in professional committees, intense cooperation in professional and scientific matters with the IRPA, other international bodies and Croatian scientific and professional societies, and related administrative work. CRPA members continue to provide advice and assistance to authorities, professional societies and individuals within their fields of expertise. Nine national symposia of CRPA with international participation were organized since 1991. All presentations were published as full papers in the Proceedings. CRPA participated in the organization of all IRPA Regional Congresses in Central Europe from 1993 (Obergurgl, Austria) till 2007 (Brasov, Romania). In 2001 CRPA hosted IRPA Regional Congress in Dubrovnik, Croatia. Members of CRPA are taking part in the organization of IRPA international congresses and in the work of IRPA General Assembly. CRPA has been actively involved in the informal meetings of European radiation protection societies since 2004 and organized their 6th meeting in Zagreb in 2009.(author)

  18. Maintaining competence in radiation protection in France with the INSTN expertise

    International Nuclear Information System (INIS)

    Massiot, P.; Bruchet, H.; Jimonet, C.; Hammadi, A.; Da Silva, P.; Videcoq, J.; Perez, S.; Livolsi, P.

    2010-01-01

    One of the most important challenges in the industrial uses of ionising radiation is the implementation of efficient Radiation Protection (RP) in the occupational, public and environmental fields. All domains using ionising radiations are concerned by a sustainable Education and Training (E and T) in Radiation Protection. In a context of both the increasing demand for, and decreasing number of, radiation protection experts available in Europe, E and T is an essential aspect to reinforce the RP expertise and to enhance a radiation protection culture. Education and Training can help local skills shortages by facilitating the mobility of graduates through European recognition of their qualifications. This background taking into account, the National Institute for Nuclear Science and Technology (INSTN) within the french alternative energies and atomic energy commission (CEA) has been proposing E and T courses to several groups of trainees concerned by Radiation Protection since 1956. These courses cover different levels of E and T in Radiation Protection (High school Diploma to post-graduate education and professional training). The INSTN calls upon approximately 1,200 researchers and experts as French and foreign University Professors, engineers and experts from the industry, medical domain and regulatory agencies. At the national level, INSTN plays a pivotal role in every level of Radiation Protection Education from high school graduate to engineer level. Four types of courses have been developed by INSTN, each corresponding to a category of personnel: i) first level of general training in Radiation Protection (PNR, eight weeks), ii) the Technician Diploma in Radiation Protection (BT, four months + one months of practical work), iii) the Advanced technician Diploma (BTS, six months + two months of practical work) and iv) the Master in Radiation Protection (six months + six months of practical work). Those highly specialized theoretical and practical courses, which

  19. Radiation protection in medicine

    International Nuclear Information System (INIS)

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-01-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  20. Radiation protection in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-08-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  1. 6. national congress of radiation protection S.F.R.P. 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This congress tackles the following subjects: individual dosimetry for external irradiation, update of arrangements in the public health code relative to the radiation protection, implementation of zoning decree, regulation, radiation protection in professional area, radiation protection in ITER, non ionizing radiation, radiation protection in accident situation, biological radiation effects, radiation protection for patients, dosimetry, environmental exposure, radiation protection and radioactive waste management. (N.C.)

  2. Knowledge plus Attitude in Radiation Protection

    International Nuclear Information System (INIS)

    Velez, G. R.; Sanchez, G. D.

    2003-01-01

    Since the introduction of the Basic Safety Standards recommendations, the scope of the radiation protection was broadening. On behalf of the incorporation of radiation protection of the patient in medical exposures, the different groups of professionals involved: physicians, medical physicists, radiation protection officers, regulators, etc., have to work together. The objective of radiation protection, that is, to reduces doses from practices, to prevent potential exposures, to detect its occurrence as well as to evaluate and spread such abnormal situations, will be obtained only if it were possible to joint two basic conditions: knowledge and attitude. It should be well known the differences between the backgrounds needed to be for example, a medical physicist or an R.P.O., However, their attitude to solve an eventual problem involving radiation protection should be the same; as well as the behavior of the specialized physician and regulators, in order to add towards common goals. In this work, we show as an example the curricula contents about radiation protection of the cancer of medical physics in the Universidad Nacional de San Martin (UNSAM), and the corresponding module on medical exposures from the Post-Graduate course on Radiation Protection and Nuclear Safety, held since the 80s in Buenos Aires by the National Commission of Atomic Energy, ARN, IAEA, and the Universidad de Buenos Aires. On the other hand, we describe different attitudes which leads or could start major radiological accidents, regardless the level of knowledge in radiation protection. We conclude that the larger numbers of accidents are due to problems in the attitude than in the level of knowledge of the person involved. Consequently; we suggest emphasizing the discussion on how to generate positive attitudes in every professional involucrated, independently of its cognitive profile or level. (Author) 2 refs

  3. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    Severitt, S.; Oehm, J.; Sobetzko, T.; Kloth, M.

    2012-01-01

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  4. On the Occasion of the 50th Anniversary of Organised Radiation Protection

    International Nuclear Information System (INIS)

    Ciraj-Bjelac, O.; Kovacevic, M.; Pantelic, G.

    2013-01-01

    Radiation protection, both as a multidisciplinary scientific discipline and as an attitude, has largely contributed to the protection of man and the environment against the potential harm of ionizing radiation, allowing its beneficial and safe use. Over the past decades, almost a century, professionals active in the domain of radiation protection have immensely contributed to the development of legislation and regulations, to monitoring and control, to prediction of consequences and to the assessment of risks. This paper summarizes evolution and achievements of the radiation protection professionals in the region known as former Yugoslavia the occasion of the fifty years of organized professional activities in the area of radiation protection. The paper covers activities related to the early days of the radiation protection association brings the information about relevant activities as organization of symposia and other meetings, participation in international organizations and publishing activities of the society.(author)

  5. Current Challenges in Radiation Protection in Medicine

    International Nuclear Information System (INIS)

    KASE, K.R.

    2008-01-01

    Radiation protection professionals in medical facilities and practices are being challenged by new imaging technologies that use x-rays or radioactive materials. These include faster computerized tomography (CT) scanners, new interventional techniques that use extended fluoroscopy time, increased use of positron emission tomography (PET), and digital imaging techniques. More frequently these technologies are being fused into a single procedure, such as combined CT and PET scanning. Radiation Protection professionals are challenged to (1) be aware of developing technologies and clinical techniques, (2) analyze the potential radiation risks to patients and staff, (3) initiate necessary radiation safety training for medical staff, and (4) be involved in planning, dose measurement and optimization of the procedure to achieve appropriate dose control and ALARA

  6. Actions of radiation protection in the collection of discarded radioactive material

    International Nuclear Information System (INIS)

    Neri, E.P.M.; Silva, F.C.A. da

    2017-01-01

    Brazil has approximately 2000 radiative facilities that use radiation sources in their processes and are controlled by The Brazilian Nuclear Energy Commission - CNEN through standards, authorizations and inspections. These radioactive materials, whether in the form of waste or radioactive source, used in medical, industrial, research, etc. are sometimes discarded and found in inappropriate places, such as garbage dumps, industrial waste, streets, squares, etc. found by urban cleaning professionals without the proper knowledge of them. The work presents the radiation protection actions required for the safe collection of radioactive material to be performed by these professionals. According to the type of radioactive material the main actions of radiation protection are, among others: recognition of a radioactive material; correct use of personal protective equipment to contain possible radiation contamination; implementation of an area control etc. In order for the actions of recognition and collection of discarded radioactive material to be effective, there is a need to implement a training program in radiation protection for urban cleaning professionals

  7. European Radiation Protection Course - Basics

    International Nuclear Information System (INIS)

    Massiot, Philippe; Ammerich, Marc; Viguier, Herve; Jimonet, Christine; Bruchet, Hugues; Vivier, Alain; Bodineau, Jean-Christophe; Etard, Cecile; Metivier, Henri; Moreau, Jean-Claude; Nourredine, Abdel-Mijd

    2014-01-01

    Radiation protection is a major challenge in the industrial applications of ionising radiation, both nuclear and non-nuclear, as well as in other areas such as the medical and research domains. The overall objective of this textbook is to participate to the development of European high-quality scheme and good practices for education and training in radiation protection (RP), coming from the new Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. These ERPTS (European Radiation Protection Training Scheme) reflects the needs of the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), specifically with respect to the Directive 2013/59/Euratom in all sectors where ionising radiation are applied. To reflect the RPE training scheme, six chapters have been developed in this textbook: Radioactivity and nuclear physics; Interaction of ionising radiation with matter; Dosimetry; Biological effects of ionising radiation; Detection and measurement of ionising radiation; Uses of sources of ionising radiation. The result is a homogeneous textbook, dealing with the ERPTS learning outcomes suggested by ENETRAPII project (European Network on Education and Training in Radiological Protection II) from the 7. Framework Programme. A cyber-book is also part of the whole training material to develop the concept of 'learning more' (http://www.rpe-training.eu). The production of this first module 'basics' training material, in the combined form of a textbook plus a cyber-book as learning tools, will contribute to facilitate mutual recognition and enhanced mobility of these professionals across the European Union. (authors)

  8. Process of upgrading the radiation protection services in R. Macedonia

    International Nuclear Information System (INIS)

    Nikolovska, L.

    2007-01-01

    The utilization of radiation to be safe, reliable, and clean and environment friendly needs sufficient resources. Sufficient sources for national infrastructure could be professionals in radiation safety, laboratory and service facilities. These facilities and services are needed for intervention, calibration and intercomparison of radiation measuring equipment, personal dosimetry, environmental monitoring, and radioactive waste management. Radiological protection services need to be exercised in a manner that provides the most benefit to licenses and to society to. It should not be too little or too much; it has to be prudent, well based, equitable, and open. And it must be relevant. Based on the analyses of national situation of applications of radiation sources and national technical and professional resources, a centralised approach of radiation services positioning in the radiation legislation has been followed. By the Act, the existing services within the Republic Institute of Public Health Protection have been organized as the Radiation Protection Centre and are defined as a professional and technical service provider. The activities of Radiation Protection Centre are fulfilled through three departments: Radiation dosimetry, Radioecology and Labour medicine department. By the Act, the waste management service has to be established through National waste storage facility for low and intermediate waste. (author)

  9. Radiation Protection Elephants in the Room

    International Nuclear Information System (INIS)

    Vetter, R. J.

    2004-01-01

    As our system of radiological protection evolves, several significant issues loom within radiation protection discussions and publications. These issues influence the nature of epidemiological and radiobiological research and the establishment of radiation protection recommendations, standards, and regulations. These issues are like the proverbial e lephants in the room . They are large, and it is unwise to ignore them. This paper discusses the impact of three young elephants as they make their presence increasingly obvious: increased cancer susceptibility from early-life exposure to radiation, terrorism and fear of radiation, and patient safety. Increased cancer susceptibility from early-life exposure to radiation is emerging as a discussion topic related to the safety of computed tomography (CT) and other medical modalities. Shortly after publication of CT dose data, manufacturers were helping to reduce doses to children by increasing flexibility for adjustment of technique factors. Also, radiation epidemiological data are being used in the development of guidance on exposure to chemical carcinogens during early life. Re-emergence of public fear of radiation has been fueled by threats of radiological dispersion devises and confusing messages about personal decontamination, emergency room acceptance or rejection of contaminated victims, and environmental clean-up. Finally, several professional publications have characterized risk of medical radiation exposure in terms of patient deaths even though epidemiological data do not support such conclusions. All three of these elephants require excellent science and sophisticated data analysis to coax them from the room. Anecdotal communications that confuse the public should be avoided. These are not the only elephants in the room, but these three are making their presence increasingly obvious. This paper discusses the need for radiation protection professionals to rely on good science in the evolution of the system of

  10. The role of the international radiation protection association in development and implementation of radiation protection standards

    International Nuclear Information System (INIS)

    Metcalf, P.; Lochard, J.; Webb, G.

    2002-01-01

    The International Radiation Protection Association (IRPA) is an affiliation of national and regional professional societies. Its individual membership is approaching some 20 000 professionals from 42 societies and covering 50 countries. Its primary objective is to provide a platform for collaboration between members of its affiliate societies to further radiation protection and safety. The IRPA is mandated to promote and facilitate the establishment of radiation protection societies, support international meetings and to encourage international publications, research and education and the establishment and review of standards. Through its membership base and its observer status on bodies such as the ICRP and the safety standards committees of the IAEA, the IRPA is in a position to provide valuable input to the safety standards development process. This factor has been increasingly recognised more recently within the IRPA and the various organisations involved in the development of safety standards. This paper addresses the mechanisms that have been established to enhance the input of the IRPA into the safety standards development process and for their subsequent implementation. (author)

  11. National committee on radiation protection, 1928-1960: from professional guidelines to government regulation

    International Nuclear Information System (INIS)

    Whittemore, G.F.

    1986-01-01

    The National Committee on Radiation Protection is a private, self-perpetuating body of radiation experts founded in 1928 which, except during World War II, has established the basic guidelines for radiation safety in the United States. This dissertation examines three themes in its history from 1928 to 1960. On an intellectual level, how do scientists make judgments when called upon to perform a legal function, instead of conduct research? On an institutional level, how does a scientific committee develop when it serves a medical, industrial, and legal constituency larger than the research community of the scientist themselves? On a political level, how has the development of atomic energy influenced both the intellectual content of the radiation safety standards and the institutional form of the NCRP? Institutional and political concerns were found to play a significant role in the NCRP's intellectual work from 1928 to 1960. The time span can be divided into three periods, revealing a growing politicization of radiation safety: professional self-regulation (1928-1941), government advisory committee (1946-1954), and public controversy and increasing legislation (1954-1960). In 1959, political controversy led to the establishment of the Federal Radiation Council, a government agency which was to replace the NCRP

  12. Global view on radiation protection in medicine

    International Nuclear Information System (INIS)

    Vano, E.

    2011-01-01

    When planning good management of ionising radiation in medicine, key factors such as ensuring that health professionals work together and convincing them that radiation protection (RP) represents a substantial part of the quality management system in their clinical practice are of utmost importance. The United Nations Scientific Committee on the Effects of Atomic Radiation has decided that one of the thematic priorities will be medical radiation exposure of patients. The International Commission on Radiological Protection has recently updated the report on RP in medicine and continues to work on focused documents centred on specific areas where advice is needed. The roles of the International Atomic Energy Agency, World Health Organization and the European Commission, in the area of RP in medicine, are described in the present document. The industry, the standardisation organisations as well as many scientific and professional societies are also dedicating significant effort to radiation safety aspects in medicine. Some of the efforts and priorities contemplated in RP in medicine over the coming years are suggested. The best outcome will be accomplished when all the actors, i.e. medical doctors, other health professionals, regulators, health authorities and the industry manage to work together. (authors)

  13. Definitions, qualifications and requirements for radiation protection experts, radiation protection officers and radiation workers: results of the 2 nd EUTERP Workshop

    International Nuclear Information System (INIS)

    Draaisma, Folkert S.; Steen, Jan van der

    2008-01-01

    Full text: In Europe, a common vision for maintaining competence in radiation protection is emerging, focussing on a common denominator for qualification of radiation protection experts (RPEs) and radiation protection officers (RPOs) and for mutual recognition and mobility of these professionals across the European Union. Therefore, the European Commission, D.-G. Transport and Energy, has launched an initiative to establish a European Radiation Protection Training and Education Platform (EUTERP Platform). The objectives of the Platform can be summarised as: to facilitate the trans national access to vocational education and training; to better integrate education and training into occupational radiation protection infrastructures in the Member, Candidate and Associated States of the European Union. The Platform ensures a permanent dialogue between all involved parties by the use of its web site (www.euterp.eu), by issuing newsletters and by organising workshops. The first workshop has been held in Vilnius, 22-24 May 2007, and resulted in 8 recommendations to the European Commission, the IAEA, IRPA and national authorities. The recommendations were, a.o., dealing with: new definitions for the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), which should be used in the revision of both the EURATOM and the International BSS; developing guidance for a methodology to compare the quality of training courses and training material; developing guidance for a standardized methodology of assessing the recognition of RP professionals as a basis for future mutual recognition, based on a description of roles and duties, education, training and work experience; developing guidance for a formal recognition process of the competence of RPEs and RPOs. The second workshop will be held on 23-25 April 2008, again in Vilnius, and will specifically discuss the above-mentioned proposals for new definitions and guidance material. It is expected that the

  14. ALARA in the radiation protection training

    International Nuclear Information System (INIS)

    Nolibe, D.; Lefaure, Ch.

    1998-01-01

    This part treats especially the question of the training in radiation protection. The electro nuclear sector has given an ALARA principle culture and succeeded to sensitize each level of hierarchy, but for small industry, the research and the medical world the same method appears more difficult to use. It seems better to reinforce the importance of the competent person and to include a training in radiation protection on the initial formation in numerous professional categories. (N.C.)

  15. Radiation protection for humans and environment. 50 years competence in the professional association

    International Nuclear Information System (INIS)

    Bucher, Benno; Wilhelm, Christoph

    2016-01-01

    The conference proceedings of the IRPA (International radiation protection association) annual meeting 2016 contain the contribution of invited referents, other contributions and poster contributions concerning radiation protection in nuclear facilities, radiation protection of the public and environment, radioactive waste management, uranium mining, environmental monitoring, natural radioactivity, and radiation protection laws and regulations.

  16. Radiation Protection at Light Water Reactors

    CERN Document Server

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  17. Personnel selection and training for radiation protection and safe use of radiation sources

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    2000-01-01

    For proper implementation of the radiation protection programs in the work place, several persons with different qualifications and training are involved. Among these persons are regulatory personnel managers, operators, workers, health professional, health physics technicians, health physicists, qualified experts, and emergency personnel. The current status of education and training of these persons is discussed in order to build competence in radiation protection and the safe use of radiation sources

  18. The Charter and the Activities of the Israeli National Professional Advisory Committee on Radiation Protection

    International Nuclear Information System (INIS)

    Schlesinger, T.; Gilat, J.; Levanon, I.

    2004-01-01

    The protection of workers and the public from ionising radiation, and the control of the use of radioactive materials in Israel, are founded on basic legislation in the form of orders, acts, decrees and codes of practice. The responsibilities for licensing, inspection and enforcement are shared among several ministries, administrative authorities and professional bodies, including the Ministry of Labor and Social Affairs (MOLSA)*, the Ministry of the Environment (MOE), the Ministry of Health (MOH) and the Israel Atomic Energy Commission (IAEC)

  19. Radiation protection in hemodynamics work process: the look of the multidisciplinary team

    International Nuclear Information System (INIS)

    Borges, Laurete Medeiros; Klauberg, Daniela; Huhn, Andrea; Melo, Juliana Almeida Coelho de

    2014-01-01

    The study was conducted in a hemodynamics service of a public hospital in Florianopolis, SC, Brazil. Qualitative research with the participation of 13 professionals from a multidisciplinary team: doctors, technicians, technologists in radiology and nurses. The research material was extracted from the observations, semi-structured interviews and documentary analysis. The responses were grouped into three categories relating to: training of hemodynamic professionals and the perception of radiological protection in the work process; occupational exposure and safety of the professionals of Hemodynamics; and continuing education in hemodynamic service. Professionals are daily exposed to ionizing radiation, and for being long procedures, lead to high levels of exposure in workers. In hemodynamic services the risk of biological effects are cumulative, because radiodiagnostic procedures include issuing the higher doses of ionizing radiation in which the personnel exposure is critical. The workforce in the service researched mostly consists of technical professionals who reported little knowledge of radiation protection and ionizing radiation and that this issue was not addressed during their training. However, despite mention little knowledge about radiological protection, participants demonstrated understand the biological effects, especially with regard to pathologies caused by frequent exposure without protection to ionizing radiation. These professionals said they have no knowledge of the proper use of radiological protection equipment and the dosimeter, and that the institution does not provide all individual protective equipment required for the procedures performed in the hemodynamic service. Permanent education in hemodynamic service is very important part in the work process, though, cited by participants as little effectiveness in the institution, even when the professionals show interest in the area. Knowledge of the team providing hemodynamic service calls

  20. Survey of Radiation Protection Education and Training in Finland in 2003

    International Nuclear Information System (INIS)

    Havukainen, R.; Korpela, H.; Vaisala, S.; Piri, A.; Kettunen, E.

    2004-01-01

    The current state and need for radiation protection training in Finland have been surveyed by the Radiation and Nuclear Safety Authority STUK. The survey sought to determine whether the current requirements for radiation protection training had been met, and to promote radiation protection training. Details of the scope and quality of present radiation protection training were requested from all educational institutes and organizations providing radiation protection training. The survey covered both basic and further training, special training of radiation safety officers, and supplementary training. The questionnaire was sent to 77 educational organization units, 66 per cent of which responded. Radiation workers and radiation safety officers were asked about radiation protection knowledge and needs for additional training. The questionnaire was sent to 880 radiation users and 170 radiation safety officers, 70 per cent of whom responded. The survey covered all professional groups and fields of the use of ionizing radiation except nuclear energy. The amount of radiation protection training in basic and further (specialization) training in the same vocational or academic degree varied remarkably by educational organization. The average amounts of radiation protection included in most professional degrees met the requirements. 32 per cent of workers considered their radiation protection training inadequate for their duties, and 48 per cent had completed no supplementary training in radiation protection over the last five years. Nurses working in public sector hospitals and physicians working in health centres had the greatest need for radiation protection training. 78 per cent of radiation workers in industry felt that they had sufficient radiation protection training. Co-operation between educational organizations is necessary to harmonize radiation protection training. Guidance of the Ministry of Education (the competent authority for education) is needed in this

  1. Radiation protection in the dental profession

    International Nuclear Information System (INIS)

    Holyoak, B.; Overend, J.K.; Gill, J.R.

    1980-01-01

    A survey, conducted by the Health and Safety Executive (HSE), on the standard of radiation protection in the dental profession in the United Kingdom is described. The results are compared with UK advisory standards. The preliminary survey results were reported in the professional press and each participating dental practitioner received comments and advice concerning the basic requirements for radiation protection. The method of survey has been broadened to form the basis of inspection of dental radiography by the HSE. (H.K.)

  2. Radiation protection practices and related continuing professional education in dental radiography: A survey of practitioners in the North-east of England

    International Nuclear Information System (INIS)

    Davies, Ceri; Grange, Stuart; Trevor, Margaret M.

    2005-01-01

    Purpose: To establish the level of implementation of recommendations from the National Radiological Protection Board, relating to best radiation protection practice in dental radiography within general dental practices in the North-east of England. To survey the opinion of practitioners on the availability of related post-graduate courses in the region. Methods: A postal survey in the form of a self-reported questionnaire was mailed to all practices in the North-east of England in November 2000. The questionnaire, consisting of closed and open-ended questions, was to be completed where possible by the resident radiation protection supervisor. Results: Two hundred and sixteen practices responded to the questionnaire, a response rate of 53%. The survey revealed variation in the standards of application of best radiation protection practice. Some 23% of practitioners had not attended any post-graduate courses on radiation protection since qualifying. Post-graduate education provision on radiation protection in the region was considered insufficient by 51% of respondents. Conclusions: It is concluded that a significant proportion of practices were not making full use of opportunities to reduce dose to their patients. In addition, a small number of practices had untrained staff acting as the Radiation Protection Supervisor. A significant proportion of practitioners had not been updated in radiation protection practices within a 5-year period, and this may account for the failure to implement best radiographic practice. Over half felt that there was insufficient availability of post-graduate courses in radiation protection. The regional provision of continuing professional education in this field may need development

  3. Importance of establishing radiation protection culture in Radiology Department.

    Science.gov (United States)

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-02-28

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment.

  4. Aspects of practical radiation protection in professional and non-professional exposure in radon spas

    International Nuclear Information System (INIS)

    Steger, F.

    1986-04-01

    The radiation protection legislation is generally based on the assumption of a linear dose-response relationship for stochastic effects, and of a dose-threshold for non stochastic effects, following a recommendation of the ICRP. The linear-dose-response relationship for the low dose range - and therefore for the exposure in Radon spas - is generally accepted. The paper discusses the consequences of this assumption and suggests guidlines for the practical performance of radiation protection in such locations. (Author)

  5. Ethical codes. Fig leaf argument, ballast or cultural element for radiation protection?

    International Nuclear Information System (INIS)

    Gellermann, Rainer

    2014-01-01

    The international association for radiation protection (IRPA) adopted in May 2004 a Code of Ethics in order to allow their members to hold an adequate professional level of ethical line of action. Based on this code of ethics the professional body of radiation protection (Fachverband fuer Strahlenschutz) has developed its own ethical code and adopted in 2005.

  6. Production of multimedia textbook: ionizing radiation and radiation protection

    International Nuclear Information System (INIS)

    Hola, O.; Holy, K.

    2005-01-01

    In our contribution we want to outline our plan of actions to be carried out for the creation of the first multimedia internet textbook in Slovakia in the field of ionizing radiation and radiation protection. In particular we want to describe first steps that have been performed at its realisation. This textbook would be applicable to the full-time study as well as to distance learning at traditional universities and technical universities. It will also be usable for various forms of in-service training by e-learning. Our objective is to create a modem internet textbook in radiation protection, of which production will be co- ordinated with other European Union countries. The output of our project -the multimedia textbook -will be available to all students at our university's servers and other users will have CDs at their disposal. We propose the use of this multimedia didactic means also in various forms of the distance e-learning. The main motivation for the implementation of distance courses is the necessity to update knowledge, skills and qualification in our contemporary rapidly developing world. The distance e-learning form of education can solve also the problem with the acquisition of the professional qualifications for the work with ionizing radiation. This is the reason for usage of the mentioned textbook not only as the fundamental and unified textbook for the students of universities, but also as the study material for the civil servants responsible for radiation protection, for in-service workers and providers of the professional training. (authors)

  7. Competence in radiation protection - acquisition, maintaining, extending

    International Nuclear Information System (INIS)

    Breckow, J.; Geringer, T.; Radiation Protection Academy Seibersdorf; Haug, T.

    2007-01-01

    A survey is given on current initiatives, supranational in the EU and national in Germany and Switzerland, for education and training in radiation protection with the aim of maintaining and enlarging professional competence. Successively, individual studying possibilities and courses as well as some experiences with guidelines for professional knowledge in Germany are described. (orig.)

  8. Radiation Protection and Dosimetry An Introduction to Health Physics

    CERN Document Server

    Stabin, Michael G

    2007-01-01

    This comprehensive text provides an overview of all relevant topics in the field of radiation protection (health physics). Radiation Protection and Dosimetry serves as an essential handbook for practicing health physics professionals, and is also ideal as a teaching text for courses at the university level. The book is organized to introduce the reader to basic principles of radiation decay and interactions, to review current knowledge and historical aspects of the biological effects of radiation, and to cover important operational topics such as radiation shielding and dosimetry. In addition to presenting the most up to date treatment of the topics and references to the literature, most chapters contain numerical problems with their solutions for use in teaching or self assessment. One chapter is devoted to Environmental Health Physics, which was written in collaboration with leading professionals in the area.

  9. The competent person in radiation protection: practical radiation protection for industry and research - unsealed sources

    International Nuclear Information System (INIS)

    Bruchet, H.

    2009-01-01

    The mission of the competent person in radiation protection has been broadly developed these last years to take an essential function in firm:study of working place, delimitation of regulated areas, monitoring of exposure, relations with authorities. The competent person in radiation protection must follow a training, defined by decree and shared in two parts: a theoretical part used as compulsory subjects and a practical part specific to the different sectors of activity (research, industry, medical centers, nuclear facilities) as well as the radiation use type. This volume corresponds to the practical module devoted to the industrial and research facilities concerned by the possession of management of sealed or unsealed sources. In accordance with the regulations stipulating that this module must allow to apply the theoretical knowledge to concrete situations in work. It includes eight chapters as following: radiation protection in industrial and research facilities, use of sources and associated risks, fitting out professional premises, evaluation of exposure, control of radiation protection; use of detection equipment and radioactive contamination and exposure measurement equipment, associated to methods and calculation tools; radioactive waste management; accidental or damaged situations management; methodology of working place analysis completed by the application to practical cases found in laboratories. (N.C.)

  10. Radiation Protection in Medical Physics : Proceedings of the NATO Advanced Study Institute on Radiation Protection in Medical Physics Activities

    CERN Document Server

    Lemoigne, Yves

    2011-01-01

    This book introduces the fundamental aspects of Radiation Protection in Medical Physics and covers three main themes: General Radiation Protection Principles; Radiobiology Principles; Radiation Protection in Hospital Medical Physics. Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advances in the field. Some issues specific to the individual techniques are also treated, e.g. calculation of patient dose as well as that of workers in hospital, optimisation of equipment used, shielding design of radiation facilities, radiation in oncology such as use of brachytherapy in gynecology or interventional procedures. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehensive introduction to the field as well as a reliable overview of the most recent developments.

  11. New legislative regulations for ensuring radiation protection using ionizing radiation sources in medicine

    International Nuclear Information System (INIS)

    Boehm, K.

    2018-01-01

    European Commission Directive No. 2013/59 / EURATOM laying down basic safety requirements for the provision of radiation protection regulates the provision of radiation protection for workers with radiation sources and residents in all areas of use of ionizing radiation sources. This Directive also addresses radiation protection in the use of ionizing radiation sources in medicine. The European Commission Directive regulates the requirements for radiation protection but also extends to its scope and provisions on the use of medical radiation sources (so-called m edical exposure ) in the scope of further legislation in the field of health care, which has to be amended and modified or possibly issued new. It was necessary in the preparation of the new act on radiation protection to amend simultaneously Act no. 576/2004 on the provision of health care and services related to provision of health care and Act no. 578/2004 on Health care Providers, Health care Professionals and Organizations in Health Care and to prepare a series of implementing regulations not only to the Law on Radiation Protection but also to the Laws governing the Provision of Health Care. The paper presents changes to existing legislation on radiation protection in medical radiation and new requirements for the construction and operation of health workplaces with radiation sources, the protection of the health of patients, the requirements for instrumentation used for medical radiation and radiological instrumentation tests. (authors)

  12. Operational radiation protection and radiation protection training

    International Nuclear Information System (INIS)

    Kraus, W.

    1989-01-01

    The radiation protection system in the German Democratic Republic (GDR) is reviewed. The competent authority (the SAAS) and its systems of licensing and supervision are described. Discussion covers the role of the Radiation Protection Officer, the types of radiation monitoring, medical surveillance programs and the classification of workers and work areas. Unusual occurrences in the GDR, 1963-1976, are presented and the occupational radiation protection problems at some specific types of workplaces are discussed. The GDR's system of training in radiation protection and nuclear safety is described. 5 figs., 18 tabs

  13. Developing a Radiation Protection Hub

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Nolan E [ORNL

    2017-01-01

    The WARP report issued by the NCRP study committee estimates that in ten years there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have been disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic and training communities. The goal of such a consortium would be to engage in research, education and training of the next generation of radiation protection professionals. Furthermore the consortium could bring together the strengths of different universities, national laboratory programs and other entities in a strategic manner to accomplish a multifaceted research, educational and training agenda. This vision would forge a working and funded relationship between major research universities, national labs, four-year degree institutes, technical colleges and other partners.

  14. The general principles of radiation protection and regulation

    International Nuclear Information System (INIS)

    Aurengo, A.; Cesarini, J.P.; Lecomte, J.F.; Barbier, G.; Crescini, D.; Biau, A.; Blain, A.; Bailloeuil, C.; Gonin, M.; Bergot, D.

    2003-01-01

    Seven articles constitute this chapter about the radiation protection and the regulation. Radiological risk, reduction of public exposure to ultraviolet radiations, regulation for the radon, evolution of the French legislation against the dangers of ionizing radiations, the medical follow up after the professional life, the information system to reproduce the dosimetric data of workers, proposition of a scale to classify the radiations incidents in function of their seriousness. (N.C.)

  15. Providing Radiation Protection Experts in the United Kingdom

    International Nuclear Information System (INIS)

    Partington, C.; Owen, D.

    2004-01-01

    The EEC Directive on Qualified Experts in Radiation Protection has been implemented in the United Kingdom by the Ionising Radiations Regulations 1999 (IRR99). These Regulations require Radiation Employers to appoint suitable Radiation Protection Advisers (RPA) who must be consulted in certain circumstances when starting work with, or using ionising radiations. Radiation Protection Advisers have to have a current certificate of competence and, to gain one of these, must have demonstrated their competence in one of two ways either by achieving a National Vocational Qualification in Radiation Protection Practice or by being Certificated by an Assessing Body. Assessing Bodies have to be recognised by the Health and Safety Executive, who undertake a rigorous assessment process to determine whether the proposed Assessing Body is fit to undertake RPA Assessments. By July 2003, only two such Assessing Bodies had been approved in the UK. These two Assessing Bodies are ? RPA 2000 a company established by the four leading Radiation Protection Professional Societies in the UK for assessing anyone in the UK as Radiation Protection Advisers, And ? BNFL established by BNFL to assess the competence of BNFL's own Radiation Protection Advisers. This paper will describe the standards against which Radiation Protection Advisers are assessed, the manner in which each of these two Assessing Bodies carry out the assessment process and their experience to date. The way in which Radiation Employers carry out the appointment process will also be described. Potential future developments of the Assessment Process and standards will also be discussed. (Author)

  16. Role of secondary standard dosimetry laboratory in radiation protection program

    International Nuclear Information System (INIS)

    Rahman, Sohaila; Ali, Noriah Mohd.

    2008-01-01

    Full text: The radiation dosimetry program is an important element of operational radiation protection. Dosimetry data enable workers and radiation protection professionals to evaluate and control work practices to eliminate unnecessary exposure to ionizing radiation. The usefulness of the data produced however depends on its quality and traceability. The emphasis of the global dosimetry program is focused through the IAEA/WHO network of secondary standard dosimetry laboratories (SSDLs), which aims for the determination of SI quantities through proper traceable calibration of radiation protection equipment. The responsibility of SSDL-NUCLEAR MALAYSIA to guarantee a reliable dosimetry service, which is traceable to international standards, is elucidated. It acts as the basis for harmonized occupational radiation monitoring in Malaysia.

  17. Tests for radiation protection in X-Ray mammography room for professional and non-professional exposure

    International Nuclear Information System (INIS)

    Naidenov, I.; Skocheva, A.

    2006-01-01

    Full text: Control tests for radiation protection of medical diagnostic rooms in our country are based on the guidelines to the use of x-rays in medicine and on the basic safety standards for radiation protection. The mammography room tests are not supported by basic data (such as normal conditions for testing and secondary limits) which to allow the developing of methods as the case is with the conventional x-ray rooms. The material presents and discusses over the situation of the matter with the aim to find solution of the problem. In mammography units the space distribution of the dose field of the object scattering radiation is not symmetrical, the maximum being in a direction opposite to the primary beam. Control tests were made for stray radiation in major (in the plane of beam rotation) test points in five rooms with mammography units of different producers and generation, under angles of scattering from the direction of the beam of 900 (horizontal table - 0 deg projection) and 1630 (tilt table - 730 deg projection). The results on the stray radiation show up to four times higher values in the 730 projection, the remaining conditions being the same. Normalization to the week loading used in the shielding design, like the comparison with secondary limits as published in the available norms do not give unambiguous idea. It is advisable to use this projection in control tests for radiation protection and the values shall be compared with the secondary limits of the corresponding standard loading

  18. National congress of radiation protection - Book of presentations (slides)

    International Nuclear Information System (INIS)

    2013-06-01

    This document brings together all the available presentations (slides) of the 9. French national congress of radiation protection. The congress comprised 9 tutorial sessions and 13 ordinary sessions. The tutorial sessions covered the following topics: T1 - Fukushima accident's consequences on terrestrial environment; T2 - The efficient dose: use and limitations in the industrial and medical domains; T3 - Revision of the NFC 15-160 standard relative to radiological facilities; T4 - Medical implants and low frequency electromagnetic fields; T5 - Report from the working group on radiological zoning; T6 - Incidents in medical environment; T7 - ADR: European agreement about the international road transport of dangerous goods; T8 - Cigeo project: industrial geologic disposal facility; T9 - Dose control in medical imaging: what progress since 2010? The ordinary sessions gathered fifty-nine presentations dealing with the following subjects: 1 - effects of ionising radiations on man and ecosystems; 2 - radiation protection regulation and standards; 3 - radiation protection in incident, accident and post-accident situation; 4 - radiation protection of populations and ecosystems; 5 - Radiation protection and society; 6/11 - Radiation protection of patients; 7/8 - Eye lens irradiation and dosimetry; 9 - Non-ionising radiations; 10/12 - Radiation protection in professional environments; 13 - advances in dosimetry and metrology

  19. The healing arts radiation protection guidelines

    International Nuclear Information System (INIS)

    Yaffe, M.

    1987-06-01

    The objective of these guidelines is to help the health professional render the risks associated with diagnostic radiation as low as reasonably achievable. The guidelines contain advice and recommendations, but no mandatory requirements. They assist radiation protection officers in establishing and maintaining a Quality Assurance Program and in carrying out other duties required by the Healing Arts Radiation Protection Act; assist staff to comply with the X-ray Safety Code in a way that will raise the standards of x-ray diagnosis and patient safety; address the relationship between the radiation exposure of the patient and the quality of the image; address the problem of protecting the patient in x-ray examinations; summarize x-ray safety problems from the point of view of the operator and other staff; indicate what remedial measures can be taken; define the quality assurance needs of x-ray users; and encourage the users of x-rays for diagnostic purposes to go beyond the scope of the Act and comply with the ALARA principle

  20. The role of radiologic technologist in radiation protection and quality assurance programs

    International Nuclear Information System (INIS)

    Djurovic, B.; Spasci -Jokic, V.; Misovic, M.

    2001-01-01

    The most important sources of ionizing radiation for general public are medical sources. Good working protocols and radiological protections measurements provided significant reduction of patients and professional doses. Medical users of ionizing radiation are radiological technologists. The purpose of this paper is to point out to several facts and errors in radiation protection educational programs for radiological technologists. Medical College educational program covers main specific topics in radiation protection, but there are some omissions in training process. Radiological technologists must be actively involved in radiation protection. Following ethical standards they will reach higher standards than the law requires

  1. Training in radiation protection and the safe use of radiation sources

    International Nuclear Information System (INIS)

    2001-01-01

    The need for education and training in the various disciplines of radiation protection has long been recognized by the IAEA, the International Labour Organization (ILO), the United Nations Educational, Scientific and Cultural Organization, the World Health Organization and the Pan American Health Organization (PAHO). This need has been partially met through the many training courses undertaken by these organizations, either individually or in collaboration. The IAEA has assisted developing Member States in the training of specialists in radiation protection and safety through its organized educational and specialized training courses, workshops, seminars, fellowships and scientific visits. Training is an important means of promoting safety culture and enhancing the level of competence of personnel involved in radiation protection activities, and has acquired a place in the IAEA's programme accordingly. For example, the IAEA Post-graduate Educational Course in Radiation Protection and the Safe Use of Radiation Sources is regularly offered in countries around the world, and has been provided in Arabic, English, French, Spanish and Russian. The training provided by the IAEA is primarily aimed at regulators, professionals working in radiation protection and those responsible for the development of training programmes in their own countries. The importance of adequate and appropriate training for all those working with ionizing radiation has been highlighted by the results of the IAEA's investigations of radiological accidents. A significant contributory factor in a number of the accidents has been a lack of adequate training, which gave rise to errors with serious consequences. This report provides assistance in organizing training and complying with the requirements on training of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The previous version of this report. Technical Reports

  2. 4. European forum of radiation protection sciences. Proceedings

    International Nuclear Information System (INIS)

    2010-09-01

    This 4. European forum of radiation protection sciences was the occasion for nuclear professionals to share their experience and to present the tools and techniques implemented in dismantling operations in the respect of radiation protection rules. This document brings together the abstracts and the available presentations given at this forum: 1 - Dismantling organisation and management - regulations: dismantling environment (A. Gay, Areva NC); Dismantling at the CEA (Ph. Guiberteau, DEN-Saclay); Optimisation of future dismantlement at the design and operation stage of facilities (P. Poncet, Areva); Action of the labour Ministry for workers radiation protection (T. Lahaye, DGT); 2 - Dismantling experience feedbacks 1: Radiation protection and dismantlement at Marcoule (J. Chardin, Areva NC); INB 106 dismantling (N. Pauwels, UDIL); Dismantling wastes management and valorisation of ALS and Saturne accelerators at Saclay (C. Salmon, CEA-Saclay); Chooz power plant deconstruction (L. Bardou, EDF); 3-4 - Dismantling projects: Phenix power plant dismantling (C. Beretti, CEA-Marcoule); Radiological characterization impact on the DGB project (H.C. Turbatte, F. Lemperiere, DGB Eurodif); Contribution of scientific calculations to reactor dismantling studies (A. Van Lauwe, CEA-Saclay); Acceptance committee of radiological cleansing companies (S. Faure, DPSN); Externalizing of the radiation protection skilled person (J.P. Piferrer, ATSR); International network of radiation protection professionals (G. Abela, EDF); 5 - Dismantling experience feedback 2: gloveboxes dismounting at La Hague plant (R. Choquet, P. Mougnard, Areva NC); Nuclear submarines dismantling in Russia (C. Deregel, Topp-Decide); Radioactive waste management of CERN accelerators (Y. Algoet, CERN); Nuclear facilities decommissioning (M. Berton, CEA, B. Marc, DRIM Sogeris); Asbestos removal in radiological environment (R. Blanc, Areva NC); 6-7-8 - Tools and methods: Aspilaser, decontamination by laser ablation (F

  3. Radiation protection - Revision of French radiation protection regulations (1988)

    International Nuclear Information System (INIS)

    Mayoux, J.C.

    1989-01-01

    This article analyses the recent amendments to the 1966 and 1975 Decrees on general radiation protection principles and radiation protection of workers in large nuclear installations respectively and also describes national radiation protection law. In particular, the amendments incorporate the revised EURATOM basic radiation protection standards and the new international units (sievert and becquerel replace rem and curie) in the Decrees. (NEA) [fr

  4. State supervision over radiation protection in the Czech Republic

    International Nuclear Information System (INIS)

    Prouza, Z.

    1998-01-01

    The paper is aimed on the organisation of state supervision over radiation protection and some aspects of the execution of state supervision over radiation protection domain. The radiation protection in the Czech Republic has been from its beginning and it is up to now based on the same principles as in the other developed countries. It was concluded that from professional, technical as well as personnel standpoint, it is essentially provided at a relevant level. Due to changes in the economical and political spheres and in the organisational structure of state administration, the system of the Czech Republic Radiation Protection is now in phase of complete re-organisation: (1) new legislative system including ALARA, QA/QC programmes implementation should be introduced into daily practice of ionizing sources users; (2) new, higher quality licensing and inspection system should be completely introduced and strengthened

  5. Focus radiation protection

    International Nuclear Information System (INIS)

    Ebermann, Lutz

    2016-01-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  6. The role and potentialities of the NRPI in the education of the health professionals and in the public information in the field of radiation protection in medical exposure

    International Nuclear Information System (INIS)

    Zackova, H.; Horakova, I.

    2008-01-01

    The attention is paid to the role of the National Radiation Protection Institute (NRPI) in the support of the education on the pregraduate and postgraduate level. On pregraduate level the NRPI is engaged in education of the students of the Faculty of Nuclear Sciences and Physical Engineering (FNSPE) in the field of radiation protection and radiological physics. On the postgraduate level there is an important role of NRPI in the postgraduate education of the health professionals. This education can take advantage of the more than the thirty years cooperation between NRPI and IPVZ (Institute for postgraduate medical education). In the presentation the important data and experience of the courses of radiation protection organized for health professionals will be ShOWll. In the presentation there are also presented activities of the division of medical exposures of the NRPI, which are pointing to the public information. Some typical questions, which have been addressed to NRPI are brought forward and discussed. (authors)

  7. Atoms, radiation, and radiation protection

    International Nuclear Information System (INIS)

    Turner, J.E.

    1986-01-01

    This book describes basic atomic and nuclear structure, the physical processes that result in the emission of ionizing radiations, and external and internal radiation protection criteria, standards, and practices from the standpoint of their underlying physical and biological basis. The sources and properties of ionizing radiation-charged particles, photons, and neutrons-and their interactions with matter are discussed in detail. The underlying physical principles of radiation detection and systems for radiation dosimetry are presented. Topics considered include atomic physics and radiation; atomic structure and radiation; the nucleus and nuclear radiation; interaction of heavy charged particles with matter; interaction of beta particles with matter; phenomena associated with charged-particle tracks; interaction of photons with matter; neutrons, fission and criticality; methods of radiation detection; radiation dosimetry; chemical and biological effects of radiation; radiation protection criteria and standards; external radiation protection; and internal dosimetry and radiation protection

  8. Standard Syllabus for Postgraduate Educational Courses in Radiation Protection and the Safe use of Radiation Sources

    International Nuclear Information System (INIS)

    Arias, C.; Biaggio, A.; Nasazzi, N.

