WorldWideScience

Sample records for radiation oncology patients

  1. Patient satisfaction in radiation oncology

    International Nuclear Information System (INIS)

    Zissiadis, Y.; Provis, A.; Dhaliwal, S.S.

    2003-01-01

    In this current economic climate where the costs of providing a good medical service are escalating, patients are demanding a higher level of service from the Radiation Oncology providers. This coupled with the rising level of patients' expectations make it absolutely paramount for Radiation Oncology providers to offer the best possible service to their patients. In order to do this, it is essential to assess the present level of patient satisfaction prior to deciding which aspects of the current service need to be changed. In this pilot study, we assess the level of patient satisfaction with aspects of the radiotherapy service and the level of patient anxiety both prior to and following radiotherapy at the Perth Radiation Oncology Centre. A questionnaire was created using a combination of the Information Satisfaction Questionnaire-1 (ISQ-1), the Very Short Questionnaire 9 (VSQ 9) and the State Trait Anxiety Index (STAI). One hundred new patients were studied, all of whom were to have radiotherapy with curative intent. The results of this study are reviewed in this presentation

  2. Improving patient safety in radiation oncology

    International Nuclear Information System (INIS)

    Hendee, William R.; Herman, Michael G.

    2011-01-01

    Beginning in the 1990s, and emphasized in 2000 with the release of an Institute of Medicine report, healthcare providers and institutions have dedicated time and resources to reducing errors that impact the safety and well-being of patients. But in January 2010 the first of a series of articles appeared in the New York Times that described errors in radiation oncology that grievously impacted patients. In response, the American Association of Physicists in Medicine and the American Society of Radiation Oncology sponsored a working meeting entitled ''Safety in Radiation Therapy: A Call to Action''. The meeting attracted 400 attendees, including medical physicists, radiation oncologists, medical dosimetrists, radiation therapists, hospital administrators, regulators, and representatives of equipment manufacturers. The meeting was cohosted by 14 organizations in the United States and Canada. The meeting yielded 20 recommendations that provide a pathway to reducing errors and improving patient safety in radiation therapy facilities everywhere.

  3. Internet utilization by radiation oncology patients

    International Nuclear Information System (INIS)

    Metz, J.M.; Devine, P.; DeNittis, A.; Stambaugh, M.; Jones, H.; Goldwein, J.; Whittington, R.

    2001-01-01

    Purpose: Studies describing the use of the Internet by radiation oncology patients are lacking. This multi-institutional study of cancer patients presenting to academic (AC), community (CO) and veterans (VA) radiation oncology centers was designed to analyze the use of the Internet, predictive factors for utilization, and barriers to access to the Internet. Materials and Methods: A questionnaire evaluating the use of the Internet was administered to 921 consecutive patients presenting to radiation oncology departments at AC, CO and VA Medical Centers. The study included 436 AC patients (47%), 284 CO patients (31%), and 201 VA patients (22%). A computer was available at home to 427 patients (46%) and 337 patients (37%) had Email access. The mean age of the patient population was 64 years (range=14-93). Males represented 70% of the patient population. The most common diagnoses included prostate cancer (33%), breast cancer (13%), and lung cancer (11%). Results: Overall, 265/921 patients (29%) were using the Internet to find cancer related information. The Internet was used by 42% of AC patients, 25% of CO patients and only 5% of VA patients (p<.0001). A computer was available at home in 62% AC vs. 45% CO vs. 12% VA patients (p<.0001). Patients < 60 years were much more likely to use the Internet than older patients (p<.0001). Most of the Internet users considered the information either very reliable (22%) or somewhat reliable (70%). Most patients were looking for information regarding treatment of their cancer (90%), management of side effects of treatment (74%), alternative/complementary treatments (65%) and clinical trials (51%). Unconventional medical therapies were purchased over the Internet by 12% of computer users. Products or services for the treatment or management of cancer were purchased online by 12% of Internet users. Conclusion: A significant number of cancer patients seen in radiation oncology departments at academic and community medical centers

