WorldWideScience

Sample records for radiation online modeling

  1. On-line radiation teaching materials using IT technology

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi

    2005-01-01

    We developed the on-line radiation teaching materials using the Internet, in order to provide the teaching support materials of atomic power and radiation educations in on-school study, as well as to create the complementary study system in off-school study. The themes of teaching materials were selected from requests by teachers. In the case of an elementary school, the teaching material 'an environmental problem and atomic power' was created as the aggregate of each content for study without boundary between subjects. The teaching material 'medical treatment and radiation' was created for junior high school students to raise the individual knowledge. In the case of a high school, the teaching material nucleus and radiation' was prepared to supplement the physical study of students. The on-line teaching materials were tried to 300 junior high school and high school students, 68% of students answered that the teaching material is effective to understand atomic power and radiation, though 17% answered they were not effective. Although there are problems to prepare IT learning equipments and learning follow-up system in the material, it is suggested that the on-line teaching materials will provide the novel learning system including debates for the study. This method has no limitation of time and place. (author)

  2. Design of online testing system of material radiation resistance

    International Nuclear Information System (INIS)

    Wan Junsheng; He Shengping; Gao Xinjun

    2014-01-01

    The capability of radiation resistance is important for some material used in some specifically engineering fields. It is the same principal applied in all existing test system that compares the performance parameter after radiation to evaluate material radiation resistance. A kind of new technique on test system of material radiation resistance is put forward in this paper. Experimentation shows that the online test system for material radiation resistance works well and has an extending application outlook. (authors)

  3. Radiation damage of light guide fibers in gamma radiation field - on-line monitoring of absorption centers formation

    International Nuclear Information System (INIS)

    Blaha, J.; Simane, C.; Finger, M.; Slunecka, M.; Finger, M. Jr.; Sluneckova, V.; Janata, A.; Vognar, M.; Sulc, M.

    2004-01-01

    The kinetics of radiation-induced changes of absorption coefficient was studied by online transmission spectra measurement for two different Kuraray light guide fibers. The samples were irradiated by bremsstrahlung gamma radiation, dose rates were from 2 Gy/s to 25 Gy/s. The kinetic coefficients both for absorption centers formation and for recovery processes were calculated. Good agreement of experimental data and simple one-short-lived absorption center model were received for radiation-hard light guide Kuraray (KFC). The more complicated process was observed on Kuraray (PSM) clear fiber. It was caused by the reaction of the oxygen dissolved in fiber and created radicals. The results are very useful for prediction of an optical fibers response in conditions of new nuclear and particle physics experiments. (author)

  4. Direct aperture optimization for online adaptive radiation therapy

    International Nuclear Information System (INIS)

    Mestrovic, Ante; Milette, Marie-Pierre; Nichol, Alan; Clark, Brenda G.; Otto, Karl

    2007-01-01

    This paper is the first investigation of using direct aperture optimization (DAO) for online adaptive radiation therapy (ART). A geometrical model representing the anatomy of a typical prostate case was created. To simulate interfractional deformations, four different anatomical deformations were created by systematically deforming the original anatomy by various amounts (0.25, 0.50, 0.75, and 1.00 cm). We describe a series of techniques where the original treatment plan was adapted in order to correct for the deterioration of dose distribution quality caused by the anatomical deformations. We found that the average time needed to adapt the original plan to arrive at a clinically acceptable plan is roughly half of the time needed for a complete plan regeneration, for all four anatomical deformations. Furthermore, through modification of the DAO algorithm the optimization search space was reduced and the plan adaptation was significantly accelerated. For the first anatomical deformation (0.25 cm), the plan adaptation was six times more efficient than the complete plan regeneration. For the 0.50 and 0.75 cm deformations, the optimization efficiency was increased by a factor of roughly 3 compared to the complete plan regeneration. However, for the anatomical deformation of 1.00 cm, the reduction of the optimization search space during plan adaptation did not result in any efficiency improvement over the original (nonmodified) plan adaptation. The anatomical deformation of 1.00 cm demonstrates the limit of this approach. We propose an innovative approach to online ART in which the plan adaptation and radiation delivery are merged together and performed concurrently--adaptive radiation delivery (ARD). A fundamental advantage of ARD is the fact that radiation delivery can start almost immediately after image acquisition and evaluation. Most of the original plan adaptation is done during the radiation delivery, so the time spent adapting the original plan does not

  5. Integration of on-line imaging, plan adaptation and radiation delivery: proof of concept using digital tomosynthesis

    International Nuclear Information System (INIS)

    Mestrovic, Ante; Otto, Karl; Nichol, Alan; Clark, Brenda G

    2009-01-01

    The main objective of this manuscript is to propose a new approach to on-line adaptive radiation therapy (ART) in which daily image acquisition, plan adaptation and radiation delivery are integrated together and performed concurrently. A method is described in which on-line ART is performed based on intra-fractional digital tomosynthesis (DTS) images. Intra-fractional DTS images were reconstructed as the gantry rotated between treatment positions. An edge detection algorithm was used to automatically segment the DTS images as the gantry arrived at each treatment position. At each treatment position, radiation was delivered based on the treatment plan re-optimized for the most recent DTS image contours. To investigate the feasibility of this method, a model representing a typical prostate, bladder and rectum was used. To simulate prostate deformations, three clinically relevant, non-rigid deformations (small, medium and large) were modeled by systematically deforming the original anatomy. Using our approach to on-line ART, the original treatment plan was successfully adapted to arrive at a clinically acceptable plan for all three non-rigid deformations. In conclusion, we have proposed a new approach to on-line ART in which plan adaptation is performed based on intra-fractional DTS images. The study findings indicate that this approach can be used to re-optimize the original treatment plan to account for non-rigid anatomical deformations. The advantages of this approach are 1) image acquisition and radiation delivery are integrated in a single gantry rotation around the patient, reducing the treatment time, and 2) intra-fractional DTS images can be used to detect and correct for patient motion prior to the delivery of each beam (intra-fractional patient motion).

  6. Online-coupled meteorology and chemistry models: history, current status, and outlook

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2008-06-01

    Full Text Available The climate-chemistry-aerosol-cloud-radiation feedbacks are important processes occurring in the atmosphere. Accurately simulating those feedbacks requires fully-coupled meteorology, climate, and chemistry models and presents significant challenges in terms of both scientific understanding and computational demand. This paper reviews the history and current status of the development and application of online-coupled meteorology and chemistry models, with a focus on five representative models developed in the US including GATOR-GCMOM, WRF/Chem, CAM3, MIRAGE, and Caltech unified GCM. These models represent the current status and/or the state-of-the science treatments of online-coupled models worldwide. Their major model features, typical applications, and physical/chemical treatments are compared with a focus on model treatments of aerosol and cloud microphysics and aerosol-cloud interactions. Aerosol feedbacks to planetary boundary layer meteorology and aerosol indirect effects are illustrated with case studies for some of these models. Future research needs for model development, improvement, application, as well as major challenges for online-coupled models are discussed.

  7. Evaluation of Online/Offline Image Guidance/Adaptation Approaches for Prostate Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Qin, An; Sun, Ying; Liang, Jian; Yan, Di

    2015-01-01

    Purpose: To evaluate online/offline image-guided/adaptive treatment techniques for prostate cancer radiation therapy with daily cone-beam CT (CBCT) imaging. Methods and Materials: Three treatment techniques were evaluated retrospectively using daily pre- and posttreatment CBCT images on 22 prostate cancer patients. Prostate, seminal vesicles (SV), rectal wall, and bladder were delineated on all CBCT images. For each patient, a pretreatment intensity modulated radiation therapy plan with clinical target volume (CTV) = prostate + SV and planning target volume (PTV) = CTV + 3 mm was created. The 3 treatment techniques were as follows: (1) Daily Correction: The pretreatment intensity modulated radiation therapy plan was delivered after online CBCT imaging, and position correction; (2) Online Planning: Daily online inverse plans with 3-mm CTV-to-PTV margin were created using online CBCT images, and delivered; and (3) Hybrid Adaption: Daily Correction plus an offline adaptive inverse planning performed after the first week of treatment. The adaptive plan was delivered for all remaining 15 fractions. Treatment dose for each technique was constructed using the daily posttreatment CBCT images via deformable image registration. Evaluation was performed using treatment dose distribution in target and critical organs. Results: Treatment equivalent uniform dose (EUD) for the CTV was within [85.6%, 100.8%] of the pretreatment planned target EUD for Daily Correction; [98.7%, 103.0%] for Online Planning; and [99.2%, 103.4%] for Hybrid Adaptation. Eighteen percent of the 22 patients in Daily Correction had a target dose deficiency >5%. For rectal wall, the mean ± SD of the normalized EUD was 102.6% ± 2.7% for Daily Correction, 99.9% ± 2.5% for Online Planning, and 100.6% ± 2.1% for Hybrid Adaptation. The mean ± SD of the normalized bladder EUD was 108.7% ± 8.2% for Daily Correction, 92.7% ± 8.6% for Online Planning, and 89.4% ± 10.8% for Hybrid

  8. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  9. Radiation source states on-line supervision system design and implementation based on RFID technology

    International Nuclear Information System (INIS)

    Yang Binhua; Ling Qiu; Yin Guoli; Yang Kun; Wan Xueping; Wang Kan

    2011-01-01

    It puts forward radiation source states on-line monitoring resolution based on RFID technology. Firstly, the system uses RFID in real-time transmission of the radiation dose rate, and monitors the radiation source states and dose rate of the surrounding environment on-line. Then it adopts regional wireless networking mode to construct enterprise level monitoring network, which resolves long-distance wiring problems. And then it uses GPRS wireless to transport the real-time data to the monitoring center and the government supervision department, By adopting randomly dynamic cording in display update every day, it strengthens the supervision of the radiation source. At last this system has been successful applied to a thickness gauge project, which verifies the feasibility and practicality is good. (authors)

  10. Online radiation dose measurement system for ATLAS experiment

    International Nuclear Information System (INIS)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Bronner, J.; Hartet, J.; Franz, S.

    2009-01-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO 2 will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10 9 n/cm 2 for NIEL (non-ionizing energy loss) measurements, 10 12 n/cm 2 for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  11. Online radiation dose measurement system for ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Mikuz, M. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Bronner, J.; Hartet, J. [Physikalisches Institut, Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg (Germany); Franz, S. [CERN, Geneva (Switzerland)

    2009-07-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO{sub 2} will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10{sup 9} n/cm{sup 2} for NIEL (non-ionizing energy loss) measurements, 10{sup 12} n/cm{sup 2} for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  12. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P S; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will cause damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 and fluences of 1-MeV(Si) equivalent neutrons and thermal neutrons at several locations in ATLAS detector. In this paper measurements collected during two years of ATLAS data taking are presented and compared to predictions from radiation background simulations.

  13. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations

    International Nuclear Information System (INIS)

    Prabhu, Arpan V.; Hansberry, David R.; Agarwal, Nitin; Clump, David A.; Heron, Dwight E.

    2016-01-01

    Purpose: Physicians encourage patients to be informed about their health care options, but much of the online health care–related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Methods: Radiation oncology–related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, (RadiologyInfo.org), and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. Results: When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Conclusion: Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment options, making each

  14. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Arpan V. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Hansberry, David R. [Department of Radiology, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania (United States); Agarwal, Nitin [Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Clump, David A. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Heron, Dwight E., E-mail: herond2@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)

    2016-11-01

    Purpose: Physicians encourage patients to be informed about their health care options, but much of the online health care–related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Methods: Radiation oncology–related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, (RadiologyInfo.org), and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. Results: When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Conclusion: Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment

  15. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations.

    Science.gov (United States)

    Prabhu, Arpan V; Hansberry, David R; Agarwal, Nitin; Clump, David A; Heron, Dwight E

    2016-11-01

    Physicians encourage patients to be informed about their health care options, but much of the online health care-related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Radiation oncology-related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, RadiologyInfo.org, and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment options, making each physician-patient interaction more productive

  16. Comparison of Onsite Versus Online Chart Reviews as Part of the American College of Radiation Oncology Accreditation Program.

    Science.gov (United States)

    Hepel, Jaroslaw T; Heron, Dwight E; Mundt, Arno J; Yashar, Catheryn; Feigenberg, Steven; Koltis, Gordon; Regine, William F; Prasad, Dheerendra; Patel, Shilpen; Sharma, Navesh; Hebert, Mary; Wallis, Norman; Kuettel, Michael

    2017-05-01

    Accreditation based on peer review of professional standards of care is essential in ensuring quality and safety in administration of radiation therapy. Traditionally, medical chart reviews have been performed by a physical onsite visit. The American College of Radiation Oncology Accreditation Program has remodeled its process whereby electronic charts are reviewed remotely. Twenty-eight radiation oncology practices undergoing accreditation had three charts per practice undergo both onsite and online review. Onsite review was performed by a single reviewer for each practice. Online review consisted of one or more disease site-specific reviewers for each practice. Onsite and online reviews were blinded and scored on a 100-point scale on the basis of 20 categories. A score of less than 75 was failing, and a score of 75 to 79 was marginal. Any failed charts underwent rereview by a disease site team leader. Eighty-four charts underwent both onsite and online review. The mean scores were 86.0 and 86.9 points for charts reviewed onsite and online, respectively. Comparison of onsite and online reviews revealed no statistical difference in chart scores ( P = .43). Of charts reviewed, 21% had a marginal (n = 8) or failing (n = 10) score. There was no difference in failing charts ( P = .48) or combined marginal and failing charts ( P = .13) comparing onsite and online reviews. The American College of Radiation Oncology accreditation process of online chart review results in comparable review scores and rate of failing scores compared with traditional on-site review. However, the modern online process holds less potential for bias by using multiple reviewers per practice and allows for greater oversight via disease site team leader rereview.

  17. Design and application of radiation apparatus for sup 6 sup 0 Co cargo train on-line inspection system

    CERN Document Server

    Wu Zhi Fang; Zhang Yuai

    2002-01-01

    Based on the special requirement for radiation apparatus of sup 6 sup 0 Co cargo train on-line inspection system, a radiation apparatus including two-level shutter, working container, storing container and electromagnetism are designed. The makeup, working mode and functional realization of the radiation apparatus are introduced. The system is used in Manzhouli customs cargo train on-line inspection system. The practice shows that the radiation apparatus is reliable to work steadily and the operating speed of the main shutter can reach 0.1 s open and 0.15 s close

  18. A Geospatial Online Instruction Model

    Science.gov (United States)

    Rodgers, John C., III; Owen-Nagel, Athena; Ambinakudige, Shrinidhi

    2012-01-01

    The objective of this study is to present a pedagogical model for teaching geospatial courses through an online format and to critique the model's effectiveness. Offering geospatial courses through an online format provides avenues to a wider student population, many of whom are not able to take traditional on-campus courses. Yet internet-based…

  19. Online Instructors as Thinking Advisors: A Model for Online Learner Adaptation

    Science.gov (United States)

    Benedetti, Christopher

    2015-01-01

    This article examines the characteristics and challenges of online instruction and presents a model for improving learner adaptation in an online classroom. Instruction in an online classroom presents many challenges, including learner individualization. Individual differences in learning styles and preferences are often not considered in the…

  20. Radiation exposure control by estimation of multiplication factors for online remote radiation monitoring systems at Vitrification Plant

    International Nuclear Information System (INIS)

    Deokar, Umesh V.; Kukarni, V.V.; Khot, A.R.; Mathew, P.; Kamlesh; Purohit, R.G.; Sarkar, P.K.

    2011-01-01

    Vitrification Plant is commissioned for vitrification of high-level liquid waste generated in Nuclear Fuel Cycle operations by using Joule Heated Ceramic Melter first time in India. Exposure control is a major concern in operating plant. Therefore, in addition to installed monitors, we have developed online remote radiation monitoring system to minimize number of entries in amber areas and to reduce the exposure to the surveyor and operator. This also helped in volume reduction of secondary waste. The reliability and accuracy of the online monitoring system is confirmed with actual measurements and by theoretical shielding calculations. The multiplication factors were estimated for remote online monitoring of Melter off Gas (MOG) filter, Hood filter, three exhaust filter banks, and overpack monitoring. This paper summarizes how the online remote monitoring system had helped in saving of 128.52 Person-mSv collective dose (14.28% of budgeted dose) and also there was 2.6 m 3 reduction in generation of Cat-I waste. (author)

  1. On-line statistical processing of radiation detector pulse trains with time-varying count rates

    International Nuclear Information System (INIS)

    Apostolopoulos, G.

    2008-01-01

    Statistical analysis is of primary importance for the correct interpretation of nuclear measurements, due to the inherent random nature of radioactive decay processes. This paper discusses the application of statistical signal processing techniques to the random pulse trains generated by radiation detectors. The aims of the presented algorithms are: (i) continuous, on-line estimation of the underlying time-varying count rate θ(t) and its first-order derivative dθ/dt; (ii) detection of abrupt changes in both of these quantities and estimation of their new value after the change point. Maximum-likelihood techniques, based on the Poisson probability distribution, are employed for the on-line estimation of θ and dθ/dt. Detection of abrupt changes is achieved on the basis of the generalized likelihood ratio statistical test. The properties of the proposed algorithms are evaluated by extensive simulations and possible applications for on-line radiation monitoring are discussed

  2. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will causes damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 , displacement damage in silicon in terms of 1-MeV(Si) equivalent neutron fluence and fluence of thermal neutrons at several locations in ATLAS detector. In this paper design of the system, results of measurements and comparison of measured integrated doses and fluences with predictions from FLUKA simulation will be shown.

  3. The Development of On-Line Statistics Program for Radiation Oncology

    International Nuclear Information System (INIS)

    Kim, Yoon Jong; Lee, Dong Hoon; Ji, Young Hoon; Lee, Dong Han; Jo, Chul Ku; Kim, Mi Sook; Ru, Sung Rul; Hong, Seung Hong

    2001-01-01

    Purpose : By developing on-line statistics program to record the information of radiation oncology to share the information with internet. It is possible to supply basic reference data for administrative plans to improve radiation oncology. Materials and methods : The information of radiation oncology statistics had been collected by paper forms about 52 hospitals in the past. Now, we can input the data by internet web browsers. The statistics program used windows NT 4.0 operation system, Internet Information Server 4.0 (IIS4.0) as a web server and the Microsoft Access MDB. We used Structured Query Language (SQL), Visual Basic, VBScript and JAVAScript to display the statistics according to years and hospitals. Results : This program shows present conditions about man power, research, therapy machines, technic, brachytherapy, clinic statistics, radiation safety management, institution, quality assurance and radioisotopes in radiation oncology department. The database consists of 38 inputs and 6 outputs windows. Statistical output windows can be increased continuously according to user need. Conclusion : We have developed statistics program to process all of the data in department of radiation oncology for reference information. Users easily could input the data by internet web browsers and share the information

  4. Radiation by the numbers: developing an on-line Canadian radiation dose calculator as a public engagement and education tool

    Energy Technology Data Exchange (ETDEWEB)

    Dalzell, M.T.J. [Sylvia Fedoruk Canadian Centre for Nuclear Innovation, Saskatoon, Saskatchewan (Canada)

    2016-06-15

    Concerns arising from misunderstandings about radiation are often cited as a main reason for public antipathy towards nuclear development and impede decision-making by governments and individuals. A lack of information about everyday sources of radiation exposure that is accessible, relatable and factual contributes to the problem. As part of its efforts to be a fact-based source of information on nuclear issues, the Sylvia Fedoruk Canadian Centre for Nuclear Innovation has developed an on-line Canadian Radiation Dose Calculator as a tool to provide context about common sources of radiation. This paper discusses the development of the calculator and describes how the Fedoruk Centre is using it and other tools to support public engagement on nuclear topics. (author)

  5. A Geospatial Online Instruction Model

    OpenAIRE

    Athena OWEN-NAGEL; John C. RODGERS III; Shrinidhi AMBINAKUDIGE

    2012-01-01

    The objective of this study is to present a pedagogical model for teaching geospatial courses through an online format and to critique the model’s effectiveness. Offering geospatial courses through an online format provides avenues to a wider student population, many of whom are not able to take traditional on-campus courses. Yet internet-based teaching effectiveness has not yet been clearly demonstrated for geospatial courses. The pedagogical model implemented in this study heavily utilizes ...

  6. Online virtual isocenter based radiation field targeting for high performance small animal microirradiation

    Science.gov (United States)

    Stewart, James M. P.; Ansell, Steve; Lindsay, Patricia E.; Jaffray, David A.

    2015-12-01

    Advances in precision microirradiators for small animal radiation oncology studies have provided the framework for novel translational radiobiological studies. Such systems target radiation fields at the scale required for small animal investigations, typically through a combination of on-board computed tomography image guidance and fixed, interchangeable collimators. Robust targeting accuracy of these radiation fields remains challenging, particularly at the millimetre scale field sizes achievable by the majority of microirradiators. Consistent and reproducible targeting accuracy is further hindered as collimators are removed and inserted during a typical experimental workflow. This investigation quantified this targeting uncertainty and developed an online method based on a virtual treatment isocenter to actively ensure high performance targeting accuracy for all radiation field sizes. The results indicated that the two-dimensional field placement uncertainty was as high as 1.16 mm at isocenter, with simulations suggesting this error could be reduced to 0.20 mm using the online correction method. End-to-end targeting analysis of a ball bearing target on radiochromic film sections showed an improved targeting accuracy with the three-dimensional vector targeting error across six different collimators reduced from 0.56+/- 0.05 mm (mean  ±  SD) to 0.05+/- 0.05 mm for an isotropic imaging voxel size of 0.1 mm.

  7. Development of pilot model of virtual nuclear power plant and its application to radiation management

    International Nuclear Information System (INIS)

    Kang, K. D.; Sin, S. W.

    2002-01-01

    Using Virtual Reality (VR) technique, a real model for radiation controlled area in nuclear power plant was developed and a feasibility study to develop a computational program to estimate radiation dose was performed. For this purpose a pilot model with an dynamic function and bi-directional communication was developed. This model was enhanced from the existing 3-D single-directional communication. In this pilot model, a plant visitor needs a series of security checking process initially. If he(she) enters the controlled area and approaches radiation hazard area, the alarms with warning lamp will be initiated automatically. Throughout the test to connect this model from both domestic and international sites in various time zones it has proven that it showed a sufficient performance. Therefore this model can be applied to broad fields as radiation protection procedures photographic data, on-line dose program

  8. Development of new on-line statistical program for the Korean Society for Radiation Oncology.

    Science.gov (United States)

    Song, Si Yeol; Ahn, Seung Do; Chung, Weon Kuu; Shin, Kyung Hwan; Choi, Eun Kyung; Cho, Kwan Ho

    2015-06-01

    To develop new on-line statistical program for the Korean Society for Radiation Oncology (KOSRO) to collect and extract medical data in radiation oncology more efficiently. The statistical program is a web-based program. The directory was placed in a sub-folder of the homepage of KOSRO and its web address is http://www.kosro.or.kr/asda. The operating systems server is Linux and the webserver is the Apache HTTP server. For database (DB) server, MySQL is adopted and dedicated scripting language is the PHP. Each ID and password are controlled independently and all screen pages for data input or analysis are made to be friendly to users. Scroll-down menu is actively used for the convenience of user and the consistence of data analysis. Year of data is one of top categories and main topics include human resource, equipment, clinical statistics, specialized treatment and research achievement. Each topic or category has several subcategorized topics. Real-time on-line report of analysis is produced immediately after entering each data and the administrator is able to monitor status of data input of each hospital. Backup of data as spread sheets can be accessed by the administrator and be used for academic works by any members of the KOSRO. The new on-line statistical program was developed to collect data from nationwide departments of radiation oncology. Intuitive screen and consistent input structure are expected to promote entering data of member hospitals and annual statistics should be a cornerstone of advance in radiation oncology.

  9. Joining the RHIC Online and Offline Models

    CERN Document Server

    Malitsky, Nikolay; Fedotov, Alexei V; Kewisch, Jorg; Luccio, Alfredo U; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Satogata, Todd; Talman, Richard M; Tepikian, Steven; Wei, Jie

    2005-01-01

    The paper presents an interface encompassing the RHIC online ramp model and the UAL offline simulation framework. The resulting consolidated facility aims to minimize the gap between design and operational data, and to facilitate analysis of RHIC performance and future upgrades in an operational context. The interface is based on the Accelerator Description Exchange Format (ADXF), and represents a snapshot of the RHIC online model which is in turn driven by machine setpoints. This approach is also considered as an intermediate step towards integrating the AGS and RHIC modeling environments to produce a unified online and offline AGS model for operations.

  10. Radiation exposure control by estimation of multiplication factors for online remote radiation monitoring systems at vitrification plant

    International Nuclear Information System (INIS)

    Deokar, U.V.; Kulkarni, V.V.; Khot, A.R.; Mathew, P.; Kamlesh; Purohit, R.G.; Sarkar, P.K.

    2012-01-01

    Vitrification Plant is commissioned for vitrification of high level liquid waste (HLW) generated in nuclear fuel cycle operations by using Joule Heated Ceramic Melter first time in India. Exposure control is a major concern in operating plant. Therefore in addition to installed monitors, we have developed online remote radiation monitoring system to minimize number of entries in amber areas and to reduce the exposure to the surveyor and operator. This also helped in volume reduction of secondary waste. The reliability and accuracy of the online monitoring system is confirmed with actual measurements and by theoretical shielding calculations. The multiplication factors were estimated for remote on line monitoring of Melter Off Gas (MOG) filter, Hood filter, three exhaust filter banks, and over-pack monitoring. This paper summarizes - how the online remote monitoring system helped in saving of 128.52 person-mSv collective dose (14.28% of budgeted dose). The system also helped in the reduction of 2.6 m 3 of Cat-I waste. Our online remote monitoring system has helped the plant management to plan in advance for replacement of these filters, which resulted in considerable saving in collective dose and secondary waste

  11. Online fault diagnostics and testing of area gamma radiation monitor using wireless network

    Science.gov (United States)

    Reddy, Padi Srinivas; Kumar, R. Amudhu Ramesh; Mathews, M. Geo; Amarendra, G.

    2017-07-01

    Periodical surveillance, checking, testing, and calibration of the installed Area Gamma Radiation Monitors (AGRM) in the nuclear plants are mandatory. The functionality of AGRM counting electronics and Geiger-Muller (GM) tube is to be monitored periodically. The present paper describes the development of online electronic calibration and testing of the GM tube from the control room. Two electronic circuits were developed, one for AGRM electronic test and another for AGRM detector test. A dedicated radiation data acquisition system was developed using an open platform communication server and data acquisition software. The Modbus RTU protocol on ZigBee based wireless communication was used for online monitoring and testing. The AGRM electronic test helps to carry out the three-point electronic calibration and verification of accuracy. The AGRM detector test is used to verify the GM threshold voltage and the plateau slope of the GM tube in-situ. The real-time trend graphs generated during these tests clearly identified the state of health of AGRM electronics and GM tube on go/no-go basis. This method reduces the radiation exposures received by the maintenance crew and facilitates quick testing with minimum downtime of the instrument.

  12. Modelling Users` Trust in Online Social Networks

    Directory of Open Access Journals (Sweden)

    Iacob Cătoiu

    2014-02-01

    Full Text Available Previous studies (McKnight, Lankton and Tripp, 2011; Liao, Lui and Chen, 2011 have shown the crucial role of trust when choosing to disclose sensitive information online. This is the case of online social networks users, who must disclose a certain amount of personal data in order to gain access to these online services. Taking into account privacy calculus model and the risk/benefit ratio, we propose a model of users’ trust in online social networks with four variables. We have adapted metrics for the purpose of our study and we have assessed their reliability and validity. We use a Partial Least Squares (PLS based structural equation modelling analysis, which validated all our initial assumptions, indicating that our three predictors (privacy concerns, perceived benefits and perceived risks explain 48% of the variation of users’ trust in online social networks, the resulting variable of our study. We also discuss the implications and further research opportunities of our study.

  13. Consumer's Online Shopping Influence Factors and Decision-Making Model

    Science.gov (United States)

    Yan, Xiangbin; Dai, Shiliang

    Previous research on online consumer behavior has mostly been confined to the perceived risk which is used to explain those barriers for purchasing online. However, perceived benefit is another important factor which influences consumers’ decision when shopping online. As a result, an integrated consumer online shopping decision-making model is developed which contains three elements—Consumer, Product, and Web Site. This model proposed relative factors which influence the consumers’ intention during the online shopping progress, and divided them into two different dimensions—mentally level and material level. We tested those factors with surveys, from both online volunteers and offline paper surveys with more than 200 samples. With the help of SEM, the experimental results show that the proposed model and method can be used to analyze consumer’s online shopping decision-making process effectively.

  14. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model...... parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...

  15. On-Line Radiation Test Facility for Industrial Equipment needed for the Large Hadron Collider at CERN

    CERN Document Server

    Rausch, R

    1999-01-01

    The future Large Hadron Collider to be built at CERN will use superconducting magnets cooled down to 1.2 K. To preserve the superconductivity, the energy deposition dose levels in equipment located outside the cryostat, in the LHC tunnel, are calculated to be of the order of 1 to 10 Gy per year. At such dose levels, no major radiation-damage problems are to be expected, and the possibility of installing Commercial Of The Shelf (COTS) electronic equipment in the LHC tunnel along the accelerator is considered. To this purpose, industrial electronic equipment and circuits have to be qualified and tested against radiation to insure their long term stability and reliability. An on-line radiation test facility has been setup at the CERN Super Proton Synchrotron (SPS) and a program of on-line tests for electronic equipment is ongoing. Equipment tested includes Industrial Programmable Logic Controllers (PLCs) from several manufacturers, standard VME modules, Fieldbuses like Profibus, WorldFIP and CAN, various electro...

  16. Feasibility study into the use of online instrumentation courses for medical radiation scientists

    International Nuclear Information System (INIS)

    MacDonald-Hill, J.L.; Warren-Forward, H.M.

    2015-01-01

    A Medical Radiation Science (diagnostic radiography) instrumentation course historically taught face-to-face was taught fully online. The purpose of this study was to assess differences in academic achievement as well as gather feedback on student experiences. An anonymous online survey relating to student engagement and directions for future course development was distributed to all students who completed the course. The results clearly supports online delivery as students appreciated the ability to pause and rewind (94%) course content and work at their own pace (88%) whilst maintaining almost identical course results (p = 0.96). Future improvements would see the inclusion of interactive on-line modules and the re-introduction of face–face tutorials, appealing to students' desire for more support and human contact (27%) therefore reflecting the flipped classroom approach. - Highlights: • 85% of students accessing lecture capture reported them to be very or mostly useful. • 94% students reported the ability to “pause and rewind” as the most useful aspect. • 43% of students indicated that they lacked motivation to watch lecture captures. • The tutorials were where I learned the most as it is more interactive than a lecture. • Online format of the course was the best thing

  17. Theories and Frameworks for Online Education: Seeking an Integrated Model

    Science.gov (United States)

    Picciano, Anthony G.

    2017-01-01

    This article examines theoretical frameworks and models that focus on the pedagogical aspects of online education. After a review of learning theory as applied to online education, a proposal for an integrated "Multimodal Model for Online Education" is provided based on pedagogical purpose. The model attempts to integrate the work of…

  18. An adversarial queueing model for online server routing

    NARCIS (Netherlands)

    Bonifaci, V.

    2007-01-01

    In an online server routing problem, a vehicle or server moves in a network in order to process incoming requests at the nodes. Online server routing problems have been thoroughly studied using competitive analysis. We propose a new model for online server routing, based on adversarial queueing

  19. The Unfolding of Value Sources During Online Business Model Transformation

    Directory of Open Access Journals (Sweden)

    Nadja Hoßbach

    2016-12-01

    Full Text Available Purpose: In the magazine publishing industry, viable online business models are still rare to absent. To prepare for the ‘digital future’ and safeguard their long-term survival, many publishers are currently in the process of transforming their online business model. Against this backdrop, this study aims to develop a deeper understanding of (1 how the different building blocks of an online business model are transformed over time and (2 how sources of value creation unfold during this transformation process. Methodology: To answer our research question, we conducted a longitudinal case study with a leading German business magazine publisher (called BIZ. Data was triangulated from multiple sources including interviews, internal documents, and direct observations. Findings: Based on our case study, we nd that BIZ used the transformation process to differentiate its online business model from its traditional print business model along several dimensions, and that BIZ’s online business model changed from an efficiency- to a complementarity- to a novelty-based model during this process. Research implications: Our findings suggest that different business model transformation phases relate to different value sources, questioning the appropriateness of value source-based approaches for classifying business models. Practical implications: The results of our case study highlight the need for online-offline business model differentiation and point to the important distinction between service and product differentiation. Originality: Our study contributes to the business model literature by applying a dynamic and holistic perspective on the link between online business model changes and unfolding value sources.

  20. Direct Radiative Impacts of Central American Biomass Burning Smoke Aerosols: Analysis from a Coupled Aerosol-Radiation-Meteorology Model RAMS-AROMA

    Science.gov (United States)

    Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J. S.; Prins, E. M.

    2005-12-01

    Considerable efforts including various field experiments have been carried out in the last decade for studying the regional climatic impact of smoke aerosols produced by biomass burning activities in Africa and South America. In contrast, only few investigations have been conducted for Central American Biomass Burning (CABB) region. Using a coupled aerosol-radiation-meteorology model called RAMS-AROMA together with various ground-based observations, we present a comprehensive analysis of the smoke direct radiative impacts on the surface energy budget, boundary layer evolution, and e precipitation process during the CABB events in Spring 2003. Quantitative estimates are also made regarding the transboundary carbon mass to the U.S. in the form of smoke particles. Buult upon the Regional Atmospheric Modeling System (RAMS) mesoscale model, the RAMS AROMA has several features including Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithms. The model simulates smoke transport by using hourly smoke emission inventory from the Fire Locating and Modeling of Burning Emissions (FLAMBE) geostationary satellite database. It explicitly considers the smoke effects on the radiative transfer at each model time step and model grid, thereby coupling the dynamical processes and aerosol transport. Comparison with ground-based observation show that the simulation realistically captured the smoke transport timeline and distribution from daily to hourly scales. The effects of smoke radiative extinction on the decrease of 2m air temperature (2mT), diurnal temperature range (DTR), and boundary layer height over the land surface are also quantified. Warming due to smoke absorption of solar radiation can be found in the lower troposphere over the ocean, but not near the underlying land surface. The increase of boundary layer stability produces a positive feedback where more smoke particles are trapped in the lower boundary layer. These changes in temperature, surface

  1. An advanced dissymmetric rolling model for online regulation

    Science.gov (United States)

    Cao, Trong-Son

    2017-10-01

    Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.

  2. The influence of online store beliefs on consumer online impulse buying: A model and empirical application

    NARCIS (Netherlands)

    Verhagen, T.; van Dolen, W.

    2011-01-01

    Our study provides insight into the relationships between online store beliefs and consumer online impulse buying behavior. Drawing upon cognitive emotion theory, we developed a model and showed how beliefs about functional convenience (online store merchandise attractiveness and ease of use) and

  3. Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications

    International Nuclear Information System (INIS)

    Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Kashani, Rojano; Parikh, Parag; Yang, Deshan; Zhao, Tianyu; Green, Olga; Wooten, Omar; Li, H. Harold; Hu, Yanle; Rodriguez, Vivian; Olsen, Lindsey; Robinson, Clifford; Michalski, Jeff; Mutic, Sasa; Olsen, Jeffrey

    2016-01-01

    Purpose: To demonstrate the feasibility of online adaptive magnetic resonance (MR) image guided radiation therapy (MR-IGRT) through reporting of our initial clinical experience and workflow considerations. Methods and Materials: The first clinically deployed online adaptive MR-IGRT system consisted of a split 0.35T MR scanner straddling a ring gantry with 3 multileaf collimator-equipped "6"0Co heads. The unit is supported by a Monte Carlo–based treatment planning system that allows real-time adaptive planning with the patient on the table. All patients undergo computed tomography and MR imaging (MRI) simulation for initial treatment planning. A volumetric MRI scan is acquired for each patient at the daily treatment setup. Deformable registration is performed using the planning computed tomography data set, which allows for the transfer of the initial contours and the electron density map to the daily MRI scan. The deformed electron density map is then used to recalculate the original plan on the daily MRI scan for physician evaluation. Recontouring and plan reoptimization are performed when required, and patient-specific quality assurance (QA) is performed using an independent in-house software system. Results: The first online adaptive MR-IGRT treatments consisted of 5 patients with abdominopelvic malignancies. The clinical setting included neoadjuvant colorectal (n=3), unresectable gastric (n=1), and unresectable pheochromocytoma (n=1). Recontouring and reoptimization were deemed necessary for 3 of 5 patients, and the initial plan was deemed sufficient for 2 of the 5 patients. The reasons for plan adaptation included tumor progression or regression and a change in small bowel anatomy. In a subsequently expanded cohort of 170 fractions (20 patients), 52 fractions (30.6%) were reoptimized online, and 92 fractions (54.1%) were treated with an online-adapted or previously adapted plan. The median time for recontouring, reoptimization, and QA was 26

  4. Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Kashani, Rojano; Parikh, Parag; Yang, Deshan; Zhao, Tianyu; Green, Olga; Wooten, Omar; Li, H. Harold; Hu, Yanle; Rodriguez, Vivian; Olsen, Lindsey; Robinson, Clifford; Michalski, Jeff; Mutic, Sasa; Olsen, Jeffrey, E-mail: jolsen@radonc.wustl.edu

    2016-02-01

    Purpose: To demonstrate the feasibility of online adaptive magnetic resonance (MR) image guided radiation therapy (MR-IGRT) through reporting of our initial clinical experience and workflow considerations. Methods and Materials: The first clinically deployed online adaptive MR-IGRT system consisted of a split 0.35T MR scanner straddling a ring gantry with 3 multileaf collimator-equipped {sup 60}Co heads. The unit is supported by a Monte Carlo–based treatment planning system that allows real-time adaptive planning with the patient on the table. All patients undergo computed tomography and MR imaging (MRI) simulation for initial treatment planning. A volumetric MRI scan is acquired for each patient at the daily treatment setup. Deformable registration is performed using the planning computed tomography data set, which allows for the transfer of the initial contours and the electron density map to the daily MRI scan. The deformed electron density map is then used to recalculate the original plan on the daily MRI scan for physician evaluation. Recontouring and plan reoptimization are performed when required, and patient-specific quality assurance (QA) is performed using an independent in-house software system. Results: The first online adaptive MR-IGRT treatments consisted of 5 patients with abdominopelvic malignancies. The clinical setting included neoadjuvant colorectal (n=3), unresectable gastric (n=1), and unresectable pheochromocytoma (n=1). Recontouring and reoptimization were deemed necessary for 3 of 5 patients, and the initial plan was deemed sufficient for 2 of the 5 patients. The reasons for plan adaptation included tumor progression or regression and a change in small bowel anatomy. In a subsequently expanded cohort of 170 fractions (20 patients), 52 fractions (30.6%) were reoptimized online, and 92 fractions (54.1%) were treated with an online-adapted or previously adapted plan. The median time for recontouring, reoptimization, and QA was 26

  5. University Business Models and Online Practices: A Third Way

    Science.gov (United States)

    Rubin, Beth

    2013-01-01

    Higher Education is in a state of change, and the existing business models do not meet the needs of stakeholders. This article contrasts the current dominant business models of universities, comparing the traditional non-profit against the for-profit online model, examining the structural features and online teaching practices that underlie each.…

  6. A bipartite fitness model for online music streaming services

    Science.gov (United States)

    Pongnumkul, Suchit; Motohashi, Kazuyuki

    2018-01-01

    This paper proposes an evolution model and an analysis of the behavior of music consumers on online music streaming services. While previous studies have observed power-law degree distributions of usage in online music streaming services, the underlying behavior of users has not been well understood. Users and songs can be described using a bipartite network where an edge exists between a user node and a song node when the user has listened that song. The growth mechanism of bipartite networks has been used to understand the evolution of online bipartite networks Zhang et al. (2013). Existing bipartite models are based on a preferential attachment mechanism László Barabási and Albert (1999) in which the probability that a user listens to a song is proportional to its current popularity. This mechanism does not allow for two types of real world phenomena. First, a newly released song with high quality sometimes quickly gains popularity. Second, the popularity of songs normally decreases as time goes by. Therefore, this paper proposes a new model that is more suitable for online music services by adding fitness and aging functions to the song nodes of the bipartite network proposed by Zhang et al. (2013). Theoretical analyses are performed for the degree distribution of songs. Empirical data from an online streaming service, Last.fm, are used to confirm the degree distribution of the object nodes. Simulation results show improvements from a previous model. Finally, to illustrate the application of the proposed model, a simplified royalty cost model for online music services is used to demonstrate how the changes in the proposed parameters can affect the costs for online music streaming providers. Managerial implications are also discussed.

  7. HELIOS-CR - A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling

    International Nuclear Information System (INIS)

    MacFarlane, J.J.; Golovkin, I.E.; Woodruff, P.R.

    2006-01-01

    HELIOS-CR is a user-oriented 1D radiation-magnetohydrodynamics code to simulate the dynamic evolution of laser-produced plasmas and z-pinch plasmas. It includes an in-line collisional-radiative (CR) model for computing non-LTE atomic level populations at each time step of the hydrodynamics simulation. HELIOS-CR has been designed for ease of use, and is well-suited for experimentalists, as well as graduate and undergraduate student researchers. The energy equations employed include models for laser energy deposition, radiation from external sources, and high-current discharges. Radiative transport can be calculated using either a multi-frequency flux-limited diffusion model, or a multi-frequency, multi-angle short characteristics model. HELIOS-CR supports the use of SESAME equation of state (EOS) tables, PROPACEOS EOS/multi-group opacity data tables, and non-LTE plasma properties computed using the inline CR modeling. Time-, space-, and frequency-dependent results from HELIOS-CR calculations are readily displayed with the HydroPLOT graphics tool. In addition, the results of HELIOS simulations can be post-processed using the SPECT3D Imaging and Spectral Analysis Suite to generate images and spectra that can be directly compared with experimental measurements. The HELIOS-CR package runs on Windows, Linux, and Mac OSX platforms, and includes online documentation. We will discuss the major features of HELIOS-CR, and present example results from simulations

  8. CONCEPTUAL MODEL OF CONSUMERS TRUST TO ONLINE SHOPS

    Directory of Open Access Journals (Sweden)

    T. Dubovyk

    2014-06-01

    Full Text Available In the article the conceptual model of the major factors that influence consumers trust in online shop: reliability of online store, reliable information system for making purchases online, factors of ethic interactiveness (security, third-party certification, internet-marketing communications of online-shop and other factors – that is divided enterprises of trade and consumers (demographic variables, psychological perception of internet-marketing communications, experience of purchase of commodities are in the Internet. The degree of individual customer trust propensity which reflects the personality traits, culture and previous experience. An implement signs of consumer confidence due to site elements online shop – graphic design, structured design, design of content, design harmonized with perception of target audience.

  9. Initiating Events Modeling for On-Line Risk Monitoring Application

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.

    1998-01-01

    In order to make on-line risk monitoring application of Probabilistic Risk Assessment more complete and realistic, a special attention need to be dedicated to initiating events modeling. Two different issues are of special importance: one is how to model initiating events frequency according to current plant configuration (equipment alignment and out of service status) and operating condition (weather and various activities), and the second is how to preserve dependencies between initiating events model and rest of PRA model. First, the paper will discuss how initiating events can be treated in on-line risk monitoring application. Second, practical example of initiating events modeling in EPRI's Equipment Out of Service on-line monitoring tool will be presented. Gains from application and possible improvements will be discussed in conclusion. (author)

  10. Online external beam radiation treatment simulator

    International Nuclear Information System (INIS)

    Hamza-Lup, Felix G.; Sopin, Ivan; Zeidan, Omar

    2008-01-01

    Radiation therapy is an effective and widely accepted form of treatment for many types of cancer that requires extensive computerized planning. Unfortunately, current treatment planning systems have limited or no visual aid that combines patient volumetric models extracted from patient-specific CT data with the treatment device geometry in a 3D interactive simulation. We illustrate the potential of 3D simulation in radiation therapy with a web-based interactive system that combines novel standards and technologies. We discuss related research efforts in this area and present in detail several components of the simulator. An objective assessment of the accuracy of the simulator and a usability study prove the potential of such a system for simulation and training. (orig.)