    2004-01-01

    The International Atomic Energy Agency (IAEA) published the Standard Syllabus for Post Graduate Educational Courses in Radiation Protection and the Safety of Radiation Sources in 2002. Along more than two decades, Argentina has obtained valuable experience on building professional knowledge at postgraduate level in Radiation Protection and Nuclear Safety. Such experience made advisable to review the IAEA Standard Syllabus and to modify it accordingly. The whole content of the Standard Syllabus is included in the syllabus developed for the Argentinean Regional Post Graduate Course in Radiation Protection and Safety of Radiation Sources. But a few additional topics were incorporated and changes were introduced in the sequence of subjects. The paper describes those modifications and explains the pedagogic motivations that induce them. (Author) 3 refs

  9. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1975-01-01

    Physical and radiological terms, quantities, and units. Basic principles of radiation protection (ICRP, IAEA, EURATOM, FRG). Biological effects of ionizing radiation. Objectives of practical radiation protection. (HP) [de

  10. Quality image analysis and radiation protection in dental radiodiagnosis in Sobral city, BA, Brazil

    International Nuclear Information System (INIS)

    Menezes, Francisca L.; Ferreira, Fernanda C.L.; Paschoal, Cinthia M.M.; Belinato, Walmir

    2015-01-01

    The radiographic processing is one of the steps to acquire radiographic images and requires appropriate quality control. The image should allow an accurate diagnosis and avoid repetition of examinations, which is consistent with the principles of radiation protection. This study aimed to verify the quality of periapical radiographic imaging and to investigate the suitability of dental X-ray equipment on the principles of radiation protection established by the Health Ministry Decree 453/98, by applying radiation field test and application questionnaires to dentists professionals. The result showed that it takes greater care professionals about the treatment radiographic and radiation protection, requiring that inspection agencies require compliance with the rules so that there is maintaining the quality of dental diagnostic radiology services. (author)

  11. Training the next generation of radiation protection professionals in canada

    International Nuclear Information System (INIS)

    Waller, Edward; Waker, Anthony

    2008-01-01

    Full text: The University of Ontario Institute of Technology (UOIT) is Canada's newest university, specializing in market-driven programs. The first class of students started in Fall of 2003. The University is located in close proximity to Pickering, Darlington and Bruce Nuclear Power Plants, the fuel manufacturer Cameco, and a number of regional health centres. As such, the initial program focus was to serve the needs of the power utilities and the health sectors. The first programs envisioned and adopted at UOIT were programs in Nuclear Engineering and Radiation Science/Health Physics. These programs are unique in Canada. The four year Bachelor of Science honours degree programs in Radiation Science curriculum includes medical, industrial, agricultural and material science applications, and emphasizes a strong mathematics and science foundation to the discipline. The four year Canadian Engineering Accreditation Board accredited Bachelor of Nuclear Engineering honours program has a strong emphasis on radiation protection, environmental effects of radioactivity, and risk assessment. Both programs have internship options, and both have 'and Management' options, requiring an additional year of study. One key aspect to the pedagogy at UOIT is web-centric learning. Each student is issued a fully equipped internet-ready laptop for use in classes, tutorials and laboratories. The professors endeavor to integrate technology wherever possible to assist the student learning process, for example with on-line testing and course-work submission. Course materials are provided via learning management system software, and instruction is provided for industry standard computational and simulation tools. For courses in radiation protection and environmental effects, there is great emphasis on 'hands on' experience and realistic field exercises. The first graduating class was in spring 2007, and the indication from industry is that the specially trained radiation protection and

  12. Some problems concerning the radiation protection in nuclear power stations

    International Nuclear Information System (INIS)

    Bozoky, L.

    1977-01-01

    The appearance and fast spreading of the nuclear power stations raised new and difficult questions in connection with the theoretical bases of radiation protection. The new standpoint of the International Commission on Radiological Protection is that both the workers at a pile and the inhabitants take less risk because of ionizing radiation than they usually take in everyday life. The maximum dose which can be permitted remained 5 rem/year for those who professionally deal with ionizing radiation and 0.5 rem/year for the groups in special situation. (V.N.)

  13. Radiation protection

    International Nuclear Information System (INIS)

    Jain, Aman; Sharma, Shivam; Parasher, Abhishek

    2014-01-01

    Radiation dose measurement, field of radiobiology, is considered to be critical factor for optimizing radiation protection to the health care practitioners, patients and the public. This lead to equipment that has dose - area product meters permanently installed. In many countries and even institution, the range of equipment is vast and with the opportunity for radiation protection and dose recording varies considerably. Practitioners must move with the changed demands of radiation protection but in many cases without assistance of modern advancements in technology Keeping the three basic safety measures Time, Dose and Shielding we can say 'Optimum dose is safe dose' instead of 'No dose is safe dose'. The purpose enclosed within the title 'Radiation Protection'. The use of radiation is expanding widely everyday around the world and crossing boundaries of medical imaging, diagnostic and. The way to get the ''As low as reasonably achievable' is only achievable by using methodology of radiation protection and to bring the concern of general public and practitioners over the hazards of un-necessary radiation dose. Three basic principles of radiation protection are time, distance and shielding. By minimizing the exposure time increasing the distance and including the shielding we can reduce the optimum range of dose. The ability of shielding material to attenuate radiation is generally given as half value layer. This is the thickness of the material which will reduce the amount of radiation by 50%. Lab coat and gloves must be worn when handling radioactive material or when working in a labeled radiation work area. Safety glasses or other appropriate splash shields should be used when handling radioactive material. 1. Reached to low dose level to occupational workers, public as per prescribed dose limit. 2. By mean of ALARA principle we achieved the protection from radiation besides us using the radiation for our benefit

  14. The role of medical physicist in radiation protection

    International Nuclear Information System (INIS)

    Nusslin, F.

    2010-01-01

    Ionizing Radiation is applied in Radiation Therapy, Nuclear medicine and Diagnostic Radiology. Radiation Protection in Medical Application of Ionizing Radiation requires specific Professional Competence in all relevant details of the radiation source instrumentation / equipment clinical dosimetry application procedures quality assurance medical risk-benefit assessment. Application in general include Justification of practices (sufficient benefit to the exposed individuals) Limitation of doses to individuals (occupational / public exposure) Optimization of Protection (magnitude and likelihood of exposures, and the number of individuals exposed will be ALARA. Competence of persons is normally assessed by the State by having a formal mechanism for registration, accreditation or certification of medical physicists in the various specialties (e.g. diagnostic radiology, radiation therapy, nuclear medicine). The patient safety in the use of medical radiation will be increased through: Consistent education and certification of medical team members, whose qualifications are recognized nationally, and who follow consensus practice guidelines that meet established national accrediting standards

  15. Concepts of radiation protection

    International Nuclear Information System (INIS)

    2013-01-01

    This seventh chapter presents the concepts and principles of safety and radiation protection, emergency situations; NORM and TENORM; radiation protection care; radiation protection plan; activities of the radiation protection service; practical rules of radiation protection and the radiation symbol

  16. Qualification criteria for persons responsible for radiation protection

    International Nuclear Information System (INIS)

    Wehner, G

    1980-01-01

    A survey of the qualification criteria included in the German atomic law (Atomic Energy Act, Radiological Protection Ordinance and X-ray Protection Ordinance) for persons responsible for radiation protection is given. Especially the various activities for which a health physics officer is required, the range of qualification in each case and the way the qualification has to be proved, are pointed out. Also the different guides that are issued to complete the legal requirements are mentioned. The definitions of the term qualification for health physics given in the different guides are cited and it is shown, that the qualification of a healt physics officer has to be based on the three criteria (I) vocational training. (II) professional experience and (III) the necessary knowledge in radiation protection. (orig./HP) [de

  17. The radiographer's professional role in practical aspects of radiation protection

    International Nuclear Information System (INIS)

    Shrimpton, J.A.

    1995-01-01

    The subjects discussed were qualified radiographer definition, unnecessary x-rays exposure in x-rays examination and it's contribution in radiation protection practices, the improvement in procedures, and reviews of booklet called 'making the best use of a Dept of Clinical Radiology, UK

  18. Report on the BWR owners group radiation protection/ALARA Committee

    International Nuclear Information System (INIS)

    Aldrich, L.R.

    1995-01-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements in relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming open-quotes World Classclose quotes performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance

  19. Report on the BWR owners group radiation protection/ALARA Committee

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, L.R. [Commonwealth Edison Co., Downers Grove, IL (United States)

    1995-03-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements in relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming {open_quotes}World Class{close_quotes} performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance.

  20. About the training on radiation protection in health environment

    International Nuclear Information System (INIS)

    Hernandez Armas, J.

    2007-01-01

    Paper education on Radiation Protection in health environments is essential to optimise the use of radiation for diagnostic or therapeutic purposes. The continuous increment in the number of available radiation emitting equipment in health environments and the generalisation of procedures, which imply important radiation exposures to patients, are expected to increase the overall doses to patients. A consequence of this will be the increment of harmful effects, especially, radiation induced cancer. General concern towards this respect has produced a generalisation of the requirements considered to be needed in a proper Radiation Protection education. Norms have been created for this purpose at both national and European level. here, the European and Spanish norms are reviewed. the applications of these norms are, also reviewed. Furthermore, the objectives of various platforms and European projects, aimed at improving the formation of health personnel on Radiation Protection, are presented. A conclusion of the review is that there exist significant differences in the syllabuses proposed for various professionals at different levels. Moreover, all the legislation collected in the norms has not been implemented in common practice. (Author) 24 refs

  1. Proceedings: 2003 Radiation Protection Technology Conference

    International Nuclear Information System (INIS)

    2004-01-01

    Health physics professionals within the nuclear industry are continually upgrading their programs with new methods and technologies. The Third Annual EPRI Radiation Protection Technology Conference facilitated this effort by communicating technical developments, program improvements, and experience throughout the nuclear power industry. When viewed from the perspective of shorter outages, diminishing numbers of contract RP technicians and demanding emergent work, this information flow is critical for the industry

  2. Radiation Protection of Patients program (Argentina)

    International Nuclear Information System (INIS)

    Touzet, R.; Perez, M. R.; Buzzi, A.; Andisco, D.

    2006-01-01

    After an initial period of conviction for installing an active discussion on Radiation Protection of Patients inside the medical community, there were organized working groups in Radiodiagnosis, Radiotherapy, Nuclear Medicine and on radiation protection of pregnant women. These groups began systematical activities, which received a strong institutional support of the Argentine Society of Radiology, toward the implementation of a Program of RPP that is being put nowadays into practice. This program has three aims and a series of targets to be fulfilled in successive stages: Basic aims and short term targets: 1) To guarantee the Justification. First goal: Development of the Prescription Guide (achieve) 2) To optimize the radioprotection: First goal: Development of a Manual of Procedures (achieved) 3) To prevent potential exposures. First goal: Design of a Basic Quality System in Health (achieved) The effective participation of the professional's and technician's associations in the development of the program of radiological protection of the patient is a key aspect for the success. (Author)

  3. Radiation protection in medicine: Ethical framework revisited

    International Nuclear Information System (INIS)

    Malone, J. F.

    2009-01-01

    The ethical framework within which medicine operates has changed radically over the last two decades. This has been stimulated by events leading to controversy, such as the infant organ retention scandals; concerns about blood products; self regulation of medical practice in the wake of the Harold Shipman Enquiry in the UK; and many other events. It has become obvious following investigations and/or public enquiries that a gap has opened up between what is acceptable to the public on the one hand, and what appears reasonable to, or is at least accepted by, the professionals involved on the other. This paper reviews these issues and some conclusions of a workshop held to consider them. It places the developments in the context of the idea that the approach to problems and communication in a group of people/professionals such as doctors, radiologists, radiation protection specialists, or even the general public may be regarded as a 'culture'. Current practice of radiation protection in medicine is examined in the light of these considerations. (authors)

  4. Radiation protection

    International Nuclear Information System (INIS)

    1989-01-01

    A NRPB leaflet in the 'At-a-Glance' series explains in a simple but scientifically accurate way what radiation is, the biological effects and the relative sensitivity of different parts of the human body. The leaflet then discusses radiation protection principles, radiation protection in the UK and finally the effectiveness of this radiation protection as judged by a breakdown of the total dose received by an average person in the UK, a heavy consumer of Cumbrian seafood, an average nuclear industry worker and an average person in Cornwall. (UK)

  5. Handbook of engineering control methods for occupational radiation protection

    International Nuclear Information System (INIS)

    Orn, M.K.

    1992-01-01

    Sources of ionizing and non-ionizing radiation are widely used in industrial, medical, military, and other applications. In the workplace, the task of assuring the safety of workers exposed to radiation sources is generally assigned to the safety professional, industrial hygienist, or an engineer in some other discipline. Rarely do employers outside the nuclear industry have the luxury of a staff health physicist in the workplace. Consultants may be called in to provide initial assessments of the hazards and to assist with complex problems, but the day-to-day problem solving is usually a function of the safety professional or other professional with the responsibility for safety. The primary purpose of this book is to provide a practical reference for safety professionals that addresses the application of ionizing and non-ionizing radiation protection standards and the quantitative methods for evaluating and designing engineering controls to meet those standards. Although the emphasis of this book is on control methods, it is necessary to understand the physical nature of the radiation exposure, its units of measure, and its biological effects in order to apply the appropriate control methods. Consequently, a brief treatment of these topics precedes the discussion of control methods for each type of radiation exposure

  6. Implications of radiation dose and exposed populations on radiation protection in the 21st century.

    Science.gov (United States)

    Boice, John D

    2014-02-01

    Radiation is in the public eye because of Fukushima, computed tomography examinations, airport screenings, and possible terrorist attacks. What if the Boston Marathon pressure cooker had also contained a radioactive source? Nuclear power may be on the resurgence. Because of the increasing uses of radiation, the increases in population exposures, and the increasing knowledge of radiation effects, constant vigilance is needed to keep up with the changing times. Psychosocial disorders associated with the inappropriate (but real) fear of radiation need to be recognized as radiation detriments. Radiation risk communication, radiation education, and communication must improve at all levels: to members of the public, to the media, to other scientists, and to radiation professionals. Stakeholders must continue to be involved in all radiation protection initiatives. Finally, we are at a crisis as the number of war babies (me) and baby boomers (you?) who are also radiation professionals continues its rapid decline, and there are few in the pipeline to fill the current and looming substantial need: "The old road is rapidly agin'" (Dylan). NCRP has begun the WARP initiative-Where Are the Radiation Professionals?-an attempt to rejuvenate the pipeline of future professionals before the trickle becomes tiny drops. A Workshop was held in July 2013 with government agencies, military, private sector, universities, White House representatives, and societies to develop a coordinated and national action plan. A "Manhattan Project" is needed to get us "Back to the Future" in terms of the funding levels that existed in years past that provided the necessary resources to train, engage, and retain (a.k.a., jobs) the radiation professionals needed for the nation. If we don't keep swimmin' (Disney's Nemo) we'll "sink like a stone" (Dylan).Introduction of Implications of Radiation Dose and Exposed Populations (Video 2:06, http://links.lww.com/HP/A25).

  7. ENETRAP II: European network of education and training in radiation protection, data base training

    International Nuclear Information System (INIS)

    Marco Arboli, M.; Llorente, C.; Coeck, M.

    2012-01-01

    Development and implementation of a European standard for high quality initial training and professional development continued in the R adiation Protection Expert-RPE and Radiation Protection Officer-RPO, also of a methodology for the mutual recognition of these professionals by making use of the available instruments of the European Union (GE).

  8. Obligations and responsibilities in radiation protection in the medical field

    International Nuclear Information System (INIS)

    2011-01-01

    This document briefly presents the various obligations and responsibilities of the various actors involved in or concerned by radiation protection in the medical field: the hospital administration (with respect to workers and patients), the physician (authorization and declaration, justification, optimization), the medical electro-radiology operator, the person with expertise in medical radio-physics (PSRPM), the radio-pharmacist (he is required in nuclear medicine with internal use of pharmaceutical product), the personnel with expertise in radiation protection (PCR), and other health professionals

  9. Radiation protection requirements to dental clinics

    International Nuclear Information System (INIS)

    Zenobio, Madelon A.F.; Silva, Teogenes Augusto da

    2002-01-01

    Diagnostic radiology consists of an ionizing radiation source to which the man are more exposed. The importance of radiographic exam in Dentistry made it a diagnostic supplemental resource and a treatment guide used by the dentistry area professionals. After studying all the risks related to X-ray on medical and odontological diagnostics, this study intends to realize a literature review in relation to the radiological protection requirements, among then, the article 453, that aim to promote the reduction of radiation doses to beings involved with diagnostic radiology without damaging or even improving the exam quality and the data on it included. (author)

  10. Approaches to promotion and implementation of action on radiation protection for children

    International Nuclear Information System (INIS)

    Goske, M. J.; Applegate, K. E.; Bulas, D.; Butler, P. F.; Callahan, M. J.; Coley, B. D.; Don, S.; Farley, S.; Frush, D. P.; Hernanz-Schulman, M.; Kaste, S. C.; Morrison, G.; Sidhu, M.; Strauss, K. J.; Treves, S. T.

    2011-01-01

    The Radiation Protection in Medicine conference, reviewed in this journal supplement, outlined nine strategies to promote radiation protection for patients. The Alliance for Radiation Safety in Pediatric Imaging has focused its work on three of those areas: creating awareness of the need and opportunities for radiation protection for children; developing open-source educational materials for medical professionals and parents on this critical topic for improved patient safety and communication; and lastly, advocating on behalf of children with industry, government and regulatory bodies to improve equipment design and safety features, standardisation of nomenclature and displays of dose reports across vendor platforms that reflect the special considerations of children. (authors)

  11. On professional and official requirements to physicians in radiation health by sectoral sanitary and epidemiological stations

    International Nuclear Information System (INIS)

    Usol'tsev, V.I.; Konkina, L.F.; Shishenina, V.I.

    1989-01-01

    Professional and official requirements (POR) to sanitary physician, which deals with radiation hygiene at the sanitary and epidemiologic stations (SES), are considered. These requirements determine minimum of professional skills and abilities in the field of radiation hygiene. Physician should contribute to the improvement of radiation safety and health indices for personnel and population, and in this case, his activity should not impede the further usage of ionizing radiation sources in the national economy. Sanitary physician, dealing with a actain branch of industry, concerning the problems of radiation hygiene should know the principles of deontology, aims and functions of SES establishment and departments in the field of radiation hygiene, legal principles of radiation safety is basic tasks are as follows: 1) State sanitary inspection of sanitary-hygienic measures for the environmental protection and radiation protection of population; 2) organizational and methodological activity; 3) activity in medical civil defense

  12. 6. national congress of radiation protection S.F.R.P. 2007; 6. congres national de radioprotection S.F.R.P. 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This congress tackles the following subjects: individual dosimetry for external irradiation, update of arrangements in the public health code relative to the radiation protection, implementation of zoning decree, regulation, radiation protection in professional area, radiation protection in ITER, non ionizing radiation, radiation protection in accident situation, biological radiation effects, radiation protection for patients, dosimetry, environmental exposure, radiation protection and radioactive waste management. (N.C.)

  13. Radiation. Protection. Health. Proceedings

    International Nuclear Information System (INIS)

    Hajek, Michael; Maringer, Franz Josef; Steurer, Andreas; Schwaiger, Martina; Timal, Guenter

    2015-01-01

    The topics of the meeting are the diagnostic and therapeutic application of ionizing radiations, the application of radiation in research, industry and engineering and radiation protection. The volume includes the following chapters: Radiation protection and society, radiation protection infrastructure, population and environment, metrology and measuring techniques, 1. Workshop on population and environment, NORM and radon, 2. Update: dose - extent of damage - limiting value definition, radiation protection for personnel (except medicine), radiation protection in medicine.

  14. Radiation protection principles

    International Nuclear Information System (INIS)

    Ismail Bahari

    2007-01-01

    The presentation outlines the aspects of radiation protection principles. It discussed the following subjects; radiation hazards and risk, the objectives of radiation protection, three principles of the system - justification of practice, optimization of protection and safety, dose limit

  15. Radiation Safety Professional Certification Process in a Multi-Disciplinary Association

    International Nuclear Information System (INIS)

    Wilson, G.; Jones, P.; Ilson, R.

    2004-01-01

    There is no one set of criteria that defines the radiation safety professional in Canada. The many varied positions, from university and medical to industry and mining, define different qualifications to manage radiation safety programs. The national regulatory body has to assess many different qualifications when determining if an individual is acceptable to be approved for the role of radiation safety officer under any given licence. Some professional organizations specify education requirements and work experience as a prerequisite to certification. The education component specifies a degree of some type but does not identify specific courses or competencies within that degree. This could result in individuals with varying levels of radiation safety experience and training. The Canadian Radiation Protection Association (CRPA), responding to a need identified by the membership of the association, has initiated a process where the varying levels of knowledge of radiation safety can be addressed for radiation safety professionals. By identifying a core level set of radiation safety competencies, the basic level of radiation safety officer for smaller organizations can be met. By adding specialty areas, education can be pursued to define the more complex needs of larger organizations. This competency based process meets the needs of licensees who do not require highly trained health physicists in order to meet the licensing requirements and at the same time provides a stepping stone for those who wish to pursue a more specialized health physics option. (Author) 8 refs

  16. The radiologist's professional radiation risk in the view of international epidemiological studies

    International Nuclear Information System (INIS)

    Schuettmann, W.

    1980-01-01

    Publications of the past 30 years on the problem of professional radiation risk of the radiologist were analysed. Because of the low extent of possible damaging effects to be expected only those results of epidemiological papers were considered for the quantification of this risk which were based on large collectives. The radiation-induced malignant neoplasms as the decisive risk are in the focus of consideration. The decrease in radiation-induced professional leukemias and carcinomas, which is statistically clearly demonstrated, is described. The remaining, though only minimal, risk on the conditions of present radiation protection, which can be concluded from theoretical considerations and epidemiological knowledge, is discussed in detail. Finally, the importance of certain partial exposures of the body with respect to non-stochastic radiation effects on eyes and skin is referred to. (author)

  17. Radiation protection training award - an innovative approach of testing radiation protection skills in catastrophe management

    International Nuclear Information System (INIS)

    Geringer, T.

    2003-01-01

    Full text: ARC Seibersdorf research is Austria's largest independent research institution. Apart from research and technical development, ARCS also offers special training an radiation protection. Having undergone intensive radiation protection training, security forces are also entitled to test their knowledge in a special 'radiation protection training award'. The prize is awarded in three different grades. ARCS Bronze award guarantees that the holder is competent in, both theoretical and practical aspects of a radiological accident. The follow-up Silver award requires additional competence in emergency management. Candidates having at least five years of professional experience and presenting a written thesis are considered for the Golden award. The holder is not only experienced in radiological catastrophe management including a competent theoretical background, but is also experienced enough to work out and improve his own emergency planning. ARC Seibersdorf research started with their radiation protection award as early as 1968. More then 10 000 candidates have been awarded since then. Most candidates are members of the Austrian Army or other security forces, although everyone above the age of 18 and undergone a basic course in radiation protection is entitled to participate. Even company internal awards have been given to ensure the quality of training applies to ARC Seibersdorf members as well. The prize is awarded in three different grades. ARCS Bronze award guarantees that the holder is competent in both theoretical and practical aspects of a radiological accident. The followup Silver award requires additional competence in emergency management. Candidates having at least five years of professional experience and presenting a written thesis, are considered for the Golden award. The holder is not only experienced in radiological catastrophe management including a competent theoretical background, but is also experienced enough to work out and improve his

  18. Abilities for radiological protection supervisor in the ionizing radiation for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, G.M., E-mail: adelia@atomo.com.b [ATOMO Radioprotecao e Seguranca Nuclear S/C Ltda., Sao Paulo, SP (Brazil); Sahyun, A., E-mail: gian@atomo.b [ABENDI - Associacao Brasileira de Ensaios Nao Destrutivos e Inspecao, Sao Paulo, SP (Brazil); Andreucci, R., E-mail: zzricardo.zzandreucci@Voith.co [Voith Hydro Ltda., Sao Paulo, SP (Brazil); Oliveira, P.G. [Multiend Ltda., Sao Paulo, SP (Brazil)

    2011-07-01

    The authors of this paper, has introduced an industrial training program for the R.P.E - Radiation Protection Expert to comply with contents of CNEN Standard NN 3.01 'Basic Guideline of Radiation Protection'. The 'training program' has been divided in four steps, based on: professional R.P.E work, knowledge level to perform his activities, education program and detailed basic bibliography. In the last congress we have presented a paper about the content of radiation protection training program. In this paper we will discuss the abilities that the supervisor need to obtain to perform the radiation protection report. We discuss the number of abilities for each one of the disciplines mentioned in the last paper and we provide some particular abilities. (author)

  19. Radiation Protection Ordinance. Preventive Radiation Protection Act. 3. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1990-01-01

    This 3rd edition presents the official explanations of the legislative intent behind the Radiation Protection Ordinance of 1976 and the 2nd amending ordinance, and the commentaries which as usual refer to the legal aspects and the related medical, scientific, and technical aspects. As a consequence of the reactor accident at Chernobyl, the existing radiation protection law has been extended by the Act for Preventive Measures for Pretection of the Population Against the Hazards of Ionizing Radiation (Preventive Radiation Protection Act), establishing preventive legal provisions and measures, so that this new edition has likewise been extended by commentaries on the Protective Radiation Protection Act and an introduction to the new area of law. The material also includes the Act for Establishment of a Federal Office for Radiation Protection, of October 9, 1989, which amended the Atomic Energy Act and the Preventive Radiation Protection Act. The correction of the Radiation Protection Ordinance of October 16, 1989 (BGBl. I p. 1926) has been incorporated into the text of the amended version of the Radiation Protection Ordinance. Court decisions and literature referred to cover material published up to the first months of 1989. (orig.) [de

  20. Strengthening the radiation protection culture: a priority of EDF radiation protection policy

    International Nuclear Information System (INIS)

    Garcier, Y.

    2006-01-01

    Full text of publication follows: In order to improve the management of radiation protection at EDF nuclear power plants, the Human Factors Group of the Research and Development Division of EDF has performed some studies on the appropriation process of the radiation protection requirements. These studies have notably shown that an efficient application of the radiation protection requirements lies on a comprehension by all workers of the meaning of these requirements. Furthermore, they should not be applied under the constraint or because of the fear of a sanction, but the workers need to perceive and understand the benefits in terms of protection associated with the radiation protection requirements. The strengthening of the radiation protection culture is therefore a key element of the radiation protection policy developed by EDF. This culture lies on an awareness of the health risks potentially associated with low levels of ionising radiations, as well as on the knowledge of tools, techniques and good practices developed to control the level of exposures and improve the radiation protection. Various type of actions have been undertaken to reinforce among the relevant players (exposed and non-exposed workers, contractors, all levels of management,... ) an awareness of radiation protection in order to integrate it in their day to day work: elaboration of a 'radiation protection system of reference' explaining how the radiation protection regulatory requirements are applied at EDF, publication of a 'radiation protection handbook' available for all workers (including contractors), training sessions, creation of networks of specialists from the various nuclear power plants on specific radiation protection issues, organisation of feed-back experience forum, etc. Beyond these specific actions, i t is also important to ensure a support and an assistance on the field by dedicated specialists. In this perspective, the health physicists have to play a key role in order to

  1. Proceedings of the Radiation protection supervisors' day of November 7, 2013

    International Nuclear Information System (INIS)

    Langlet, Jean; Piferrer, Jean-Paul; Morin, Catherine; Lefaure, Christian; Tourneux, Christophe; CONAN, Nadine; MARC, Benoit; Etard, Cecile; Rehel, J.L.; Aubert, B.; Ranouil, Julien

    2013-11-01

    Organised by the Association for radioprotection Techniques and Sciences (ATSR) and sponsored by the Commission of external radiation protection supervisors, this radiation protection supervisors' day was the occasion to take stock of the regulation, of the recurrent problems and advances in radiation protection. The conference brought together 9 presentations dealing with: 1 - Works of the Commission of external radiation protection supervisors (J.P. Piferrer); 2 - National and European regulation updates (T. Lahaye); 3 - Problems relating to control equipments (J. Langlet); 4 - Problems relating to the professional insurance for external radiation protection supervisors: national consultation by the ATSR (key points for the development of a national multidisciplinary consultative meeting by the ATSR, C. Morin); 5 - Situation of radiation protection supervisor networks (C. Lefaure, C. Tourneux); 6 - RPE-RPA-RSSO functions at CERN: creation and experience feedback (Experience feedback of the implementation of the RPE/RPO(A) European regulation at CERN, N. Conan); 7 - Industry: PCR n + Σ TQRP = SRP* (B. Marc); 8 - Interventional radiology: lessons to be learnt from recent overexposure incidents? (Medicine: protection supervisor and interventional radiology, C. Etard, J.L. Rehel, B. Aubert); 9 - GEDOC: research group on eye lens dosimetry (Eye lens exposure to ionizing radiations, J. Ranouil). This document brings together the presentations (slides) presented during the conference

  2. Radiation protection standards in the United States

    International Nuclear Information System (INIS)

    Mills, W.A.; Arsenault, F.J.; Conti, E.F.

    1988-01-01

    Standards to protect workers and members of the general public against any harmful effects of ionizing radiation are numerous and complex in the United States. Many Federal agencies have protection responsibilities, our Congress limits the discretionary authority given to these agencies in providing for this protection, and our court system appears at times to render judgments that are illogical to our sense of the degree of radiological protection required. To many our standards appear to be overprotective in that they have, at best, marginal health benefits and without question are costly to implement. Government agencies, the Congress, industry, professional organizations, and others have expressed their concerns and interests regarding standards in a variety of ways

  3. Regional radiation protection center in the Federal Republic of Germany - Tasks and Organization

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    In the Federal Republic of Germany 220,000 staff members are classified at the moment as occupationally radiation exposed persons. For the maintenance of industrial health and safety for the workers in the companies and for the medical, professional and social rehabilitaion after an accident the so-called ''Berufsgenossenschaften'' (professional trade associations) are responsible. For employees in nuclear industry two trade associations are competent: - the Trade Association for Precision Engineering and Electrical Engineering for the 6,000 employees in nuclear power plants, - the Trade Association of the Chemical Industry for the 4,000 employees in fuel element fabrication and the reprocessing companies. In case of an accident workers from service companies e.g. construction and installation companies could be affected as well. Therefore these trade associations have founded a couple of years ago an ''Institute for Radiation Protection''. A special task of this institute is First Aid to overexposed people in case of radiation accidents. In addition, it organizes the 24-hours-service of the seven Regional Radiation Protection Centers of Federal Republic of Germany. The institute provides special training of radiation protection physicians and occupationally radiation exposed persons. (author) [pt

  4. Radiation protection in the field of environmental protection

    International Nuclear Information System (INIS)

    Zhao Yamin

    2003-01-01

    The relationship of radiation protection with environmental protection, the sources that may give rise to the environmental radiation contamination, and the system of radiation protection and the fundamental principles and requirements for radiation environmental management are introduced. Some special radiation protection problems faced with in the radiation environmental management are discussed. (author)

  5. Training in radiation protection

    International Nuclear Information System (INIS)

    Schreiber, F.

    1998-01-01

    Persons who are exposed to ionizing radiation at their workplace have to be trained in radiation protection. According to the Radiation Protection Ordinance the person with responsibility in radiation protection has to guarantee that the training is performed twice a year. Our training material was created especially for the persons defined in the Radiation Protection Ordinance and the X-ray Ordinance. It enables persons who teach (generally the radiation protection officer) to perform the training without tedious study and preparation of the documents. Our material is not just another textbook for radiation protection but rather a folder with colour transparencies and explanatory texts which make a difference in volume and price in comparison to other existing materials. (orig.) [de

  6. Program of radiation protection of patients (Argentina)

    International Nuclear Information System (INIS)

    Touzet, Rodolfo E.; Buzzi, Alfredo; Rojas, Roberto; Andisco Daniel

    2008-01-01

    After an initial period of conviction for installing an active discussion on Radiation Protection of Patients inside the medical community, there were organized 'working groups' in Radiodiagnosis, Radiotherapy, Nuclear Medicine and on radiation protection of pregnant women. These groups began systematical activities, which received a strong institutional support of the Argentine Society of Radiology, toward the implementation of a 'Program of RPP' that is being put nowadays into practice. The rapid advances which are present in medicine today, both in equipment and work protocol, determine that 'norms and regulations never arrive on time' which is why it is paramount that health services have 'systems of dynamic quality' and 'continual improvement' that can be adapted quickly to changes. This program has 6 principal aims and a series of targets to be fulfilled in successive stages: Basic aims and short term targets: 1) To guarantee the Justification. First goal: Development of the 'Prescription Guide' (achieved); 2) To optimize the radioprotection: First goal: Development of a 'Manual of Procedures' (In process); 3) To prevent potential exposures. First goal: Design of a 'Basic Quality System' in Health (achieved); 4) To achieve a qualification of the professionals by means of a process of certification and re-certification (In process); 5) To spread PRP's criteria by means of chats, meetings and the use of the media and graphical means. (Partially fulfilled); 6) To establish criteria for the protection of patient and operators in Interventional Radiology by creating a referral service. Strategies to cope with different interests within society are described. Main problems, failures and difficulties are also described. The effective participation of the professional and technicians' associations in the development of the program for radiation protection of the patient is a key aspect for the success of the whole national programme. (author)

  7. Radiation protection seminar

    International Nuclear Information System (INIS)

    2012-01-01

    The Radiation Protection Seminar, was organized by the Argentina Association of Biology and Nuclear Medicine, and Bacon Laboratory, the 20 june 2012, in the Buenos Aires city of Argentina. In this event were presented some papers on the following topics: methods of decontamination, radiation protection of patients; concepts of radiation protection and dosimetry.

  8. Radiation protection measures applied during the autopsies on the casualties of the Goiania accident

    International Nuclear Information System (INIS)

    Martins, N.S.F.; Silva, L.H.C.; Rosa, R.

    1998-01-01

    The most seriously affected casualties of the radiological accident caused by the opening of a 137 Cs source capsule in Goiania were treated at the Marcilio Dias Naval Hospital (HNMD) in Rio de Janeiro in the period from October to December 1987. Four of the injured died in October. The autopsies were performed at this institution. Due to the external and internal contamination presented by these victims, specific radiation protection procedures were adopted to enable the medical team to perform their duties. The radiation protection staff, under the co-ordination of technicians of the Brazilian Nuclear Energy Commission (CNEN), were responsible for the preparation of the autopsy room and for advising the professionals on duty during these events. The radiation protection staff took specific measures to prevent the spread of contamination throughout the hospital, the contamination of persons attending the autopsies and to minimize any radiation dose to the medical and professional team. The measures aimed at personal control and the preparation of the autopsy room are described as well as the radiation protection steps applied in connection with the performance of the autopsies, the emplacement of the bodies into the coffins and their transport back to Goiania. (author)

  9. STRAPIR, an European initiative for optimizing radiation protection in interventional radiology

    International Nuclear Information System (INIS)

    Vano, E.; Gonzalez, L.; Loon, R. van; Padovani, R.; Maccia, C.; Eggermont, G.

    1997-01-01

    In 1995, a European initiative for optimizing radiation protection in interventional radiology was proposed by 8 research groups. The project acronym was STPAPIR (Staff Radiation Protection in Interventional Radiology). Interventional Radiology involves an important number of specialists and their risk level is not well known, since dosimetric records exhibit important discrepancies. Many professionals using these techniques are not radiologists and the basic rules of radiation protection, known by radiologists, are not always correctly and completely followed, hence the use of protection devices is not as regular as desirable. Additionally, x-ray systems not specifically designed for interventional procedures are still used in many hospitals, what entails a significant occupational risk increase to the specialists. Some relevant questions for regulatory bodies are presented, namely, reliability of the actual data banks for occupational dosimetry, use of two personal dosimeters for assessing effective dose, actions to strengthen the systematic use of personal dosimeters and protection tools, proposals for specific training in radiation protection and use of x-ray systems specifically designed for interventional procedures, publication of reports about accidents and incidents, are also discussed. (author)

  10. The Seven (Or More) Deadly (Or Not So Deadly) Sins of Radiation Protection

    International Nuclear Information System (INIS)

    Strom, Daniel J.; Stansbury, Paul S.

    1999-01-01

    This editorial considers the errors that can occur in the routine practice of radiation protection in the workplace. This work provides a tool and an incentive for radiation protection professionals to mentally examine their radiation protection responsibilities to identify actions they may take to improve their part of the practice of radiation protection for the benefit of humankind. We introduce a rating tool that is patterned after the IAEA International Nuclear Event Scale.?Sins? discussed include ignorance of the radiological situation, failure to integrate safety management, disabling safety interlocks, warning devices, access controls, omission of''reasonable'' from the policy of''as low as reasonably achievable'' (ALARA), extrapolation of risk beyond reason, using radiation exposure as an excuse for terminating an unwanted pregnancy, escalation of safety requirements beyond reason, failure to average a concentration standard, not responding to concerns (of workers, public, patient s, etc.), over-training, and substitution of prescriptive procedures for judgment. Readers are encouraged to look at their radiation protection activities and judge which ones do not make sense from the viewpoint of protecting people against radiation. It is likely that readers will find more than one radiation protection activity that bears scrutiny

  11. II International Conference: Radiation Protection Training. Future Strategies. Ciemat, 17-19 September, 2003. Book of Papers and Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    Safety in the use of ionising radiation and protection against potential risks due to exposure to radiation sources are not static concepts, rather their evolution runs parallel with an increased knowledge of the technologies and basic concepts employed. Education and training, which are inherently tied to with research, are the means to disseminate the advances made to the scientists and professionals working with ionising radiation. At present, Radiation Protection (RP) training is considered to be the best means to promote a safety culture and to improve the competence of exposed workers. Indeed, progress in both RP teaching and training, which form part of this transfer of technology and specialized knowledge, are fields that are in continuous motion. The first conference on Radiation Protection training was celebrated in Saclay (France) under the slogan Radiation Protection: What are the Future Training needs?. It can be considered as the first such meeting dedicated to the community of professionals, from a wide range of scientific and technological backgrounds, related in some way to Radiation Protection training. (Author)

  12. Contribution to the practical experience in the field of the radiation protection education

    International Nuclear Information System (INIS)

    Kozelj, M.; Stritar, A.

    1996-01-01

    In the present paper we discuss deficiencies, differences and similarities in knowledge among people with diverse professional and educational background attending our radiation protection courses. Suggestions for overcoming the problems resulting from this diversity are given. The crucial topics for understanding the system of radiation protection are given and relevant approach suggested, with emphasis to stochastic effects. Implementation of radiation protection training for particular job and task was problematic due to shortage of written procedures. It is our practice to choose relevant lecturers for each particular course to reduce this problem. This approach is described and discussed. (author)

  13. Report by the work-group on radiation protection in interventional radiology. Recommendations related to the improvement of radiation protection in interventional radiology

    International Nuclear Information System (INIS)

    2010-01-01

    This report aims at proposing recommendations for the improvement of the quality of radiation protection of workers and patients in the field of interventional radiology. These recommendations concern the training of health personnel, the application of the optimization principle to health professionals and patients, dosimetry and the definition of diagnosis reference levels. More particularly, these recommendations concern professions involved in interventional radiology, and take into account the experience of other European Union State members and recommendations made by the IAEA. The authors analyze the equipment, radiological actions, procedures and doses, practitioners, equipment used for radio-guided interventions. They discuss doses received by patients, patient monitoring and radio-induced lesions. Then, they address the role and training of the different interveners in radiation protection, the equipment maintenance issue, and personnel dosimetry and protection

  14. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-15

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives.

  15. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    International Nuclear Information System (INIS)

    2008-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  16. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    1976-06-01

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  17. Person expert in radiation protection: changing profiles

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    In all French enterprises producing or using ionizing radiations, a person is in charge of the protection of workers against radiations: the expert in radiation protection (PCR). The education and training of this profession has been recently reformed, and its status will evolve by 2018 with a transposition of a European directive. While indicating the six main missions of PCRs (risk assessment, definition of protection measures, zoning optimisation, training of exposed workers, dosimetry follow-up, periodic controls), this article comments the current professional profile of PCRs who can be technicians, engineers as well as researchers. It also outlines aspects of the reform which do not satisfy PCRs' needs. A second article reports how PCRs perceive their mission on a daily basis, which obstacles they face, how they are organised to communicate between them and not to be isolated (a map of PCR regional networks is provided with indications of the number of members and of the main actions), and how the IRSN helps them. A third article evokes the content of a new standard (NF C 15-160) which defines the requirements for X ray generating installations, and the related theoretical and practical training proposed by the IRSN

  18. The Radiation Protection Act

    International Nuclear Information System (INIS)

    Persson, L.

    1989-01-01

    The new Radiation Protection Act (1988:220) entered into force in Sweden on July 1st, 1988. This book presents the Act as well as certain regulations connected to it. As previously, the main responsibility for public radiation protection will rest with one central radiation protection authority. According to the 1988 Act, the general obligations with regard to radiation protection will place a greater responsibility than in the past on persons carrying out activities involving radiation. Under the act, it is possible to adjust the licensing and supervisory procedures to the level of danger of the radiation source and the need for adequate competence, etc. The Act recognises standardised approval procedures combined with technical regulations for areas where the risks are well known. The Act contains several rules providing for more effective supervision. The supervising authority may in particular decide on the necessary regulations and prohibitions for each individual case. The possibilities of using penal provisions have been extended and a rule on the mandatory execution of orders has been introduced. The Ordinance on Radiation Protection (1988:293) designates the National Institute of Radiation Protection (SSI) as the central authority referred to in the Radiation Protection Act. The book also gives a historic review of radiation protection laws in Sweden, lists regulations issued by SSI and presents explanations of radiation effects and international norms in the area. (author)

  19. Radiological Engineering: A graduate engineering - based curriculum for radiation protection

    International Nuclear Information System (INIS)

    Kearfott, K.J.; Wepfer, W.J.

    1994-01-01

    Several U.S. universities maintain formal graduate health physics curricula within their Colleges of Engineering. The term radiological engineering was coined to describe the discipline of applying engineering principles to the radiation protection aspects of nuclear technology. Radiological engineering programmes may require a specific core group of courses such as radiation biology, radiation protection practice, nuclear physics, radiation detectors, and radiation dosimetry. Students then might specialist in environmental, nuclear facilities or medical applications areas by selecting advanced courses and graduate design or research projects. In some instances the master's degree may be completed through remotely-delivered lectures. Such programmes promise to assist in educating a new group of engineering professionals dedicated to the safe utilisation of nuclear technology. The Georgis Institute of Technology's programme will serve as the specific example for this report. 8 refs., 1 fig

  20. A survey of research programs in radiation protection in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    A survey of research programs in Canada concerned with radiation protection was conducted in 1991-92 by the Joint Subcommittee on Regulatory Research (JSCRR) of the Atomic Energy Control Board (AECB) Advisory Committees on Radiological Protection and on Nuclear Safety. The purpose of this survey was to determine the current state of funding for this type of research in Canada. Funding for health-related radiation research in Canada is critical to establishing and maintaining a supply of trained professionals who can provide competent advice on health-related problems in radiation protection. The present report is an analysis of the information received in this survey. This survey concludes with the recommendation that the organization and definition of subprograms for the AECB Regulatory Research and Support Program should be completed as soon as possible. In this report the JSCRR should assist AECB staff in preparing a report in which priorities for research related to radiation protection are indicated. The sources of information noted at the end of the Discussion section of this report should be considered for this purpose. (author). 15 refs., 3 tabs.

  1. A survey of research programs in radiation protection in Canada

    International Nuclear Information System (INIS)

    1995-07-01

    A survey of research programs in Canada concerned with radiation protection was conducted in 1991-92 by the Joint Subcommittee on Regulatory Research (JSCRR) of the Atomic Energy Control Board (AECB) Advisory Committees on Radiological Protection and on Nuclear Safety. The purpose of this survey was to determine the current state of funding for this type of research in Canada. Funding for health-related radiation research in Canada is critical to establishing and maintaining a supply of trained professionals who can provide competent advice on health-related problems in radiation protection. The present report is an analysis of the information received in this survey. This survey concludes with the recommendation that the organization and definition of subprograms for the AECB Regulatory Research and Support Program should be completed as soon as possible. In this report the JSCRR should assist AECB staff in preparing a report in which priorities for research related to radiation protection are indicated. The sources of information noted at the end of the Discussion section of this report should be considered for this purpose. (author). 15 refs., 3 tabs

  2. Implementation of a radiation protection framework for medical and dental X-ray diagnostic services in Minas Gerais/Brazil

    International Nuclear Information System (INIS)

    Silva, Teogenes A. da; Pereira, Elton G.; Nogueira, Maria do S.; Ferreira, Hudson R.; Alonso, Thessa C.; Castro, Jose G.L. de; Andrade, Mauricio C.; Joana, Georgia S.; Oliveira, Mauricio de; Cezar, Adriana C. Z.

    2008-01-01

    The Brazilian Sanitary Vigilance Agency is the regulatory authority for radiation protection and quality control of all practices with X-rays for diagnostic purpose. In 1998, the technical regulation 'Guidelines for Radiation Protection in Medical and Dental Radiodiagnostic' was issued by the government that reflected the most updated policy recommended by the International Basic Safety Standards for Protection against Ionizing Radiation. To accomplish the objective of improving radiation protection conditions in the state of Minas Gerais, the Development Centre of Nuclear Technology (CDTN) and the Superintendence of Sanitary Vigilance (SVS) signed a formal cooperation agreement that included: an accreditation process for radiation protection professionals, a follow-up program of the services provided by those professionals, technical support from CDTN for audits carried out by SVS and training of SVS inspectors. Actions to improve and assure metrological reliability of the radiation measurements and special attention to mammography services were done. This paper provides details and results of the radiation protection framework for X-ray radiodiagnostic services in Minas Gerais; the success of the adopted model suggests that it can be used as a basic model to other regions. (author)

  3. In-service training and expertise requirements in radiation protection

    International Nuclear Information System (INIS)

    Klener, V.; Heribanova, A.