  4. Radiation oncology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Radiation Oncology Division has had as its main objectives both to operate an academic training program and to carry out research on radiation therapy of cancer. Since fiscal year 1975, following a directive from ERDA, increased effort has been given to research. The research activities have been complemented by the training program, which has been oriented toward producing radiation oncologists, giving physicians short-term experience in radiation oncology, and teaching medical students about clinical cancer and its radiation therapy. The purpose of the research effort is to improve present modalities of radiation therapy of cancer. As in previous years, the Division has operated as the Radiation Oncology Program of the Department of Radiological Sciences of the University of Puerto Rico School of Medicine. It has provided radiation oncology support to patients at the University Hospital and to academic programs of the University of Puerto Rico Medical Sciences Campus. The patients, in turn, have provided the clinical basis for the educational and research projects of the Division. Funding has been primarily from PRNC (approx. 40%) and from National Cancer Institute grants channeled through the School of Medicine (approx. 60%). Special inter-institutional relationships with the San Juan Veterans Administration Hospital and the Metropolitan Hospital in San Juan have permitted inclusion of patients from these institutions in the Division's research projects. Medical physics and radiotherapy consultations have been provided to the Radiotherapy Department of the VA Hospital

  5. Radiation oncology: An Irish hospitals approach to supporting patients

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Caragh [Cork University Hospital (Ireland)], E-mail: caragh.miller@tcd.ie

    2009-02-15

    Despite advances in medical technology, cancer is still one of the leading causes of death globally, leaving many patients to deal with the emotional and psychological aspects associated with cancer and its treatment [Department of Health and Children. A strategy for cancer control in Ireland. National Cancer Forum. Dublin; 2006]. The recognition and management of psychological conditions are an integral part of comprehensive cancer care. As a result, the Health Services Executive as part of the continuing expansion of Cork Radiation Oncology Department created the role of Information and Support Radiation Therapist. This post was specially created during June 2005 to facilitate the smooth entry into the treatment for patients and family members experiencing radiotherapy for the first time. Working alongside the oncology nurses and other health professionals the Information and Support Radiation Therapist aims to provide vital education/information and support to patients and their families. The provision of this new service for patients enables departments to adopt a holistic approach to treatment. This research identifies the cancer services and psychological support services in Ireland. Up-to-date audits of the new patient services established in the Cork Radiation Oncology Department and their psychological contribution towards cancer development and treatment are also discussed.

  6. Radiation oncology: An Irish hospitals approach to supporting patients

    International Nuclear Information System (INIS)

    Miller, Caragh

    2009-01-01

    Despite advances in medical technology, cancer is still one of the leading causes of death globally, leaving many patients to deal with the emotional and psychological aspects associated with cancer and its treatment [Department of Health and Children. A strategy for cancer control in Ireland. National Cancer Forum. Dublin; 2006]. The recognition and management of psychological conditions are an integral part of comprehensive cancer care. As a result, the Health Services Executive as part of the continuing expansion of Cork Radiation Oncology Department created the role of Information and Support Radiation Therapist. This post was specially created during June 2005 to facilitate the smooth entry into the treatment for patients and family members experiencing radiotherapy for the first time. Working alongside the oncology nurses and other health professionals the Information and Support Radiation Therapist aims to provide vital education/information and support to patients and their families. The provision of this new service for patients enables departments to adopt a holistic approach to treatment. This research identifies the cancer services and psychological support services in Ireland. Up-to-date audits of the new patient services established in the Cork Radiation Oncology Department and their psychological contribution towards cancer development and treatment are also discussed

  7. Development of an electronic radiation oncology patient information management system.

    Science.gov (United States)

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2008-01-01

    The quality of patient care is critically influenced by the availability of accurate information and its efficient management. Radiation oncology consists of many information components, for example there may be information related to the patient (e.g., profile, disease site, stage, etc.), to people (radiation oncologists, radiological physicists, technologists, etc.), and to equipment (diagnostic, planning, treatment, etc.). These different data must be integrated. A comprehensive information management system is essential for efficient storage and retrieval of the enormous amounts of information. A radiation therapy patient information system (RTPIS) has been developed using open source software. PHP and JAVA script was used as the programming languages, MySQL as the database, and HTML and CSF as the design tool. This system utilizes typical web browsing technology using a WAMP5 server. Any user having a unique user ID and password can access this RTPIS. The user ID and password is issued separately to each individual according to the person's job responsibilities and accountability, so that users will be able to only access data that is related to their job responsibilities. With this system authentic users will be able to use a simple web browsing procedure to gain instant access. All types of users in the radiation oncology department should find it user-friendly. The maintenance of the system will not require large human resources or space. The file storage and retrieval process would be be satisfactory, unique, uniform, and easily accessible with adequate data protection. There will be very little possibility of unauthorized handling with this system. There will also be minimal risk of loss or accidental destruction of information.