  11. Tag-Driven Online Novel Recommendation with Collaborative Item Modeling

    Directory of Open Access Journals (Sweden)

    Fenghuan Li

    2018-04-01

    Full Text Available Online novel recommendation recommends attractive novels according to the preferences and characteristics of users or novels and is increasingly touted as an indispensable service of many online stores and websites. The interests of the majority of users remain stable over a certain period. However, there are broad categories in the initial recommendation list achieved by collaborative filtering (CF. That is to say, it is very possible that there are many inappropriately recommended novels. Meanwhile, most algorithms assume that users can provide an explicit preference. However, this assumption does not always hold, especially in online novel reading. To solve these issues, a tag-driven algorithm with collaborative item modeling (TDCIM is proposed for online novel recommendation. Online novel reading is different from traditional book marketing and lacks preference rating. In addition, collaborative filtering frequently suffers from the Matthew effect, leading to ignored personalized recommendations and serious long tail problems. Therefore, item-based CF is improved by latent preference rating with a punishment mechanism based on novel popularity. Consequently, a tag-driven algorithm is constructed by means of collaborative item modeling and tag extension. Experimental results show that online novel recommendation is improved greatly by a tag-driven algorithm with collaborative item modeling.

  12. Hidden Markov Model Application to Transfer The Trader Online Forex Brokers

    Directory of Open Access Journals (Sweden)

    Farida Suharleni

    2012-05-01

    Full Text Available Hidden Markov Model is elaboration of Markov chain, which is applicable to cases that can’t directly observe. In this research, Hidden Markov Model is used to know trader’s transition to broker forex online. In Hidden Markov Model, observed state is observable part and hidden state is hidden part. Hidden Markov Model allows modeling system that contains interrelated observed state and hidden state. As observed state in trader’s transition to broker forex online is category 1, category 2, category 3, category 4, category 5 by condition of every broker forex online, whereas as hidden state is broker forex online Marketiva, Masterforex, Instaforex, FBS and Others. First step on application of Hidden Markov Model in this research is making construction model by making a probability of transition matrix (A from every broker forex online. Next step is making a probability of observation matrix (B by making conditional probability of five categories, that is category 1, category 2, category 3, category 4, category 5 by condition of every broker forex online and also need to determine an initial state probability (π from every broker forex online. The last step is using Viterbi algorithm to find hidden state sequences that is broker forex online sequences which is the most possible based on model and observed state that is the five categories. Application of Hidden Markov Model is done by making program with Viterbi algorithm using Delphi 7.0 software with observed state based on simulation data. Example: By the number of observation T = 5 and observed state sequences O = (2,4,3,5,1 is found hidden state sequences which the most possible with observed state O as following : where X1 = FBS, X2 = Masterforex, X3 = Marketiva, X4 = Others, and X5 = Instaforex.

  13. META-COMMUNICATION FOR REFLECTIVE ONLINE CONVERSATIONS: Models for Distance Education

    Directory of Open Access Journals (Sweden)

    Yasin OZARSLAN

    2012-01-01

    Full Text Available “Meta Communication” is the process between message designers when they are talking about the learning process, as distinguished from their articulation of the “substantive” learning, itself. Therefore, it is important to understand how to design reflective online conversations and how to implement a diverse milieu for prospective online learners so that they are able to transfer their information, knowledge, and learning from theoretical forms to real life experiences. This book discusses meta-communication for reflective online conversations to provide digital people with models for distance education. This book brings together meta-communication, distance education, and models as well as reflective online conversations at the same time.The book is consisted of 321 pages covering 17 chapters. Topics covered in this book are divided into four sections: Meta-communicative knowledge building and online communications, dynamic models of meta-communication and reflective conversations, designing online messages for reflections, and meta-communicative assessments and reflective communication skills. The book's broader audience is anyone who is involved in e-learning.

  14. Levels of Interaction Provided by Online Distance Education Models

    Science.gov (United States)

    Alhih, Mohammed; Ossiannilsson, Ebba; Berigel, Muhammet

    2017-01-01

    Interaction plays a significant role to foster usability and quality in online education. It is one of the quality standard to reveal the evidence of practice in online distance education models. This research study aims to evaluate levels of interaction in the practices of distance education centres. It is aimed to provide online distance…

  15. Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2

    Directory of Open Access Journals (Sweden)

    A. Baklanov

    2017-08-01

    Full Text Available The Environment – High Resolution Limited Area Model (Enviro-HIRLAM is developed as a fully online integrated numerical weather prediction (NWP and atmospheric chemical transport (ACT model for research and forecasting of joint meteorological, chemical and biological weather. The integrated modelling system is developed by the Danish Meteorological Institute (DMI in collaboration with several European universities. It is the baseline system in the HIRLAM Chemical Branch and used in several countries and different applications. The development was initiated at DMI more than 15 years ago. The model is based on the HIRLAM NWP model with online integrated pollutant transport and dispersion, chemistry, aerosol dynamics, deposition and atmospheric composition feedbacks. To make the model suitable for chemical weather forecasting in urban areas, the meteorological part was improved by implementation of urban parameterisations. The dynamical core was improved by implementing a locally mass-conserving semi-Lagrangian numerical advection scheme, which improves forecast accuracy and model performance. The current version (7.2, in comparison with previous versions, has a more advanced and cost-efficient chemistry, aerosol multi-compound approach, aerosol feedbacks (direct and semi-direct on radiation and (first and second indirect effects on cloud microphysics. Since 2004, the Enviro-HIRLAM has been used for different studies, including operational pollen forecasting for Denmark since 2009 and operational forecasting atmospheric composition with downscaling for China since 2017. Following the main research and development strategy, further model developments will be extended towards the new NWP platform – HARMONIE. Different aspects of online coupling methodology, research strategy and possible applications of the modelling system, and fit-for-purpose model configurations for the meteorological and air quality communities are discussed.

  16. Probabilistic wind power forecasting with online model selection and warped gaussian process

    International Nuclear Information System (INIS)

    Kou, Peng; Liang, Deliang; Gao, Feng; Gao, Lin

    2014-01-01

    Highlights: • A new online ensemble model for the probabilistic wind power forecasting. • Quantifying the non-Gaussian uncertainties in wind power. • Online model selection that tracks the time-varying characteristic of wind generation. • Dynamically altering the input features. • Recursive update of base models. - Abstract: Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms

  17. MODEL DRIVEN DEVELOPMENT OF ONLINE BANKING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bresfelean Vasile Paul

    2011-07-01

    Full Text Available In case of online applications the cycle of software development varies from the routine. The online environment, the variety of users, the treatability of the mass of information created by them, the reusability and the accessibility from different devices are all factors of these systems complexity. The use of model drive approach brings several advantages that ease up the development process. Working prototypes that simplify client relationship and serve as the base of model tests can be easily made from models describing the system. These systems make possible for the banks clients to make their desired actions from anywhere. The user has the possibility of accessing information or making transactions.

  18. Student Migration to Online Education: An Economic Model

    Science.gov (United States)

    Eisenhauer, Joseph G.

    2013-01-01

    The popularity of distance education has increasingly led universities to consider expanding their online offerings. Remarkably few financial models have been presented for online courses, however, and fewer still have investigated the economic consequences of the migration, or cross-over, of students from traditional classes within the…

  19. A finite state model for respiratory motion analysis in image guided radiation therapy

    International Nuclear Information System (INIS)

    Wu Huanmei; Sharp, Gregory C; Salzberg, Betty; Kaeli, David; Shirato, Hiroki; Jiang, Steve B

    2004-01-01

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates

  20. A finite state model for respiratory motion analysis in image guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huanmei [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Sharp, Gregory C [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States); Salzberg, Betty [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Kaeli, David [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)

    2004-12-07

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.

  1. How Much? Cost Models for Online Education.

    Science.gov (United States)

    Lorenzo, George

    2001-01-01

    Reviews some of the research being done in the area of cost models for online education. Describes a cost analysis handbook; an activity-based costing model that was based on an economic model for traditional instruction at the Indiana University Purdue University Indianapolis; and blending other costing models. (LRW)

  2. Modeling Periodic Impulsive Effects on Online TV Series Diffusion.

    Science.gov (United States)

    Fu, Peihua; Zhu, Anding; Fang, Qiwen; Wang, Xi

    Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public social communities

  3. Modeling Periodic Impulsive Effects on Online TV Series Diffusion.

    Directory of Open Access Journals (Sweden)

    Peihua Fu

    Full Text Available Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data.We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution.We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation.To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public

  4. Modeling Periodic Impulsive Effects on Online TV Series Diffusion

    Science.gov (United States)

    Fang, Qiwen; Wang, Xi

    2016-01-01

    Background Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. Methods We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. Results We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. Conclusion To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount

  5. A Conceptual Model for Engagement of the Online Learner

    OpenAIRE

    Lorraine M. Angelino; Deborah Natvig

    2009-01-01

    Engagement of the online learner is one approach to reduce attrition rates. Attrition rates for classes taught through distance education are 10 – 20% higher than classes taught in a face-to-face setting. This paper introduces a Model for Engagement and provides strategies to engage the online learner. The Model depicts various opportunities where student-instructor, student-student, student-content, and student-community engagement can occur. The Model is divided into four strategic areas: (...

  6. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac

    Science.gov (United States)

    Kontaxis, C.; Bol, G. H.; Stemkens, B.; Glitzner, M.; Prins, F. M.; Kerkmeijer, L. G. W.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2017-09-01

    The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system’s capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.

  7. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac.

    Science.gov (United States)

    Kontaxis, C; Bol, G H; Stemkens, B; Glitzner, M; Prins, F M; Kerkmeijer, L G W; Lagendijk, J J W; Raaymakers, B W

    2017-08-21

    The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system's capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.

  8. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  9. Modeling and Application of Customer Lifetime Value in Online Retail

    Directory of Open Access Journals (Sweden)

    Pavel Jasek

    2018-01-01

    Full Text Available This article provides an empirical statistical analysis and discussion of the predictive abilities of selected customer lifetime value (CLV models that could be used in online shopping within e-commerce business settings. The comparison of CLV predictive abilities, using selected evaluation metrics, is made on selected CLV models: Extended Pareto/NBD model (EP/NBD, Markov chain model and Status Quo model. The article uses six online store datasets with annual revenues in the order of tens of millions of euros for the comparison. The EP/NBD model has outperformed other selected models in a majority of evaluation metrics and can be considered good and stable for non-contractual relations in online shopping. The implications for the deployment of selected CLV models in practice, as well as suggestions for future research, are also discussed.

  10. A last updating evolution model for online social networks

    Science.gov (United States)

    Bu, Zhan; Xia, Zhengyou; Wang, Jiandong; Zhang, Chengcui

    2013-05-01

    As information technology has advanced, people are turning to electronic media more frequently for communication, and social relationships are increasingly found on online channels. However, there is very limited knowledge about the actual evolution of the online social networks. In this paper, we propose and study a novel evolution network model with the new concept of “last updating time”, which exists in many real-life online social networks. The last updating evolution network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks. What is more, we also found that it has the “small-world effect”, which is the inherent property of most social networks. Simulation experiment based on this model show that the results and the real-life data are consistent, which means that our model is valid.

  11. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pannala, S; D' Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  12. Modeling a multivariable reactor and on-line model predictive control.

    Science.gov (United States)

    Yu, D W; Yu, D L

    2005-10-01

    A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.

  13. Studies on the population dynamics of a rumor-spreading model in online social networks

    Science.gov (United States)

    Dong, Suyalatu; Fan, Feng-Hua; Huang, Yong-Chang

    2018-02-01

    This paper sets up a rumor spreading model in online social networks based on the European fox rabies SIR model. The model considers the impact of changing number of online social network users, combines the transmission dynamics to set up a population dynamics of rumor spreading model in online social networks. Simulation is carried out on online social network, and results show that the new rumor spreading model is in accordance with the real propagation characteristics in online social networks.

  14. Application of online modeling to the operation of SLC

    International Nuclear Information System (INIS)

    Woodley, M.D.; Sanchez-Chopitea, L.; Shoaee, H.

    1987-02-01

    Online computer models of first order beam optics have been developed for the commissioning, control and operation of the entire SLC including Damping Rings, Linac, Positron Return Line and Collider Arcs. A generalized online environment utilizing these models provides the capability for interactive selection of a desired optics configuration and for the study of its properties. Automated procedures have been developed which calculate and load beamline component set-points and which can scale magnet strengths to achieve desired beam properties for any Linac energy profile. Graphic displays facilitate comparison of design, desired and actual optical characteristics of the beamlines. Measured beam properties, such as beam emittance and dispersion, can be incorporated interactively into the models and used for beamline matching and optimization of injection and extraction efficiencies and beam transmission. The online optics modeling facility also serves as the foundation for many model-driven applications such as autosteering, calculation of beam launch parameters, emittance measurement and dispersion correction

  15. Application of online modeling to the operation of SLC

    International Nuclear Information System (INIS)

    Woodley, M.D.; Sanchez-Chopitea, L.; Shoaee, H.

    1987-01-01

    Online computer models of first order beam optics have been developed for the commissioning, control and operation of the entire SLC including Damping Rings, Linac, Positron Return Line and Collider Arcs. A generalized online environment utilizing these models provides the capability for interactive selection of a desire optics configuration and for the study of its properties. Automated procedures have been developed which calculate and load beamline component set-points and which can scale magnet strengths to achieve desired beam properties for any Linac energy profile. Graphic displays facilitate comparison of design, desired and actual optical characteristics of the beamlines. Measured beam properties, such as beam emittance and dispersion, can be incorporated interactively into the models and used for beam matching and optimization of injection and extraction efficiencies and beam transmissions. The online optics modeling facility also serves as the foundation for many model-driven applications such as autosteering, calculation of beam launch parameters, emittance measurement and dispersion correction

  16. Development of natural radiation model for evaluation of background radiation in radiation portal monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, Jin Hyung; Moon, Myung Kook [Radioisotope Research and Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-15

    In ports and airports, radiation portal monitors (RPM) are deployed to detect illicit radioactive materials. Detected gamma rays in a RPM include background radiation and radiation from a freight. As a vehicle moves through the RPM, the vehicle causes the fluctuations in the natural background radiation signal, which ranges of up to 30%. The fluctuation increases the uncertainty of detection signal and can be a cause of RPM false alarm. Therefore, it is important to evaluate background radiation as well as radiation from a container. In this paper, a natural background radiation model was developed to evaluate RPM. To develop natural background radiation model, a Monte Carlo simulation was performed and compared with experimental measurements from a RPM for {sup 40}K, {sup 232}Th series, and {sup 235}U series, which are major sources of natural background radiation. For a natural radiation source, we considered a cylindrical soil volume with 300 m radius and 1 m depth, which was estimated as the maximum range affecting the RPM by MCNP6 simulation. The volume source model was converted to surface source by using MCNP SSW card for computational efficiency. The computational efficiency of the surface source model was improved to approximately 200 times better than that of the volume source model. The surface source model is composed of a hemisphere with 20 m radius in which the RPM and container are modelled. The natural radiation spectrum from the simulation was best fitted to the experimental measurement when portions of {sup 40}K, {sup 232}Th series, and {sup 235}U series were 0.75, 0.0636, and 0.0552 Bq·g{sup -1}, respectively. For gross counting results, the difference between simulation and experiment was around 5%. The background radiation model was used to evaluate background suppression from a 40 ft container with 7.2 m·s{sup -1} speed. In further study, background models and freight models for RPM in real container ports will be developed and applied to

  17. A Constructivist Model of Mentoring, Coaching, and Facilitating Online Discussions

    Science.gov (United States)

    Murphy, Karen L.; Mahoney, Sue E.; Chen, Chun-Ying; Mendoza-Diaz, Noemi V.; Yang, Xiaobing

    2005-01-01

    This case study of an online graduate course determines the message characteristics of the instructor, volunteer teaching assistants, and students in online discussions, and proposes a mentoring, coaching, and facilitating model for online discussions. The researchers developed a coding system based on the literature of mentoring, coaching, and…

  18. Mental models of radiation

    International Nuclear Information System (INIS)

    Saito, Kiyoko

    2005-01-01

    Laymen and experts participated in interviews designed to reveal their 'mental models' of the processes potentially causing the miscommunications between experts and the public. We analyzed their responses in terms of an 'expert model' circumscribing scientifically relevant information. From results, there are gaps even between experts. Experts on internal exposure focused mainly on artificial radiation and high level of radiation. Experts on radiation biology focused on medical radiation, level of risk, environmental radiation, and hot springs. Experts on dosimetric performance focused on atomic power generation and needs of radiological protection. It means that even experts, they have interests only on their own specialized field. (author)

  19. A model to authenticate requests for online banking transactions

    Directory of Open Access Journals (Sweden)

    Saad M. Darwish

    2012-09-01

    Full Text Available As the number of clients using online banking increases, online banking systems are becoming more desirable targets for attacks. To maintain the clients trust and confidence in the security of their online banking services; financial institutions must identify how attackers compromise accounts and develop methods to protect them. Towards this purpose, this paper presents a modified model to authenticate clients for online banking transactions through utilizing Identity-Based mediated RSA(IB-mRSA technique in conjunction with the one-time ID concept for the purpose of increasing security, avoiding swallow’s sorties and preventing reply attacks. The introduced system exploits a method for splitting private keys between the client and the Certification Authority (CA server. Neither the client nor the CA can cheat one another since one-time ID can be used only once and each signature must involve both parties. The resulting model seems to be practical from both computational as well as storage point of view. The experimental results show the effectiveness of the proposed model.

  20. Modeling and Application of Customer Lifetime Value in Online Retail

    OpenAIRE

    Pavel Jasek; Lenka Vrana; Lucie Sperkova; Zdenek Smutny; Marek Kobulsky

    2018-01-01

    This article provides an empirical statistical analysis and discussion of the predictive abilities of selected customer lifetime value (CLV) models that could be used in online shopping within e-commerce business settings. The comparison of CLV predictive abilities, using selected evaluation metrics, is made on selected CLV models: Extended Pareto/NBD model (EP/NBD), Markov chain model and Status Quo model. The article uses six online store datasets with annual revenues in the order of tens o...

  1. On-line supercapacitor dynamic models for energy conversion and management

    International Nuclear Information System (INIS)

    Wu, C.H.; Hung, Y.H.; Hong, C.W.

    2012-01-01

    Highlights: ► On-line supercapacitor dynamic models are derived from time and frequency domains. ► Equivalent circuits with an ANN identifier are derived for nonlinear effects. ► Nonlinear effects include environmental temperature and operating voltage. ► Supercapacitor models can achieve both system fidelity and computation efficiency. - Abstract: This paper develops on-line nonlinear dynamic models of electrochemical supercapacitors which are for energy conversion and management. Based on the theory of electrochemical impedance spectroscopy, extensive alternative current impedance tests have been conducted to investigate the frequency-domain dynamics of these supercapacitors. A Nyquist diagram is plotted to help establish an equivalent electric circuit, which is regarded as the first-phase linear model. Two performance-influencing factors, environmental temperature and operating voltage, are considered as nonlinear effects. The nonlinear relationships among parameters of the capacitances and resistances in the first-phase model are established by a multi-layer artificial neural network. The neural parameters are trained using a back-propagation algorithm by feeding the experimental data bank. Combining the first-phase model and the on-line neural “parameter identifier”, the algorithm produces an on-line nonlinear dynamic model. Simulation results have proved that this proposed model is able to achieve both system fidelity and computational efficiency.

  2. Online Cancer Information Seeking: Applying and Extending the Comprehensive Model of Information Seeking.

    Science.gov (United States)

    Van Stee, Stephanie K; Yang, Qinghua

    2017-10-30

    This study applied the comprehensive model of information seeking (CMIS) to online cancer information and extended the model by incorporating an exogenous variable: interest in online health information exchange with health providers. A nationally representative sample from the Health Information National Trends Survey 4 Cycle 4 was analyzed to examine the extended CMIS in predicting online cancer information seeking. Findings from a structural equation model supported most of the hypotheses derived from the CMIS, as well as the extension of the model related to interest in online health information exchange. In particular, socioeconomic status, beliefs, and interest in online health information exchange predicted utility. Utility, in turn, predicted online cancer information seeking, as did information-carrier characteristics. An unexpected but important finding from the study was the significant, direct relationship between cancer worry and online cancer information seeking. Theoretical and practical implications are discussed.

  3. Cloud Computing Platform for an Online Model Library System

    Directory of Open Access Journals (Sweden)

    Mingang Chen

    2013-01-01

    Full Text Available The rapid developing of digital content industry calls for online model libraries. For the efficiency, user experience, and reliability merits of the model library, this paper designs a Web 3D model library system based on a cloud computing platform. Taking into account complex models, which cause difficulties in real-time 3D interaction, we adopt the model simplification and size adaptive adjustment methods to make the system with more efficient interaction. Meanwhile, a cloud-based architecture is developed to ensure the reliability and scalability of the system. The 3D model library system is intended to be accessible by online users with good interactive experiences. The feasibility of the solution has been tested by experiments.

  4. Online Radiation Dose Measurement System for ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  5. Characterizing and modeling the dynamics of online popularity.

    Science.gov (United States)

    Ratkiewicz, Jacob; Fortunato, Santo; Flammini, Alessandro; Menczer, Filippo; Vespignani, Alessandro

    2010-10-08

    Online popularity has an enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems: the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and interevent time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.

  6. A simplified model exploration research of new anisotropic diffuse radiation model

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Xiao; Zhao, Qun; Zhang, Zhigang; Lin, Lin

    2016-01-01

    Graphical abstract: The specific process of measured diffuse radiation data. - Highlights: • Simplified diffuse radiation model is extremely important for solar radiation simulation and energy simulation. • A new simplified anisotropic diffuse radiation model (NSADR model) is proposed. • The accuracy of existing models and NSADR model is compared based on the measured values. • The accuracy of the NSADR model is higher than that of the existing models, and suitable for calculating diffuse radiation. - Abstract: More accurate new anisotropic diffuse radiation model (NADR model) has been proposed, but the parameters and calculation process of NADR model used in the process are complex. So it is difficult to widely used in the simulation software and engineering calculation. Based on analysis of the diffuse radiation model and measured diffuse radiation data, this paper put forward three hypotheses: (1) diffuse radiation from sky horizontal region is concentrated in a very thin layer which is close to the line source; (2) diffuse radiation from circumsolar region is concentrated in the point of the sun; (3) diffuse radiation from orthogonal region is concentrated in the point located at 90 degree angles with the Sun. Based on these hypotheses, NADR model is simplified to a new simplified anisotropic diffuse radiation model (NSADR model). Then the accuracy of NADR model and its simplified model (NSADR model) are compared with existing models based on the measured values, and the result shows that Perez model and its simplified model are relatively accurate among existing models. However, the accuracy of these two models is lower than the NADR model and NSADR model due to neglect the influence of the orthogonal diffuse radiation. The accuracy of the NSADR model is higher than that of the existing models, meanwhile, another advantage is that the NSADR model simplifies the process of solution parameters and calculation. Therefore it is more suitable for

  7. Modeling online social networks based on preferential linking

    International Nuclear Information System (INIS)

    Hu Hai-Bo; Chen Jun; Guo Jin-Li

    2012-01-01

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks

  8. Source term assessment using inverse modeling of radiation dose measured with environmental radiation monitors located at different positions

    International Nuclear Information System (INIS)

    Srinivas, C.V.; Rakesh, P.T.; Baskaran, R.; Venkatraman, B.

    2018-01-01

    Source term is an important input for consequence analysis using Decision Support Systems (DSS) to project radiological impact in the event of nuclear emergencies. A source term model called 'ASTER' is incorporated in the Online Nuclear Emergency Response System (ONERS) operational at Kalpakkam site for decision making during nuclear emergencies. This computes release rates using inverse method by employing an atmospheric dispersion model and gamma dose rates measured by environmental radiation monitors (ERM) deployed around the nuclear plant. The estimates may depend on the distribution of ERMs around the release location. In this work, data from various gamma monitors located at different radii 0.75 km and 1.5 km is used to assess the accuracy in the source term estimation for stack releases of MAPS-PHWR at Kalpakkam

  9. Gamification in online education: proposal for a participatory learning model

    Directory of Open Access Journals (Sweden)

    Fabiana Bigão Silva

    2017-09-01

    Full Text Available Empirical studies have suggested limitations on the form of application of gamification mechanics in the context of online education. These mechanics have been applied without reference to a theoretical model dedicated to this type of education. The objective of the paper is to propose a model for a gamified platform for online education that contributes to a more participatory learning, taking into account the different student profiles. Based on literature review about approaches to gamification systems design, a set of steps was followed in order to develop a generic model for a framework dedicated to online education. The model proposed is based on the Educational Gamification Design Principles proposed by Dicheva et al. (2015. The model may contribute to the promotion of participatory learning, taking into account the different student profiles. The results of such evaluation will be published in the future.

  10. An information spreading model based on online social networks

    Science.gov (United States)

    Wang, Tao; He, Juanjuan; Wang, Xiaoxia

    2018-01-01

    Online social platforms are very popular in recent years. In addition to spreading information, users could review or collect information on online social platforms. According to the information spreading rules of online social network, a new information spreading model, namely IRCSS model, is proposed in this paper. It includes sharing mechanism, reviewing mechanism, collecting mechanism and stifling mechanism. Mean-field equations are derived to describe the dynamics of the IRCSS model. Moreover, the steady states of reviewers, collectors and stiflers and the effects of parameters on the peak values of reviewers, collectors and sharers are analyzed. Finally, numerical simulations are performed on different networks. Results show that collecting mechanism and reviewing mechanism, as well as the connectivity of the network, make information travel wider and faster, and compared to WS network and ER network, the speed of reviewing, sharing and collecting information is fastest on BA network.

  11. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  12. Online Media Business Models: Lessons from the Video Game Sector

    OpenAIRE

    Komorowski, Marlen; Delaere, Simon

    2016-01-01

    Today’s media industry is characterized by disruptive changes and business models have been acknowledged as a driving force for success. Current business model research manages only to grasp static descriptions while in reality media managers are struggling with the dynamics of the industry. This article aims to close this gap by investigating a new paradigm of online media business models. Based on three video game case studies of the massively multiplayer online role-playing game genre, thi...

  13. Research on Model of Student Engagement in Online Learning

    Science.gov (United States)

    Peng, Wang

    2017-01-01

    In this study, online learning refers students under the guidance of teachers through the online learning platform for organized learning. Based on the analysis of related research results, considering the existing problems, the main contents of this paper include the following aspects: (1) Analyze and study the current student engagement model.…

  14. Empirical investigation on modeling solar radiation series with ARMA–GARCH models

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Yan, Dong; Zhao, Na; Zhou, Jianzhong

    2015-01-01

    Highlights: • Apply 6 ARMA–GARCH(-M) models to model and forecast solar radiation. • The ARMA–GARCH(-M) models produce more accurate radiation forecasting than conventional methods. • Show that ARMA–GARCH-M models are more effective for forecasting solar radiation mean and volatility. • The ARMA–EGARCH-M is robust and the ARMA–sGARCH-M is very competitive. - Abstract: Simulation of radiation is one of the most important issues in solar utilization. Time series models are useful tools in the estimation and forecasting of solar radiation series and their changes. In this paper, the effectiveness of autoregressive moving average (ARMA) models with various generalized autoregressive conditional heteroskedasticity (GARCH) processes, namely ARMA–GARCH models are evaluated for their effectiveness in radiation series. Six different GARCH approaches, which contain three different ARMA–GARCH models and corresponded GARCH in mean (ARMA–GARCH-M) models, are applied in radiation data sets from two representative climate stations in China. Multiple evaluation metrics of modeling sufficiency are used for evaluating the performances of models. The results show that the ARMA–GARCH(-M) models are effective in radiation series estimation. Both in fitting and prediction of radiation series, the ARMA–GARCH(-M) models show better modeling sufficiency than traditional models, while ARMA–EGARCH-M models are robustness in two sites and the ARMA–sGARCH-M models appear very competitive. Comparisons of statistical diagnostics and model performance clearly show that the ARMA–GARCH-M models make the mean radiation equations become more sufficient. It is recommended the ARMA–GARCH(-M) models to be the preferred method to use in the modeling of solar radiation series

  15. SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size

    International Nuclear Information System (INIS)

    Dong Suyalatu; Deng Yan-Bin; Huang Yong-Chang

    2017-01-01

    Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network . (paper)

  16. ATHENA radiation model

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1987-10-01

    The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs

  17. Review of LHC On-line Model Implementation and of its Applications

    CERN Document Server

    Persson, Tobias; Fjellstrom, Mattias; Malina, Lukas; Moeskops, Jonne; Roy, Ghislain; Skowroński, Piotr; Szczotka, Agnieszka

    2016-01-01

    The online model of the LHC aims to provide an accurate description of the machine at any given time. In order to do so it extracts the current optics in the machine along with other crucial parameters. It also provides the functionality to match the measured orbit using virtual correctors and the measured beta functions using virtual quadrupoles. In this way an accurate effective model can be created. In order to facilitate the use of the online model a graphical user interface has been developed. In this article we describe the design of the online model and its application in different studies. We give examples how it has been used to predict the influence of changes before they were applied to the machine.

  18. MARKETING COMMUNICATION IN ONLINE SOCIAL PROGRAMS: OHANIAN MODEL OF SOURCE CREDIBILITY

    Directory of Open Access Journals (Sweden)

    Serban Corina

    2010-07-01

    Full Text Available The development of the Internet as a medium for interaction with customers has resulted in many changes regarding the promotion of organizations. Online marketing is nowadays used not only to sell a product on the market, but also requires ideas and behavioral change. Non-profit organizations active in online communication are based on the quality of their provided information. Crediblity, attractiveness and usefullness are the key elements that provide effective online social programs. This paper aims to extend the scope of research in the field of social marketing by studying the Ohanian model in the online environment. The goal is to highlight the important theories and social models intrinsic to the online non-profit organizations’ communication. The results show that the efficiency of social programs depends on the level of incorporated elements of social theories in the design, content and structure of the website.

  19. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  20. Modeling online social signed networks

    Science.gov (United States)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  1. Models of digital competence and online activity of Russian adolescents

    Directory of Open Access Journals (Sweden)

    Galina U. Soldatova

    2016-06-01

    Full Text Available Having established the conception of digital competence consisting of four components (knowledge, skills, motivation and responsibility implemented in four areas (content, communication, consumption, and the techno-sphere, we propose the idea of models of digital competence as a specific systems of adolescents’ beliefs about their abilities and desires in the online world. These models (1 may be realistic or illusory, (2 their development is mediated by the motivation and online activity and (3 they regulate further online activities as well as the further development of digital competence. On the basis of nationwide study of digital competence (N=1203 Russian adolescents of 12-17 years using latent class method we revealed 5 models of digital competence corresponding to its lowest level, the average level at high and low motivation, high specific (in the components of skill and safety and high general level. It has been shown that higher appraisal of their digital competence is related to the opportunity of a more prolonged and self-service access to the Internet as well as the history of independent development of skills online. The illusion of digital competence is associated with a wide but shallow exploration activities online. Motivational component is related to the participation and recognition of the role of others in the development of digital competence, in comparison with others’ online skills and knowledge, as well as subjectively lower «digital divide» with parents. We suggest that the motivational component of the digital competence is developed if adolescent has a successful interaction via Internet, learn from other people and also if the range of her activities and interests online activity involves and requires the development of new skills. Based on digital competence model’s analysis, we have figured out 3 main types of Internet-users: (1 beginners, (2 experienced users, (3 advanced users. All these types fall into

  2. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  3. DNA-Inspired Online Behavioral Modeling and Its Application to Spambot Detection

    DEFF Research Database (Denmark)

    Cresci, Stefano; Di Pietro, Roberto; Petrocchi, Marinella

    2016-01-01

    A novel, simple, and effective approach to modeling online user behavior extracts and analyzes digital DNA sequences from user online actions and uses Twitter as a benchmark to test the proposal. Specifically, the model obtains an incisive and compact DNA-inspired characterization of user actions...... methodology is platform and technology agnostic, paving the way for diverse behavioral characterization tasks....

  4. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for

  5. MODELLING THE INFLUENCE OF ONLINE MARKETING COMMUNICATION ON BEHAVIOURAL INTENTIONS

    Directory of Open Access Journals (Sweden)

    Alexandra PERJU-MITRAN

    2014-12-01

    Full Text Available The present study addresses the manners in which potential consumers react to and examine online marketing communication efforts, and how their perceptions influence various decisions. By drawing from theories of consumer behaviour, several variables are taken into consideration, a model designed to integrate existing theories and a three-way study of online user behaviour in response to online marketing messages is defined and tested. The results of the study demonstrate that there are direct and positive links between the manner in which users perceive online marketing communication efforts, and direct and positive links between users’ attitudes towards online communication and their intention to either further inform themselves, forward the information obtained, or even become loyal to the company.

  6. A model-based approach to on-line process disturbance management

    International Nuclear Information System (INIS)

    Kim, I.S.

    1988-01-01

    The methodology developed can be applied to the design of a real-time expert system to aid control-room operators in coping with process abnormalities. The approach encompasses diverse functional aspects required for an effective on-line process disturbance management: (1) intelligent process monitoring and alarming, (2) on-line sensor data validation, (3) on-line sensor and hardware (except sensors) fault diagnosis, and (4) real-time corrective measure synthesis. Accomplishment of these functions is made possible through the application of various models, goal-tree success-tree, process monitor-tree, sensor failure diagnosis, and hardware failure diagnosis models. The models used in the methodology facilitate not only the knowledge-acquisition process - a bottleneck in the development of an expert system - but also the reasoning process of the knowledge-based system. These transparent models and model-based reasoning significantly enhance the maintainability of the real-time expert systems. The proposed approach was applied to the feedwater control system of a nuclear power plant, and implemented into a real-time expert system, MOAS II, using the expert system shell, PICON, on the LMI machine

  7. Integrated on-line accelerator modeling at CEBAF

    International Nuclear Information System (INIS)

    Bowling, B.A.; Shoaee, H.; Van Zeijts, J.; Witherspoon, S.; Watson, W.

    1995-01-01

    An on-line accelerator modeling facility is currently under development at CEBAF. The model server, which is integrated with the EPICS control system, provides coupled and 2nd-order matrices for the entire accelerator, and forms the foundation for automated model- based control and diagnostic applications. Four types of machine models are provided, including design, golden or certified, live, and scratch or simulated model. Provisions are also made for the use of multiple lattice modeling programs such as DIMAD, PARMELA, and TLIE. Design and implementation details are discussed. 2 refs., 4 figs

  8. SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size

    Science.gov (United States)

    Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang

    2017-10-01

    Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028

  9. DEVELOPING AND PROPOSING A CONCEPTUAL MODEL OF THE FLOW EXPERIENCE DURING ONLINE INFORMATION SEARCH

    Directory of Open Access Journals (Sweden)

    Lazoc Alina

    2012-07-01

    Full Text Available Information search is an essential part of the consumer`s decision making process. The online medium offers new opportunities and challenges for information search activities (in and outside the marketing context. We are interested in the way human information experiences and behaviors are affected by this. Very often online games and social web activities are perceived as challenging, engaging and enjoyable, while online information search is far below this evaluation. Our research proposal implies that using the online medium for information search may provoke enjoyable experiences through the flow state, which may in turn positively influence an individual`s exploratory information behavior and encourage his/her pro-active market behavior. The present study sets out to improve the understanding of the online medium`s impact on human`s exploratory behavior. We hypothesize that the inclusion of the online flow experience in our research model will better explain exploratory information search behaviors. A 11-component conceptual framework is proposed to explain the manifestations of flow, its personal and technological determinants and its behavioral consequence in the context of online information search. Our research has the primary purpose to present an integrated online flow model. Its secondary objective is to stimulate extended research in the area of informational behaviors in the digital age. The paper is organized in three sections. In the first section we briefly report the analysis results of the most relevant online flow theory literature and, drawing on it, we are trying to identify variables and relationships among these. In the second part we propose a research model and use prior flow models to specify a range of testable hypothesis. Drawing on the conceptual model developed, the last section of our study presents the final conclusions and proposes further steps in evaluating the model`s validity. Future research directions

  10. The UIS Model for Online Success

    Science.gov (United States)

    Bloemer, Bill

    2009-01-01

    This case study describes the philosophy underlying the delivery of online programs and courses at the University of Illinois-Springfield. The strategies used to implement the UIS model and the measures used to validate its success are outlined. These factors are reviewed in the context of the Sloan-C Five Pillars for quality learning environments.

  11. Radiation studied on the internet. On-line radiation teaching materials

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi; Kagoshima, Mayumi; Yamasaki, Mariko

    2005-01-01

    In order to facilitate scientific understanding of radiation in Japan where social understanding has been already progressed, we developed Internet radiation teaching materials that can be utilized as off-school teaching materials or supplementary materials. The teaching materials of ''atomic structure and radiation'' and ''medical treatment and radiation'' were tried for 160 high school students and 59 junior high school students, respectively. More than 70% of the student answered that these teaching materials were effective when they understand radiation. (author)

  12. Online Model Evaluation in a Large-Scale Computational Advertising Platform

    OpenAIRE

    Shariat, Shahriar; Orten, Burkay; Dasdan, Ali

    2015-01-01

    Online media provides opportunities for marketers through which they can deliver effective brand messages to a wide range of audiences. Advertising technology platforms enable advertisers to reach their target audience by delivering ad impressions to online users in real time. In order to identify the best marketing message for a user and to purchase impressions at the right price, we rely heavily on bid prediction and optimization models. Even though the bid prediction models are well studie...

  13. Encyclopedia of radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Luther W. [Drexel Univ. College of Medicine, Philadelphia, PA (United States); Yaeger, Theodore E. (eds.) [Wake Forest Univ. School of Medicine, Winston-Salem, NC (United States). Dept. of Radiation Oncology

    2013-02-01

    The simple A to Z format provides easy access to relevant information in the field of radiation oncology. Extensive cross references between keywords and related articles enable efficient searches in a user-friendly manner. Fully searchable and hyperlinked electronic online edition. The aim of this comprehensive encyclopedia is to provide detailed information on radiation oncology. The wide range of entries are written by leading experts. They will provide basic and clinical scientists in academia, practice and industry with valuable information about the field of radiation oncology. Those in related fields, students, teachers, and interested laypeople will also benefit from the important and relevant information on the most recent developments. Please note that this publication is available as print only or online only or print + online set. Save 75% of the online list price when purchasing the bundle. For more information on the online version please type the publication title into the search box above, then click on the eReference version in the results list.

  14. The Economics of Online Dating: A Course in Economic Modeling

    Science.gov (United States)

    Monaco, Andrew J.

    2018-01-01

    The author discusses the development of a unique course, The Economics of Online Dating. The course is an upper-level undergraduate course that combines intensive discussion, peer review, and economic theory to teach modeling skills to undergraduates. The course uses the framework of "online dating," interpreted broadly, as a point of…

  15. An online-coupled NWP/ACT model with conserved Lagrangian levels

    Science.gov (United States)

    Sørensen, B.; Kaas, E.; Lauritzen, P. H.

    2012-04-01

    Numerical weather and climate modelling is under constant development. Semi-implicit semi-Lagrangian (SISL) models have proven to be numerically efficient in both short-range weather forecasts and climate models, due to the ability to use long time steps. Chemical/aerosol feedback mechanism are becoming more and more relevant in NWP as well as climate models, since the biogenic and anthropogenic emissions can have a direct effect on the dynamics and radiative properties of the atmosphere. To include chemical feedback mechanisms in the NWP models, on-line coupling is crucial. In 3D semi-Lagrangian schemes with quasi-Lagrangian vertical coordinates the Lagrangian levels are remapped to Eulerian model levels each time step. This remapping introduces an undesirable tendency to smooth sharp gradients and creates unphysical numerical diffusion in the vertical distribution. A semi-Lagrangian advection method is introduced, it combines an inherently mass conserving 2D semi-Lagrangian scheme, with a SISL scheme employing both hybrid vertical coordinates and a fully Lagrangian vertical coordinate. This minimizes the vertical diffusion and thus potentially improves the simulation of the vertical profiles of moisture, clouds, and chemical constituents. Since the Lagrangian levels suffer from traditional Lagrangian limitations caused by the convergence and divergence of the flow, remappings to the Eulerian model levels are generally still required - but this need only be applied after a number of time steps - unless dynamic remapping methods are used. For this several different remapping methods has been implemented. The combined scheme is mass conserving, consistent, and multi-tracer efficient.

  16. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  17. Detection of radiation-induced hydrocarbons in Camembert irradiated before and after the maturing process-comparison of florisil column chromatography and on-line coupled liquid chromatography-gas chromatography

    International Nuclear Information System (INIS)

    Schulzki, G.; Spiegelberg, A.; Bögl, K.W.; Schreiber, G.A.

    1995-01-01

    The influence of the maturing process on the detection of radiation-induced volatile hydrocarbons in the fat of Camembert has been investigated. Two analytical methods for separation of the hydrocarbon fraction from the lipid were applied: Florisil column chromatography with subsequent gas chromatographic-mass spectrometric (GC-MS) determination as well as on-line coupled liquid chromatography-GC-MS. The maturing process had no influence on the detection of radiation-induced volatiles. Comparable results were achieved with both analytical methods. However, preference is given to the more effective on-line coupled LC-GC method

  18. Preclinical models in radiation oncology

    Directory of Open Access Journals (Sweden)

    Kahn Jenna

    2012-12-01

    Full Text Available Abstract As the incidence of cancer continues to rise, the use of radiotherapy has emerged as a leading treatment modality. Preclinical models in radiation oncology are essential tools for cancer research and therapeutics. Various model systems have been used to test radiation therapy, including in vitro cell culture assays as well as in vivo ectopic and orthotopic xenograft models. This review aims to describe such models, their advantages and disadvantages, particularly as they have been employed in the discovery of molecular targets for tumor radiosensitization. Ultimately, any model system must be judged by its utility in developing more effective cancer therapies, which is in turn dependent on its ability to simulate the biology of tumors as they exist in situ. Although every model has its limitations, each has played a significant role in preclinical testing. Continued advances in preclinical models will allow for the identification and application of targets for radiation in the clinic.

  19. SCROLL, a superconfiguration collisional radiative model with external radiation

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Klapisch, M.

    2000-01-01

    A collisional radiative model for calculating non-local thermodynamical-equilibrium (non-LTE) spectra of heavy atoms in hot plasmas has been developed. It takes into account the numerous excited an autoionizing states by using superconfigurations. These are split systematically until the populations converge. The influence of an impinging radiation field has recently been added to the model. The effect can be very important. (author)

  20. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  1. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  2. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    Kim, Y.

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  3. [Induced thymus aging: radiation model and application perspective for low intensive laser radiation].

    Science.gov (United States)

    Sevost'ianova, N N; Trofimov, A V; Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The influence of gamma-radiation on morphofunctional state of thymus is rather like as natural thymus aging. However gamma-radiation model of thymus aging widely used to investigate geroprotectors has many shortcomings and limitations. Gamma-radiation can induce irreversible changes in thymus very often. These changes are more intensive in comparison with changes, which can be observed at natural thymus aging. Low intensive laser radiation can not destroy structure of thymus and its effects are rather like as natural thymus aging in comparison with gamma-radiation effects. There are many parameters of low intensive laser radiation, which can be changed to improve morphofunctional thymus characteristics in aging model. Using low intensive laser radiation in thymus aging model can be very perspective for investigations of aging immune system.