    2003-01-01

    Proper selection of staff and their special education and training in radiation protection are important factors when assuring faultless man-machine interaction and thereby a reduced likelihood of human factor failure in hazardous practices. University-level institutions can only provide education in the individual partial segments of the multidisciplinary area of radiation protection, whereas the proper practices are learned by graduate personnel on the job, by performing operational tasks at their particular workplace. The scope o expertise of subjects providing radiation protection surveillance and the requirements for their special education and training are outlined. Supervising persons appointed by the radiation source handling licensee to perform a number of operational tasks at the workplace assume a prominent position. Alternatively, systematic supervision at the workplace can be contracted by the licensee from an external body, provided that the latter has acquired appropriate licence from the State Office for Nuclear Safety. The provisions of the Atomic Act and the related implementing regulations with respect to special training and to the examination of professional competence before an expert commission are briefly outlined. (author)

  4. Utilization of information communication technology (ICT) - Based training / learning for capacity building in radiation protection framework

    International Nuclear Information System (INIS)

    Oluyemi, I.O.D.

    2008-01-01

    Full text: Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy electromagnetic radiation. It includes occupational radiation protection, which is the protection of workers; medical radiation protection, which is the protection of patients; and public radiation protection, which is about protection of individual members of the public, and of the population as a whole. ICT has made possible the development of e-learning and several Virtual Learning Environments (VLEs) which can support a wide range of capacity building requirements, ranging from under-graduate and post-graduate programmes, continuing professional development courses, right through to short subject specific and research courses, thereby eliminating the problems of conventional forms of training / learning, some of which are: limited access, cost effectiveness and language / cultural barriers. This paper focuses on the utilization of these ICT-based training / learning for capacity building in radiation protection framework and concludes with suggestions on implementation strategies. (author)

  5. Radiation protection in Sudan

    International Nuclear Information System (INIS)

    Elamin, O.I.; Hajmusa, E.A.; Shaddad, I.A.

    2001-01-01

    The regulatory framework as established by the Sudan Atomic Energy Commission (SAEC) Act, promulgated in 1996, is described in the report. Three levels of responsibility in meeting radiation protection requirements are established: the Board, the Radiation Protection Technical Committee as the competent authority in the field of radiation protection, and the SAEC Department of Radiation Protection and Environmental Monitoring as the implementing technical body. The report also refers to environmental activities, patient doses in diagnostic radiology, the management of disused sources, emergency preparedness and orphan sources, and the national training activities in the radiation protection field. (author)

  6. Radiation protection dosimetry - From amateur to professional

    International Nuclear Information System (INIS)

    Goldfinch, E. P.

    2006-01-01

    Radiation Protection Dosimetry was founded in 1981 and there has been a close link between the journal and the solid state dosimetry series of conferences from 1983 to the present day. The background to and the creation and development of the journal is described, having started as one volume of four issues per year in 1981 rising to six volumes in 1994. During the period of development there have been considerable advances in all forms of technology, requiring continued attention to the introduction of this new technology. Some of the changes in the world of publishing over the past 25 y are quite dramatic. Whilst simplistic approaches have been adequate within a small publishing house for a considerable time, further progressive technology changes that are required in the future mean that the necessary resources are only realistically available to large publishers. The journal thus moved to Oxford Univ. Press at the beginning of 2004. It will celebrate its 25. year in 2005. (authors)

  7. The physics of radiation protection

    International Nuclear Information System (INIS)

    Doerschel, B.; Schuricht, V.; Steuer, J.

    1996-01-01

    The book is aimed at both practising specialists and scientists wishing to learn about the fundamental science of radiation protection. The first part of the book, 'Physical Fundamentals of Radiation Protection', presents a concise description of radiation sources and radiation fields, interaction of radiation with matter, radiation effects and radiation damage, basic concept of radiation protection, radiation exposure of man, radiation protection measuring techniques and physical fundamentals for limiting radiation exposure. The second part, 'Calculational Exercises for Radiation Protection' is intended to supplement the first part by carrying out relevant calculations, amending and adding special aspects and to give guidance in solving practical problems. The book is written for scientists as well as for students and staff working in nuclear facilities, hospitals and institutions responsible for radiation and environmental protection. (UK)

  8. Focus radiation protection; Schwerpunkt Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Ebermann, Lutz (comp.)

    2016-07-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  9. RCA - a regional approach to radiation protection

    International Nuclear Information System (INIS)

    Griffith, R.; Easey, J.

    1996-01-01

    The Regional Cooperative Agreement (RCA) for Asia and Oceania is the oldest of four International Atomic Energy Agency Member State regional programs. Organized in 1972, 17 countries are now members of RCA - Australia, Bangladesh, Peoples Republic of China, India, Indonesia, Japan, Republic of Korea, Malaysia, Mongolia, Myanmar, New Zealand, Pakistan, Philippines, Singapore, Sri Lanka, Thailand, and Viet Nam. A number of projects related to the application of a wide range of nuclear technologies are conducted through RCA. The program is established by national coordinators for each project area, in consultation with IAEA technical officers. Most of the funding comes directly from RCA regional donor countries, with about one third supplied through the IAEA Technical Cooperation program. In 1986, following the Chernobyl accident, national coordinators and the IAEA staff recognized the value of establishing an RCA project aimed at strengthening regional radiation protection programs. The potential importance of RCA involvement in radiation protection is underscored by the fact that its member states comprise more than half of the world's population. The regional approach to addressing radiation protection issues allows member states to take advantage of regional resources to solve common regional problems. RCA provides the opportunity for specialists who may have few professional colleagues in their country to develop valuable contacts with regional radiation protection experts. In a very real way, specialists can network with their neighbours, often establishing bilateral programs outside of the RCA auspices. The current five year RCA Project to strengthen radiation protection infrastructure, with the IAEA designation - RAS/9/006, will be completed at the end of 1997. The project was developed to address five mayor areas of activity: Off-site emergency response; individual monitoring, internal and external; characterization of the physical, anatomical, physiological

  10. Radiation protection

    International Nuclear Information System (INIS)

    Ures Pantazi, M.

    1994-01-01

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection

  11. MO-E-213-03: Newer Radiation Protection Requirements in Last Decade

    Energy Technology Data Exchange (ETDEWEB)

    Clements, J. [Kaiser Permanente (United States)

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  12. Radiation Protection

    International Nuclear Information System (INIS)

    Loos, M.

    2002-01-01

    Major achievements of SCK-CEN's Radiation Protection Department in 2001 are described. The main areas for R and D of the department are enviromnental remediation, emergency planning, radiation protection research, low-level radioactvity measurements, safeguards and physics measurements, decision strategy research and policy support and social sciences in nuclear research. Main achievements for 2001 in these areas are reported

  13. The national radiation protection infrastructure

    International Nuclear Information System (INIS)

    Mastauskas, A.

    1999-01-01

    The state system of radiation protection is still being created after Lithuania regained its independancy and in connection with recommendations laid in the ICRP-60 publication and requirements of legislation of European Community. A new regulation institutions was established and a number of laws and regulations related to radiation protection was prepared. The Radiation Protection Centre of Ministry of Health is the regulatory authority responsible for radiation protection of public and of workers using sources of ionizing radiation in Lithuania. A new Radiation Protection Law, Nuclear Energy Law, Radioactive Waste Management Law and different regulations was approved. Preparation of legislation, creation of state system of radiation protection and its upgrading allow to presume that the necessary level of radiation protection is to be achieved. (au)

  14. Radiation protection medical care of radiation workers

    International Nuclear Information System (INIS)

    Walt, H.

    1988-01-01

    Radiation protection medical care for radiation workers is part of the extensive programme protecting people against dangers emanating from the peaceful application of ionizing radiation. Thus it is a special field of occupational health care and emergency medicine in case of radiation accidents. It has proved helpful in preventing radiation damage as well as in early detection, treatment, after-care, and expert assessment. The medical checks include pre-employment and follow-up examinations, continued long-range medical care as well as specific monitoring of individuals and defined groups of workers. Three levels of action are involved: works medical officers specialized in radiation protection, the Institute of Medicine at the National Board for Atomic Safety and Radiation Protection, and a network of clinical departments specialized in handling cases of acute radiation damage. An account is given of categories, types, and methods of examinations for radiation workers and operators. (author)

  15. Radiation protection in Bolivia

    International Nuclear Information System (INIS)

    Miranda Cuadros, A.A.

    2001-01-01

    Radiation protection in Bolivia has gone through a number of stages. Initially, in the 1970s, the focus was mainly on the analysis of environmental sources resulting from the nuclear tests carried out by France in the Pacific Ocean. Subsequently, the focus switched somewhat to radiation protection in connection with the mining of uranium and in the area of public health. During the third stage, radiation protection in other areas became important as the use of radiation sources was introduced. Finally, during the present -- fourth -- stage, radiation protection regulations are being introduced and mechanisms for the control of radiation sources are being established. (author)

  16. Radiation protection textbook

    International Nuclear Information System (INIS)

    Gambini, D.J.; Granier, R.

    2007-01-01

    This textbook of radiation protection presents the scientific bases, legal and statutory measures and technical means of implementation of the radioprotection in the medical and industrial sectors, research and nuclear installations. It collects the practical information (organization, analysis of post, prevention, evaluation and risks management, the controls, the training and the information) usually scattered and the theoretical knowledge allowing every person using ionizing radiation: To analyze jobs in controlled areas, to watch the respect for the current regulations, to participate in the training and in the information of the staffs exposed to intervene in accidental situation. This third edition is widely updated and enriched by the most recent scientific and legal data concerning, notably, the human exposure, the dosimetry, the optimization of the radiation protection and the epidemiological inquiries. The contents is as follows: physics of ionizing radiation, ionizing radiation: origin and interaction with matter, dosimetry and protection against ionizing radiation, detection and measurement of ionizing radiation, radiobiology, legal measures relative to radiation protection, human exposure of natural origin, human exposure of artificial origin, medical, dental and veterinarian radiology, radiotherapy, utilization of unsealed sources in medicine and research, electronuclear industry, non nuclear industrial and aeronautical activities exposing to ionizing radiation, accidental exposures. (N.C.)

  17. Radiation protection forum

    International Nuclear Information System (INIS)

    Cabral, W.

    2010-01-01

    The National Director of the Nuclear Regulatory Authority and Radiation Protection of Uruguay in the first forum for radiation protection set out the following themes: activity of regulatory body, radiation safety, physical security, safeguards, legal framework, committed substantive program, use of radiation, risks and benefits, major sources of radiation, the national regulatory framework, national inventory of sources, inspections, licensing, import and export of sources control , radioactive transport, materials safety, agreements, information and teaching, radiological emergencies and prompt response.

  18. Radiation protection law

    International Nuclear Information System (INIS)

    Hebert, J.

    1981-01-01

    This article first reviews the general radiation protection law at international and national level, with particular reference to the recommendations of the International Commission on Radiological Protection (ICRP) which, although not mandatory, are nevertheless taken into consideration by international organisations establishing basic radiation protection standards such as the UN, IAEA, NEA and Euratom, at Community level, and by national legislation. These standards are therefore remarkably harmonized. Radiation protection rule applied in France for the different activities and uses of radioactive substances are then described, and finally, a description is given of the regulations governing artificial radioisotopes and radioactive effluents. (NEA) [fr

  19. Radiation protection standards

    International Nuclear Information System (INIS)

    Koelzer, W.

    1980-01-01

    The present paper deals with: Objectives and basic concepts of radiation protection, basic radiobiological considerations, the ICRP system of dose limitation and with operational radiation protection (limits, reference levels, occupational exposure). (RW)

  20. Ethical codes. Fig leaf argument, ballast or cultural element for radiation protection?; Ethik-Codes. Feigenblatt, Ballast oder Kulturelement fuer den Strahlenschutz?

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, Rainer [Nuclear Control and Consulting GmbH, Braunschweig (Germany)

    2014-07-01

    The international association for radiation protection (IRPA) adopted in May 2004 a Code of Ethics in order to allow their members to hold an adequate professional level of ethical line of action. Based on this code of ethics the professional body of radiation protection (Fachverband fuer Strahlenschutz) has developed its own ethical code and adopted in 2005.

  1. Program for radiation protection of the patient (Argentina)

    International Nuclear Information System (INIS)

    Touzet, Rodolfo E.; Perez, Maria del R.; Alfredo Buzzi; Andisco, Daniel

    2006-01-01

    After an initial period of conviction for installing an active discussion on radiation protection of patients inside the medical community, there were organized 'working groups' in radiodiagnosis, radiotherapy, nuclear medicine and on radiation protection of pregnant women. These groups began systematical activities, which received a strong institutional support of the Argentine Society of Radiology, toward the implementation of a 'Program of RPP' that is being put nowadays into practice. This program has three aims and a series of targets to be fulfilled in successive stages: basic aims and short term targets: 1) To guarantee the justification: first goal: development of the 'Prescription Guide' (achieved); 2) To optimize the radioprotection: first goal: Development of a 'Manual of Procedures' (achieved); 3) To prevent potential exposures: first goal: Design of a 'Basic quality system' in Health (achieved). The effective participation of the professional's and technician's associations in the development of the program of radiological protection of the patient is a key aspect for the success. (author) [es

  2. Radiation protection in nuclear reactors

    International Nuclear Information System (INIS)

    El-Ashkar, Mohamed

    2008-01-01

    Full text: People are exposed to ionizing radiation in many different forms: cosmic rays that penetrate earth atmosphere or radiation from soil and mineral resources are natural forms of ionizing radiation. Other forms are produced artificially using radioactive materials for various beneficial applications in medicine, industry and other fields. The greatest concerns about ionizing radiation are tied to its potential health effects and a system of radiation protection has been developed to protect people from harmful radiation. The promotion of radiation protection is one of the International Atomic Energy Agency main activities. Radiation protection concerns the protection of workers, members of public, and patients undergoing diagnosis and therapy against the harmful effects of ionizing radiation. The report covers the responsibility of radiation protection officer in Egypt Second Research Reactor (ETRR-2) in Inshas - Egypt, also presents the protection against ionizing radiation from external sources, including types of radiation, sources of radiation (natural - artificial), and measuring units of dose equivalent rate. Also covers the biological effects of ionizing radiation, personal monitoring and radiation survey instruments and safe transport of radioactive materials. The report describes the Egypt Second Research Reactor (ETRR-2), the survey instruments used, also presents the results obtained and gave a relations between different categories of data. (author)

  3. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1976-01-01

    The lecture is divided into five sections. The introduction deals with the physical and radiological terms, quantities and units. Then the basic principles of radiological protection are discussed. In the third section attention is paid to the biological effects of ionizing radiation. The fourth section deals with the objectives of practical radiological protection. Finally the emergency measures are discussed to be taken in radiation accidents. (HP) [de

  4. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  5. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  6. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  7. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  8. Workers radiation protection. Solutions accommodate new needs. The tool box of radiation protection expands itself. Industrial radiology: workers aware of risks. To design a shielded enclosure

    International Nuclear Information System (INIS)

    Rannou, Alain; Billarand, Yann; Scanff, Pascale; Etard, Cecile; Sage, Julie; Jolivet, Patrick; Israel, Sylvain; Caplin, Helene; Couasnon, Olivier; Cordelle, Anne

    2017-01-01

    A first article proposes an overview of developments in the field of workers radiation protection. This development is notably motivated by the future dismantling works. It can be noticed that some other issues are considered as more important than radiation protection in the medical field even though radiation protection is a matter of concern for radiology manipulators. Radiation protection is also an issue for workers performing luggage X-ray controls in airports. As revealed by some measurements, artificial radioactivity should be controlled. Radiation protection is planned in relationship with an exposure scenario. The Belgium example is evoked with the development of centralised data and statistics in order to compare workers profiles. A second article comments the evolution of the activity of radiation protection with its new documents, methodologies (notably for operating rooms), and practical studies. While indicating how much the number of specialised workers increased, and how much dose control has been developed in the medical sector, and in terms of workers wearing a ring- or wrist-dosimeter between 2006 and 2015, and also indicating the distribution of controlled workers among sectors, the article outlines that a computation tool is shared between professionals, and how sheets on radionuclides are published and shared. The third article briefly addresses industrial radiology to outlines that workers are always more aware of risks. The last article briefly describes how a shielded enclosure is designed to limit workers exposure

  9. Policy, development and delivery of education and training programmes in radiation protection: a crucial contribution to the safe use of ionising radiation

    International Nuclear Information System (INIS)

    Coeck, Michèle

    2014-01-01

    Need for radiation protection knowledge, skills and competences: Today’s situation - Over past years: decrease in number of high-level competences in radiation protection. However, increased attention to RP is needed: more technologies (and more frequently used) rely on ionizing radiation. Actions: Fill the gap - Increase awareness that knowledge of RP science and adequate skills are important (at all levels in medical, industry, research, …). Prepare for future needs - Support of young students and professionals in their need to gain and maintain high level radiation protection competences. Attract new people: Provide adequate E and T - Develop good infrastructure for education and training: → to combat the decline in expertise; → to assure high level of future RP knowledge and skills; → Overall safe use of ionizing radiation

  10. What is good radiation protection?

    International Nuclear Information System (INIS)

    Lorenz, B.

    2016-01-01

    Radiation protection is based on the ICRP-System with its pillars justification, limitation and optimization. From this radiation protection should be the same irrespective of the application of radiation. But radiation protection in the nuclear industry is much different from the use of radiation sources or X-ray units. This is by far not due to the different technologies. It originates from the different interpretation of the system. For one person good radiation protection would mean to have no radiation exposures, to avoid radiation at all as best option and to use it only if there are no alternatives. For another person the best radiation protection would be the one which does not produce much efforts and costs. So what is reasonable? In reality the first interpretation prevails, at least in Germany. A change is needed. If we continue to exercise radiation protection as we do it today the beneficial application of radiation will be restricted unduly and might become impossible at all. A stronger orientation towards the naturally occurring radiation would help instead to regulate natural radiation in the same way as it is done for artificial radiation. The system of ICRP has to be changed fundamentally.

  11. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    International Nuclear Information System (INIS)

    2003-07-01

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The

  12. Education in nuclear physics, medical physics and radiation protection in medicine and veterinary medicine

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.; Andric, S.

    2001-01-01

    Education in Nuclear Physics, Medical Physics and Radiation Protection in medicine and veterinary medicine studies on Belgrade University is an integral part of the curriculum, incorporated in different courses of graduate and post-graduate studies. During graduate studies students get basic elements of Nuclear Physics through Physics and/or Biophysics courses in the 1 st year, while basic knowledge in Medical Physics and Radiation Protection is implemented in the courses of Radiology, Physical Therapy, Radiation Hygiene, Diagnostic Radiology and Radiation Therapy in the 4 th or 5 th year. Postgraduate studies offer MSc degree in Radiology, Physical Therapy, while courses in Nuclear Physics, Nuclear Instrumentation, Radiation Protection and Radiology are core or optional. On the Faculty of Veterinary Medicine graduated students may continue their professional education and obtain specialization degree in Radiology, Physical Therapy or Radiation Protection. On the Faculty of Medicine there are specialization degrees in Medical Nuclear Physics. Still, a closer analysis reveals a number of problems both from methodological and cognitive point of view. They are related mostly to graduate students ability to apply their knowledge in practise and with the qualifications of the educators, as those engaged in graduate studies lack basic knowledge in biological and medical sciences, while those engaged in post graduate studies mostly lack basic education in physics. Therefore, a reformed curricula resulting from much closer collaboration among educators, universities and professional societies at the national level should be considered. (author)

  13. Protection From Radiation Of Allied Health Professionals

    International Nuclear Information System (INIS)

    Medvedec, M.

    2015-01-01

    According to the Croatian legislators, but not to the International (ISCO-08) and National (NKZ-10) Standard Classification of Occupations, university degree health professionals are limited to those individuals who have health-orientated education gained at the School of Medicine, School of Dental Medicine, Faculty of Pharmacy and Biochemistry, and study programs of Speech and Language Pathology. All other clinical scientists are considered as university degree non-health professionals who participate in diagnostic and therapeutic procedures, i.e. as allied health professionals. The objective of this paper is to discuss the status of university degree health associates within the Croatian health care system. The latest Ordinance on job titles/positions and coefficients of job complexity (i.e. basic salary coefficients) in public services provides only one coefficient (1.571) for clinical physicists, psychologists, biologists etc., and just three coefficients (1.445, 1.513, 1.571) for clinical engineers, social workers etc., at the bottom of the coefficients scale of all clinical staff completed different university studies of equal duration in years and/or workloads in European Credit Transfer and Accumulation System (ECTS) credits. Simultaneously, there are 30 coefficients (1.659-2.361) for health professionals, meticulously taking into account all possible combinations of their employment in state hospital/institute or not, obtained B.Sc., M.Sc. or Ph.D. degrees, titles of primarius, specialist or subspecialist, etc. Since 750 university degree health associates make currently only about 1 percent of the Croatian health workforce, any discrimination among clinical staff is unnecessary. Full regulation and appreciation of all professions, equal opportunities of continuing professional education and training, as well as career advancement (internship, residency, sub-specialization, postgraduate specialist programs, etc.) should be facilitated and provided to all

  14. The principles of radiation protection

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of radiation protection is to avoid or to reduce the risks linked to ionizing radiation. In order to reduce these risks, the radiation protection uses three great principles: justification, optimization and limitation of radiation doses. to apply these principles, the radiation protection has regulatory and technical means adapted to three different categories of people: public, patients and workers. The nuclear safety authority elaborates the regulation, and carries out monitoring of the reliable application of radiation protection system. (N.C.)

  15. Principles of Radiation Protection Concepts

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli

    2004-01-01

    The contents of this chapter are follows - Radiation Protection Concepts: justification, dose limitation, optimisation, potential exposures, situation requiring intervention; Special Considerations. Protection from Radiation Hazards, Remove the Hazard, Prevent the Hazard, Guard the Worker, Implementation of Radiation Protection and Safety Measures, Distance, Shielding, Time, Monitoring Programme, Safety System. Radiation Protection in Radiological Service: Specific Requirement in Diagnostic Radiological Service

  16. Foundations of radiation physics and radiation protection. 5. ed.

    International Nuclear Information System (INIS)

    Krieger, Hanno

    2017-01-01

    The following topics are dealt with: Types of radiation and radiation fields, the atomic structure, radioactive decays, decay law, natural and artificial radioactivity, interactions of ionizing photon radiation, attenuation of neutral-particle beams, interactions of neutron radiation, interactions of charged particles, ionization and energy transfer, radiation doses, radiation protection phantoms, foundations of the radiation biology of cells, effects and risks of ionizing radiation, radiation expositions of men with ionizing radiation, radiation protection law, practical radiation protection against ionizing radiations, radiation eposures in medical radiology. (HSI)

  17. Eighth meeting of the radiation protection-skilled persons - Conference proceedings

    International Nuclear Information System (INIS)

    Juhel, Thierry; Lahaye, Thierry; Rousse, Carole; Perrin, Marie-Line; Billarand, Yann; Scanff, Pascale; Celier, David; El Jammal, Marie-Helene; Jacob, Sophie; Vecchiola, Sophie; Bulla, Giuseppina; Guillalmon, Christophe; Mechin, Guillaume; Guersen, Joel; Blaise, Philipp; Ammerich, Marc; Bordy, Jean-Marc; Sevestre, Bernard; Massiot, Philippe; Michel, Xavier; Raffoux, Yann; Kernisant, Billy; Lefaure, Christian; Balduyck, Sebastien; Wassilieff, Serge; Ouabdelkader, Said; Lecu, Alexis; Roy, Catherine; Pigree, Gilbert; Barbey, Pierre; Bergeron, Christophe; Schieber, Caroline

    2012-12-01

    This eighth meeting of the radiation protection skilled persons celebrated the 15. anniversary of this type of meetings. It is the occasion for radiation protection specialists to share information and their experience on various topics, in particular the recent evolutions of the regulation. This document gathers the available presentations given during this conference: 1 - Opening talk (T. Juhel); 2 - Regulatory evolutions in the domain of protection of workers exposed to ionising radiations (T. Lahaye); 3 - Evolution of the regulatory documents on the basis of the French public health law (C. Rousse); 4 - Relations between IRSN and Companies - regulatory obligations from the perspective of the radiation protection-skilled person (Y. Billarand); 5 - IRSN's follow up of workers' exposure (P. Scanff); 6 - Contribution of a 18 F preparation and injection system to the radiation protection of workers (D. Celier); 7 - Workplace analysis in interventional radiology (G. Bulla, C. Guillalmon); 8 - Interest of Workplace analyses in risk information (G. Mechin); 9 - Running of a joint operators/contractors club of radiation protection skilled persons at the scale of a CEA centre (P. Blaise); 10 - Radiological exposure of the maintenance personnel of aerial monitoring radars (X. Michel); 11 - The IRSN barometer (M.H. El Jammal); 12 - An original network of professional radiation protection: the GoogleGroup for dental radiation protection-skilled persons (Y. Raffoux); 13 - Cirkus radiation protection association - a portal for a practical and operational radiation protection (B. Kernisant); 14 - Situation of networks - what do we do in a network? What is the role of the national coordination? (S. Balduyck, C. Lefaure); 15 - Update on the situation at Fukushima (M. Ammerich); 15 - Radio-induced cataracts: why lowering the eye lens legal limit? (S. Wassilieff); 16 - O'CLOC study - Radio-induced cataracts among interventional Cardiologists (S. Jacob); 17 - Photon dosimetry of

  18. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    International Nuclear Information System (INIS)

    Rehani, M.

    2015-01-01

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  19. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Rehani, M. [Massachusetts General Hospital (United States)

    2015-06-15

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks in public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation

  20. Radiation Protection Training in Lithuania

    International Nuclear Information System (INIS)

    Jankauskiene, D.

    2003-01-01

    Radiation Protection Training is an important component of Radiation Protection and serves for human radiation safety. According to the Lithuanian Law on Radiation Protection the legal persons and enterprises without the status of legal persons to conduct practices with sources or which workers work under exposure must organize at their own expenses a compulsory training and assessment of knowledge of the workers engaging in activities with the sources and radiation protection officers. Such training has been started in 1999. In Lithuania there are few institutions executing Radiation Protection training. Under requirements of legal act On Frequency and Procedure of Compulsory Training and Assessment Knowledge of the Workers Engage in Activities with the Sources of Ionising Radiation and Radiation Protection Officers these institutions have to prepare and coordinate training programs with the Radiation Protection Center. There are adopted different educating programs for Radiation Protection Training to the Workers and Radiation Protection Officers depending on character of work and danger of sources. The duration of Training is from 30 to 270 hours. The Training shall be renewed every five years passing 30 hors course. To ensure the adequate quality of training a great deal of attention is paid to qualifying the lectures. For this purpose, it was established an Evaluation commission to estimate the adequacy of lecturer's knowledge to requirements of Training programs. After passing exams the lectures get the qualification confirming certificates. The main task of our days is to establish and arrange the National Training Centre on Radiation Protection Training that would satisfy requirements and recommendations of legal documents of IAEA and EU for such kind of institutions of institutions. (Author)

  1. Proceedings: Radiation Protection Technology Conference: Providence, RI, November 2001

    International Nuclear Information System (INIS)

    2002-01-01

    Health physics (HP) professionals within the nuclear industry are continually upgrading their respective programs with new methods and technologies. The move to shorter outages combined with a diminishing group of contract HP technicians and demanding emergent work makes such changes even more important. The EPRI Radiation Protection Technology Conference focused on a number of key health physics issues and developments

  2. Practical radiation protection

    International Nuclear Information System (INIS)

    Brouwer, G.; Van den Eijnde, J.H.G.M.

    1997-01-01

    This textbook aims at providing sufficient knowledge and insight to carry out correctly radiation protection activities and operations. The subjects are appropriate for the training of radiation protection experts for the levels 5A (encapsulated sources, X rays) and 5B (open sources, laboratory activities)

  3. Delivering a radiation protection dividend: systemic capacity-building for the radiation safety profession in Africa

    Directory of Open Access Journals (Sweden)

    Julian Hilton

    2014-12-01

    Full Text Available Many African countries planning to enter the nuclear energy “family” have little or no experience of meeting associated radiation safety demands, whether operational or regulatory. Uses of radiation in medicine in the continent, whether for diagnostic or clinical purposes, are rapidly growing while the costs of equipment, and hence of access to services, are falling fast. In consequence, many patients and healthcare workers are facing a wide array of unfamiliar challenges, both operational and ethical, without any formal regulatory or professional framework for managing them safely. This, combined with heighted awareness of safety issues post Fukushima, means the already intense pressure on radiation safety professionals in such domains as NORM industries and security threatens to reach breaking point. A systematic competency-based capacity-building programme for RP professionals in Africa is required (Resolution of the Third AFRIRPA13 Regional Conference, Nairobi, September 2010. The goal is to meet recruitment and HR needs in the rapidly emerging radiation safety sector, while also addressing stakeholder concerns in respect of promoting and meeting professional and ethical standards. The desired outcome is an RP “dividend” to society as a whole. A curriculum model is presented, aligned to safety procedures and best practices such as Safety Integrity Level and Layer of Protection analysis; it emphasizes proactive risk communication both with direct and indirect stakeholders; and it outlines disciplinary options and procedures for managers and responsible persons for dealing with unsafe or dangerous behavior at work. This paper reports on progress to date. It presents a five-tier development pathway starting from a generic foundation course, suitable for all RP professionals, accompanied by specialist courses by domain, activity or industry. Delivery options are discussed. Part of the content has already been developed and delivered as

  4. Evaluation of surgical gloves for radiation protection

    International Nuclear Information System (INIS)

    Antolin, E.; Rot, M.J.; Ordonez, J.; Arranz, L.; Sastre, J.M.; Ferrer, N.; Andres, J.C. de

    2006-01-01

    Full text of publication follows: Accumulated doses in hands during interventionist cardiology and radiological procedures can reach high values, and even go beyond legal limits for exposed professionals after years of work, unless they use specific radiation protection methods. An important protection mean for hands is the use of surgical gloves that attenuate the radiation while maintaining the tactile sensitivity demanded by physicians.There is a wide variety of commercialized gloves for radiation protection, with different advantages and disadvantages for various uses. In this paper nine different models of gloves have been evaluated for testing its attenuation capacity for several voltages, the maintenance of tactile sensitivity, its resistance to elongation, and the apparition of pores after successive sterilizing processes. It is very important that they do not lose its initial characteristics after processes of sterilization in order to optimize the product effective cost. The attenuation values have been measured under the voltages of 60, 70, 80 and 90 KVp obtaining very different values at each voltage with different gloves. The values measured range between 34 % before any supplementary sterilization with one model of glove (for 90 KVp), and 57 % after four sterilization processes with another glove (for 60 KVp). Some gloves lose its attenuation capacity after successive sterilizations, having not been found an y significant relation with their composition. The tactile sensitivity, a decisive factor for its users, decreases as its attenuation capacity increases, and remains mostly constant after being sterilized. The tests performed allow to conclude a set of fi nal results that can facilitate the choice of the most suitable gloves according to the practical applications (the priorities being the radiation protection and the tactile sensitivity)

  5. Perspectives for environmental radiation protection in EU radiation protection legislation

    International Nuclear Information System (INIS)

    Janssens, A.

    2000-01-01

    The basis of EU radiation protection legislation is the EURATOM Trealy. It is discussed whether the Treaty offers a legal basis for the protection of the natural environment. The incorporation of provisions pertaining to the nuclear fuel cycle or to radioactive substances in general environmental legislation is explained, as well as the possible implications of international conventions subscribed by the European Union. The European Commission is in the process of developing an overall approach to risk analysis for the protection of health, consumer interests, and the environment. It is examined to what extent the consideration of the impact of radiation on the natural environment fits in the overall framework and whether the principles underlying classical radiation protection are applicable to biota. Specific attention is given to situations where high levels of environmental radioactivity would require intervention. (Author)

  6. Radiation Protection Control Area Around Baggage Control X-ray Units

    International Nuclear Information System (INIS)

    Prlic, I.; Radalj, Z.; Milkovic-Kraus, S.; Cerovac, Z.

    2003-01-01

    The importance of prompt occupational dose reporting rises when dose is received within a short-time interval or when the radiation source suffers any technical failures. Radiation exposure is to be recognized as a private/or group hazard of each person alone. Actual radiation quality of the source is to be taken into account. To optimize the radiological radiation protection Quality Control measurements of the source are done. We have developed digital dosemeters of type ALARA OD2 for external dosimetry to be used for establishing the real pattern of occupational dose delivered to the workers or/and as the (Ort) professional environmental measuring station. We are using dosemeter to define the control areas and areas of concern - point (Ort) around the source. This upgrade to legal obligatory external (film badge) dosimetry will help us to ease defining the professional stuff and working places which are actually exposed to ionising radiation of concern and for which it is necessary to provide legally required, or even additional, occupational health care programme. This means the analysis of exposure situations for specific jobs near the X-ray equipment used for baggage control in the context of carrying out a detailed study for the optimisation of radiation protection. PC data readout from device forms a real time exposure dose rate pattern that proves that any worker or other employee working nearby the baggage X-ray unit is not obliged to undergo any legal occupational monitoring (dosimetry or health) hence the total dose per year will not exceed 1 mSv under the worst working conditions. (author)

  7. Continuing Professional Development (CPD) of the nuclear and radiation professional engineers

    International Nuclear Information System (INIS)

    Sasaki, Satoru

    2016-01-01

    Professional Engineer is the national qualification stipulated by the Professional Engineer Act. A Professional Engineer in this Act means a person who conducts business on matters of planning, research, design, analysis, testing, evaluation or guidance thereof, which requires application of extensive scientific and technical expertise, and has three obligation and two responsibility related to engineer ethic. A technical discipline for nuclear and radiation technology in 2004, was established for the purpose of upgrading the skills of engineers in nuclear technology fields, utilizing their ability in nuclear safety regulation fields, and further strengthening safety management system in each entity. The activity of the nuclear and radiation professional engineers for the past 10 years was evaluated. For the next ten years, awareness of the role of the professional engineer to talk with general public is needed, and it is important to continue professional development. (author)

  8. Swedish Radiation Protection Institute: information activities

    International Nuclear Information System (INIS)

    Persson, Lars

    2000-01-01

    The purpose of SSI's Information and PR Service is to broaden public awareness of radiation and radiation risks as well as to fulfill other performance goals. SSI achieves this through its advisory, educational and informative activities. SSI publishes two external magazines, Stralskyddsnytt and SSI News. Stralskyddsnytt - which is available in Swedish only - has a circulation of 2,000 and is published four times a year. SSI News - which is in English - is published twice a year and has a circulation of about 1,800. Another important channel of communication is the web site (www.ssi.se). Taking advantage of PUSH technology, SSI also distributes, by e-mail, press releases and other important information on radiation to radiation protection professionals in Sweden. SSI continuously monitors news by subscribing to a press clipping service. SSI Training is a commercial unit within the Information and PR Service. A policy for mass media contacts exists as well as a policy for internal communication. SSI has a graphic profile. SSI has a specialized research library. (author)

  9. Swedish radiation protection institute. Information activities

    International Nuclear Information System (INIS)

    Persson, Lars

    1999-01-01

    The purpose of SSI's information and PR Service is to broaden public awareness of radiation and radiation risks as well as to fulfil other performance goals. SSI achieves this through its advisory, educational and informative activities. SSI publishes two external magazines, Straalskyddsnytt and SSI News. Straalskyddsnytt - which is available in Swedish only - has a circulation of 2,400 and is published four times a year. SSI News - which is in English - is published twice a year and has a circulation of about 1,500. Another important channel of communication is the web site (www.ssi.se). Taking advantage of PUSH technology, SSi also distributes, by e-mail, press releases and other important information of radiation to radiation protection professionals in Sweden. SSI continuously monitors news by subscribing to a press clipping service. SSI Training is a commercial unit within the Information and PR Service. A policy for mass media contacts exists as well as a policy for internal communication. SSI has a graphic profile. SSI has a specialised research library. (au)

  10. Philosophy of radiological protection and radiation hazard protection law

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kawano, Takao

    2013-01-01

    The radiation protection and the human safety in radiation facilities are strictly controlled by law. There are rules on the radiation measurement, too. In the present review, philosophy of the radiological protection and the radiation hazard protection law is outlined with reference to ICRP recommendations. (J.P.N.)

  11. Radiation Protection Proclamation

    International Nuclear Information System (INIS)

    1993-01-01

    A proclamation of the Government of Ethiopia, cited as the radiation protection proclamation number 79/1993 was prepared with the objective to establish a national radiation protection authority that formulates policies, controls and supervises activities involving all sources of radiation and lay down laws governing such activities in order to ensure public safety against associated hazards while allowing radiation related activities to be carried out for the benefit of the public . The Authority is guided by an inter-ministerial board and is accountable to the Ethiopian Science and Technology Commission

  12. National congress of radiation protection

    International Nuclear Information System (INIS)

    2001-01-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  13. Instructed officers Radiation Protection

    International Nuclear Information System (INIS)

    2007-01-01

    This law contains instructions on the prevention of radiological and contains 4 articles Article I: describe the responsibilities of the institutions that operate within the scope of radiological protection in terms of the number of radiation protection officers and personal Supervisors who available in the practices radiation field. Article II: talking about the conditions of radiation protection officers that must be available in the main officers and working field in larg institutions and thecondition of specific requirements for large enterprises of work permits in the field of radiological work that issued by the Council. Article III: the functions and duties of officers in the prevention of radiological oversee the development of radiation protection programmes in the planning stages, construction and preparing the rules of local labour and what it lead of such tasks.Article IV: radiation protection officers powers: to modify and approve the programme of prevention and radiation safety at the company, stop any unsafe steps, amend the steps of the usage, operation of materials, devices and so on

  14. Justification, optimization and classification of exposure situations in radiation protection

    International Nuclear Information System (INIS)

    Skrabalek, P.

    2017-01-01

    Inspiration to this brief information was the experience of studying the draft Radiation Protection Act submitted by the Ministry of Health to the Interdepartmental Annotation Procedure (IAP) on July 20, 2017 and of the IRP itself. The bill was drafted by officials from the Public Health Service. People who are expected to be well aware of the issue because they form national safety standards and laws, and manage and direct treatment of ionizing radiation sources, and oversee observing rules of protecting humans from the hazardous effects of ionizing radiation sources. Rules on the handling and protection of radiation sources for dangerous effects are recommended by multinational organizations. They are headed by ICRP International Radiological Protection Committee, which periodically issues updated radiation protection guidelines around the 10-year period. In line with ICRP recommendations, other professional organizations, such as the IAEA, WHO, EURATOM, and, ultimately, national governments, update their basic safety standards, translating recommendations into the national legal system. Most of interested know that ICRP 103 (2007) has brought some changes to the radiation protection system. In particular, there was an increased emphasis on the comprehensive optimization of radiation protection, and in the context of the recitals principle, the meaning of the word 'harm' was broadened. In addition to health damage, in the sense of which we have long been accustomed, it includes all economic and social losses to which comes from the introduction of the radiation source and introduction of protective measures around it. To simplify access to protect people from the effects of radiation and radiation sources, three basic models of human irradiation - exposure situations: - Exposure scenarios are the result of the optimization of human irradiation due to the operation of the radiation source or the performance of activities where the risk of irradiation is not

  15. Radiation exposure and radiation protection

    International Nuclear Information System (INIS)

    Heuck, F.; Scherer, E.

    1985-01-01

    The present volume is devoted to the radiation hazards and the protective measures which can be taken. It describes the current state of knowledge on the changes which exposure to ionizing rays and other forms of physical energy can induce in organs and tissues, in the functional units and systems of the organism. Special attention is paid to general cellular radiation biology and radiation pathology and to general questions of the biological effects of densely ionizing particle radiation, in order to achieve a better all-round understanding of the effects of radiation on the living organism. Aside from the overviews dealing with the effects of radiation on the abdominal organs, urinary tract, lungs, cerebral and nervous tissue, bones, and skin, the discussion continues with the lymphatic system, the bone marrow as a bloodforming organ, and the various phases of reaction in the reproductive organs, including damage and subsequent regeneration. A special section deals with environmental radiation hazards, including exposure to natural radiation and the dangers of working with radioactive substances, and examines radiation catastrophes from the medical point of view. Not only reactor accidents are covered, but also nuclear explosions, with exhaustive discussion of possible damage and treatment. The state of knowledge on chemical protection against radiation is reviewed in detail. Finally, there is thorough treatment of the mechanism of the substances used for protection against radiation damage in man and of experience concerning this subject to date. In the final section of the book the problems of combined radiotherapy are discussed. The improvement in the efficacy of tumor radiotherapy by means of heavy particles is elucidated, and the significance of the efficacy of tumor therapy using electron-affinitive substances is explained. There is also discussion of the simultaneous use of radiation and pharmaceuticals in the treatment of tumors. (orig./MG) [de

  16. Phosphorus-32: practical radiation protection

    International Nuclear Information System (INIS)

    Ballance, P.E.; Morgan, J.

    1987-01-01

    This monograph offers practical advice to Radiation Protection Advisors, Radiation Protection Supervisors and Research Supervisors, together with research workers, particularly those in the field of molecular biological research. The subject is dealt with under the following headings: physical properties, radiation and measurement methods, radiation units, phosphorus metabolism and health risks, protection standards and practical radiation protection, administrative arrangements, accidents, decontamination, emergency procedures, a basic written system for radiochemical work, with specialised recommendations for 32 P, and guidance notes of accident situations involving 32 P. (U.K.)

  17. Optimisation of radiation protection

    International Nuclear Information System (INIS)

    1988-01-01

    Optimisation of radiation protection is one of the key elements in the current radiation protection philosophy. The present system of dose limitation was issued in 1977 by the International Commission on Radiological Protection (ICRP) and includes, in addition to the requirements of justification of practices and limitation of individual doses, the requirement that all exposures be kept as low as is reasonably achievable, taking social and economic factors into account. This last principle is usually referred to as optimisation of radiation protection, or the ALARA principle. The NEA Committee on Radiation Protection and Public Health (CRPPH) organised an ad hoc meeting, in liaison with the NEA committees on the safety of nuclear installations and radioactive waste management. Separate abstracts were prepared for individual papers presented at the meeting

  18. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  19. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system

  20. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system. 8 refs

  1. A training syllabus for radiation protection in dental radiology

    International Nuclear Information System (INIS)

    Gallagher, A.; Dowling, A.; Renehan, J.; Clarke, D.; Malone, J. F.

    2008-01-01

    The EU Council Directive 97/43/EURATOM (MED) states that Member States shall ensure that adequate theoretical and practical training is provided for dental practitioners working with ionising radiation; this also includes the provision of continuing education and training programmes, post-qualification. The area of dental radiology is specifically mentioned in this legally binding document. The Dept. of Medical Physics and Bioengineering, St James's Hospital, Dublin, is particularly interested in the area of radiation protection training and routinely provides educational courses both at national and international levels. A recent review of their dental radiation protection course was undertaken in conjunction with a number of Principal Dental Surgeons within the Health Service Executive in Ireland. The revised course was delivered to over 200 dental staff members at two separate meetings during 2006. The response from attendees was very positive. It is proposed to extend this course to other dental professionals, working both in the Irish private and public health sectors in the future. (authors)

  2. A training syllabus for radiation protection in dental radiology.

    LENUS (Irish Health Repository)

    Gallagher, A

    2008-01-01

    The EU Council Directive 97\\/43\\/EURATOM (MED) states that Member States shall ensure that adequate theoretical and practical training is provided for dental practitioners working with ionising radiation; this also includes the provision of continuing education and training programmes, post-qualification. The area of dental radiology is specifically mentioned in this legally binding document. The Department of Medical Physics and Bioengineering, St James\\'s Hospital, Dublin, is particularly interested in the area of radiation protection training and routinely provides educational courses both at national and international levels. A recent review of their dental radiation protection course was undertaken in conjunction with a number of Principal Dental Surgeons within the Health Service Executive in Ireland. The revised course was delivered to over 200 dental staff members at two separate meetings during 2006. The response from attendees was very positive. It is proposed to extend this course to other dental professionals, working both in the Irish private and public health sectors in the future.

  3. Radiation protection in hospitals

    International Nuclear Information System (INIS)

    MOuld, R.F.

    1985-01-01

    A book on radiation protection in hospitals has been written to cater for readers with different backgrounds, training and needs by providing an elementary radiation physics text in Part I and an advanced, comprehensive Part II relating to specific medical applications of X-rays and of radioactivity. Part I includes information on basic radiation physics, radiation risk, radiation absorption and attenuation, radiation measurement, radiation shielding and classification of radiation workers. Part II includes information on radiation protection in external beam radiotherapy, interstitial source radiotherapy, intracavitary radiotherapy, radioactive iodine-131 radiotherapy, nuclear medicine diagnostics and diagnostic radiology. (U.K.)

  4. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    This textbook is addressed to all those concerned with the protection of radiation workers. It provides full coverage of the implications of radiation in exposed workers, and, after a chapter outlining, in simple terms, the basic facts about radiation, deals with measurement of ionising radiation; radiation dosimetry; effectiveness of absorbed dose; general biological effects of ionising radiation; somatic effects of radiation; the acute radiation syndrome; other somatic effects; hereditary effects; radiation protection standards and regulations; radiation protection; medical supervision of radiation workers; general methods of diagnosis and treatment; metabolism and health problems of some radioisotopes; plutonium and other transuranium elements; radiation accidents; emergency plans and medical care; atomic power plants; medico-legal problems

  5. Radiation Protection Infrastructure In Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, R.; Ratovonjanahary, J.F.; Zafimanjato, J.L.R.; Randriantseheno, H.F.; Ramanandraibe, M.J.; Randriantsizafy, D.R.

    2008-01-01

    Radiation sources are widely used in medicine, industry, research and education in Madagascar. Safety and security of these sources are the main statutory functions of the Regulatory Authority as defined by the regulations in Radiation Protection in Madagascar. These functions are carried out through the system of notification, authorization and inspection, inventory of radiation source and emergency preparedness. The law no 97-041 on radiation protection and radioactive waste management in Madagascar was promulgated on 2nd January 1998. It governs all activities related to the peaceful use of nuclear energy in Madagascar in order to protect the public, the environment and for the safety of radiation sources. This law complies with the International Basic Safety Standards for protection against ionising Radiation and for the Safety of Radiation Sources (BSS, IAEA Safety Series no 115). Following the promulgation of the law, four decrees have been enacted by the Malagasy Government. With an effective implementation of these decrees, the ANPSR will be the Highest Administrative Authority in the Field of Radiation Protection and Waste Management in Madagascar. This Regulatory Authority is supported by an Executive Secretariat, assisted by the OTR for Radiation Protection and the OCGDR for Managing Radioactive Waste.The paper includes an overview of the regulatory infrastructure and the organizations of radiation protection in Madagascar

  6. Radiation protection - thirty years after

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1989-01-01

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  7. Radiation protection - thirty years after

    Energy Technology Data Exchange (ETDEWEB)

    Ninkovic, M M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-07-01

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  8. ISO radiation protection standards

    International Nuclear Information System (INIS)

    Becker, K.; West, N.

    1981-01-01

    After a brief description of the International Organization for Standardization (ISO) and its Technical Committee (TC) 85 ''Nuclear Energy'', the work of its Sub-Committee (SC) 2 ''Radiation Protection'' is described in some detail. Several international standards on subjects closely related to radiation protection have already been published, for example ISO-361 (Basic radiation protection symbol), ISO-1757 (Photographic dosimeters), ISO-1758 and 1759 (Direct and indirect-reading pocket exposure meters), ISO-2889 (Sampling of airborne radioactive materials), ISO-4037 (X and gamma reference radiations for calibration) and ISO-4071 (Testing of exposure meters and dosimeters). TC 85/SC 2 has currently eight active Working Groups (WG) dealing with 14 standards projects, mostly in advanced stages, in such fields as neutron and beta reference radiations, and X and gamma radiations of high and low dose-rates and high energies for calibration purposes, reference radiations for surface contamination apparatus, ejection systems for gamma radiography apparatus, industrial and laboratory irradiators, lead shielding units, protective clothing, thermoluminescence dosemeters, radioelement gauges, and surface contamination and decontamination. (author)

  9. Radiation protection in hemodynamics work process: the look of the multidisciplinary team; Protecao radiologica no processo de trabalho em hemodinamica: o olhar da equipe multidisciplinar

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Laurete Medeiros; Klauberg, Daniela; Huhn, Andrea; Melo, Juliana Almeida Coelho de, E-mail: laurete@ifsc.edu.br, E-mail: danielaklauberg@hotmail.com, E-mail: andrea.huhn@ifsc.edu.br, E-mail: julianac@ifsc.edu.br [Instituto Federal de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    The study was conducted in a hemodynamics service of a public hospital in Florianopolis, SC, Brazil. Qualitative research with the participation of 13 professionals from a multidisciplinary team: doctors, technicians, technologists in radiology and nurses. The research material was extracted from the observations, semi-structured interviews and documentary analysis. The responses were grouped into three categories relating to: training of hemodynamic professionals and the perception of radiological protection in the work process; occupational exposure and safety of the professionals of Hemodynamics; and continuing education in hemodynamic service. Professionals are daily exposed to ionizing radiation, and for being long procedures, lead to high levels of exposure in workers. In hemodynamic services the risk of biological effects are cumulative, because radiodiagnostic procedures include issuing the higher doses of ionizing radiation in which the personnel exposure is critical. The workforce in the service researched mostly consists of technical professionals who reported little knowledge of radiation protection and ionizing radiation and that this issue was not addressed during their training. However, despite mention little knowledge about radiological protection, participants demonstrated understand the biological effects, especially with regard to pathologies caused by frequent exposure without protection to ionizing radiation. These professionals said they have no knowledge of the proper use of radiological protection equipment and the dosimeter, and that the institution does not provide all individual protective equipment required for the procedures performed in the hemodynamic service. Permanent education in hemodynamic service is very important part in the work process, though, cited by participants as little effectiveness in the institution, even when the professionals show interest in the area. Knowledge of the team providing hemodynamic service calls

  10. Radiation protection in radionuclide investigations

    International Nuclear Information System (INIS)

    Taylor, D.M.

    1985-01-01

    The subject is covered in sections: introduction; radiation and radioactivity; alpha particles; beta particles; neutrons; electromagnetic radiation; units of radioactivity and radiation; biological effects of radiation; the philosophy of radiation protection (ALARA principle); practical aspects of radiation protection; work with unsealed radiation sources; radionuclide studies in experimental animals; radiation safety during clinical investigations; legislative control of radiation work; radioactive waste disposal; emergency procedures; conclusion. (U.K.)

  11. Radiation protection housing

    Energy Technology Data Exchange (ETDEWEB)

    Maier, A

    1975-04-10

    The radiation protection housing consists of a foot rim with castor swivel wheels, a tubular frame tapering off at the top, and a crown. In the upper part of the tubular frame a lead glass window is permanently installed. The sides are covered with radiation attenuating curtains of leaded rubber. The housing has the shape of a truncated pyramid which can be dismantled into its constituent parts. It is used for protection from radiation encountered in X-ray facilities in dental radiology.

  12. New instruments for radiation protection

    International Nuclear Information System (INIS)

    Bartos, D.; Ciobanu, M.; Constantin, F.; Petcu, M.; Plostinaru, V.D.; Rusu, Al.; Lupu, A.C.; Lupu, F.

    2003-01-01

    Though a century old, the radiation protection is actual by its purpose: a dose as low as reasonable achievable is to be received either by involved professionals or population. This threshold is dependent on the technical progress. Some major developments like surface mounted device technology, consumer almost ideal operational amplifiers, microcontrollers and the news signal digital processing techniques, offer the opportunity to design improved instruments for radioprotection. To put in a light portable instrument both the whole measuring system and the 'intelligence' - a microcontroller and the associated software - are the main ideas applied by the authors. The result is presented: a family of eight members, at least, based on two parents. (authors)

  13. Radiation risk assessment in professionals working in dental radiology area using buccal micronucleus cytome assay.

    Science.gov (United States)

    Sadatullah, Syed; Dawasaz, Ali Azhar; Luqman, Master; Assiry, Ali A; Almeshari, Ahmed A; Togoo, Rafi Ahmad

    2013-11-01

    The aim of this study was to assess the incidence of micronuclei (MN) in buccal mucosal cells of professionals working in radiology area to determine the risk of stochastic effects of radiation. All the professionals and students working in King Khalid University - College of Dentistry radiology area were included in the Risk Group (RG = 27). The Control Group (CG = 27) comprised of healthy individual matching the gender and age of the RG. Buccal mucosal scraping from all the 54 subjects of RG and CG were stained with Papanicolaou stain and observed under oil immersion lens (×100) for the presence of micronuclei (MN) in the exfoliated epithelial cells. There was no significant difference between the incidence of MN in RG and CG (p = >0.05) using t-test. Routine radiation protection protocol does minimize the risk of radiation induced cytotoxicity, however, screening of professionals should be carried out at regular intervals.

  14. Radiation Protection Training in Intracoronary Brachytherapy

    International Nuclear Information System (INIS)

    Prieto, C.; Vano, E.; Fernandez, J. M.; Sabate, M.; Galvan, C.; Meiggs, L.; Corral, J. M.

    2003-01-01

    To report the educational objectives and contents on Radiation Protection (RP) for the practice of Intracoronary Brachytherapy (ICB) procedures. The wide international experience on training programs for ICB as well as our own experience organizing several courses aimed at Cardiologists, Radio therapists and Medical Physicists has been used to elaborate specific RP objectives and contents. The objectives, differentiated for Cardiologists, Radio therapists, Medical Physicists, Nurses and Technicians, pretend to guarantee the safety and RP of both patient and staff in the procedures of ICB. The objectives are necessarily different because their RP formation and their role in the procedure are different. The general topics included in RP training programmes for ICB could be: general topics on RP (Interaction of radiation and matter, RP principles, radiobiology, etc), principles of operation of ICB and interventional X-ray equipment, quantification of radiation dose and risks, optimisation of protection of staff and patients, accidents and emergencies, regulations, responsibilities, quality assurance program, handling of ICB sources, installation and commissioning. Training programs based on the objectives presented in this paper would encourage positive safety culture in ICB and can also be used as a starting point by the Regulatory Authority for the authorization of new Installations and credentialing of professionals involved in this technique as well as for the continuous education of the staff involved. (Author) 10 refs

  15. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Persson, Lars

    2000-03-01

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report

  16. Ethical issues in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Lars (ed.)

    2000-03-15

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report.

  17. Is radiation protection for the unborn child guaranteed by radiation protection for female workers?

    International Nuclear Information System (INIS)

    Nosske, C.; Karcher, K.

    2003-01-01

    ICRP Publication 88 recommends doses to embryo and fetus from intakes of radionuclides by the mother for various intake scenarios. Mainly by answering the question 'Is radiation protection for the unborn child guaranteed by radiation protection for female workers?' it has been assessed if the intake scenarios given in ICRP Publication 88 are adequate for radiation protection purposes. This is generally the case, but the consideration of an additional chronic intake scenario for early pregnancy would be helpful. It is demonstrated that following chronic intake by inhalation, for most radionuclides radiation protection for (female) workers is also adequate for protection of the unborn child, considered as a member of the public. However, there are a number of radionuclides for which possible intakes in routine operations should be more restricted (up to 1% of the annual limits on intake for workers in the case of nickel isotopes) to ensure radiation protection for the unborn child. (author)

  18. Health and radiation protection management

    International Nuclear Information System (INIS)

    Huhn, A.; Vargas, M.; Lorenzetti, J.; Lança, L.

    2017-01-01

    Quality management and continuous improvement systems are becoming part of daily health services, including radiodiagnostic services, which are designed to meet the needs of users, operating in an environment where the differential is due to the competence and quality of the services provided. The objective of this study is to show the scope of the management of health services, especially radiodiagnosis and radiological protection. Method: Exploratory and descriptive study, based on a review of the literature on the subject. Results: Radiodiagnosis has demonstrated the need for efficient management, especially because ionizing radiation is present in this environment and it is imperative that the professionals working in this area are aware of the need to perform adequate radiological protection for themselves and for users. Conclusion: Universal access to information has changed the attitude of the user and the user has become more demanding in his choices, wanting to understand, express, interact and choose the best quality service in view of the various options available in the market

  19. Optimization and radiation protection culture

    International Nuclear Information System (INIS)

    Jeon, In Young; Shin, Hyeong Ki; Lee, Chan Mi

    2013-01-01

    Safety culture or radiation protection culture is based in common on the term, 'culture'. Culture is defined as the learned, shared set of symbols and patterns of basic assumptions, which is invented, discovered, or developed by a given group as it learns to cope with its problem of external adaptation and internal integration. Safety culture generally refers to the attitude and behaviors affecting safety performance. The concept of 'Safety Culture' was introduced after the Chernobyl accident in 1986. For the accident, nuclear society reached the conclusion that the cause was the wrong management attitude of the NPP, that is, deficient 'Safety Culture'. Recently, 'Radiation Protection Culture' was introduced as the core concept of nuclear safety culture. There have been many efforts to establish definition and develop assessment tool for radiation protection culture in international level such as ICRP and IRPA as well as NRC. In the same context with the safety culture, radiation protection culture is defined as 'the core values and behaviors resulting from a collective commitment by leaders and individual's to emphasize safety over competing goals to ensure protection of people and the environment.' It is worthwhile to recognize that regulatory enforcement in establishing healthy radiation protection culture of operators should be minimized because culture is not in the domain of regulatory enforcement. However, as 'ALARA', the most important concept in radiation protection, may be successfully achieved only in well established radiation protection culture, the least regulatory intervention would be needed in promoting and nurturing radiation protection culture in licensee. In addition, the concept of radiation protection culture should be addressed in plant operational policy to achieve the goals of ALARA. The pre-condition of the successful radiation protection culture is a healthy organizational

  20. Optimization and radiation protection culture

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Young; Shin, Hyeong Ki; Lee, Chan Mi [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-04-15

    Safety culture or radiation protection culture is based in common on the term, 'culture'. Culture is defined as the learned, shared set of symbols and patterns of basic assumptions, which is invented, discovered, or developed by a given group as it learns to cope with its problem of external adaptation and internal integration. Safety culture generally refers to the attitude and behaviors affecting safety performance. The concept of 'Safety Culture' was introduced after the Chernobyl accident in 1986. For the accident, nuclear society reached the conclusion that the cause was the wrong management attitude of the NPP, that is, deficient 'Safety Culture'. Recently, 'Radiation Protection Culture' was introduced as the core concept of nuclear safety culture. There have been many efforts to establish definition and develop assessment tool for radiation protection culture in international level such as ICRP and IRPA as well as NRC. In the same context with the safety culture, radiation protection culture is defined as 'the core values and behaviors resulting from a collective commitment by leaders and individual's to emphasize safety over competing goals to ensure protection of people and the environment.' It is worthwhile to recognize that regulatory enforcement in establishing healthy radiation protection culture of operators should be minimized because culture is not in the domain of regulatory enforcement. However, as 'ALARA', the most important concept in radiation protection, may be successfully achieved only in well established radiation protection culture, the least regulatory intervention would be needed in promoting and nurturing radiation protection culture in licensee. In addition, the concept of radiation protection culture should be addressed in plant operational policy to achieve the goals of ALARA. The pre-condition of the successful radiation protection culture is a healthy organizational

  1. Manual on radiation protection in hospital and general practice. Volume 4. Radiation protection in dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Koren, K; Wuehrmann, A H

    1977-01-01

    The nine chapters of this manual on radiation protection in dentistry discuss the following topics: the need for radiation protection; delegation of responsibility; radiographic equipment; radiographic film; radiographic techniques; film processing and handling; patient doses; general radiation protection and monitoring; and educational standards. (HLW)

  2. Radiation Protection Ordinance 1989. Supplement with Radiation Protection Register Ordinance, general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance, general administration regulation pursuant to Sect. 62 sub-sect. radiation passport

    International Nuclear Information System (INIS)

    Veith, H.M.

    1990-01-01

    The addendum contains regulations issued supplementary to the Radiation Protection Ordinance: The Radiation Protection Register as of April 3, 1990 including the law on the setting up of a Federal Office on Radiation Protection; the general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance as of February 21, 1990; the general administration regulation pursuant to Sect. 62 sub-sect. 2 Radiation Protection Ordinance as of May 3, 1990 (AVV Radiation passport). The volume contains, apart from the legal texts, the appropriate decision by the Bundesrat, the official explanation from the Bundestag Publications as well as a comprehensive introduction into the new legal matter. (orig.) [de

  3. Radiation oncologists in 2000: demographic, professional, and practice characteristics

    International Nuclear Information System (INIS)

    Cypel, Yasmin; Sunshine, Jonathan H.; Schepps, Barbara

    2002-01-01

    Purpose: To describe the demographic, professional, and practice characteristics of radiation oncologists, emphasizing comparisons to data from a similar 1995 Survey. Methods and Materials: In spring 2000, we surveyed 603 randomly selected radiation oncologists by mail, using a one-page questionnaire - 455 responded. We weighted responses to make answers representative of all radiation oncologists in the United States. Results: Approximately 45% of post-training, professionally active, radiation oncologists were <45 years old and 22% were women. Forty-two percent of radiation oncologists in training were women. Thirty-three percent of radiation-oncology-only practices were solo practices. The greatest percentage of post-training, professionally active, radiation oncologists were in nonacademic private radiation oncology practices. Fifty-three percent of post-training, professionally active, radiation oncologists reported that their workload was about right. Eighteen percent of individuals 60-64 years old and approximately two-thirds of those ≥65 years old were not working (retired). The full-time equivalency of those aged 55-74 fell by 12 percentage points between 1995 and 2000. Conclusions: Most demographic, professional, and practice characteristics remained relatively constant between 1995 and 2000, with the exception of work status patterns. Radiation oncologists reported a more balanced workload than that reported by diagnostic radiologists. The surplus of radiation oncologists, which was predicted in the mid-1990s, was not demonstrated

  4. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  5. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  6. Understanding of radiation protection in medicine. Pt. 2. Occupational exposure and system of radiation protection

    International Nuclear Information System (INIS)

    Iida, Hiroji; Yamamoto, Tomoyuki; Shimada, Yasuhiro

    1997-01-01

    Using a questionnaire we investigated whether radiation protection is correctly understood by medical doctors (n=140) and nurses (n=496). Although medical exposure is usually understood by medical doctors and dentists, their knowledge was found to be insufficient. Sixty-eight percent of medical doctors and 50% of dentists did not know about the system of radiation protection. Dose monitoring was not correctly carried out by approximately 20% of medical staff members, and medical personnel generally complained of anxiety about occupational exposure rather than medical exposure. They did not receive sufficient education on radiation exposure and protection in school. In conclusion, the results of this questionnaire suggested that they do not have adequate knowledge about radiation exposure and protection. The lack of knowledge about protection results in anxiety about exposure. To protect oneself from occupational exposure, individual radiation doses must be monitored, and medical practice should be reconsidered based on the results of monitoring. To eliminate unnecessary medical and occupational exposure and to justify practices such as radiological examinations, radiation protection should be well understood and appropriately carried out by medical doctors and dentists. Therefore, the education of medical students on the subject of radiation protection is required as is postgraduate education for medical doctors, dentists and nurses. (author)

  7. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  8. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2002-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  9. Proceedings of the 5. Regional congress on radiation protection and safety; 2. Iberian and Latin American Congress on Radiological Protection Societies; Regional IRPA Congress

    International Nuclear Information System (INIS)

    2001-01-01

    The Fifth Regional Congress on Radiation Protection and Nuclear Safety has been held in Recife (Brazil), from 29th April to 4th May 2001. The congress was hosted by the Brazilian Radiation Protection Society, under the joint sponsorship of FRALC and UFPE-DEN Department of Nuclear Energy. Its designation as a Regional IRPA Congress has been requested. The main purpose of the meeting was to bring together professionals from the industry, universities and research laboratories to present and discuss the latest research results, and to review the state of the art on applied and fundamental aspects of the radiation protection. These specialists have talked about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. In their discussions, also were included subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation

  10. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    International Nuclear Information System (INIS)

    Potiriadis, C.; Koukoliou, V.

    2002-01-01

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  11. National congress of radiation protection - SFRP 2005

    International Nuclear Information System (INIS)

    Lagroye, I.; Gonzague, A.; Ammerich, M.; Blanc, D.; Lecomte, J.F.; Boucher, D.; Boucher, D.; Averbeck, D.; Gourmelon, P.; Barbey, P.; Bourguignon, M.; Cordoliani, Y.S.; Dutrillaux, B.; Radecki, J.J.; Schieber, C.; Cosset, J.M.; Lecomte, J.F.; Lochard, J.; Metivier, H.; Sugier, A.; Tirmarche, M.; Aurengo, A.; Lamartine, J.; Martin, M.; Mallard, C.; Malfoy, B.; Ugolin, N.; Chevillard, S.; Schlumberger, M.; Laurier, D.; White-Koning, M.L.; Hemon, D.; Tirmarche, M.; Jougla, E.; Clavel, J.; Miccoli, L.; Barber, R.; Angulo, J.F.; Dubrova, Y.E.; Le Gall, B.; Phan, G.; Grillon, G.; Rouit, E.; Benech, H.; Fattal, E.; Deverre, J.R.; Legros, A.; Beuter, A.; Verrier, A.; Magne, I.; Souques, M.; Lambrozo, J.; Schmitt, P.; Roth, P.; Nadi, M.; Joly, L.; Chapel, C.; Burgain, A.; Marliot, F.; Cordier, E.; Courant, D.; Elabbassi, E.B.; Seze, R. de

    2005-01-01

    The nine tutorial sessions are: first one, the new recommendations of the ICRP; second one, effects on health of ionizing radiations with the following subjects ( the dose-response relationship and the estimation of carcinogen effects of ionizing radiation low doses; effect of dose rate on the induction and repair of radioinduced DNA double strand break; interest of global approach in radiation protection; molecular signature of the radioinduction in the thyroid tumors: example of radioinduced thyroid tumors after radiotherapy; incidence of child leukemia near the nuclear facilities: results of a multi sites study in France; genome instability and mutations induction after ionizing irradiation: consequences for the progeny; D.T.P.A encapsulation, an efficient strategy for the plutonium decorporation among the rat); the third one, non-ionizing radiation with the following subjects (can the exposure to a magnetic field of 100 μ T at 50 Hz be detected in the human physiological shiver; evaluation of the population exposure to the magnetic fields of 50 Hz: what indicators to choose; experimental study of the immunity of implantable defibrillators to the low frequencies electro-magnetic perturbations; DNA damages induced by the Ar F laser; dosimetry with a phantom in gel of human head); fourth session concerns the regulatory aspects; the fifth one presents the radiation protection and the radioactive waste management; the sixth session concerns the public and patients radiation protection; the seventh one treats the radiation protection in professional area with the following subjects ( optimization of radiation protection in the underground uranium mine of Cominak in Niger; revealing by multi parameters capillaroscopy, of micro vascular alterations of fingers among interventional radiologists; use of radioactive and chemical probes in biological research; uncertainties on doses and D.P.U.I.; monitoring of work areas. Evaluation of workers exposure towards a particular

  12. Recent advances in radiation protection instrumentation

    International Nuclear Information System (INIS)

    Babu, D.A.R.

    2012-01-01

    Radiation protection instrumentation plays very important role in radiation protection and surveillance programme. Radiation detector, which appears at the frontal end of the instrument, is an essential component of these instruments. The instrumental requirement of protection level radiation monitoring is different from conventional radiation measuring instruments. Present paper discusses the new type of nuclear radiation detectors, new protection level instruments and associated electronic modules for various applications. Occupational exposure to ionizing radiation can occur in a range of industries, such as nuclear power plants; mining and milling; medical institutions; educational and research establishments; and nuclear fuel cycle facilities. Adequate radiation protection to workers is essential for the safe and acceptable use of radioactive materials for different applications. The radiation exposures to the individual radiation workers and records of their cumulative radiation doses need to be routinely monitored and recorded

  13. Radiation protection study of radiology medical workers in radiodiagnosis area

    International Nuclear Information System (INIS)

    Gaona, E.; Canizal, C.; Garcia, M.A.; Orozco, M.; Rincon, A.; Padilla, Y.; Martinez, A.

    1996-01-01

    Aspects related to radiological safety and its organization in radiodiagnosis were evaluated by means of scanning carried out in 18 hospitals of Mexico City, divided in 11 public institutions and 7 private ones. The population being studied was: hospital personnel that works in radiodiagnosis. The survey was made with 31 dichotomic variables, being obtained 132 surveys. The personnel characteristics are 83% works in public institutions, 49% works in radiodiagnosis, 3% has an academic degree, 13% is member of a hospital professional association, 13% has updated information on radiological protection, 36% was trained, 45% works for more than 2 years, 52% uses personal dosemeter, less than the 20% knows about the fundamentals of the radiological protection and 24% states to suffer from biological radiation effects, due to the exposure to x-rays. As result of the study, it was found that the main problems that the radiological protection has, are: lack of training programs in radiological protection and supervision, medical surveillance and the few number of persons that takes part in clinical meetings and professional associations. (authors). 7 refs., 3 tabs

  14. Radiation protection glossary

    International Nuclear Information System (INIS)

    1986-01-01

    The glossary is intended to be used as a terminology standard for IAEA documentation on radiation protection. An effort has been made to use definitions contained in internationally accepted publications such as recommendations of the International Commission on Radiological Protection (ICRP), standards of the International Organization for Standardization (ISO) and of the International Electrotechnical Commission (IEC), reports of the International Commission on Radiation Units and Measurements (ICRU), with only slight modifications in order to tailor them more closely to IAEA needs. The glossary is restricted to ionizing radiation

  15. Radiation protection guidelines for radiation emergencies

    International Nuclear Information System (INIS)

    Lessard, E.T.; Meinhold, C.B.

    1986-01-01

    The system of dose limitation and present guidance for emergency workers and guidance for intervention on behalf of the public are discussed. There are three elements for the system of dose limitation: justification, optimization and dose limits. The first element is basically a political process in this country. Justification is based on a risk-benefit analysis, and justification of the use of radioactive materials or radiation is generally not within the authority of radiation protection managers. Radiation protection managers typically assess detriments or harm caused by radiation exposure and have very little expertise in assessing the benefits of a particular practice involving nuclear material

  16. Actions of radiation protection in the collection of discarded radioactive material; Ações de proteção radiológica no recolhimento de material radioativo descartado

    Energy Technology Data Exchange (ETDEWEB)

    Neri, E.P.M.; Silva, F.C.A. da, E-mail: dasilva@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Riode Janeiro, RJ (Brazil)

    2017-07-01

    Brazil has approximately 2000 radiative facilities that use radiation sources in their processes and are controlled by The Brazilian Nuclear Energy Commission - CNEN through standards, authorizations and inspections. These radioactive materials, whether in the form of waste or radioactive source, used in medical, industrial, research, etc. are sometimes discarded and found in inappropriate places, such as garbage dumps, industrial waste, streets, squares, etc. found by urban cleaning professionals without the proper knowledge of them. The work presents the radiation protection actions required for the safe collection of radioactive material to be performed by these professionals. According to the type of radioactive material the main actions of radiation protection are, among others: recognition of a radioactive material; correct use of personal protective equipment to contain possible radiation contamination; implementation of an area control etc. In order for the actions of recognition and collection of discarded radioactive material to be effective, there is a need to implement a training program in radiation protection for urban cleaning professionals.

  17. Radiation Protection: Introduction

    International Nuclear Information System (INIS)

    Loos, M.

    2007-01-01

    As a federal research Centre, SCK-CEN has the statutory assignment to give priority to research related to safety, radioactive waste management, protection of man and environment, management of fissile and other strategic materials and social implications as part of the pursuit of sustainable development and to develop and gather the necessary knowledge and spread this knowledge through formation and communication. At the Division of Radiation Protection at SCK-CEN we are therefore active to maintain and enhance knowledge and expertise in each aspect of radiation protection: we study the risk of exposure - the way that radioactive materials spread in the environment and the potential for human contact - and the risk from exposure - how radiation affects human health; we perform health physics measurements; we are involved in emergency planning and preparedness and support to risk governance and decision taking. These activities are supported by radiation specific analysis and measurement techniques. These activities are not performed in isolation but in context of national and international collaborations or demands

  18. 33. Days of Radiation Protection. Presentations

    International Nuclear Information System (INIS)

    2011-11-01

    The publication has been set up as presentations of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on the current problems in radiation protection and radioecology. On the web-page totally 103 presentations or posters are published. The Conference consists of the following sections: (I) Effects of ionizing radiation (radiology, health effects, risk factors); (II) General aspects of radiation protection (recommendations and legislative in radiation protection); (III): Dosimetry and metrology of ionizing radiation (metrology, instrumentation, use of computational methods); (IV) Radiation protection in nuclear power industry (working environment in the nuclear industry, the impact on the environment, nuclear power shutdown management); (V) Emergency management (emergencies, accidents, waste); (VI) Radiation load and protection in diagnostics, nuclear medicine and radiation oncology (burden on patients, staff, size of population exposure from medical sources of ionizing radiation, security, and quality control, optimization); (VII) Natural sources of radiation in workplaces and the environment (radon and other radionuclides, the risk estimation, optimization); (VIII) Education (new trends in education of radiation experts, medical physicists and stake-holders).

  19. Concepts in radiation protection

    International Nuclear Information System (INIS)

    Oncescu, M.

    1996-01-01

    This monograph provides basic notions and principles in dosimetry and radiation protection in compliance with two fundamental works: IAEA Safety Series No.115 - International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - and Publication no. 60 of International Commission on Radiological Protection. After the review of quantities and units necessary in radiation protection, the book presents the new values of dose limits as well as the values of 'radiation weighting factor', 'tissue weighting factor' and 'conversion factor intake-dose' (committed effective dose per unit intake) by ingestion and inhalation for 30 most important radionuclides. The new values of dose limits, lower than the old values, are a challenge for the radiation protection, especially of the 'public' where the dose limit diminished by a factor of five relative to the earlier edition. The new value of dose limit for public, 1 mSv per year (obviously over the natural exposure of 2.4 mSv per year), imposes new action ways and levels in radiation protection, especially in some cases of exacerbated natural radioactivity. The book provides the calculus of external exposure with the Gamma constant expressed in adequate units, to make the calculation easier. In the calculus of protection shield for gamma sources one uses a method, which while approximate helps save time. The calculus of internal exposure is made using the conversion factor intake-dose. Finally, the 'dosimetric watch' of the natural and artificial radioactivity of the atmosphere, hydrosphere and biosphere is intended to comply with the International Basic Safety Standards. Each chapter ends with a set of illustrative problems which enhances the reader's understanding of underlying concepts and current methods used in the field

  20. Implications of the new dose limit crystalline in operational radiation protection in interventional medicine

    International Nuclear Information System (INIS)

    Roch Gonzalez, M.; Garcia Castanon, P.; Giner Sala, M.; Rodriguez Martin, G.; Espana Lopez, M. L.

    2013-01-01

    The objective of this study is to evaluate the implications of this new limit of equivalent dose in the lens can be assumed in the radiation protection of cardiologists, radiologists, nursing professionals, etc. that perform their work in units of intervention, both in terms of additional protective measures and the classification of them as workers exposed. (Author)

  1. Actual global problems of radiation protection

    International Nuclear Information System (INIS)

    Ninkovic, M.

    1995-01-01

    Personal views on some actual problems in radiation protection are given in this paper. Among these problems are: evolution methodology used in radiation protection regulations; radiation protection, nuclear energy and safety, and new approaches to the process of the hazardous substances management. An interesting fact relating to the X-ray, radiation protection and Nikola Tesla are given also. (author)

  2. Professional reading and the Medical Radiation Science Practitioner

    International Nuclear Information System (INIS)

    Shanahan, Madeleine; Herrington, Anthony; Herrington, Jan

    2010-01-01

    Purpose: Updating professional knowledge is a central tenet of Continuing Professional Development (CPD) and professional reading is a common method health practitioners use to update their professional knowledge. This paper reports the level of professional reading by Medical Radiation Science (MRS) practitioners in Australia and examines organisational support for professional reading. Materials and Methods: Survey design was used to collect data from MRS practitioners. A questionnaire was sent to 1142 Australian practitioners, which allowed self-report data to be collected on the length of time practitioners engage in professional reading and the time workplaces allocate to practitioners for professional reading. Results: Of the 362 MRS practitioners who returned the survey, 93.9% engaged in professional reading on a weekly basis. In contrast, only 28.9% of respondents reported that their workplace allocates time for professional reading to practitioners. MRS practitioners employed in universities engaged in higher levels of reading than their colleagues employed in clinical workplaces (p < 0.01) and more university workplaces allocated time for professional reading to their employees than clinical workplaces (p < 0.01). There were no significant differences for clinical practitioners in level of reading across geographic, organisational and professional demographic factors. Significant differences in workplace allocation of time for professional reading in clinical workplaces were evident for health sector (p < 0.01); work environment (p < 0.01); geographic location (p < 0.01) and area of specialisation (p < 0.01). Conclusion: The vast majority of respondent MRS practitioners engage in professional reading to update their professional knowledge. This demonstrates an ongoing commitment at the individual practitioner level for updating professional knowledge. Updating professional knowledge is an organisational as well as an individual practitioner issue. Whilst

  3. Professional reading and the Medical Radiation Science Practitioner

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Madeleine, E-mail: mshanahan@rmit.edu.a [School of Medical Science, RMIT University, Bundoora, Victoria (Australia); Herrington, Anthony [Head, School of Regional, Remote and eLearning (RRE), Curtin University, Perth (Australia); Herrington, Jan [School of Education, Murdoch University, Perth (Australia)

    2010-11-15

    Purpose: Updating professional knowledge is a central tenet of Continuing Professional Development (CPD) and professional reading is a common method health practitioners use to update their professional knowledge. This paper reports the level of professional reading by Medical Radiation Science (MRS) practitioners in Australia and examines organisational support for professional reading. Materials and Methods: Survey design was used to collect data from MRS practitioners. A questionnaire was sent to 1142 Australian practitioners, which allowed self-report data to be collected on the length of time practitioners engage in professional reading and the time workplaces allocate to practitioners for professional reading. Results: Of the 362 MRS practitioners who returned the survey, 93.9% engaged in professional reading on a weekly basis. In contrast, only 28.9% of respondents reported that their workplace allocates time for professional reading to practitioners. MRS practitioners employed in universities engaged in higher levels of reading than their colleagues employed in clinical workplaces (p < 0.01) and more university workplaces allocated time for professional reading to their employees than clinical workplaces (p < 0.01). There were no significant differences for clinical practitioners in level of reading across geographic, organisational and professional demographic factors. Significant differences in workplace allocation of time for professional reading in clinical workplaces were evident for health sector (p < 0.01); work environment (p < 0.01); geographic location (p < 0.01) and area of specialisation (p < 0.01). Conclusion: The vast majority of respondent MRS practitioners engage in professional reading to update their professional knowledge. This demonstrates an ongoing commitment at the individual practitioner level for updating professional knowledge. Updating professional knowledge is an organisational as well as an individual practitioner issue. Whilst

  4. The radiological protection in technical-professional level in Mexico

    International Nuclear Information System (INIS)

    Vizuet Gonzalez, Jorge; Suarez, Gerardo

    2005-01-01

    This work describes the work done in the implementation of an educational project which aims the formation of technical-professional in radiation protection (RP) with official recognition in Mexico. The constant growth of business activities related to the use of radioactive material in industry, medicine and research has required the development and implementation of standardization by the regulatory authorities of our country. However the advance with regards to training of specialized personnel is reduced in comparison to current needs. in our country there is no technical personnel with studies recognised by the regulatory body in this specialty (RP), however quality assurance programs currently require an educational training that will help to meet the standards in the various activities that develop in the use and handling of sources and ionizing radiation generating equipment, reason why it was developed and implemented this educational project. Additionally induce and promote the need for the peaceful use of nuclear energy and ionizing radiation, at the national level is one more reason to implement the programme at upper secondary level, with the purpose to have knowledge related to the topic. The technical course has a duration of six semesters (three years), and currently there are two generations of graduating. The plan of study consists of the required disciplines for upper secondary level more plus those corresponding to technological training in radiological protection

  5. Some perspectives on radiation protection

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1979-01-01

    A brief review of the history and organizational structure of the NCRP is given. Summaries are given of a number of NCRP radiation protection guides dealing with hazards from 85 Kr, radiation exposures from consumer products, basic radiation protection criteria, and doses from natural background radiation

  6. Perception of radiological technicians on radiation protection; Percepção dos profissionais das técnicas radiológicas sobre a proteção radiológica

    Energy Technology Data Exchange (ETDEWEB)

    Viana, E.; Borges, L.M.; Camozzato, T.S.C., E-mail: emilliviana@hotmail.com [Instituto Federal de Santa Catarina (IFSC), Florianópolis (Brazil). Departamento Acadêmico de Saúde e Serviços

    2017-07-01

    The objective of this study was to know the professionals' perception of radiological techniques about radiation protection in the work process in Nuclear Medicine. The research was carried out with nine professionals of the radiological techniques of two private institutions located in the South of Brazil. An interview was applied through recording and transcription. The analysis of the data took place through a thematic analysis. The professionals' perception of radiological techniques regarding the radiological protection in the work process is evidenced when professionals mention the basic rules of radiation protection: time, shielding and distance as attitudes used to minimize the exposure to ionizing radiation. However, it was verified the fragility in the knowledge about the norms and legislation of the radiological protection.

  7. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    1983-06-01

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP) [de

  8. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  9. The local-regional networks of radiation protection experts: a necessary tool to strengthen

    International Nuclear Information System (INIS)

    Barbey, P.; Boirie, G.; Barret, Ch.; Barrey, N.

    2008-01-01

    After having recalled the evolution of the legal framework concerning radioprotection and the origin, role and training of the radiation protection experts (PCR in French for Personne Competente en Radioprotection), the author describes the difficulties faced by a PCR on a daily basis. Then, he outlines the interest of a development of local-regional networks between these professionals to promote information transmission and exchange, knowledge updating and so on, and even also to break the isolation of the PCR. He indicates the main objectives of these networks and evokes perspectives, notably after the professional meetings which have been and still are organized twice a year. Two additional and short papers briefly describe the life of one of these networks (the APCRAP, Association des personnes competentes en radioprotection de l'Assistance Publique, association of radiation protection experts belonging to public care services) and briefly present the objectives of the south-western network

  10. [Radiation protection in medical research : Licensing requirement for the use of radiation and advice for the application procedure].

    Science.gov (United States)

    Minkov, V; Klammer, H; Brix, G

    2017-07-01

    In Germany, persons who are to be exposed to radiation for medical research purposes are protected by a licensing requirement. However, there are considerable uncertainties on the part of the applicants as to whether licensing by the competent Federal Office for Radiation Protection is necessary, and regarding the choice of application procedure. The article provides explanatory notes and practical assistance for applicants and an outlook on the forthcoming new regulations concerning the law on radiation protection of persons in the field of medical research. Questions and typical mistakes in the application process were identified and evaluated. The qualified physicians involved in a study are responsible for deciding whether a license is required for the intended application of radiation. The decision can be guided by answering the key question whether the study participants would undergo the same exposures regarding type and extent if they had not taken part in the study. When physicians are still unsure about their decision, they can seek the advisory service provided by the professional medical societies. Certain groups of people are particularly protected through the prohibition or restriction of radiation exposure. A simplified licensing procedure is used for a proportion of diagnostic procedures involving radiation when all related requirements are met; otherwise, the regular licensing procedure should be used. The new radiation protection law, which will enter into force on the 31st of december 2018, provides a notification procedure in addition to deadlines for both the notification and the licensing procedures. In the article, the authors consider how eligible studies involving applications of radiation that are legally not admissible at present may be feasible in the future, while still ensuring a high protection level for study participants.

  11. Radiation protection requirements for organizations practising mining activities which can bring about exposure of personnel, public, or the environment. Recommendations

    International Nuclear Information System (INIS)

    1999-01-01

    The publication consists of the following articles: (1) Scope of State Office for Nuclear Safety recommendations; (2) Glossary of terms; (3) Radiation protection quantities; (4) General requirements for radiation protection and responsibilities of organizations; (5) Exposure limits; (6) Organizational and technical provisions of radiation protection; (7) Monitoring, measurement, evaluation, and recording of radiation protection-related quantities, parameters, and facts; (8) Utilization of monitoring data. Provisions to keep professional and public exposure within tolerable limits; (9) Decommissioning of workplaces handling ionizing radiation sources; (10) Waste handling; and (11) Transport of material arising from mining activities. The text is supplemented with 5 tabular annexes. (P.A)

  12. Innovative approach to training radiation safety regulatory professionals

    International Nuclear Information System (INIS)

    Gilley, Debbie Bray

    2008-01-01

    Full text: The supply of human resources required to adequately manage a radiation safety regulatory program has diminished in the last five years. Competing professional opportunities and a reduction in the number of health physics secondary schools have made it necessary to look at alternative methods of training. There are limited educational programs in the US that prepare our professionals for careers in the Radiation Regulatory Programs. The state of Florida's radiation control program embraced a new methodology using a combination of didactic and work experience using qualification journals, subject matter experts, and formalized training to develop a qualified pool of employees to perform the regulatory functions and emergency response requirements of a state radiation control program. This program uses a task-based approach to identify training needs and draws upon current staff to develop and implement the training. This has led to a task-oriented staff capable of responding to basic regulatory and emergency response activities within one year of employment. Florida's program lends itself to other states or countries with limited resources that have experienced staff attrition due to retirement or competing employment opportunities. Information on establishing a 'task-based' pool of employees that can perform basic regulatory functions and emergency response after one year of employment will be described. Initial task analysis of core functions and methodology is used to determine the appropriate training methodology for these functions. Instructions will be provided on the methodology used to 'mentor' new employees and then incorporate the new employees into the established core functions and be a useful employee at the completion of the first year of employment. New training philosophy and regime may be useful in assisting in the development of programs in countries and states with limited resources for training radiation protection personnel. (author)

  13. Physics for radiation protection. 3. upd. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, James E.

    2013-09-01

    A highly practical resource for health physicists and other professionals in radiation protection. This third edition has been completely revised and updated with an emphasis on basic concepts as they apply to radiation issues such as the incident at the Fukushima-Daichi plant in Japan. Designed for readers with limited as well as basic science backgrounds, the book presents thorough and up-to-date explanations of radiation physics and the major concepts that underpin it. Extensive discussion is provided of radioactivity, including sources, materials and decay schemes for about 100 of the most common radionuclides encountered by practitioners. The text emphasizes practical calculations for radiation sources and levels in the workplace and the environment, and presents methods, including shielding, for modifying them. Comprehensive appendices and more than 400 figures are provided for such calculations; these are based on current resource data. Excerpts from the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided. Real-world examples and exercises demonstrate concepts and their use.

  14. Distance Education Programs in Radiation Protection- A ten year Review

    International Nuclear Information System (INIS)

    Gauvin, J. P.

    2004-01-01

    Professional development has always played a critical role in the organisation of radiation safety programs. Training programs for professionals, technologists and general workers involved in high risk trades vary according to their experience and specific functions. The key concept for effective programs consists in the proper match of the training content with the individual skills and interests of the participants. In conventional class training, unless the students constitute an homogeneous group, the teaching can not perfectly follow the specific needs of all participants and the pace of the course is kept at a sub-optimal level in order to accommodate less talented participants. Distance education with Electronic Mail, web CT, first class mail, and other communication tools has been used with success during the last decade in undergraduate, master's and doctoral programs as well as in continuing training for workers. It offers a wide range of teaching strategies and course content. Compared to conventional training, it has numerous benefits: (1) Travel costs for students and instructors are eliminated and international groups of students and professors can easily be constituted; (2) Instructors can be recruited worldwide; (3) Discussion forums can be established easily; (4) Integration of expert guests into online course discussions are possible; (5) Student online publications of projects, assignments and abstracts are current; (6) Schedules are more flexible and proctored examinations are possible. The author will present the strategies used at McGill University in the teaching of Radiation Protection to physicians and professionals ( MSc. level ) and the application of distance education methods for training large groups of workers in biomedical research centres, hospitals, power generation facilities and utilities in general. He will describe the content of the programs, the study guides, the evaluation formats, web-site references and resources, the

  15. Manual of Radiation Protection

    International Nuclear Information System (INIS)

    Gambini, D.J.; Granier, R.; Boisserie, G.

    1992-01-01

    This manual explains the principles and practice of radiation protection for those whose work in research, in the field of medicine or in the industry requires the use of radiation sources. It provides the information radiation users need to protect themselves and others and to understand and comply with international recommendations, regulations and legislation regarding the use of radionuclides and radiation machines. It is designed to teach a wide audience of doctors, biologists, research scientists, technicians, engineers, students and others

  16. Guideline for radiation protection in veterinary medicine. Guideline relating to the Ordinance for Protection Against Damage Through Ionising Radiation (Radiation Protection Ordinance - StrlSchV) and the Ordinance for Protection Against X-Ray Radiation (X-Ray Ordinance - RoeV)

    International Nuclear Information System (INIS)

    Michalczak, H.

    2005-05-01

    The Guideline on ''Radiation Protection in Veterinary Medicine'' primarily addresses the supreme Land authorities that are responsible for radiation protection. Its purpose is to harmonise the radiation protection procedures employed by the Laender, thus establishing a nationwide uniform system for monitoring the handling of radioactive substances and ionising radiation applications in veterinary medicine on the basis of the legal regulations in force. In addition the guideline is intended to serve veterinary staff as a source of practical information which explains the radiation protection requirements stipulated by the legal regulations and technical rules. This concerns in particular the rules for the acquisition of the necessary radiation protection skills or the necessary knowledge of radiation protection by the veterinary surgeon performing the application or the staff cooperation in the application

  17. Radiation Protection Dosimetry

    International Nuclear Information System (INIS)

    Kramer, H.M.; Schnuer, K.