  4. Computer modelling of radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Khvostunov, Igor K.; Nikjoo, Hooshang

    2002-01-01

    Radiation-induced genomic instability and bystander effects are now well established consequences of exposure of living cells to ionising radiation. It has been observed that cells not directly hit by radiation tracks may still exhibit radiation effects. We present a quantitative modelling of the radiation-induced bystander effect based on a diffusion model of spreading the bystander signal. The model assumes the bystander factor to be a protein of low molecular weight, given out by the hit cell, diffusing in the medium and reacting with non-hit cells. The model calculations successfully predict the results of cell survival in an irradiated conditioned medium. The model predicts the shape of dose-effect relationship for cell survival and oncogenic transformation induced by broad-beam and micro-beam irradiation by alpha-particles. (author)

  5. ANALISIS BELANJA ONLINE MELALUI SMARTPHONE DENGAN MENGGUNAKAN EXTENDED TECHNOLOGY ACCEPTANCE MODEL

    Directory of Open Access Journals (Sweden)

    Nining Heriyanti

    2016-04-01

    Full Text Available The  purpose  of  this  study  is  to  explore  the  conceptual  model  for  analyzing customer perceptions of the use of mobile commerce services especially smart phones  for  online  shopping.  Results  of  this  study  are  expected  to  provide insights  into  the  theory  of  consumer  behavior  and  the  results  have  practical implications  for  designers,  managers,  marketers  and  developers  of  mobile shopping site pages. The  sample  included  155  respondents  through  online  questioner.  The  use  of online questioner is to ensure that respondents who fill the questionnaire are correct respondents who used the Internet access. The next filter is to ensure the respondents truly the one who ever shop online, the design of questioner is made the question in the beginning, whether the respondent ever shop online. If  the  respondent  have  not  shop  online  yet,  the  question  jump  to  the  end  of the  questionnaire.  Online  shopping  experience  to  further  filter  to  ensure  that the  respondents  were  filling  has  enough  experience  to  shopping  online.  So the respondents who only had onetime expenditure with online media are not included in the analysis. Data  analysis  techniques  used  in  this  study  is  using  Structural  Equation Modeling  (SEM  with  the  help  of  the  program  AMOS  version  21.  Results show that perceived ease of use, perceived usefulness and compatibility has a significant relationship with behavioral intention to use smart phones for online shopping. Behavioral intentions have a significant relationship with actual use. The  results  are  expected  to  provide  theoretical  implication  to  complement existing  marketing  literature  and  supports  previous  studies.  The  practical implications of this research can be used as the basis for taking measures and

  6. Analytical modeling of worldwide medical radiation use

    International Nuclear Information System (INIS)

    Mettler, F.A. Jr.; Davis, M.; Kelsey, C.A.; Rosenberg, R.; Williams, A.

    1987-01-01

    An analytical model was developed to estimate the availability and frequency of medical radiation use on a worldwide basis. This model includes medical and dental x-ray, nuclear medicine, and radiation therapy. The development of an analytical model is necessary as the first step in estimating the radiation dose to the world's population from this source. Since there is no data about the frequency of medical radiation use in more than half the countries in the world and only fragmentary data in an additional one-fourth of the world's countries, such a model can be used to predict the uses of medical radiation in these countries. The model indicates that there are approximately 400,000 medical x-ray machines worldwide and that approximately 1.2 billion diagnostic medical x-ray examinations are performed annually. Dental x-ray examinations are estimated at 315 million annually and approximately 22 million in-vivo diagnostic nuclear medicine examinations. Approximately 4 million radiation therapy procedures or courses of treatment are undertaken annually

  7. Analyze On-line Star Economy Basing on Models of Entrepreneurship

    Institute of Scientific and Technical Information of China (English)

    胡志豪

    2016-01-01

    The outstanding performance of the On-line Star Economy is bound up with social media and promotion by fans, stimulating a new round of consumption upgrading and capital tendency. There is no denying that the On-line Star Economy may be the fortuitous outcome of the times. But the fact remains it can be analyzed rationally using Models of Entrepreneurship.

  8. Pathological Buying Online as a Specific Form of Internet Addiction: A Model-Based Experimental Investigation.

    Science.gov (United States)

    Trotzke, Patrick; Starcke, Katrin; Müller, Astrid; Brand, Matthias

    2015-01-01

    The study aimed to investigate different factors of vulnerability for pathological buying in the online context and to determine whether online pathological buying has parallels to a specific Internet addiction. According to a model of specific Internet addiction by Brand and colleagues, potential vulnerability factors may consist of a predisposing excitability from shopping and as mediating variable, specific Internet use expectancies. Additionally, in line with models on addiction behavior, cue-induced craving should also constitute an important factor for online pathological buying. The theoretical model was tested in this study by investigating 240 female participants with a cue-reactivity paradigm, which was composed of online shopping pictures, to assess excitability from shopping. Craving (before and after the cue-reactivity paradigm) and online shopping expectancies were measured. The tendency for pathological buying and online pathological buying were screened with the Compulsive Buying Scale (CBS) and the Short Internet Addiction Test modified for shopping (s-IATshopping). The results demonstrated that the relationship between individual's excitability from shopping and online pathological buying tendency was partially mediated by specific Internet use expectancies for online shopping (model's R² = .742, p buying tendencies were correlated (r = .556, p buying (t(28) = 2.98, p buying and suggests potential parallels. The presence of craving in individuals with a propensity for online pathological buying emphasizes that this behavior merits potential consideration within the non-substance/behavioral addictions.

  9. Radiative models for the evaluation of the UV radiation at the ground

    International Nuclear Information System (INIS)

    Koepke, P.

    2009-01-01

    The variety of radiative models for solar UV radiation is discussed. For the evaluation of measured UV radiation at the ground the basic problem is the availability of actual values of the atmospheric parameters that influence the UV radiation. The largest uncertainties are due to clouds and aerosol, which are highly variable. In the case of tilted receivers, like the human skin for most orientations, and for conditions like a street canyon or tree shadow, besides the classical radiative transfer in the atmosphere additional modelling is necessary. (authors)

  10. An agent-based model for emotion contagion and competition in online social media

    Science.gov (United States)

    Fan, Rui; Xu, Ke; Zhao, Jichang

    2018-04-01

    Recent studies suggest that human emotions diffuse in not only real-world communities but also online social media. However, a comprehensive model that considers up-to-date findings and multiple online social media mechanisms is still missing. To bridge this vital gap, an agent-based model, which concurrently considers emotion influence and tie strength preferences, is presented to simulate the emotion contagion and competition. Our model well reproduces patterns observed in the empirical data, like anger's preference on weak ties, anger-dominated users' high vitalities and angry tweets' short retweet intervals, and anger's competitiveness in negative events. The comparison with a previously presented baseline model further demonstrates its effectiveness in modeling online emotion contagion. It is also surprisingly revealed by our model that as the ratio of anger approaches joy with a gap less than 12%, anger will eventually dominate the online social media and arrives the collective outrage in the cyber space. The critical gap disclosed here can be indeed warning signals at early stages for outrage control. Our model would shed lights on the study of multiple issues regarding emotion contagion and competition in terms of computer simulations.

  11. Survey of current situation in radiation belt modeling

    Science.gov (United States)

    Fung, Shing F.

    2004-01-01

    The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.

  12. Technology and Online Education: Models for Change

    Science.gov (United States)

    Cook, Catherine W.; Sonnenberg, Christian

    2014-01-01

    This paper contends that technology changes advance online education. A number of mobile computing and transformative technologies will be examined and incorporated into a descriptive study. The object of the study will be to design innovative mobile awareness models seeking to understand technology changes for mobile devices and how they can be…

  13. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    . The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...

  14. An Agent-Based Approach to Modeling Online Social Influence

    NARCIS (Netherlands)

    Maanen, P.P. van; Vecht, B. van der

    2013-01-01

    The aim of this study is to better understand social influence in online social media. Therefore, we propose a method in which we implement, validate and improve an individual behavior model. The behavior model is based on three fundamental behavioral principles of social influence from the

  15. Disconfirming User Expectations of the Online Service Experience: Inferred versus Direct Disconfirmation Modeling.

    Science.gov (United States)

    O'Neill, Martin; Palmer, Adrian; Wright, Christine

    2003-01-01

    Disconfirmation models of online service measurement seek to define service quality as the difference between user expectations of the service to be received and perceptions of the service actually received. Two such models-inferred and direct disconfirmation-for measuring quality of the online experience are compared (WebQUAL, SERVQUAL). Findings…

  16. AN INCLUSIVE APPROACH TO ONLINE LEARNING ENVIRONMENTS: Models and Resources

    Directory of Open Access Journals (Sweden)

    Aline Germain-RUTHERFORD

    2008-04-01

    Full Text Available The impact of ever-increasing numbers of online courses on the demographic composition of classes has meant that the notions of diversity, multiculturality and globalization are now key aspects of curriculum planning. With the internationalization and globalization of education, and faced with rising needs for an increasingly educated and more adequately trained workforce, universities are offering more flexible programs, assisted by new educational and communications technologies. Faced with this diversity of populations and needs, many instructors are becoming aware of the importance of addressing the notions of multiculturality and interculturality in the design of online however this raises many questions. For example, how do we integrate and address this multicultural dimension in a distance education course aimed at students who live in diverse cultural environments? How do the challenges of intercultural communication in an online environment affect online teaching and learning? What are the characteristics of an online course that is inclusive of all types of diversity, and what are the guiding principles for designing such courses? We will attempt to answer some of these questions by first exploring the concepts of culture and learning cultures. This will help us to characterize the impact on online learning of particular cultural dimensions. We will then present and discuss different online instructional design models that are culturally inclusive, and conclude with the description of a mediated instructional training module on the management of the cultural dimension of online teaching and learning. This module is mainly addressed to teachers and designers of online courses.

  17. Pathological Buying Online as a Specific Form of Internet Addiction: A Model-Based Experimental Investigation

    Science.gov (United States)

    Trotzke, Patrick; Starcke, Katrin; Müller, Astrid; Brand, Matthias

    2015-01-01

    The study aimed to investigate different factors of vulnerability for pathological buying in the online context and to determine whether online pathological buying has parallels to a specific Internet addiction. According to a model of specific Internet addiction by Brand and colleagues, potential vulnerability factors may consist of a predisposing excitability from shopping and as mediating variable, specific Internet use expectancies. Additionally, in line with models on addiction behavior, cue-induced craving should also constitute an important factor for online pathological buying. The theoretical model was tested in this study by investigating 240 female participants with a cue-reactivity paradigm, which was composed of online shopping pictures, to assess excitability from shopping. Craving (before and after the cue-reactivity paradigm) and online shopping expectancies were measured. The tendency for pathological buying and online pathological buying were screened with the Compulsive Buying Scale (CBS) and the Short Internet Addiction Test modified for shopping (s-IATshopping). The results demonstrated that the relationship between individual’s excitability from shopping and online pathological buying tendency was partially mediated by specific Internet use expectancies for online shopping (model’s R² = .742, p behavior merits potential consideration within the non-substance/behavioral addictions. PMID:26465593

  18. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  19. A web based on-line radiation early warning system for emergency preparedness and response centre

    International Nuclear Information System (INIS)

    Bhujbal, Vaibhav; Saindane, Shashank S.; Narasaiah, M.V.R.; Murali, S.

    2018-01-01

    The topography of the Bhabha Atomic Research Centre, Trombay site, where all major components of nuclear fuel cycle activities are located is very complex in nature. The assessment of the radiological impact, if any, due to atmospheric releases from these facilities within BARC site is being carried out by using a Local Area Network (LAN) based Radiation Early Warning System and meteorological parameters. The upgraded system is aimed at providing data during normal operation of the various facilities at site and for providing early warning to decision makers in case of any onset of an emergency. It is carried out by acquiring both on-line and off-line data on releases from the plants, the environmental radiation dose rate at selected locations and other related parameters. The monitors placed at these selected locations including strategic point around the BARC site can also help in detecting any attempt of unauthorized trafficking of the radioactive sources. This paper explains different aspects of the system operating at BARC

  20. Modeling geo-homopholy in online social networks for population distribution projection

    Directory of Open Access Journals (Sweden)

    Yuanxing Zhang

    2017-09-01

    Full Text Available Purpose – Projecting the population distribution in geographical regions is important for many applications such as launching marketing campaigns or enhancing the public safety in certain densely populated areas. Conventional studies require the collection of people’s trajectory data through offline means, which is limited in terms of cost and data availability. The wide use of online social network (OSN apps over smartphones has provided the opportunities of devising a lightweight approach of conducting the study using the online data of smartphone apps. This paper aims to reveal the relationship between the online social networks and the offline communities, as well as to project the population distribution by modeling geo-homophily in the online social networks. Design/methodology/approach – In this paper, the authors propose the concept of geo-homophily in OSNs to determine how much the data of an OSN can help project the population distribution in a given division of geographical regions. Specifically, the authors establish a three-layered theoretic framework that first maps the online message diffusion among friends in the OSN to the offline population distribution over a given division of regions via a Dirichlet process and then projects the floating population across the regions. Findings – By experiments over large-scale OSN data sets, the authors show that the proposed prediction models have a high prediction accuracy in characterizing the process of how the population distribution forms and how the floating population changes over time. Originality/value – This paper tries to project population distribution by modeling geo-homophily in OSNs.

  1. The dynamic radiation environment assimilation model (DREAM)

    International Nuclear Information System (INIS)

    Reeves, Geoffrey D.; Koller, Josef; Tokar, Robert L.; Chen, Yue; Henderson, Michael G.; Friedel, Reiner H.

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  2. DirtyGrid I: 3D Dust Radiative Transfer Modeling of Spectral Energy Distributions of Dusty Stellar Populations

    Science.gov (United States)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, Karl A.

    2018-06-01

    Understanding the properties of stellar populations and interstellar dust has important implications for galaxy evolution. In normal star-forming galaxies, stars and the interstellar medium dominate the radiation from ultraviolet (UV) to infrared (IR). In particular, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the IR. This is a strongly nonlinear process that makes independent studies of the UV-optical and IR susceptible to large uncertainties and degeneracies. Over the years, UV to IR spectral energy distribution (SED) fitting utilizing varying approximations has revealed important results on the stellar and dust properties of galaxies. Yet the approximations limit the fidelity of the derived properties. There is sufficient computer power now available that it is now possible to remove these approximations and map out of landscape of galaxy SEDs using full dust radiative transfer. This improves upon previous work by directly connecting the UV, optical, and IR through dust grain physics. We present the DIRTYGrid, a grid of radiative transfer models of SEDs of dusty stellar populations in galactic environments designed to span the full range of physical parameters of galaxies. Using the stellar and gas radiation input from the stellar population synthesis model PEGASE, our radiative transfer model DIRTY self-consistently computes the UV to far-IR/sub-mm SEDs for each set of parameters in our grid. DIRTY computes the dust absorption, scattering, and emission from the local radiation field and a dust grain model, thereby physically connecting the UV-optical to the IR. We describe the computational method and explain the choices of parameters in DIRTYGrid. The computation took millions of CPU hours on supercomputers, and the SEDs produced are an invaluable tool for fitting multi-wavelength data sets. We provide the complete set of SEDs in an online table.

  3. Using the ADDIE Model to Create an Online Strength Training Program: An Exploration

    Science.gov (United States)

    Brook, Rebekah L.

    2014-01-01

    The purpose of this design and development research was to investigate whether the ADDIE model can be used to design online modules that teach psychomotor skills. The overarching research question was: How can the ADDIE Model of Instructional Design be used to create an online module that teaches safe and effective movement for psychomotor skills?…

  4. Modelling unsupervised online-learning of artificial grammars: linking implicit and statistical learning.

    Science.gov (United States)

    Rohrmeier, Martin A; Cross, Ian

    2014-07-01

    Humans rapidly learn complex structures in various domains. Findings of above-chance performance of some untrained control groups in artificial grammar learning studies raise questions about the extent to which learning can occur in an untrained, unsupervised testing situation with both correct and incorrect structures. The plausibility of unsupervised online-learning effects was modelled with n-gram, chunking and simple recurrent network models. A novel evaluation framework was applied, which alternates forced binary grammaticality judgments and subsequent learning of the same stimulus. Our results indicate a strong online learning effect for n-gram and chunking models and a weaker effect for simple recurrent network models. Such findings suggest that online learning is a plausible effect of statistical chunk learning that is possible when ungrammatical sequences contain a large proportion of grammatical chunks. Such common effects of continuous statistical learning may underlie statistical and implicit learning paradigms and raise implications for study design and testing methodologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Personalized Information Management by Online Stores in 4C Model. Case Study

    Directory of Open Access Journals (Sweden)

    Kubicka Anna

    2016-01-01

    Full Text Available The increasing complexity of the business environment, growing knowledge requirements, development of information technologies, and competitiveness implies the need of implementation of information management systems. Moreover, welter of information about online customers, their individual behavior, and their expectations force entrepreneurs to manage information in a personalized way. Monitoring Internet users behavior, creating their profiles (based on data about age, sex, lifestyle, interests, family, work, etc., and controlling current traffic on the Web site give wide range of possibilities in creating a real model of potential customers preference and using it in online communication. This study concentrates on possibilities of using personalized communication in the information management by online stores in 4C model.

  6. The NASA Radiation Interuniversity Science and Engineering(RaISE) Project: A Model for Inter-collaboration and Distance Learning in Radiation Physics and Nuclear Engineering

    Science.gov (United States)

    Denkins, Pamela S.; Saganti, P.; Obot, V.; Singleterry, R.

    2006-01-01

    This viewgraph document reviews the Radiation Interuniversity Science and Engineering (RaISE) Project, which is a project that has as its goals strengthening and furthering the curriculum in radiation sciences at two Historically Black Colleges and Universities (HBCU), Prairie View A&M University and Texas Southern University. Those were chosen in part because of the proximity to NASA Johnson Space Center, a lead center for the Space Radiation Health Program. The presentation reviews the courses that have been developed, both in-class, and on-line.

  7. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  8. Computer Agent's Role in Modeling an Online Math Help User

    Directory of Open Access Journals (Sweden)

    Dragana Martinovic

    2007-06-01

    Full Text Available This paper investigates perspectives of deployments of open learner model on mathematics online help sites. It proposes enhancing a regular human-to-human interaction with an involvement of a computer agent suitable for tracking users, checking their input and making useful suggestions. Such a design would provide the most support for the interlocutors while keeping the nature of existing environment intact. Special considerations are given to peer-to-peer and expert-to-student mathematics online help that is free of charge and asynchronous. Examples from other collaborative, Web-based environments are also discussed. Suggestions for improving the existing architectures are given, based on the results of a number of studies on on-line learning systems.

  9. E-Model for Online Learning Communities.

    Science.gov (United States)

    Rogo, Ellen J; Portillo, Karen M

    2015-10-01

    The purpose of this study was to explore the students' perspectives on the phenomenon of online learning communities while enrolled in a graduate dental hygiene program. A qualitative case study method was designed to investigate the learners' experiences with communities in an online environment. A cross-sectional purposive sampling method was used. Interviews were the data collection method. As the original data were being analyzed, the researchers noted a pattern evolved indicating the phenomenon developed in stages. The data were re-analyzed and validated by 2 member checks. The participants' experiences revealed an e-model consisting of 3 stages of formal learning community development as core courses in the curriculum were completed and 1 stage related to transmuting the community to an informal entity as students experienced the independent coursework in the program. The development of the formal learning communities followed 3 stages: Building a Foundation for the Learning Community, Building a Supportive Network within the Learning Community and Investing in the Community to Enhance Learning. The last stage, Transforming the Learning Community, signaled a transition to an informal network of learners. The e-model was represented by 3 key elements: metamorphosis of relationships, metamorphosis through the affective domain and metamorphosis through the cognitive domain, with the most influential element being the affective development. The e-model describes a 4 stage process through which learners experience a metamorphosis in their affective, relationship and cognitive development. Synergistic learning was possible based on the interaction between synergistic relationships and affective actions. Copyright © 2015 The American Dental Hygienists’ Association.

  10. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  11. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  12. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  13. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    2005-07-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data. (author)

  14. A cognitive-behavioral model of problematic online gaming in adolescents aged 12-22 years

    NARCIS (Netherlands)

    Haagsma, M.C.; Caplan, S.E.; Peters, O.; Pieterse, M.E.

    2013-01-01

    The aim of this study was to apply the cognitive behavioral model of problematic Internet use to the context of online game use to obtain a better understanding of problematic use of online games and its negative consequences. In total, 597 online game playing adolescents aged 12-22 years

  15. Suicidality, psychopathology, and the internet: Online time vs. online behaviors.

    Science.gov (United States)

    Harris, Keith M; Starcevic, Vladan; Ma, Jing; Zhang, Wei; Aboujaoude, Elias

    2017-09-01

    This study investigated whether several psychopathology variables, including suicidality, could predict the time people spend using the internet (hours online). Next, we examined a specific at-risk population (suicidal individuals) by their online behaviors, comparing suicidal individuals who went online for suicide-related purposes with suicidal individuals who did not go online for suicide-related purposes. An anonymous online sample of 713 (aged 18-71) reported hours online, psychiatric histories, and completed several standardized scales. After accounting for age and education, hierarchical regression modeling showed that the assessed psychopathology variables, including suicidality, did not explain significant variance in hours online. Hours online were better predicted by younger age, greater willingness to develop online relationships, higher perceived social support, higher curiosity, and lower extraversion. Suicidal participants, who did or did not go online for suicide-related purposes, did not differ on hours online. Multiple regression modeling showed that those who went online for suicide-related purposes were likely to be younger, more suicidal, and more willing to seek help from online mental health professionals. These findings revealed that hours online are not a valid indicator of psychopathology. However, studying online behaviors of specific at-risk groups could be informative and useful, including for suicide prevention efforts. Copyright © 2017. Published by Elsevier B.V.

  16. Analysis on trust influencing factors and trust model from multiple perspectives of online Auction

    Science.gov (United States)

    Yu, Wang

    2017-10-01

    Current reputation models lack the research on online auction trading completely so they cannot entirely reflect the reputation status of users and may cause problems on operability. To evaluate the user trust in online auction correctly, a trust computing model based on multiple influencing factors is established. It aims at overcoming the efficiency of current trust computing methods and the limitations of traditional theoretical trust models. The improved model comprehensively considers the trust degree evaluation factors of three types of participants according to different participation modes of online auctioneers, to improve the accuracy, effectiveness and robustness of the trust degree. The experiments test the efficiency and the performance of our model under different scale of malicious user, under environment like eBay and Sporas model. The experimental results analysis show the model proposed in this paper makes up the deficiency of existing model and it also has better feasibility.

  17. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  18. Structural Equation Modeling towards Online Learning Readiness, Academic Motivations, and Perceived Learning

    Science.gov (United States)

    Horzum, Mehmet Baris; Kaymak, Zeliha Demir; Gungoren, Ozlem Canan

    2015-01-01

    The relationship between online learning readiness, academic motivations, and perceived learning was investigated via structural equation modeling in the research. The population of the research consisted of 750 students who studied using the online learning programs of Sakarya University. 420 of the students who volunteered for the research and…

  19. The JPL Uranian Radiation Model (UMOD)

    Science.gov (United States)

    Garrett, Henry; Martinez-Sierra, Luz Maria; Evans, Robin

    2015-01-01

    The objective of this study is the development of a comprehensive radiation model (UMOD) of the Uranian environment for JPL mission planning. The ultimate goal is to provide a description of the high energy electron and proton environments and the magnetic field at Uranus that can be used for engineering design. Currently no model exists at JPL. A preliminary electron radiation model employing Voyager 2 data was developed by Selesnick and Stone in 1991. The JPL Uranian Radiation Model extends that analysis, which modeled electrons between 0.7 MeV and 2.5 MeV based on the Voyager Cosmic Ray Subsystem electron telescope, down to an energy of 0.022 MeV for electrons and from 0.028 MeV to 3.5 MeV for protons. These latter energy ranges are based on measurements by the Applied Physics Laboratory Low Energy Charged Particle Detector on Voyager 2. As in previous JPL radiation models, the form of the Uranian model is based on magnetic field coordinates and requires a conversion from spacecraft coordinates to Uranian-centered magnetic "B-L" coordinates. Two magnetic field models have been developed for Uranus: 1) a simple "offset, tilted dipole" (OTD), and 2) a complex, multi-pole expansion model ("Q3"). A review of the existing data on Uranus and a search of the NASA Planetary Data System (PDS) were completed to obtain the latest, up to date descriptions of the Uranian high energy particle environment. These data were fit in terms of the Q3 B-L coordinates to extend and update the original Selesnick and Stone electron model in energy and to develop the companion proton flux model. The flux predictions of the new model were used to estimate the total ionizing dose for the Voyager 2 flyby, and a movie illustrating the complex radiation belt variations was produced to document the uses of the model for planning purposes.

  20. Strategies to Enhance Online Learning Teams. Team Assessment and Diagnostics Instrument and Agent-based Modeling

    Science.gov (United States)

    2010-08-12

    Strategies to Enhance Online Learning Teams Team Assessment and Diagnostics Instrument and Agent-based Modeling Tristan E. Johnson, Ph.D. Learning ...REPORT DATE AUG 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Strategies to Enhance Online Learning ...TeamsTeam Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling 5a. CONTRACT NUMBER 5b. GRANT

  1. Sensation Seeking and Online Gaming Addiction in Adolescents: A Moderated Mediation Model of Positive Affective Associations and Impulsivity.

    Science.gov (United States)

    Hu, Jianping; Zhen, Shuangju; Yu, Chengfu; Zhang, Qiuyan; Zhang, Wei

    2017-01-01

    Based on the Dual Systems Model (Somerville et al., 2010; Steinberg, 2010a) and the biosocial-affect model (Romer and Hennessy, 2007) of adolescent sensation seeking and problem behaviors, the present study examined how (affective associations with online games as a mediator) and when (impulsivity as a moderator) did sensation seeking influence online gaming addiction in adolescence. A total of 375 Chinese male adolescents (mean age = 16.02 years, SD = 0.85) from southern China completed anonymous questionnaires regarding sensation seeking, positive affective associations with online games, impulsivity, and online gaming addiction. Our findings revealed that sensation seeking, positive affective associations with online games and impulsivity were each significantly and positively associated with online gaming addiction in adolescents. Positive affective associations mediated the relationship between sensation seeking and online gaming addiction. Further, impulsivity moderated the relationship between positive affective associations and online gaming addiction, such that the association between positive affective association and online gaming addiction was stronger for high than for low impulsivity adolescents. These findings underscore the importance of integrating the biosocial-affect model and the Dual Systems Model to understand how and when sensation seeking impacts adolescent online gaming addiction.

  2. Sensation Seeking and Online Gaming Addiction in Adolescents: A Moderated Mediation Model of Positive Affective Associations and Impulsivity

    Directory of Open Access Journals (Sweden)

    Jianping Hu

    2017-05-01

    Full Text Available Based on the Dual Systems Model (Somerville et al., 2010; Steinberg, 2010a and the biosocial-affect model (Romer and Hennessy, 2007 of adolescent sensation seeking and problem behaviors, the present study examined how (affective associations with online games as a mediator and when (impulsivity as a moderator did sensation seeking influence online gaming addiction in adolescence. A total of 375 Chinese male adolescents (mean age = 16.02 years, SD = 0.85 from southern China completed anonymous questionnaires regarding sensation seeking, positive affective associations with online games, impulsivity, and online gaming addiction. Our findings revealed that sensation seeking, positive affective associations with online games and impulsivity were each significantly and positively associated with online gaming addiction in adolescents. Positive affective associations mediated the relationship between sensation seeking and online gaming addiction. Further, impulsivity moderated the relationship between positive affective associations and online gaming addiction, such that the association between positive affective association and online gaming addiction was stronger for high than for low impulsivity adolescents. These findings underscore the importance of integrating the biosocial-affect model and the Dual Systems Model to understand how and when sensation seeking impacts adolescent online gaming addiction.

  3. Sensation Seeking and Online Gaming Addiction in Adolescents: A Moderated Mediation Model of Positive Affective Associations and Impulsivity

    Science.gov (United States)

    Hu, Jianping; Zhen, Shuangju; Yu, Chengfu; Zhang, Qiuyan; Zhang, Wei

    2017-01-01

    Based on the Dual Systems Model (Somerville et al., 2010; Steinberg, 2010a) and the biosocial-affect model (Romer and Hennessy, 2007) of adolescent sensation seeking and problem behaviors, the present study examined how (affective associations with online games as a mediator) and when (impulsivity as a moderator) did sensation seeking influence online gaming addiction in adolescence. A total of 375 Chinese male adolescents (mean age = 16.02 years, SD = 0.85) from southern China completed anonymous questionnaires regarding sensation seeking, positive affective associations with online games, impulsivity, and online gaming addiction. Our findings revealed that sensation seeking, positive affective associations with online games and impulsivity were each significantly and positively associated with online gaming addiction in adolescents. Positive affective associations mediated the relationship between sensation seeking and online gaming addiction. Further, impulsivity moderated the relationship between positive affective associations and online gaming addiction, such that the association between positive affective association and online gaming addiction was stronger for high than for low impulsivity adolescents. These findings underscore the importance of integrating the biosocial-affect model and the Dual Systems Model to understand how and when sensation seeking impacts adolescent online gaming addiction. PMID:28529494

  4. Physical/biogeochemical coupled model : impact of an offline vs online strategy

    Science.gov (United States)

    Hameau, Angélique; Perruche, Coralie; Bricaud, Clément; Gutknecht, Elodie; Reffray, Guillaume

    2014-05-01

    Mercator-Ocean, the French ocean forecasting center, has been developing several operational forecasting systems and reanalysis of the physical and biogeochemical 3D-Ocean. Here we study the impact of an offline vs online strategy to couple the physical (OPA) and biogeochemical (PISCES) modules included in the NEMO platform. For this purpose, we perform global one-year long simulations at 1° resolution. The model was initialized with global climatologies. The spin-up involved 10 years of biogeochemical off-line simulation forced by a climatology of ocean physics. The online mode consists in running physical and biogeochemical models simultaneously whereas in the offline mode, the biogeochemical model is launched alone, forced by averaged physical forcing (1 day, 7 days,… ). The Mercator operational biogeochemical system is currently using the offline mode with a weekly physical forcing. A special treatment is applied to the vertical diffusivity coefficient (Kz): as it varies of several orders of magnitude, we compute the mean of the LOG10 of Kz. Moreover, a threshold value is applied to remove the highest values corresponding to enhanced convection. To improve this system, 2 directions are explored. First, 3 physical forcing frequencies are compared to quantify errors due to the offline mode: 1 hour (online mode), 1 day and 1 week (offline modes). Secondly, sensitivity tests to the threshold value applied to Kz are performed. The simulations are evaluated by systematically comparing model fields to observations (Globcolour product and World Ocean Atlas 2005) at global and regional scales. We show first that offline simulations are in good agreement with online simulation. As expected, the lower the physical forcing frequency is, the closer to the online solution is the offline simulation. The threshold value on the vertical diffusivity coefficient manages the mixing strength within the mixed layer. A value of 1 m2.s-1 appears to be a good compromise to approach

  5. Application of virtual reality technique to a radiation protection training program

    International Nuclear Information System (INIS)

    Hajek, Brian K.; Kang, Ki Doo; Shin, Yoo Jin; Lee, Yon Sik

    2003-01-01

    Using an Internet Virtual Reality (IVR) technique, a 3-dimensional (3-D) model for the radiation controlled area in a nuclear power plant was developed, and a feasibility study to develop a computational program to estimate radiation dose was performed. For this purpose, a pilot model with a dynamic function and bi-directional communication was developed. This model was enhanced from the existing 3-D single-directional communication. In this pilot model, a plant visitor needs to first pass a series of security checks. If the visitor enters the controlled area and approaches a radiation hazard area, alarms with a warning lamp will be initiated automatically. Throughout the test to connect this model from both domestic and international sites in various time zones, it has proven to perform well. Therefore, this model can be applied to broad fields as radiation protection procedures or radiation protection training with photographic data, and on-line dose assessment programs

  6. The POL Model: Using a Social Constructivist Framework to Develop Blended and Online Learning

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Godsk, Mikkel

    2007-01-01

    The paper presents a model for developing blended and online learning based on a given curriculum and typical learning objectives for university courses. The model consists of a three-step-process in which the instructor formulates product-oriented tasks, develops and structures the learning...... materials and tools, outlines a schedule, and supports the students' learning activity in developing a product. The model is based on our experiences with transforming traditional lecture-based lessons into problem-based blended and online learning using a social constructivist approach and a standard...... virtual learning environment (VLE). Our initial experiments indicate that our model is useful to develop blended and online modules and, furthermore, it seems fruitful to use a social constructivist framework and orienting learning activities towards the development of products....

  7. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner

    Directory of Open Access Journals (Sweden)

    Yik Siang Pang

    2018-01-01

    Full Text Available This paper presents a Computational Fluid Dynamics (CFD study of a natural gas combustion burner focusing on the effect of combustion, thermal radiation and turbulence models on the temperature and chemical species concentration fields. The combustion was modelled using the finite rate/eddy dissipation (FR/EDM and partially premixed flame models. Detailed chemistry kinetics CHEMKIN GRI-MECH 3.0 consisting of 325 reactions was employed to model the methane combustion. Discrete ordinates (DO and spherical harmonics (P1 model were employed to predict the thermal radiation. The gas absorption coefficient dependence on the wavelength is resolved by the weighted-sum-of-gray-gases model (WSGGM. Turbulence flow was simulated using Reynolds-averaged Navier-Stokes (RANS based models. The findings showed that a combination of partially premixed flame, P1 and standard k-ε (SKE gave the most accurate prediction with an average deviation of around 7.8% of combustion temperature and 15.5% for reactant composition (methane and oxygen. The results show the multi-step chemistry in the partially premixed model is more accurate than the two-step FR/EDM. Meanwhile, inclusion of thermal radiation has a minor effect on the heat transfer and species concentration. SKE turbulence model yielded better prediction compared to the realizable k-ε (RKE and renormalized k-ε (RNG. The CFD simulation presented in this work may serve as a useful tool to evaluate a performance of a natural gas combustor. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 9th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Pang, Y.S., Law, W.P., Pung, K.Q., Gimbun, J. (2018. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 155-169 (doi:10.9767/bcrec

  8. Introduction of online adaptive radiotherapy for bladder cancer through a multicentre clinical trial (Trans-Tasman Radiation Oncology Group 10.01): lessons learned

    International Nuclear Information System (INIS)

    Pham, Daniel; Roxby, Paul; Kron, Tomas; Rolfo, Aldo; Foroudi, Farshad

    2013-01-01

    Online adaptive radiotherapy for bladder cancer is a novel radiotherapy technique that was found feasible in a pilot study at a single academic institution. In September 2010 this technique was opened as a multicenter study through the Trans-Tasman Radiation Oncology Group (TROG 10.01 bladder online adaptive radiotherapy treatment). Twelve centers across Australia and New-Zealand registered interest into the trial. A multidisciplinary team of radiation oncologists, radiation therapists and medical physicists represented the trial credentialing and technical support team. To provide timely activation and proper implementation of the adaptive technique the following key areas were addressed at each site: Staff education/training; Practical image guided radiotherapy assessment; provision of help desk and feedback. The trial credentialing process involved face-to-face training and technical problem solving via full day site visits. A dedicated 'help-desk' team was developed to provide support for the clinical trial. 26% of the workload occurred at the credentialing period while the remaining 74% came post-center activation. The workload was made up of the following key areas; protocol clarification (36%), technical problems (46%) while staff training was less than 10%. Clinical trial credentialing is important to minimizing trial deviations. It should not only focus on site activation quality assurance but also provide ongoing education and technical support. (author)

  9. On-line monitoring of base current and forward emitter current gain of the voltage regulator's serial pnp transistor in a radiation environment

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2012-01-01

    Full Text Available A method of on-line monitoring of the low-dropout voltage regulator's operation in a radiation environment is developed in this paper. The method had to enable detection of the circuit's degradation during exploitation, without terminating its operation in an ionizing radiation field. Moreover, it had to enable automatic measurement and data collection, as well as the detection of any considerable degradation, well before the monitored voltage regulator's malfunction. The principal parameters of the voltage regulator's operation that were monitored were the serial pnp transistor's base current and the forward emitter current gain. These parameters were procured indirectly, from the data on the voltage regulator's load and quiescent currents. Since the internal consumption current in moderately and heavily loaded devices was used, the quiescent current of a negligibly loaded voltage regulator of the same type served as a reference. Results acquired by on-line monitoring demonstrated marked agreement with the results acquired from examinations of the voltage regulator's maximum output current and minimum dropout voltage in a radiation environment. The results were particularly consistent in tests with heavily loaded devices. Results obtained for moderately loaded voltage regulators and the risks accompanying the application of the presented method, were also analyzed.

  10. Comparison of various online IGRT strategies: The benefits of online treatment plan re-optimization

    International Nuclear Information System (INIS)

    Schulze, Derek; Liang, Jian; Yan, Di; Zhang Tiezhi

    2009-01-01

    Purpose: To compare the dosimetric differences of various online IGRT strategies and to predict potential benefits of online re-optimization techniques in prostate cancer radiation treatments. Materials and methods: Nine prostate patients were recruited in this study. Each patient has one treatment planning CT images and 10-treatment day CT images. Five different online IGRT strategies were evaluated which include 3D conformal with bone alignment, 3D conformal re-planning via aperture changes, intensity modulated radiation treatment (IMRT) with bone alignment, IMRT with target alignment and IMRT daily re-optimization. Treatment planning and virtual treatment delivery were performed. The delivered doses were obtained using in-house deformable dose mapping software. The results were analyzed using equivalent uniform dose (EUD). Results: With the same margin, rectum and bladder doses in IMRT plans were about 10% and 5% less than those in CRT plans, respectively. Rectum and bladder doses were reduced as much as 20% if motion margin is reduced by 1 cm. IMRT is more sensitive to organ motion. Large discrepancies of bladder and rectum doses were observed compared to the actual delivered dose with treatment plan predication. The therapeutic ratio can be improved by 14% and 25% for rectum and bladder, respectively, if IMRT online re-planning is employed compared to the IMRT bone alignment approach. The improvement of target alignment approach is similar with 11% and 21% dose reduction to rectum and bladder, respectively. However, underdosing in seminal vesicles was observed on certain patients. Conclusions: Online treatment plan re-optimization may significantly improve therapeutic ratio in prostate cancer treatments mostly due to the reduction of PTV margin. However, for low risk patient with only prostate involved, online target alignment IMRT treatment would achieve similar results as online re-planning. For all IGRT approaches, the delivered organ-at-risk doses may be

  11. Automatic Segmentation and Online virtualCT in Head-and-Neck Adaptive Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Peroni, Marta, E-mail: marta.peroni@mail.polimi.it [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Ciardo, Delia [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Spadea, Maria Francesca [Department of Experimental and Clinical Medicine, Universita degli Studi Magna Graecia, Catanzaro (Italy); Riboldi, Marco [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy); Comi, Stefania; Alterio, Daniela [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Baroni, Guido [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy); Orecchia, Roberto [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Universita degli Studi di Milano, Milano (Italy); Medical Department, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy)

    2012-11-01

    Purpose: The purpose of this work was to develop and validate an efficient and automatic strategy to generate online virtual computed tomography (CT) scans for adaptive radiation therapy (ART) in head-and-neck (HN) cancer treatment. Method: We retrospectively analyzed 20 patients, treated with intensity modulated radiation therapy (IMRT), for an HN malignancy. Different anatomical structures were considered: mandible, parotid glands, and nodal gross tumor volume (nGTV). We generated 28 virtualCT scans by means of nonrigid registration of simulation computed tomography (CTsim) and cone beam CT images (CBCTs), acquired for patient setup. We validated our approach by considering the real replanning CT (CTrepl) as ground truth. We computed the Dice coefficient (DSC), center of mass (COM) distance, and root mean square error (RMSE) between correspondent points located on the automatically segmented structures on CBCT and virtualCT. Results: Residual deformation between CTrepl and CBCT was below one voxel. Median DSC was around 0.8 for mandible and parotid glands, but only 0.55 for nGTV, because of the fairly homogeneous surrounding soft tissues and of its small volume. Median COM distance and RMSE were comparable with image resolution. No significant correlation between RMSE and initial or final deformation was found. Conclusion: The analysis provides evidence that deformable image registration may contribute significantly in reducing the need of full CT-based replanning in HN radiation therapy by supporting swift and objective decision-making in clinical practice. Further work is needed to strengthen algorithm potential in nGTV localization.

  12. Automatic segmentation and online virtualCT in head-and-neck adaptive radiation therapy.

    Science.gov (United States)

    Peroni, Marta; Ciardo, Delia; Spadea, Maria Francesca; Riboldi, Marco; Comi, Stefania; Alterio, Daniela; Baroni, Guido; Orecchia, Roberto

    2012-11-01

    The purpose of this work was to develop and validate an efficient and automatic strategy to generate online virtual computed tomography (CT) scans for adaptive radiation therapy (ART) in head-and-neck (HN) cancer treatment. We retrospectively analyzed 20 patients, treated with intensity modulated radiation therapy (IMRT), for an HN malignancy. Different anatomical structures were considered: mandible, parotid glands, and nodal gross tumor volume (nGTV). We generated 28 virtualCT scans by means of nonrigid registration of simulation computed tomography (CTsim) and cone beam CT images (CBCTs), acquired for patient setup. We validated our approach by considering the real replanning CT (CTrepl) as ground truth. We computed the Dice coefficient (DSC), center of mass (COM) distance, and root mean square error (RMSE) between correspondent points located on the automatically segmented structures on CBCT and virtualCT. Residual deformation between CTrepl and CBCT was below one voxel. Median DSC was around 0.8 for mandible and parotid glands, but only 0.55 for nGTV, because of the fairly homogeneous surrounding soft tissues and of its small volume. Median COM distance and RMSE were comparable with image resolution. No significant correlation between RMSE and initial or final deformation was found. The analysis provides evidence that deformable image registration may contribute significantly in reducing the need of full CT-based replanning in HN radiation therapy by supporting swift and objective decision-making in clinical practice. Further work is needed to strengthen algorithm potential in nGTV localization. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. [Multispectral Radiation Algorithm Based on Emissivity Model Constraints for True Temperature Measurement].

    Science.gov (United States)

    Liang, Mei; Sun, Xiao-gang; Luan, Mei-sheng

    2015-10-01

    Temperature measurement is one of the important factors for ensuring product quality, reducing production cost and ensuring experiment safety in industrial manufacture and scientific experiment. Radiation thermometry is the main method for non-contact temperature measurement. The second measurement (SM) method is one of the common methods in the multispectral radiation thermometry. However, the SM method cannot be applied to on-line data processing. To solve the problems, a rapid inversion method for multispectral radiation true temperature measurement is proposed and constraint conditions of emissivity model are introduced based on the multispectral brightness temperature model. For non-blackbody, it can be drawn that emissivity is an increasing function in the interval if the brightness temperature is an increasing function or a constant function in a range and emissivity satisfies an inequality of emissivity and wavelength in that interval if the brightness temperature is a decreasing function in a range, according to the relationship of brightness temperatures at different wavelengths. The construction of emissivity assumption values is reduced from multiclass to one class and avoiding the unnecessary emissivity construction with emissivity model constraint conditions on the basis of brightness temperature information. Simulation experiments and comparisons for two different temperature points are carried out based on five measured targets with five representative variation trends of real emissivity. decreasing monotonically, increasing monotonically, first decreasing with wavelength and then increasing, first increasing and then decreasing and fluctuating with wavelength randomly. The simulation results show that compared with the SM method, for the same target under the same initial temperature and emissivity search range, the processing speed of the proposed algorithm is increased by 19.16%-43.45% with the same precision and the same calculation results.

  14. Online revenue models in the media sector: an exploratory study on their success factors and adoption

    OpenAIRE

    Stienstra, Martin R.; Ruel, Hubertus Johannes Maria; Boerrigter, Thomas

    2010-01-01

    Especially for companies in the media sector such as publishers, the Internet has created new strategic and commercial opportunities. However, many companies in the media sector are struggling with how to adapt their business and revenue model for doing profitable business online. This exploratory study goes into the success factors and the level of adoption of online revenue models by media sector companies. We use Chaffey (2002) in determining online revenue models in which we included Oste...

  15. Students’ online purchasing behavior in Malaysia: Understanding online shopping attitude

    Directory of Open Access Journals (Sweden)

    Marzieh Zendehdel

    2015-12-01

    Full Text Available Studies examining the factors that affect the online purchasing behavior of consumers are rare, despite the prospective advance of e-commerce in Malaysia. The present study examines particular factors that influence the attitude of potential consumers to purchase online by using the attributes from the diffusion of innovations theory of Rogers, the attribute of perception of risk, and the subjective norms toward online purchasing. Consumers’ perceived risks of online shopping have become a vital subject in research because they directly influence users’ attitude toward online purchasing. The structural equation modeling method was used to analyze the data gathered on students using e-commerce, and, thus, to validate the model. According to the results, consumers’ attitude toward online purchasing affects the intention toward online purchasing. The other influential factors are compatibility, relative advantage, and subjective norm.

  16. Competition with Online and Offline Demands considering Logistics Costs Based on the Hotelling Model

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Hu

    2014-01-01

    Full Text Available Through popular information technologies (e.g., call centers, web portal, ecommerce and social media, etc., traditional shops change their functions for servicing online demands while still providing offline sales and services, which expand the market and the service capacity. In the Hotelling model that formulates the demand effect by considering just offline demand, the shops in a line city will locate at the center as a the result of competition by games. The online demands are met by the delivery logistics services provided by the shops with additional cost; the consumers’ waiting time after their orders also affects their choices for shops. The main purpose is to study the effects of the following aspects on the shops’ location competition: two logistics costs (consumers’ travelling cost for offline demands and the shops’ delivery logistics cost for online demands, the consumers’ waiting cost for online orders, and the ratios of online demands to the whole demands. Therefore, this study primarily contributes to the literature on the formulation of these aspects by extending the Hotelling model. These features and effects are demonstrated by experiments using the extended Hotelling models.

  17. On a Modeling of Online User Behavior Using Function Representation

    Directory of Open Access Journals (Sweden)

    Pavel Pesout

    2012-01-01

    Full Text Available Understanding the online user system requirements has become very crucial for online services providers. The existence of many users and services leads to different users’ needs. The objective of this presented piece of work is to explore the algorithms of how to optimize providers supply with proposing a new way to represent user requirements as continuous functions depending on time. We address the problems of the prediction the of system requirements and reducing model complexity by creating the typical user behavior profiles.

  18. Model-based online optimisation. Pt. 1: active learning; Modellbasierte Online-Optimierung moderner Verbrennungsmotoren. T. 1: Aktives Lernen

    Energy Technology Data Exchange (ETDEWEB)

    Poland, J.; Knoedler, K.; Zell, A. [Tuebingen Univ. (Germany). Lehrstuhl fuer Rechnerarchitektur; Fleischhauer, T.; Mitterer, A.; Ullmann, S. [BMW Group (Germany)

    2003-05-01

    This two-part article presents the model-based optimisation algorithm ''mbminimize''. It was developed in a corporate project of the University Tuebingen and the BMW Group for the purpose of optimising internal combustion engines online on the engine test bed. The first part concentrates on the basic algorithmic design, as well as on modelling, experimental design and active learning. The second part will discuss strategies for dealing with limits such as knocking. (orig.) [German] Dieser zweiteilige Beitrag stellt den modellbasierten Optimierungsalgorithmus ''mbminimize'' vor, der in Kooperation von der Universitaet Tuebingen und der BMW Group fuer die Online-Optimierung von Verbrennungsmotoren entwickelt wurde. Der vorliegende erste Teil konzentriert sich auf das grundlegende algorithmische Design, auf Modellierung, Versuchsplanung und aktives Lernen. Der zweite Teil diskutiert Strategien zur Behandlung von Limits wie Motorklopfen.

  19. Combining next-generation sequencing and online databases for microsatellite development in non-model organisms.

    Science.gov (United States)

    Rico, Ciro; Normandeau, Eric; Dion-Côté, Anne-Marie; Rico, María Inés; Côté, Guillaume; Bernatchez, Louis

    2013-12-03

    Next-generation sequencing (NGS) is revolutionising marker development and the rapidly increasing amount of transcriptomes published across a wide variety of taxa is providing valuable sequence databases for the identification of genetic markers without the need to generate new sequences. Microsatellites are still the most important source of polymorphic markers in ecology and evolution. Motivated by our long-term interest in the adaptive radiation of a non-model species complex of whitefishes (Coregonus spp.), in this study, we focus on microsatellite characterisation and multiplex optimisation using transcriptome sequences generated by Illumina® and Roche-454, as well as online databases of Expressed Sequence Tags (EST) for the study of whitefish evolution and demographic history. We identified and optimised 40 polymorphic loci in multiplex PCR reactions and validated the robustness of our analyses by testing several population genetics and phylogeographic predictions using 494 fish from five lakes and 2 distinct ecotypes.

  20. Care Models of eHealth Services: A Case Study on the Design of a Business Model for an Online Precare Service.

    Science.gov (United States)

    van Meeuwen, Dorine Pd; van Walt Meijer, Quirine J; Simonse, Lianne Wl

    2015-03-24

    With a growing population of health care clients in the future, the organization of high-quality and cost-effective service providing becomes an increasing challenge. New online eHealth services are proposed as innovative options for the future. Yet, a major barrier to these services appears to be the lack of new business model designs. Although design efforts generally result in visual models, no such artifacts have been found in the literature on business model design. This paper investigates business model design in eHealth service practices from a design perspective. It adopts a research by design approach and seeks to unravel what characteristics of business models determine an online service and what are important value exchanges between health professionals and clients. The objective of the study was to analyze the construction of care models in-depth, framing the essential elements of a business model, and design a new care model that structures these elements for the particular context of an online pre-care service in practice. This research employs a qualitative method of an in-depth case study in which different perspectives on constructing a care model are investigated. Data are collected by using the visual business modeling toolkit, designed to cocreate and visualize the business model. The cocreated models are transcribed and analyzed per actor perspective, transactions, and value attributes. We revealed eight new actors in the business model for providing the service. Essential actors are: the intermediary network coordinator connecting companies, the service dedicated information technology specialists, and the service dedicated health specialist. In the transactions for every service providing we found a certain type of contract, such as a license contract and service contracts for precare services and software products. In addition to the efficiency, quality, and convenience, important value attributes appeared to be: timelines, privacy and

  1. Forecast and evaluation of performance of on-line radiation exposure management system in nuclear power plants

    International Nuclear Information System (INIS)

    Terano, Takao

    1982-01-01

    The computer systems used for nuclear power plants require high reliability and fast response for securing plant safety. Therefore, it is desirable to sufficiently scrutinize and investigate every work in advance by making total system if a computer system is to be introduced. In this paper, the on-line radiation management system, which is the main work of management computer system, is considered with a queuing simulation model, from the standpoint how the congestion at a TLD/ID station which manages the entering into and exiting from a controlled area is reduced. This is meaningful because it handles the major works of the system to be employed and predicts its performance considering the elements other than machine specifications, i.e., human behaviour. Seven conditions are assumed for the model in executing the simulation. The results are briefly as follows: (1) Queue at a TLD/ID station scarcely occurs in normal operation if 6 TLD devices are installed, but if any one device fails, waiting time increases twice or more. (2) Congestion may possibly be reduced without decreasing the whole efficiency if an appropriate management is done according to the degree of congestion. (3) If congestion is more serious, the increase of TLD devices may become necessary, but it is also important to execute the management such as reducing the attendant peak, for example, employing staggered office hours. (Wakatsuki, Y.)

  2. Near-Earth Space Radiation Models

    Science.gov (United States)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  3. The radiative heating response to climate change

    Science.gov (United States)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  4. Online coupled regional meteorology chemistry models in Europe : Current status and prospects

    NARCIS (Netherlands)

    Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; Galmarini, S.; Gauss, M.; Grell, G.; Hirtl, M.; Joffre, S.; Jorba, O.; Kaas, E.; Kaasik, M.; Kallos, G.; Kong, X.; Korsholm, U.; Kurganskiy, A.; Kushta, J.; Lohmann, U.; Mahura, A.; Manders-Groot, A.; Maurizi, A.; Moussiopoulos, N.; Rao, S.T.; Savage, N.; Seigneur, C.; Sokhi, R.S.; Solazzo, E.; Solomos, S.; Sørensen, B.; Tsegas, G.; Vignati, E.; Vogel, B.; Zhang, Y.

    2014-01-01

    Online coupled mesoscale meteorology atmospheric chemistry models have undergone a rapid evolution in recent years. Although mainly developed by the air quality modelling community, these models are also of interest for numerical weather prediction and regional climate modelling as they can consider

  5. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Biophysical models for the induction of cancer by radiation. Final report

    International Nuclear Information System (INIS)

    Paretzke, H.G.; Ballarini, F.; Brugmans, M.

    2000-01-01

    The overall project is organised into seven work packages. WP1 concentrates on the development of mechanistic, quantitative models for radiation oncogenesis using selected data sets from radiation epidemiology and from experimental animal studies. WP2 concentrates on the development of mechanistic, mathematical models for the induction of chromosome aberrations. WP3 develops mechanistic models for radiation mutagenesis, particularly using the HPRT-mutation as a paradigm. WP4 will develop mechanistic models for damage and repair of DNA, and compare these with experimentally derived data. WP5 concentrates on the improvement of our knowledge on the chemical reaction pathways of initial radiation chemical species in particular those that migrate to react with the DNA and on their simulation in track structure codes. WP6 models by track structure simulation codes the production of initial physical and chemical species, within DNA, water and other components of mammalian cells, in the tracks of charged particles following the physical processes of energy transfer, migration, absorption, and decay of excited states. WP7 concentrates on the determination of the start spectra of those tracks considered in WP6 for different impinging radiation fields and different irradiated biological objects. (orig.)

  6. A Model for Teaching Critical Thinking through Online Searching.

    Science.gov (United States)

    Crane, Beverley; Markowitz, Nancy Lourie

    1994-01-01

    Presents a model that uses online searching to teach critical thinking skills in elementary and secondary education based on Bloom's taxonomy. Three levels of activity are described: analyzing a search statement; defining and clarifying a problem; and focusing an information need. (Contains 13 references.) (LRW)

  7. A rapid radiative transfer model for reflection of solar radiation

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  8. A cognitive-behavioral model of problematic online gaming in adolescents aged 12–22 years

    NARCIS (Netherlands)

    Haagsma, M.C.; Caplan, S.E.; Peters, O.; Pieterse, Marcel E.

    2013-01-01

    The aim of this study was to apply the cognitive behavioral model of problematic Internet use to the context of online game use to obtain a better understanding of problematic use of online games and its negative consequences. In total, 597 online game playing adolescents aged 12–22 years

  9. Radiation Belt Test Model

    Science.gov (United States)

    Freeman, John W.

    2000-10-01

    Rice University has developed a dynamic model of the Earth's radiation belts based on real-time data driven boundary conditions and full adiabaticity. The Radiation Belt Test Model (RBTM) successfully replicates the major features of storm-time behavior of energetic electrons: sudden commencement induced main phase dropout and recovery phase enhancement. It is the only known model to accomplish the latter. The RBTM shows the extent to which new energetic electrons introduced to the magnetosphere near the geostationary orbit drift inward due to relaxation of the magnetic field. It also shows the effects of substorm related rapid motion of magnetotail field lines for which the 3rd adiabatic invariant is violated. The radial extent of this violation is seen to be sharply delineated to a region outside of 5Re, although this distance is determined by the Hilmer-Voigt magnetic field model used by the RBTM. The RBTM appears to provide an excellent platform on which to build parameterized refinements to compensate for unknown acceleration processes inside 5Re where adiabaticity is seen to hold. Moreover, built within the framework of the MSFM, it offers the prospect of an operational forecast model for MeV electrons.

  10. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  11. The on-line coupled atmospheric chemistry model system MECO(n) - Part 5: Expanding the Multi-Model-Driver (MMD v2.0) for 2-way data exchange including data interpolation via GRID (v1.0)

    Science.gov (United States)

    Kerkweg, Astrid; Hofmann, Christiane; Jöckel, Patrick; Mertens, Mariano; Pante, Gregor

    2018-03-01

    As part of the Modular Earth Submodel System (MESSy), the Multi-Model-Driver (MMD v1.0) was developed to couple online the regional Consortium for Small-scale Modeling (COSMO) model into a driving model, which can be either the regional COSMO model or the global European Centre Hamburg general circulation model (ECHAM) (see Part 2 of the model documentation). The coupled system is called MECO(n), i.e., MESSy-fied ECHAM and COSMO models nested n times. In this article, which is part of the model documentation of the MECO(n) system, the second generation of MMD is introduced. MMD comprises the message-passing infrastructure required for the parallel execution (multiple programme multiple data, MPMD) of different models and the communication of the individual model instances, i.e. between the driving and the driven models. Initially, the MMD library was developed for a one-way coupling between the global chemistry-climate ECHAM/MESSy atmospheric chemistry (EMAC) model and an arbitrary number of (optionally cascaded) instances of the regional chemistry-climate model COSMO/MESSy. Thus, MMD (v1.0) provided only functions for unidirectional data transfer, i.e. from the larger-scale to the smaller-scale models.Soon, extended applications requiring data transfer from the small-scale model back to the larger-scale model became of interest. For instance, the original fields of the larger-scale model can directly be compared to the upscaled small-scale fields to analyse the improvements gained through the small-scale calculations, after the results are upscaled. Moreover, the fields originating from the two different models might be fed into the same diagnostic tool, e.g. the online calculation of the radiative forcing calculated consistently with the same radiation scheme. Last but not least, enabling the two-way data transfer between two models is the first important step on the way to a fully dynamical and chemical two-way coupling of the various model instances.In MMD (v1

  12. Introduction of online adaptive radiotherapy for bladder cancer through a multicentre clinical trial (Trans-Tasman Radiation Oncology Group 10.01: Lessons learned

    Directory of Open Access Journals (Sweden)

    Daniel Pham

    2013-01-01

    Full Text Available Online adaptive radiotherapy for bladder cancer is a novel radiotherapy technique that was found feasible in a pilot study at a single academic institution. In September 2010 this technique was opened as a multicenter study through the Trans-Tasman Radiation Oncology Group (TROG 10.01 bladder online adaptive radiotherapy treatment. Twelve centers across Australia and New-Zealand registered interest into the trial. A multidisciplinary team of radiation oncologists, radiation therapists and medical physicists represented the trial credentialing and technical support team. To provide timely activation and proper implementation of the adaptive technique the following key areas were addressed at each site: Staff education/training; Practical image guided radiotherapy assessment; provision of help desk and feedback. The trial credentialing process involved face-to-face training and technical problem solving via full day site visits. A dedicated "help-desk" team was developed to provide support for the clinical trial. 26% of the workload occurred at the credentialing period while the remaining 74% came post-center activation. The workload was made up of the following key areas; protocol clarification (36%, technical problems (46% while staff training was less than 10%. Clinical trial credentialing is important to minimizing trial deviations. It should not only focus on site activation quality assurance but also provide ongoing education and technical support.

  13. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  14. Comparison of maternal and neonatal outcomes for patients with placenta accreta spectrum between online-to-offline management model with standard care model.

    Science.gov (United States)

    Sun, Wen; Yu, Lin; Liu, Shiliang; Chen, Yanhong; Chen, Juanjuan; Wen, Shi Wu; Chen, Dunjin

    2018-03-01

    Online-to-offline is a new model for emergent medical service with the ability to connect care providers with patients on instant basis. This study aims to evaluate maternal and neonatal outcomes in patients with placenta accreta spectrum managed by an online-to-offline care model. Starting from January 1, 2015, management of patients with placenta accreta spectrum was changed from standard care model into an online-to-offline care model through "Wechat" in Guangzhou Medical Centre for Critical Obstetrical Care. This study compared maternal and neonatal outcomes in patients affected by placenta accreta spectrum between 2015 (online-to-offline model) and 2014 (standard care model). A total of 209 cases of placenta accrete spectrum were treated in our center in 2015 and 218 such cases were treated in 2014. Patients treated in 2015 had lower rate of hysterectomy (14.83% versus 20.64%) and shorter hospital stay (7 days versus 8 days). The average interval from admission to emergency cesarean section for critically ill patients was 38.5 min in 2015 versus 50.7 min in 2014. Patients affected by placenta accreta spectrum managed by online-to-offline care model have reduced risk of hysterectomy, shorter hospital stay, and shorter response time from admission to emergency cesarean section. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  16. Mutiple simultaneous event model for radiation carcinogenesis

    International Nuclear Information System (INIS)

    Baum, J.W.

    1979-01-01

    Theoretical Radiobiology and Risk Estimates includes reports on: Multiple Simultaneous Event Model for Radiation Carcinogenesis; Cancer Risk Estimates and Neutron RBE Based on Human Exposures; A Rationale for Nonlinear Dose Response Functions of Power Greater or Less Than One; and Rationale for One Double Event in Model for Radiation Carcinogenesis

  17. On-line control of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Parus, I.; Kierzek, J.; Zoltowski, T.

    1977-01-01

    The development trends in the field of chemical processes control and the present state of the development of continuous composition analysers has been described. On this background the peculiarities of on-line control methods for spent nuclear fuel reprocessing have been discussed. The measuring methods for direct and indirect determination of chemical composition and nuclear safety are reviewed in detail. The review comprises such methods as: measurement of α, γ and neutron radiation emitted both by nuclides present in technological solutions and using external sources of different radiation, X-ray fluorescence, measurements of physicochemical parameters connected with the composition (pH, density, electrical conductivity), polarography and spectrophotometry. At the end of this review some new trends in process control based on dynamic process models have been presented. (author)

  18. Stochastic radiative transfer model for mixture of discontinuous vegetation canopies

    International Nuclear Information System (INIS)

    Shabanov, Nikolay V.; Huang, D.; Knjazikhin, Y.; Dickinson, R.E.; Myneni, Ranga B.

    2007-01-01

    Modeling of the radiation regime of a mixture of vegetation species is a fundamental problem of the Earth's land remote sensing and climate applications. The major existing approaches, including the linear mixture model and the turbid medium (TM) mixture radiative transfer model, provide only an approximate solution to this problem. In this study, we developed the stochastic mixture radiative transfer (SMRT) model, a mathematically exact tool to evaluate radiation regime in a natural canopy with spatially varying optical properties, that is, canopy, which exhibits a structured mixture of vegetation species and gaps. The model solves for the radiation quantities, direct input to the remote sensing/climate applications: mean radiation fluxes over whole mixture and over individual species. The canopy structure is parameterized in the SMRT model in terms of two stochastic moments: the probability of finding species and the conditional pair-correlation of species. The second moment is responsible for the 3D radiation effects, namely, radiation streaming through gaps without interaction with vegetation and variation of the radiation fluxes between different species. We performed analytical and numerical analysis of the radiation effects, simulated with the SMRT model for the three cases of canopy structure: (a) non-ordered mixture of species and gaps (TM); (b) ordered mixture of species without gaps; and (c) ordered mixture of species with gaps. The analysis indicates that the variation of radiation fluxes between different species is proportional to the variation of species optical properties (leaf albedo, density of foliage, etc.) Gaps introduce significant disturbance to the radiation regime in the canopy as their optical properties constitute major contrast to those of any vegetation species. The SMRT model resolves deficiencies of the major existing mixture models: ignorance of species radiation coupling via multiple scattering of photons (the linear mixture model

  19. SRADLIB: A C Library for Solar Radiation Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui, J. L. [Ciemat. Madrid (Spain)

    2000-07-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As results of this study and revision, a C library (SRADLIB) is presented as a key for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs.

  20. SRADLIB: A C Library for Solar Radiation Modelling

    International Nuclear Information System (INIS)

    Balenzategui, J. L.

    1999-01-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As result of this study and revision, a C library (SRADLIB) is presented as a key tool for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. Some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs

  1. Care Models of eHealth Services: A Case Study on the Design of a Business Model for an Online Precare Service

    Science.gov (United States)

    2015-01-01

    Background With a growing population of health care clients in the future, the organization of high-quality and cost-effective service providing becomes an increasing challenge. New online eHealth services are proposed as innovative options for the future. Yet, a major barrier to these services appears to be the lack of new business model designs. Although design efforts generally result in visual models, no such artifacts have been found in the literature on business model design. This paper investigates business model design in eHealth service practices from a design perspective. It adopts a research by design approach and seeks to unravel what characteristics of business models determine an online service and what are important value exchanges between health professionals and clients. Objective The objective of the study was to analyze the construction of care models in-depth, framing the essential elements of a business model, and design a new care model that structures these elements for the particular context of an online pre-care service in practice. Methods This research employs a qualitative method of an in-depth case study in which different perspectives on constructing a care model are investigated. Data are collected by using the visual business modeling toolkit, designed to cocreate and visualize the business model. The cocreated models are transcribed and analyzed per actor perspective, transactions, and value attributes. Results We revealed eight new actors in the business model for providing the service. Essential actors are: the intermediary network coordinator connecting companies, the service dedicated information technology specialists, and the service dedicated health specialist. In the transactions for every service providing we found a certain type of contract, such as a license contract and service contracts for precare services and software products. In addition to the efficiency, quality, and convenience, important value attributes

  2. Status of the Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). 10-minute averages of these data formed an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and 2002. These data were then averaged to provide a differential flux spectrum at 0.174, 0.304, 0.527, 1.5, 2.0, 11.0, and 31 MeV in the jovian equatorial plane as a function of radial distance. This omni-directional, equatorial model was combined with the original Divine model of jovian electron radiation to yield estimates of the out-of-plane radiation environment. That model, referred to here as the Galileo Interim Radiation Electron (or GIRE) model, was then used to calculate the Europa mission dose for an average and a 1-sigma worst-case situation. The prediction of the GIRE model is about a factor of 2 lower than the Divine model estimate over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeds the Divine model by about 50% for thicker shielding. The model, the steps leading to its creation, and relevant issues and concerns are discussed. While work remains to be done, the GIRE model clearly represents a significant step forward in the study of the jovian radiation environment, and it is a useful and valuable tool for estimating that environment for future space missions.

  3. Infrared radiation models for atmospheric ozone

    Science.gov (United States)

    Kratz, David P.; Ces, Robert D.

    1988-01-01

    A hierarchy of line-by-line, narrow-band, and broadband infrared radiation models are discussed for ozone, a radiatively important atmospheric trace gas. It is shown that the narrow-band (Malkmus) model is in near-precise agreement with the line-by-line model, thus providing a means of testing narrow-band Curtis-Godson scaling, and it is found that this scaling procedure leads to errors in atmospheric fluxes of up to 10 percent. Moreover, this is a direct consequence of the altitude dependence of the ozone mixing ratio. Somewhat greater flux errors arise with use of the broadband model, due to both a lesser accuracy of the broadband scaling procedure and to inherent errors within the broadband model, despite the fact that this model has been tuned to the line-by-line model.

  4. Online Learning of Industrial Manipulators' Dynamics Models

    DEFF Research Database (Denmark)

    Polydoros, Athanasios

    2017-01-01

    , it was compared with multiple other state-of-the-art machine learning algorithms. Moreover, the thesis presents the application of the proposed learning method on robot control for achieving trajectory execution while learning the inverse dynamics models  on-the-fly . Also it is presented the application...... of the dynamics models. Those mainly derive from physics-based methods and thus they are based on physical properties which are hard to be calculated.  In this thesis, is presented, a novel online machine learning approach  which is able to model both inverse and forward dynamics models of industrial manipulators....... The proposed method belongs to the class of deep learning and exploits the concepts of self-organization, recurrent neural networks and iterative multivariate Bayesian regression. It has been evaluated on multiple datasets captured from industrial robots while they were performing various tasks. Also...

  5. An Online Interactive Competition Model for E-Learning System ...

    African Journals Online (AJOL)

    An Online Interactive Competition Model for E-Learning System. ... A working prototype of the system was developed using MySQL Database Management System (DBMS), PHP as the scripting language and Apache as the web server. The system was tested and the results were presented graphically in this paper.

  6. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  7. Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling

    Science.gov (United States)

    Mölg, Thomas; Cullen, Nicolas J.; Kaser, Georg

    Broadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G) and incoming longwave radiation (L↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff, so G or L↓ can be modelled based on neff derived from measured L↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L↓ increases by 45-65% (depending on altitude) relative to clear-sky L↓. Validation for a 1 year dataset of G and L↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L↓ is measured.

  8. Radiation arteriopathy in the transgenic arteriovenous fistula model.

    Science.gov (United States)

    Lawton, Michael T; Arnold, Christine M; Kim, Yung J; Bogarin, Ernesto A; Stewart, Campbell L; Wulfstat, Amanda A; Derugin, Nikita; Deen, Dennis; Young, William L

    2008-05-01

    The transgenic arteriovenous fistula model, surgically constructed with transgenic mouse aorta interposed in common carotid artery-to-external jugular vein fistulae in nude rats, has a 4-month experimental window because patency and transgenic phenotype are lost over time. We adapted this model to investigate occlusive arteriopathy in brain arteriovenous malformations after radiosurgery by radiating grafted aorta before insertion in the fistula. We hypothesized that high-dose radiation would reproduce the arteriopathy observed clinically within the experimental time window and that deletions of endoglin (ENG) and endothelial nitric oxide synthase (eNOS) genes would modify the radiation response. Radiation arteriopathy in the common carotid arteries of 171 wild-type mice was examined with doses of 25, 80, 120, or 200 Gy (Experiment 1). Radiation arteriopathy in 68 wild-type arteriovenous fistulae was examined histologically and morphometrically with preoperative radiation doses of 0, 25, or 200 Gy (Experiment 2). Radiation arteriopathy in 51 transgenic arteriovenous fistulae (36 ENG and 15 eNOS knock-out fistulae) was examined using preoperative radiation doses of 0, 25, or 200 Gy (Experiment 3). High-dose radiation (200 Gy) of mouse common carotid arteries induced only mild arteriopathy (mean score, 0.66) without intimal hyperplasia and with high mortality (68%). Radiation arteriopathy in wild-type arteriovenous fistulae was severe (mean score, 3.5 at 200 Gy), with intimal hyperplasia and medial disruption at 3 months, decreasing luminal areas with increasing dose, and no mortality. Arteriopathy was robust in transgenic arteriovenous fistulae with ENG +/- and with eNOS +/-, with thick intimal hyperplasia in the former and distinct smooth muscle cell proliferation in the latter. The transgenic arteriovenous fistula model can be adapted to rapidly reproduce radiation arteriopathy observed in resected brain arteriovenous malformations after radiosurgery. High

  9. On-line Adaptive Radiation Treatment of Prostate Cancer

    National Research Council Canada - National Science Library

    Zhang, Tiezhi

    2008-01-01

    .... The specific aims of this project are to develop the key technical components for online adaptive treatment, which include parallel deformable image registration algorithm, parallel dose calculation...

  10. The on-line coupled atmospheric chemistry model system MECO(n – Part 5: Expanding the Multi-Model-Driver (MMD v2.0 for 2-way data exchange including data interpolation via GRID (v1.0

    Directory of Open Access Journals (Sweden)

    A. Kerkweg

    2018-03-01

    Full Text Available As part of the Modular Earth Submodel System (MESSy, the Multi-Model-Driver (MMD v1.0 was developed to couple online the regional Consortium for Small-scale Modeling (COSMO model into a driving model, which can be either the regional COSMO model or the global European Centre Hamburg general circulation model (ECHAM (see Part 2 of the model documentation. The coupled system is called MECO(n, i.e., MESSy-fied ECHAM and COSMO models nested n times. In this article, which is part of the model documentation of the MECO(n system, the second generation of MMD is introduced. MMD comprises the message-passing infrastructure required for the parallel execution (multiple programme multiple data, MPMD of different models and the communication of the individual model instances, i.e. between the driving and the driven models. Initially, the MMD library was developed for a one-way coupling between the global chemistry–climate ECHAM/MESSy atmospheric chemistry (EMAC model and an arbitrary number of (optionally cascaded instances of the regional chemistry–climate model COSMO/MESSy. Thus, MMD (v1.0 provided only functions for unidirectional data transfer, i.e. from the larger-scale to the smaller-scale models.Soon, extended applications requiring data transfer from the small-scale model back to the larger-scale model became of interest. For instance, the original fields of the larger-scale model can directly be compared to the upscaled small-scale fields to analyse the improvements gained through the small-scale calculations, after the results are upscaled. Moreover, the fields originating from the two different models might be fed into the same diagnostic tool, e.g. the online calculation of the radiative forcing calculated consistently with the same radiation scheme. Last but not least, enabling the two-way data transfer between two models is the first important step on the way to a fully dynamical and chemical two-way coupling of the various model

  11. Online Sellers’ Website Quality Influencing Online Buyers’ Purchase Intention

    Science.gov (United States)

    Shea Lee, Tan; Ariff, Mohd Shoki Md; Zakuan, Norhayati; Sulaiman, Zuraidah; Zameri Mat Saman, Muhamad

    2016-05-01

    The increase adoption of Internet among young users in Malaysia provides high prospect for online seller. Young users aged between 18 and 25 years old are important to online sellers because they are actively involved in online purchasing and this group of online buyers is expected to dominate future online market. Therefore, examining online sellers’ website quality and online buyers’ purchase intention is crucial. Based on the Theory of planned behavior (TPB), a conceptual model of online sellers’ website quality and purchase intention of online buyers was developed. E-tailQ instrument was adapted in this study which composed of website design, reliability/fulfillment, security, privacy & trust, and customer service. Using online questionnaire and convenience sampling procedure, primary data were obtained from 240 online buyers aged between 18 to 25 years old. It was discovered that website design, website reliability/fulfillment, website security, privacy & trust, and website customer service positively and significantly influence intention of online buyers to continuously purchase via online channels. This study concludes that online sellers’ website quality is important in predicting online buyers’ purchase intention. Recommendation and implication of this study were discussed focusing on how online sellers should improve their website quality to stay competitive in online business.

  12. On-line course as tools for radiation protection training in patients. A practical case in computerized tomography

    International Nuclear Information System (INIS)

    Medina Campos, J.; Fernandez Tallon, J.; Busca Suau, J.; Baro Casanovas, J.

    2006-01-01

    The rise in ionizing radiation applications within the field of diagnostics, with the corresponding increase in both number and doses received by patients, requires adequate resources for education and training in radiological protection. In is quite difficult to assemble professionals at a specific place to carry out training. However, the use of Information and Communication Technologies (IT) makes it possible to carry out training. However, the use of Information and Communication Technologies (IT) makes it possible to carry out training through Internet in an effective, easy and amusing way (e-learning). An on-line course of patient radiological protection and quality control in computer tomography has been developed aimed at professionals that use these diagnostic techniques. The course has been run twice in the period 2005-2006. The course is found on an Internet-accessible Virtual Campus, which allows access to multimedia contents, communication between students and instructors and follow-up of students performance. Final evaluation is done on-line and successfully passing the course counts for 8.9 credits in the Continuous Education Programme of Spanish Health Systems. (Author)

  13. Online Simulation of Radiation Track Structure Project

    Science.gov (United States)

    Plante, Ianik

    2015-01-01

    Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.

  14. Topic Modeling Reveals Distinct Interests within an Online Conspiracy Forum

    Directory of Open Access Journals (Sweden)

    Colin Klein

    2018-02-01

    Full Text Available Conspiracy theories play a troubling role in political discourse. Online forums provide a valuable window into everyday conspiracy theorizing, and can give a clue to the motivations and interests of those who post in such forums. Yet this online activity can be difficult to quantify and study. We describe a unique approach to studying online conspiracy theorists which used non-negative matrix factorization to create a topic model of authors' contributions to the main conspiracy forum on Reddit.com. This subreddit provides a large corpus of comments which spans many years and numerous authors. We show that within the forum, there are multiple sub-populations distinguishable by their loadings on different topics in the model. Further, we argue, these differences are interpretable as differences in background beliefs and motivations. The diversity of the distinct subgroups places constraints on theories of what generates conspiracy theorizing. We argue that traditional “monological” believers are only the tip of an iceberg of commenters. Neither simple irrationality nor common preoccupations can account for the observed diversity. Instead, we suggest, those who endorse conspiracies seem to be primarily brought together by epistemological concerns, and that these central concerns link an otherwise heterogenous group of individuals.

  15. Individual-based model for radiation risk assessment

    Science.gov (United States)

    Smirnova, O.

    A mathematical model is developed which enables one to predict the life span probability for mammals exposed to radiation. It relates statistical biometric functions with statistical and dynamic characteristics of an organism's critical system. To calculate the dynamics of the latter, the respective mathematical model is used too. This approach is applied to describe the effects of low level chronic irradiation on mice when the hematopoietic system (namely, thrombocytopoiesis) is the critical one. For identification of the joint model, experimental data on hematopoiesis in nonirradiated and irradiated mice, as well as on mortality dynamics of those in the absence of radiation are utilized. The life span probability and life span shortening predicted by the model agree with corresponding experimental data. Modeling results show the significance of ac- counting the variability of the individual radiosensitivity of critical system cells when estimating the radiation risk. These findings are corroborated by clinical data on persons involved in the elimination of the Chernobyl catastrophe after- effects. All this makes it feasible to use the model for radiation risk assessments for cosmonauts and astronauts on long-term missions such as a voyage to Mars or a lunar colony. In this case the model coefficients have to be determined by making use of the available data for humans. Scenarios for the dynamics of dose accumulation during space flights should also be taken into account.

  16. Design an online course of radiological protection

    International Nuclear Information System (INIS)

    Garcia S, R.; Del Sol F, S.; Rivera M, T.; Sanchez G, D.

    2015-10-01

    Currently there is a vast research about the harmful effects of the use of ionizing radiation in medical procedures and in recent years struck by the rapid innovation in imaging equipment, considerably increasing the radiation dose received both patients and professionals in the radiodiagnosis area, service having the greatest demand in our country. The main strategy that has so far is education, that is, to inform all those involved in managing ionizing radiation about the applications and risks associated with them. Generally it requires that all personnel occupationally exposed attesting a course of radiation protection. However, the high demand for this type of medical services and poorly trained staff, makes taking a classroom course for personnel occupationally exposed is complicated. So that in the Instituto Politecnico Nacional (IPN) we are designing a course in radiation protection to be implemented online, through the virtual platform Moodle in a first stage, and a massive open online course as the second stage so that can be carried by anyone interested in the subject, without having to appear in person. This will allows to reach the largest possible number of personnel occupationally exposed to just have a computer with internet access. (Author)

  17. Using the Knowledge, Process, Practice (KPP) model for driving the design and development of online postgraduate medical education.

    Science.gov (United States)

    Shaw, Tim; Barnet, Stewart; Mcgregor, Deborah; Avery, Jennifer

    2015-01-01

    Online learning is a primary delivery method for continuing health education programs. It is critical that programs have curricula objectives linked to educational models that support learning. Using a proven educational modelling process ensures that curricula objectives are met and a solid basis for learning and assessment is achieved. To develop an educational design model that produces an educationally sound program development plan for use by anyone involved in online course development. We have described the development of a generic educational model designed for continuing health education programs. The Knowledge, Process, Practice (KPP) model is founded on recognised educational theory and online education practice. This paper presents a step-by-step guide on using this model for program development that encases reliable learning and evaluation. The model supports a three-step approach, KPP, based on learning outcomes and supporting appropriate assessment activities. It provides a program structure for online or blended learning that is explicit, educationally defensible, and supports multiple assessment points for health professionals. The KPP model is based on best practice educational design using a structure that can be adapted for a variety of online or flexibly delivered postgraduate medical education programs.

  18. Radiation heat transfer model for the SCDAP code

    International Nuclear Information System (INIS)

    Sohal, M.S.

    1984-01-01

    A radiation heat transfer model has been developed for severe fuel damage analysis which accounts for anisotropic effects of reflected radiation. The model simplifies the view factor calculation which results in significant savings in computational cost with little loss of accuracy. Radiation heat transfer rates calculated by the isotropic and anisotropic models compare reasonably well with those calculated by other models. The model is applied to an experimental nuclear rod bundle during a slow boiloff of the coolant liquid, a situation encountered during a loss of coolant accident with severe fuel damage. At lower temperatures and also lower temperature gradients in the core, the anisotropic effect was not found to be significant

  19. The Importance of the Online Business Models on the Internet Businesses Evolution, in Romania, in Economic Crisis Conditions

    OpenAIRE

    NEGOI Eugen-Remus; SION Beatrice

    2010-01-01

    In managing a business online, it was given crucial importance to research business and increase the visibility of offered products or services, through online social media. Promotional expenses compared to the online business model to those of a traditional business model, decreased significantly. Visibility, as equal opportunity, given the size of a business and lift them in time. A contemporary Romanian online business success is based even so on visibility and social environments on the I...

  20. Modeling of the Martian environment for radiation analysis

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Clowdsley, M.S.; Qualls, G.D.; Singleterry, R.C.

    2006-01-01

    A model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) has been developed. Solar modulated primary particles rescaled for conditions at Mars are transported through the Martian atmosphere down to the surface, with altitude and backscattering patterns taken into account. The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g. CO 2 and H 2 O ices) along with its time variations throughout the Martian year. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. This site has been developed to provide the scientific and engineering communities with an interactive site containing a variety of environmental models, shield evaluation codes, and radiation response models to allow a thorough assessment of ionizing radiation risk for current and future space missions

  1. Atmospheric radiative transfer modeling: a summary of the AER codes

    Energy Technology Data Exchange (ETDEWEB)

    Clough, S.A. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Shephard, M.W. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)]. E-mail: mshephar@aer.com; Mlawer, E.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Delamere, J.S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Iacono, M.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Cady-Pereira, K. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Boukabara, S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Brown, P.D. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)

    2005-03-01

    The radiative transfer models developed at AER are being used extensively for a wide range of applications in the atmospheric sciences. This communication is intended to provide a coherent summary of the various radiative transfer models and associated databases publicly available from AER (http://www.rtweb.aer.com). Among the communities using the models are the remote sensing community (e.g. TES, IASI), the numerical weather prediction community (e.g. ECMWF, NCEP GFS, WRF, MM5), and the climate community (e.g. ECHAM5). Included in this communication is a description of the central features and recent updates for the following models: the line-by-line radiative transfer model (LBLRTM); the line file creation program (LNFL); the longwave and shortwave rapid radiative transfer models, RRTM{sub L}W and RRTM{sub S}W; the Monochromatic Radiative Transfer Model (MonoRTM); the MT{sub C}KD Continuum; and the Kurucz Solar Source Function. LBLRTM and the associated line parameter database (e.g. HITRAN 2000 with 2001 updates) play a central role in the suite of models. The physics adopted for LBLRTM has been extensively analyzed in the context of closure experiments involving the evaluation of the model inputs (e.g. atmospheric state), spectral radiative measurements and the spectral model output. The rapid radiative transfer models are then developed and evaluated using the validated LBLRTM model.

  2. First Results of Modeling Radiation Belt Electron Dynamics with the SAMI3 Plasmasphere Model

    Science.gov (United States)

    Komar, C. M.; Glocer, A.; Huba, J.; Fok, M. C. H.; Kang, S. B.; Buzulukova, N.

    2017-12-01

    The radiation belts were one of the first discoveries of the Space Age some sixty years ago and radiation belt models have been improving since the discovery of the radiation belts. The plasmasphere is one region that has been critically important to determining the dynamics of radiation belt populations. This region of space plays a critical role in describing the distribution of chorus and magnetospheric hiss waves throughout the inner magnetosphere. Both of these waves have been shown to interact with energetic electrons in the radiation belts and can result in the energization or loss of radiation belt electrons. However, radiation belt models have been historically limited in describing the distribution of cold plasmaspheric plasma and have relied on empirically determined plasmasphere models. Some plasmasphere models use an azimuthally symmetric distribution of the plasmasphere which can fail to capture important plasmaspheric dynamics such as the development of plasmaspheric drainage plumes. Previous work have coupled the kinetic bounce-averaged Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model used to model ring current and radiation belt populations with the Block-adaptive Tree Solar wind Roe-type Upwind Scheme (BATSRUS) global magnetohydrodynamic model to self-consistently obtain the magnetospheric magnetic field and ionospheric potential. The present work will utilize this previous coupling and will additionally couple the SAMI3 plasmasphere model to better represent the dynamics on the plasmasphere and its role in determining the distribution of waves throughout the inner magnetosphere. First results on the relevance of chorus, hiss, and ultralow frequency waves on radiation belt electron dynamics will be discussed in context of the June 1st, 2013 storm-time dropout event.

  3. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...

  4. The influence of online store characteristics on consumer impulsive decision-making: a model and empirical application

    NARCIS (Netherlands)

    Verhagen, T.; van Dolen, W.

    2009-01-01

    This study is one of the first to provide insight into the relationships between the online store and consumer impulsive decision-making. We develop a model and show how online store merchandise, ease of use (high task-relevant cues), enjoyment and style (low task relevant cues) relate to online

  5. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM MEASURED AIR TEMPERATURE AND ... Nigerian Journal of Technology ... Solar radiation measurement is not sufficient in Nigeria for various reasons such as maintenance and ...

  6. Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Meng, Shujuan; Xiong, Binyu; Ji, Dongxu; Tseng, King Jet

    2016-01-01

    Highlights: • Integrated online model identification and SOC estimate is explored. • Noise variances are online estimated in a data-driven way. • Identification bias caused by noise corruption is attenuated. • SOC is online estimated with high accuracy and fast convergence. • Algorithm comparison shows the superiority of proposed method. - Abstract: State of charge (SOC) estimators with online identified battery model have proven to have high accuracy and better robustness due to the timely adaption of time varying model parameters. In this paper, we show that the common methods for model identification are intrinsically biased if both the current and voltage sensors are corrupted with noises. The uncertainties in battery model further degrade the accuracy and robustness of SOC estimate. To address this problem, this paper proposes a novel technique which integrates the Frisch scheme based bias compensating recursive least squares (FBCRLS) with a SOC observer for enhanced model identification and SOC estimate. The proposed method online estimates the noise statistics and compensates the noise effect so that the model parameters can be extracted without bias. The SOC is further estimated in real time with the online updated and unbiased battery model. Simulation and experimental studies show that the proposed FBCRLS based observer effectively attenuates the bias on model identification caused by noise contamination and as a consequence provides more reliable estimate on SOC. The proposed method is also compared with other existing methods to highlight its superiority in terms of accuracy and convergence speed.

  7. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  8. Data driven modelling of vertical atmospheric radiation

    International Nuclear Information System (INIS)

    Antoch, Jaromir; Hlubinka, Daniel

    2011-01-01

    In the Czech Hydrometeorological Institute (CHMI) there exists a unique set of meteorological measurements consisting of the values of vertical atmospheric levels of beta and gamma radiation. In this paper a stochastic data-driven model based on nonlinear regression and on nonhomogeneous Poisson process is suggested. In the first part of the paper, growth curves were used to establish an appropriate nonlinear regression model. For comparison we considered a nonhomogeneous Poisson process with its intensity based on growth curves. In the second part both approaches were applied to the real data and compared. Computational aspects are briefly discussed as well. The primary goal of this paper is to present an improved understanding of the distribution of environmental radiation as obtained from the measurements of the vertical radioactivity profiles by the radioactivity sonde system. - Highlights: → We model vertical atmospheric levels of beta and gamma radiation. → We suggest appropriate nonlinear regression model based on growth curves. → We compare nonlinear regression modelling with Poisson process based modeling. → We apply both models to the real data.