    1992-01-01

    The contributions presented during the seminar provided clear evidence that radiation protection of the patient plays an increasingly important role for manufacturers of radiological equipment and for regulatory bodies, as well as for radiologists, doctors and assistants. The proceedings of this seminar reflect the activities and work in the field of radiation protection of the patient and initiate further action in order to harmonize dosimetric measurements and calculations, to ameliorate education and training, to improve the technical standards of the equipment and to give a push to a more effective use of ionising radiation in the medical sector

  18. Rise of radiation protection: science, medicine and technology in society, 1896--1935

    International Nuclear Information System (INIS)

    Serwer, D.P.

    1976-12-01

    The history of radiation protection before World War II is treated as a case study of interactions between science, medicine, and technology. The fundamental concerns include the following: are how medical and technical decisions with social impacts are made under conditions of uncertainty; how social pressures are brought to bear on the development of science, medicine, and technology; what it means for medicine or technology to be scientific; why professional groups seek international cooperation; and the roles various professionals and organizations play in controlling the harmful side effects of science, medicine, and technology. These questions are addressed in the specific context of protection from the biological effects of x-rays and radium in medical use

  19. Rise of radiation protection: science, medicine and technology in society, 1896--1935

    Energy Technology Data Exchange (ETDEWEB)

    Serwer, D.P.

    1976-12-01

    The history of radiation protection before World War II is treated as a case study of interactions between science, medicine, and technology. The fundamental concerns include the following: are how medical and technical decisions with social impacts are made under conditions of uncertainty; how social pressures are brought to bear on the development of science, medicine, and technology; what it means for medicine or technology to be scientific; why professional groups seek international cooperation; and the roles various professionals and organizations play in controlling the harmful side effects of science, medicine, and technology. These questions are addressed in the specific context of protection from the biological effects of x-rays and radium in medical use.

  20. Foundations for radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    Full text; In 1996, the IAEA published the latest edition of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards or BSS) comprising basic requirements to be filled in all activities involving radiation exposure. The standards define internationally harmonized requirements and provide practical guidance for public authorities and services, employers and workers, specialized radiation protection bodies, enterprises and health and safety communities. In the same year, the IAEA, through the technical cooperation programme, launched the Model Project on Upgrading Radiation Protection Infrastructure, a global initiative designed to help Member States establish the infrastructure needed to adhere to the BSS. To address the complexity of this task, the radiation protection team identified key elements, known as Thematic Safety Areas. These are: 1. Legislative Framework and Regulatory Infrastructure, Draft and put into effect radiation protection laws and regulations and establish and empower a national regulatory authority. 2. Occupational Exposure Control Protect the health and safety of each individual who faces the risk of radiation exposure in the workplace through individual and workplace monitoring programmes, including dose assessment, record keeping of doses and quality management. 3. Medical Exposure Control: Develop procedures and activities to control the exposure of patients undergoing diagnosis and/or treatment via diagnostic and interventional radiology, nuclear medicine or radiotherapy through staff training, provision of basic quality control equipment, and the establishment of quality assurance programmes. 4. Public and Environmental Exposure Control: Develop means to protect both the public and the environment including: a) programmes to register, inventory and provide safe storage of unused radioactive sources and material; b) procedures to control and safely

  1. Radiation protection optimization of workers

    International Nuclear Information System (INIS)

    Lochard, J.

    1994-11-01

    This report presents the contribution of CEPN (study center on protection evaluation in nuclear area) to the Days of the French Radiation Protection Society (SFRP) on optimization of workers radiation protection in electronuclear, industrial and medical areas

  2. Ethics and radiation protection

    International Nuclear Information System (INIS)

    Hansson, Sven Ove

    2007-01-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle

  3. Ethics and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Sven Ove [Department of Philosophy and the History of Technology, Royal Institute of Technology (KTH), Teknikringen 78 B, 2tr, SE-100 44 Stockholm (Sweden)

    2007-06-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle.

  4. Education in Radiation Protection

    International Nuclear Information System (INIS)

    Dodig, D.; Kasal, B.; Tezak, S.; Poropat, M.; Kubelka, D.

    2001-01-01

    Full text: This paper discussed the problem of the education in radiation protection. All aspects of education are included started with primary school and lasted with very specialised courses for the experts. In the last few years the lack of interest for education in radiation protection was recognised by many agencies included also IAEA and EU commission. In this paper the reasons for this situation will be presented and the way how to promote this subject again. It is not possible to prevent effects of radiation on environment and population if qualified and well educated experts do not exist. The situation in the field of education in radiation protection in Croatia will be presented, according to the new regulations in this field. (author)

  5. Adaptation of the present concept of dosimetric radiation protection quantities for external radiation to radiation protection practice

    International Nuclear Information System (INIS)

    Boehm, J.; Thompson, I. M. G.

    2004-01-01

    The present concept of dosimetric radiation protection quantities for external radiation is reviewed. For everyday application of the concept some adaptations are recommended. The check of the compliance with dose limits should be performed either by the comparison with values of the respective operational quantities directly or by the calculation of the protection quantity by means of the operational quantity, the appertaining conversion coefficient and additional information of the radiation field. Only four operational quantities are regarded to be sufficient for most applications in radiation protection practice. The term equivalent should be used in the connection dose equivalent only. Proposals are made for names of frequently used operational quantities which are denoted up to now by symbols only. (authors)

  6. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Casson, W.H.; Thein, C.M.; Bogard, J.S. [eds.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  7. Summary of radiation protection in exploitation

    International Nuclear Information System (INIS)

    Garcier, Yves; Guers, Rene; Bidard, Francoise; Colson, Philippe; Gonin, Michele; Delabre, Herve; Hemidy, Pierre-Yves; Corgnet, Bruno; Perrin, Marie-Claire; Phan Hoang, Long; Abela, Gonzague; Crepieux, Virginie; Guyot, Pierre; Haranger, Didier; Warembourg, Philippe

    2004-01-01

    This document proposes a large and detailed overview of notions and practices regarding radiation protection in relationship with an NPP exploitation framework. It presents the main notions: matter structure, radioactivity, interactions between matter and radiations, types of ionizing radiation, magnitudes and measurement units, exposure modes, main principles of radiation protection, means of protection against internal and external exposures. The second part proposes an overview of the origin of radiological risks in a nuclear power plant. This origin can be found in fission products, activation products, actinides, designed protections, or circuit contaminations. These radiological risks are more precisely identified and described in terms of detection and prevention (internal exposure risk, contamination risk, iodine-related risk, alpha radiation-related risk, access to the reactor building). The next part addresses the medical and radiological follow-up of exposed workers by a special medical control, by an individual exposure control, by a specific control of female personnel, and by attention to exceptional exposures. Measurement means are presented (detection principles, installation continuous control, workspaces control, personnel contamination control, follow-up of individual dose) as well as collective and individual protection means. The management of radiation protection is addressed through a presentation of decision and management structures for radiation protection, and of EDF objectives and ambitions in this domain. The organization of radiation protection during exploitation is described: responsibilities for radiation protection in a nuclear power station, requirements for workers, preparation of interventions in controlled zone, work execution in controlled zone, zone controls and radiological cleanness of installations. The two last chapters address issues and practices of radiation protection in the case of deconstruction or dismantling, and

  8. Software for radiation protection

    International Nuclear Information System (INIS)

    Graffunder, H.

    2002-01-01

    The software products presented are universally usable programs for radiation protection. The systems were designed in order to establish a comprehensive database specific to radiation protection and, on this basis, model in programs subjects of radiation protection. Development initially focused on the creation of the database. Each software product was to access the same nuclide-specific data; input errors and differences in spelling were to be excluded from the outset. This makes the products more compatible with each other and able to exchange data among each other. The software products are modular in design. Functions recurring in radiation protection are always treated the same way in different programs, and also represented the same way on the program surface. The recognition effect makes it easy for users to familiarize with the products quickly. All software products are written in German and are tailored to the administrative needs and codes and regulations in Germany and in Switzerland. (orig.) [de

  9. Radiation protection, optimization and justification

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Brisse, H.; Foucart, J.M.; Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C.; Rehel, J.L.; Talbot, A.; Aubert, B.; Scanff, P.; Roudier, C.; Donadieu, J.; Pirard, P.; Bar, O.; Maccia, C.; Benedittini, M.; Bouziane, T.; Brat, H.; Bricoult, M; Heuga, O.; Hauger, O.; Bonnefoy, O.; Diard, F.; Chateil, J.F.; Schramm, R.; Reisman, J.; Aubert, B.

    2005-01-01

    Nine articles in the field of radiation protection relative to the medical examinations concern the new legislation in radiation protection, the optimization of this one in order to reduce the radiation doses delivered to the patients, the side effects induced by irradiation and to give an evaluation of the medical exposure of french population to ionizing radiations. (N.C.)

  10. Radiation protection in an interventional laboratory: a comparative study of Australian and Saudi Arabian hospitals

    International Nuclear Information System (INIS)

    Alahmari, Mohammed Ali S.; Sun, Zhonghua; Bartlett, Andrew

    2016-01-01

    This study aimed to investigate whether the use of protection devices and attitudes of interventional professionals (including radiologists, cardiologists, vascular surgeons, medical imaging technicians and nurses) towards radiation protection will differ between Saudi Arabian and Australian hospitals. Hard copies of an anonymous survey were distributed to 10 and 6 clinical departments in the Eastern province of Saudi Arabia and metropolitan hospitals in Western Australia, respectively. The overall response rate was 43 % comprising 110 Australian participants and 63 % comprising 147 Saudi participants. Analysis showed that Australian respondents differed significantly from Saudi respondents with respect to their usages of leaded glasses (p < 0.001), ceiling-suspended lead screen (p < 0.001) and lead drape suspended from the table (p < 0.001). This study indicates that the trained interventional professionals in Australia tend to adhere to benefit from having an array of tools for personal radiation protection than the corresponding group in Saudi Arabia. (authors)

  11. Procedure and methodology of Radiation Protection optimization

    International Nuclear Information System (INIS)

    Wang Hengde

    1995-01-01

    Optimization of Radiation Protection is one of the most important principles in the system of radiation protection. The paper introduces the basic principles of radiation protection optimization in general, and the procedure of implementing radiation protection optimization and methods of selecting the optimized radiation protection option in details, in accordance with ICRP 55. Finally, some economic concepts relating to estimation of costs are discussed briefly

  12. Radiation protection

    International Nuclear Information System (INIS)

    Kamalaksh Shenoy, K.

    2013-01-01

    Three main pillars underpin the IAEA's mission: Safety and Security - The IAEA helps countries to upgrade their infrastructure for nuclear and radiation safety and security, and to prepare for and respond to emergencies. Work is keyed to international conventions, the development of international standards and the application of these standards. The aim is to protect people and the environment from the harmful effects of exposure to ionizing radiation. Science and Technology - The IAEA is the world's focal point for mobilizing peaceful applications of nuclear science and technology for critical needs in developing countries. The work contributes to alleviating poverty, combating disease and pollution of the environment and to other goals of sustainable development. Safeguards and Verification - The IAEA is the nuclear inspectorate, with more than four decades of verification experience. Inspectors work to verify that nuclear material and activities are not diverted towards military purposes. Quantities and Units: Dose equivalent is the product of absorbed dose of radiation and quality factor (Q). For absorbed dose in rads, dose equivalent is in rems. If absorbed dose is in gray, the dose equivalent is in sievert. Quality factor is defined without reference to any particular biological end point. Quality factors are recommended by committees such as the International Commission on Radiological Protection (ICRP) or the National Council on Radiation Protection and Measurements (NCRP), based on experimental RBE values but with some judgment exercised. Effective Dose Equivalent: It is the sum of the weighted dose equivalents for all irradiated tissues, in which the weighting factors represent the different risks of each tissue to mortality from cancer and hereditary effects. Committed dose equivalent: It is the integral over 50 years of dose equivalent following the intake of a radionuclide. Collective effective dose equivalent: It is a quantity for a population and is

  13. Radiation protection of non-human species

    International Nuclear Information System (INIS)

    Leith, I.S.

    1993-01-01

    The effects of radiation on non-human species, both animals and plants, have long been investigated. In the disposal of radioactive wastes, the protection of non-human species has been investigated. Yet no radiation protection standard for exposure of animals and plants per se has been agreed. The International Commission on Radiological Protection has long taken the view that, if human beings are properly protected from radiation, other species will thereby be protected to the extent necessary for their preservation. However, the International Atomic Energy Agency has found it necessary to investigate the protection of non-human species where radioactivity is released to an environment unpopulated by human beings. It is proposed that the basis of such protection, and the knowledge of radiation effects on non-human species on which it is based, suggest a practical radiation protection standard for non-human species. (1 tab.)

  14. Agencies revise standards for radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article deals with a guideline, compiled by the IAEA, for radiation protection. The guidelines aim at the control of individual risk through specified limits, optimisation of protection and the justification of all practices involving exposure to radiation. The guideline is a revision of the 1967 publication of the IAEA, Basic safety standards for radiation protection. According to the document the main resposibility for radiation protection lies with the employer. The workers should be responsible for observing protection procedures and regulations for their own as well as others' safety

  15. Radiation protection technology. Specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). 2. rev. ed.

    International Nuclear Information System (INIS)

    Rahn, Hans-Joachim

    2012-01-01

    The specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). Covers the following issues: radiation protection - generally; licenses and notifications; scientific fundamentals; dosimetry, surveillance, control, documentation; technical radiation protection; radiation protection calculations.

  16. Radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E.A. [Lawrence Berkeley Lab., CA (United States); Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  17. Radiation protection in space

    International Nuclear Information System (INIS)

    Blakely, E.A.; Fry, R.J.M.

    1995-01-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space

  18. Environmental radiation protection - a brief history

    International Nuclear Information System (INIS)

    Zapantis, A.P.

    2003-01-01

    The effects of ionising radiation on man has been studied intensely for decades, and the system of radiation protection for man has been continually refined in the light of those studies. That system assumes that if man is protected, non-human biota at the species level will also be adequately protected. However, an increasing recognition of the need to protect the environment, and international agreements signed in 1992, have resulted in that paradigm being questioned, with the onus shifting slowly towards demonstrating that the environment is protected. Further, radiation protection agencies and environmental protection agencies around the world have now started considering the issue of developing a system of radiation protection for the environment. The International Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA) are also active in this area. The purpose of this paper is to briefly outline some of the issues confronting environmental and radiation protection specialists, and to mention some of the initiatives being taken by the international community to resolve those issues

  19. Days of Radiation Protection 2001. Conference Proceedings of the 24th Days of Radiation Protection

    International Nuclear Information System (INIS)

    Bohunice NPP

    2001-11-01

    Already the 24 th annual international conference 'Days of Protection from Radiation' was taking place in Jan Sverma Hotel in Demaenova dolina on 26-29 November 2001. More than 180 participants from the Slovak Republic and the Czech Republic participated in the meetings of experts on protection from radiation. Representative of IAEA Division for Protection from Radiation and the representatives of several European companies securing the project, advisory and supplier's activities in dosimetry of ionising radiation also participated in the conference. The participants discussed in 7 expert panels the issue of protection from radiation in the legislative field, in the nuclear facilities operation and in medicine. The expert part of the other panels concerned the issues of ionising radiation impact on the environment and working environment, natural radio-nuclides, including radon and biologic impacts of radiation. One separate panel was dedicated to device techniques and methods of dosimetry of ionising radiation. More than 45 expert lectures and more than 40 poster presentations were presented at the conference during 3 days. The exhibition and presentation of measuring technique products and devices and of materials used in the area of radiation protection and nuclear medicine was prepared during the course of the conference. Participation in the conference showed that a great interest in problems of protection from radiation persists. This was proved by rich lecturing activity and wide discussions on the floor and during the poster presentations. Participants were satisfied since the organisers of the event prepared a worthy event with the rich expert themes at a good organisational and social level in a beautiful environment of Low Tatras

  20. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Granier, R.; Gambini, D.-J.

    1990-01-01

    This book grew out of a series of courses in radiobiology and radiation protection which were given to students in schools for radiology technicians, radiation safety officers and to medical students. Topics covered include the sources of ionizing radiation and their interactions with matter; the detection and measurement of ionizing radiation; dosimetry; the biological effects of ionizing radiation; the effects of ionizing radiation on the human body; natural radioexposure; medical radio-exposure; industrial radioexposure of electronuclear origin; radioexposure due to experimental nuclear explosions; radiation protection; and accidents with external and/or internal radio-exposure. (UK)

  1. Safety Culture on radiation protection

    International Nuclear Information System (INIS)

    Sollet, E.

    1996-01-01

    It can be defined radiation protection culture as the set of technical and social standards applied to the management of the operation of a nuclear facility concerning the reduction of the exposure to radiation of workers and members of the public, together with the behaviour and attitudes of the individuals from the organization towards that objective. Because the basic principles of radiation protection are self-evident and are totally justified, and the thesis drawn from the article is that no effective radiation protection culture yet exists within the organization, it must be concluded that what is wrong from the system are the attitudes and behavior of the individuals. In this article some factors and elements needed to motivate all persons within the organization towards the creation of a radiation protection culture are delineated and presented. (Author)

  2. Operational radiation protection: A guide to optimization

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs

  3. Consequences of the new radiation protection law on the radiation protection register and the occupational radiation protection; Auswirkungen des neuen Strahlenschutzgesetzes auf das Strahlenschutzregister und die berufliche Strahlenueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Frasch, Gerhard

    2017-08-01

    The implementation of the guideline 2013/59/EURATOM has been performed in the new radiation protection law. The most important consequences of the new radiation protection law for the occupational radiation protection are the following: the introduction of an explicit personal indicator and the actualization of occupational categories for employees. These facts require technical and administrative reorganization in data transmission of the licensee to the regulatory monitoring executive and the radiation protection register.

  4. Radiation protecting clothing materials

    International Nuclear Information System (INIS)

    Mio, Kotaro; Ijiri, Yasuo.

    1986-01-01

    Purpose: To provide radiation protecting clothing materials excellent in mechanical strength, corrosion resistance, flexibility and flexing strength. Constitution: The radiation protecting clothing materials according to this invention has pure lead sheets comprising a thin pure lead foil of 50 to 150 μm and radiation resistant organic materials, for example, polyethylene with high neutron shielding effect disposed to one or both surfaces thereof. The material are excellent in the repeating bending fatigue and mechanical strength, corrosion resistance and flexibility and, accordingly, radiation protecting clothings prepared by using them along or laminating them also possess these excellent characteristics. Further, they are excellent in the handlability, particularly, durability to the repeated holding and extension, as well as are preferable in the physical movability and feeling upon putting. The clothing materials may be cut into an appropriate size, or stitched into clothings made by radiation-resistant materials. In this case, pure lead sheets are used in lamination. (Horiuchi, T.)

  5. Radiation protection standards

    International Nuclear Information System (INIS)

    Fitch, J.

    1983-11-01

    Topics covered include biological radiation effects, radiation protection principles, recommendations of the ICRP and the National Health and Medical Research Council, and dose limits for individuals, particularly the limit applied to the inhalation of radon daughters

  6. Proceedings of Asia congress on radiation protection

    International Nuclear Information System (INIS)

    1993-01-01

    203 articles were collected in the proceedings. The contents of the proceedings included the principle and practices of radiation protection, biological effects of radiation, radiation monitoring, protection in medical and other fields, radiation dosimetry, nuclear energy and the environment, natural radiation, radioactive waste management, and other radiation protection issues

  7. State Radiation Protection Supervision and Control

    International Nuclear Information System (INIS)

    2003-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented

  8. State Radiation Protection Supervision and Control

    CERN Document Server

    2002-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented.

  9. Project Radiation protection, Annual report 1994

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1994-12-01

    According to the action plan for the period 1991-1995, the main objective of this project during 1994 was to provide operational basis, methods and procedures for solving the radiation protection problems that might appear under routine working conditions and handling of radiation sources. The aim was also to provide special methods for action in case of accidents that could affect the employed staff and the population. Overall activity was directed to maintaining and providing personnel, instrumentation, and methods for the following special radiation protection measures: operational control of the radiation field and contamination; calibration of the radiation and dosimetry instruments-secondary dosimetry metrology laboratory; instrumentation and measuring systems for radiation protection; control of environmental transfer of radioactive material; medical radiation protection [sr

  10. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Tadmor, J.; Schlesinger, T.; Lemesch, C.

    1980-01-01

    Various governmental agencies, including the Ministry of Health, the Ministry of Labor and the Israel AEC are responsible for the control of the use of radioactive materials and medical X-ray machines in Israel. Present legislation deals mainly with the legal aspects of the purchase, transport and possession of radioactive materials and the purchase and operation of medical X-ray machines. No legislation refers explicitly to the protection of the worker from ionizing (and non-ionizing) radiation. A special group of experts appointed by the Minister of Labor recently worked out a comprehensive draft law concerning all legal aspects of occupational radiation protection in Israel. Among the main chapters of the draft are: general radiation protection principles, national radiation protection standards, medical supervision of radiation workers, personal monitoring requirements. The present situation with regard to radiation hazard control in Israel and details of the proposed radiation protection law is discussed. (Author)

  11. Recommendations of International Commission of Radiation Protection 1990

    International Nuclear Information System (INIS)

    1995-01-01

    The book summarizes the recommendations on radiation protection of International of Radiation Protection. The main chapters are: 1.- Rates in radiation protection 2.- Biological aspects of radiation protection 3.- Framework of radiation protection. 4.- System of protection. 5.- Implantation of commission's recommendations. 6.- Summary of recommendations

  12. Radiation and radiation protection; Strahlung und Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2017-04-15

    The publication of the Bundesamt fuer Strahlenschutz covers the following issues: (i) Human beings in natural and artificial radiation fields; (ii) ionizing radiation: radioactivity and radiation, radiation exposure and doses; measurement of ionizing radiation, natural radiation sources, artificial radiation sources, ionizing radiation effects on human beings, applied radiation protection, radiation exposure of the German population, radiation doses in comparison; (iii) non-ionizing radiation; low-frequency electric and magnetic fields, high-frequency electromagnetic fields, optical radiation; (iiii) glossary, (iv) units and conversion.

  13. Regulations in radiation protection

    International Nuclear Information System (INIS)

    1986-01-01

    On the occasion of the twenty fifth anniversary of the Dutch Society for Radiation Protection, a symposium was held about Regulations in Radiation Protection. The program consisted of six contributions of which four are included in this publication. The posters presented are published in NVS-nieuws, 1985, vol. 11(5). (G.J.P.)

  14. Qualified expert training: the ERPC (European Radiation Protection Course)

    International Nuclear Information System (INIS)

    Deboodt, P.; Bourguignon, M.; Juhel, T.; Lirsac, N.; Luciani, A.; Marco, M.; Schmitt-Hanning, A. M.; Van der Steen, J.

    2003-01-01

    Since 2000, a training for the qualified experts is organised by several European partners in France at Saclay near Pais. The objective of this training is to deliver the theoretical knowledge needed to be recognised as a qualified expert in radiation protection according to the European requirements. The training delivered in English, includes four independent modules; basics, occupational exposure in nuclear and industrial applications, medical exposures (patients and workers), radiation protection of the members of the public and the environment (4 or 5 weeks each). A written examination is organised at the end of each module. Lectures, practical works, exercises and visits are given by European lecturers. Students have the possibility to register in one or several module during one or several years. Participants could be students or professionals from all European countries satisfying the pre requite defined by the European board. A certificate validating the successfully passed modules will be delivered by the INSTN (National Institute of Nuclear Sciences and Technologies)

  15. Qualified expert training: the ERPC (European Radiation Protection Course)

    Energy Technology Data Exchange (ETDEWEB)

    Deboodt, P.; Bourguignon, M.; Juhel, T.; Lirsac, N.; Luciani, A.; Marco, M.; Schmitt-Hanning, A. M.; Van der Steen, J.

    2003-07-01

    Since 2000, a training for the qualified experts is organised by several European partners in France at Saclay near Pais. The objective of this training is to deliver the theoretical knowledge needed to be recognised as a qualified expert in radiation protection according to the European requirements. The training delivered in English, includes four independent modules; basics, occupational exposure in nuclear and industrial applications, medical exposures (patients and workers), radiation protection of the members of the public and the environment (4 or 5 weeks each). A written examination is organised at the end of each module. Lectures, practical works, exercises and visits are given by European lecturers. Students have the possibility to register in one or several module during one or several years. Participants could be students or professionals from all European countries satisfying the pre requite defined by the European board. A certificate validating the successfully passed modules will be delivered by the INSTN (National Institute of Nuclear Sciences and Technologies).

  16. Radiation protection in radio-oncology

    International Nuclear Information System (INIS)

    Hartz, Juliane Marie; Joost, Sophie; Hildebrandt, Guido

    2017-01-01

    Based on the high technical status of radiation protection the occupational exposure of radiological personnel is no more of predominant importance. No defined dose limits exist for patients in the frame of therapeutic applications in contrary to the radiological personnel. As a consequence walk-downs radiotherapeutic institutions twice the year have been initiated in order to guarantee a maximum of radiation protection for patient's treatment. An actualization of radiation protection knowledge of the radiological personnel is required.

  17. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  18. Radiation protection training for personnel employed in medical facilities

    International Nuclear Information System (INIS)

    McElroy, N.L.; Brodsky, A.

    1985-05-01

    This report provides information useful for planning and conducting radiation safety training in medical facilities to keep exposures as low as reasonably achievable, and to meet other regulatory, safety and loss prevention requirements in today's hospitals. A brief discussion of the elements and basic considerations of radation safety training programs is followed by a short bibliography of selected references and sample lecture (or session) outlines for various job categories. This information is intended for use by a professional who is thoroughly acquainted with the science and practice of radiation protection as well as the specific procedures and circumstances of the particular hospital's operations. Topics can be added or substracted, amplified or condensed as appropriate. 8 refs

  19. Radiation protection; Proteccion Radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Ures Pantazi, M [Universidad de la Republica, Facultad de Quimica (Uruguay)

    1994-12-31

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection.

  20. New radiation protection legislation in Sweden

    International Nuclear Information System (INIS)

    Jender, M.; Persson, Lars

    1984-01-01

    The objective of the new Act is to protect humans, animals and the environment from the harmful effects of ionizing as well as non-ionizing radiation. As previously, the main responsibility for public radiation protection will rest with a single central radiation protection authority. According to the Act, the general obligations with regard to radiation protection will assign greater responsibility than in the past to persons carrying out activities involving radiation. Persons engaged in such activities will be responsible for the safe processing and storage of radioactive waste. The Act also contains rules governing decommissioning of technical equipment capable of generating radiation. The Act contains several rules providing for more effective supervision. The supervisory authority may, in particular, decide on the necessary regulations and prohibitions for each individual case. The scope for using penal provisions has been extended and a rule on the mandatory execution of orders regarding radiation protection measures has been introduced. (authors)

  1. Radiation protection for humans and environment. 50 years competence in the professional association; Strahlenschutz fuer Mensch und Umwelt. 50 Jahre Kompetenz im Fachverband

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, Benno [Eidgenoessisches Nuklearsicherheitsinspektorat, Brugg (Switzerland); Wilhelm, Christoph (ed.) [Karlsruher Institut fuer Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2016-07-01

    The conference proceedings of the IRPA (International radiation protection association) annual meeting 2016 contain the contribution of invited referents, other contributions and poster contributions concerning radiation protection in nuclear facilities, radiation protection of the public and environment, radioactive waste management, uranium mining, environmental monitoring, natural radioactivity, and radiation protection laws and regulations.

  2. History of radiation protection in the Czech Republic. Ten years of the National Radiation Protection Institute, 1995-2005

    International Nuclear Information System (INIS)

    Drabkova, A.

    2006-01-01

    The first part of the publication, highlighting the history of radiation protection in the country which today is the Czech Republic, is divided into the following sections: Inception of the field of science and applications 'Protection from ionizing radiation'; Beginnings of work with ionizing radiation in the Czech lands; Formulation of the first health physics and radiation protection requirements in the Czech lands; Beginnings of institutionalization of radiation protection in Czechoslovakia after World War II; The Clinic and Institute of Occupational Medicine in Prague; Institute of Occupational Hygiene and Occupational Diseases in Prague and the regional Institute of Occupational Hygiene and Occupational Diseases in Bratislava; Peaceful uses of atomic energy in Czechoslovakia; First man-made radioisotopes in Czechoslovakia; Health rules and standards applicable to work with ionizing radiation; The responsibilities of the Ministry of Health in the area of health physics and radiation protection within peaceful uses of atomic energy in the Czech Socialist Republic; Research Institute of Health Physics; Institute of Occupational Hygiene and Prevention of Occupational Diseases in the Mining and Processing of Radioactive Raw Materials; Health physics and radiation protection in sectorial and national research plans; Health Physics Centre, Institute of Hygiene and Epidemiology; National Radiation Protection Institute (as a subsidiary of the State Office for Nuclear Safety). The second part of the publication gives details of the recent history of the National Radiation Protection Institute. (P.A.)

  3. The general principles of radiation protection and regulation; Les principes generaux de la radioprotection et la reglementation

    Energy Technology Data Exchange (ETDEWEB)

    Aurengo, A [Societe Francaise de Radioprotection, 34 - Montpellier (France); Cesarini, J P [Societe Francaise de Radioprotection, Section Rayonnements non ionisants, 75 - Paris (France); Lecomte, J F; Barbier, G; Crescini, D; Biau, A [CEA Fontenay aux Roses, Institut de Radioprotection et de Surete Nucleaire IRSN, 92 (France); Blain, A [FRAMATOME, Dir. Combustible Nucleaire, Dept. Radioprotection Securite, 69 - Lyon (France); Bailloeuil, C; Gonin, M [Electricite de France, EDF-SCAST, 75 - Paris (France); Bergot, D [Ministere des Affaires Sociales, du Travail et de la Solidarite, Dir. des Relations du Travail, 75 - Paris (France)

    2003-07-01

    Seven articles constitute this chapter about the radiation protection and the regulation. Radiological risk, reduction of public exposure to ultraviolet radiations, regulation for the radon, evolution of the French legislation against the dangers of ionizing radiations, the medical follow up after the professional life, the information system to reproduce the dosimetric data of workers, proposition of a scale to classify the radiations incidents in function of their seriousness. (N.C.)

  4. Judgement in achieving protection against radiation

    International Nuclear Information System (INIS)

    Taylor, L.S.

    1980-01-01

    This article includes the following topics: Ionizing radiation as a toxic agent; value judgement in establishing protection standards; origin of radiation protection standards; numerical radiation protection standards; exposure of populations; the proportional dose-effect relationship; assumptions involved in the proportional dose-effect relationship and a continued need for value judgement

  5. Critical Issues in Radiation Protection Knowledge Management for Preserving Radiation Protection Research and Development Capabilities.

    Science.gov (United States)

    Dewji, Shaheen Azim

    2017-02-01

    As a hub of domestic radiation protection capabilities, Oak Ridge National Laboratory's Center for Radiation Protection Knowledge has a mandate to develop and actuate a formal knowledge management (KM) effort. This KM approach exceeds recruitment and training efforts but focuses on formalized strategies for knowledge transfer from outgoing subject matter experts in radiation protection to incoming generations. It is envisioned that such an effort will provide one avenue for preserving domestic capabilities to support stakeholder needs in the federal government and the nuclear industry while continuing to lead and innovate in research and development on a global scale. However, in the absence of broader coordination within the United States, preservation of radiation protection knowledge continues to be in jeopardy in the absence of a dedicated KM effort.

  6. Precautionary radiation protection

    International Nuclear Information System (INIS)

    Heller, W.

    2006-01-01

    The German federal government annually reports about the development of radioactivity in the environment, providing the most important data and changes in environmental radioactivity and radiation exposure. These reports are based on the Act on Precautionary Protection of the Public against Radiation Exposure (Radiation Protection Provisions Act) of December 19, 1986 as a consequence of the Chernobyl reactor accident. The purpose of the Act is protection of the public from health hazards arising from a nuclear accident or any other event with comparable radiological consequences, and to create the foundations for correct evaluation of the risks resulting from specific radiation exposures. After 1986, the Act was soon given concrete shape by legal ordinances, which made it a workable tool. The following points, among others, can be summarized form the report for 2004: - The calculated natural and manmade overall exposure is 4.0 mSv/a, as in the previous year, and happens to be exactly the same figure as in the report for 1994. - The contribution to radiation exposure by nuclear power plants and other nuclear facilities is less than 0.01 mSv/a. Over a period of nearly twenty years, the Act and the annual reporting regime have proved to work. Standardized criteria prevent data abuse and misinterpretation, respectively. Definitions of limits have contributed to more transparency and more objectivity. (orig.)

  7. National Sessions of Radiation Protection

    International Nuclear Information System (INIS)

    Sociedad Argentina de Radioproteccion

    2012-01-01

    The Radioprotection Argentine Society (SAR) was organized the National Sessions on Radiation Protection 2012 in order to continue the exchange in the radiation protection community in the country, on work areas that present a challenge to the profession. The new recommendations of the ICRP and the IAEA Safety Standards (2011), among others, includes several topics that are necessary to develop. The SAR wants to encourage different organizations from Argentina, to submit projects that are developing in order to strengthen radiation protection.

  8. Radiation protection programme progress report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The progress report of the radiation protection programme outlines the research work carried out in 1988 under contracts between the Commission of the European Communities and research groups in the Member States. Results of more than 350 projects are reported. They are grouped into six sectors: Radiation dosimetry and its interpretation; Behaviour and control of radionuclides in the environment; Nonstochastic effects of ionizing radiation; Radiation carcinogenesis; Genetic effects of ionizing radiation; Evaluation of radiation risks and optimization of protection. Within the framework programme, the aim of this scientific research is to improve the conditions of life with respect to work and protection of man and his environment and to assure a safe production of energy, i.e.: (i) to improve methods necessary to protect workers and the population by updating the scientific basis for appropriate standards; (ii) to prevent and counteract harmful effects of radiation; (iii) to assess radiation risks and provide methods to cope with the consequences of radiation accidents

  9. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  10. Melatonin as Protection Against Radiation Injury

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P H; Rosenberg, J.

    2016-01-01

    Introduction: Radiation is widely used in the treatment of various cancers and in radiological imaging procedures. Ionizing radiation causes adverse effects, leading to decreased quality of life in patients, by releasing free radicals that cause oxidative stress and tissue damage. The sleep......-hormone melatonin is a free radical scavenger, and induces several anti-oxidative enzymes. This review investigates the scientific literature on the protective effects of melatonin against exposure to ionizing radiation, and discusses the clinical potential of melatonin as prophylactic treatment against ionizing...... and protected against radiation enteritis. These protective effects were only documented when melatonin was administered prior to exposure to ionizing radiation. Discussion: This review documents that melatonin effectively protects animals against injury to healthy tissues from ionizing radiation. However...

  11. Radiation protection in Qatar

    International Nuclear Information System (INIS)

    Al Maadheed, Khalid; Al Khatibeh, Ahmad

    2008-01-01

    Full text: The State of Qatar has become a member State of IAEA since 1974. Later the Department of Industrial Development (DID) beam the focal point and the competent authority regarding all aspects of the peaceful application of Nuclear Technology. In July, 2000 the Supreme Council was established and charged with all matters related to environmental protection. The Supreme Council joined the IAEA Projects on upgrading protection infrastructure in West Asia region. A preliminary research was initiated to discover where radiation sources are being used, and the legal framework, if any, to regulate their use. The research indicated that radiation sources were being used in the industrial practices (well logging, industrial radiography and nuclear gauges) and in medical practices (mainly diagnostic radiology). The research also indicated that there was virtually no legal framework to regulate them. In less than five years, the State of Qatar was able to issue the radiation protection law, three sets of regulations, namely: Radiation Protection Regulations, Radioactive Waste Management Regulations and the Safe Transport of Radioactive Materials Regulations. In addition, several specific regulation work, dose limits and radiation protection officers were issued. A radiation Protection Department, comprising three sections was established. We are providing individual exposure monitoring for most of the radiation workers in the public sector and some in the private sector. We have set up a proper licensing and inspections procedures, where our inspectors are enforcing the law. More recently, we established an early warning network for nuclear of radiological emergencies, consisting of 6 transplantable stations, five mobile stations and two navigating stations. This year, the network was augmented with five fixed station and an advanced early warning centre, which provides early warning via multiple means (MMS, Fax, E-mail and audio alarms). Last year we signed a nuclear

  12. New general radiation protection training course

    CERN Document Server

    2008-01-01

    Some members of CERN personnel, users included, may have to work in supervised or controlled radiation areas, or may be concerned with activities involving the use of radioactive sources. According to CERN Safety rules all persons whose work may encounter ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, about the basic principles of radiation protection and of the relevant radiation protection regulations as well as about safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses addressed to its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This...

  13. New general radiation protection training course

    CERN Multimedia

    2008-01-01

    Some members of CERN personnel, including users, may have to work in supervised or controlled radiation areas, or may be involved in activities involving the use of radioactive sources. According to CERN Safety Rules all persons whose work may be associated with ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, the basic principles of radiation protection and the relevant radiation protection regulations as well as safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses for its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This new ½ day cours...

  14. Radiation protection: Principles, recommendations and regulations

    International Nuclear Information System (INIS)

    Reitan, J.B.

    1989-01-01

    Radiation protection is a highly international dicipline with a high degree of international harmonization. Especially within the Nordic countries there is general agreement upon principles and standards, despite the actual practice may differ slightly. The basic recommendations of the International Commission on Radiological Protection (ICRP) are accepted by the regulatory bodies and should be followed by all users of radiation. The users are in principle responsible for the radiation protection standard and activities themselves. Because most companies or hospitals lack sufficient expertise by themselves, they must rely upon recommendations from others. Primarily they should contact the national radiation protection agency. However, due to the international harmonization of radiation protection, information from other national or international agencies may be used with confidence. All users of radiation in the Nordic countries are obliged to act according to recognition and assessment of both risks and benefits, and they are responsible for updating their knowledge

  15. Usage and conditions of radiation protection of nuclear meters in Brazil

    International Nuclear Information System (INIS)

    Guimarães, E.F.; Silva, F.C.A. da

    2017-01-01

    The industries of mining, pulp, oil, etc. which require a quality control in the processes, use the nuclear meters with sealed radioactive sources coupled to a radiation detector that generate accurate and fast answers regarding the level, thickness, density and humidity of different types of materials. Nuclear meters are classified as fixed or portable and use transmission, backscatter or reactive systems. As they use radioactive sources with various ranges of activities, they are classified by the International Atomic Energy Agency - AIEA as Category 3 and 4, of medium and low radiological risk, and must therefore have a suitable level of radiation protection for safe use in the installation. The Brazilian National Energy Commission - CNEN controls approximately 500 authorized facilities with nuclear meters. The paper technically describes the nuclear meters and the radiological protection procedures that must be followed for the safety of the IOEs (occupationally exposed individuals) and individuals from the public, based on the specific nuclear meter test program for CNEN radiation protection supervisor. The professionals who handle these nuclear meters should be aware of the radiological risk to their own protection and to individuals in the public. For safe operation with nuclear meters, a number of requirements must be observed according to the type and need of the installation

  16. Principles of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Karamourtzounis, J. N. [World Health Organization, Geneva (Switzerland)

    1969-05-15

    In the rapidly developing areas of occupational and public health devoted to the protection of people from both immediate and delayed harmful (and sometimes Irreversible) effects of radiation exposure, industrial hygienists, radiological physicists and radiologists must now assume the additional responsibility of protection against radiation. Everyone during his life will have had one or more X-rays taken for diagnostic purposes. The doses received, depending upon the site, are not harmful to the individual, from the genetic aspect, however, the increasing use of X-ray examinations does present a danger,since almost the whole population is involved. Rapid progress in the development of nuclear energy and the practical extension of its use in medicine, agriculture and industry are steadily increasing the potential danger of large groups of the population being exposed to radiation, and radiation hazards are becoming an important aspect of industrial and public hygiene. WHO is concerned with the overall evaluation of population exposure from peaceful uses of atomic energy and through medical practice, the evaluation of radiation risks,and the control of medical radiation exposure. WHO stimulates and provides technical assistance for the development of appropriate programs of radiation protection with respect to the agricultural, industrial and medical applications of radioisotopes. X-rays and radium. (author)

  17. Continuing dental education in radiation protection: monitoring the outcomes.

    Science.gov (United States)

    Absi, Eg; Drage, Na; Thomas, Hs; Newcombe, Rg; Nash, Es

    2009-03-01

    To evaluate an evolving radiation protection dental postgraduate course run in Wales between 2003 and 2007. We compared three standardized course series. Course content was enhanced in 2006 to target areas of weakness. In 2007, a single best answer multiple choice questionnaire instrument superseded a true/false format. Practitioners' performance was studied pre- and immediately post-training. 900 participants completed identical pre- and post-course validated multiple choice questionnaires. 809 (90%) paired morning-afternoon records, including those of 52 dental care professionals (DCPs), were analysed. Mean (standard error) pre- and post-course percentage scores for the three courses were 33.8 (0.9), 35.4 (1.4), 34.6 (1.0) and 63.6 (0.9), 59.0 (1.4), 69.5 (0.9). Pre-training, only 2.4%, 3.1% and 4.9% of participants achieved the pass mark compared to 57.7%, 48.4% and 65.9% post-training, indicating a rather greater pass rate and gain in the most recent series than earlier ones. In recent series, older more experienced candidates scored slightly higher; however, their gain from pre- to post-training was slightly less. Baseline levels of radiation protection knowledge remained very low but attending an approved course improved this considerably. Targeting areas of weaknesses produced higher scores. Current radiation protection courses may not be optimal for DCPs.

  18. Genetic and epigenetic features in radiation sensitivity. Part II: implications for clinical practice and radiation protection

    International Nuclear Information System (INIS)

    Bourguignon, Michel H.; Gisone, Pablo A.; Perez, Maria R.; Michelin, Severino; Dubner, Diana; Giorgio, Marina di; Carosella, Edgardo D.

    2005-01-01

    Recent progress especially in the field of gene identification and expression has attracted greater attention to the genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation, offering a better likelihood of cure for malignant tumours. Although only a small percentage of individuals are ''hypersensitive'' to radiation effects, all medical specialists using ionising radiation should be aware of the aforementioned progress in medical knowledge. The present paper, the second of two parts, reviews human disorders known or strongly suspected to be associated with hypersensitivity to ionising radiation. The main tests capable of detecting such pathologies in advance are analysed, and ethical issues regarding genetic testing are considered. The implications for radiation protection of possible hypersensitivity to radiation in a part of the population are discussed, and some guidelines for nuclear medicine professionals are proposed. (orig.)

  19. Radiation protection research and training programme review radiation protection programme 1960-89 synopsis of results 1985-89

    International Nuclear Information System (INIS)

    1990-01-01

    This document aims to trace the evolution of the CEC radiation protection programme over its 30 years of existence. During this time, research carried out in the framework of the Community programme has made major contributions to the scientific understanding of the action of ionizing radiation and the protection of man and his environment. This information was crucial for developing better radiation protection management for existing and new technologies and for providing the scientific basis for the regulatory activities of the Commission. One important feature of the programme was the success of bringing together scientists from different Member States to cooperate in the various fields of radiation protection and to integrate different areas of radiation protection research into a coherent approach. The structures thus developed within the programme have enabled research in radiation protection to be conducted in a cost-effective manner on behalf of the Member States. This document aims also to give a synopsis of the most important results of the 1985-89 radiation protection programme. This period was characterized by two challenges, the integration of two Member States into Community research and the impact of the Chernobyl accident. The programme has, in spite of reduced funding, continued to provide a high degree of expertise for the Community in the context of the needs in radiation protection. This has been explicity acknowledged in the evaluation of the 1980-89 programmes carried out by an independent panel

  20. 78 FR 59982 - Revisions to Radiation Protection

    Science.gov (United States)

    2013-09-30

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Revisions to Radiation Protection AGENCY: Nuclear..., ``Radiation Sources,'' Section 12.3 -12.4, ``Radiation Protection Design Features,'' and Section 12.5, ``Operational Radiation Protection Program.'' DATES: The effective date of this Standard Review Plan update is...

  1. Radiation protection technologist training and certification program

    International Nuclear Information System (INIS)

    1982-10-01

    The purpose of this program is to establish training requirements and methods for certifying the technical competence of Radiation Protection Technologists. This manual delineates general requirements as well as academic training, on-the-job training, area of facility training, and examination or evaluation requirements for Radiation Protection Trainees (Trainees), Junior Radiation Protection Technologists (JRPT), Radiation Protection Technologists (RPT), and Senior Radiation Protection Technologists (SRPT). This document also includes recertification requirements for SRPTs. The appendices include training course outlines, on-the-job training outlines, and training certification record forms

  2. External dosimetry - Applications to radiation protection

    International Nuclear Information System (INIS)

    Faussot, Alain

    2011-01-01

    Dosimetry is the essential component of radiation protection. It allows to determine by calculation and measurement the absorbed dose value, i.e. the energy amounts deposited in matter by ionizing radiations. It deals also with the irradiation effects on living organisms and with their biological consequences. This reference book gathers all the necessary information to understand and master the external dosimetry and the metrology of ionizing radiations, from the effects of radiations to the calibration of radiation protection devices. The first part is devoted to physical dosimetry and allows to obtain in a rigorous manner the mathematical formalisms leading to the absorbed dose for different ionizing radiation fields. The second part presents the biological effects of ionizing radiations on living matter and the determination of a set of specific radiation protection concepts and data to express the 'risk' to develop a radio-induced cancer. The third part deals with the metrology of ionizing radiations through the standardized study of the methods used for the calibration of radiation protection equipments. Some practical exercises with their corrections are proposed at the end of each chapter

  3. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    Essential information on the health protection of radiation workers which has accumulated since the advent of nuclear fission thirty years ago is presented in simple terms. Basic facts on ionizing radiation, its measurement, and dosimetry are presented. Acute and chronic somatic and genetic effects are discussed with emphasis on prevention. Radiation protection standards and regulations are outlined, and methods for maintaining these standards are described. Diagnosis and treatment of radiation injury from external radiation and/or internally deposited radionuclides is considered generally as well as specifically for each radioisotope. The medical supervision of radiation workers, radiation accidents, atomic power plants, and medicolegal problems is also covered. (853 references) (U.S.)