  9. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Potter, G.L.; Corsetti, L.; Slingo, J.M.

    1993-02-01

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  10. Radiation budget measurement/model interface research

    Science.gov (United States)

    Vonderhaar, T. H.

    1981-01-01

    The NIMBUS 6 data were analyzed to form an up to date climatology of the Earth radiation budget as a basis for numerical model definition studies. Global maps depicting infrared emitted flux, net flux and albedo from processed NIMBUS 6 data for July, 1977, are presented. Zonal averages of net radiation flux for April, May, and June and zonal mean emitted flux and net flux for the December to January period are also presented. The development of two models is reported. The first is a statistical dynamical model with vertical and horizontal resolution. The second model is a two level global linear balance model. The results of time integration of the model up to 120 days, to simulate the January circulation, are discussed. Average zonal wind, meridonal wind component, vertical velocity, and moisture budget are among the parameters addressed.

  11. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Demirhan, Haydar

    2014-01-01

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has

  12. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  13. Study of different registration methods for on-line kilovoltage cone-beam CT guided lung cancer radiation

    International Nuclear Information System (INIS)

    Wang Yanyang; Fu Xiaolong; Xia Bing; Wu Zhengqin; Fan Min; Yang Huanjun; Xu Zhiyong; Jiang Guoliang

    2009-01-01

    Objective: To select the optimal registration method for on-line kilovoltage cone-beam CT (KVCBCT) guided lung cancer radiation and evaluate the reproducibility of the selected method. Methods: Sixteen patients with non-small cell lung cancer were enrolled into this study. A total of 96 pretreatment KVCBCT images from the 16 patients were available for the analysis. Image registration methods were bone-based automatic registration, gray-based automatic registration, manual registration and semi-automatic registration. All registrations were accomplished by one physician. Another physician blindly evaluated the results of each registration, then selected the optimal registration method and evaluated its reproducibility. Results: The average score of the bone-based automatic registration, gray-based automatic registration, manual registration and semi-automatic registration methods was 2.4, 2.7, 3.0 and 3.7, respectively. The score of the four different groups had statistics significant difference (F=42.20, P<0.001). Using the semi-automatic registration method, the probability of the difference between two registration results more than 3 mm in the left-right, superior-inferior, and anterior-posterior directions was 0, 3% and 6% by the same physician, 0, 14% and 0 by different physicians, and 8%, 14% and 8% by physician and radiation therapist. Conclusions: Semi-automatic registration method, possessing the highest score and accepted reproducibility, is appropriate for KVCBCT guided lung cancer radiation. (authors)

  14. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  15. Feasibility study of applying a multi-channel analysis model to on-line core monitoring system

    International Nuclear Information System (INIS)

    In, W. K.; Yoo, Y. J.; Hwang, D. H.; Jun, T. H.

    1998-01-01

    A feasibility study was performed to evaluate the effect of implementing a multi-channel analysis model in on-line core monitoring system. A simplified thermal-hydraulic model has been used in the on-line core monitoring system of digital PWR. The design procedure, core thermal margin and computation time were investigated in case of replacing the simplified model with the multi-channel analysis model. For the given ranges of limiting conditions for operation in Yonggwang Unit 3 Cycle 1, the minimum DNBR of the simplified thermal-hydraulic code CETOP-D was compared to that of the multi-channel analysis code MATRA. A CETOP-D tuning is additionally required to ensure the accurate and conservative DNBR calculation but the MATRA tuning is not necessary. MATRA appeared to increase the DNBR overpower margin from 2.5% to 6% over the CETOP-D margin. MATRA took approximately 1 second to compute DNBR on the HP9000 workstation system, which is longer than the DNBR computation time of CETOP-D. It is, however, fast enough to perform the on-line monitoring of DNBR. It can be therefore concluded that the application of the multi-channel analysis model MATRA in the on-line core monitoring system is feasible

  16. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer.

    Science.gov (United States)

    Bohoudi, O; Bruynzeel, A M E; Senan, S; Cuijpers, J P; Slotman, B J; Lagerwaard, F J; Palacios, M A

    2017-12-01

    To implement a robust and fast stereotactic MR-guided adaptive radiation therapy (SMART) online strategy in locally advanced pancreatic cancer (LAPC). SMART strategy for plan adaptation was implemented with the MRIdian system (ViewRay Inc.). At each fraction, OAR (re-)contouring is done within a distance of 3cm from the PTV surface. Online plan re-optimization is based on robust prediction of OAR dose and optimization objectives, obtained by building an artificial neural network (ANN). Proposed limited re-contouring strategy for plan adaptation (SMART 3CM ) is evaluated by comparing 50 previously delivered fractions against a standard (re-)planning method using full-scale OAR (re-)contouring (FULLOAR). Plan quality was assessed using PTV coverage (V 95% , D mean , D 1cc ) and institutional OAR constraints (e.g. V 33Gy ). SMART 3CM required a significant lower number of optimizations than FULLOAR (4 vs 18 on average) to generate a plan meeting all objectives and institutional OAR constraints. PTV coverage with both strategies was identical (mean V 95% =89%). Adaptive plans with SMART 3CM exhibited significant lower intermediate and high doses to all OARs than FULLOAR, which also failed in 36% of the cases to adhere to the V 33Gy dose constraint. SMART 3CM approach for LAPC allows good OAR sparing and adequate target coverage while requiring only limited online (re-)contouring from clinicians. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Identification of radiation-induced hydrocarbons in halibut, cod and prawns by on-line coupled LC-GC/MS technique

    International Nuclear Information System (INIS)

    Spiegelberg, A.; Schulzki, G.; Boegl, K.W.; Schreiber, G.A.

    1997-01-01

    Radiation-induced hydrocarbons were analysed in a fatty (halibut) and a lean fish (cod) as well as in a prawn species by on-line coupled liquid chromatography (LC) - gas chromatography (GC) combined with mass spectrometrical detection. In irradiated halibut which contains mainly saturated and monounsaturated fatty acids all expected radiolytic alkanes, alkenes and alkadienes could be detected. The yields of the C n-1 and C n-2:1 hydrocarbons were comparable with those found in irradiated lipids of land animals and plants. However, in cod and the prawn species which contain high levels of polyunsaturated fatty acids (PUFA), the C n-1 hydrocarbons were found in concentrations up to tenfold higher whereas the C n-2:1 products were again comparable to those of land animals and plants. The identification of radiation-induced hydrocarbons in fish lipids was achieved by transfer of the hydrocarbons from the LC column to the gas chromatographic column in fractions differing in the degree of unsaturation. For the first time radiation induced hydrocarbons with more than four double bonds generated from polyunsaturated fatty acids (20:4ω6 and 20:5ω3) could be identified. (orig.) [de

  18. Modeling Internal Radiation Therapy

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Theo E.; Pellegrini, M.; Fred, A.; Filipe, J.; Gamboa, H.

    2011-01-01

    A new technique is described to model (internal) radiation therapy. It is founded on morphological processing, in particular distance transforms. Its formal basis is presented as well as its implementation via the Fast Exact Euclidean Distance (FEED) transform. Its use for all variations of internal

  19. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    2000-01-01

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  20. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  1. Bioluminescence Tomography–Guided Radiation Therapy for Preclinical Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Wang, Ken Kang-Hsin, E-mail: kwang27@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Yu, Jingjing [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); School of Physics and Information Technology, Shaanxi Normal University, Shaanxi (China); Eslami, Sohrab; Iordachita, Iulian [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland (United States); Reyes, Juvenal; Malek, Reem [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Department of Oncology and Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland (United States); Patterson, Michael S. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario (Canada); Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States)

    2016-04-01

    Purpose: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials: The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationary charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results: Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions: The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or

  2. Bioluminescence Tomography–Guided Radiation Therapy for Preclinical Research

    International Nuclear Information System (INIS)

    Zhang, Bin; Wang, Ken Kang-Hsin; Yu, Jingjing; Eslami, Sohrab; Iordachita, Iulian; Reyes, Juvenal; Malek, Reem; Tran, Phuoc T.; Patterson, Michael S.; Wong, John W.

    2016-01-01

    Purpose: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials: The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationary charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results: Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions: The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or

  3. On a model-based approach to radiation protection

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    2002-01-01

    There is a preoccupation with linearity and absorbed dose as the basic quantifiers of radiation hazard. An alternative is the fluence approach, whereby radiation hazard may be evaluated, at least in principle, via an appropriate action cross section. In order to compare these approaches, it may be useful to discuss them as quantitative descriptors of survival and transformation-like endpoints in cell cultures in vitro - a system thought to be relevant to modelling radiation hazard. If absorbed dose is used to quantify these biological endpoints, then non-linear dose-effect relations have to be described, and, e.g. after doses of densely ionising radiation, dose-correction factors as high as 20 are required. In the fluence approach only exponential effect-fluence relationships can be readily described. Neither approach alone exhausts the scope of experimentally observed dependencies of effect on dose or fluence. Two-component models, incorporating a suitable mixture of the two approaches, are required. An example of such a model is the cellular track structure theory developed by Katz over thirty years ago. The practical consequences of modelling radiation hazard using this mixed two-component approach are discussed. (author)

  4. Six-Tube Freezable Radiator Testing and Model Correlation

    Science.gov (United States)

    Lilibridge, Sean T.; Navarro, Moses

    2012-01-01

    Freezable Radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft?s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recov ering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TM) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested: MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.

  5. Environmental Radiation Effects on Mammals A Dynamical Modeling Approach

    CERN Document Server

    Smirnova, Olga A

    2010-01-01

    This text is devoted to the theoretical studies of radiation effects on mammals. It uses the framework of developed deterministic mathematical models to investigate the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems including hematopoiesis, small intestine and humoral immunity, as well as on the development of autoimmune diseases. Thus, these models can contribute to the development of the system and quantitative approaches in radiation biology and ecology. This text is also of practical use. Its modeling studies of the dynamics of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employment of the developed models in the investigation and prediction of radiation effects on these hematopoietic lines. These models, as well as the properly identified models of other vital body systems, could provide a better understanding of the radiation risks to health. The modeling predictions will enable the implementation of more ef...

  6. Nuclear plant's virtual simulation for on-line radioactive environment monitoring and dose assessment for personnel

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso Marcelo F.

    2009-01-01

    This paper reports the use of nuclear plant's simulation for online dose rate monitoring and dose assessment for personnel, using virtual reality technology. The platform used for virtual simulation was adapted from a low cost game engine, taking advantage of all its image rendering capabilities, as well as the physics for movement and collision, and networking capabilities for multi-user interactive navigation. A real nuclear plant was virtually modeled and simulated, so that a number of users can navigate simultaneously in this virtual environment in first or third person view, each one receiving visual information about both the radiation dose rate in each actual position, and the radiation dose received. Currently, this research and development activity has been extended to consider also on-line measurements collected from radiation monitors installed in the real plant that feed the simulation platform with dose rate data, through a TCP/IP network. Results are shown and commented, and other improvements are discussed, as the execution of a more detailed dose rate mapping campaign.

  7. The 1-way on-line coupled atmospheric chemistry model system MECO(n – Part 2: On-line coupling with the Multi-Model-Driver (MMD

    Directory of Open Access Journals (Sweden)

    A. Kerkweg

    2012-01-01

    Full Text Available A new, highly flexible model system for the seamless dynamical down-scaling of meteorological and chemical processes from the global to the meso-γ scale is presented. A global model and a cascade of an arbitrary number of limited-area model instances run concurrently in the same parallel environment, in which the coarser grained instances provide the boundary data for the finer grained instances. Thus, disk-space intensive and time consuming intermediate and pre-processing steps are entirely avoided and the time interpolation errors of common off-line nesting approaches are minimised. More specifically, the regional model COSMO of the German Weather Service (DWD is nested on-line into the atmospheric general circulation model ECHAM5 within the Modular Earth Submodel System (MESSy framework. ECHAM5 and COSMO have previously been equipped with the MESSy infrastructure, implying that the same process formulations (MESSy submodels are available for both models. This guarantees the highest degree of achievable consistency, between both, the meteorological and chemical conditions at the domain boundaries of the nested limited-area model, and between the process formulations on all scales.

    The on-line nesting of the different models is established by a client-server approach with the newly developed Multi-Model-Driver (MMD, an additional component of the MESSy infrastructure. With MMD an arbitrary number of model instances can be run concurrently within the same message passing interface (MPI environment, the respective coarser model (either global or regional is the server for the nested finer (regional client model, i.e. it provides the data required to calculate the initial and boundary fields to the client model. On-line nesting means that the coupled (client-server models exchange their data via the computer memory, in contrast to the data exchange via files on disk in common off-line nesting approaches. MMD consists of a library

  8. Online Adaptive Local-Global Model Reduction for Flows in Heterogeneous Porous Media

    KAUST Repository

    Efendiev, Yalchin R.; Gildin, Eduardo; Yang, Yanfang

    2016-01-01

    We propose an online adaptive local-global POD-DEIM model reduction method for flows in heterogeneous porous media. The main idea of the proposed method is to use local online indicators to decide on the global update, which is performed via reduced cost local multiscale basis functions. This unique local-global online combination allows (1) developing local indicators that are used for both local and global updates (2) computing global online modes via local multiscale basis functions. The multiscale basis functions consist of offline and some online local basis functions. The approach used for constructing a global reduced system is based on Proper Orthogonal Decomposition (POD) Galerkin projection. The nonlinearities are approximated by the Discrete Empirical Interpolation Method (DEIM). The online adaption is performed by incorporating new data, which become available at the online stage. Once the criterion for updates is satisfied, we adapt the reduced system online by changing the POD subspace and the DEIM approximation of the nonlinear functions. The main contribution of the paper is that the criterion for adaption and the construction of the global online modes are based on local error indicators and local multiscale basis function which can be cheaply computed. Since the adaption is performed infrequently, the new methodology does not add significant computational overhead associated with when and how to adapt the reduced basis. Our approach is particularly useful for situations where it is desired to solve the reduced system for inputs or controls that result in a solution outside the span of the snapshots generated in the offline stage. Our method also offers an alternative of constructing a robust reduced system even if a potential initial poor choice of snapshots is used. Applications to single-phase and two-phase flow problems demonstrate the efficiency of our method.

  9. Online Adaptive Local-Global Model Reduction for Flows in Heterogeneous Porous Media

    KAUST Repository

    Efendiev, Yalchin R.

    2016-06-07

    We propose an online adaptive local-global POD-DEIM model reduction method for flows in heterogeneous porous media. The main idea of the proposed method is to use local online indicators to decide on the global update, which is performed via reduced cost local multiscale basis functions. This unique local-global online combination allows (1) developing local indicators that are used for both local and global updates (2) computing global online modes via local multiscale basis functions. The multiscale basis functions consist of offline and some online local basis functions. The approach used for constructing a global reduced system is based on Proper Orthogonal Decomposition (POD) Galerkin projection. The nonlinearities are approximated by the Discrete Empirical Interpolation Method (DEIM). The online adaption is performed by incorporating new data, which become available at the online stage. Once the criterion for updates is satisfied, we adapt the reduced system online by changing the POD subspace and the DEIM approximation of the nonlinear functions. The main contribution of the paper is that the criterion for adaption and the construction of the global online modes are based on local error indicators and local multiscale basis function which can be cheaply computed. Since the adaption is performed infrequently, the new methodology does not add significant computational overhead associated with when and how to adapt the reduced basis. Our approach is particularly useful for situations where it is desired to solve the reduced system for inputs or controls that result in a solution outside the span of the snapshots generated in the offline stage. Our method also offers an alternative of constructing a robust reduced system even if a potential initial poor choice of snapshots is used. Applications to single-phase and two-phase flow problems demonstrate the efficiency of our method.

  10. Online to offline teaching model in optics education: resource sharing course and flipped class

    Science.gov (United States)

    Li, Xiaotong; Cen, Zhaofeng; Liu, Xiangdong; Zheng, Zhenrong

    2016-09-01

    Since the platform "Coursera" is created by the professors of Stanford University Andrew Ng and Daphne Koller, more and more universities have joined in it. From the very beginning, online education is not only about education itself, but also connected with social equality. This is especially significant for the economic transformation in China. In this paper the research and practice on informatization of optical education are described. Online to offline (O2O) education activities, such as online learning and offline meeting, online homework and online to offline discussion, online tests and online to offline evaluation, are combined into our teaching model in the course of Applied Optics. These various O2O strategies were implemented respectively in the autumn-winter small class and the spring-summer middle class according to the constructivism and the idea of open education. We have developed optical education resources such as videos of lectures, light transmission or ray trace animations, online tests, etc. We also divide the learning procedure into 4 steps: First, instead of being given a course offline, students will learn the course online; Second, once a week or two weeks, students will have a discussion in their study groups; Third, students will submit their homework and study reports; Fourth, they will do online and offline tests. The online optical education resources have been shared in some universities in China, together with new challenges to teachers and students when facing the revolution in the e-learning future.

  11. Collaborative Online Teaching: A Model for Gerontological Social Work Education

    Science.gov (United States)

    Fulton, Amy E.; Walsh, Christine A.; Azulai, Anna; Gulbrandsen, Cari; Tong, Hongmei

    2015-01-01

    Social work students and faculty are increasingly embracing online education and collaborative teaching. Yet models to support these activities have not been adequately developed. This paper describes how a team of instructors developed, delivered, and evaluated an undergraduate gerontological social work course using a collaborative online…

  12. Radiation repair models for clinical application.

    Science.gov (United States)

    Dale, Roger G

    2018-02-28

    A number of newly emerging clinical techniques involve non-conventional patterns of radiation delivery which require an appreciation of the role played by radiation repair phenomena. This review outlines the main models of radiation repair, focussing on those which are of greatest clinical usefulness and which may be incorporated into biologically effective dose assessments. The need to account for the apparent "slowing-down" of repair rates observed in some normal tissues is also examined, along with a comparison of the relative merits of the formulations which can be used to account for such phenomena. Jack Fowler brought valuable insight to the understanding of radiation repair processes and this article includes reference to his important contributions in this area.

  13. Computer models for optimizing radiation therapy

    International Nuclear Information System (INIS)

    Duechting, W.

    1998-01-01

    The aim of this contribution is to outline how methods of system analysis, control therapy and modelling can be applied to simulate normal and malignant cell growth and to optimize cancer treatment as for instance radiation therapy. Based on biological observations and cell kinetic data, several types of models have been developed describing the growth of tumor spheroids and the cell renewal of normal tissue. The irradiation model is represented by the so-called linear-quadratic model describing the survival fraction as a function of the dose. Based thereon, numerous simulation runs for different treatment schemes can be performed. Thus, it is possible to study the radiation effect on tumor and normal tissue separately. Finally, this method enables a computer-assisted recommendation for an optimal patient-specific treatment schedule prior to clinical therapy. (orig.) [de

  14. Interobserver variability of radiation therapists aligning to fiducial markers for prostate radiation therapy.

    Science.gov (United States)

    Deegan, Timothy; Owen, Rebecca; Holt, Tanya; Roberts, Lisa; Biggs, Jennifer; McCarthy, Alicia; Parfitt, Matthew; Fielding, Andrew

    2013-08-01

    As the use of fiducial markers (FMs) for the localisation of the prostate during external beam radiation therapy (EBRT) has become part of routine practice, radiation therapists (RTs) have become increasingly responsible for online image interpretation. The aim of this investigation was to quantify the limits of agreement (LoA) between RTs when localising to FMs with orthogonal kilovoltage (kV) imaging. Six patients receiving prostate EBRT utilising FMs were included in this study. Treatment localisation was performed using kV imaging prior to each fraction. Online stereoscopic assessment of FMs, performed by the treating RTs, was compared with the offline assessment by three RTs. Observer agreement was determined by pairwise Bland-Altman analysis. Stereoscopic analysis of 225 image pairs was performed online at the time of treatment, and offline by three RT observers. Eighteen pairwise Bland-Altman analyses were completed to assess the level of agreement between observers. Localisation by RTs was found to be within clinically acceptable 95% LoAs. Small differences between RTs, in both the online and offline setting, were found to be within clinically acceptable limits. RTs were able to make consistent and reliable judgements when matching FMs on planar kV imaging. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  15. Developing a new solar radiation estimation model based on Buckingham theorem

    Science.gov (United States)

    Ekici, Can; Teke, Ismail

    2018-06-01

    While the value of solar radiation can be expressed physically in the days without clouds, this expression becomes difficult in cloudy and complicated weather conditions. In addition, solar radiation measurements are often not taken in developing countries. In such cases, solar radiation estimation models are used. Solar radiation prediction models estimate solar radiation using other measured meteorological parameters those are available in the stations. In this study, a solar radiation estimation model was obtained using Buckingham theorem. This theory has been shown to be useful in predicting solar radiation. In this study, Buckingham theorem is used to express the solar radiation by derivation of dimensionless pi parameters. This derived model is compared with temperature based models in the literature. MPE, RMSE, MBE and NSE error analysis methods are used in this comparison. Allen, Hargreaves, Chen and Bristow-Campbell models in the literature are used for comparison. North Dakota's meteorological data were used to compare the models. Error analysis were applied through the comparisons between the models in the literature and the model that is derived in the study. These comparisons were made using data obtained from North Dakota's agricultural climate network. In these applications, the model obtained within the scope of the study gives better results. Especially, in terms of short-term performance, it has been found that the obtained model gives satisfactory results. It has been seen that this model gives better accuracy in comparison with other models. It is possible in RMSE analysis results. Buckingham theorem was found useful in estimating solar radiation. In terms of long term performances and percentage errors, the model has given good results.

  16. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  17. Models for Total-Dose Radiation Effects in Non-Volatile Memory

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Philip Montgomery; Wix, Steven D.

    2017-04-01

    The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models and compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.

  18. Modeling the impact of normative beliefs in the context of online buying: Direct and moderating effects

    OpenAIRE

    Iconaru Claudia

    2012-01-01

    Normative beliefs tend to play a significant role in the context of online buying, having both direct and moderating effects. The results of the structural equation modeling indicate a direct effect of normative beliefs on the intention to buy online. Also, the magnitude of the relationship between online trust and perceived risk depends on the level of normative beliefs, showing that the effect of online trust on perceived risk varies as a function of the level of the moderator variable. Thi...

  19. Infrared radiation models for atmospheric methane

    Science.gov (United States)

    Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.

    1986-01-01

    Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.

  20. Modeling of clouds and radiation for development of parameterizations for general circulation models

    International Nuclear Information System (INIS)

    Westphal, D.; Toon, B.; Jensen, E.; Kinne, S.; Ackerman, A.; Bergstrom, R.; Walker, A.

    1994-01-01

    Atmospheric Radiation Measurement (ARM) Program research at NASA Ames Research Center (ARC) includes radiative transfer modeling, cirrus cloud microphysics, and stratus cloud modeling. These efforts are designed to provide the basis for improving cloud and radiation parameterizations in our main effort: mesoscale cloud modeling. The range of non-convective cloud models used by the ARM modeling community can be crudely categorized based on the number of predicted hydrometers such as cloud water, ice water, rain, snow, graupel, etc. The simplest model has no predicted hydrometers and diagnoses the presence of clouds based on the predicted relative humidity. The vast majority of cloud models have two or more predictive bulk hydrometers and are termed either bulk water (BW) or size-resolving (SR) schemes. This study compares the various cloud models within the same dynamical framework, and compares results with observations rather than climate statistics

  1. Impact of state-specific flowfield modeling on atomic nitrogen radiation

    Science.gov (United States)

    Johnston, Christopher O.; Panesi, Marco

    2018-01-01

    A hypersonic flowfield model that treats electronic levels of the dominant afterbody radiator N as individual species is presented. This model allows electron-ion recombination rate and two-temperature modeling improvements, the latter which are shown to decrease afterbody radiative heating by up to 30%. This decrease is primarily due to the addition of the electron-impact excitation energy-exchange term to the energy equation governing the vibrational-electronic electron temperature. This model also allows the validity of the often applied quasi-steady-state (QSS) approximation to be assessed. The QSS approximation is shown to fail throughout most of the afterbody region for lower electronic states, although this impacts the radiative intensity reaching the surface by less than 15%. By computing the electronic-state populations of N within the flowfield solver, instead of through the QSS approximation in the radiation solver, the coupling of nonlocal radiative transition rates to the species continuity equations becomes feasible. Implementation of this higher-fidelity level of coupling between the flowfield and radiation solvers is shown to increase the afterbody radiation by up to 50% relative to the conventional model.

  2. Relationship between Online Learning Readiness and Structure and Interaction of Online Learning Students

    Science.gov (United States)

    Demir Kaymak, Zeliha; Horzum, Mehmet Baris

    2013-01-01

    Current study tried to determine whether a relationship exists between readiness levels of the online learning students for online learning and the perceived structure and interaction in online learning environments. In the study, cross sectional survey model was used. The study was conducted with 320 voluntary students studying online learning…

  3. Pengembangan Model Sistem Informasi Aplikasi Helpdesk Online PT. Mustika Memadata

    Directory of Open Access Journals (Sweden)

    Cadelina Cassandra

    2015-06-01

    Full Text Available The advanced technology and the support of global internet makes it possible to create a system that can support the company or institution effectiveness in providing satisfaction for customers and to fulfill the customer’s needs and requirements. Due to the most important task for the company is to provide a good quality service for the customer, online helpdesk support system also develop quickly nowadays for the reason above. PT. Mustika Memadata is one of the private service company located in Jakarta that has the increase ofcustomer and the limit of human resource. This situation makes the company difficult in monitoring complaints from customer. This paper described the model of proposed helpdesk system to solve the problem. The methodology used in this paper are data collection through study literature review, interview session, directobservation, as well as analysis and design method using OOAD (Object Oriented Analysis and Design approach using UML diagram such as activity diagram, use case diagram and domain model class diagram. The result is the model design of helpdesk online system that can be used for the company in solving customers’complaint.

  4. Multi-Stratum Networks: toward a unified model of on-line identities

    DEFF Research Database (Denmark)

    Rossi, Luca; Magnani, Matteo

    2012-01-01

    One of the reasons behind the success of Social Network Analysis is its simple and general graph model made of nodes (representing individuals) and ties. However, when we focus on our daily on-line experience we must confront a more complex scenario: people inhabitate several on-line spaces...... interacting to several communities active on various technological infrastructures like Twitter, Facebook, YouTube or FourSquare and with distinct social objectives. This constitutes a complex network of interconnected networks where users' identities are spread and where information propagates navigating...... through different communities and social platforms. In this article we introduce a model for this layered scenario that we call multi-stratum network. Through a theoretical discussion and the analysis of real-world data we show how not only focusing on a single network may provide a very partial...

  5. Vehicle tracking based technique for radiation monitoring during nuclear or radiological emergency

    International Nuclear Information System (INIS)

    Saindane, Shashank S.; Otari, Anil D.; Suri, M.M.K.; Patil, S.S.; Pradeepkumar, K.S.; Sharma, D.N.

    2010-01-01

    Radiation Safety Systems Division, BARC has developed an advanced online radiation measurement cum vehicle tracking system for use. For the preparedness for response to any nuclear/radiological emergency scenario which may occur anywhere, the system designed is a Global System for Mobile (GSM) based Radiation Monitoring System (GRaMS) along with a Global Positioning System (GPS). It uses an energy compensated GM detector for radiation monitoring and is attached with commercially available Global Positioning System (GPS) for online acquisition of positional coordinates with time, and GSM modem for online data transfer to a remote control centre. The equipment can be operated continuously while the vehicle is moving

  6. Multi-detector environmental radiation monitor with multichannel data communication for Indian Environmental Radiation Monitoring Network (IERMON)

    International Nuclear Information System (INIS)

    Patel, M.D.; Ratheesh, M.P.; Prakasha, M.S.; Salunkhe, S.S.; Vinod Kumar, A.; Puranik, V.D.; Nair, C.K.G.

    2011-01-01

    A solar powered system for online monitoring of environmental radiation with multiple detectors has been designed, developed and produced. Multiple GM tube detectors have been used to extend the range of measurement from 50 nano Gy/hr to 20 Gy/hr and to enhance the reliability of the system. Online data communication using GSM based and direct LAN based communication has been incorporated. Options for use of power supply from mains powered and battery powered have been enabled. Care has been taken to make it weather-proof, compact, elegant and reliable. The development is a part of the ongoing program of country-wide deployment of radiation monitors under 'Indian Environmental Radiation MOnitoring Network' (IERMON). (author)

  7. A passive and active microwave-vector radiative transfer (PAM-VRT) model

    International Nuclear Information System (INIS)

    Yang, Jun; Min, Qilong

    2015-01-01

    A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors. - Highlights: • A novel microwave vector radiative transfer model is developed. • It can simulate passive and active microwave radiative transfer simultaneously. • It can be applied to simulate measurements for different types of viewing geometry. • The accuracy of this model has been validated against other existing models

  8. An Online SOC and SOH Estimation Model for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Shyh-Chin Huang

    2017-04-01

    Full Text Available The monitoring and prognosis of cell degradation in lithium-ion (Li-ion batteries are essential for assuring the reliability and safety of electric and hybrid vehicles. This paper aims to develop a reliable and accurate model for online, simultaneous state-of-charge (SOC and state-of-health (SOH estimations of Li-ion batteries. Through the analysis of battery cycle-life test data, the instantaneous discharging voltage (V and its unit time voltage drop, V′, are proposed as the model parameters for the SOC equation. The SOH equation is found to have a linear relationship with 1/V′ times the modification factor, which is a function of SOC. Four batteries are tested in the laboratory, and the data are regressed for the model coefficients. The results show that the model built upon the data from one single cell is able to estimate the SOC and SOH of the three other cells within a 5% error bound. The derived model is also proven to be robust. A random sampling test to simulate the online real-time SOC and SOH estimation proves that this model is accurate and can be potentially used in an electric vehicle battery management system (BMS.

  9. PENGEMBANGAN MODEL PELATIHAN ONLINE BERBASIS WEB UNTUK KEUNGGULAN BERSAING PADA PT INTELLISYS TRIPRATAMA

    Directory of Open Access Journals (Sweden)

    Thomas Ivantoro Prasetyo

    2010-10-01

    Full Text Available In order to face competition, PT Intellisys, as the service provided in web-based online training, is trying to serve every customer from wherever and whenever in a good quality service. It started with the analysis of competitior’s condition using Porter’s five competitive forces analysis, internal condition using SWOT analysis, and internal componay process using Value Chain analysis to conclude a suitable IT strategy for the company. It is then continued with Work-Centered analysis to produce the increasing of business process then designing web-based online training system model in doing evaluation to show good accommodation and training service from Intellisys to customers that could bring the company competitive advantages. The research result is a model design from web-based online training system that is cheap and flexible, easier to get wherever and whenever, and also innovative and easier-to-learn material.Keywords: e-learning, competitive advantages, information technology, training service provider, SCROM

  10. A Model for Hourly Solar Radiation Data Generation from Daily Solar Radiation Data Using a Generalized Regression Artificial Neural Network

    OpenAIRE

    Khatib, Tamer; Elmenreich, Wilfried

    2015-01-01

    This paper presents a model for predicting hourly solar radiation data using daily solar radiation averages. The proposed model is a generalized regression artificial neural network. This model has three inputs, namely, mean daily solar radiation, hour angle, and sunset hour angle. The output layer has one node which is mean hourly solar radiation. The training and development of the proposed model are done using MATLAB and 43800 records of hourly global solar radiation. The results show that...

  11. The RHIC/AGS Online Model Environment: Design and Overview

    International Nuclear Information System (INIS)

    Satogata, T.; Brown, K.; Pilat, F.; Tafti Alai, A.; Tepikian, S.; Vanzeijtz

    1999-01-01

    An integrated online modeling environment is currently under development for use by AGS and RHIC physicists and commissioners. This environment combines the modeling efforts of both groups in a CDEV[1] client-server design, providing access to expected machine optics and physics parameters based on live and design machine settings. An abstract modeling interface has been designed as a set of adapters[2] around core computational modeling engines such as MAD and UAL/Teapot++[3]. This approach allows us to leverage existing survey, lattice, and magnet infrastructure, as well as easily incorporate new model engine developments. This paper describes the architecture of the RHIC/AGS modeling environment, including the application interface through CDEV and general tools for graphical interaction with the model using Tcl/Tk. Separate papers at this conference address the specifics of implementation and modeling experience for AGS and RHIC

  12. [Comparison of three daily global solar radiation models].

    Science.gov (United States)

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  13. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  14. Prediction of hourly solar radiation with multi-model framework

    International Nuclear Information System (INIS)

    Wu, Ji; Chan, Chee Keong

    2013-01-01

    Highlights: • A novel approach to predict solar radiation through the use of clustering paradigms. • Development of prediction models based on the intrinsic pattern observed in each cluster. • Prediction based on proper clustering and selection of model on current time provides better results than other methods. • Experiments were conducted on actual solar radiation data obtained from a weather station in Singapore. - Abstract: In this paper, a novel multi-model prediction framework for prediction of solar radiation is proposed. The framework started with the assumption that there are several patterns embedded in the solar radiation series. To extract the underlying pattern, the solar radiation series is first segmented into smaller subsequences, and the subsequences are further grouped into different clusters. For each cluster, an appropriate prediction model is trained. Hence a procedure for pattern identification is developed to identify the proper pattern that fits the current period. Based on this pattern, the corresponding prediction model is applied to obtain the prediction value. The prediction result of the proposed framework is then compared to other techniques. It is shown that the proposed framework provides superior performance as compared to others

  15. Revision and Validation of a Culturally-Adapted Online Instructional Module Using Edmundson's CAP Model: A DBR Study

    Science.gov (United States)

    Tapanes, Marie A.

    2011-01-01

    In the present study, the Cultural Adaptation Process Model was applied to an online module to include adaptations responsive to the online students' culturally-influenced learning styles and preferences. The purpose was to provide the online learners with a variety of course material presentations, where the e-learners had the opportunity to…

  16. A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data

    Science.gov (United States)

    Ashrafi, Mohammad; Chua, Lloyd Hock Chye; Quek, Chai; Qin, Xiaosheng

    2017-02-01

    Current state-of-the-art online neuro fuzzy models (NFMs) such as DENFIS (Dynamic Evolving Neural-Fuzzy Inference System) have been used for runoff forecasting. Online NFMs adopt a local learning approach and are able to adapt to changes continuously. The DENFIS model however requires upper/lower bound for normalization and also the number of rules increases monotonically. This requirement makes the model unsuitable for use in basins with limited data, since a priori data is required. In order to address this and other drawbacks of current online models, the Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) is adopted in this study for forecast applications in basins with limited data. GSETSK is a fully-online NFM which updates its structure and parameters based on the most recent data. The model does not require the need for historical data and adopts clustering and rule pruning techniques to generate a compact and up-to-date rule-base. GSETSK was used in two forecast applications, rainfall-runoff (a catchment in Sweden) and river routing (Lower Mekong River) forecasts. Each of these two applications was studied under two scenarios: (i) there is no prior data, and (ii) only limited data is available (1 year for the Swedish catchment and 1 season for the Mekong River). For the Swedish Basin, GSETSK model results were compared to available results from a calibrated HBV (Hydrologiska Byråns Vattenbalansavdelning) model. For the Mekong River, GSETSK results were compared against the URBS (Unified River Basin Simulator) model. Both comparisons showed that results from GSETSK are comparable with the physically based models, which were calibrated with historical data. Thus, even though GSETSK was trained with a very limited dataset in comparison with HBV or URBS, similar results were achieved. Similarly, further comparisons between GSETSK with DENFIS and the RBF (Radial Basis Function) models highlighted further advantages of GSETSK as having a rule-base (compared to

  17. Data-driven process decomposition and robust online distributed modelling for large-scale processes

    Science.gov (United States)

    Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou

    2018-02-01

    With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.

  18. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials

    DEFF Research Database (Denmark)

    Drews, M.; Lauritzen, B.; Madsen, H.

    2004-01-01

    A Kalman filter method using off-site radiation monitoring data is proposed as a tool for on-line estimation of the source term for short-range atmospheric dispersion of radioactive materials. The method is based on the Gaussian plume model, in which the plume parameters including the source term...

  19. Online Gamers' Preferences for Online Game Charging Mechanisms: The Effect of Exploration Motivation

    OpenAIRE

    Fan-Chen Tseng; Ching-I Teng

    2015-01-01

    Online games construct a virtual world where gamers can explore and experience various exciting environments. However, studies on gamer behavior rarely investigated the relationships between motivations and spending for online games. Understanding these relationships helps online game service providers manage gamers' motivations and develop better revenue models. This study investigated the relationships between one core motivation for playing online games—exploration motivation—and onlin...

  20. Designing a Predictive Model of Student Satisfaction in Online Learning

    Science.gov (United States)

    Parahoo, Sanjai K; Santally, Mohammad Issack; Rajabalee, Yousra; Harvey, Heather Lea

    2016-01-01

    Higher education institutions consider student satisfaction to be one of the major elements in determining the quality of their programs. The objective of the study was to develop a model of student satisfaction to identify the influencers that emerged in online higher education settings. The study adopted a mixed method approach to identify…

  1. In-vivo models for radiation mitigator agents

    International Nuclear Information System (INIS)

    Macchiarini, Francesca

    2014-01-01

    The US Department of Health and Human Services assigned the National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), with the responsibility to identify, characterize and develop new medical countermeasure (MCM) products against radiological and nuclear attacks that may cause-a public health emergency. MCMs must be developed within the criteria of the U.S. Food and Drug Administration's (FDA) 'animal rule' (AR) which requires the design and conduct of validated animal models to define the major sequelae of the Acute Radiation Syndrome (ARS) and Delayed Effects of Acute Radiation Exposure (DEARE). To this end, the NIAID-funded Product Development Support Services Program has established an ARS/DEARE animal model research platform which includes several basic animal models for hematopoietic and gastrointestinal ARS in the mouse and nonhuman primate (NHP) using total-body irradiation (TBI), whole-thorax lung irradiation (WTLI), or a multi-organ dysfunction model defined by partial-body irradiation with 5% bone marrow sparing (PBI/ BM5). These specific models will be discussed as well as ongoing observational studies NIAID is funding to assess the long-term effects of radiation in NHPs and A-Bomb survivors. (author)

  2. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  3. Sigmoidal response model for radiation risk

    International Nuclear Information System (INIS)

    Kondo, Sohei

    1995-01-01

    From epidemiologic studies, we find no measurable increase in the incidences of birth defects and cancer after low-level exposure to radiation. Based on modern understanding of the molecular basis of teratogenesis and cancer, I attempt to explain thresholds observed in atomic bomb survivors, radium painters, uranium workers and patients injected with Thorotrast. Teratogenic injury induced by doses below threshold will be completely eliminated as a result of altruistic death (apoptosis) of injured cells. Various lines of evidence obtained show that oncomutations produced in cancerous cells after exposure to radiation are of spontaneous origin and that ionizing radiation acts not as an oncomutation inducer but as a tumor promoter by induction of chronic wound-healing activity. The tissue damage induced by radiation has to be repaired by cell growth and this creates opportunity for clonal expansion of a spontaneously occurring preneoplastic cell. If the wound-healing error model is correct, there must be a threshold dose range of radiation giving no increase in cancer risk. (author)

  4. Validation of elastic cross section models for space radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center (United States); Xu, X. [National Institute of Aerospace (United States); Norman, R.B. [NASA Langley Research Center (United States); Ford, W.P. [The University of Tennessee (United States); Maung, K.M. [The University of Southern Mississippi (United States)

    2017-02-01

    The space radiation field is composed of energetic particles that pose both acute and long-term risks for astronauts in low earth orbit and beyond. In order to estimate radiation risk to crew members, the fluence of particles and biological response to the radiation must be known at tissue sites. Given that the spectral fluence at the boundary of the shielding material is characterized, radiation transport algorithms may be used to find the fluence of particles inside the shield and body, and the radio-biological response is estimated from experiments and models. The fidelity of the radiation spectrum inside the shield and body depends on radiation transport algorithms and the accuracy of the nuclear cross sections. In a recent study, self-consistent nuclear models based on multiple scattering theory that include the option to study relativistic kinematics were developed for the prediction of nuclear cross sections for space radiation applications. The aim of the current work is to use uncertainty quantification to ascertain the validity of the models as compared to a nuclear reaction database and to identify components of the models that can be improved in future efforts.

  5. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  6. Evaluation on the model of performance predictions for on-line monitoring system for combined-cycle power plant

    International Nuclear Information System (INIS)

    Kim, Si Moon

    2002-01-01

    This paper presents the simulation model developed to predict design and off-design performance of an actual combined cycle power plant(S-Station in Korea), which would be running combined with on-line performance monitoring system in an on-line real-time fashion. The first step in thermal performance analysis is to build an accurate performance model of the power plant, in order to achieve this goal, GateCycle program has been employed in developing the model. This developed models predict design and off-design performance with a precision of one percent over a wide range of operating conditions so that on-line real-time performance monitoring can accurately establish both current performance and expected performance and also help the operator identify problems before they would be noticed

  7. On-Line Core Thermal-Hydraulic Model Improvement

    International Nuclear Information System (INIS)

    In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan; Hwang, Dae Hyun; Seo, Kyung Won

    2007-02-01

    The objective of this project is to implement a fast-running 4-channel based code CETOP-D in an advanced reactor core protection calculator system(RCOPS). The part required for the on-line calculation of DNBR were extracted from the source of the CETOP-D code based on analysis of the CETOP-D code. The CETOP-D code was revised to maintain the input and output variables which are the same as in CPC DNBR module. Since the DNBR module performs a complex calculation, it is divided into sub-modules per major calculation step. The functional design requirements for the DNBR module is documented and the values of the database(DB) constants were decided. This project also developed a Fortran module(BEST) of the RCOPS Fortran Simulator and a computer code RCOPS-SDNBR to independently calculate DNBR. A test was also conducted to verify the functional design and DB of thermal-hydraulic model which is necessary to calculate the DNBR on-line in RCOPS. The DNBR margin is expected to increase by 2%-3% once the CETOP-D code is used to calculate the RCOPS DNBR. It should be noted that the final DNBR margin improvement could be determined in the future based on overall uncertainty analysis of the RCOPS

  8. On-Line Core Thermal-Hydraulic Model Improvement

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan; Hwang, Dae Hyun; Seo, Kyung Won

    2007-02-15

    The objective of this project is to implement a fast-running 4-channel based code CETOP-D in an advanced reactor core protection calculator system(RCOPS). The part required for the on-line calculation of DNBR were extracted from the source of the CETOP-D code based on analysis of the CETOP-D code. The CETOP-D code was revised to maintain the input and output variables which are the same as in CPC DNBR module. Since the DNBR module performs a complex calculation, it is divided into sub-modules per major calculation step. The functional design requirements for the DNBR module is documented and the values of the database(DB) constants were decided. This project also developed a Fortran module(BEST) of the RCOPS Fortran Simulator and a computer code RCOPS-SDNBR to independently calculate DNBR. A test was also conducted to verify the functional design and DB of thermal-hydraulic model which is necessary to calculate the DNBR on-line in RCOPS. The DNBR margin is expected to increase by 2%-3% once the CETOP-D code is used to calculate the RCOPS DNBR. It should be noted that the final DNBR margin improvement could be determined in the future based on overall uncertainty analysis of the RCOPS.

  9. Mechanistic issues for modeling radiation-induced segregation

    International Nuclear Information System (INIS)

    Simonen, E.P.; Bruemmer, S.M.

    1993-03-01

    Model calculations of radiation-induced chromium depletion and radiation-induced nickel enrichment at grain boundaries are compared to measured depletions and enrichments. The model is calibrated to fit chromium depletion in commercial purity 304 stainless steel irradiated in boiling water reactor (BWR) environments. Predicted chromium depletion profiles and the dose dependence of chromium concentration at grain boundaries are in accord with measured trends. Evaluation of chromium and nickel profiles in three neutron, and two ion, irradiation environments reveal significant inconsistencies between measurements and predictions

  10. Beyond accessibility? Toward an on-line and memory-based model of framing effects

    OpenAIRE

    Matthes, Jörg

    2007-01-01

    This theoretical article investigates the effects of media frames on individuals' judgments. In contrast to previous theorizing, we suggest that framing scholars should embrace both, on-line and memory-based judgment formation processes. Based on that premise, we propose a model that distinguishes between two phases of framing effects. Along the first phase, the media's framing contributes to the formation of an on-line or a memory-based judgment. The second phase describes six hypothetical r...

  11. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    Directory of Open Access Journals (Sweden)

    Alexandre Bryan Heinemann

    2012-01-01

    Full Text Available Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, biomass, leaf area (LAI and total accumulated solar radiation (SRA during the crop cycle. The accuracy of the 5 models for estimated daily solar radiation was similar, and it was not substantially different among sites. For water limited environments (no irrigation, crop model outputs yield, biomass and LAI was not sensitive for the uncertainties in radiation models studied here.

  12. Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012

    Science.gov (United States)

    Quinn, Philip R.; Schwadron, Nathan A.; Townsend, Larry W.; Wimmer-Schweingruber, Robert F.; Case, Anthony W.; Spence, Harlan E.; Wilson, Jody K.; Joyce, Colin J.

    2017-08-01

    Radiation in the form of solar energetic particles (SEPs) presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth's protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements) is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon and from the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm-2 and 5.0 g cm-2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.

  13. Interobserver variability of radiation therapists aligning to fiducial markers for prostate radiation therapy

    International Nuclear Information System (INIS)

    Deegan, Timothy; Owen, Rebecca; Holt, Tanya; Roberts, Lisa; Biggs, Jennifer; McCarthy, Alicia; Parfitt, Matthew; Fielding, Andrew

    2013-01-01

    As the use of fiducial markers (FMs) for the localisation of the prostate during external beam radiation therapy (EBRT) has become part of routine practice, radiation therapists (RTs) have become increasingly responsible for online image interpretation. The aim of this investigation was to quantify the limits of agreement (LoA) between RTs when localising to FMs with orthogonal kilovoltage (kV) imaging. Six patients receiving prostate EBRT utilising FMs were included in this study. Treatment localisation was performed using kV imaging prior to each fraction. Online stereoscopic assessment of FMs, performed by the treating RTs, was compared with the offline assessment by three RTs. Observer agreement was determined by pairwise Bland-Altman analysis. Stereoscopic analysis of 225 image pairs was performed online at the time of treatment, and offline by three RT observers. Eighteen pairwise Bland-Altman analyses were completed to assess the level of agreement between observers. Localisation by RTs was found to be within clinically acceptable 95% LoAs. Small differences between RTs, in both the online and offline setting, were found to be within clinically acceptable limits. RTs were able to make consistent and reliable judgements when matching FMs on planar kV imaging.

  14. Linearized vector radiative transfer model MCC++ for a spherical atmosphere

    International Nuclear Information System (INIS)

    Postylyakov, O.V.

    2004-01-01

    Application of radiative transfer models has shown that optical remote sensing requires extra characteristics of radiance field in addition to the radiance intensity itself. Simulation of spectral measurements, analysis of retrieval errors and development of retrieval algorithms are in need of derivatives of radiance with respect to atmospheric constituents under investigation. The presented vector spherical radiative transfer model MCC++ was linearized, which allows the calculation of derivatives of all elements of the Stokes vector with respect to the volume absorption coefficient simultaneously with radiance calculation. The model MCC++ employs Monte Carlo algorithm for radiative transfer simulation and takes into account aerosol and molecular scattering, gas and aerosol absorption, and Lambertian surface albedo. The model treats a spherically symmetrical atmosphere. Relation of the estimated derivatives with other forms of radiance derivatives: the weighting functions used in gas retrieval and the air mass factors used in the DOAS retrieval algorithms, is obtained. Validation of the model against other radiative models is overviewed. The computing time of the intensity for the MCC++ model is about that for radiative models treating sphericity of the atmosphere approximately and is significantly shorter than that for the full spherical models used in the comparisons. The simultaneous calculation of all derivatives (i.e. with respect to absorption in all model atmosphere layers) and the intensity is only 1.2-2 times longer than the calculation of the intensity only

  15. The virtual enhancements - solar proton event radiation (VESPER) model

    Science.gov (United States)

    Aminalragia-Giamini, Sigiava; Sandberg, Ingmar; Papadimitriou, Constantinos; Daglis, Ioannis A.; Jiggens, Piers

    2018-02-01

    A new probabilistic model introducing a novel paradigm for the modelling of the solar proton environment at 1 AU is presented. The virtual enhancements - solar proton event radiation model (VESPER) uses the European space agency's solar energetic particle environment modelling (SEPEM) Reference Dataset and produces virtual time-series of proton differential fluxes. In this regard it fundamentally diverges from the approach of existing SPE models that are based on probabilistic descriptions of SPE macroscopic characteristics such as peak flux and cumulative fluence. It is shown that VESPER reproduces well the dataset characteristics it uses, and further comparisons with existing models are made with respect to their results. The production of time-series as the main output of the model opens a straightforward way for the calculation of solar proton radiation effects in terms of time-series and the pairing with effects caused by trapped radiation and galactic cosmic rays.

  16. A Path Model of School Violence Perpetration: Introducing Online Game Addiction as a New Risk Factor.

    Science.gov (United States)

    Kim, Jae Yop; Lee, Jeen Suk; Oh, Sehun

    2015-08-10

    Drawing on the cognitive information-processing model of aggression and the general aggression model, we explored why adolescents become addicted to online games and how their immersion in online games affects school violence perpetration (SVP). For this purpose, we conducted statistical analyses on 1,775 elementary and middle school students who resided in northern districts of Seoul, South Korea. The results validated the proposed structural equation model and confirmed the statistical significance of the structural paths from the variables; that is, the paths from child abuse and self-esteem to SVP were significant. The levels of self-esteem and child abuse victimization affected SVP, and this effect was mediated by online game addiction (OGA). Furthermore, a multigroup path analysis showed significant gender differences in the path coefficients of the proposed model, indicating that gender exerted differential effects on adolescents' OGA and SVP. Based on these results, prevention and intervention methods to curb violence in schools have been proposed. © The Author(s) 2015.

  17. Trust and Online Reputation Systems

    Science.gov (United States)

    Kwan, Ming; Ramachandran, Deepak

    Web 2.0 technologies provide organizations with unprecedented opportunities to expand and solidify relationships with their customers, partners, and employees—while empowering firms to define entirely new business models focused on sharing information in online collaborative environments. Yet, in and of themselves, these technologies cannot ensure productive online interactions. Leading enterprises that are experimenting with social networks and online communities are already discovering this fact and along with it, the importance of establishing trust as the foundation for online collaboration and transactions. Just as today's consumers must feel secure to bank, exchange personal information and purchase products and services online; participants in Web 2.0 initiatives will only accept the higher levels of risk and exposure inherent in e-commerce and Web collaboration in an environment of trust. Indeed, only by attending to the need to cultivate online trust with customers, partners and employees will enterprises ever fully exploit the expanded business potential posed by Web 2.0. But developing online trust is no easy feat. While various preliminary attempts have occurred, no definitive model for establishing or measuring it has yet been established. To that end, nGenera has identified three, distinct dimensions of online trust: reputation (quantitative-based); relationship (qualitative-based) and process (system-based). When considered together, they form a valuable model for understanding online trust and a toolbox for cultivating it to support Web 2.0 initiatives.

  18. An adaptive model for vanadium redox flow battery and its application for online peak power estimation

    Science.gov (United States)

    Wei, Zhongbao; Meng, Shujuan; Tseng, King Jet; Lim, Tuti Mariana; Soong, Boon Hee; Skyllas-Kazacos, Maria

    2017-03-01

    An accurate battery model is the prerequisite for reliable state estimate of vanadium redox battery (VRB). As the battery model parameters are time varying with operating condition variation and battery aging, the common methods where model parameters are empirical or prescribed offline lacks accuracy and robustness. To address this issue, this paper proposes to use an online adaptive battery model to reproduce the VRB dynamics accurately. The model parameters are online identified with both the recursive least squares (RLS) and the extended Kalman filter (EKF). Performance comparison shows that the RLS is superior with respect to the modeling accuracy, convergence property, and computational complexity. Based on the online identified battery model, an adaptive peak power estimator which incorporates the constraints of voltage limit, SOC limit and design limit of current is proposed to fully exploit the potential of the VRB. Experiments are conducted on a lab-scale VRB system and the proposed peak power estimator is verified with a specifically designed "two-step verification" method. It is shown that different constraints dominate the allowable peak power at different stages of cycling. The influence of prediction time horizon selection on the peak power is also analyzed.

  19. Online lektiehjælp

    DEFF Research Database (Denmark)

    Hansen, Jens Jørgen; Remvig, Kirstin

    2016-01-01

    vejledningsdidaktik, herunder metoder, modeller og materialer for lektievejledning i regi af Lektier Online. Lektier Online er en organisation ved Statsbiblioteket i Århus, der tilbyder en online lektiecafe, hvor bl.a. gymnasie-elever kan få hjælp af frivillige universitetsstuderende. Dette didaktiske de-sign er et...

  20. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2016-01-01

    Full Text Available This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE digital elevation model (DEM for the actual amount of incident solar radiation according to solar geometry. The surface insolation mapping, by integrating a physical model with the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI image, was performed through a comparative analysis with ground-based observation data (pyranometer. Original and topographically corrected solar radiation maps were created and their characteristics analyzed. Both the original and the topographically corrected solar energy resource maps captured the temporal variations in atmospheric conditions, such as the movement of seasonal rain fronts during summer. In contrast, although the original solar radiation map had a low insolation value over mountain areas with a high rate of cloudiness, the topographically corrected solar radiation map provided a better description of the actual surface geometric characteristics.

  1. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Science.gov (United States)

    Dorman, L. I.

    2005-11-01

    We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind) than the main part of smaller energy particles (more than 30-60 min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  2. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind than the main part of smaller energy particles (more than 30-60 min later, causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  3. Planning for Online Education: A Systems Model

    Science.gov (United States)

    Picciano, Anthony G.

    2015-01-01

    The purpose of this article is to revisit the basic principles of technology planning as applied to online education initiatives. While not meant to be an exhaustive treatment of the topic, the article is timely because many colleges and universities are considering the development and expansion of online education as part of their planning…

  4. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  5. Recursive prediction error methods for online estimation in nonlinear state-space models

    Directory of Open Access Journals (Sweden)

    Dag Ljungquist

    1994-04-01

    Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.

  6. Impact of time displaced precipitation estimates for on-line updated models

    DEFF Research Database (Denmark)

    Borup, Morten; Grum, Morten; Mikkelsen, Peter Steen

    2012-01-01

    When an online runoff model is updated from system measurements the requirements to the precipitation estimates change. Using rain gauge data as precipitation input there will be a displacement between the time where the rain intensity hits the gauge and the time where the rain hits the actual...

  7. Detection of radiation-induced hydrocarbons in irradiated fish and prawns by means of on-line coupled liquid chromatography-gas chromatography

    International Nuclear Information System (INIS)

    Schulzki, G.; Spiegelberg, A.; Bogl, K.W.; Schreiberg, G.A.

    1997-01-01

    Radiation-induced hydrocarbons were analyzed in a fatty (halibut) and a lean fish (cod) as well as in a prawn species by on-line coupled liquid chromatography (LC) -gas chromatography (GC) combined with mass spectrometry. In irradiated halibut which is known to contain mainly saturated and monounsaturated fatty acids, all expected radiolytic alkanes, alkenes, and alkadienes could be detected. The yields of the C(n-1) and C(n-2:1) hydrocarbons were comparable to those found in irradiated lipids of terrestrial animals and plants. However, in cod and prawns which contain high levels of polyunsaturated fatty acids (PUFA), the C(n-1) hydrocarbons were found in concentrations which were up to 10 times higher whereas the C(n-2:1) products were again comparable to those of terrestrial animals and plants. The identification of radiation-induced hydrocarbons in fish lipids was achieved by transfer of the hydrocarbons from the LC column to the gas chromatographic column in fractions differing in their degree of unsaturation. For the first time, radiation-induced hydrocarbons with more than four double bonds generated from polyunsaturated fatty acids (20:4 omega 6 and 20:5 omega 3) could be identified

  8. Using multistage models to describe radiation-induced leukaemia

    International Nuclear Information System (INIS)

    Little, M.P.; Muirhead, C.R.; Boice, J.D. Jr.; Kleinerman, R.A.

    1995-01-01

    The Armitage-Doll model of carcinogenesis is fitted to data on leukaemia mortality among the Japanese atomic bomb survivors with the DS86 dosimetry and on leukaemia incidence in the International Radiation Study of Cervical Cancer patients. Two different forms of model are fitted: the first postulates up to two radiation-affected stages and the second additionally allows for the presence at birth of a non-trivial population of cells which have already accumulated the first of the mutations leading to malignancy. Among models of the first form, a model with two adjacent radiation-affected stages appears to fit the data better than other models of the first form, including both models with two affected stages in any order and models with only one affected stage. The best fitting model predicts a linear-quadratic dose-response and reductions of relative risk with increasing time after exposure and age at exposure, in agreement with what has previously been observed in the Japanese and cervical cancer data. However, on the whole it does not provide an adequate fit to either dataset. The second form of model appears to provide a rather better fit, but the optimal models have biologically implausible parameters (the number of initiated cells at birth is negative) so that this model must also be regarded as providing an unsatisfactory description of the data. (author)

  9. A Hybrid Model for Making Online Assignments Effective In a Traditional Classroom

    Directory of Open Access Journals (Sweden)

    Ronda Sturgill

    2011-04-01

    Full Text Available Today’s college student has grown up in a world filled with technology and many current college students routinely utilize the latest and most up to date forms of technology. The result is an ever-changing way of communicating between faculty members and students. Many faculty members, however, are intimidated by the use of the terms “technology”, “online” and “distance education.” This often results in a communication gap between faculty and students where faculty members will “lose” students on the first day of class. Advantages of incorporating online tools into the course structure include freeing up additional class time, enhancing classroom discussions, and allowing students to remain current with information in their field. This hybrid instructional model focuses on the integration of technology tools as a supplement to traditional classroom teaching. This paper will describe how to effectively incorporate and implement technology using online course tools in a traditional classroom setting. Specific examples of online assignments, discussions, and assessments from an allied health education program and class will be discussed. Lessons learned and challenges confronted when adapting to the utilization of specific online course assignments and tools will be discussed.

  10. A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Ji, Dongxu; Tseng, King Jet

    2017-01-01

    Highlights: •SOC and capacity are dually estimated with online adapted battery model. •Model identification and state dual estimate are fully decoupled. •Multiple timescales are used to improve estimation accuracy and stability. •The proposed method is verified with lab-scale experiments. •The proposed method is applicable to different battery chemistries. -- Abstract: Reliable online estimation of state of charge (SOC) and capacity is critically important for the battery management system (BMS). This paper presents a multi-timescale method for dual estimation of SOC and capacity with an online identified battery model. The model parameter estimator and the dual estimator are fully decoupled and executed with different timescales to improve the model accuracy and stability. Specifically, the model parameters are online adapted with the vector-type recursive least squares (VRLS) to address the different variation rates of them. Based on the online adapted battery model, the Kalman filter (KF)-based SOC estimator and RLS-based capacity estimator are formulated and integrated in the form of dual estimation. Experimental results suggest that the proposed method estimates the model parameters, SOC, and capacity in real time with fast convergence and high accuracy. Experiments on both lithium-ion battery and vanadium redox flow battery (VRB) verify the generality of the proposed method on multiple battery chemistries. The proposed method is also compared with other existing methods on the computational cost to reveal its superiority for practical application.

  11. Flux-limited diffusion models in radiation hydrodynamics

    International Nuclear Information System (INIS)

    Pomraning, G.C.; Szilard, R.H.

    1993-01-01

    The authors discuss certain flux-limited diffusion theories which approximately describe radiative transfer in the presence of steep spatial gradients. A new formulation is presented which generalizes a flux-limited description currently in widespread use for large radiation hydrodynamic calculations. This new formation allows more than one Case discrete mode to be described by a flux-limited diffusion equation. Such behavior is not extant in existing formulations. Numerical results predicted by these flux-limited diffusion models are presented for radiation penetration into an initially cold halfspace. 37 refs., 5 figs

  12. Development of the acquisition model of online information resources at Faculty of Medicine Library, Khon Kaen University.

    Science.gov (United States)

    Thanapaisal, Soodjai; Thanapaisal, Chaiwit

    2013-09-01

    Faculty of Medicine Library, Khon Kaen University started to acquire online information resources since 2001 with the subscriptions to 2 databases. Nowadays it has 29 items of subscriptions and the expenses on online information resources reach to 17 million baht, more than 70 percent of the information resources budget, serving the academic purposes of the Faculty of Medicine. The problems of online information resources acquisition fall into 4 categories, and lead to 4 aspects conforming the model of the acquisition, comparing or benchmarking with the 4 selected medical school libraries in Bangkok, Chiang Mai, and Songkhla, and discussion with some other Thai and foreign libraries. The acquisition model of online information resources is developed from those problems and proposed for Faculty of Medicine Library, Khon Kaen University as well as for any medical libraries which prefer.

  13. Modelling of a holographic interferometry based calorimeter for radiation dosimetry

    Science.gov (United States)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.

    2017-08-01

    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  14. Joint Data Assimilation and Parameter Calibration in on-line groundwater modelling using Sequential Monte Carlo techniques

    Science.gov (United States)

    Ramgraber, M.; Schirmer, M.

    2017-12-01

    As computational power grows and wireless sensor networks find their way into common practice, it becomes increasingly feasible to pursue on-line numerical groundwater modelling. The reconciliation of model predictions with sensor measurements often necessitates the application of Sequential Monte Carlo (SMC) techniques, most prominently represented by the Ensemble Kalman Filter. In the pursuit of on-line predictions it seems advantageous to transcend the scope of pure data assimilation and incorporate on-line parameter calibration as well. Unfortunately, the interplay between shifting model parameters and transient states is non-trivial. Several recent publications (e.g. Chopin et al., 2013, Kantas et al., 2015) in the field of statistics discuss potential algorithms addressing this issue. However, most of these are computationally intractable for on-line application. In this study, we investigate to what extent compromises between mathematical rigour and computational restrictions can be made within the framework of on-line numerical modelling of groundwater. Preliminary studies are conducted in a synthetic setting, with the goal of transferring the conclusions drawn into application in a real-world setting. To this end, a wireless sensor network has been established in the valley aquifer around Fehraltorf, characterized by a highly dynamic groundwater system and located about 20 km to the East of Zürich, Switzerland. By providing continuous probabilistic estimates of the state and parameter distribution, a steady base for branched-off predictive scenario modelling could be established, providing water authorities with advanced tools for assessing the impact of groundwater management practices. Chopin, N., Jacob, P.E. and Papaspiliopoulos, O. (2013): SMC2: an efficient algorithm for sequential analysis of state space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75 (3), p. 397-426. Kantas, N., Doucet, A., Singh, S

  15. Trust Discovery in Online Communities

    Science.gov (United States)

    Piorkowski, John

    2014-01-01

    This research aims to discover interpersonal trust in online communities. Two novel trust models are built to explain interpersonal trust in online communities drawing theories and models from multiple relevant areas, including organizational trust models, trust in virtual settings, speech act theory, identity theory, and common bond theory. In…

  16. Neutron activation as an online procedure in cement plants; Neutronenaktivierung als Online-Verfahren in Zementwerken

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-07-01

    The use of PGNAA (Prompt Gamma Neutron Activation Analysis) makes it possible to determine the content of the components in bulk flows in cement plants directly online on the conveyor belt. The nature of the excitation and radiation means that the material can be penetrated even with large layer thicknesses on the belt. (orig.)

  17. Online modelling of water distribution systems: a UK case study

    Directory of Open Access Journals (Sweden)

    J. Machell

    2010-03-01

    Full Text Available Hydraulic simulation models of water distribution networks are routinely used for operational investigations and network design purposes. However, their full potential is often never realised because, in the majority of cases, they have been calibrated with data collected manually from the field during a single historic time period and, as such, reflect the network operational conditions that were prevalent at that time, and they are then applied as part of a reactive, desktop investigation. In order to use a hydraulic model to assist proactive distribution network management its element asset information must be up to date and it should be able to access current network information to drive simulations. Historically this advance has been restricted by the high cost of collecting and transferring the necessary field measurements. However, recent innovation and cost reductions associated with data transfer is resulting in collection of data from increasing numbers of sensors in water supply systems, and automatic transfer of the data to point of use. This means engineers potentially have access to a constant stream of current network data that enables a new era of "on-line" modelling that can be used to continually assess standards of service compliance for pressure and reduce the impact of network events, such as mains bursts, on customers. A case study is presented here that shows how an online modelling system can give timely warning of changes from normal network operation, providing capacity to minimise customer impact.

  18. Parameterization of clouds and radiation in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  19. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Science.gov (United States)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  20. Application of Large-Scale Database-Based Online Modeling to Plant State Long-Term Estimation

    Science.gov (United States)

    Ogawa, Masatoshi; Ogai, Harutoshi

    Recently, attention has been drawn to the local modeling techniques of a new idea called “Just-In-Time (JIT) modeling”. To apply “JIT modeling” to a large amount of database online, “Large-scale database-based Online Modeling (LOM)” has been proposed. LOM is a technique that makes the retrieval of neighboring data more efficient by using both “stepwise selection” and quantization. In order to predict the long-term state of the plant without using future data of manipulated variables, an Extended Sequential Prediction method of LOM (ESP-LOM) has been proposed. In this paper, the LOM and the ESP-LOM are introduced.

  1. On-line calibration of process instrumentation channels in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    An on-line instrumentation monitoring system was developed and validated for use in nuclear power plants. This system continuously monitors the calibration status of instrument channels and determines whether or not they require manual calibrations. This is accomplished by comparing the output of each instrument channel to an estimate of the process it is monitoring. If the deviation of the instrument channel from the process estimate is greater than an allowable limit, then the instrument is said to be {open_quotes}out of calibration{close_quotes} and manual adjustments are made to correct the calibration. The success of the on-line monitoring system depends on the accuracy of the process estimation. The system described in this paper incorporates both simple intercomparison techniques as well as analytical approaches in the form of data-driven empirical modeling to estimate the process. On-line testing of the calibration of process instrumentation channels will reduce the number of manual calibrations currently performed, thereby reducing both costs to utilities and radiation exposure to plant personnel.

  2. Curve fitting methods for solar radiation data modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  3. Curve fitting methods for solar radiation data modeling

    Science.gov (United States)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-10-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  4. Curve fitting methods for solar radiation data modeling

    International Nuclear Information System (INIS)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-01-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R 2 . The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods

  5. Theories and models of and for online learning

    OpenAIRE

    Haythornthwaite, Caroline; Andrews, Richard; Kazmer, Michelle M.; Bruce, Bertram C.; Montague, Rae-Anne; Preston, Christina

    2007-01-01

    For many years, discussion of online learning, or e-learning, has been pre-occupied with the practice of teaching online and the debate about whether being online is 'as good as' being offline. The authors contributing to this paper see this past as an incubation period for the emergence of new teaching and learning practices. We see changes in teaching and learning emerging from the nexus of a changing landscape of information and communication technologies, an active and motivated teaching ...

  6. The feasibility of 10 keV X-ray as radiation source in total dose response radiation test

    International Nuclear Information System (INIS)

    Li Ruoyu; Li Bin; Luo Hongwei; Shi Qian

    2005-01-01

    The standard radiation source utilized in traditional total dose response radiation test is 60 Co, which is environment-threatening. X-rays, as a new radiation source, has the advantages such as safety, precise control of dose rate, strong intensity, possibility of wafer-level test or even on-line test, which greatly reduce cost for package, test and transportation. This paper discussed the feasibility of X-rays replacing 60 Co as the radiation source, based on the radiation mechanism and the effects of radiation on gate oxide. (authors)

  7. Spectral modeling of radiation in combustion systems

    Science.gov (United States)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term

  8. Implementing Online Physical Education

    Science.gov (United States)

    Mohnsen, Bonnie

    2012-01-01

    Online physical education, although seemingly an oxymoron, appears to be the wave of the future at least for some students. The purpose of this article is to explore research and options for online learning in physical education and to examine a curriculum, assessment, and instructional model for online learning. The article examines how physical…

  9. Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal

    Science.gov (United States)

    Zhao, Laijun; Wang, Qin; Cheng, Jingjing; Chen, Yucheng; Wang, Jiajia; Huang, Wei

    2011-07-01

    Rumor is an important form of social interaction, and its spreading has a significant impact on people’s lives. In the age of Web, people are using electronic media more frequently than ever before, and blog has become one of the main online social interactions. Therefore, it is essential to learn the evolution mechanism of rumor spreading on homogeneous network in consideration of the forgetting mechanism of spreaders. Here we study a rumor spreading model on an online social blogging platform called LiveJournal. In comparison with the Susceptible-Infected-Removed (SIR) model, we provide a more detailed and realistic description of rumor spreading process with combination of forgetting mechanism and the SIR model of epidemics. A mathematical model has been presented and numerical solutions of the model were used to analyze the impact factors of rumor spreading, such as the average degree, forgetting rate and stifling rate. Our results show that there exist a threshold of the average degree of LiveJournal and above which the influence of rumor reaches saturation. Forgetting mechanism and stifling rate exert great influence on rumor spreading on online social network. The analysis results can guide people’s behaviors in view of the theoretical and practical aspects.

  10. Comparison of radiation parametrizations within the HARMONIE-AROME NWP model

    Science.gov (United States)

    Rontu, Laura; Lindfors, Anders V.

    2018-05-01

    Downwelling shortwave radiation at the surface (SWDS, global solar radiation flux), given by three different parametrization schemes, was compared to observations in the HARMONIE-AROME numerical weather prediction (NWP) model experiments over Finland in spring 2017. Simulated fluxes agreed well with each other and with the observations in the clear-sky cases. In the cloudy-sky conditions, all schemes tended to underestimate SWDS at the daily level, as compared to the measurements. Large local and temporal differences between the model results and observations were seen, related to the variations and uncertainty of the predicted cloud properties. The results suggest a possibility to benefit from the use of different radiative transfer parametrizations in a NWP model to obtain perturbations for the fine-resolution ensemble prediction systems. In addition, we recommend usage of the global radiation observations for the standard validation of the NWP models.

  11. Problems with models of the radiation belts

    International Nuclear Information System (INIS)

    Daly, E.J.; Lemaire, J.; Heynderickx, D.; Rodgers, D.J.

    1996-01-01

    The current standard models of the radiation-belt environment have many shortcomings, not the least of which is their extreme age. Most of the data used for them were acquired in the 1960's and early 1970's. Problems with the present models, and the ways in which data from more recent missions are being or can be used to create new models with improved functionality, are described. The phenomenology of the radiation belts, the effects on space systems, and geomagnetic coordinates and modeling are discussed. Errors found in present models, their functional limitations, and problems with their implementation and use are detailed. New modeling must address problems at low altitudes with the south Atlantic anomaly, east-west asymmetries and solar cycle variations and at high altitudes with the highly dynamic electron environment. The important issues in space environment modeling from the point of view of usability and relationship with effects evaluation are presented. New sources of data are discussed. Future requirements in the data, models, and analysis tools areas are presented

  12. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  13. Models for the estimation of diffuse solar radiation for typical cities in Turkey

    International Nuclear Information System (INIS)

    Bakirci, Kadir

    2015-01-01

    In solar energy applications, diffuse solar radiation component is required. Solar radiation data particularly in terms of diffuse component are not readily affordable, because of high price of measurements as well as difficulties in their maintenance and calibration. In this study, new empirical models for predicting the monthly mean diffuse solar radiation on a horizontal surface for typical cities in Turkey are established. Therefore, fifteen empirical models from studies in the literature are used. Also, eighteen diffuse solar radiation models are developed using long term sunshine duration and global solar radiation data. The accuracy of the developed models is evaluated in terms of different statistical indicators. It is found that the best performance is achieved for the third-order polynomial model based on sunshine duration and clearness index. - Highlights: • Diffuse radiation is given as a function of clearness index and sunshine fraction. • The diffuse radiation is an important parameter in solar energy applications. • The diffuse radiation measurement is for limited periods and it is very rare. • The new models can be used to estimate monthly average diffuse solar radiation. • The accuracy of the models is evaluated on the basis of statistical indicators

  14. Online Statistical Modeling (Regression Analysis) for Independent Responses

    Science.gov (United States)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  15. The radiation performance standard. A presentation model for ionizing radiation in the living environment

    International Nuclear Information System (INIS)

    Schaap, L.E.J.J.; Bosmans, G.; Van der Graaf, E.R.; Hendriks, Ch.F.

    1998-01-01

    By means of the so-called radiation performance standard (SPN, abbreviated in Dutch) the total radioactivity from building constructions which contributes to the indoor radiation dose can be calculated. The SPN is implemented with related boundary values and is part of the Building Decree ('Bouwbesluit') in the Netherlands. The model, presented in this book, forms the basis of a new Dutch radiation protection standard, to be published by the Dutch Institute for Standardization NEN (formerly NNI). 14 refs

  16. Imaging and characterization of primary and secondary radiation in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Opalka, Lukas [Institute of Experimental and Applied Physics, Czech Technical University in Prague (Czech Republic); Martisikova, Maria; Gwosch, Klaus [German Cancer Research Center, Heidelberg (Germany); Jakubek, Jan [Advacam, Prague (Czech Republic)

    2016-07-07

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  17. Imaging and characterization of primary and secondary radiation in ion beam therapy

    International Nuclear Information System (INIS)

    Granja, Carlos; Opalka, Lukas; Martisikova, Maria; Gwosch, Klaus; Jakubek, Jan

    2016-01-01

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  18. Radiation induced peroxidation in model lipid systems

    International Nuclear Information System (INIS)

    Dahlan, K.Z.B.H.M.

    1981-08-01

    In the studies of radiation induced lipid peroxidation, lecithin-liposomes and aqueous micellar solutions of sodium linoleate (or linoleic acid) have been used as models of lipid membrane systems. The liposomes and aqueous linoleate micelles were irradiated in the presence of O 2 and N 2 O/O 2 (80/20 v/v). The peroxidation was initiated using gamma radiation from 60 Co radiation source and was monitored by measuring the increase in absorbance of conjugated diene at 232 nm and by the thiobarbituric acid (TBA) test. The oxidation products were also identified by GLC and GLC-MS analysis. (author)

  19. Pengaruh Faktor Psikologi Konsumen dan Online Store Environment Terhadap Purchase intention Pada E-commerce Model Bisnis C2C

    OpenAIRE

    Samiono, Bambang Eko

    2018-01-01

    The existence of the internet has put e-commerce on the concept of one stop shopping. Online trends provide a variety of ease in accessing and running a business with e-commerce. E-commerce C2C model is one of the most vibrant business models in e-commerce. Here business owner are required to be sensitive to the factors that affect consumers to purchase intention on online store. This study examines the influence of internal factors of the Online Store Environment (web quality and web brand) ...

  20. Fermenter control and modelling system. Online Kopplung von Standard-Software zur Modellierung von biologischen Prozessen

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B [Halle-Wittenberg Univ., Halle (Germany). Inst. fuer Bioprozesstechnik; Diehl, U; Lauterbach, U [Diessel Biotech GmbH, Melsungen (Germany)

    1991-10-01

    The development and operation of small biotechnological plants increasingly requires process control technique, which is both powerful and robust, but at the same time flexible. One criterion for the performance of a process control system is its ability to process and evaluate online process data project specifically. This contribution describes this for the control system Micro-MFCS and its coupling with a Modelling System. The Modelling System is a software package for the acquisition, processing and evaluating of data from biochemical, chemical and physico-technical experiments. It was developed at the Martin-Luther-University in Halle (Germany) and offers the features: Simulation of fermentation processes using mathematical models and fitting of mathematical models to fermentation processes. In the context of a joint project the online coupling of the software package Micro-MFCS and Modelling System was realised. (orig.).

  1. Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012

    Directory of Open Access Journals (Sweden)

    Quinn Philip R.

    2017-01-01

    Full Text Available Radiation in the form of solar energetic particles (SEPs presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth’s protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER onboard the Lunar Reconnaissance Orbiter (LRO at the Moon and from the Radiation Assessment Detector (RAD on the Mars Science Laboratory (MSL during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm−2 and 5.0 g cm−2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.

  2. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Madhlopa, A.

    2014-01-01

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (h r,w-gc ) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of h r,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  3. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-01-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  4. Radiation environmental real-time monitoring and dispersion modeling

    International Nuclear Information System (INIS)

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  5. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    Science.gov (United States)

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  6. Diffuse solar radiation estimation models for Turkey's big cities

    International Nuclear Information System (INIS)

    Ulgen, Koray; Hepbasli, Arif

    2009-01-01

    A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the

  7. A simple model for determining photoelectron-generated radiation scaling laws

    International Nuclear Information System (INIS)

    Dipp, T.M.

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using a simple model to determine fundamental scaling laws. The model is one-dimensional (small-spot) and uses monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. Simple steady-state radiation, frequency, and maximum orbital distance equations were derived using small-spot radiation equations, a sin 2 type modulation function, and simple photoelectron dynamics. The result is a system of equations for various scaling laws, which, along with model and user constraints, are simultaneously solved using techniques similar to linear programming. Typical conductors illuminated by low-power sources producing photons with energies less than 5.0 eV are readily modeled by this small-spot, steady-state analysis, which shows they generally produce low efficiency (η rsL -10.5 ) pure photoelectron-induced radiation. However, the small-spot theory predicts that the total conversion efficiency for incident photon power to photoelectron-induced radiated power can go higher than 10 -5.5 for typical real conductors if photons having energies of 15 eV and higher are used, and should go even higher still if the small-spot limit of this theory is exceeded as well. Overall, the simple theory equations, model constraint equations, and solution techniques presented provide a foundation for understanding, predicting, and optimizing the generated radiation, and the simple theory equations provide scaling laws to compare with computational and laboratory experimental data

  8. Hospitality and Tourism Online Review Research: A Systematic Analysis and Heuristic-Systematic Model

    Directory of Open Access Journals (Sweden)

    Sunyoung Hlee

    2018-04-01

    Full Text Available With tremendous growth and potential of online consumer reviews, online reviews of hospitality and tourism are now playing a significant role in consumer attitude and buying behaviors. This study reviewed and analyzed hospitality and tourism related articles published in academic journals. The systematic approach was used to analyze 55 research articles between January 2008 and December 2017. This study presented a brief synthesis of research by investigating content-related characteristics of hospitality and tourism online reviews (HTORs in different market segments. Two research questions were addressed. Building upon our literature analysis, we used the heuristic-systematic model (HSM to summarize and classify the characteristics affecting consumer perception in previous HTOR studies. We believe that the framework helps researchers to identify the research topic in extended HTORs literature and to point out possible direction for future studies.

  9. Normal tissue complication probability modeling of radiation-induced hypothyroidism after head-and-neck radiation therapy.

    Science.gov (United States)

    Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan

    2013-02-01

    To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with α/β = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D(50) estimated from the models was approximately 44 Gy. The implemented normal tissue complication probability models showed a parallel architecture for the

  10. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshandeh, Mohsen [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hashemi, Bijan, E-mail: bhashemi@modares.ac.ir [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi Mehdi [Department of Medical Physics, Faculty of Medical Sciences, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nikoofar, Alireza; Vasheghani, Maryam [Department of Radiation Oncology, Hafte-Tir Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Kazemnejad, Anoshirvan [Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2013-02-01

    Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented

  11. GOMoDo: A GPCRs online modeling and docking webserver.

    Directory of Open Access Journals (Sweden)

    Massimo Sandal

    Full Text Available G-protein coupled receptors (GPCRs are a superfamily of cell signaling membrane proteins that include >750 members in the human genome alone. They are the largest family of drug targets. The vast diversity and relevance of GPCRs contrasts with the paucity of structures available: only 21 unique GPCR structures have been experimentally determined as of the beginning of 2013. User-friendly modeling and small molecule docking tools are thus in great demand. While both GPCR structural predictions and docking servers exist separately, with GOMoDo (GPCR Online Modeling and Docking, we provide a web server to seamlessly model GPCR structures and dock ligands to the models in a single consistent pipeline. GOMoDo can automatically perform template choice, homology modeling and either blind or information-driven docking by combining together proven, state of the art bioinformatic tools. The web server gives the user the possibility of guiding the whole procedure. The GOMoDo server is freely accessible at http://molsim.sci.univr.it/gomodo.

  12. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  13. [Treatment of cloud radiative effects in general circulation models

    International Nuclear Information System (INIS)

    Wang, W.C.

    1993-01-01

    This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment

  14. Multi-perspective workflow modeling for online surgical situation models.

    Science.gov (United States)

    Franke, Stefan; Meixensberger, Jürgen; Neumuth, Thomas

    2015-04-01

    Surgical workflow management is expected to enable situation-aware adaptation and intelligent systems behavior in an integrated operating room (OR). The overall aim is to unburden the surgeon and OR staff from both manual maintenance and information seeking tasks. A major step toward intelligent systems behavior is a stable classification of the surgical situation from multiple perspectives based on performed low-level tasks. The present work proposes a method for the classification of surgical situations based on multi-perspective workflow modeling. A model network that interconnects different types of surgical process models is described. Various aspects of a surgical situation description were considered: low-level tasks, high-level tasks, patient status, and the use of medical devices. A study with sixty neurosurgical interventions was conducted to evaluate the performance of our approach and its robustness against incomplete workflow recognition input. A correct classification rate of over 90% was measured for high-level tasks and patient status. The device usage models for navigation and neurophysiology classified over 95% of the situations correctly, whereas the ultrasound usage was more difficult to predict. Overall, the classification rate decreased with an increasing level of input distortion. Autonomous adaptation of medical devices and intelligent systems behavior do not currently depend solely on low-level tasks. Instead, they require a more general type of understanding of the surgical condition. The integration of various surgical process models in a network provided a comprehensive representation of the interventions and allowed for the generation of extensive situation descriptions. Multi-perspective surgical workflow modeling and online situation models will be a significant pre-requisite for reliable and intelligent systems behavior. Hence, they will contribute to a cooperative OR environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  16. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  17. Modern methods in collisional-radiative modeling of plasmas

    CERN Document Server

    2016-01-01

    This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It ...

  18. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gueymard, Christian A. [Solar Consulting Services, P.O. Box 392, Colebrook, NH 03576 (United States); Myers, Daryl R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3305 (United States)

    2009-02-15

    The solar renewable energy community depends on radiometric measurements and instrumentation for data to design and monitor solar energy systems, and develop and validate solar radiation models. This contribution evaluates the impact of instrument uncertainties contributing to data inaccuracies and their effect on short-term and long-term measurement series, and on radiation model validation studies. For the latter part, transposition (horizontal-to-tilt) models are used as an example. Confirming previous studies, it is found that a widely used pyranometer strongly underestimates diffuse and global radiation, particularly in winter, unless appropriate corrective measures are taken. Other types of measurement problems are also discussed, such as those involved in the indirect determination of direct or diffuse irradiance, and in shadowband correction methods. The sensitivity of the predictions from transposition models to inaccuracies in input radiation data is demonstrated. Caution is therefore issued to the whole community regarding drawing detailed conclusions about solar radiation data without due attention to the data quality issues only recently identified. (author)

  19. Linear non-threshold (LNT) radiation hazards model and its evaluation

    International Nuclear Information System (INIS)

    Min Rui

    2011-01-01

    In order to introduce linear non-threshold (LNT) model used in study on the dose effect of radiation hazards and to evaluate its application, the analysis of comprehensive literatures was made. The results show that LNT model is more suitable to describe the biological effects in accuracy for high dose than that for low dose. Repairable-conditionally repairable model of cell radiation effects can be well taken into account on cell survival curve in the all conditions of high, medium and low absorbed dose range. There are still many uncertainties in assessment model of effective dose of internal radiation based on the LNT assumptions and individual mean organ equivalent, and it is necessary to establish gender-specific voxel human model, taking gender differences into account. From above, the advantages and disadvantages of various models coexist. Before the setting of the new theory and new model, LNT model is still the most scientific attitude. (author)

  20. Online analysis of potassium fertilizers by Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Groisman, Y.; Gaft, M.

    2010-01-01

    Presently, online analysis in potassium fertilizers industry is performed by Natural Radioactivity Analyzers. Laser Distance Spectrometry (LDS) has tested, by laboratory scale, the possibility of Laser-Induced Breakdown Spectroscopy (LIBS) technique implementation for online fertilizers production control. The main advantage of the system comparing to the existing technique is the principal possibility to analyze all relevant elements, such as K, Na, Mg, and not only K40 isotope as done in natural radiation analytical systems. Good correlations between online LIBS results with chemical analysis data of K, Na and Mg impurities of samples from Russia, Belarus and Israel demonstrate that LIBS system is a perspective tool for online control of those elements in field conditions.

  1. Faculty Perceptions about Teaching Online: Exploring the Literature Using the Technology Acceptance Model as an Organizing Framework

    Science.gov (United States)

    Wingo, Nancy Pope; Ivankova, Nataliya V.; Moss, Jacqueline A.

    2017-01-01

    Academic leaders can better implement institutional strategic plans to promote online programs if they understand faculty perceptions about teaching online. An extended version of a model for technology acceptance, or TAM2 (Venkatesh & Davis, 2000), provided a framework for surveying and organizing the research literature about factors that…

  2. Using Structural Equation Modeling to Validate Online Game Players' Motivations Relative to Self-Concept and Life Adaptation

    Science.gov (United States)

    Yang, Shu Ching; Huang, Chiao Ling

    2013-01-01

    This study aimed to validate a systematic instrument to measure online players' motivations for playing online games (MPOG) and examine how the interplay of differential motivations impacts young gamers' self-concept and life adaptation. Confirmatory factor analysis determined that a hierarchical model with a two-factor structure of…

  3. Online Semiparametric Identification of Lithium-Ion Batteries Using the Wavelet-Based Partially Linear Battery Model

    Directory of Open Access Journals (Sweden)

    Caiping Zhang

    2013-05-01

    Full Text Available Battery model identification is very important for reliable battery management as well as for battery system design process. The common problem in identifying battery models is how to determine the most appropriate mathematical model structure and parameterized coefficients based on the measured terminal voltage and current. This paper proposes a novel semiparametric approach using the wavelet-based partially linear battery model (PLBM and a recursive penalized wavelet estimator for online battery model identification. Three main contributions are presented. First, the semiparametric PLBM is proposed to simulate the battery dynamics. Compared with conventional electrical models of a battery, the proposed PLBM is equipped with a semiparametric partially linear structure, which includes a parametric part (involving the linear equivalent circuit parameters and a nonparametric part [involving the open-circuit voltage (OCV]. Thus, even with little prior knowledge about the OCV, the PLBM can be identified using a semiparametric identification framework. Second, we model the nonparametric part of the PLBM using the truncated wavelet multiresolution analysis (MRA expansion, which leads to a parsimonious model structure that is highly desirable for model identification; using this model, the PLBM could be represented in a linear-in-parameter manner. Finally, to exploit the sparsity of the wavelet MRA representation and allow for online implementation, a penalized wavelet estimator that uses a modified online cyclic coordinate descent algorithm is proposed to identify the PLBM in a recursive fashion. The simulation and experimental results demonstrate that the proposed PLBM with the corresponding identification algorithm can accurately simulate the dynamic behavior of a lithium-ion battery in the Federal Urban Driving Schedule tests.