  4. Critical issues in radiation protection knowledge management for preserving radiation protection research and development capabilities

    International Nuclear Information System (INIS)

    Dewji, Shaheen Azim

    2017-01-01

    As a hub of domestic radiation protection capabilities, Oak Ridge National Laboratory’s Center for Radiation Protection Knowledge has a mandate to develop and actuate a formal knowledge management (KM) effort. This KM approach exceeds recruitment and training efforts but focuses on formalized strategies for knowledge transfer from outgoing subject matter experts in radiation protection to incoming generations. It is envisioned that such an effort will provide one avenue for preserving domestic capabilities to support stakeholder needs in the federal government and the nuclear industry while continuing to lead and innovate in research and development on a global scale. Furthermore, in the absence of broader coordination within the United States, preservation of radiation protection knowledge continues to be in jeopardy in the absence of a dedicated KM effort.

  5. Radiation protection - radiographer's role and responsibilities

    International Nuclear Information System (INIS)

    Popli, P.K.

    2002-01-01

    Ever since discovery of x-rays, radiographers has been the prime user of radiation. With the passage of time, the harmful effects of radiation were detected. Some of radiographers, radiologists and public were affected by radiation, but today with enough knowledge of radiation, the prime responsibility of radiation protection lies with the radiographers only. The radiologist and physicist are also associated with radiation protection to some extent

  6. Radiation protection in the Brazilian universities

    International Nuclear Information System (INIS)

    Caballero, K.C.S.; Borges, J.C.

    1994-01-01

    A research covering 91 institutions was undertaken in order to elucidate how radiation protection were indeed fulfilled. A questionary including technical administrative and legal subjects was sent by mail and 36% of which were answered propitiating substantial data for analysis. Only in few cases universities have knowledge of basic procedures in radiation protection, claiming for the elaboration of a plan that could guide supervisors and workers in radiation protection in these institution. Based on the tree analysis technique proposed by IAEA, a Reference Radiation protection Program has been elaborated and proposed for Brazilian universities. (author). 14 refs, 1 figs

  7. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.; Persson, L.

    1997-01-01

    In this note the authors survey existing international radiation-protection recommendations of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection and risk assessment/management, the authors review ethical thinking on five key issues related to radiation protection and ethics. They formulate each of these five issues in terms of alternative ethical stances: (1) Equity vs. Efficiency, (2) Health vs. Economics, (3) Individual Rights vs. Societal Benefits, (4) Due Process vs. Necessary Sacrifice, and (5) Stakeholder Consent vs. Management Decisions (authors)

  8. Radiation risks and radiation protection at CRNL

    International Nuclear Information System (INIS)

    Myers, D.K.

    1986-01-01

    Radiation exposure is an occupational hazard at CRNL. The predicted health effects of low levels of radiation are described and compared with other hazards of living. Data related to the health of radiation workers are also considered. Special attention is given to the expected effects of radiation on the unborn child. Measures taken to protect CRNL employees against undue occupational exposure to radiation are noted

  9. XXXVI. Days of Radiation Protection. Book of Abstracts

    International Nuclear Information System (INIS)

    2014-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 93 abstracts are published. The Conference consists of following sections: (I) General aspects and new trends of radiation protection); (II) Radiation protection in medicine; (III): Dosimetry and metrology of external and internal radiation exposure; (IV) Regulation of radiation exposure to natural sources and control of radon exposure; (V) Radiation protection in nuclear power plants, their decommissioning and waste management; (VI) Application of radiation protection standards in the emergency management; (VII) Biological effects of ionizing radiation and risk estimation; (VIII) Education and training in radiation protection in the light of new recommendations of EU, ICRP and IAEA.

  10. Radiation protection to firemen

    International Nuclear Information System (INIS)

    Almeida, E.S. de.

    1985-01-01

    The basic Knowledge about ionizing radiation oriented for firemen, are presented. The mainly damage and effects caused by radiation exposure as well as the method of radiation protection are described in simple words. The action to be taken in case of fire involving radiation such as vehicles transporting radioactive materials are emphasized. (author)

  11. Radiation protection day - Book of abstracts

    International Nuclear Information System (INIS)

    2000-06-01

    This document brings together the abstracts of all presentations given at the Radiation protection day organised in May 2000 by the French association for radiation protection techniques and sciences (ATSR) on the topic of the new European and French radiation protection regulations and their conditions of application in hospitals. Content: 1 - Presentation of the Office of Protection against Ionizing Radiations (O.P.R.I.), status of texts and evolution, practical implementation of operational dosimetry (Alain Valero, O.P.R.I.); 2 - Presentation of the Radiation Protection Service of the Army (S.P.R.A.) and its role in French army's hospitals (Jean-Baptiste Fleutot, S.P.R.A.); 3 - 96/29 European directive and water quality - transposition in French law (Daniel Robeau, I.P.S.N. Fontenay-Aux-Roses); 4 - Presentation of an automatized active dosimetry system (Michel Deron, G.E.M. System); 5 - Euratom 97/43 Directive from June 30, 1997 - assessment of the existing framework for patients protection in medical environment (Pierre Muglioni, APAVE Nord Ouest); 6 - Specificities of the ionising radiations risk in medical environment - presentation of a ionising radiations risk assessment grid (Marie-Christine Soula, Labour regional direction Ile de France); 7 - Low dose effects (B. Le Guen, E.D.F. G.D.F.); 8 - Operational dosimetry in the medical domain - the Saphydose dosemeter (Frederico Felix - Saphymo); 9 - Positrons and radiation protection (Luc Cinotti - C.E.R.M.E.P.); 10 - Workplace studies in medical environment - areas and personnel classification (Jean-Claude Houy, Sandrine Laugle, Eugene Marquis Cancer Centre Rennes); 11 - Experience feedback after 4 years of active dosimetry in a nuclear medicine service (Albert Lisbona, Centre Rene Gauducheau Nantes/Saint-Herblain); 12 - Operational dosimetry as it is performed today in CNRS laboratories (Helene Dossier - C.N.R.S. Orsay); 13 - Radiation protection in submarine naval forces (Pierre Laroche, Army's health service

  12. ENETRAP II: European network of education and training in radiation protection, data base training; ENETRAP II: Red Europea de Educacion y Formacion en Proteccion Radiologica, base de datos de formacion

    Energy Technology Data Exchange (ETDEWEB)

    Marco Arboli, M.; Llorente, C.; Coeck, M.

    2012-07-01

    Development and implementation of a European standard for high quality initial training and professional development continued in the {sup R}adiation Protection Expert-RPE and Radiation Protection Officer-RPO, also of a methodology for the mutual recognition of these professionals by making use of the available instruments of the European Union (GE).

  13. New radiobiological, radiation risk and radiation protection paradigms

    International Nuclear Information System (INIS)

    Goodhead, Dudley T.

    2010-01-01

    The long-standing conventional paradigm for radiobiology has formed a logical basis for the standard paradigm for radiation risk of cancer and heritable effects and, from these paradigms, has developed the internationally applied system for radiation protection, but with many simplifications, assumptions and generalizations. A variety of additional radiobiological phenomena that do not conform to the standard paradigm for radiobiology may have potential implications for radiation risk and radiation protection. It is suggested, however, that the current state of knowledge is still insufficient for these phenomena, individually or collectively, to be formulated systematically into a new paradigm for radiobiology. Additionally, there is at present lack of direct evidence of their relevance to risk for human health, despite attractive hypotheses as to how they might be involved. Finally, it remains to be shown how incorporation of such phenomena into the paradigm for radiation protection would provide sufficient added value to offset disruption to the present widely applied system. Further research should aim for better mechanistic understanding of processes such as radiation-induced genomic instability (for all radiation types) and bystander effects (particularly for low-fluence high-LET particles) and also priority should be given to confirmation, or negation, of the relevance of the processes to human health risks from radiation.

  14. Basic principles of radiation protection in Canada

    International Nuclear Information System (INIS)

    1990-03-01

    The major goal of radiation protection in Canada is to ensure that individuals are adequately protected against the harm that might arise from unwarranted exposure to ionizing radiation. This report deals with the basic principles and organizations involved in protection against ionizing radiation. Three basic principles of radiation protection are: 1) that no practice shall be adopted unless its introduction produces a positive net benefit for society, 2) that all exposures shall be kept as low as reasonably achievable, relevant economic and social factors being taken into account, and 3) that doses to individuals should not exceed specified annual limits. The limit for radiation workers is currently 50 mSv per year, and exposures of the general public should not exceed a small fraction of that of radiation workers. Other specific areas in radiation protection which have received considerable attention in Canada include limitations on collective dose (the sum of the individual doses for all exposed individuals), exemption rules for extremely small radiation doses or amounts of radioactive materials, occupational hazards in uranium mining, and special rules for protection of the foetus in pregnant female radiation workers. Implementation of radiation protection principles in Canada devolves upon the Atomic Energy Control Board, the Department of National Health and Welfare, provincial authorities, licensees and radiation workers. A brief description is given of the roles of each of these groups

  15. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  16. New radiation protection law

    International Nuclear Information System (INIS)

    1985-01-01

    The structure of the existing legislation and its contents and aims are reconsidered. New rules which correspond to the present situation are to be established. Also the fundamental principles of the task and methods of radiation protection are to be changed. The main effort will be to create conditions so that all human beings will be protected against the harmful effects of radiation. The effects on plants, animals and on the environment should be considered as well. The legislation should include both ionizing and non-ionizing radiation. The main responsibility of protection should stay with the central authority. Licensing of apparatus, liability for medical applications and radioactive waste is discussed. Granting of permissions and control should be accomplished by the authority. Cooperation with other national and international authorities is dealt with. (G.B.)

  17. Radiation Protection Group annual report (1997)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1998-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  18. Radiation Protection Group annual report (1996)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1997-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  19. Radiation Protection Group annual report (1998)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1999-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  20. Radiation Protection Group annual report (1996)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1997-03-25

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  1. Radiation Protection Group annual report (1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1999-04-15

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  2. Radiation Protection Group annual report (1997)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1998-04-10

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  3. Radiation Protection Group annual report (1995)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1996-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1995. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  4. Proceedings of the Fifth Symposium of the Croatian Radiation Protection Association

    International Nuclear Information System (INIS)

    Krajcar Bronic, I.; Miljanic, S.; Obelic, B.

    2003-01-01

    Croatian Radiation Protection Association (CRPA) organised symposium with international participation. Co-organisers (Rudjer Boskovic Institute, Zagreb, Croatia and Institute for Medical Research and Occupational Health, Zagreb, Croatia) show importance of this symposium, which was under the auspices of several ministries (Ministry of Economy, Ministry of Environmental Protection and Physical Planning, Ministry of Health, Ministry of Science and Technology of the Republic of Croatia) and State Office for Standardization and Metrology. All topics are of great interest for Croatia. They present recent researches in Croatia and in other almost same oriented countries in Europe.The distribution of topics at the Fifth symposium shows same parts with articles from radioecology and radon, biological and medical topics, as well as professional and public exposure and dosimetry. Also, non-ionising radiations take its share as very interesting topics at present. (S.P.)

  5. Radiation protection training for users of ionizing radiation in Hungary

    International Nuclear Information System (INIS)

    Pellet, S.; Giczi, F.; Elek, R.; Temesi, A.; Csizmadia, H.; Sera, E.

    2012-01-01

    According to the current and previous regulation related to the safety use of ionizing radiation, the personnel involved must obtain special qualification in radiation protection. In Hungary the radiation protection training are performed by appropriately certified training centers on basic, advanced and comprehensive levels. Certification of the training centers is given by the competent radiological health/radiation protection authority. The office of the Chief Medical Officer is the certifying authority for advanced and comprehensive levels training, as well as competent Regional Radiological Health Authority is responsible for basic level courses. The content and length of courses are specified in the regulation for all three levels of industrial, laboratory and medical users, in general. Some of the universities, technical and medical oriented are certified for advanced training for students as gradual course. Recently in Hungary there are 47 certified training centers for advanced and comprehensive courses, where the trainers should have a five years job experience in radiation protection and successful completion of comprehensive level course in radiation protection. (authors)

  6. Effects of the new radiation protection act on the radiation protection register and the monitoring of occupational radiation exposure

    International Nuclear Information System (INIS)

    Frasch, G.

    2016-01-01

    The implementation of DIRECTIVE 2013/59 / EURATOM (EURATOM Basic Safety Standards) is via the new radiation protection law and brings in the monitoring of occupational radiation among others two significant new features and changes: - Introduction of a unique personal identifier, - update of the occupational categories. Both require technical and organizational changes in the data transmission of the licensees to the dosimetry services and the radiation protection register.

  7. The development of radiation protection in Hungary

    International Nuclear Information System (INIS)

    Bisztray-Balku, S.; Bozoky, L.; Koblinger, L.

    1982-01-01

    This book contains the short history, development and present status of radiation protection and health physics in Hungary. The first chapter discusses the radiation protection standards and practices used in scientific, technical and medical radiology in this country, with their development history. The next chapter is devoted to the radiation protection techniques applied for medical uses of radioisotopes and accelerators including the organizational and management problems. The last chapter presents a review on radiation protection and health physics aspects of the Hungarian industry and agriculture, on radiation protection research and management, on instruments and dosimeters. A national bibliography on the subject up to 1979 is included. (Sz.J.)

  8. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    Fendel, H.; Stieve, F.E.

    1983-01-01

    Because of the high growth rate of cell systems in phases of radiation exposure radiological investigations on children should not be considered unless there is a strong indication. The National Council on Radiation Protection and Measurements has worked out recommendations on radiation protection which have been published as an NCRP report. This report is most important even outside the USA. The present translation is aimed to contribute to better understanding of the bases and aims of radiation protection during radiological investigations on children. It addresses not only those physicians who carry out radiological investigations on children themselves but also all physicians requiring such investigations. For these physicians, but also for parents who are worried about the radiation risk to their children the report should be a useful source of information and decision aid ensuring, on the one hand, that necessary radiological investigations are not shunned for unjustified fear of radiation and that, on the other hand, all unnecessary exposure of children to radiation is avoided. Thus, it is to be hoped, the quality of pediatric radiological diagnostics will be improved. (orig./MG) [de

  9. [The new law on radiation protection as a consequence of the EU safety standard of 2013].

    Science.gov (United States)

    Layer, G

    2017-07-01

    The transformation of a European guideline (2013/59/Euratom) from 2013 into national law requires adaptation of the national statutory regulations. This year, all areas of protection from ionizing radiation will be subject to the new radiation protection law (StrlSchG). Through this, the German X‑ray and Radiation Protection Acts will be combined to form a higher level of authority. The main parts of the StrlSchG will receive a new classification and will be organized according to the exposure scenario: radiation protection in planned exposure scenarios, radiation protection in emergency exposure scenarios, radiation protection in existing exposure scenarios, and the regulation of overall exposure scenarios. The most important or modified regulated points for radiology are concerned with early recognition, where the application of X‑ray or nuclear radiation is permitted in principle under certain conditions; the consultation of medical physics experts in all diagnostic investigative procedures involving radiation and applications for radiological intervention that are linked to high doses in the person under investigation; teleradiology, another special case of the application of X‑rays in humans that requires approval, now with the "required" technical qualification in radiation protection, formerly with the "full" technical qualification, in addition to research, the simplified approval procedure being substituted with a notification procedure.Furthermore, in contrast to previous regulations, those tasked with radiation protection can contact the regulators directly in the case of conflict, which indicates considerable reinforcement of their authority.The only dose limit that will be considerably reduced is the organ-specific equivalent dose of the eye lens, where the highest value will be reduced from 150 to 20 mSv per year in those who are exposed to radiation professionally.

  10. Sense and purpose of radiation protection training

    International Nuclear Information System (INIS)

    Malasek, A.

    1992-04-01

    Training in radiation protection is of great significance in connection with the activities of the executive, the federal army and emergency organizations in emergency operations for the protection of the population in the case of large-scale radioactive contamination due to diverse causes. The presently valid legal situation of radiation protection training is presented in connection with the expected modification in the amendment to the SSVO. The special situation of radiation protection training for the executive, the federal army and emergency organizations is described and discussed in connection with the new aspects outlined in the draft of the new radiation protection regulation. In conclusion, problems arising in the conveyance of basic knowledge in radiation protection are illustrated by means of a concrete example. (author)

  11. Radiation protection safety in Uganda -- Experience and prospects of the National Radiation Protection Service

    International Nuclear Information System (INIS)

    Kisolo, A.

    2001-01-01

    The Uganda National Radiation Protection Service (NRPS) is a technical body under the Atomic Energy Control Board, established by Law - the Atomic Energy Decree of 1972, Decree No. 12, to oversee and enforce safety of radiation sources, practices and workers; and to protect the patients, members of the public and the environment from the dangers of ionizing radiation and radioactive wastes. The Ionizing Radiation Regulations (Standards) - Statutory Instruments Supplement No. 21 of 1996 -- back up the Law. The Law requires all users, importers and operators of radiation sources and radioactive materials to notify the NRPS for registration and licensing. The NRPS is responsible for licensing and for the regulatory enforcement of compliance to the requirements for the safety of radiation sources and practices. There are about 200 diagnostic X-ray units, two radiotherapy centres, one nuclear medicine unit, several neutron probes, about three level gauges and two non-destructive testing sources and a number of small sealed sources in teaching and research institutions. About 50% of these sources have been entered in our inventory using the RAIS software provided by the IAEA. There are about 500 radiation workers and 250 underground miners. The NRPS covers about 50% of the radiation workers. It is planned that by June 2001, all occupational workers will be monitored, bringing coverage to 100%. The Government of Uganda is making the necessary legal, administrative and technical arrangements aimed at establishing the National Radiation Protection Commission as an autonomous regulatory authority. The Atomic Energy Decree of 1972 and Regulations of 1996 are being revised to provide for the National Radiation Protection Commission and to make it comply with the requirements of the International Basic Safety Standards Safety Series No. 115. (author)

  12. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H 2 O 2 (toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H 2 O 2 )-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H 2 O 2 (or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  13. Radiation Protection. Chapter 24

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, D. [Ninewells Hospital, Dundee (United Kingdom); Collins, L. T. [Westmead Hospital, Sydney (Australia); Le Heron, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Chapter 21, in describing basic radiation biology and radiation effects, demonstrates the need to have a system of radiation protection that allows the many beneficial uses of radiation to be realized while ensuring detrimental radiation effects are either prevented or minimized. This can be achieved with the twin objectives of preventing the occurrence of deterministic effects and of limiting the probability of stochastic effects to a level that is considered acceptable. In a radiology facility, consideration needs to be given to the patient, the staff involved in performing the radiological procedures, members of the public and other staff that may be in the radiology facility, carers and comforters of patients undergoing procedures, and persons who may be undergoing a radiological procedure as part of a biomedical research project. This chapter discusses how the objectives given above are fulfilled through a system of radiation protection and how such a system should be applied practically in a radiology facility.

  14. Bioassay programs for radiation protection

    International Nuclear Information System (INIS)

    1979-01-01

    This report discusses the rationale for the establishment of bioassay programs as a means of protection for radiation workers in the nuclear industry. The bioassay program of the Radiation Protection Bureau is described for the years 1966-1978 and plans for future changes are outlined. (auth)

  15. Radiation protection course for physicians. 3. rev. ed.

    International Nuclear Information System (INIS)

    Stieve, F.E.

    1979-01-01

    The regulations of the Radiation Protection Ordinance and the X-ray Ordinance concerning the expert training of radiological safety officers and health physicists working in hospitals and general practice require expert knowledge in radiation protection of these persons. Expert knowledge includes knowledge of radiation protection itself but also experience in the medical application of ionizing radiation and radioactive materials and experience required for judging the state of health of persons occupationally exposed to radiation. The discussions between lectures and participants of the radiation protection courses made it necessary to update the textbooks with regard to the latest state of knowledge in radiobiology, radiation hygiene, radiation protection, and legislation. (orig./HP) [de

  16. Medical aspects of radiation protection law contribution to Austrian radiation protection law

    International Nuclear Information System (INIS)

    Moser, B.

    1977-01-01

    Some medical aspects of the radiation protection law, esp. in conjunction with medical surveillance of persons exposed to radiation, are dealt with. The discussion refers to the countries of the European Community and Austria and Switzerland. (VJ) [de

  17. Coastal sea radiation environment and biodiversity protection

    International Nuclear Information System (INIS)

    Tang Senming; Shang Zhaorong

    2009-01-01

    This paper characterizes the types, trend and the potential of radiation contamination in the sea against the development of nuclear power stations. Combined with the present status of radioactive contamination and marine biodiversity in China seas, it is pointed out that non-human radiation protection should be considered on the bases of marine biodiversity protection. Besides, the reference species for marine radiation protection and some viewpoints on the work of marine radiation protection in China are pro- posed. (authors)

  18. Abstracts of 20. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    1988-01-01

    51 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, international activities in radiation protection, solid state dosimetry, models and calculation methods in radiation protection, and measuring techniques in radiation protection

  19. Radiation protection in the future: an insurer's viewpoint

    International Nuclear Information System (INIS)

    Forbes, J.L.

    1988-01-01

    The profession of health physics has as its goal the protection of workers and the public from the harmful effects of ionizing radiation. On-the-job training used to be the major part of the young health physicist's professional development, and we can all name many respected pioneers still practicing radiation protection in its purest form. Health physicists of the future, however, will be required to build on that stable platform and move into a different arena--one in which their motives, programs and qualifications are constantly questioned in a much broader context. They will be required to defend their actions and themselves in the courtroom as well as the laboratory and the field. The need for certified health physicists will certainly increase dramatically in relation to the total number required just to get the job done. This comes at a time when colleges and universities are finding it increasingly difficult to obtain funding for their degree programs. Members of the profession must become aware of the changing times and expanding potential for litigation, because many health physicists will be involved in this new arena in one way or another

  20. First Asian regional congress on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-12-01

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection.

  1. XXXIX Days of Radiation Protection. Proceedings of Abstracts

    International Nuclear Information System (INIS)

    2018-01-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 91 abstracts are published. The Conference consists of following sections: (I) Radiation protection, consequences of implementation of the EU2013 / 59 directive in the Czech Republic and the Slovak Republic); (II) Radiation protection in the application of ionizing radiation in medicine; (III) Dosimetry and metrology of external and internal irradiation; (IV) Natural sources of ionizing radiation, national radon programs; (V) Nuclear energy, the concept of decommissioning of nuclear power plants in terms of radiation protection; (VI) Use of standards of radiation protection in emergency management; (VII) Biological effects of radiation and estimation of irradiation risk.

  2. State Supervision and Control of Radiation Protection

    CERN Document Server

    2001-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 1999-2001 is presented.

  3. Radiation safety, protection and recommendations in dentistry - a review

    International Nuclear Information System (INIS)

    Castelino, Renita

    2013-01-01

    Radiation is the transmission of energy through space and matter. Diagnostic radiology uses ionizing radiations which have sufficient energy to ionize atoms or molecules in biological and other systems. X-rays used in diagnostic radiology are a potent mutagenic agent, capable of inducing both gene mutations and chromosomal aberrations. X-rays are extensively used in medical and dental practice for the purpose of diagnosis and treatment. X-rays provide useful information and aid in diagnosis but at the same time they also have the potential to cause harmful effects. In dentistry X-rays are used mainly for diagnosis. Radiation in doses required for dentistry may not present any major risks, however these small doses are not necessarily risk free. Hence, no exposure to X-rays can be considered completely free of risk, so the use of radiation by dentists is accompanied by a responsibility to ensure appropriate protection. Several radiation safety measures have been recommended and advocated to reduce harmful effects. Dental professionals are the only practitioners who perform radiographical examination of their patients themselves. Although the exposure used in dentistry is low every effort should be made to reduce radiation in order to prevent the accumulated dose to the dentist in their lifetime. The dose reduction can be achieved in three main steps. They are decision making, optimising radiologic procedures and patient protection. The potential for undesirable effects must be balanced against the benefits obtained from radiographs. Therefore, the aim of the paper is to review important parameters that must be taken into consideration in the clinical set up to reduce radiation exposure to patients and dental personnel. (author)

  4. A person having ability in radiation protection: an original measure in comparison with the common rights for work safety

    International Nuclear Information System (INIS)

    Pasquier, J.L.; Vidal, J.P.

    1998-01-01

    In accordance with the regulations, any factory using ionising radiations is obliged to designate a person having having ability in radiation protection and entrusted with specific missions regarding safety for professional risks. This represents an original measure in comparison with the common rights for work safety. The decree whose became operative on 2 october 1986, about ten years ago and just before the reform of radiation protection standards, it seems important to store in memory the genesis and the goals of this prescription and to present the results. (authors)

  5. Regulations for radiation protection in industrial radiography

    International Nuclear Information System (INIS)

    1974-01-01

    These Regulations specify that responsibility for applying radiation protection regulations in industrial radiography rests with the owner of the establishment who will designate a radiation protection officer to this effect. They provide for the organisation of radiation protection, including the measures to be observed, exposure limits, etc. The competent authority for these questions is the State Institute of Radiation Hygiene [fr

  6. Radiation protection standards: a summary of the biological effects of ionising radiation and principles of radiation protection

    International Nuclear Information System (INIS)

    1994-01-01

    This leaflet in the NRPB At-a-Glance-Series briefly summarises the biological effects of radiation, harm and sensitivity to radiation, radiation protection principles, acceptability of risk and the control of doses to workers, the public and in medical procedures in the UK. (UK)

  7. Proceedings of the 10. national radiation protection congress

    International Nuclear Information System (INIS)

    Cousins, Claire; Ducou Le Pointe, Hubert; Lochard, Jacques; Vaillant, L.; Masse, Roland; Stricker, Laurent; Beaugelin-Seiller, K.; Garnier-Laplace, J.; Bernier, M.O.; Biau, A.; Bordy, J.M.; Laurier, D.; Guipaud, Olivier; Leuraud, Klervi; Rage, Estelle; Villeneuve, Sara; Clero, Enora; Samson, E.; Scanff, P.; Rannou, A.; Caldeira Ideias, P.; Paradis, H.; Boussetta, B.; Boyer, C.; Gontier, G.; Hemidy, P.Y.; Carreau Gaschereau, E.; Hartemann, P.; Menechal, P.; Mougniot, S.; Le Coz, E.; Le Goff, Pierre; Abela, G.; Chirent, T.; De Vita, A.; Drouet, F.; Hillaireau, B.; Marcillet, C.; Michoux, X.; Yadani, Fatima; Blanc, Pauline; Canal, E.; Perier, A.; Lahaye, T.; Andresz, Sylvain; Barbey, P.; Gagna, Gerald; Guetat, Ph.; Schneider, Thierry; Vaillant, Ludovic; Cherin, Herve; Roy, Catherine; Desbiolles, Alice; Roudier, Candice; Goria, Sarah; Stempfelet, Morgane; Monnereau, Alain; Lefranc, Agnes; Vacquier, Blandine; Baysson, H.; Etard, C.; Maurice, Jean-Baptiste; Milliat, Fabien; Moan, Gwennael; Petitguillaume, Alice; Roch, Patrice; Marie, Laurent; Dufay, Emilie; Magne, Isabelle; Mathieu, Peggy; Perrin, Anne; Veyret, Bernard; Clauss, Nicolas; Dabli, D.; Guillot, Sebastien; Kamoun, Hager; Mackowiak, Julien; Bensimon, Julie; Bez, Jeremy; Petitfrere, Michael

    2015-06-01

    The French Society of Radiation Protection (SFRP) celebrated its 50 anniversary at the occasion of the 10. national radiation protection (RP) congress. This document brings together the abstracts of the different talks given at the congress. A - Invited talks: A1 - Forward through the rearview mirror: Reflections on ICRP Past and Future (C. COUSINS); A3 - Origin and evolution of the intervening parties involvement approach in RP (J. LOCHARD); A4 - Knowledge influence and biological uncertainties on RP evolution (R. MASSE); A5 - RP history in nuclear industry: EDF an anticipation example (L. STRICKER); B - Tutorial presentations: B1 - Environment RP: towards its explicit integration in French law? (K. BEAUGELIN-SEILLER, J. GARNIER-LAPLACE); B2 - Scanner exposure in child and radio-induced risk: recent epidemiological results (M.O. BERNIER); B3 - Ionizing radiations professional exposure dose measurement: goals and evolutions (A. BIAU, J.M. BORDY); B4 - Workers RP at dismantling sites (B. BOUSSETTA, L. VAILLANT); B5 - Environment RP (part 2): EDF's methodology and experience feedback (C. BOYER, G. GONTIER, P.Y. HEMIDY); B6 - Revision of SCENIHR's 2009 opinion about the potential health impact of electromagnetic fields, from the 2011 European inaugural meeting to its 2015 publication (P. HARTEMANN); B8 - Advances in low dose epidemiological knowledge (D. LAURIER); B9 - Use of ionizing radiations at the operating theatre: what RP issues? (P. MENECHAL, S. MOUGNIOT); Session 1: RP regulations and standards, RP and society (6 presentations); Session 2: effects of Ionizing radiations on men and ecosystems (6 presentations); Session 3: patients RP (7 presentations); Session 4: Populations and ecosystems RP (4 presentations); Session 5: Occupational RP - Industry (8 presentations); Session 6: non-ionizing radiations (5 presentations); Session 7: Occupational RP - Medical (6 presentations); Session 8: Advances in dosimetry and metrology (4 presentations)

  8. Stakeholders and Radiation Protection in Today's World

    International Nuclear Information System (INIS)

    Rick Jones, C.; Lochard, J.; Lazo, T.

    2006-01-01

    In looking forward the C.R.P.P.H.(Nea 's Committee on radiation protection and public health) identified three influences that will condition the way we address emerging issues, and will alter how we address ongoing issues. These are the involvement of stakeholders in decision making processes, the evolution of radiological protection science and its changing place in risk assessment and management, and the experience gained in implementing the current system of radiological protection. First among there is the growing importance of stakeholder involvement in radiation protection decision making. This has affected the way that the principles of justification, optimization and limitation are viewed, the way the role of the radiation protection professional in risk assessment and management is viewed, and the relative importance of case specific circumstances in relation to harmonized, internationally accepted criteria. In the wake of this change, the international system of radiological protection is being updated by the ICRP, and discussions of the most appropriate direction to take are nearing their end. Second, radiological protection science continues to identify specific aspects that do not fit the conventional linear non threshold model, and which us to consider that, at the very least, the risks from different exposures and exposure situations may not be as simply and universally comparable assumed. This will affect the way that risks are managed, and all relevant stakeholder involvement processes. In addition, decisions relating to public, worker and environmental health and safety are increasingly seen as judgement social choices. Although such choices must be guided by an understanding of state-of-the-art scientific and its uncertainties, the final, choice will generally be made by society, not scientists. Third, since the issuance of ICRP Publication 60 in 1990, and the International Basic Safety Standards in 1996, extensive experience has been amassed in

  9. Radiation protection in education

    International Nuclear Information System (INIS)

    Viragh, Elemer

    1985-01-01

    The education of secondary school students in the fields of nuclear sciences was strictly limited according to the 9th recommendations of the ICRP issued in 1966 saying that people under age 18 are not allowed to deal with ionizing radiations. Due to the changes concerning the concept of radiation protection, new opportunities for teaching nuclear technology even in the secondary schools were opened. The 36th recommendations of the ICRP published in 1983 dealing with the maximum permissible doses and the measures taken for radiation protection should be kept in mind while organizing the education of the pupils between age 16 and 18. (V.N.)

  10. Radiation Protection in PET-CT

    International Nuclear Information System (INIS)

    2011-10-01

    The presentation is based on the following areas: radiological monitoring installations in the production of PET radiopharmaceuticals, personal dose, dosage advertising, nuclear medicine, PET, radiation protection of patients, requirements for medical practice, regulatory aspects, dose calculation, shields, quantities, center Cudim, cyclotron and synthesis of radiopharmaceuticals, biological effects of radiation protection practices.

  11. New trends in radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1977-10-01

    The introduction of new concepts such as the effective dose equivalent, the collective dose and the dose commitment, and the application of the basic principles of justification, optimization and individual dose limitation has had a major impact on the planning and implementation of radiation protection during the last few years. The basic principles are summarized in ICRP Publication 26. It is a chalenge to research in radiobiology, genetics and health physics to explore the scientific foundation of the current principles of radiation protection. The most interesting trend to-day, however, is the observation that the principles applied in radiation protection have now been generally recognized and accepted to the extent that they become utilized in the protection of man against non-radioactive carcinogenic substances and environmental pollutants. (author)

  12. First Asian regional congress on radiation protection

    International Nuclear Information System (INIS)

    Kumar, S.K.

    1975-01-01

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection. (S.K.K.)

  13. Course of radiation protection: technical level

    International Nuclear Information System (INIS)

    2002-01-01

    The course handbook on radiation protection and nuclear safety, technical level prepared by scientists of the Nuclear Regulatory Authority (ARN) of the Argentina Republic, describes the subjects in 19 chapters and 2 annexes. These topics detailed in the text have the following aspects: radioactivity elements, interaction of the radiation and the matter, radio dosimetry, internal contamination dosimetry, principles of radiation detection, biological radiation effects, fundamentals of radiation protection, dose limits, optimization, occupational exposure, radiation shielding, radioactive waste management, criticality accidents, safe transport of radioactive materials, regulatory aspects

  14. Radiation protection. The past and the future

    International Nuclear Information System (INIS)

    Michel, Rolf

    2016-01-01

    After a short summary of the history of radiation protection and its scientific basis a survey is given on the actual state of radiation protection, thereby entering into open questions like risk perception and communication with the general public. Finally, the future tasks of radiation protection are described.

  15. Ionizing radiation protection regulation in Canada: the role of the Federal Provincial Territorial Radiation Protection Committee

    International Nuclear Information System (INIS)

    Clement, Christopher H.

    2008-01-01

    Canada has one of the broadest and most mature nuclear industries in the world, and is a world leader in uranium mining, and in the production of medical radioisotopes. The Canadian nuclear industry also includes: uranium milling, refining, and fuel fabrication facilities; nuclear generating stations; research reactors and related facilities; waste management facilities; and the use of radioactive materials in medicine and industry. Regulation of this broad and dynamic industry is a complex and challenging task. Canada has a cooperative system for the regulation of ionizing radiation protection covering federal, provincial, territorial, and military jurisdictions. A Federal/Provincial/Territorial Radiation Protection Committee (FPTRPC) exists to aid in cooperation between the various agencies. Their mandate encompasses regulation and guidance on all aspects of radiation protection: federal and provincial; NORM and anthropogenic; ionizing and non-ionizing. The Canadian Nuclear Safety Commission (CNSC) is the federal nuclear regulator whose mandate includes radiation protection regulation of most occupational and public exposures. The CNSC does not regulate medical (patient) exposures, some aspects of NORM, or military applications. Provincial authorities are the primary regulators with respect to doses to patients and occupational doses arising from X-rays. Health Canada plays a role in X-ray device certification, development of national guidance (e.g. on radon) and direct regulation of certain federal facilities. NORM is regulated provincially, with varying regulatory mechanisms across the provinces and territories. Radiation protection regulation for National Defence and the Canadian Armed Forces is performed by the Director General Nuclear Safety. This paper gives an overview of the structure of the regulation of ionizing radiation protection in Canada, and shares lessons learned, particularly with respect to the usefulness of the FPTRPC in helping coordinate and

  16. Regional radiation protection initiatives by Australia

    International Nuclear Information System (INIS)

    Grey, J.

    1993-01-01

    Australia both through the auspices of the IAEA and from Government Aid Grants has contributed to the improvement of radiation protection throughout the Asia/Pacific region. The assistance has been in the form of training and improvement to radiation protection infrastructures. The presentation describes the objectives, scope and diversity of the radiation protection infrastructure program and the benefits to the large number of persons included in the program. An outline of the current IAEA program is also discussed together with an explanation of how the program will assist national regulators in the education of radiation workers, in hazardous operations such as industrial radiography

  17. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs

  18. Radiation protection education and training for physicians. Technical qualification for radiation protection and radiation protection instruction for physicians. More important than ever

    International Nuclear Information System (INIS)

    Loecker, Hubert

    2017-01-01

    The medical application of ionizing radiation - especially X-ray diagnostics - is contributing most of the civilizing radiation exposure of the population. More than 80 percent of occupationally exposed persons work in nuclear medicine. Therefore radiation protection in medicine and instruction and training of physicians is more important than ever.

  19. A review of current radiation protection in radiological diagnostics in Montenegro

    International Nuclear Information System (INIS)

    Mijovic, Slavoljub; Kovacevic, Zarko; Vuceljic, Mira; Scepanovic, Mara; Picuric, Ivana; Mardjokic, Aleksandar

    2008-01-01

    After getting independence 2006 year and became 192nd member of UN, Montenegro state is conducting measures for radiation protection autonomously. Because of complexity of such issues, Montenegro faced a lot of problems: lack of a national legal system in this field, expertise, appropriate equipments etc. Some estimates have shown that the major exposures of populations in Montenegro to ionizing radiation are due to the medical care. The purpose of this work is to analyze current protection in radiological diagnostics in Montenegro and compare it with international standards. It could be clearly stated where they are in agreement or disagreement. The method of analyzing is a holistic one, starting from the law, regulations and decisions through the protocols of quality controls and finishing with the reports and database of important parameters and data. The main findings are stated as follows: although the current radiation protection in radiological diagnostics is conducting according the law of former Federal Republic of Yugoslavia (FRY) and its regulations and decisions, the overall legal system is still satisfactory; Identification and location of radiation sources through a system of notification and maintaining a national inventory is not satisfactory; There are a lack of expertise and equipments for the technical services, although the procedures and protocols of the quality control are at a satisfactory level; There is a lack of knowledge of professional staff working in this field. The practice is sometimes operated carelessly; The patients protection is satisfactory but there is not care to decrease a level of exposure according the ALARA principle. (author)

  20. 7th Expert meeting radiation protection. International developments, waste management, challenges for the radiation protection in aging nuclear installations

    International Nuclear Information System (INIS)

    2010-01-01

    The proceedings of the 7th Expert meeting on radiation protection include contributions to the following topics: nuclear power and public opinion, IAEA safety standards, ISOE - information system on occupational exposure, European harmonization of the radiation protection education, WANO - challenges and results, CTBTO's global radiation measurement network, state of final radioactive waste disposal in Germany and worldwide, radioactive waste management and disposal in French NPPs, preparedness for final waste disposal in Schacht Konrad, actualization of the transport study Konrad, transport of NPPs' operational radioactive waste and waste from decommissioned reactor demolition to the final repository Konrad, qualification of radioactive waste casks for the final repository Konrad, radioactive waste disposal management concept in Switzerland, aging management and radiation protection, decontamination as effective measure for dose rate reduction - long-term and sustainable dose rate reduction by primary circuit decontamination, system and component decontamination for individual and collective dose reduction - practical examples, radiation protection map - electronic assistance for work planning, EPR dismantling already today? radiation protection register 2002-2010 - knowledge based on a decade of radiation monitoring, actual information on radiation protection in medicine, mobile telecommunication - actual research results.

  1. An outlook to radiation protection development

    International Nuclear Information System (INIS)

    Martincic, R.; Strohal, P.

    1996-01-01

    Radiation protection and safety have developed over many decades as the effects of ionizing radiation have been better and better understood. Some events in the last decade had essential impact on radiation protection policy/philosophy and related safety standards. Among them are available data of some long term radio-epidemiological studies of populations exposed to radiation. Investigations of the survivors of the atomic bombing of Hiroshima and Nagasaki illustrated that exposure to radiation has also a potential for the delayed induction of malignancies. They also showed that irradiation of pregnant women may result with certain mental damage in foetus. Several big radiation accidents which appeared in the last decade also had an impact on developments in radiation protection philosophy and practices. A well known Chernobyl accident showed that limited knowledge was available at the time of the accident on transfer of radionuclides in a specific environment, radioecological effects and pathways of highly radioactive atmospheric precipitation generated during the accident on various components of the environment. New scientific data indicated also that in some parts of human environment there are measurable effects of chronic exposure resulting from natural radiation. UNSCEAR is periodically publishing the most valuable set of data as compilation, and disseminates information on the health effects of radiation and on levels of radiation exposure due to different sources. These data are also the best guidelines for the necessary improvements and updating of radiation protection practices and philosophies. The latest ICRP-60 publication and recently issued International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources are reflecting many of the above mentioned findings. On the other hand the use of radiation sources is increasing day by day, and many new facilities applying radiation in radiotherapy

  2. Radiation and man. From radiology to radiation protection

    International Nuclear Information System (INIS)

    2005-04-01

    Man first became aware of the invisible radiation surrounding him in 1895, when Wilhelm Roentgen showed that a photographic plate could be affected by an invisible radiation capable of passing through matter. He called this radiation 'X-rays' from X, the unknown. Doctors immediately saw the usefulness of this type of radiation and began to use it in medical research. This was the birth of radiology. 'Mankind has been exposed to radiation since his first appearance on Earth. We first became aware of this at the end of the 19. century'. However, it was not long before some of the doctors and radiologists treating their patients with X-rays began to fall ill. It began to be understood that exposure to high doses of radiation was dangerous and protective measures were necessary. From the 1920's onwards, international commissions were established to specify regulations for the use of radiation and for the radiological protection of personnel. (authors)

  3. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Tadmor, J.; Schlesinger, T.; Lemesch, C.

    1980-01-01

    A committee of experts appointed by the Minister of Labour and Social Affairs has proposed a comprehensive draft regulation, concerning the legal aspects of occupational radiation protection in Israel. The first section of the proposed regulation sets forth guidelines for control in facilities where workers handle radioactive materials or radiation equipment. This includes the duties of the managers of such places to ensure adequate radiation protection and also the maximum recommended doses (whole body and individual organs) for radiation workers. The second section deals with the monitoring regulations for radiation workers who may be exposed to doses in excess of 500 mRem/y. The third section outlines the nature of the mechanical supervision required, i.e. routine and special examinations. Finally the committee also proposed six miscellaneous recommendations for radiation protection. (UK)

  4. Training aspects contributing to radiation protection

    International Nuclear Information System (INIS)

    Gupta, M.S.

    2001-01-01

    Radiation Protection assumes special significance with increasing use of radioactive materials and processes. Scientific and industrial organisations dealing with radioactive materials have prime responsibility of ensuring effective control of all activities which may lead to radiation exposure. Training of all the persons involved in the work associated with radioactivity is absolutely necessary to develop radiation protection skill, radiation measurement proficiency and special precautions to be taken in abnormal situations. NPCIL having responsibility for design, construction, operation and de-commissioning of nuclear power plants, employs about 10,000 workers on several project/station sites all over the country. NPCIL has developed a good training system to accurately control the exposure of workers to radiation. This paper covers the system and other relevant details of radiation protection training organised by NPCIL. (author)

  5. Computer Based Radiation Protection- A New Cd-Rom

    International Nuclear Information System (INIS)

    Geringer, T.; Bammer, M.; Ablber, M.

    2004-01-01

    Within the next few years, there'll be a lot of new challenges required from radiation protection. According to EU regulation[1] and the new austrian radiation protection law [2] regular additional training are requested. Patients protection in diagnostic and therapeutic usage of ionising radiation gains also more and more importance.[3] Not really surprisingly, the general population is definitely highly aware of the risks coming with the usage of radionuclides and x-rays in medicine. Furthermore, the nuclear power plant in Temelin, near the austrian border initiated a lively discussion about risks, necessity and use of ionising radiation in medicine and industry. It turned out to be a really hard job handling these topics in public. A brilliant didactics based on independent information and viewpoints was required. ARC Seibersdorf Research GmbH, represented by the department of medical technical applications and the radiation protection academy, developed an interactive CD-ROM covering several applications: Basics on radiation protection for medical and technical personnel ; preparation for a radiation protection training. Repetition of the main topics for graduates of a radiation protection training. Basics on radiation protection and emergency management for medical staff as well as for the general public. (Author)

  6. Public understanding of radiation protection concepts

    International Nuclear Information System (INIS)

    1988-01-01

    The Chernobyl accident in April 1986 clearly showed that communication with the public was one of the areas where there was a strong need for improvement, particularly concerning the nature and extent of the information provided by national authorities. The countermeasures adopted by public health authorities also raised difficulties in terms of public understanding and acceptance due, in part, to the perception of discrepancies in national, regional or local response to the accident, but also to a more basic lack of comprehension of the complex radiation protection considerations involved. In an attempt to help improve the situation, the NEA Committee on Radiation Protection and Public Health decided to organise a Workshop on public communication in the event of a nuclear accident, centered on radiation protection issues. The purpose of this Workshop was to analyse appropriate methods and language to be used when explaining to the public the scientific concepts underlying radiation risks and radiation protection, and the technical rationale for the choice of protective actions in an emergency. Separate abstracts were prepared for individual papers presented at the meeting

  7. Radiation protection planning and management during revision

    International Nuclear Information System (INIS)

    Gewehr, K.