  4. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    show a very different response during anisotropic events, leading to variations in aircrew radiation doses that may be significant for dose assessment. To estimate the additional exposure due to solar flares, a model was developed using a Monte-Carlo radiation transport code, MCNPX. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere using the MCNPX analysis. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during Ground Level Enhancements 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis. Keywords: Radiation Dosimetry, Radiation Protection, Space Physics.

  5. Single-Column Modeling, GCM Parameterizations and Atmospheric Radiation Measurement Data

    International Nuclear Information System (INIS)

    Somerville, R.C.J.; Iacobellis, S.F.

    2005-01-01

    Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional

  6. Time dependent optimal switching controls in online selling models

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Cohen, Albert [MICHIGAN STATE UNIV

    2010-01-01

    We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.

  7. Reduction of collisional-radiative models for transient, atomic plasmas

    Science.gov (United States)

    Abrantes, Richard June; Karagozian, Ann; Bilyeu, David; Le, Hai

    2017-10-01

    Interactions between plasmas and any radiation field, whether by lasers or plasma emissions, introduce many computational challenges. One of these computational challenges involves resolving the atomic physics, which can influence other physical phenomena in the radiated system. In this work, a collisional-radiative (CR) model with reduction capabilities is developed to capture the atomic physics at a reduced computational cost. Although the model is made with any element in mind, the model is currently supplemented by LANL's argon database, which includes the relevant collisional and radiative processes for all of the ionic stages. Using the detailed data set as the true solution, reduction mechanisms in the form of Boltzmann grouping, uniform grouping, and quasi-steady-state (QSS), are implemented to compare against the true solution. Effects on the transient plasma stemming from the grouping methods are compared. Distribution A: Approved for public release; unlimited distribution, PA (Public Affairs) Clearance Number 17449. This work was supported by the Air Force Office of Scientific Research (AFOSR), Grant Number 17RQCOR463 (Dr. Jason Marshall).

  8. Convenient models of the atmosphere: optics and solar radiation

    Science.gov (United States)

    Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov

    2017-11-01

    Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.

  9. Measurement of Online Student Engagement: Utilization of Continuous Online Student Behavior Indicators as Items in a Partial Credit Rasch Model

    Science.gov (United States)

    Anderson, Elizabeth

    2017-01-01

    Student engagement has been shown to be essential to the development of research-based best practices for K-12 education. It has been defined and measured in numerous ways. The purpose of this research study was to develop a measure of online student engagement for grades 3 through 8 using a partial credit Rasch model and validate the measure…

  10. Environmental radiation telemetering system

    International Nuclear Information System (INIS)

    Kikuchi, Hideo

    1983-01-01

    The Atomic Energy Center of Miyagi Prefecture introduced a telemetering system in 1982 for the purpose of monitoring human external exposure to radiation, and started preliminary examination for the radiation monitoring aound the Onagawa Nuclear Power Station, Tohoku Electric Power Co., in October, 1982, prior to its commencement of operation scheduled in June, 1984. This system roughly consists of three elements: monitoring stations (MSs) for the continuous observation of radiation, weather condition and other items; the monitoring center to collect the primary data obtained in each MS and to implement on-line data computation, data filing and display; and sub-centers for informing the data obtained by each MS to the people around it. Six MSs were installed in the region of radius of several km from the nuclear power plant. All or a part of the following items are measured in MSs: exposure on a basis of DBM (descrimination bias modulation), γ-spectra, exposure data of ionization chambers, wind direction and speed, rainfall, moisture in the ground, temperature, sunshine and radiation balance. In addition, in this report, also the system configuration, and online and off-line data processing are described. Environmental radiation does not seem to be fully grasped because it complicatedly varies due to weather conditions and other causes. The monitoring method of Miyagi Prefecture is expected to aid the clarification, though it is not yet established. (Wakatsuki, Y.)

  11. Online communication among adolescents: an integrated model of its attraction, opportunities, and risks.

    Science.gov (United States)

    Valkenburg, Patti M; Peter, Jochen

    2011-02-01

    Adolescents far outnumber adults in their use of e-communication technologies, such as instant messaging and social network sites. In this article, we present an integrative model that helps us to understand both the appeal of these technologies and their risks and opportunities for the psychosocial development of adolescents. We first outline how the three features (anonymity, asynchronicity, and accessibility) of online communication stimulate controllability of online self-presentation and self-disclosure among adolescents. We then review research on the risks and opportunities of online self-presentation and self-disclosure for the three components of adolescents' psychosocial development, including identity (self-unity, self-esteem), intimacy (relationship formation, friendship quality, cyberbullying), and sexuality (sexual self-exploration, unwanted sexual solicitation). Existing research suggests several opportunities of online communication, such as enhanced self-esteem, relationship formation, friendship quality, and sexual self-exploration. It also yields evidence of several risks, including cyberbullying and unwanted sexual solicitation. We discuss the shortcomings of existing research, the possibilities for future research, and the implications for educators and health care professionals. Copyright © 2011 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  12. Mathematical models of the theory of the radiative transfer

    International Nuclear Information System (INIS)

    Lin, Ch.

    2007-06-01

    We are interested in various different models arising in radiative transfer, which describe the interactions between the medium and the photons. The radiation is described in terms of energy and energy flux in the macroscopic view, the material being described by the Euler equations (radiative hydrodynamic model). In another way, the radiation can be seen as a collection of photons, in the microscopic view point; the photons can be absorbed or emitted by the material. The absorption and the emission of photons depend on the internal excitation and ionization state of the material. We begin with the local existence (in time) of smooth solutions to a system coupling the Euler equations and the transfer equation. This system describes the exchange of energy and moment between the radiation and the material. Next, we give an asymptotic discussion for this model in the NON-LTE regime and get a simple system: coupling the Euler equations with an elliptic equation. We show the existence of (smooth) shock profiles to this system and the regularity of the shock profile as a function of the strength of the shock. Then we study the asymptotic stability of the shock profile. Finally, we study a system describing the radiation and the internal state of the material, in the microscopic view point. We prove the existence of the solution to this system and study the convergence towards the statistical equilibrium. The theoretical results are illustrated by numerical simulations. (author)

  13. Three-dimensional modeling of radiative and convective exchanges in the urban atmosphere

    International Nuclear Information System (INIS)

    Qu, Yongfeng

    2011-01-01

    In many micro-meteorological studies, building resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. In order to take into account atmospheric radiation and the thermal effects of the buildings in simulations of atmospheric flow and pollutant dispersion in urban areas, we have developed a three-dimensional (3D) atmospheric radiative scheme, in the atmospheric module of the Computational Fluid Dynamics model Code-Saturne. The radiative scheme was previously validated with idealized cases, using as a first step, a constant 3D wind field. In this work, the full coupling of the radiative and thermal schemes with the dynamical model is evaluated. The aim of the first part is to validate the full coupling with the measurements of the simple geometry from the 'Mock Urban Setting Test' (MUST) experiment. The second part discusses two different approaches to model the radiative exchanges in urban area with a comparison between Code-Saturne and SOLENE. The third part applies the full coupling scheme to show the contribution of the radiative transfer model on the airflow pattern in low wind speed conditions in a 3D urban canopy. In the last part we use the radiative-dynamics coupling to simulate a real urban environment and validate the modeling approach with field measurements from the 'Canopy and Aerosol Particles Interactions in Toulouse Urban Layer' (CAPITOUL). (author) [fr

  14. Fast Facts about Online Learning

    Science.gov (United States)

    International Association for K-12 Online Learning, 2013

    2013-01-01

    This report explores the latest data concerning online and blended learning, enrollment, access, courses, and key policies indicators. It also reviews online learning statistics, trends, policy issues, and iNACOL strategic priorities. This report provides a snapshot view of state funding models for both full-time and supplemental online learning…

  15. Using Online Modelled Spatial Constraints for Pose Estimation in an Industrial Setting

    DEFF Research Database (Denmark)

    Meyer, Kenneth Korsgaard; Wolniakowski, Adam; Hagelskjær, Frederik

    2017-01-01

    We introduce a vision system that is able to on-line learn spatial constraints to improve pose estimation in terms of correct recognition as well as computational speed. By making use of a simulated industrial robot system performing various pick and place tasks, we show the effect of model...

  16. A Model for Online Support in Classroom Management: Perceptions of Beginning Teachers

    Science.gov (United States)

    Baker, Credence; Gentry, James; Larmer, William

    2016-01-01

    Classroom management is a challenge for beginning teachers. To address this challenge, a model to provide support for beginning teachers was developed, consisting of a one-day workshop on classroom management, followed with online support extending over eight weeks. Specific classroom management strategies included (a) developing a foundation…

  17. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  18. NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model.

    Science.gov (United States)

    Sood, Mehak; Besson, Pierre; Muthalib, Makii; Jindal, Utkarsh; Perrey, Stephane; Dutta, Anirban; Hayashibe, Mitsuhiro

    2016-12-01

    Transcranial direct current stimulation (tDCS) has been shown to perturb both cortical neural activity and hemodynamics during (online) and after the stimulation, however mechanisms of these tDCS-induced online and after-effects are not known. Here, online resting-state spontaneous brain activation may be relevant to monitor tDCS neuromodulatory effects that can be measured using electroencephalography (EEG) in conjunction with near-infrared spectroscopy (NIRS). We present a Kalman Filter based online parameter estimation of an autoregressive (ARX) model to track the transient coupling relation between the changes in EEG power spectrum and NIRS signals during anodal tDCS (2mA, 10min) using a 4×1 ring high-definition montage. Our online ARX parameter estimation technique using the cross-correlation between log (base-10) transformed EEG band-power (0.5-11.25Hz) and NIRS oxy-hemoglobin signal in the low frequency (≤0.1Hz) range was shown in 5 healthy subjects to be sensitive to detect transient EEG-NIRS coupling changes in resting-state spontaneous brain activation during anodal tDCS. Conventional sliding window cross-correlation calculations suffer a fundamental problem in computing the phase relationship as the signal in the window is considered time-invariant and the choice of the window length and step size are subjective. Here, Kalman Filter based method allowed online ARX parameter estimation using time-varying signals that could capture transients in the coupling relationship between EEG and NIRS signals. Our new online ARX model based tracking method allows continuous assessment of the transient coupling between the electrophysiological (EEG) and the hemodynamic (NIRS) signals representing resting-state spontaneous brain activation during anodal tDCS. Published by Elsevier B.V.

  19. Computer Agent's Role in Modeling an Online Math Help User

    OpenAIRE

    Dragana Martinovic

    2007-01-01

    This paper investigates perspectives of deployments of open learner model on mathematics online help sites. It proposes enhancing a regular human-to-human interaction with an involvement of a computer agent suitable for tracking users, checking their input and making useful suggestions. Such a design would provide the most support for the interlocutors while keeping the nature of existing environment intact. Special considerations are given to peer-to-peer and expert-to-student mathematics on...

  20. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    OpenAIRE

    Alexandre Bryan Heinemann; Pepijn A.J. van Oort; Diogo Simões Fernandes; Aline de Holanda Nunes Maia

    2012-01-01

    Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs) data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, ...

  1. Development of an environmental radiation analysis research capability in the UAE

    International Nuclear Information System (INIS)

    Kim, Sung-yeop; Kim, Chankyu; Lee, Kun Jai; Chang, Soon Heung; Elmasri, Hasna; Beeley, Philip A.

    2013-01-01

    The UAE has started a nuclear energy program with the aim of having its first four units on-line between 2017 and 2020 and it is important that the country has an environmental radiation analysis capability to support this program. Khalifa University is therefore implementing a research laboratory to support both experimental analysis and radionuclide transport modeling in the aquatic and terrestrial environment. This paper outlines the development of this capability as well as the work in progress and planned for the future. - Highlights: • New university environmental radiation laboratory established in UAE. • Facilities included for alpha, beta and gamma radiometrics. • Transport modeling capability is being established. • Laboratory also used for education and training. • Robotic methods for sampling and analysis are under development

  2. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    He, Hongwen; Zhang, Xiaowei; Xiong, Rui; Xu, Yongli; Guo, Hongqiang

    2012-01-01

    This paper presents a method to estimate the state-of-charge (SOC) of a lithium-ion battery, based on an online identification of its open-circuit voltage (OCV), according to the battery’s intrinsic relationship between the SOC and the OCV for application in electric vehicles. Firstly an equivalent circuit model with n RC networks is employed modeling the polarization characteristic and the dynamic behavior of the lithium-ion battery, the corresponding equations are built to describe its electric behavior and a recursive function is deduced for the online identification of the OCV, which is implemented by a recursive least squares (RLS) algorithm with an optimal forgetting factor. The models with different RC networks are evaluated based on the terminal voltage comparisons between the model-based simulation and the experiment. Then the OCV-SOC lookup table is built based on the experimental data performed by a linear interpolation of the battery voltages at the same SOC during two consecutive discharge and charge cycles. Finally a verifying experiment is carried out based on nine Urban Dynamometer Driving Schedules. It indicates that the proposed method can ensure an acceptable accuracy of SOC estimation for online application with a maximum error being less than 5.0%. -- Highlights: ► An equivalent circuit model with n RC networks is built for lithium-ion batteries. ► A recursive function is deduced for the online estimation of the model parameters like OCV and R O . ► The relationship between SOC and OCV is built with a linear interpolation method by experiments. ► The experiments show the online model-based SOC estimation is reasonable with enough accuracy.

  3. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  4. Development of dual stream PCRTM-SOLAR for fast and accurate radiative transfer modeling in the cloudy atmosphere with solar radiation

    Science.gov (United States)

    Yang, Q.; Liu, X.; Wu, W.; Kizer, S.; Baize, R. R.

    2016-12-01

    Fast and accurate radiative transfer model is the key for satellite data assimilation and observation system simulation experiments for numerical weather prediction and climate study applications. We proposed and developed a dual stream PCRTM-SOLAR model which may simulate radiative transfer in the cloudy atmosphere with solar radiation quickly and accurately. Multi-scattering of multiple layers of clouds/aerosols is included in the model. The root-mean-square errors are usually less than 5x10-4 mW/cm2.sr.cm-1. The computation speed is 3 to 4 orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This model will enable a vast new set of scientific calculations that were previously limited due to the computational expenses of available radiative transfer models.

  5. Modeling transient radiation effects in power MOSFETS

    International Nuclear Information System (INIS)

    Hoffman, J.R.; Hall, W.E.; Dunn, D.E.

    1987-01-01

    Using standard device specifications and simple assumptions, the transient radiation response of VDMOS MOSFETs can be modeled in a standard circuit analysis program. The device model consists of a body diode, a parasitic bipolar transistor, and elements to simulate high-current reduced breakdown. The attached photocurrent model emulates response to any pulse shape and accounts for bias-dependent depletion regions. The model can be optimized to best fit available test data

  6. A model for calculating hourly global solar radiation from satellite data in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J.

    2009-01-01

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country.

  7. A model for calculating hourly global solar radiation from satellite data in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-09-15

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country. (author)

  8. Non-Grey Radiation Modeling using Thermal Desktop/Sindaworks TFAWS06-1009

    Science.gov (United States)

    Anderson, Kevin R.; Paine, Chris

    2006-01-01

    This paper provides an overview of the non-grey radiation modeling capabilities of Cullimore and Ring's Thermal Desktop(Registered TradeMark) Version 4.8 SindaWorks software. The non-grey radiation analysis theory implemented by Sindaworks and the methodology used by the software are outlined. Representative results from a parametric trade study of a radiation shield comprised of a series of v-grooved shaped deployable panels is used to illustrate the capabilities of the SindaWorks non-grey radiation thermal analysis software using emissivities with temperature and wavelength dependency modeled via a Hagen-Rubens relationship.

  9. Modeling of MOS radiation and post irradiation effects

    International Nuclear Information System (INIS)

    Neamen, D.A.

    1984-01-01

    The radiation response and long term recovery effects in a n-channel MOSFET due to a pulse of ionizing radiation were modeled assuming that electron tunneling from the semiconductor into the oxide and the buildup of interface states were the postirradiation recovery mechanisms. The modeling used convolution theory and took into account the effects of bias changes during the recovery period and charge yield effects. Changing the bias condition during the post-irradiation recovery period changed the recovery rate. The charge yield effects changed the density of trapped positive charge in the oxide but did not change the recovery characteristics for a given oxide thickness. The modeling results were compared to previous experimental results

  10. When Disney Meets the Research Park: Metaphors and Models for Engineering an Online Learning Community of Tomorrow

    Science.gov (United States)

    Chenail, Ronald J.

    2004-01-01

    It is suggested that educators look to an environment in which qualitative research can be learned in more flexible and creative ways--an online learning community known as the Research Park Online (RPO). This model, based upon Walt Disney's 1966 plan for his "Experimental Prototype Community of Tomorrow" (EPCOT) and university cooperative…

  11. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    Science.gov (United States)

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  12. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  13. Evaluation of Applicability of Global Solar Radiation Prediction Models for Kocaeli

    Directory of Open Access Journals (Sweden)

    Nurullah ARSLANOĞLU

    2016-04-01

    Full Text Available Design and analyses of solar energy systems needs value of global solar radiation falling on the surface of the earth. In this study,  thirty relative sunshine duration based regression models in the literature for determining the monthly average daily global solar radiation on a horizontal surface for Kocaeli were investigated. To indicate the performance of the models, the following statistical test methods are used: mean absolute bias error (MABE, mean bias error (MBE, mean absolute percent error (MAPE, mean percent error (MPE, root mean square error (RMSE. According to the statistical performance, Lewis model (Model 23, Model-18 (Jin et al. and Model 8 (Bahel et al. showed the best estimation of the global solar radiation on a horizontal surface for Kocaeli.

  14. The User-friendly On-Line Diffusion Chamber

    CERN Document Server

    Aviles Acosta, Jaime

    2015-01-01

    The On-Line Diffusion Chamber is a stand-alone apparatus built to carry out short-live radiotracer diffusion studies. The availability of the on-demand production of isotopes in the ISOLDE facility, and the design of the apparatus to streamline the implantation process, annealing treatment, ion gun ablation with a tape transport system, and radiation intensity measurement with a Ge gamma detector all in the same apparatus, gives the On-Line Diffusion Chamber a unique ability to studies with short-lived radioisotopes or isomer states that are not possible in any other facility in the world.

  15. Model study of radiation effects on the gastrointestinal cell system

    International Nuclear Information System (INIS)

    Kicherer, G.

    1983-03-01

    Since it is now possible to calculate the radiation fields used for medicinal purposes by means of radiation transport programs it was started to determine with mathematical models of radioeffects not only the physical effects or irradiation, but also the resulting biological radioresponses. This supplementary biologic information is not only of large general importance, but particularly valuable for the medicinal application of the biologically highly effective neutron radiation. With support by the Institute for Medicinal Radiophysics and Radiobiology of Essen University Hospital, and of two biomathematical working groups of Ulm University and Cologne University Hospital, who are experienced in the field of establishing mathematical models of the hematogenic cellular system, we developed out of experimental fundamental findings a cellkinetic, kybernetic model of the intestinal mucosa, which is highly sensitive to radiation. With this newly established model we succeeded for the first time in simulating comprehensively and quantitatively the time-dependent acute radioresponse of such a radiosensitive cellular system. For the first time we successfully used the computer simulation languages DARE-P and GASP, which are principally employed for solving problems in automatic control technology, and set up a radioresponse model. (orig.) [de

  16. Atmospheric transmittance model for photosynthetically active radiation

    International Nuclear Information System (INIS)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia

    2013-01-01

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms

  17. Modeling hemispherical and directional radiative fluxes in regular-clumped canopies

    International Nuclear Information System (INIS)

    Begue, A.

    1992-01-01

    A model of radiative transfer in regular-clumped canopies is presented. The canopy is approximated by an array of porous cylinders located at the vertices of equilateral triangles. The model is split into two submodels, each describing a different level of structure: 1) The macrostructure submodel is based on Brown and Pandolfo (1969), who applied geometrical optics theory to an array of opaque cylinders. This model is adapted for porous cylinders and is used to derive expressions for directional interception efficiency as a function of height, radius, spacing and porosity of the cylinders. 2) The microstructure submodel makes use of the average canopy transmittance theory, applied to a cylinder, to compute the porosity of the clumps as a function of the leaf area density, the leaf inclination distribution function, the dimensions of the cylinder (height and radius), and the transmittance of green leaves in the appropriate spectral band. It is shown that, in the case of erectophile plant stands, the daily porosity of the cylinder can be approximated by the porosity calculated using the extinction coefficient of diffuse radiation. Directional interception efficiency, geometric conditions (incidence/viewing), and landscape component reflectances are used to compute hemispherical (interception, absorption, and reflectance) and directional (reflectance) radiative fluxes from simple analytical formulae. This model is validated against a data set of biological, radiative (PAR region) and radiometric (SPOT channels) measurements, collected in Niger on pearl millet (Pennisetum typhoides). The model fits the data quite well in terms of hourly and daily single-band or combined (NDVI) radiative fluxes. Close correspondence to measured fluxes, using few parameters, and the possibility of inversion makes the present model a valuable tool for the study of radiative transfer in discontinuous canopies. (author)

  18. Computer modelling of statistical properties of SASE FEL radiation

    International Nuclear Information System (INIS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-01-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY

  19. A Computational Model of Cellular Response to Modulated Radiation Fields

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  20. A Computational Model of Cellular Response to Modulated Radiation Fields

    International Nuclear Information System (INIS)

    McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O’Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2012-01-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  1. The mediating effect of gaming motivation between psychiatric symptoms and problematic online gaming: an online survey.

    Science.gov (United States)

    Király, Orsolya; Urbán, Róbert; Griffiths, Mark D; Ágoston, Csilla; Nagygyörgy, Katalin; Kökönyei, Gyöngyi; Demetrovics, Zsolt

    2015-04-07

    The rapid expansion of online video gaming as a leisure time activity has led to the appearance of problematic online gaming (POG). According to the literature, POG is associated with different psychiatric symptoms (eg, depression, anxiety) and with specific gaming motives (ie, escape, achievement). Based on studies of alcohol use that suggest a mediator role of drinking motives between distal influences (eg, trauma symptoms) and drinking problems, this study examined the assumption that there is an indirect link between psychiatric distress and POG via the mediation of gaming motives. Furthermore, it was also assumed that there was a moderator effect of gender and game type preference based on the important role gender plays in POG and the structural differences between different game types. This study had two aims. The first aim was to test the mediating role of online gaming motives between psychiatric symptoms and problematic use of online games. The second aim was to test the moderator effect of gender and game type preference in this mediation model. An online survey was conducted on a sample of online gamers (N=3186; age: mean 21.1, SD 5.9 years; male: 2859/3186, 89.74%). The Brief Symptom Inventory (BSI), the Motives for Online Gaming Questionnaire (MOGQ), and the Problematic Online Gaming Questionnaire (POGQ) were administered to assess general psychiatric distress, online gaming motives, and problematic online game use, respectively. Structural regression analyses within structural equation modeling were used to test the proposed mediation models and multigroup analyses were used to test gender and game type differences to determine possible moderating effects. The mediation models fitted the data adequately. The Global Severity Index (GSI) of the BSI indicated that the level of psychiatric distress had a significant positive direct effect (standardized effect=.35, Pgaming motives: escape (standardized effect=.139, Pgaming (standardized effect size=.64

  2. Effectiveness of an Asynchronous Online Module on University Students' Understanding of the Bohr Model of the Hydrogen Atom

    Science.gov (United States)

    Farina, William J.; Bodzin, Alec M.

    2017-12-01

    Web-based learning is a growing field in education, yet empirical research into the design of high quality Web-based university science instruction is scarce. A one-week asynchronous online module on the Bohr Model of the atom was developed and implemented guided by the knowledge integration framework. The unit design aligned with three identified metaprinciples of science learning: making science accessible, making thinking visible, and promoting autonomy. Students in an introductory chemistry course at a large east coast university completed either an online module or traditional classroom instruction. Data from 99 students were analyzed and results showed significant knowledge growth in both online and traditional formats. For the online learning group, findings revealed positive student perceptions of their learning experiences, highly positive feedback for online science learning, and an interest amongst students to learn chemistry within an online environment.

  3. Model for radiation damage in cells by direct effect and by indirect effect: a radiation chemistry approach

    International Nuclear Information System (INIS)

    Michaels, H.B.; Hunt, J.W.

    1978-01-01

    A model is presented to describe the contributions of direct and indirect effects to the radiation damage of cells. The model is derived using principles of radiation chemistry and of pulse radiolysis in particular. From data available in the literature, parameters for cellular composition and values of rate constants for indirect action have been used in preliminary applications of the model. The results obtained in calculations of the protective effect of .OH and .H scavengers are consistent with experimental data. Possible modifications and improvements to the model are suggested, along with proposed future applications of the model in radiobiological studies

  4. A NOVELTY MODEL OF ONLINE ACCOMMODATION PRESENTATION AND DISCOVERY

    OpenAIRE

    Sjekavica, Tomo; Žitnik, Marjan; Miličević, Mario

    2017-01-01

    Extreme expansion of digital technologies and social networks in recent years has had a huge impact on the travel market and online tourism. Along with the digitalization of tourism and travel business, every day more and more accommodation bookings take place online. Most popular online travel web sites are commonly charging provision for the accommodation booking and don't allow direct contact with the accommodation owners. Today tourists demand more for their money, so they are more likely...

  5. Radiation transport phenomena and modeling - part A: Codes

    International Nuclear Information System (INIS)

    Lorence, L.J.

    1997-01-01

    The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped

  6. Higher-fidelity yet efficient modeling of radiation energy transport through three-dimensional clouds

    International Nuclear Information System (INIS)

    Hall, M.L.; Davis, A.B.

    2005-01-01

    Accurate modeling of radiative energy transport through cloudy atmospheres is necessary for both climate modeling with GCMs (Global Climate Models) and remote sensing. Previous modeling efforts have taken advantage of extreme aspect ratios (cells that are very wide horizontally) by assuming a 1-D treatment vertically - the Independent Column Approximation (ICA). Recent attempts to resolve radiation transport through the clouds have drastically changed the aspect ratios of the cells, moving them closer to unity, such that the ICA model is no longer valid. We aim to provide a higher-fidelity atmospheric radiation transport model which increases accuracy while maintaining efficiency. To that end, this paper describes the development of an efficient 3-D-capable radiation code that can be easily integrated into cloud resolving models as an alternative to the resident 1-D model. Applications to test cases from the Intercomparison of 3-D Radiation Codes (I3RC) protocol are shown

  7. Best estimate radiation heat transfer model developed for TRAC-BD1

    International Nuclear Information System (INIS)

    Spore, J.W.; Giles, M.M.; Shumway, R.W.

    1981-01-01

    A best estimate radiation heat transfer model for analysis of BWR fuel bundles has been developed and compared with 8 x 8 fuel bundle data. The model includes surface-to-surface and surface-to-two-phase fluid radiation heat transfer. A simple method of correcting for anisotropic reflection effects has been included in the model

  8. eQETIC: a Maturity Model for Online Education

    Directory of Open Access Journals (Sweden)

    Rogério Rossi

    2015-08-01

    Full Text Available Digital solutions have substantially contributed to the growth and dissemination of education. The distance education modality has been presented as an opportunity for worldwide students in many types of courses. However, projects of digital educational platforms require different expertise including knowledge areas such as pedagogy, psychology, computing, and digital technologies associated with education that allow the correct development and application of these solutions. To support the evolution of such solutions with satisfactory quality indicators, this research presents a model focused on quality of online educational solutions grounded in an approach aimed to continuous process improvement. The model considers of three maturity levels and six common entities that address the specific practices for planning and developing digital educational solutions, targeting quality standards that satisfy their users, such as students, teachers, tutors, and other people involved in development and use of these kinds of educational solutions.

  9. MOS modeling hierarchy including radiation effects

    International Nuclear Information System (INIS)

    Alexander, D.R.; Turfler, R.M.

    1975-01-01

    A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits

  10. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  11. Modelling solar radiation interception in row plantation. 3. Application to a traditional vineyard

    International Nuclear Information System (INIS)

    Sinoquet, H.; Valancogne, C.; Lescure, A.; Bonhomme, R.

    1992-01-01

    Modeling solar radiation interception in row plantation. III. Application to a traditional vineyard. A previously described model of solar radiation interception was applied to a spatially discontinuous canopy: that of a traditional vineyard in which the classical terms of the radiative balance and the spatial distribution of the radiation transmitted to the soil were measured. Comparison of measured and simulated data gave satisfactory agreement for reflected radiation (fig 4), but major discrepancies appeared for mean transmitted radiation (fig 5). The use of small stationary sensors for measuring the transmitted radiation explains the latter observation, since most of the time they measured radiation received on the ground in the sunflecks or in the shaded area rather than mean radiation. This was verified by comparing the measured and simulated spatial distribution of transmitted radiation (figs 7, 8). Finally, the influence of the woody parts which were not taken into consideration in the model was clearly identified : it significantly reduced the transmission of incident radiation (fig 9), and to a greater degrees the closer the sensor was to the vegetation row [fr

  12. Entanglement in a model for Hawking radiation: An application of quadratic algebras

    International Nuclear Information System (INIS)

    Bambah, Bindu A.; Mukku, C.; Shreecharan, T.; Siva Prasad, K.

    2013-01-01

    Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, we study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: ► We examine a toy model for Hawking radiation with quantized black hole modes. ► We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. ► We study the “Dicke Superradiance” in black hole radiation using quadratically deformed su(2) algebras. ► We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.

  13. Mathematical model and simulations of radiation fluxes from buried radionuclides

    International Nuclear Information System (INIS)

    Ahmad Saat

    1999-01-01

    A mathematical model and a simple Monte Carlo simulations were developed to predict radiation fluxes from buried radionuclides. The model and simulations were applied to measured (experimental) data. The results of the mathematical model showed good acceptable order of magnitude agreement. A good agreement was also obtained between the simple simulations and the experimental results. Thus, knowing the radionuclide distribution profiles in soil from a core sample, it can be applied to the model or simulations to estimate the radiation fluxes emerging from the soil surface. (author)

  14. Radiative transfer model for heterogeneous 3-D scenes

    Science.gov (United States)

    Kimes, D. S.; Kirchner, J. A.

    1982-01-01

    A general mathematical framework for simulating processes in heterogeneous 3-D scenes is presented. Specifically, a model was designed and coded for application to radiative transfers in vegetative scenes. The model is unique in that it predicts (1) the directional spectral reflectance factors as a function of the sensor's azimuth and zenith angles and the sensor's position above the canopy, (2) the spectral absorption as a function of location within the scene, and (3) the directional spectral radiance as a function of the sensor's location within the scene. The model was shown to follow known physical principles of radiative transfer. Initial verification of the model as applied to a soybean row crop showed that the simulated directional reflectance data corresponded relatively well in gross trends to the measured data. However, the model can be greatly improved by incorporating more sophisticated and realistic anisotropic scattering algorithms

  15. The Mediating Effect of Gaming Motivation Between Psychiatric Symptoms and Problematic Online Gaming: An Online Survey

    Science.gov (United States)

    Király, Orsolya; Urbán, Róbert; Griffiths, Mark D; Ágoston, Csilla; Nagygyörgy, Katalin; Kökönyei, Gyöngyi

    2015-01-01

    Background The rapid expansion of online video gaming as a leisure time activity has led to the appearance of problematic online gaming (POG). According to the literature, POG is associated with different psychiatric symptoms (eg, depression, anxiety) and with specific gaming motives (ie, escape, achievement). Based on studies of alcohol use that suggest a mediator role of drinking motives between distal influences (eg, trauma symptoms) and drinking problems, this study examined the assumption that there is an indirect link between psychiatric distress and POG via the mediation of gaming motives. Furthermore, it was also assumed that there was a moderator effect of gender and game type preference based on the important role gender plays in POG and the structural differences between different game types. Objective This study had two aims. The first aim was to test the mediating role of online gaming motives between psychiatric symptoms and problematic use of online games. The second aim was to test the moderator effect of gender and game type preference in this mediation model. Methods An online survey was conducted on a sample of online gamers (N=3186; age: mean 21.1, SD 5.9 years; male: 2859/3186, 89.74%). The Brief Symptom Inventory (BSI), the Motives for Online Gaming Questionnaire (MOGQ), and the Problematic Online Gaming Questionnaire (POGQ) were administered to assess general psychiatric distress, online gaming motives, and problematic online game use, respectively. Structural regression analyses within structural equation modeling were used to test the proposed mediation models and multigroup analyses were used to test gender and game type differences to determine possible moderating effects. Results The mediation models fitted the data adequately. The Global Severity Index (GSI) of the BSI indicated that the level of psychiatric distress had a significant positive direct effect (standardized effect=.35, Pgaming motives: escape (standardized effect=.139

  16. An auto-calibration procedure for empirical solar radiation models

    NARCIS (Netherlands)

    Bojanowski, J.S.; Donatelli, Marcello; Skidmore, A.K.; Vrieling, A.

    2013-01-01

    Solar radiation data are an important input for estimating evapotranspiration and modelling crop growth. Direct measurement of solar radiation is now carried out in most European countries, but the network of measuring stations is too sparse for reliable interpolation of measured values. Instead of

  17. The NSSDC trapped radiation model facility

    International Nuclear Information System (INIS)

    Gaffey, J.D. Jr.; Bilitza, D.

    1990-01-01

    The National Space Science Data Center (NSSDC) trapped radiation models calculate the integral and differential electron and proton flux for given values of the particle energy E, drift shell parameter L, and magnetic field strength B for either solar maximum or solar minimum. The most recent versions of the series of models, which have been developed and continuously improved over several decades by Dr. James Vette and coworkers at NSSDC, are AE-8 for electrons and AP-8 for protons. The present status of the NSSDC trapped particle models is discussed. The limits of validity of the models are described. 17 refs

  18. A fast infrared radiative transfer model for overlapping clouds

    International Nuclear Information System (INIS)

    Niu Jianguo; Yang Ping; Huang Hunglung; Davies, James E.; Li Jun; Baum, Bryan A.; Hu, Yong X.

    2007-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: (1) clear-sky (2) single-layered ice or water cloud, and (3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3-1179.5 cm -1 ) and the short-to-medium wave (SMW) band (1180.1-2228.9 cm -1 ). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD (F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model

  19. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  20. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    Science.gov (United States)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  1. MCNP model for the many KE-Basin radiation sources

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1997-01-01

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with

  2. Third Radiation Transfer Model Intercomparison (RAMI) exercise : Documenting progress in canopy reflectance models

    NARCIS (Netherlands)

    Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; Leblanc, S.; Lewis, P.E.; Martin, E.; Mottus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Soler, C.; Thompson, R.; Verhoef, W.; Xie, D.; Thompson, R.

    2007-01-01

    The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well‐controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary

  3. SCIATRAN 3.1: A new radiative transfer model and retrieval package

    Science.gov (United States)

    Rozanov, Alexei; Rozanov, Vladimir; Kokhanovsky, Alexander; Burrows, John P.

    The SCIATRAN 3.1 package is a result of further development of the SCIATRAN 2.X software family which, similar to previous versions, comprises a radiative transfer model and a retrieval block. After an implementation of the vector radiative transfer model in SCIATRAN 3.0 the spectral range covered by the model has been extended into the thermal infrared ranging to approximately 40 micrometers. Another major improvement has been done accounting for the underlying surface effects. Among others, a sophisticated representation of the water surface with a bidirectional reflection distribution function (BRDF) has been implemented accounting for the Fresnel reflection of the polarized light and for the effect of foam. A newly developed representation for a snow surface allows radiative transfer calculations to be performed within an unpolluted or soiled snow layer. Furthermore, a new approach has been implemented allowing radiative transfer calculations to be performed for a coupled atmosphere-ocean system. This means that, the underlying ocean is not considered as a purely reflecting surface any more. Instead, full radiative transfer calculations are performed within the water allowing the user to simulate the radiance within both the atmosphere and the ocean. Similar to previous versions, the simulations can be performed for any viewing geometry typi-cal for atmospheric observations in the UV-Vis-NIR-TIR spectral range (nadir, limb, off-axis, etc.) as well as for any observer location within or outside the Earth's atmosphere including underwater observations. Similar to the precursor version, the new model is freely available for non-commercial use via the web page of the University of Bremen. In this presentation a short description of the software package, especially of the new features of the radiative transfer model is given, including remarks on the availability for the scientific community. Furthermore, some application examples of the radiative transfer model are

  4. Selecting Products Considering the Regret Behavior of Consumer: A Decision Support Model Based on Online Ratings

    Directory of Open Access Journals (Sweden)

    Xia Liang

    2018-05-01

    Full Text Available With the remarkable promotion of e-commerce platforms, consumers increasingly prefer to purchase products online. Online ratings facilitate consumers to choose among products. Thus, to help consumers effectively select products, it is necessary to provide decision support methods for consumers to trade online. Considering the decision makers are bounded rational, this paper proposes a novel decision support model for product selection based on online ratings, in which the regret aversion behavior of consumers is formulated. Massive online ratings provided by experienced consumers for alternative products associated with several evaluation attributes are obtained by software finders. Then, the evaluations of alternative products in format of stochastic variables are conducted. To select a desirable alternative product, a novel method is introduced to calculate gain and loss degrees of each alternative over others. Considering the regret behavior of consumers in the product selection process, the regret and rejoice values of alternative products for consumer are computed to obtain the perceived utility values of alternative products. According to the prior order of the evaluation attributes provided by the consumer, the prior weights of attributes are determined based on the perceived utility values of alternative products. Furthermore, the overall perceived utility values of alternative products are obtained to generate a ranking result. Finally, a practical example from Zol.com.cn for tablet computer selection is used to demonstrate the feasibility and practically of the proposed model.

  5. On-line and bulk analysis of iron ore and bauxite

    International Nuclear Information System (INIS)

    Holmes, R.J.; Roczniok, A.F.

    1983-01-01

    A number of analysis techniques based on neutron and gamma radiation have been developed for the mining industry. Current projects include the measurement of annihilation radiation arising from pair production for the on-line determination of the iron content of iron ores, and the construction of a demonstration bauxite analyser based on fast-neutron activation analysis for the simultaneous determination of aluminium and silicon content

  6. SMRT: A new, modular snow microwave radiative transfer model

    Science.gov (United States)

    Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas

    2017-04-01

    Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the

  7. Predicting Equity Markets with Digital Online Media Sentiment: Evidence from Markov-switching Models

    NARCIS (Netherlands)

    Nooijen, S.J.; Broda, S.A.

    2016-01-01

    The authors examine the predictive capabilities of online investor sentiment for the returns and volatility of MSCI U.S. Equity Sector Indices by including exogenous variables in the mean and volatility specifications of a Markov-switching model. As predicted by the semistrong efficient market

  8. Radiative Transfer Modeling in Proto-planetary Disks

    Science.gov (United States)

    Kasper, David; Jang-Condell, Hannah; Kloster, Dylan

    2016-01-01

    Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.

  9. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  10. Monte Carlo study of radiation-induced demagnetization using the two-dimensional Ising model

    International Nuclear Information System (INIS)

    Samin, Adib; Cao, Lei

    2015-01-01

    A simple radiation-damage model based on the Ising model for magnets is proposed to study the effects of radiation on the magnetism of permanent magnets. The model is studied in two dimensions using a Monte Carlo simulation, and it accounts for the radiation through the introduction of a localized heat pulse. The model exhibits qualitative agreement with experimental results, and it clearly elucidates the role that the coercivity and the radiation particle’s energy play in the process. A more quantitative agreement with experiment will entail accounting for the long-range dipole–dipole interactions and the crystalline anisotropy.

  11. Monte Carlo study of radiation-induced demagnetization using the two-dimensional Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Cao, Lei

    2015-10-01

    A simple radiation-damage model based on the Ising model for magnets is proposed to study the effects of radiation on the magnetism of permanent magnets. The model is studied in two dimensions using a Monte Carlo simulation, and it accounts for the radiation through the introduction of a localized heat pulse. The model exhibits qualitative agreement with experimental results, and it clearly elucidates the role that the coercivity and the radiation particle’s energy play in the process. A more quantitative agreement with experiment will entail accounting for the long-range dipole–dipole interactions and the crystalline anisotropy.

  12. An online database for informing ecological network models: http://kelpforest.ucsc.edu.

    Science.gov (United States)

    Beas-Luna, Rodrigo; Novak, Mark; Carr, Mark H; Tinker, Martin T; Black, August; Caselle, Jennifer E; Hoban, Michael; Malone, Dan; Iles, Alison

    2014-01-01

    Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui).

  13. CT radiation dose and image quality optimization using a porcine model.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2013-01-01

    To evaluate potential radiation dose savings and resultant image quality effects with regard to optimization of commonly performed computed tomography (CT) studies derived from imaging a porcine (pig) model. Imaging protocols for 4 clinical CT suites were developed based on the lowest milliamperage and kilovoltage, the highest pitch that could be set from current imaging protocol parameters, or both. This occurred before significant changes in noise, contrast, and spatial resolution were measured objectively on images produced from a quality assurance CT phantom. The current and derived phantom protocols were then applied to scan a porcine model for head, abdomen, and chest CT studies. Further optimized protocols were developed based on the same methodology as in the phantom study. The optimization achieved with respect to radiation dose and image quality was evaluated following data collection of radiation dose recordings and image quality review. Relative visual grading analysis of image quality criteria adapted from the European guidelines on radiology quality criteria for CT were used for studies completed with both the phantom-based or porcine-derived imaging protocols. In 5 out of 16 experimental combinations, the current clinical protocol was maintained. In 2 instances, the phantom protocol reduced radiation dose by 19% to 38%. In the remaining 9 instances, the optimization based on the porcine model further reduced radiation dose by 17% to 38%. The porcine model closely reflects anatomical structures in humans, allowing the grading of anatomical criteria as part of image quality review without radiation risks to human subjects. This study demonstrates that using a porcine model to evaluate CT optimization resulted in more radiation dose reduction than when imaging protocols were tested solely on quality assurance phantoms.

  14. Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes-The importance of evaporation effects.

    Science.gov (United States)

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V

    2017-03-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs

  15. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, M.

    2005-09-01

    On-Line Monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Elimination or reduction of unnecessary field calibrations can reduce associated labour costs, reduce personnel radiation exposure, and reduce the potential for calibration errors. On-line calibration monitoring is an important technique to implement a state-based maintenance approach and reduce unnecessary field calibrations. In this report we will look at how the concept is currently applied in the industry and what the arising needs are as it becomes more commonplace. We will also look at the PEANO System, a tool developed by the Halden Project to perform signal validation and on-line calibration monitoring. Some issues will be identified that are being addressed in the further development of these tools to better serve the future needs of the industry in this area. An outline for how to improve these points and which aspects should be taken into account is described in detail. (Author)

  16. Intelligent Cloud Learning Model for Online Overseas Chinese Education

    Directory of Open Access Journals (Sweden)

    Yidong Chen

    2015-02-01

    Full Text Available With the development of Chinese economy, oversea Chinese education has been paid more and more attention. However, the overseas Chinese education resource is relatively lack because of historical reasons, which hindered further development . How to better share the Chinese education resources and provide intelligent personalized information service for overseas student is a key problem to be solved. In recent years, the rise of cloud computing provides us an opportunity to realize intelligent learning mode. Cloud computing offers some advantages by allowing users to use infrastructure, platforms and software . In this paper we proposed an intelligent cloud learning model based on cloud computing. The learning model can utilize network resources sufficiently to implement resource sharing according to the personal needs of students, and provide a good practicability for online overseas Chinese education.

  17. Dose-response models for the radiation-induction of skin tumours in mice

    International Nuclear Information System (INIS)

    Papworth, D.G.; Hulse, E.V.