    1984-01-01

    During the operation of nuclear power plants it is normally possible for the in-house personnel to take care of arising radiation protection problems. However, in the comparatively short revision phases, the duties of radiation protection become much more varied. Additional trained radiation protection crews are needed at short notice. This is also the time in which the largest contributions are made to the annual cumulated doses of the personnel. Recent guidelines and rules trying to reduce the radiation exposure of personnel concentrate on this very point. The article outlines the radiation protection activities performed by the service personnel in the course of a steam generator check. (orig.) [de

  8. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  9. The development of radiation protection

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1981-01-01

    The harm that might be caused by radiation exposure was recognised within months of Rontgen's discovery of X-rays, and recommendations for protection of patients and workers with radiation were formulated first in 1928. In the light of increasing radiobiological, genetic and human epidemiological evidence, it became clear that there might be no threshold, below which harmful effects did not occur. Recommendation and practice in radiation protection reflected this opinion from the early 1950's, and emphasised the consequent need for minimising exposures, quantifying risks and revising the dose limits appropriate for internal radiation of body organs. (author)

  10. Enhancing radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    When a new radiotherapy center in Gezira, Sudan, delivers its first therapeutic dose to a cancer patient, two things happen: A young man begins to regain his health and looks forward to being better able to support his family and contribute to his community; and a developing nation realizes an important step toward deriving the social and economic benefits of nuclear science. The strategic application of nuclear technology in particular fields- human health, industry, food and agriculture, energy, water resources and environmental protection - has enormous potential to help shape the future of developing countries. But past radiological incidents, several of which involved high levels of exposure or death (Bolivia, Brazil, Cost Rica, Georgia, Ghana, Morocco, Panama and Thailand), underscore the inherent and very serious risks. For this reason, the IAEA's Departments of Technical Cooperation and Nuclear Safety and Security partner closely, particularly in the area of radiation protection. They strive to consider every minute detail in the equation that brings together radiation sources, modern technologies, people and the environment. Launched in 1996, the Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) aimed to help Member States: achieve capacities that underpin the safe and secure application of nuclear technologies; establish a legislative framework and regulatory infrastructure; develop exposure control mechanisms to protect workers, medical patients, the public and the environment; and achieve preparedness and planned response to radiological emergencies. In fact, the hospital scenario above typically marks several years of intense collaboration amongst scientists, legislators, regulators, politicians and administrators from both Member States and the IAEA, orchestrated and aided by regional managers and technical experts from the IAEA. As radiation protection team members can attest, every application of nuclear technology

  11. From regulations towards radiation protection culture

    International Nuclear Information System (INIS)

    Boehler, M.C.

    1996-01-01

    Compliance with the technical standards and specifications is a necessary but not sufficient condition for quality in radiation protection. Reaching this quality objective is not a matter of forcing improvements by a regulatory policy of reducing dose limits, but of promoting a real radiation protection culture. The spread of such a radiological protection culture encourages the deliberate adoption in everyday practice of behaviour likely to reduce exposure to ionizing radiation as loser as reasonably achievable. The aim of this paper is to demonstrate that the need to diffuse a radiological protection culture is inspired by the philosophy behind the system recommended by ICPR Publication 60 on the management of residual radiological risk and, in particular by the behavioural and incentive approach implied by the optimization principle. Special attention will be given to the fundamentals likely to contribute in a definition of radiation protection culture. (author)

  12. Radiation protection activities and status in Asia

    International Nuclear Information System (INIS)

    Strohal, P.

    1993-01-01

    The status of radiation protection practices in Asian countries is monitored by different means, e.g. the IAEA technical cooperation activities, by an overall assessment of conditions in a country by RAPAT missions, and on the basis of data collected through various regional activities. The radiation protection situation in Asia is very heterogeneous. There is a group of countries with very well developed radiation protection practices and advanced in the application of the Basic Safety Standards, but the majority of Asian member states still need improvement, several lacking the necessary fundamental infrastructure for radiation protection

  13. 100 years of ionizing radiation protection

    International Nuclear Information System (INIS)

    Baltrukiewicz, Z.; Musialowicz, T.

    1999-01-01

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  14. Chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1987-01-01

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  15. Manual for medical problems of radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The manual deals comprehensively and topically with the theoretical and practical fundamentals of radiation protection of the population considering the present knowledge in the fields of radiobiology and radiation protection medicine. The subject is covered under the following headings: (1) physics of ionizing radiations, (2) biological radiation effects, (3) the acute radiation syndrome, (4) medical treatment of the acute radiation syndrome, (5) combined radiation injuries, and (6) prophylaxis and therapy of injuries caused by fission products of nuclear explosions. The book is of interest to medical doctors, medical scientists, and students in medicine who have to acquire special knowledge in the field of radiation protection and it is of value as a reference book in daily routine

  16. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  17. Application of microprocessors to radiation protection measurements

    International Nuclear Information System (INIS)

    Zappe, D.; Meldes, C.

    1982-01-01

    In radiation protection measurements signals from radiation detectors or dosemeters have to be transformed into quantities relevant to radiation protection. In most cases this can only be done by taking into account various parameters (e.g. the quality factor). Moreover, the characteristics of the statistical laws of nuclear radiation emission have to be considered. These problems can properly be solved by microprocessors. After reviewing the main properties of microprocessors, some typical examples of applying them to problems of radiation protection measurement are given. (author)

  18. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  19. Public competitive examination for radiology technologist: knowledge in radiation protection required in Brazil

    International Nuclear Information System (INIS)

    Oliveira, J.S.; Silva, K.R.; Gomes, A.S.

    2017-01-01

    Ionizing radiations are used in areas such as health, industry and safety, not only in the private sector, but also in the public. Thus, it is necessary the radiological protection, a set of studies and practices that increases the safety in these applications, where the professional involved is the technologist in radiology. The objective was to analyze the contents effectively required by the Brazilian public agencies in their competitions for radiology technologist, regarding the area of radiological protection, identifying their profile of requirement. It consisted of three stages: first, a survey of all the public competitions already carried out in the country up to the end of 2016, that requested a diploma of graduation in Technology in Radiology; second, all the specific questions were collected and grouped in an electronic text file; third, issues involving radiological protection were segregated, using as reference the 2017 edition of the National Nuclear Energy Commission's General Proof of Radioprotection Supervision. The results showed that almost 40% of the competition questions were about radiation protection. From this sampling, the topics most covered were: radiological safety (36%), fundamentals of atomic and nuclear physics (24%) and biological effects of radiation (16%). It is concluded that the competitions for radiologist technologist have the profile of concentration of exigency in radiological safety, fundamentals of atomic and nuclear physics and biological effects of the radiations

  20. Radiation protection challenges into the 21st century. Action planning

    International Nuclear Information System (INIS)

    Bandle, A.M.

    2000-01-01

    Building on the work undertaken by the UK Health and Safety Executive in liaison with the wider health and safety community to examine emerging technological trends and their implications for occupational health and safety, a paper was produced for the Southport '99 International Symposium which looked at the likely impact on radiation protection. This paper reports on the next phase of the work which is designed to set the agenda for regulators, duty holders, qualified experts and other key stakeholders and intermediaries. Broad trends and themes determined by phase 1 of the work are translated into action plans aimed at anticipating the key challenges and exploiting the opportunities offered by technological developments for radiation protection purposes. These might equally be to achieve improved risk assessment and exposure characterisations of uncertain or novel practices (or interventions), to promote improved design of equipment and systems of work and adoption of inherently safer processes or procedures, to raise standards of competence in key workers and managers, or to encourage greater collaboration and joined up working between different groups of stakeholders and across national boundaries. The principle purpose of sharing this vision of the future is to encourage radiation protection professionals and others with an interest in radiation and nuclear technologies, to register an interest. It will only be by engagement that the priorities and activities proposed in the action plan can be refined and only by a team effort that the implementation plan can be fully realised. And then there is the next action plan to build and tackle....(author)

  1. Nuclear analysis methods. Rudiments of radiation protection

    International Nuclear Information System (INIS)

    Roth, E.

    1998-01-01

    The nuclear analysis methods are generally used to analyse radioactive elements but they can be used also for chemical analysis, with fields such analysis and characterization of traces. The principles of radiation protection are explained (ALARA), the biological effects of ionizing radiations are given, elements and units used in radiation protection are reminded in tables. A part of this article is devoted to how to use radiation protection in a nuclear analysis laboratory. (N.C.)

  2. Integration of social aspects in radiation protection. The AIRP Work group on communication

    International Nuclear Information System (INIS)

    Cantone, Marie C.; Magnoni, Mauro; Sturloni, Giancarlo

    2008-01-01

    ethical, social and legal aspects of radioactive waste management. In 2008, we intend to support the growth of RP culture in society by organizing an event concerning the various aspects of radiation protection education and information for non professionals. To invite suggestions and obtain new points of view, the group has opened a website and prepared a basic questionnaire. The AIRP workgroup is constantly creating the conditions and opportunities for extending knowledge about radiation protection and involving society as a whole in extensive debate concerning risk management. (author)

  3. Radiation protection manual

    International Nuclear Information System (INIS)

    Spang, A.

    1983-01-01

    According to the Radiation Protection Ordinance, radiation protection experts directing or supervising the handling of radioactive materials must have expert knowledge. The concept of expert knowledge has been clearly defined by the Fachverband e.V. in a catalogue of instruction goals. The manual follows the principles of this catalogue; it presents the expert knowledge required in a total of 15 subject groups. There is an index which helps the reader to find his specific subject group and the knowledge required of him in this subject group. However, the manual gives only an outline of the subject matter in many instances and should therefore not be regarded as a textbook in the proper sense. (orig./HP) [de

  4. Radiation protection programme for nuclear gauges

    International Nuclear Information System (INIS)

    Muzongomerwa, A.

    2014-04-01

    Ionizing radiation including the use of nuclear gauges can be very hazardous to humans and steps must be taken to minimize the risks so as to prevent deterministic effects and limiting chances for stochastic effects. The availability of a Radiation Protection Programme and its effective implementation ensures appropriate safety and security provisions for sealed radiation sources and promotes a safety culture within a facility that utilizes these sources. This study aims at establishing a guide on the radiation protection programme in nuclear gauges that comply with national requirements derived from current international recommendations. Elements that form part of a radiation protection programme are covered in detail as well as recommendations. The overall objective is to protect people (operators and the public) and the environment from the harmful effects of these sources if they are not properly controlled. Nuclear gauges for well logging and X-ray based gauges are outside the scope of this study. (au)

  5. Preventive radiation protection in Hamburg

    International Nuclear Information System (INIS)

    Boikat, U.; Lauer, R.; Plath, S.; Sachde, Z.G.

    2001-01-01

    Monitoring of environmental radioactivity as well as complex investigations for precautionary radiation protection are carried out in Hamburg by two radiation monitoring labs. The spectrum of their tasks is specified by the media to be investigated. The tasks are originating from the Federal Precautionary Radiation Protection Act and from local needs. Mostly since a lot of years all interesting materials are analysed for their radioactivity content, as a safe and precautionary radiation protection demands. Until today samples show the influence of global nuclear weapon fallout of the period until 1964. Partly they show the radioactivity of Caesium originating from the Chernobyl accident. Since ten years the radioactivity contents in the material investigated are decreasing. Mostly the activity reached levels as at the end of 1985. The basic food stuff investigated in Hamburg can be considered as to be uncontaminated by radioactivity. With the introduction of the Federal Precautionary Radiation Protection Act, a series of new investigation programs and investigation methods were developed. This allows a better preparedness for extraordinary situations of increased radioactivity in the environment as 12 years ago. Thus a precise assessment of situations of increased radioactivity levels can be given together with coordinated and solid information to the public concerning provisions and actions. (orig.) [de

  6. Management information system on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela, E-mail: pabloag@cdtn.b, E-mail: lss@cdtn.b, E-mail: gmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  7. Management information system on radiation protection

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela

    2011-01-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  8. Regulatory requirements for radiation protection

    International Nuclear Information System (INIS)

    Mason, E.A.; Cunningham, R.E.; Hard, J.E.; Mattson, R.J.; Smith, R.D.; Peterson, H.T. Jr.

    1977-01-01

    Regulatory requirements for radiation protection have evolved and matured over several decades. Due to the wide adoption of recommendations of the International Commission on Radiation Protection (ICRP), there exists international agreement on the principles to be followed for radiation protection. This foundation will be increasingly important due to the growing need for international agreements and standards for radiation protection and radioactive materials management. During the infancy of the commercial nuclear industry, primary reliance was placed on the protection of the individual, both in the work force and as a member of the public. With the growth of nuclear power in the 1960's and 1970's, environmental impact assessments and expert reviews of bio-effects data have focused attention on statistical risks to large population groups and the use of the collective dose commitment concept to estimate potential effects. The potential release of long-lived radionuclides from the nuclear fuel cycle requires further consideration of radionuclide accumulation in the biosphere and calls for controls conceived and implemented at the international level. The initial development efforts for addressing these concerns already have been instituted by the ICRP and the IAEA. However, formal international agreements and a unified set of international standards may be required to implement the recommendations of these groups. Further international efforts in the field of radiation protection are also called for in developing waste management practices and radioactive effluent control technology, in site selection for fuel reprocessing plants and waste dispersal facilities, and for ensuring safe transport of high-level wastes in various forms. Since the regulation of very low dose rates and doses will be involved, it will be useful to reexamine dose-effect relationships and societal goals for health protection. Improved criteria and methodologies for ''as low as readily

  9. Radiation protection legislation in the Nordic countries

    International Nuclear Information System (INIS)

    Persson, L.

    1992-01-01

    A close collaboration exists in the Nordic countries in the field of radiation protection. The radiation protection authorities attach major importance to a uniform interpretation of the international recommendations. The legal situation of the Nordic countries in the radiation protection field will be reviewed with the main emphasis on the new Swedish and Finnish laws. (author)

  10. The revised German radiation protection ordinance

    International Nuclear Information System (INIS)

    Palm, M.

    2002-01-01

    Since August 2001, German radiation protection law is governed by a new Radiation Protection Ordinance, implementing two new Euratom Directives and taking into account new scientific developments, which provides a comprehensive basis for the protection of man and the environment. The Ordinance has been completely restructured; however, it is still a very complex piece of legislation comprising 118 provisions and 14 annexes, some of them highly technical. Reduced dose limits for occupationally exposed persons and members of the public, a detailed provision on clearance of radioactive substances, a new part aiming at the protection of man and the environment against ionising radiation emanating from natural sources, and regulations dealing with the protection of consumers in connection with the addition of radioactive substances to consumer goods are some of the centre pieces of the new legislation which shall contribute significantly to the further prevention or at least minimisation of the adverse effects of radiation exposure. (orig.) [de

  11. The state of radiation protection in Iran

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1988-01-01

    Historically, radiation protection in Iran can be related to when the first x-ray machine was applied for medical diagnosis. However, organized activities were started with the establishment of the Tehran University Nuclear Center (TUNC) in 1959, and within a broader scope when AEOI research reactor went into operation in 1967. In 1974, the Atomic Energy Organization Law of Iran was ascribed the responsibility for radiological safety and protection to the AEOI. Then this responsibility was assigned by AEOI to the Radiation Protection Department (RPD), as the national authority. The RPD's organization and functions have been divided into three main RPD divisions: Radiation Protection Control; Radiation Dosimetry Research and Development and Services; and Radiological Protection of the Environment

  12. Radiation Protection Officer certification scheme. Malaysian experience

    International Nuclear Information System (INIS)

    Pungut, Noraishah; Razali, Noraini; Mod Ali, Noriah

    2011-01-01

    In Malaysia, the need for maintaining competency in radiation protection is emerging, focusing on the qualification of Radiation Protection Officers (RPO). Regulation 23 of Malaysian Radiation Protection (Basic Safety Standards) Regulations 1988, requires the applicant to employ an RPO, with the necessary knowledge, skill and training, enabling effective protection of individuals and minimizing danger to life, property and the environment for all activities sought to be licensed. An RPO must demonstrate the knowledge required, by attending RPO courses organised by an accredited agency and pass the RPO certification examination. Maintaining a high level of competency is crucial for future development of safe applications of ionising radiation. The major goal of training is to provide essential knowledge and skills and to foster correct attitudes on radiation protection and safe use of radiation sources. Assessment of the competency is through theoretical and practical examination. A standard criterion on the performance of the individuals evaluated has been established and only those who meet this criterion can be accepted as certified RPO. The National Committee for the Certification of Radiation Protection Officer (NCCRPO), comprising experts in various fields, is responsible to review and update requirements on competency of a certified RPO. With increasing number of candidates (i.e. 701 in 2008) and the international requirement for radioactive source security, it is incumbent upon the NCCRPO to improve the syllabus of the certification scheme. The introduction of a Radiation Protection Advisor (RPA) to provide service and advice to the radiation industry in Malaysia is also seriously considered. (author)

  13. Radiation Protection in Guatemala

    International Nuclear Information System (INIS)

    Carazo, N.

    1979-01-01

    The tasks connected with radiation protection are allocated to the National Institute for Nuclear Energy in Guatemala. Regulatory measures are further needed to identify the responsibilities of various authorities to ensure that all radiation workers are provided with personal dosemeters. (author)

  14. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Saito, Kimiaki

    2007-01-01

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  15. The new radiation protection ordinance and its consequences in radiation therapy

    International Nuclear Information System (INIS)

    Wucherer, M.; Schmidt, T.

    2002-01-01

    The new radiation protection ordinance (StrlSchV) entails a number of additional or changed instructions. They require that personnel exposed to radiation at work be reclassified, or that personnel not exposed to radiation at work be classified as personnel exposed to radiation at work, that local dosage measurements be taken particularly in radiation therapy, in order to insure that the radiation protection areas prevailing to date can be maintained, that generally accessible areas be examined to determine whether with persons not exposed to radiation in the course of work, in the case of their prolonged presence there, 1 mSv per year is not exceeded, that instructions be put in writing, that at regular 5-year intervals the proficiency of physicians, specialists in medical physics and MTRAs be brought up to date and, that medical positions for radiooncologists be established. The stricter requirements in radiation protection are inevitably connected with greater expenditures and higher costs. These results of the new radiation protection ordinance are in direct opposition to the financial possibilities that are being restricted through budgeting and pressure on hospitals and practices to reduce costs. (orig.) [de

  16. Growth of the Female Professional in the Radiation Safety Department

    International Nuclear Information System (INIS)

    Yoon, J.

    2015-01-01

    Currently in Korea’s Nuclear Power Plants (KHNP), the number of the female staffs has been increased as planned construction of new NPPs. However the role of the female staffs in NPPs is still limited as before. Because there is the prejudice which the operating and the maintenance work is unsuitable for female owing to the risk of the radiation exposure and the physical weakness. So female staffs mostly belong to the supporting departments. In particular, the proportion of the female staffs is significantly higher in the radiation safety department among those. The ratio is 15% and is twice higher, whereas the total percentage of the female workers in KHNP is 8%. In the past, the women staffs in the radiation safety department were usually charge of the non-technical duties like the radiation exposure dose management and the education for radiation workers. Although the ratio of the women about that is still higher, nowadays, the role of the female workers tends to diversify to technical supports like the radiation protection and the radioactive waste management while increased the proportion of female employees. This trend is expected to continue for many years to come. Thus, in Korea’s NPPs, it is expected that many women will demonstrate their professionalism especially in the radiation safety department than any other departments. This presentation contains the detailed duty and trend about female staffs in the radiation safety department in Korea’s NPPs. (author)

  17. Evaluation of knowledge and practice of professionals in radiology, in patient protection, in X-ray examinations in collective environments and in a improving quality of service through training

    International Nuclear Information System (INIS)

    Costa, Rogerio Ferreira da

    2014-01-01

    When there is exposure to ionizing radiation, the probability of developing a stochastic effect increases, and one of the most feared stochastic effects is cancer. Calculations made from data obtained with the population of Hiroshima, showed that these effects have not dose threshold. So it is impossible predict that a specific dose value, will lead to damages and therefore, doses must always be limited. Medical exposures have contributed to the increase in dose received by the populations of countries like Brazil. This is because there was an increase in interventional procedures using ionizing radiation. What has concerned researchers since, many companies did not fit the standards of radiation protection. The proper use of personal protective equipment reduces the exposure of patients and professionals. Trained and knowledgeable of the rules are able to choose the shielding for each type of procedure. So we evaluated the knowledge and radiology professional practice, in protection of patients, who can not be removed from the environment in sinus X-rays and check if the training improves the quality of this service. It was concluded that there is deficiency in knowledge of the rules and failures in protection of patients, and that training with regard to radiological protection increases the level of theoretical knowledge of the professionals involved, and improve their practices with respect to protection, reducing the doses and minimizing the risks involved in medical exposures

  18. CEC radiation protection research and training program

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1991-01-01

    The Radiation Protection Program (RPP), initiated as a consequence of the Euratom Treaty aims to promote: scientific knowledge to evaluate possible risks from low doses of natural, medical and man-made radiation; development of methods to assess radiological risks; incentive and support for cooperation between scientists of Member States; expertise in radiation protection by training scientists and the scientific basis for continual updating of the 'Basic Safety Standards', and the evolution of radiation protection concepts and practices. 3 refs

  19. The new German radiation protection ordinance

    International Nuclear Information System (INIS)

    Pfeffer, W.; Weimer, G.

    2003-01-01

    According to European law, the Basic Safety Standards (BSS) published by the European Council in 1996 and the Council Directive on health protection of individuals against dangers of ionising radiation in relation to medical exposure had to be transferred into national law within due time. In 2001 the new Ordinance for the Implementation of the Euratom Guidelines on Radiation Protection] was published, which replaces the old Radiation Protection Ordinance. The new German Ordinance adapts the European Directive to German law, covering the general principles but even giving more details in many fields of radiation protection. The BSS scope certainly is much broader than the prescriptions important for the field of radiation protection in nuclear power plants. According to the scope of this workshop on occupational exposure in nuclear power plants - and as the BSS most probably will be quite familiar to all of you - after a short general overview on relevant contents of the German Ordinance, this presentation will focus on the main issues important in the operation of NPP and especially on some areas which may give rise to necessary changes caused by the new Ordinance. (A.L.B.)

  20. Deviating measurements in radiation protection. Legal assessment of deviations in radiation protection measurements

    International Nuclear Information System (INIS)

    Hoegl, A.

    1996-01-01

    This study investigates how, from a legal point of view, deviations in radiation protection measurements should be treated in comparisons between measured results and limits stipulated by nuclear legislation or goods transport regulations. A case-by-case distinction is proposed which is based on the legal concequences of the respective measurement. Commentaries on nuclear law contain no references to the legal assessment of deviating measurements in radiation protection. The examples quoted in legal commentaries on civil and criminal proceedings of the way in which errors made in measurements for speed control and determinations of the alcohol content in the blood are to be taken into account, and a commentary on ozone legislation, are examined for analogies with radiation protection measurements. Leading cases in the nuclear field are evaluated in the light of the requirements applying in case of deviations in measurements. The final section summarizes the most important findings and conclusions. (orig.) [de

  1. Equipment for radiography in Yugoslavia - security and radiation protection

    International Nuclear Information System (INIS)

    Dobrijevic, R.; Vucina, J.

    1998-01-01

    Nondestructive method of material control by using radioisotopes is developed in Yugoslavia. This method of quality control is professionally performed by 30 firms. This paper presents the overview of the equipment used in the industrial radiography by using radioisotopes. Special attention was devoted to the security during the work and to the radiation protection of the operator and other personnel around the working place. In general it could be concluded that the main drawback which influences the security is the fact that most cases old and whom out equipment is in use. Other factors influencing the security are also discussed. (author)

  2. Obligations and responsibilities in radiation protection in the medical field; Obligations et responsabilites en radioprotection dans le domaine medical

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This document briefly presents the various obligations and responsibilities of the various actors involved in or concerned by radiation protection in the medical field: the hospital administration (with respect to workers and patients), the physician (authorization and declaration, justification, optimization), the medical electro-radiology operator, the person with expertise in medical radio-physics (PSRPM), the radio-pharmacist (he is required in nuclear medicine with internal use of pharmaceutical product), the personnel with expertise in radiation protection (PCR), and other health professionals

  3. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  4. Radiation protection - quality and metrology

    International Nuclear Information System (INIS)

    Broutin, J.P.

    2002-01-01

    The radiation protection gathers three occupations: radiation protection agents; environment agents ( control and monitoring); metrology agents ( activities measurement and calibration). The quality and the metrology constitute a contribution in the technique competence and the guarantee of the service quality. This article, after a historical aspect of quality and metrology in France explains the advantages of such a policy. (N.C.)

  5. Activities of Institute of Radiation Protection and Dosimety/Brazil as Technical and Scientific Support Organization on Occupational Radiation Protection

    International Nuclear Information System (INIS)

    Da Silva, F.C.A.; Ferreira, P.R.; Matta, L.E.C.; Peres, M.A.L.; Godoy, J.M.; Alencar, M.A.V.; Carlos, M.T.; Souza-Santos, D.; Leocadio, J.C.; Oliveira, M.S.

    2010-01-01

    There are, in Brazil, about 126,000 workers registered on National Dose Registry System (SRD/IRD) as occupationally exposed. They work on 4,000 radioactive installations, 20 nuclear fuel cycle installations and with 90,000 x-ray diagnostic devices. There are two main Regulatory Authorities to license and control these installations on nuclear and radioactive areas, and another Regulatory Authority that is responsible for safety and health protection of workers on their labour activities. Belonging to structure of the National Commission of Nuclear Energy (CNEN-Brazil) there is an Institute dedicated to radiation protection, dosimetry and metrology of ionizing radiation, that is the Institute of Radiation Protection and Dosimetry (IRD). This paper presents two main IRD activities related to occupational radiation protection that can be seen as example of technical and scientific support to Regulatory Authorities: the Radiation Overexposure Analysis that is performed by the Radiation Overexposure Analysis Group (GADE) and the Approval of Individual Monitoring Services and Calibration Laboratory of Equipment used in Radiation Protection that is performed by the Committee for the Evaluation of Essay and Calibration Services (CASEC). (author)

  6. Justification and optimization in radiation protection

    International Nuclear Information System (INIS)

    Beninson, D.

    1980-01-01

    Two requirements of the system recommended by the ICRP for radiation protection are discussed: 1) justification of practices involving radiation exposures and 2) optimization of the level of protection for such practices. The ICRP recommended the use of cost-benefit analysis in justification and optimization. The application of cost-benefit analysis and the quantification of the radiation detriment are also discussed. (H.K.)

  7. Radiation protection of patients: need of a paradigm change?

    International Nuclear Information System (INIS)

    Gisone, Pablo A.; Perez, Maria del R.

    2004-01-01

    Radiological protection of patients is founded on two basic principles: optimization and justification. However, the justification used to be an 'exclusion zone' observed as a foreign territory by radiation protection officers. Inspired in the Council Directive 97/43/EURATOM, the Nuclear Regulatory Authority (ARN) from Argentina has decided to perform a National Programme of Radiation Protection of Patients. Along with the regulation of medical practices in its particular fields of competence, the ARN will play a role in coordinating the actions with scientific associations representing health professionals involved in the medical uses of ionizing radiation. This programme, which includes three working groups (dosimetry, justification and optimization), will be developed in three stages. The first stage will consider the adaptation of the principles for validation of practices to local conditions, the adoption of a system for sorting medical practices according to prescription criteria taking into account alternative methods, the utilization of the dosimetric studies carried out by the ARN, the determination of diagnostic reference levels for pediatric and adult populations and the improvement of quality assurance concerning equipment and procedures. In cooperation with national sanitary authorities as the Health Ministry, the second stage will concern the elaboration of specific requirements regarding the justification of practices. The last stage will be addressed to the diffusion of the information and the promotion of continuing education and training of human resources. Is it a new paradigm focused on justification? A justification applied to a rational medical prescription where the 'obvious' does not always imply the 'need'. (author)

  8. Blended learning specialists in radiation protection

    International Nuclear Information System (INIS)

    Mayo, P.; Campayo, J. M.; Verdu, G.

    2011-01-01

    In this paper, we present a blended learning Radiation Protection Technician through an approved degree from the Polytechnic University of Valencia, which covers the knowledge and skills of functions relating to operators and supervisors in various areas and skilled workers to be to perform their work in technical units or Radiation Protection Radiation Protection Services. The benefits of this work are those related to achieving quality training flexible and adapted to follow the check off the person conducting the course, adapted to internal and external training of the applicant companies.

  9. Radiation protection and the female worker

    International Nuclear Information System (INIS)

    Folsom, S.C.

    1983-01-01

    An influx of young women into industrial occupations has resulted in a reexamination of policy regarding fetal protection. Each of the Environmental Protection Agency's four alternatives, as listed in Federal Radiation Protection Guidance for Occupational Exposures, is examined and given a critique: voluntary limitation of radiation exposure to the unborn, voluntary sterilization by women, exclusion of child-bearing-age women from occupational tasks resulting in possible fetal exposure, and limiting the mandatory exposure limit for all workers. The author lists employers and women employees responsibilities in considering occupations with radiation risks. 1 reference

  10. 8. national congress of radiation protection 'SFRP 2011' - Proceedings

    International Nuclear Information System (INIS)

    Souques, M.; Lambrozo, J.; Perrin, A.; Magne, I.; Bedja, M.; Fleury, G.; Le Brusquet, L.; Barbe, R.; Lahaye, T.; Laurier, D.; Tomasek, L.; Tirmarche, M.; Guseva Canu, I.; Garsi, J.P.; Caer-Lorho, S.; Jacob, S.; Acker, A.; Fernandez, F.; Bertho, J.M.; Synhaeve, N.; Stefani, J.; Desbree, A.; Blanchardon, E.; Dublineau, I.; Petitot, F.; Lestaevel, P.; Tourlonias, E.; Mazzucco, C.; Jacquinot, S.; Dhieux, B.; Delissen, O.; Tournier, B.; Gensdarmes, F.; Godet, J.L.; Perrin, M.L.; Saad, N.; Bardelay, C.; Voytchev, M.; Doursout, T.; Chapalain, E.; Dandrieux, G.; Cazala, C.; Gay, D.; Chabanis, O.; Palut-Laurent, O.; Ringeard, C.; Thomassin, A.; Roxin, A.M.; Gschwind, R.; Makovicka, L.; Roxin, I.; Henriet, J.; Martin, E.; Klopfenstein, J.F.; Lochard, J.; Guillaumont, R.; Marignac, Y.; Petitfrere, M.; Catelinois, O.; Devin, P.; Sene, M.; Barbey, P.; Reaud, C.; Schneider, T.; Achikian, S.; Le Clerc, A.; Rochereau, S.; Schneider, C.; Vigneron, H.; Charron, S.; Delattre, A.; Luccioni, C.; Monti, P.; Bernaud, J.Y.; Michielsen, N.; Bondiguel, S.; Bordy, J.M.; Daures, J.; Denoziere, M.; Gualdrini, G.; Mariotti, F.; Barre, A.; Beauval, A.; Davi, J.N.; Dupic, S.; Grincourt, D.; Kandil, A.; Marteel, C.; Vrammout, D.; Saintamon, F.; Aberkane, J.; Paquet, F.; Barbey, P.; Bardies, M.; Biau, A.; Blanchardon, E.; Chetioui, A.; Lebaron-Jacobs, L.; Pasquier, J.L.; Broggio, D.; Beurrier, J.; Farah, J.; Franck, D.; Sauget, M.; Bertrand, A.; Boveda, S.; Bar, O.; Brezin, A.; Maccia, C.; Bernier, M.O.; Struelens, L.; Carinou, E.; Dominiek, J.; Brodecki, M.; Donadille, L.; Ferrari, P.; Koukorava, C.; Krim, S.; Nikodemova, D.; Ruiz-Lopez, N.; Sans Merce, M.; Vanhavere, F.; Clairand, I.; Bordy, J.M.; Debroas, J.; Ginjaume, M.; Itie, C.; Krim, S.; Lebacq, A.L.; Martin, P.; Struelens, L.; Sans-Merce, M.; Vanhavere, F.; Gauron, C.; Wild, P.; Grzebyk, M.; Derock, C.; Champion, K.; Cohen, P.; Menez, C.; Tellart, A.S.; Thiel, H.; Pennarola, R.; Choudat, D.; Dillenseger, P.; Rehel, J.L.; Aubert, B.; Gagna, G.; Amabile, J.C.; Laroche, P.; Grandcoing, A.; Roch, P.; Challeton-de Vathaire, C.; Franck, D.; Roy, C.; Doucet, J.; Jancon, G.; Pelletier, B.; Marchal, C.; Megnigbeto, C.; Franchi, C.; Cillard, P.; Etard, C.; Sinno-Tellier, S.; Guersen, J.; Chabrot, P.; Cassagnes, L.; Gabrillargues, J.; Boyer, L.; Kien, N.; Schieber, C.; Almen, A.; Magne, S.; Spasic, E.; Ngo, C.; Bordy, J.M.; Carlan, L. de; Bridier, A.; Ginestet, C.; Malet, C.; Ferdinand, P.; Courdi, A.; Rucka, G.; Bondiau, P.Y.; Cazoulat, A.; Bohand, S.; Schoen, V.; Bey, E.; Roche, H.; Quesne, B.; Monier, C.; Leonard, J.G.; Cordier, G.; Gurriaran, R.; De Vismes, A.; Picolo, J.L.; Elbast, M.; Saudo, A.; Holler, V.; Blanchin, N.

    2011-06-01

    calculation at the cell scale; 43 - Clinical practice recommendations for the medico-professional monitoring of the internal exposure to radionuclides in nuclear facilities; 44 - Lung doses and risk of lung cancer mortality in the French uranium miners population; 45 - First tests of the Gampix gamma camera at a EDF site: operational search for hot spots; 46 - Evolution of IRSN's national follow-up of workers exposure; 47 - A model for measuring the dosimetric risks: application to gamma-graphy control operators; 48 - Innovative method for simulating realistic situations in radiation protection training; 49 - Sensible activities in radiation protection - method for developing and maintaining the skill of radiation protection technicians in sensible activities at a EDF NPP; 50 - Experience feedback: radiation protection management during the dismantling of the I.N.B. 106 LURE; 51 - What can we expect today from the radiological monitoring of the environment? 52 - Methodology for the development of the environmental monitoring of a nuclear site in the framework of an application for authorisation for water extraction and wastewater discharge. Application to the Bruyeres-le-Chatel facility; 53 - National measurement network for environmental radioactivity; 54 - Confrontation of modeling and metrology approaches with the aim of optimizing the environmental monitoring plan; 55 - Symbiose: a platform for health risk modeling at a landscape scale; 56 - Orphan uranium mines: situation and actions to be taken considering the radiological and mining risks; 57 - Behaviour of 131 I bearing effluents after discharge in waste waters. Study at the sewage treatment plant of the Brest city harbour area; 58 - Experimental study for the characterization of the radon influx potential inside a building - development of an alternative method to measurement

  11. Web Technologies in Radiation Protection Training

    International Nuclear Information System (INIS)

    Marco Arboli, M.; Hernando Velasco, E.; Rodriguez Suarez, M; Gomez Ros, J. M.; Rodriguez, M.; Villaroel, R.

    2004-01-01

    This paper presents the major advances already done in the educational web site maintained on the CIEMAT server and accessible through the CSN web. This training project attempts to propose the use of a web site as the standardisation of radiation protection training programmes. The main objective of this project is to provide training material for course organisers, trainers and professionals, and to promote the exchange of expertise between workers involved in all activities using radiation sources. The web site is being developed to provide educational material based on a modular design and in Spanish. We present the initial results of this useful tool for practitioners. The user can choose to obtain the information included in the web site by downloading the complete course or by obtaining the individual modules stepwise. Task in each of the training modules has been designed to develop specific competence taking into account different target groups. Complete materials for trainers and trainees will be available in the web site, to ease courses performance. The project also aims to obtain necessary standardisation of the Rp knowledge provided to workers. (Author) 12 refs

  12. Radiation protection-culture. Culture improvement in radiation protection and ALARA behaviour

    International Nuclear Information System (INIS)

    Boehler, M.C.

    1994-12-01

    In order to that the optimization principle become an actual professional liable dynamical critter in the radiological protection topics, the hierarchic impulse and the personnel sensitiveness are determining. The ALARA (As Low As Reasonably Achievable) in the firm cultivation modify the behaviour and act philosophy. 7 refs., 2 figs

  13. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements

  14. Questions concerning radiation protection in the field of radiometry

    International Nuclear Information System (INIS)

    Gruen, W.; Quednau, F.; Wels, Ch.

    1987-01-01

    Based on legal regulations, guidelines, and standards valid in the German Democratic Republic 105 questions concerning radiation protection are answered covering subjects indicated by the following key words and headings: radiometric gages, radiation protection measures, working within protected areas, legal provisions, responsible staff member, radiation protection officer, operating personnel, radiation protection instructions, safe keeping of radiation sources, leak testing, unusual occurrence, transport of radioactive materials, and ceasing of operation

  15. Gonad protective effect of radiation protective apron in chest radiography

    International Nuclear Information System (INIS)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-01-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28±2% and 39±4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few μGy even without a protector. Thus, the risk of a genetic effect would be as small as 10 -8 . Given that acceptable risk is below 10 -6 , we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography. (author)

  16. [Gonad protective effect of radiation protective apron in chest radiography].

    Science.gov (United States)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-12-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28+/-2% and 39+/-4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few microGy even without a protector. Thus, the risk of a genetic effect would be as small as 10(-8). Given that acceptable risk is below 10(-6), we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography.

  17. Evaluation of awareness on radiation protection and knowledge about radiological examinations in healthcare professionals who use ionized radiation at work.

    Science.gov (United States)

    Yurt, Ayşegül; Cavuşoğlu, Berrin; Günay, Türkan

    2014-06-01

    In this study, we evaluated the knowledge and perception and mitigation of hazards involved in radiological examinations, focusing on healthcare personnel who are not in radiation-related occupations, but who use ionising radiation as a part of their work. A questionnaire was applied to physicians, nurses, technicians and other staff working in different clinics that use radiation in their work, in order to evaluate their knowledge levels about ionizing radiation and their awareness about radiation doses resulting from radiological examinations. The statistical comparisons between the groups were analyzed with the Kruskal Wallis test using the SPSS program. Ninety two participants took part in the study. Their level of knowledge about ionizing radiation and doses in radiological examinations were found to be very weak. The number of correct answers of physicians, nurses, medical technicians and other personnel groups were 15.7±3.7, 13.0±4.0, 10.1±2.9 and 11.8±4.0, respectively. In the statistical comparison between the groups, the level of knowledge of physicians was found to be significantly higher than the level of the other groups (p=0.005). The present study demonstrated that general knowledge in relation to radiation, radiation protection, health risks and doses used for radiological applications are insufficient among health professions using with ionizing radiation in their work.

  18. New Croatian Act on Ionizing Radiation Protection

    International Nuclear Information System (INIS)

    Grgic, S.

    1998-01-01

    According to the new Croatian Act on ionizing radiation protection which is in a final stage of genesis, Ministry of Health of the Republic of Croatia is the governmental body responsible for all aspects relating sources of ionizing radiation in Croatia: practices, licenses, users, transport, in medicine and industry as well, workers with sources of ionizing radiation, emergency preparedness in radiological accidents, storage of radioactive wastes, x-ray machines and other machines producing ionizing radiation and radioactive materials in the environment. Ministry of Health is responsible to the Government of the Republic of Croatia, closely collaborating with the Croatian Radiation Protection Institute, health institution for the performance of scientific and investigation activities in the field of radiation protection. Ministry of Health is also working together with the Croatian Institute for the Occupational Health. More emphasis has been laid on recent discussion among the world leading radiation protection experts on justification of the last recommendations of the ICRP 60 publication. (author)

  19. The German radiation protection standards

    International Nuclear Information System (INIS)

    Becker, Klaus; Neider, Rudolf

    1977-01-01

    The German Standards Institute (DIN Deutsches Institut fuer Normung, Berlin) is engaged in health physics standards development in the following committees. The Nuclear Standards Committee (NKe), which deals mainly with nuclear science and technology, the fuel cycle, and radiation protection techniques. The Radiology Standards Committee (FNR), whose responsibilities are traditionally the principles of radiation protection and dosimetry, applied medical dosimetry, and medical health physics. The German Electrotechnical Commission (DKE), which is concerned mostly with instrumentation standards. The Material Testing Committee (FNM), which is responsible for radiation protection in nonmedical radiography. The current body of over one hundred standards and draft standards was established to supplement the Federal German radiation protection legislation, because voluntary standards can deal in more detail with the specific practical problems. The number of standards is steadily expanding due to the vigorous efforts of about thirty working groups, consisting of essentially all leading German experts of this field. Work is supported by the industry and the Federal Government. A review of the present status and future plans, and of the international aspects with regard to European and world (ISO, etc.) standards will be presented

  20. Quality image analysis and radiation protection in dental radiodiagnosis in Sobral city, BA, Brazil; Analise da qualidade de imagem e da radioprotecao em radiodiagnostico odontologico na cidade de Sobral

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Francisca L. [Universidade Estadual Vale do Acarau (UVA), Sobral, CE (Brazil); Ferreira, Fernanda C.L. [Universidade Federal do Sul e Sudeste do Para, Maraba, PA (Brazil); Paschoal, Cinthia M.M. [Universidade da Integracao Internacional da Lusofonia Afro-Brasileira, Redencao, CE (Brazil); Belinato, Walmir [Instituto Federal da Bahia, Vitoria da Conquista, BA (Brazil)

    2015-08-15

    The radiographic processing is one of the steps to acquire radiographic images and requires appropriate quality control. The image should allow an accurate diagnosis and avoid repetition of examinations, which is consistent with the principles of radiation protection. This study aimed to verify the quality of periapical radiographic imaging and to investigate the suitability of dental X-ray equipment on the principles of radiation protection established by the Health Ministry Decree 453/98, by applying radiation field test and application questionnaires to dentists professionals. The result showed that it takes greater care professionals about the treatment radiographic and radiation protection, requiring that inspection agencies require compliance with the rules so that there is maintaining the quality of dental diagnostic radiology services. (author)

  1. Incorporation of epidemiological findings into radiation protection standards.

    Science.gov (United States)

    Goldsmith, J R

    In standard setting there is a tendency to use data from experimental studies in preference to findings from epidemiological studies. Yet the epidemiological studies are usually the first and at times the only source of data on such critical effects as cancer, reproductive failure, and chronic cardiac and cardiovascular disease in exposed humans. A critique of the protection offered by current and proposed standards for ionizing and non-ionizing radiation illustrates some of the problems. Similar problems occur with water and air pollutants and with occupational exposures of many types. The following sorts of problems were noted: (a) Consideration of both thermal and non-thermal effects especially of non-ionizing radiation. (b) Interpretation of non-significant results as equivalent to no effect. (c) Accepting author's interpretation of a study, rather than examining its data independently for evidence of hazard. (d) Discounting data on unanticipated effects because of poor fit to preconceptions. (e) Dependence on threshold assumptions and demonstrations of dose-response relationships. (f) Choice of insensitive epidemiological indicators and procedures. (g) Consideration of each study separately, rather than giving weight to the conjunction of evidence from all available studies. These problems may be minimized by greater involvement of epidemiologists and their professional organizations in decisions about health protection.

  2. The new operational quantities for radiation protection

    International Nuclear Information System (INIS)

    Kellerer, A.M.

    1985-01-01

    Philosophies and quantities for radiation protection have often been subjected to changes, and some of the developments are traced which ultimately led to recent proposals by ICRU. Development in the past has largely been towards clarification and generalisation of definitions. The present changes, however, reflect a more fundamental issue, the transition from the limitation system to the assessment system in radiation protection. The index quantities were suitable tools to ascertain compliance with the limitation system of radiation protection. The new quantities proposed by ICRU are suitable estimators for effective dose equivalent, which is an essential quantity in the assessment system of radiation protection. A synopsis of the definitions is given. (author)

  3. Proceedings of the Tenth Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    2011-01-01

    The publication has been set up as proceedings of the Radiation Physics and Protection Conference.. The conference consists Natural Radiation Sources; Radiation Detection and Measurements; Applied Radiation Physics; Radiation Medical Physics and Biophysics; Radiation Dosimetry; Operational Radiation Protection; Radiation Shielding; Transport of Radioactive Materials; Nuclear and Radiation Physics; Medical Physics and Public Protection Against Radiological Attack. This conference consists of 402 p., figs., tabs., refs.

  4. Military radiation protection

    International Nuclear Information System (INIS)

    Harrison, J.

    1993-01-01

    The Ministry of Defence and the military in particular have a very strong commitment to radiation protection of personnel in war and peace. MOD endeavours to do better all the time because it is essential that the armed forces have the confidence to fulfil their role and this is best achieved by providing them with the best possible protection irrespective of the hazard. (author)

  5. Ecological radiation protection criteria for nuclear power

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1993-01-01

    By now a large quantity of radioactive hazards of all sizes and shapes has accumulated in Russia. They include RBMK, VVER, and BN (fast-neutron) nuclear power plants, nuclear fuel processing plants, radioactive waste dumps, ships with nuclear power units, etc. In order to evaluate the radioecological situation correctly, the characteristics of the radioactive contamination must be compiled in these areas with some system of criteria which will provide an acceptable level of ecological safety. Currently health criteria for radiation protection are, which are oriented to man's radiation protection, predominate. Here the concept of a thresholdless linear dose-response dependence, which has been confirmed experimentally only at rather high doses (above 1 Gy), is taken as the theoretical basis for evaluating and normalizing radiation effects. According to one opinion, protecting people against radiation is sufficient to protect other types of organisms, although they are not necessarily of the same species. However, from the viewpoint of ecology, this approach is incorrect, because it does not consider radiation dose differences between man and other living organisms. The article discusses dose-response dependences for various organisms, biological effects of ionizing radiation, and appropriate radiation protection criteria

  6. Application of radioprotectors in radiation protection

    International Nuclear Information System (INIS)

    Kljajic, R.R.; Masic, Z.S.

    2000-01-01

    Application of the ionizing radiation in almost all the fields of human activities enlarged the knowledge of their harming influence on the living beings. At the same time there have been many investigations of different chemical means that could successfully be used in protection from radiation. Until today several hundreds of different chemical compounds have been considered to be a potential chemical radioprotector. Analyzing the results of investigating great number of potential radioprotective compounds, it can be said that those containing sulfur provide the most effective protection. That are aminothiols, aminodisulphides, derivatives of thiourea, thiosulphuric and thiophosphate acid, dithiocarbamates, thiazolines, some of biogen amines and their derivates. Among the investigated compounds there is a certain number that, under some circumstances, has shown a protective effect on the experimental animals. In the work comparative investigation of the protective effect of cistaphosa (WR-638) and gamaphosa (WR-2721) have been researched on the big experimental animals, radiated with a high level of X-radiation. Well protective influence of both radioprotectors has been proven but gamafos showed higher efficiency. (author)

  7. Research priorities for occupational radiation protection

    International Nuclear Information System (INIS)

    1994-02-01

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided open-quotes smartclose quotes instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines

  8. Radiation protective clothing

    International Nuclear Information System (INIS)

    Fujinuma, Tadashi; Tamura, Shoji; Ijiri, Yasuo.

    1988-01-01

    Purpose: To obtain radiation protective clothings of excellent workability and durability. Constitution: Protective clothings of the present invention comprise shielding materials for the upper-half of the body having lead foils laminated on one surface and shielding materials for the lower-half of the body a resin sheet containing inorganic powders of high specific gravity. Such protective clothings have a frexibility capable of followings after the movement of the upper-half body and easily follow after the movement such as acute bending of the body near the waste in the lower-half body. (Kamimura, M.)

  9. On ethical issues in radiation protection. Radiation protection recommendations and standards seen from an ethical perspective

    International Nuclear Information System (INIS)

    Corbett, R.H.; Persson, L.

    2004-01-01

    International radiation protection recommendations and standards of the ICRP, the IAEA, the European Union and the ILO are surveyed from an ethical perspective. The authors come to the conclusion that the insights of ethical theories provide a number of ways in which current recommendations and standards for radiation protection could improve. (orig.) [de

  10. The technical workforce: education, training, and manpower needs in radiation protection

    International Nuclear Information System (INIS)

    Ziemer, P.L.

    1984-01-01

    In considering our technical workforce with respect to radiation protection, three main questions face us today and will continue to face us in the future: 1. What are the present and future personnel needs in health physics and related disciplines. 2. What kinds of education and training programs are required to meet these needs. 3. What is being done and what needs to be done to provide the required education and training programs. To address these three questions, this paper summarizes recent projections on the manpower needs for professional health physicists over the next two decades. The current status of education and training programs, both for health physicists and for other personnel requiring radiation protection training, is reviewed. Attention is directed toward present enrollment and degree trends which indicate inadequate supplies of personnel to fill present and projected positions, particularly at the BS and the graduate degree levels. Information on the job market, including numbers and types of positions and salary levels, is also summarized. The question of what needs to be done in the future to provide adequate education and training programs is discussed with respect to federal policies, regulations, and industrial responsibilities. Although the federal government will continue to have responsbilities to support education and training in radiation protection, an increasingly important and critical role is seen for the private sector

  11. Radiation exposure and protection during angiography

    Energy Technology Data Exchange (ETDEWEB)

    Biazzi, L; Garbagna, P [Pavia Univ. (Italy)

    1979-05-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recommendations to reduce radiation exposure without prejudicing the exam results.

  12. INES rating of radiation protection related events

    International Nuclear Information System (INIS)

    Hort, M.

    2009-01-01

    In this presentation, based on the draft Manual, a short review of the use of the INES rating of events concerning radiation protection is given, based on a new INES User's Manual edition. The presentation comprises a brief history of the scale development, general description of the scale and the main principles of the INES rating. Several examples of the use of the scale for radiation protection related events are mentioned. In the presentation, the term 'radiation protection related events' is used for radiation source and transport related events outside the nuclear installations. (authors)

  13. Radiation Protection Research Needs Workshop: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, Shaheen A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davis, Jason [Oak Ridge Associated Univ., Oak Ridge, TN (United States); Hertel, Nolan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abelquist, Eric [Oak Ridge Associated Univ., Oak Ridge, TN (United States)

    2017-09-01

    In order to protect humans and the environment when using ionizing radiation for the advancement and benefit of society, accurately quantifying radiation and its potential effects remains the driver for ensuring the safety and secure use of nuclear and radiological applications of technology. In the realm of radiation protection and its various applications with the nuclear fuel cycle, (nuclear) medicine, emergency response, national defense, and space exploration, the scientific and research needs to support state and federal radiation protection needs in the United States in each of these areas are still deficient.

  14. Modernization and consolidation of the European radiation protection legislation. The new EURATOM radiation protection basic safety standards

    International Nuclear Information System (INIS)

    Mundigl, S.

    2013-01-01

    With the development of new basic safety standards for the protection against the dangers arising from ionising radiation, foreseen in Article 2 and Article 30 of the Euratom Treaty, the European Commission modernises and consolidates the European radiation protection legislation. The new Directive offers in a single coherent document, basics safety standards for radiation protection which take account of the status-quo of science and technology, cover all relevant radiation sources, including natural radiation sources, integrate protection of workers, members of the public, patients and the environment, cover all exposure situations, planned, existing, emergency, and harmonise numerical values with international standards. After having received very positive opinions of the Article 31 Group of Experts and the European Economic and Social Committee, the proposed Directive has reached agreement in the Working Party on Atomic Questions of the European Council (WPAQ). The Opinion of the European Parliament is expected in September 2013, which would allow a publication of the Directive in the Official Journal of the European Union by the end of 2013. (orig.)

  15. Research into radiation protection. 1994 Programme report. Report on radiation departmental research programme on radiation protection, sponsored by the Federal Ministry for the Environment, Nature Conservation and Reactor Safety, and placed under the administrative and subject competence of the Federal Radiation Protection Office

    International Nuclear Information System (INIS)

    Goedde, R.; Schmitt-Hannig, A.; Thieme, M.

    1994-10-01

    On behalf of the Ministery for Environment, Nature Conservation and Nuclear Safety (BMU), the Federal Office for Radiation Protection is placing research and study contracts in the field of radiation protection. The results of these projects are used for developing radiation protection rules and to fulfill the special radiation protection tasks of the BMU, required by law. Planning, expert and administrative management, placing, assistance as well as expert evaluation of the results from these research projects lies within the responsibility of the Federal Office for Radiation Protection. This report provides information on preliminary and final results of radiation protection projects within the BMU Department Research Programme of the year 1994. (orig.) [de

  16. Research into radiation protection. 1995 Programme report. Report on radiation departmental research programme on radiation protection, sponsored by the Federal Ministry for the Environment, Nature Conservation and Reactor Safety, and placed under the administrative and subject competence of the Federal Radiation Protection Office

    International Nuclear Information System (INIS)

    Thieme, M.; Goedde, R.; Schmitt-Hannig, A.

    1996-01-01

    On behalf of the Ministry for Environment, Nature Conservation and Nuclear Safety (BMU), the Federal Office for Radiation Protection is placing research and study contracts in the field of radiation protection. The results of these projects are used for developing radiation protection rules and to fulfill the special radiation protection tasks of the BMU, required by law. Planning, expert and administrative management, placing, assistance as well as expert evaluation of the results from these research projects lies within the responsibility of the Federal Office for Radiation Protection. This report provides information on preliminary and final results of radiation protection projects within the BMU Department Research Programme of the year 1995. (orig.) [de

  17. Lectures on radiation protection

    International Nuclear Information System (INIS)

    Wachsmann, F.; Consentius, K.

    1981-01-01

    All important subjects of radiation protection are presented in concise form; the explanations may serve as lecture manuscripts. The lectures are divided into 16 to 19 teaching units. Each teaching unit is supplemented by a slide to be projected on a screen while the text is read. This method of visual teaching has already been tried with good results in medicine and medical engineering. Pictures of the slides are given in the text so that the book may also be used for self-studies. The main facts are summarized at the end of each lesson. The finished book will consist of 8 lessons; the first three of these discuss 1. Radiation effects and hazards 2. Dose definitions and units and their role in radiology and radiation protection 3. Dose limits and legal specifications. (orig.) [de

  18. Radiation Protection Training in Spanish schools of medicine

    International Nuclear Information System (INIS)

    Ruiz-Cruces, R.; Perez Martinez, M.; Vano, E.; Hernandez Armas, J.; Diez de los Rios Delgado, A.

    2003-01-01

    Radiation Protection should be included in the programme of studies necessary to confer a bachelor's degree in Medicine, according to the Directive 97/43 Euratom on medical exposures and the Report RP116 published by the European commission on Education and Training in radiation protection for medical exposures. To analyse the present training programmes in radiation protection at the Medical School in different Spanish Universities. The syllabus and the contents of the subjects including radiation protection issues in 27 Spanish Schools of Medicine have been revised. Radiation protection subjects are obligatory at present, only at the Schools of Medicine from Cantabria and Malaga. There is a group of Schools of Medicine where radiation protection is an optional matter with an extension of 4,5 credits (45 hours). It also exists some topics in radiation protection in subjects dealing with Medical Physics and General Radiology (with a range value from 1 to 10 hours), in 10 Schools of Medicine. A wide dispersion among the contents of different subjects and the hours of training allocated by the different School are found. It should be useful the harmonization of the programmes. (Author)

  19. Quality management in radiation protection

    International Nuclear Information System (INIS)

    Baehrle, H.G.

    1997-01-01

    Quality Management in Radiation Protection Quality management (QM) in the field of Radiation Protection was discussed in a previous issue (2/97) using the example of QMS at the Paul Scherrer Institut (PSI). The present article describes the major features involved in the establishment of a functional QMS. Establishment of the QMS lead to a deeper understanding of administrative and operational aspects of the working methods involved. (orig.) [de

  20. Radiation protection for veterinary practices

    International Nuclear Information System (INIS)

    Wheelton, R.; McCaffery, A.

    1993-01-01

    This brief article discusses radiation protection for diagnostic radiography in veterinary practices. It includes aspects such as a radiation protection adviser, personal dosimetry but in particular a Veterinary Monitoring Service, developed by the NRPB, which offers veterinary practitioners the convenience of making simple but essential measurements for themselves using photographic films contained in a 'vet pack' to determine the operating condition of their X-ray machine. (U.K.)

  1. Practical radiation protection for radiography

    International Nuclear Information System (INIS)

    Hubbard, S.K.; Proudfoot, E.A.

    1978-01-01

    Nondestructive Testing Applications and Radiological Engineering at the Hanford Engineering Development Laboratory have developed radiation protection procedures, radiation work procedures, and safe practice procedures to assure safe operation for all radiographic work. The following topics are discussed: training in radiation safety; radiation exposure due to operations at Hanford; safeguards employed in laboratory radiography; field radiographic operations; and problems

  2. European activities in radiation protection in medicine

    International Nuclear Information System (INIS)

    Simeonov, Georgi

    2015-01-01

    The recently published Council Directive 2013/59/Euratom ('new European Basic Safety Standards', EU BSS) modernises and consolidates the European radiation protection legislation by taking into account the latest scientific knowledge, technological progress and experience with implementing the current legislation and by merging five existing Directives into a single piece of legislation. The new European BSS repeal previous European legislation on which the national systems for radiation protection in medicine of the 28 European Union (EU) Member States are based, including the 96/29/Euratom 'BSS' and the 97/43/ Euratom 'Medical Exposure' Directives. While most of the elements of the previous legislation have been kept, there are several legal changes that will have important influence over the regulation and practice in the field all over Europe-these include, among others: (i) strengthening the implementation of the justification principle and expanding it to medically exposed asymptomatic individuals, (ii) more attention to interventional radiology, (iii) new requirements for dose recording and reporting, (iv) increased role of the medical physics expert in imaging, (v) new set of requirements for preventing and following up on accidents and (vi) new set of requirements for procedures where radiological equipment is used on people for non-medical purposes (nonmedical imaging exposure). The EU Member States have to enforce the new EU BSS before January 2018 and bring into force the laws, regulations and administrative provisions necessary to comply with it. The European Commission has certain legal obligations and powers to verify the compliance of the national measures with the EU laws and, wherever necessary, issue recommendations to, or open infringement cases against, national governments. In order to ensure timely and coordinated implementation of the new European legal requirements for radiation protection, the Commission is

  3. Radiation Protection: introduction

    International Nuclear Information System (INIS)

    Loos, M.

    2005-01-01

    The abstract gives an overview and introduction to the activities of SCK-CEN's Radiation Protection department. Main strategic developments and achievements in the field of life sciences, policy supports and medical applications are summarised

  4. What is good radiation protection?; Was ist guter Strahlenschutz?

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, B. [Lorenz Consulting, Essen (Germany)

    2016-07-01

    Radiation protection is based on the ICRP-System with its pillars justification, limitation and optimization. From this radiation protection should be the same irrespective of the application of radiation. But radiation protection in the nuclear industry is much different from the use of radiation sources or X-ray units. This is by far not due to the different technologies. It originates from the different interpretation of the system. For one person good radiation protection would mean to have no radiation exposures, to avoid radiation at all as best option and to use it only if there are no alternatives. For another person the best radiation protection would be the one which does not produce much efforts and costs. So what is reasonable? In reality the first interpretation prevails, at least in Germany. A change is needed. If we continue to exercise radiation protection as we do it today the beneficial application of radiation will be restricted unduly and might become impossible at all. A stronger orientation towards the naturally occurring radiation would help instead to regulate natural radiation in the same way as it is done for artificial radiation. The system of ICRP has to be changed fundamentally.

  5. Rule concerning sanitary protection against ionizing radiations: novelties

    International Nuclear Information System (INIS)

    Bercedo, A.; Carmena, P.; Prieto, J. A.; Rubio, G.; Sollet, E.; Sustacha, D.

    2002-01-01

    Last July the a new legal Rule concerning Sanitary Protection against Ionising Radiation was published, as a transposition of the EU Directive about the Basic Norms related to the sanitary protection of workers and population against the risks resultant of the ionising radiation. The origin of this legislation goes back to the revision of the protection doctrine by the International Commission of Radiation Protection (ICRP) en the year 1990. El scope of the revised Rule is the regulation of the protection of population and workers against ionising radiation, the establishment of the national protection system with its exposition and dose limits and the correspondent penalty regime. It also modifies the maximum radiation dose limits and reinforces the application of the optimisation principle in the use of ionising radiation. In this article, the novelties introduced by the new Rule are commented in detail, ordered by the Titles I to IX in which the Rule is divided. (Author)

  6. Chemical protection and sensitization to ionizing radiation:molecular investigations

    International Nuclear Information System (INIS)

    Badiello, R.

    1980-01-01

    Chemical radioprotection and radiosensitization are induced by the presence of certain chemical compounds, which reduce or enhance the effect of ionizing radiation on living organisms. Such substances are either naturally present or may be artificially introduced in the living cells. Chemical radioprotectors are interesting for possible application in the health protection of both professionally exposed workers and patients treated by radiation for diagnostic and thereapeutic purposes. Interest in chemical radiosensitization has increased recently because of its potential application in the radiotherapy of tumours. Both radioprotection and radiosensitization occur by means of complicated mechanisms, which at first correspond to very fast reactions. The mechanism of the interaction between such substances and radiation-induced biological radicals has been investigated by means of pulse radiolysis and rapid mixing techniques. Examples of the application of these techniques are given to illustrate how information has been obtained on the molecular basis of radiation chemical modi-fication at the cellular level. In particular some interactions between model systems of biological interest (DNA, DNA components, enzymes, amino acids, etc.) and sulphur-containing radioprotectors (glutathione, cysteine, etc.) and/or electroaffinic radiosensitizers, are described. (H.K.)

  7. Radiation exposure and protection during angiography

    International Nuclear Information System (INIS)

    Biazzi, L.; Garbagna, P.

    1979-01-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recomandations to reduce radiation exposure without prejudicing the exam results [fr

  8. A knowledge and awareness level survey of radiation protection among the radiation workers in Henan Province

    International Nuclear Information System (INIS)

    Cheng, Xiao-jun; Tian, Chong-bin; Zhang, Qin-fu; Liu, Cheng; Ding, Li

    2008-01-01

    Full text: Objective: To reveal the knowledge and awareness level of radiation protection among radiation workers in Henan province and to explore the methods to improve it. Methods: A questionnaire survey was carried out among 208 radiation workers. Results: The correct rate of the answer to radiation protection knowledge from radiation workers in Henan province is 53.78%. Most of them (88.9%) realized that it is important to protect patients and their companions. They adhere to the principles of justification of medial exposure and optimization of radiation protection and follow the management system of radiation protection. However, a few workers didn't follow the principles strictly. Sometime, during the radio diagnosis and radiotherapy services, the patients and their companions were not well protected from the radiation, and some patients were given unnecessary X-ray examine. Even worse, some workers did not attach importance to the regulations of radiation protection and disobey them frequently. Again, some hospital leaders disregard the regulation of radiation protection and didn't follow the regulation of health surveillance and radiation protection monitoring properly. And those behaviors and attitude, in fact, influence some workers' attitude to radiation protection. Conclusion: The level of radiation protection knowledge and awareness among the radiation workers in Henan province needs to be improved. It is necessary to strengthen radiation protection knowledge by strengthening training, and to improve safety awareness among the radiation staff, and, more important, the hospital leaders as well. (author)

  9. Radiation protection in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    1978-01-01

    The tasks of radiation protection and nuclear safety to be looked after by the land Baden-Wuerttemberg consist essentially in licensing and control activities carried out by the Federal Government. With regard to radiation protection the focal points of the second medium-term programme of the Laender Government Baden-Wuerttemberg are: 1. the technical development plan 'power plant sites', 2. construction of nuclear power plants in the borderline areas of neighbouring foreign countries, 3. disposal of radioactive waste, 4. pollution protection measures against nuclear power plants, 5. safety measures when dealing with radioactive materials outside nuclear power plants. (GL) [de

  10. Evolution of Radiation Protection System in Kenya

    International Nuclear Information System (INIS)

    Maina, J. A. W.

    2004-01-01

    Promulgation of radiation protection legislation in Kenya dates back to 1982, was revised in 1985 and became operational in 1986. This law, the Radiation Protection Act, establishes the Radiation Protection Board as the National Regulatory Authority, with an executive Inspectorate headed by the Secretary to the Board. Subsidiary legislation on radiological practices and standards were subsequently published. The Inspectorate carries out the National programme for notification, authorization, inspection and enforcement. Nuclear applications for peaceful purposes in Kenya are on the increase in all major fields of socio-economic development. Provision of regulatory services, guidance and enforcement procedures, has had a net growth over the last fifteen years. However, staff retention has been declining over the years in a market where job opportunities, with relatively high incentives, are high either inside or outside the country. Human and equipment resource development has therefore not kept pace and this has hampered effective and efficient provision of services. The poor status of the economy has had its impact on delivery of quality, effective and efficient radiation protection services. Provision of radiation services and acquisition of radiation detection and measurement equipment in the country has been generally lacking dating as far back as 1995. During the period 1989 to present, Kenya's Regulatory Authority, the Radiation Protection Board, undertook to provide personal monitoring, quality assurance, radioanalysis, and equipment calibration. Over the years these services have stalled due to outdated equipment most of which have broken down. A maintenance and calibration service for nuclear equipment is an expensive cross-boarder issue. Budgetary constraints, insufficient human and equipment resources, and a perennial 'brain drain' has placed limitations to the effectiveness and efficiency of implementation of the National programmes and slowed the

  11. Radiation protection. Basic concepts of ICRP

    International Nuclear Information System (INIS)

    Saito, Tsutomu; Hirata, Hideki

    2014-01-01

    The title subject is easily explained. Main international organizations for radiation protection are United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), International Commission on Radiological Protection (ICRP) and International Atomic Energy Agency (IAEA). The UNSCEAR objectively summarizes and publishes scientific findings; ICRP, an NGO, takes part in recommending the radiological protection from the expertized aspect; and IAEA, a UN autonomy, aims at peaceful usage of atomic power. These organizations support the legal regulation and standard of nations. The purpose of the ICRP recommendation (Pub. 103, 2007) is to contribute to the appropriate protection of radiation hazardous effects, which are assumed to be linearly proportional (the model of linear no-threshold, LNT) that radiation risk exists even at the lowest dose. When a change in the single cell results in hazardous alteration, the causative effects are called stochastic effects, which include the mutation leading to cancer formation and genetic effect in offspring (not observed in man). ICRP says the validity of LNT for the stochastic effects essentially from the protective aspect, although epidemiological data support it at >100 mSv exposure. The deterministic effects are caused by loss of cell itself or of its function, where the threshold is defined to be the dose causing >1% of disorder or death. Radiation protective system against exposure is on the situation (programmed, emergent and natural), category (occupational, public and medical) and 3 principles of justification, optimization and application of dose limit. (T.T.)

  12. Radiation Protection Group

    CERN Document Server

    2006-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to inform you that the Radioactive Waste Treatment Centre will be closed on the afternoon of Tuesday 19 December 2006. Thank-you for your understanding.

  13. A National Institute of Radiation Protection and Nuclear Safety?

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    The practice of radiation protection within Australia is fragmented on a number of different levels. Each state has its own radiation protection organisation. Within the Commonwealth there is also a large number of bodies which deal with different aspects of radiation protection or nuclear safety. There is also an interest in occupational radiation protection by Departments responsible for Occupational Health and Safety. It is estimated that this fragmentation affects the practice of radiation protection at a State level and also the role which Australia can play internationally. The establishment of a National Institute of Radiation Protection and Nuclear Safety is therefore proposed. Possible structures and organizational arrangements for such an institute are discussed. 4 refs., 4 tabs., 3 figs

  14. Medical students' knowledge of ionizing radiation and radiation protection.

    Science.gov (United States)

    Hagi, Sarah K; Khafaji, Mawya A

    2011-05-01

    To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.

  15. Consequences of the new Slovenian legislation on radiation protection and nuclear safety for radiation protection training

    International Nuclear Information System (INIS)

    Kozelj, M.

    2004-01-01

    The paper presents brief description of the old Slovenian regulations and an overview of the new, harmonised regulations in the field of radiation protection training. The most important novelties were pointed out with possible consequences for the implementation of radiation protection training. Some suggestions on how to overcome transitional problems and how to improve training were also given. (author)

  16. Radiation protection program for assistance of victims of radiation accidents

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Costa Silva, L.H. da; Rosa, R.

    1991-11-01

    The principles aspects of a radiological protection program for hospitals in case of medical assistance to external and internal contaminated persons are showed. It is based on the experience obtained at Centro Medico Naval Marcilio Dias during the assistance to the victims of Goiania accident in 1987. This paper describes the basic infrastructure of a nursery and the radiation protection procedures for the access control of people and materials, area and personal monitoring, decontamination and the support activities such as calibration of radiation monitors and waste management. Is is also estimated the necessary radiation protection materials and the daily quantity of waste generated. (author)

  17. Current Trends in Radiation Protection Recommendations

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    2008-01-01

    The third generation of the ICRP recommendations was adopted in April 2007. The recommendations rely on situations (planned, emergency and existing), individual (occupational, public and patient) and radiation protection system (justification, optimization and dose limits). In the present work attention is paid to discuss the new recommendations and role of IAEA in updating its Basic Safety Standards for protection against ionizing radiation and safety of radiation sources and its impact for the national regulations

  18. Decree of the State Office for Nuclear Safety No. 146/1997 of 18 June 1997 specifying activities which have an immediate impact on nuclear safety, and activities which are particularly important with respect to radiation protection, requirements for qualification and professional training, procedures for examining special professional competence and for granting certificates to selected personnel, and the scope and structure of documentation to be approved for permitting the training of selected personnel

    International Nuclear Information System (INIS)

    1997-01-01

    The Decree specifies requirements in the following fields: (a) activities which have an immediate impact on nuclear safety and activities which are particularly important with respect to radiation protection; (b) requirements for the qualification of selected personnel; (c) requirements for professional training of selected personnel of nuclear facilities and selected personnel handling ionizing radiation sources who are to gain special professional competence; (d) examination commission; (e) examination of special professional competence of selected personnel of nuclear facilities and selected personnel handling ionizing radiation sources; (f) granting permission to perform activities of selected personnel; and (g) scope and structure of documentation required to permit professional training of selected personnel of nuclear facilities and selected personnel handling ionizing radiation sources. (P.A.)

  19. Manual on radiation protection in hospitals and general practice. Basic protection requirements

    International Nuclear Information System (INIS)

    Braestrup, C.B.; Vikterloef, K.J.

    1974-01-01

    The manual as a whole deals with the radiation protection of patients, occupationally exposed persons, and the public. Volume 1, on basic protection requirements, is a general review common to all medical applications of ionizing radiation and radionuclides. Radiation protection is required for patients and staff, and with regard to medical research and chemical trials of new methods; radiation equipment and operating procedures are discussed in connection with diagnostic x-ray installations, x-ray beam therapy, gamma-ray installations for teletherapy, brachytherapy, unsealed sources for therapeutic use, and the diagnostic use of unsealed sources in nuclear medicine. In planning of radiation facilities, attention is paid to levels at which medical care is given, the centralization and decentralization of radiation facilities, diagnostic x-ray facilities and therapy facilities, and nuclear medicine and therapy with unsealed sources. Shielding design is discussed applicable to diagnostic radiology, radiotherapy, nuclear medicine and the therapeutic use of radionuclides. Assignment of responsibilities, legal responsibilities, safety checks, refresher courses and symposia are discussed in the context of organizing radiation protection. Radiation surveys are necessary, and such surveys are described for x-ray and gamma-ray beams, sealed radioactive sources and nuclear medicine. A whole section is devoted to personnel monitoring and health surveillance. An annex gives a list of commonly used radionuclides, another deals with the design of protective shielding

  20. Problems of radiation protection optimization

    International Nuclear Information System (INIS)

    Morkunas, G.

    2003-01-01

    One of the basic principles - optimization of radiation protection - is rather well understood by everybody engaged in protection of humans from ionizing radiation. However, the practical application of this principle is very problematic. This fact can be explained by vagueness of concept of dose constraints, possible legal consequences of any decision based on this principle, traditions of prescriptive system of radiation protection requirements in some countries, insufficiency of qualified expertise. The examples of optimization problems are the different attention given to different kinds of practices, not optimized application of remedial measures, strict requirements for radioactive contamination of imported products, uncertainties in optimization in medical applications of ionizing radiation. Such tools as international co-operation including regional networks of information exchange, training of qualified experts, identification of measurable indicators used for judging about the level of optimization may be the helpful practical means in solving of these problems. It is evident that the principle of optimization can not be replaced by any other alternative despite its complexity. The means for its practical implementation shall be searched for. (author)

  1. Radiation protection and environmental protection

    International Nuclear Information System (INIS)

    Xie Zi; Dong Liucan; Zhang Yongxing

    1994-01-01

    A collection of short papers is presented which review aspects of research in radiation and environmental protection carried out by the Chinese Institute of Atomic Energy in 1991. The topics covered are: the analysis of Po 210 in the gaseous effluent of coal-fired boilers; the determination of natural radionuclide levels in various industrial waste slags and management countermeasures; assessment of the collective radiation dose from natural sources for the Chinese population travelling by water; the preliminary environmental impact report for the multipurpose heavy water research reactor constructed by China for the Islamic Republic of Algeria. (UK)

  2. Radiation protection, public policies and education

    International Nuclear Information System (INIS)

    Alves, Simone F.; Jacomino, Vanusa M.F.; Barreto, Alberto A.

    2011-01-01

    The objective of this paper is to inform about the aspects of radiation protection public policies concerning the public spheres and the ordinary population. It is known that information has been considered a very important good in several knowledge areas. However, the efficiency of their transmission mechanisms should be periodically evaluated, checking existing critical and stagnation points. Nuclear area can be mentioned as a historically typical case, where the public policies assume relevant importance as tool for promotion, control and education of the population in general. Considering the polemic nature of such subject, it is clear that there is a need for conducting the construction of educational contents taking in account the educator training necessities. The addressing of radiation protection aspects applied to nuclear techniques conducts, for example, to the awareness on the benefits of radiation and its industrial and medical applications, which are established considering the worldwide adopted basic principles of radiation protection. Such questions, concerned with (or related to) public policies, establish a link between radiation protection and education, themes explored in this article to provide a better view of the current Brazilian scenario. (author)

  3. Quantitative risk in radiation protection standards

    International Nuclear Information System (INIS)

    Bond, V.P.

    1978-01-01

    The bases for developing quantitative assessment of exposure risks in the human being, and the several problems that accompany the assessment and introduction of the risk of exposure to high and low LET radiation into radiation protection, will be evaluated. The extension of the pioneering radiation protection philosophies to the control of other hazardous agents that cannot be eliminated from the environment will be discussed, as will the serious misunderstandings and misuse of concepts and facts that have inevitably surrounded the application to one agent alone, of the protection philosophy that must in time be applied to a broad spectrum of potentially hazardous agents. (orig.) [de

  4. Use of personal radiation protection tools and individual dosimetric monitoring in a sample of interventional cardiologists in France, 2005-2009

    International Nuclear Information System (INIS)

    Jacob, S.; Bertrand, A.; Laurier, D.; Bernier, M.O.; Scanff, P.

    2014-01-01

    Interventional cardiologists (ICs) are repeatedly exposed to scattered ionising radiation during the cardiac procedures they perform, and radiation protection is an important issue for these medical professionals. The use of radiation protection tools is particularly relevant to this population. SISERI (Systeme d'Information de la Surveillance de l'Exposition aux Rayonnement Ionisants, that is, an information system for monitoring exposure to ionising radiation) is a register that stores personal dosimeter readings for dosimetric monitoring. This paper, based on data for a sample of French ICs from the O'CLOC epidemiological study, aims to provide an overview of the use of radiation protection equipment and dosimetric devices reported by ICs in a specific questionnaire as well as the dosimetric information found in the SISERI database for this population. Material and Methods - Annual information on interventional cardiology activity for the period from 01/01/2005 to 31/12/2009 was collected in an occupational questionnaire. ICs were asked to report the frequency in which they used individual dosimeter and radiation protection tools (lead apron, thyroid shield, eye-wear or face shield, ceiling-suspended shield) as follows: never (0% of the time), occasionally ( 50%), always (100%). We retrieved their medical radiation exposure information (monitored status and monthly effective doses) from the SISERI database for the period 2005-2009. Results - Information for 132 ICs (mean age in 2005 = 46 ± 7 years) was available. All ICs reported routine use of lead aprons, in contrast to their occasional use of lead eye-wear or face shields. During the study period, 49% reported systematic use of personal dosimeters, and 21% more regular use. On the other hand, 18% never used a dosimeter during this period. The SISTERI database included 92% of our population, 73% of whom had complete annual dose monitoring in SISERI (corresponding to at least 11 months per year of recorded

  5. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    Ylli, F.; Dollani, K.; Paci, R.

    2005-01-01

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  6. Discussion on several problems in evolution of radiation protection system

    International Nuclear Information System (INIS)

    Ziqiang, P.

    2004-01-01

    As viewed from the standpoint of radiation protection practice, it is necessary that the current system of radiological protection should be made more simple and coherent. The human-based protective measures alone are far from having met the requirements of environmental protection in many circumstances. Protecting the environment from ionising radiation would be implicated in radiation protection. Collective dose is an useful indicator, of which applicable extent should be defined. Using such an quantity could help improve radiation protection level, but applicable conditions should be indicated, temporal or spatial. Natural radiation is the largest contributor to the radiation exposure of human. Occupational exposure from natural radiation should be controlled, for occupations such as underground miners and air crew. Controlling both man-made and natural radiation exposure of pregnant women and children needs to be enhanced, especially radiological diagnosis and treatment. China radiation protection community, as a whole, is paying considerable attention to the ICRP's new Recommendations. Prof. Clarke's article 'A Report on Progress towards New Recommendations', a communication from the International Commission on Radiological Protection, has been translated into Chinese and published on Radiation Protection, the Official Journal of China Radiation Protection Society with a view of intensifying awareness of the new Recommendations within more radiation protection workers and people concerned. In addition, a special meeting was convened in early 2002 to address the comments on the new Recommendations. (author)

  7. Protective properties of radiation-modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Surnina, N.N.; Saltykova, L.A.; Strochkova, E.M.; Tatarenko, O.F.

    1986-09-01

    A study was made of the mass transfer of corrosive liquids and gases through polyethylene films modified by radiation surface grafting. Studies were performed on an unstabilized type A film with graft adhesion-active layer based on polymethacrylic acid. The protective properties of the polymer coating in corrosive fluids with low vapor tension were estimated by impedance measurements. Steel specimens with a protective coating of radiation-modified polyethylene film were exposed to 10% sulfuric acid at room temperature. The results indicated that the acid did not penetrate through to the metal surface. The films retain their protective properties and protect the metal from the acid. Radiation modification significantly improves the adhesion of polyethylene to metals without reducing physical and mechanical properties of the polymers. 50 references, 1 figure.

  8. Organization of radiation protection in German nuclear power stations

    International Nuclear Information System (INIS)

    1989-01-01

    Using the operating handbooks of the nuclear power stations in West Germany, an examination was carried out of how far the existing organisational structure for radiation protection fulfils the requirements for protection and whether a standardisation of the organisation would provide improvements for the protection of the personnel and for the practicability of the radiation protection organisation. In particular, the parts 'Personnel operating organisation', 'Radiation protection order' and 'Maintenance order' of the operating handbook were evaluated and an audit was made of the radiation protection organisation. In general, the result of the assessment is that the organisation of radiation protection does not contradict the orders, guidelines and regulations in any of the nuclear power stations examined. Corresponding to the possibilities of regulating details of the radiation protection organisation within the undertaking, the target of 'protection of the personnel against radioactive irradiation' is achieved by the various organisation structures which are largely equal to the given example. (orig./HP) [de

  9. Radiation protection and safety guide no. GRPB-G-1: qualification and certification of radiation protection personnel

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    A number of accidents with radiation sources are invariably due to human factors. The achievement and maintenance of proficiency in protection and safety in working with radiation devices is a necessary prerequisite. This guide specifies the national scheme and minimum requirements for qualification and certification of radiation protection personnel. The objective is to ensure adequate level of skilled personnel by continuous upgrading of knowledge and skill of personnel. The following sectors are covered by this guide: medicine, industry, research and training, nuclear facility operations, miscellaneous activities

  10. Establishments of scientific radiation protection management program

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1988-01-01

    Some aspects for establishing the radiation protection management program have been discussed. Radiation protection management program includes: definite aims of management, complete data register, strict supervision system, and scientific management methodology

  11. Chemical protection from high LET radiation

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Matsushita, Satoru; Kanai, Tatsuaki; Ohara, Hiroshi

    1992-01-01

    Radioprotection by WR151327 from high LET fast neutrons was investigated and compared with that from low LET radiation. Radiation damage in bone marrow, intestine, skin and leg length were all protected by a pretreatment with 400 mg/kg WR151327. Most prominent protection was observed for bone marrow, which gave a Dose Modifying Factor (DMF) of 2.2 against γ rays. Identical protection was observed between early and late radiation damage. WR151327 protected fast neutrons less efficiently than γ rays; 40% for bone marrow and 80% for skin leg. Pathological findings indicated that hyperplastic change in both dermis and epidermis associated with late skin shrinkage. Laser doppler flow-metry showed a good relationship between reduction of blood flow and late skin shrinkage. Irradiation of skin by heavy particle Carbon-12 indicated that skin shrinkage was modified by unirradiated surrounding normal tissues, which proposed a significant role of 'Volume Effect' in radiation damage. Tumor tissues were less protected by WR151327 than normal tissues. Dependence of radioprotection by WR151327 on tissue oxygen concentration is a probable reason to explain the difference between normal and tumor tissues. (author)

  12. Cost benefit analysis for optimization of radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1984-01-01

    ICRP recommends three basic principles for radiation protection. One is the justification of the source. Any use of radiation should be justified with regard to its benefit. The second is the optimization of radiation protection, i.e. all radiation exposure should be kept as low as resonably achievable. And the third principle is that there should be a limit for the radiation dose that any individual receives. Cost benefit assessment or cost benefit analysis is one tool to achieve the optimization, but the optimization is not identical with cost benefit analysis. Basically, in principle, the cost benefit analysis for the optimization of radiation protection is to find the minimum sum of the cost of protection and some cost of detriment. (Mori, K.)

  13. Radiation protection programme for LEU miniature source reactor

    International Nuclear Information System (INIS)

    Beinpuo, Ernest Sanyare Warmann

    2015-02-01

    A radiation protection program has been developed to promote radiation dose reduction. It emphasize radiological protection fundamentals geared at reducing radiation from the application of the research reactor at the reactor center of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission. The objectives of the radiation safety program are both to ensure that nuclear scientists and technicians are exposed to a minimum of ionizing radiation and to protect employees and facility users and surrounding community from any potentially harmful effects of nuclear research reactor at GAEC. The primary purpose of the radiation control program is to assure radiological safety of all personnel and the public to guarantee that ionizing radiation arising out of the operations of the Research Reactor at the Reactor Center does not adversely affect personnel, the general public or the environment. This program sets forth polices, regulations, and procedures approved by the Centers Radiation Control Committee. The regulations and procedures outlined in this program are intended to protect all individuals with a minimum of interference in their activities and are consistent with regulations of the Radiation Protection Board (RPB) applicable to ionizing radioactive producing devices. (au)

  14. Foundations of radiation physics and radiation protection. 5. ed.; Grundlagen der Strahlungsphysik und des Strahlenschutzes

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, Hanno

    2017-07-01

    The following topics are dealt with: Types of radiation and radiation fields, the atomic structure, radioactive decays, decay law, natural and artificial radioactivity, interactions of ionizing photon radiation, attenuation of neutral-particle beams, interactions of neutron radiation, interactions of charged particles, ionization and energy transfer, radiation doses, radiation protection phantoms, foundations of the radiation biology of cells, effects and risks of ionizing radiation, radiation expositions of men with ionizing radiation, radiation protection law, practical radiation protection against ionizing radiations, radiation eposures in medical radiology. (HSI)

  15. Foundations of radiation physics and radiation protection. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Krieger, Hanno

    2009-01-01

    The book under consideration comprehensively reports on the physical, biological and legal fundamentals of the radiology. The book is divided into four large sections. The first section is concerned with the physical fundamentals of the radiology, the terms of the dose as well as the computation of the dose rate in radiation fields. The second section reports on the radiobiological and epidemiological fundamentals of the radiation protection as well as on the natural and civilization radiation exposure. The third section comprehensively describes the legal and practical aspects of radiation protection. The last section contains an updated appendix of tables with the most important fundamental data for the practical radiation protection

  16. Data survey about radiation protection and safety of radiation sources in research laboratories

    International Nuclear Information System (INIS)

    Paura, Clayton L.; Dantas, Ana Leticia A.; Dantas, Bernardo M.

    2005-01-01

    In Brazil, different types of research using unsealed sources are developed with a variety of radioisotopes. In such activities, professionals and students involved are potentially exposed to internal contamination by 14 C, 45 Ca, 51 Cr, 3 H, 125 I, 32 P, 33 P, 35 S, 90 Sr and 99m Tc. The general objective of this work is to evaluate radiological risks associated to these practices in order to supply information for planning actions aimed to improve radiation protection conditions in research laboratories. The criteria for risk evaluation and the safety aspects adopted in this work were based on CNEN Regulation 6.02 and in IAEA and NRPB publications. The survey of data was carried out during visits to laboratories in public Universities located in the city of Rio de Janeiro where unsealed radioactive sources are used in biochemistry, biophysics and genetic studies. According to the criteria adopted in this work, some practices developed in the laboratories require evaluation of risk of internal contamination depending on the conditions of source manipulation. It was verified the need for training of users of radioactive materials in this type of laboratory. This can be facilitated by the use of basic guides for the classification of areas, radiation protection, safety and source security in research laboratories. It was also observed the need for optimization of such practices in order to minimize the contact with sources. It is recommended to implement more effective source and access controls as a way to reduce risks of individual radiation exposure and loss of radioactive materials (author)

  17. Discussion on some problems in evolution of radiation protection system

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2003-01-01

    In radiation protection practice in China, the appropriate simplification and better coordination for the existing radiation protection system are necessary. The human-based protective measures alone could not meet the requirements of the environmental protection in many circumstances. Protecting the environment from ionizing radiation would be implicated in radiation protection. Collective dose is an useful index, its applicable scope should be well defined. Using such an quantity can help increase radiation protection level, but applicable conditions should be defined, such as time and space. Natural radiation is the largest contributor of the radiation exposure to human. Occupational exposure from natural radiation should be controlled, such as to underground miners and air crew. Controlling both man-made and natural radiation exposure to pregnant women and children needs to be enhanced, especially radiological diagnosis and therapy

  18. Radiation protection training: twenty year experience in Hungary

    International Nuclear Information System (INIS)

    Pellet, Sandor; Kanyar, Bela; Zagyvay, Peter; Solymosi, Jozsef; Bujtas, Tibor; Feher, Istvan; Giczi, Ferenc; Deme, Sandor; Uray, Istvan

    2008-01-01

    In Hungary, radiation protection training for radiation workers has been introduced in very early, just following the publication of the ICRP recommendation No. 26. Before that, in some of the institutions, radiation protection training was recommended for technicians and medical doctors working in nuclear medicine, X-ray diagnostic radiology and radiation therapy, as well as in some of industrial applications, but not on regular way. Since 1988, radiation protection training regulated by the Ministry of Health and required for all of the workers in radiation workplaces licensed by the authority the State Public Health and Medical Officers Service (SPHAMOS). Decree No. 16/2000. (VI. 8.) EuM of the Minister of Health on the enforcement of Clauses of the Nuclear Law 116/1996 regulates the radiation protection training of Radiation Workers (RW). Annex 4 of Decree sees radiation protection training and in-service training: Persons performing conducted work in the field of the use of the nuclear energy and any other work within legal relationship shall be educated in training and in-service training at an interval of 5 years. Three levels of the training introduced; basic, extended and comprehensive, based on radiation risk related to the given job. Several institutions are involved in performing radiation protection training, such universities, scientific institutions, Regional Radiological Health Centers (RRHC) of SPHAMOS, private enterprises etc. All training course material is subject to accreditation. Most of the faculties of the universities involved in training of natural sciences and engineering provide subjects on the fundamentals of dosimetry, radiobiology and radiation protection within the courses of physics, biophysics, chemistry, biology, ecology etc. These courses take 5-10 contact hours per week on average. The members of the Hungarian Committee of EUTERP Platform summarize their broad experience collected in the past 20 year. (author)

  19. Croatian Participation at National Symposia and International Congresses on Radiation Protection 1992-2002

    International Nuclear Information System (INIS)

    Krajcar Bronic, I.; Ranogajec-Komor, M

    2003-01-01

    Croatian Radiation Protection Association (CRPA) was formed as an independent association in 1991, and since 1992 it is a member of the International Radiation Protection Association (IRPA). CRPA organises regular national symposia with international participation, and takes part in organisation of regional IRPA congresses. The members of CRPA take part also in international and European congresses. In this paper we analyse the participation of Croatian authors in national symposia and international congresses in the period from 1992 to 2002. The number of papers in proceedings of the national symposia is rather constant (about 60), while at the First symposium in 1992 it was slightly higher (68). The fraction of papers by Croatian authors was also the highest at the First Symposium (∼ 90%), while at the following symposia it varied between 70% and 80%. Although the analysed period is rather short, one can see slight changes in the research topics. Radioecology, including radon and related topics, was the most frequent research area (36% of all papers) at the national CRPA symposia 1992-1998, followed by the biological effects of radiation and radiation protection in medicine (24%), dosimetry, methods and instrumentation (21%), general topics (11%) and radioactive waste (7%). The distribution of topics at the Fifth symposium is: 27% radioecology and radon, 30% biological and medical topics, as well as professional and public exposure, 24% dosimetry, 14% general topics and 5% non-ionising radiations. In this Symposium we have separate sections for non-ionising radiations and public exposure, although several papers on these subjects were presented already at the previous symposia. (author)

  20. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)