    1983-01-01

    Extensive data on radiation-induced skin tumours in mice were examined using 8 models, all based on the concept that incidences of radiation-induced tumours depend on a combination of two radiation effects: a tumour induction process and the loss of reproductive integrity by the potential tumour cells. Models with and without a threshold were used, in spite of theoretical objections to threshold models. No model fitted well both the epidermal and the dermal tumour data and models which proved to be statistically satisfactory for some of the data were rejected for biological reasons. It is concluded that, for skin tumours, dose-response curves depending on a combination of cancer induction and loss of cellular reproductive integrity are distorted by some special, relatively radio-resistant, factor which we have previously postulated as being involved in radiation skin carcinogenesis. (author)

  18. Estimation of potential solar radiation using 50m grid digital terrain model

    International Nuclear Information System (INIS)

    Kurose, Y.; Nagata, K.; Ohba, K.; Maruyama, A.

    1999-01-01

    To clarify the spatial distribution of solar radiation, a model to estimate the potential incoming solar radiation with 50m grid size was developed. The model is based on individual calculation of direct and diffuse solar radiation accounting for the effect of topographic shading. Using the elevation data in the area with radius 25km, which was offered by the Digital Map 50m Grid, the effect of topographic shading is estimated as angle of elevation for surrounding configuration to 72 directions. The estimated sunshine duration under clear sky conditions agreed well with observed values at AMeDAS points of Kyushu and Shikoku region. Similarly, there is a significant agreement between estimated and observed variation of solar radiation for monthly mean conditions over complex terrain. These suggest that the potential incoming solar radiation can be estimated well over complex terrain using the model. Locations of large fields over complex terrain agreed well with the area of the abundant insolation condition, which is defined by the model. The model is available for the investigation of agrometeorological resources over complex terrain. (author)

  19. Design for success: Identifying a process for transitioning to an intensive online course delivery model in health professions education.

    Science.gov (United States)

    McDonald, Paige L; Harwood, Kenneth J; Butler, Joan T; Schlumpf, Karen S; Eschmann, Carson W; Drago, Daniela

    2018-12-01

    Intensive courses (ICs), or accelerated courses, are gaining popularity in medical and health professions education, particularly as programs adopt e-learning models to negotiate challenges of flexibility, space, cost, and time. In 2014, the Department of Clinical Research and Leadership (CRL) at the George Washington University School of Medicine and Health Sciences began the process of transitioning two online 15-week graduate programs to an IC model. Within a year, a third program also transitioned to this model. A literature review yielded little guidance on the process of transitioning from 15-week, traditional models of delivery to IC models, particularly in online learning environments. Correspondingly, this paper describes the process by which CRL transitioned three online graduate programs to an IC model and details best practices for course design and facilitation resulting from our iterative redesign process. Finally, we present lessons-learned for the benefit of other medical and health professions' programs contemplating similar transitions. CRL: Department of Clinical Research and Leadership; HSCI: Health Sciences; IC: Intensive course; PD: Program director; QM: Quality Matters.

  20. Modelling of the indirect radiation effect due to background aerosols in Austria

    International Nuclear Information System (INIS)

    Neubauer, D.

    2009-01-01

    Aerosols and greenhouse gases are the two most important contributors to the anthropogenic climate change. The indirect aerosol effect is simulated in this study. The effects of black carbon are investigated. Usually, models use measured aerosol data as input, and their predictions are compared to cloud parameters measured independently from the aerosol measurements. The model developed in this study uses simultaneously measured values for the aerosol and the subsequent cloud. This way, more realistic predictions for the indirect aerosol effect can be expected. The model uses data from an earlier intensive measurement campaign at an Austrian background site. The aerosol and cloud data are taken from the FWF project P 131 43 - CHE and had been collected in 2000 at a measurement site on a mountain in the proximity of Vienna (Rax, 1680 m a.s.l.). The simulation model consists of two parts, a cloud droplet growth model and a radiative model. The growth model for cloud droplets computes the cloud droplet distribution originating from a measured aerosol distribution. The calculated cloud droplet size distributions that are used for further calculations are selected according to the measured liquid water content of the real-world cloud. The radiative model then computes the radiative forcing using the calculated cloud droplet size distribution. The cloud model is a cloud parcel model which describes an ascending air parcel containing the droplets. Turbulent diffusion (important for stratiform clouds) is realized through a simple approach. The model includes nucleation, condensation, coagulation and radiative effects. Because of radiative heating/cooling of the cloud droplets the temperature and the critical super-saturation of the droplets can change. For radiative transfer calculations, the radiative transfer code of the public domain program 'Streamer' was adapted for this study. 'Streamer' accounts for scattering and absorption of radiation in the whole spectral region

  1. Web design and development for centralize area radiation monitoring system in Malaysian Nuclear Agency

    Science.gov (United States)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Haris, Mohd Fauzi; Soh @ Shaari, Syirrazie Che; Azman, Azraf; Razalim, Faizal Azrin B. Abdul; Yapp, Raymond; Hasim, Harzawardi; Aslan, Mohd Dzul Aiman

    2017-01-01

    One of the applications for radiation detector is area monitoring which is crucial for safety especially at a place where radiation source is involved. An environmental radiation monitoring system is a professional system that combines flexibility and ease of use for data collection and monitoring. Nowadays, with the growth of technology, devices and equipment can be connected to the network and Internet to enable online data acquisition. This technology enables data from the area monitoring devices to be transmitted to any place and location directly and faster. In Nuclear Malaysia, area radiation monitor devices are located at several selective locations such as laboratories and radiation facility. This system utilizes an Ethernet as a communication media for data acquisition of the area radiation levels from radiation detectors and stores the data at a server for recording and analysis. This paper discusses on the design and development of website that enable all user in Nuclear Malaysia to access and monitor the radiation level for each radiation detectors at real time online. The web design also included a query feature for history data from various locations online. The communication between the server's software and web server is discussed in detail in this paper.

  2. Radiation dose from Chernobyl forests: assessment using the 'forestpath' model

    International Nuclear Information System (INIS)

    Schell, W.R.; Linkov, I.; Belinkaia, E.; Rimkevich, V.; Zmushko, Yu.; Lutsko, A.; Fifield, F.W.; Flowers, A.G.; Wells, G.

    1996-01-01

    Contaminated forests can contribute significantly to human radiation dose for a few decades after initial contamination. Exposure occurs through harvesting the trees, manufacture and use of forest products for construction materials and paper production, and the consumption of food harvested from forests. Certain groups of the population, such as wild animal hunters and harvesters of berries, herbs and mushrooms, can have particularly large intakes of radionuclides from natural food products. Forestry workers have been found to receive radiation doses several times higher than other groups in the same area. The generic radionuclide cycling model 'forestpath' is being applied to evaluate the human radiation dose and risks to population groups resulting from living and working near the contaminated forests. The model enables calculations to be made to predict the internal and external radiation doses at specific times following the accident. The model can be easily adjusted for dose calculations from other contamination scenarios (such as radionuclide deposition at a low and constant rate as well as complex deposition patterns). Experimental data collected in the forests of Southern Belarus are presented. These data, together with the results of epidemiological studies, are used for model calibration and validation

  3. Mathematical models for radiation effects on human health

    International Nuclear Information System (INIS)

    Negi, U.S.; Petwal, K.C.

    2015-01-01

    In this paper, we are proposing a theoretical approach of basic mathematical models for radiation effect on human health. The largest natural sources of radiation exposure to humans are radon gas. While radon gas has always been in the environment, awareness of its contribution to human radiation exposure has increased in recent years. Radon's primary pathway is through air space in soil and rock. Pressure differences between the soil and the inside of buildings may cause radon gas to move indoors. Radon decays to radon daughters, some of which emit alpha radiation. Alpha-emitting radon daughters are adsorbed on to dust particles which, when inhaled, are trapped in the lungs and may cause gene damage, mutations and finally cancer. Exposure to excess UV radiation increases risk of skin cancer but there is also a dark side. The incidence of all types of skin cancer is related to exposure to UV radiation. Non-melanoma skin cancer, eye melanoma, and lip cancer have also been related to natural UV light

  4. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the ......In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition...... and the radiation efficiency. With our theoretical model, we show that besides the plasmonic resonances, efficient radiation takes advantage of (a) rendering a large value of the rods' radius and (b) a central-fed profile, through which the radiation efficiency can reach up to 70% and even higher in a wide...... frequency band. Our theoretical expressions and conclusions are general and pave the way for engineering and further optimization of optical antenna systems and their radiation patterns....

  5. 4-Stage Online Presence Model: Model for Module Design and Delivery Using Web 2.0 Technologies to Facilitate Critical Thinking Skills

    Science.gov (United States)

    Goh, WeiWei; Dexter, Barbara; Self, Richard

    2014-01-01

    The main purpose of this paper is to present a conceptual model for the use of web 2.0 online technologies in order to develop and enhance students' critical thinking skills at higher education level. Wiki is chosen as the main focus in this paper. The model integrates Salmon's 5-stage model (Salmon, 2002) with Garrison's Community of Inquiry…

  6. A 3-D radiation model for non-grey gases

    International Nuclear Information System (INIS)

    Selcuk, Nevin; Doner, Nimeti

    2009-01-01

    A three-dimensional radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) coupled with spectral line-based weighted sum of grey gases (SLW) model for radiative heat transfer in non-grey absorbing-emitting media for use in conjunction with a computational fluid dynamics (CFD) code based on the same approach was developed. The code was applied to three test problems: two containing isothermal homogenous/non-homogenous water vapor and one non-isothermal water vapor/carbon dioxide mixture. Predictive accuracy of the code was evaluated by benchmarking its steady-state predictions against accurate results, calculated by ray tracing method with statistical narrow band model, available in the literature. Comparative testing with solutions of other methods is also provided. Comparisons reveal that MOL solution of DOM with SLW model provides accurate solutions for radiative heat fluxes and source terms and can be used with confidence in conjunction with CFD codes based on MOL

  7. A biokinetic model for zinc for use in radiation protection

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2012-01-01

    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and endogenous excretion of zinc have been derived as fits to data for specific study groups. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and the model for zinc currently recommended by the International Commission on Radiological Protection yield reasonably similar estimates of total-body retention and effective dose for internally deposited radioisotopes of zinc but much different systemic distributions of activity and much different dose estimates for some individual tissues, particularly the liver. - Highlights: ► Zinc is an essential trace element with numerous functions in the human body. ► Several biokinetic models for zinc have been developed from tracer studies on humans. ► More rudimentary biokinetic models for zinc have been developed in radiation protection. ► Biokinetic data for zinc are reviewed and a new biokinetic model is proposed for radiation protection. ► The proposed model may also be useful for investigation of zinc physiology and homeostasis.

  8. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.

    2012-01-01

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  9. Development of model for assessment of radiation discharge to the environment

    International Nuclear Information System (INIS)

    Shang Zhaorong; Wu Hao; Liu Hua

    2003-01-01

    International Atomic Energy Agency (IAEA) establish basic and detailed requirements for protection against the risks associated with exposure to radiation and for the safety of radiation sources that may deliver such exposure, in which, particularly emphasize to 'make an assessment of the nature, magnitude and likelihood of the exposure attributed to the source'. It is clear that the assessment of the consequential radiation exposure arising from any releases of radioactive materials to the environment will have to rely on some form of model. This paper summary recent progress in radiation protection policy and radioecology research and primary concludes the basis requirements in assessment model development

  10. Online social support networks.

    Science.gov (United States)

    Mehta, Neil; Atreja, Ashish

    2015-04-01

    Peer support groups have a long history and have been shown to improve health outcomes. With the increasing familiarity with online social networks like Facebook and ubiquitous access to the Internet, online social support networks are becoming popular. While studies have shown the benefit of these networks in providing emotional support or meeting informational needs, robust data on improving outcomes such as a decrease in health services utilization or reduction in adverse outcomes is lacking. These networks also pose unique challenges in the areas of patient privacy, funding models, quality of content, and research agendas. Addressing these concerns while creating patient-centred, patient-powered online support networks will help leverage these platforms to complement traditional healthcare delivery models in the current environment of value-based care.

  11. Radiation Background and Attenuation Model Validation and Development

    Energy Technology Data Exchange (ETDEWEB)

    Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santiago, Claudio P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-05

    This report describes the initial results of a study being conducted as part of the Urban Search Planning Tool project. The study is comparing the Urban Scene Simulator (USS), a one-dimensional (1D) radiation transport model developed at LLNL, with the three-dimensional (3D) radiation transport model from ORNL using the MCNP, SCALE/ORIGEN and SCALE/MAVRIC simulation codes. In this study, we have analyzed the differences between the two approaches at every step, from source term representation, to estimating flux and detector count rates at a fixed distance from a simple surface (slab), and at points throughout more complex 3D scenes.

  12. An information search model for online social Networks - MOBIRSE

    Directory of Open Access Journals (Sweden)

    Miguel Angel Niño Zambrano

    2015-09-01

    Full Text Available Online Social Networks (OSNs have been gaining great importance among Internet users in recent years.  These are sites where it is possible to meet people, publish, and share content in a way that is both easy and free of charge. As a result, the volume of information contained in these websites has grown exponentially, and web search has consequently become an important tool for users to easily find information relevant to their social networking objectives. Making use of ontologies and user profiles can make these searches more effective. This article presents a model for Information Retrieval in OSNs (MOBIRSE based on user profile and ontologies which aims to improve the relevance of retrieved information on these websites. The social network Facebook was chosen for a case study and as the instance for the proposed model. The model was validated using measures such as At-k Precision and Kappa statistics, to assess its efficiency.

  13. On-line photolithography modeling using spectrophotometry and Prolith/2

    Science.gov (United States)

    Engstrom, Herbert L.; Beacham, Jeanne E.

    1994-05-01

    Spectrophotometry has been applied to optimizing photolithography processes in semiconductor manufacturing. For many years thin film measurement systems have been used in manufacturing for controlling film deposition processes. The combination of film thickness mapping with photolithography modeling has expanded the applications of this technology. Experimental measurements of dose-to-clear, the minimum light exposure dose required to fully develop a photoresist, are described. It is shown how dose-to-clear and photoresist contrast may be determined rapidly and conveniently from measurements of a dose exposure matrix on a monitor wafer. Such experimental measurements may underestimate the dose-to- clear because of thickness variations of the photoresist and underlying layers on the product wafer. Online modeling of the photolithographic process together with film thickness maps of the entire wafer can overcome this problem. Such modeling also provides maps of dose-to- clear and resist linewidth that can be used to estimate and optimize yield.

  14. The development and purpose of the FREDERICA radiation effects database

    International Nuclear Information System (INIS)

    Copplestone, D.; Hingston, J.; Real, A.

    2008-01-01

    Any system for assessing the impact of a contaminant on the environment requires an analysis of the possible effects on the organisms and ecosystems concerned. To facilitate this, the FREDERICA radiation effects database has been developed to provide an online search of the known effects of ionising radiation on non-human species, taken from papers in the scientific peer reviewed literature. The FREDERICA radiation effects database has been produced by merging the work done on radiation effects under two European funded projects (FASSET and EPIC) and making the database available online. This paper highlights applications for the database, gaps in the available data and explains the use of quality scores to help users of the database determine which papers may benefit their research in terms of techniques and reproducibility

  15. On-line monitoring system for I-131 manufacturing labs

    International Nuclear Information System (INIS)

    Osovizky, A.; Malamud, Y.; Paran, Y.; Tal, N.; Turgeman, S.; Weinstein, M.

    1997-01-01

    An on-line monitoring and safety system has been installed in a lab for manufacturing 1-131 capsules for nuclear medicine use. Production of up to 100mCi batches is performed in shielded glove boxes. The safety system is based on a unique, 'Medi SMARTS' system (Medical Survey Mapping Automatic Radiation Tracing System), that collects continuously the radiation measurements for processing, display, and storage for future retrieval. Radiation is measured by GM tubes, data is transferred to a data processing unit, and then via a RS-485 communication line to a computer. In addition to the operational advantages and radiation levels storage, the system is being evaluated for the purpose of identifying risky stages in the process. (authors)

  16. Online learning in repeated auctions

    OpenAIRE

    Weed, Jonathan; Perchet, Vianney; Rigollet, Philippe

    2015-01-01

    Motivated by online advertising auctions, we consider repeated Vickrey auctions where goods of unknown value are sold sequentially and bidders only learn (potentially noisy) information about a good's value once it is purchased. We adopt an online learning approach with bandit feedback to model this problem and derive bidding strategies for two models: stochastic and adversarial. In the stochastic model, the observed values of the goods are random variables centered around the true value of t...

  17. A risk evaluation model and its application in online retailing trustfulness

    Science.gov (United States)

    Ye, Ruyi; Xu, Yingcheng

    2017-08-01

    Building a general model for risks evaluation in advance could improve the convenience, normality and comparability of the results of repeating risks evaluation in the case that the repeating risks evaluating are in the same area and for a similar purpose. One of the most convenient and common risks evaluation models is an index system including of several index, according weights and crediting method. One method to build a risk evaluation index system that guarantees the proportional relationship between the resulting credit and the expected risk loss is proposed and an application example is provided in online retailing in this article.

  18. Unification of gauge couplings in radiative neutrino mass models

    DEFF Research Database (Denmark)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella

    2016-01-01

    masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III......We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively....... We study three representative classes of radiative neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 ΔL = 2 operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino...

  19. Models for infrared atmospheric radiation

    Science.gov (United States)

    Tiwari, S. N.

    1976-01-01

    Line and band models for infrared spectral absorption are discussed. Radiative transmittance and integrated absorptance of Lorentz, Doppler, and voigt line profiles were compared for a range of parameters. It was found that, for the intermediate path lengths, the combined Lorentz-Doppler (Voigt) profile is essential in calculating the atmospheric transmittance. Narrow band model relations for absorptance were used to develop exact formulations for total absorption by four wide band models. Several continuous correlations for the absorption of a wide band model were compared with the numerical solutions of the wide band models. By employing the line-by-line and quasi-random band model formulations, computational procedures were developed for evaluating transmittance and upwelling atmospheric radiance. Homogeneous path transmittances were calculated for selected bands of CO, CO2, and N2O and compared with experimental measurements. The upwelling radiance and signal change in the wave number interval of the CO fundamental band were also calculated.

  20. Numerical model of solar dynamic radiator for parametric analysis

    Science.gov (United States)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  1. Self-modified quasi-stationary model for the radiation ablation

    International Nuclear Information System (INIS)

    Zhang Jun; Pei Wenbing; Gu Peijun; Sui Chengzhi; Chang Tieqiang

    1996-01-01

    The self-modified quasi-stationary model for radiation ablation has been established based on physical picture of numerical simulations. The objective of the model is to predict quantitatively the scaling laws of various ablation parameters driven by soft-X-ray, such as the dependence of ablation depth, pressure on radiation temperature, energy, pulse width, without resorting to complex computer simulations. The computational results are given for some interesting materials in ICF. Scaling laws obtained are simple and effective in target design and analysis of experimental results

  2. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    Directory of Open Access Journals (Sweden)

    TOJDE

    2009-04-01

    Full Text Available This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trips, cyberinfrastructure, neurological learning and the neuro-cognitive model. The continued growth in general studies and liberal arts and science programs online has led to a rise in the number of students whose science learning experiences are partially or exclusively online. character and quality of online science instruction.

  3. Factors affecting patients' online health information-seeking behaviours: The role of the Patient Health Engagement (PHE) Model.

    Science.gov (United States)

    Graffigna, Guendalina; Barello, Serena; Bonanomi, Andrea; Riva, Giuseppe

    2017-10-01

    To identify the variables affecting patients' online health information-seeking behaviours by examining the relationships between patient participation in their healthcare and online health information-seeking behaviours. A cross-sectional survey of Italian chronic patients (N=352) was conducted on patient's online health information-seeking behaviours and patient participation-related variables. Structural equation modeling analysis was conducted to test the hypothesis. This study showed how the healthcare professionals' ability to support chronic patients' autonomy affect patients' participation in their healthcare and patient's online health information-seeking behaviours. However, results do not confirm that the frequency of patients' online health-information seeking behavior has an impact on their adherence to medical prescriptions. Assuming a psychosocial perspective, we have discussed how patients' engagement - conceived as the level of their emotional elaboration of the health condition - affects the patients' ability to search for and manage online health information. To improve the effectiveness of patients' online health information-seeking behaviours and to enhance the effectiveness of technological interventions in this field, healthcare providers should target assessing and improving patient engagement and patient empowerment in their healthcare. It is important that health professionals acknowledge patients' online health information-seeking behaviours that they discuss the information offered by patients and guide them to reliable and accurate web sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pedagogical Perspectives for the Online Education Skeptic

    Science.gov (United States)

    Brewer, Pam Estes; Brewer, Edward C.

    2015-01-01

    While online programs continue to grow at an astounding rate in higher education, many faculty remain skeptical of the efficacy of online models. This article provides an overview of some significant benefits of online education while recognizing some common concerns. An examination of the current literature and the authors' own online experiences…

  5. Measurement and modelling of radiation transmission within a stand of maritime pine (Pinus pinaster Ait)

    International Nuclear Information System (INIS)

    Berbigier, P.; Bonnefond, J.M.

    1995-01-01

    A semi-empirical model of radiation penetration in a maritime pine canopy was developed so that mean solar (and net) radiation absorption by crowns and understorey could be estimated from above-canopy measurements only. Beam radiation Rb was assumed to penetrate the canopy according to Beer's law with an extinction coefficient of 0.32; this figure was found using non-linear regression techniques. For diffuse sky radiation, Beer's law was integrated over the sky vault assuming a SOC (standard overcast sky) luminance model; the upward and downward scattered radiative fluxes were obtained using the Kubelka-Munk equations and measurements of needle transmittance and reflectance. The penetration of net radiation within the canopy was also modelled. The model predicts the measured albedo of the stand very well. The estimation of solar radiation transmitted by the canopy was also satisfactory with the maximum difference between this and the mean output of mobile sensors at ground level being only 18 W m -2 . Due to the poor precision of net radiometers, the net radiation model could not be tested critically. However, as the modelled longwave radiation balance under the canopy is always between -10 and -20 Wm -2 , the below-canopy net radiation must be very close to the solar radiation balance. (author) [fr

  6. On The Development of Biophysical Models for Space Radiation Risk Assessment

    Science.gov (United States)

    Cucinotta, F. A.; Dicello, J. F.

    1999-01-01

    Experimental techniques in molecular biology are being applied to study biological risks from space radiation. The use of molecular assays presents a challenge to biophysical models which in the past have relied on descriptions of energy deposition and phenomenological treatments of repair. We describe a biochemical kinetics model of cell cycle control and DNA damage response proteins in order to model cellular responses to radiation exposures. Using models of cyclin-cdk, pRB, E2F's, p53, and GI inhibitors we show that simulations of cell cycle populations and GI arrest can be described by our biochemical approach. We consider radiation damaged DNA as a substrate for signal transduction processes and consider a dose and dose-rate reduction effectiveness factor (DDREF) for protein expression.

  7. Perceived barriers to online education by radiologic science educators.

    Science.gov (United States)

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  8. Dark radiation confronting LHC in Z′ models

    International Nuclear Information System (INIS)

    Solaguren-Beascoa, A.; Gonzalez-Garcia, M.C.

    2013-01-01

    Recent cosmological data favour additional relativistic degrees of freedom beyond the three active neutrinos and photons, often referred to as “dark radiation”. Extensions of the SM involving TeV-scale Z ′ gauge bosons generically contain superweakly interacting light right-handed neutrinos which can constitute this dark radiation. In this Letter we confront the requirement on the parameters of the E 6 Z ′ models to account for the present evidence of dark radiation with the already existing constraints from searches for new neutral gauge bosons at LHC7

  9. Econometric model for age- and population-dependent radiation exposures

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation

  10. From Produsers to Shareaholics: Changing Models of Reader Interaction in Women’s Online Magazines

    Directory of Open Access Journals (Sweden)

    Laura García-Favaro

    2016-06-01

    Full Text Available Women’s online magazines have been constantly proliferating and increasingly supplanting print publications. Contributing to their success, these sites offer similar content free of change and significantly greater opportunities for interaction – often in the form of discussion forums. However, these interactive spaces are currently disappearing, being replaced by an ever-escalating emphasis upon social network sites (SNSs. This article critically examines this changing model of reader interaction in women’s online magazines, drawing on a study of 68 interviews with industry insiders, forum user-generated content, and a variety of trade material. The analysis demonstrates how the decision to close the forums and embrace SNSs responds to multiple determinants, including a corporate doctrine of control over users’ discourse and outsourcing new modalities of free consumer labour, constituting a new ideal worker-commodity online: “the shareaholic”. This exercise of power has varying levels of success, and potentialities remain for users to exercise some transformative subversion, for example through what the article theorises as “labour of disruption”. Nonetheless, the emergent SNS-based magazine model of reader interaction poses a serious challenge to ongoing celebrations both in the industry and in some scholarly work about an increasingly democratic and user-led digital media ecosystem.

  11. Radiation transport modelling for the interpretation of oblique ECE measurements

    Directory of Open Access Journals (Sweden)

    Denk Severin S.

    2017-01-01

    Since radiation transport modelling is required for the interpretation of oblique ECE diagnostics we present in this paper an extended forward model that supports oblique lines of sight. To account for the refraction of the line of sight, ray tracing in the cold plasma approximation was added to the model. Furthermore, an absorption coefficient valid for arbitrary propagation was implemented. Using the revised model it is shown that for the oblique ECE Imaging diagnostic at ASDEX Upgrade there can be a significant difference between the cold resonance position and the point from which most of the observed radiation originates.

  12. Yearly, seasonal and monthly daily average diffuse sky radiation models

    International Nuclear Information System (INIS)

    Kassem, A.S.; Mujahid, A.M.; Turner, D.W.

    1993-01-01

    A daily average diffuse sky radiation regression model based on daily global radiation was developed utilizing two year data taken near Blytheville, Arkansas (Lat. =35.9 0 N, Long. = 89.9 0 W), U.S.A. The model has a determination coefficient of 0.91 and 0.092 standard error of estimate. The data were also analyzed for a seasonal dependence and four seasonal average daily models were developed for the spring, summer, fall and winter seasons. The coefficient of determination is 0.93, 0.81, 0.94 and 0.93, whereas the standard error of estimate is 0.08, 0.102, 0.042 and 0.075 for spring, summer, fall and winter, respectively. A monthly average daily diffuse sky radiation model was also developed. The coefficient of determination is 0.92 and the standard error of estimate is 0.083. A seasonal monthly average model was also developed which has 0.91 coefficient of determination and 0.085 standard error of estimate. The developed monthly daily average and daily models compare well with a selected number of previously developed models. (author). 11 ref., figs., tabs

  13. An adaptive wavelet-network model for forecasting daily total solar-radiation

    International Nuclear Information System (INIS)

    Mellit, A.; Benghanem, M.; Kalogirou, S.A.

    2006-01-01

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet-networks are feed-forward networks using wavelets as activation functions. Wavelet-networks have been used successfully in various engineering applications such as classification, identification and control problems. In this paper, the use of adaptive wavelet-network architecture in finding a suitable forecasting model for predicting the daily total solar-radiation is investigated. Total solar-radiation is considered as the most important parameter in the performance prediction of renewable energy systems, particularly in sizing photovoltaic (PV) power systems. For this purpose, daily total solar-radiation data have been recorded during the period extending from 1981 to 2001, by a meteorological station in Algeria. The wavelet-network model has been trained by using either the 19 years of data or one year of the data. In both cases the total solar radiation data corresponding to year 2001 was used for testing the model. The network was trained to accept and handle a number of unusual cases. Results indicate that the model predicts daily total solar-radiation values with a good accuracy of approximately 97% and the mean absolute percentage error is not more than 6%. In addition, the performance of the model was compared with different neural network structures and classical models. Training algorithms for wavelet-networks require smaller numbers of iterations when compared with other neural networks. The model can be used to fill missing data in weather databases. Additionally, the proposed model can be generalized and used in different locations and for other weather data, such as sunshine duration and ambient temperature. Finally, an application using the model for sizing a PV-power system is presented in order to confirm the validity of this model

  14. Modelling the propagation of terahertz radiation through a tissue simulating phantom

    International Nuclear Information System (INIS)

    Walker, Gillian C; Berry, Elizabeth; Smye, Stephen W; Zinov'ev, Nick N; Fitzgerald, Anthony J; Miles, Robert E; Chamberlain, Martyn; Smith, Michael A

    2004-01-01

    Terahertz (THz) frequency radiation, 0.1 THz to 20 THz, is being investigated for biomedical imaging applications following the introduction of pulsed THz sources that produce picosecond pulses and function at room temperature. Owing to the broadband nature of the radiation, spectral and temporal information is available from radiation that has interacted with a sample; this information is exploited in the development of biomedical imaging tools and sensors. In this work, models to aid interpretation of broadband THz spectra were developed and evaluated. THz radiation lies on the boundary between regions best considered using a deterministic electromagnetic approach and those better analysed using a stochastic approach incorporating quantum mechanical effects, so two computational models to simulate the propagation of THz radiation in an absorbing medium were compared. The first was a thin film analysis and the second a stochastic Monte Carlo model. The Cole-Cole model was used to predict the variation with frequency of the physical properties of the sample and scattering was neglected. The two models were compared with measurements from a highly absorbing water-based phantom. The Monte Carlo model gave a prediction closer to experiment over 0.1 to 3 THz. Knowledge of the frequency-dependent physical properties, including the scattering characteristics, of the absorbing media is necessary. The thin film model is computationally simple to implement but is restricted by the geometry of the sample it can describe. The Monte Carlo framework, despite being initially more complex, provides greater flexibility to investigate more complicated sample geometries

  15. Popularity Evaluation Model for Microbloggers Online Social Network

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2014-01-01

    Full Text Available Recently, microblogging is widely studied by the researchers in the domain of the online social network (OSN. How to evaluate the popularities of microblogging users is an important research field, which can be applied to commercial advertising, user behavior analysis and information dissemination, and so forth. Previous studies on the evaluation methods cannot effectively solve and accurately evaluate the popularities of the microbloggers. In this paper, we proposed an electromagnetic field theory based model to analyze the popularities of microbloggers. The concept of the source in microblogging field is first put forward, which is based on the concept of source in the electromagnetic field; then, one’s microblogging flux is calculated according to his/her behaviors (send or receive feedbacks on the microblogging platform; finally, we used three methods to calculate one’s microblogging flux density, which can represent one’s popularity on the microblogging platform. In the experimental work, we evaluated our model using real microblogging data and selected the best one from the three popularity measure methods. We also compared our model with the classic PageRank algorithm; and the results show that our model is more effective and accurate to evaluate the popularities of the microbloggers.

  16. Life span in online communities

    Science.gov (United States)

    Grabowski, A.; Kosiński, R. A.

    2010-12-01

    Recently online communities have attracted great interest and have become an important medium of information exchange between users. The aim of this work is to introduce a simple model of the evolution of online communities. This model describes (a) the time evolution of users’ activity in a web service, e.g., the time evolution of the number of online friends or written posts, (b) the time evolution of the degree distribution of a social network, and (c) the time evolution of the number of active users of a web service. In the second part of the paper we investigate the influence of the users’ lifespan (i.e., the total time in which they are active in an online community) on the process of rumor propagation in evolving social networks. Viral marketing is an important application of such method of information propagation.

  17. Decomposition of radiational effects of model feedbacks

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.; MacCracken, M.C.; Potter, G.L.; Mitchell, C.S.

    1981-08-01

    Three separate doubled CO 2 experiments with the statistical dynamic model are used to illustrate efforts to study the climate dynamics, feedbacks, and interrelationships of meteorological parameters by decomposing and isolating their individual effects on radiation transport

  18. Field dose radiation determination by active learning with Gaussian Process for autonomous robot guiding

    International Nuclear Information System (INIS)

    Freitas Naiff, Danilo de; Silveira, Paulo R.; Pereira, Claudio M.N.A.

    2017-01-01

    This article proposes an approach for determination of radiation dose pro le in a radiation-susceptible environment, aiming to guide an autonomous robot in acting on those environments, reducing the human exposure to dangerous amount of dose. The approach consists of an active learning method based on information entropy reduction, using log-normally warped Gaussian Process (GP) as surrogate model, resulting in non-linear online regression with sequential measurements. Experiments with simulated radiation dose fields of varying complexity were made, and results showed that the approach was effective in reconstruct the eld with high accuracy, through relatively few measurements. The technique was also shown some robustness in presence measurement noise, present in real measurements, by assuming Gaussian noise. (author)

  19. Field dose radiation determination by active learning with Gaussian Process for autonomous robot guiding

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Naiff, Danilo de; Silveira, Paulo R.; Pereira, Claudio M.N.A., E-mail: danilonai1992@poli.ufrj.br, E-mail: paulo@lmp.ufrj.br, E-mail: cmnap@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    This article proposes an approach for determination of radiation dose pro le in a radiation-susceptible environment, aiming to guide an autonomous robot in acting on those environments, reducing the human exposure to dangerous amount of dose. The approach consists of an active learning method based on information entropy reduction, using log-normally warped Gaussian Process (GP) as surrogate model, resulting in non-linear online regression with sequential measurements. Experiments with simulated radiation dose fields of varying complexity were made, and results showed that the approach was effective in reconstruct the eld with high accuracy, through relatively few measurements. The technique was also shown some robustness in presence measurement noise, present in real measurements, by assuming Gaussian noise. (author)

  20. A radiation monitoring system model for the Laguna Verde nuclear power training simulator

    International Nuclear Information System (INIS)

    Ocampo, M.H.; DeAlbornoz, B.A.

    1988-01-01

    A model for the Radiation Monitoring System of the Laguna Verde Boiling Water Reactor training simulator is presented. This model comprises enough definitions to assure interactions with the processes related, directly or indirectly, with the transport of radioisotopes. It is capable of following a dynamic behavior of the plant so an operator could be trained to become aware of nuclear radiation hazards. The model is composed of three parts: the electronics for the Process and Area Radiation Monitoring System; a lumped parameter transport model for the most representative radioisotopes; and the interactions with the modeled processes as well as with process not being simulated. The first part represents the radiation monitor controls in the vertical board panels of the nuclear station. The second part allows the carrying of nuclear isotopes between processes. The third part defines the way that the process interacts with the electronics at the point of release to environment or the point of detection. Each part of the model has been tested individually, and the transport model has been incorporated as a part of each process required to simulate nuclear radiation. The model parameters has been calculated using typical BWR nuclear radiation data, and Laguna Verde heat balance data at 100% design power. However, tunning will be necessary once the Simulator is integrated and tested. The tunning allows each detecting channel to behave as expected

  1. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  2. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  3. Managing a national radiation oncologist workforce: A workforce planning model

    International Nuclear Information System (INIS)

    Stuckless, Teri; Milosevic, Michael; Metz, Catherine de; Parliament, Matthew; Tompkins, Brent; Brundage, Michael

    2012-01-01

    Purpose: The specialty of radiation oncology has experienced significant workforce planning challenges in many countries. Our purpose was to develop and validate a workforce-planning model that would forecast the balance between supply of, and demand for, radiation oncologists in Canada over a minimum 10-year time frame, to identify the model parameters that most influenced this balance, and to suggest how this model may be applicable to other countries. Methods: A forward calculation model was created and populated with data obtained from national sources. Validation was confirmed using a historical prospective approach. Results: Under baseline assumptions, the model predicts a short-term surplus of RO trainees followed by a projected deficit in 2020. Sensitivity analyses showed that access to radiotherapy (proportion of incident cases referred), individual RO workload, average age of retirement and resident training intake most influenced balance of supply and demand. Within plausible ranges of these parameters, substantial shortages or excess of graduates is possible, underscoring the need for ongoing monitoring. Conclusions: Workforce planning in radiation oncology is possible using a projection calculation model based on current system characteristics and modifiable parameters that influence projections. The workload projections should inform policy decision making regarding growth of the specialty and training program resident intake required to meet oncology health services needs. The methods used are applicable to workforce planning for radiation oncology in other countries and for other comparable medical specialties.

  4. Modelling three-dimensional distribution of photosynthetically active radiation in sloping coniferous stands

    International Nuclear Information System (INIS)

    Knyazikhin, Yu.; Kranigk, J.; Miessen, G.; Panfyorov, O.; Vygodskaya, N.; Gravenhorst, G.

    1996-01-01

    Solar irradiance is a major environmental factor governing biological and physiological processes in a vegetation canopy. Solar radiation distribution in a canopy and its effect are three-dimensional in nature. However, most of the radiation models up to now have been one-dimensional. They can be successfully applied to large-scale studies of forest functioning. The one-dimensional modelling technique, however, does not provide adequate interpretation of small scale processes leading to forest growth. In this article we discuss a modelling strategy for the simulation of three-dimensional radiation distribution in a vegetation canopy of a small area (about 0.25–0.3 ha). We demonstrate its realisation to predict the three-dimensional radiative regime of phytosynthetically active radiation in a real coniferous stand located on hilly surroundings. Our model can be used to investigate the influence of different climatic conditions, forest management methods and field sites on the solar energy available for forest growth in small heterogeneous areas. Further, a three-dimensional process-oriented model helps to derive global variables affecting bio-physiological processes in a vegetation canopy shifting from small scale studies of the functioning of forests to regional, continental, and global scale problems. (author)

  5. Estimation of radiation hardening in ferritic steels using the cluster dynamics models

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jun Hyun; Kim, Whung Whoe; Hong, Jun Hwa [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Evolution of microstructure under irradiation brings about the mechanical property changes of materials, of which the major concern is radiation hardening in this work. Radiation hardening is generally expressed in terms of an increase in yield strength as a function of radiation dose and temperature. Cluster dynamics model for radiation hardening has been developed to describe the evolution of point defects clusters (PDCs) and copperrich precipitates (CRPs). While the mathematical models developed by Stoller focus on the evolution of PDCs in ferritic steels under neutron irradiation, we slightly modify the model by including the CRP growth and estimate the magnitude of hardening induced by PDC and CRP. The model is then used to calculate the changes in yield strength of RPV steels. The calculation results are compared to measured yield strength values, obtained from surveillance testing of PWR vessel steels in France.

  6. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    Science.gov (United States)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http

  7. Biophysical models in radiation oncology

    International Nuclear Information System (INIS)

    Cohen, L.

    1984-01-01

    The paper examines and describes dose-time relationships in clinical radiation oncology. Realistic models and parameters for specific tissues, organs, and tumor types are discussed in order to solve difficult problems which arise in radiation oncology. The computer programs presented were written to: derive parameters from experimental and clinical data; plot normal- and tumor-cell survival curves; generate iso-effect tables of tumor-curative doses; identify alternative, equally effective procedures for fraction numbers and treatment times; determine whether a proposed course of treatment is safe and adequate, and what adjustments are needed should results suggest that the procedure is unsafe or inadequate; combine the physical isodose distribution with computed cellular surviving fractions for the tumor and all normal tissues traversed by the beam, estimating the risks of recurrence or complications at various points in the irradiated volume, and adjusting the treatment plan and fractionation scheme to minimize these risks

  8. Clouds-radiation interactions in a general circulation model - Impact upon the planetary radiation balance

    Science.gov (United States)

    Smith, Laura D.; Vonder Haar, Thomas H.

    1991-01-01

    Simultaneously conducted observations of the earth radiation budget and the cloud amount estimates, taken during the June 1979 - May 1980 Nimbus 7 mission were used to show interactions between the cloud amount and raidation and to verify a long-term climate simulation obtained with the latest version of the NCAR Community Climate Model (CCM). The parameterization of the radiative, dynamic, and thermodynamic processes produced the mean radiation and cloud quantities that were in reasonable agreement with satellite observations, but at the expense of simulating their short-term fluctuations. The results support the assumption that the inclusion of the cloud liquid water (ice) variable would be the best mean to reduce the blinking of clouds in NCAR CCM.

  9. Web-based description of the space radiation environment using the Bethe-Bloch model

    Science.gov (United States)

    Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important

  10. Web-based description of the space radiation environment using the Bethe–Bloch model

    International Nuclear Information System (INIS)

    Cazzola, Emanuele; Lapenta, Giovanni; Calders, Stijn

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe–Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most

  11. Computer simulation of radiation damage in NaCl using a kinetic rate reaction model

    International Nuclear Information System (INIS)

    Soppe, W.J.

    1993-01-01

    Sodium chloride and other alkali halides are known to be very susceptible to radiation damage in the halogen sublattice when exposed to ionizing radiation. The formation of radiation damage in NaCl has generated interest because of the relevance of this damage to the disposal of radioactive waste in rock salt formations. In order to estimate the long-term behaviour of a rock salt repository, an accurate theory describing the major processes of radiation damage in NaCl is required. The model presented in this paper is an extended version of the Jain-Lidiard model; its extensions comprise the effect of impurities and the colloid nucleation stage on the formation of radiation damage. The new model has been tested against various experimental data obtained from the literature and accounts for several well known aspects of radiation damage in alkali halides which were not covered by the original Jain-Lidiard model. The new model thus may be expected to provide more reliable predictions for the build-up of radiation damage in a rock salt nuclear waste repository. (Author)

  12. A mathematical model of radiation effect on the immunity system

    International Nuclear Information System (INIS)

    Smirnova, O.A.

    1984-01-01

    A mathematical model, simulating the effect of ionizing radiation on the dynamics of humoral immune reaction is suggested. It represents the system of nonlinear differential equations and is realized in the form of program in Fortran computer language. The model describes the primary immune reaction of nonirradiated organism on T-independent antigen, reflects the postradiation lymphopoiesis dynamics in nonimmunized mammals, simulates the processes of injury and recovery of the humoral immunity system under the combined effect of ionizing radiation and antigenic stimulation. The model can be used for forecasting imminity state in irradiated mammals

  13. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  14. A model describing stable coherent synchrotron radiation in storage rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wuestefeld, G.; Huebers, H.-W.; Warnock, R.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  15. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  16. An online tool for business modelling and a refinement of the Business Canvas

    NARCIS (Netherlands)

    Rogier Brussee; Peter de Groot

    2016-01-01

    We give a refinement of the well known business model canvas by Osterwalder and Pigneur by splitting the basic blocks into further subblocks to reduce confusion and increase its expressive power. The splitting is used in an online tool which in addition comes with a set of questions to further

  17. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    International Nuclear Information System (INIS)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q.

    2015-01-01

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  18. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q. [Department of Radiation Oncology, Duke University Medical Center Durham, North Carolina 27710 (United States)

    2015-01-15

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  19. Quality assurance for online adapted treatment plans: benchmarking and delivery monitoring simulation.

    Science.gov (United States)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q

    2015-01-01

    An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were

  20. MOSFET dosimetry of the radiation therapy microbeams at the European synchrotron radiation facility

    International Nuclear Information System (INIS)

    Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: We have developed an innovative on-line MOSFET readout system for use in the quality assurance of radiation treatment beams. Recently the system has found application in areas where excellent spatial resolution is also a requirement in the quality assurance process, for example IMRT, and microbeam radiation therapy. The excellent spatial resolution is achieved by using a quadruple RADFET TM chip in 'edge on' mode. In developing this approach we have found that the system can be utilised to determine any error in the beam profile measurements due to misalignment of RADFET with respect to the radiation beam or microbeam. Using this approach will ensure that the excellent spatial resolution of the RADFET used in 'edge-on' mode is fully utilised. In this work we report on dosimetry measurements performed at the microbeam radiation therapy beamline located at the European Synchrotron Radiation Facility. The synchrotron planar array microbeam with size 10-30 μm and pitch ∼200 μm has found an important application in microbeam radiation therapy (MRT) of brain tumours in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. The radiation damage from an array of parallel microbeams correlates strongly with the range of peak-valley dose ratios (PVDR), ie, the range of the ratio of the absorbed dose to tissue directly in line with the mid-plane of the microbeam to that in the mid-plane between adjacent microbeams. Novel physical dosimetry of the microbeams using the online MOSFET reader system will be presented. Comparison of the experimental results with both GaF film measurements and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue phantom