  8. Development of an electronic radiation oncology patient information management system

    Directory of Open Access Journals (Sweden)

    Mandal Abhijit

    2008-01-01

    Full Text Available The quality of patient care is critically influenced by the availability of accurate information and its efficient management. Radiation oncology consists of many information components, for example there may be information related to the patient (e.g., profile, disease site, stage, etc., to people (radiation oncologists, radiological physicists, technologists, etc., and to equipment (diagnostic, planning, treatment, etc.. These different data must be integrated. A comprehensive information management system is essential for efficient storage and retrieval of the enormous amounts of information. A radiation therapy patient information system (RTPIS has been developed using open source software. PHP and JAVA script was used as the programming languages, MySQL as the database, and HTML and CSF as the design tool. This system utilizes typical web browsing technology using a WAMP5 server. Any user having a unique user ID and password can access this RTPIS. The user ID and password is issued separately to each individual according to the person′s job responsibilities and accountability, so that users will be able to only access data that is related to their job responsibilities. With this system authentic users will be able to use a simple web browsing procedure to gain instant access. All types of users in the radiation oncology department should find it user-friendly. The maintenance of the system will not require large human resources or space. The file storage and retrieval process would be be satisfactory, unique, uniform, and easily accessible with adequate data protection. There will be very little possibility of unauthorized handling with this system. There will also be minimal risk of loss or accidental destruction of information.

  9. Implanted Cardiac Defibrillator Care in Radiation Oncology Patient Population

    International Nuclear Information System (INIS)

    Gelblum, Daphna Y.; Amols, Howard

    2009-01-01

    Purpose: To review the experience of a large cancer center with radiotherapy (RT) patients bearing implantable cardiac defibrillators (ICDs) to propose some preliminary care guidelines as we learn more about the devices and their interaction with the therapeutic radiation environment. Methods and Materials: We collected data on patients with implanted ICDs treated with RT during a 2.5-year period at any of the five Memorial Sloan-Kettering clinical campuses. Information regarding the model, location, and dose detected from the device, as well as the treatment fields, fraction size, and treatment energy was collected. During this time, a new management policy for these patients had been implemented requiring treatment with low-energy beams (6 MV) and close surveillance of the patients in partnership with their electrophysiologist, as they received RT. Results: During the study period, 33 patients were treated with an ICD in place. One patient experienced a default of the device to its initial factory setting that was detected by the patient hearing an auditory signal from the device. This patient had initially been treated with a 15-MV beam. After this episode, his treatment was replanned to be completed with 6-MV photons, and he experienced no further events. Conclusion: Patients with ICDs and other implanted computer-controlled devices will be encountered more frequently in the RT department, and proper management is important. We present a policy for the safe treatment of these patients in the radiation oncology environment.

  10. Survey of sexual educational needs in radiation oncology patients

    International Nuclear Information System (INIS)

    Chen, L.; Sweeney, P.; Wallace, G.; Neish, P.; Vijayakumar, S.

    1997-01-01

    Purpose: To assess the knowledge of and need for education about sexuality in oncology patients treated with radiation therapy. Methods and Materials: Patients who received radiation therapy for any disease site were given a self-assessment survey to complete to determine their opinions on sexuality and needs for sexual education. The surveys were given to patients on follow-up visit seen approximately 6 months to 2 years after radiation therapy. All patients were diagnosed with a malignancy and asked to participate on a voluntary basis; confidentiality was ensured by excluding any identifying patient information on the survey form. Respondents were polled with a survey that consisted of 17 questions about their sexual activity. Questions were broadly categorized into the following: definition of sexual activity, frequency of sexual activity prior to and after diagnosis and treatment of cancer, perception of sexual attractiveness, sexual satisfaction in the relationship, patient perception of partner's sexual satisfaction in the relationship, educational needs with regard to sexuality after therapy for cancer, and demographic information. Results: All patients were over age 18, and received radiation therapy as part of the treatment. Patients with all disease sites were included in the survey, regardless of stage or diagnosis. A total of 28 patients completed the survey form, which was approved by our institutional review board. Forty-three percent of patients felt that the cancer diagnosis or treatment effect was the cause of not engaging in sexual intercourse. Fifty percent reported not having the same sexual desire as before the diagnosis of cancer, while 46% reported having the same sexual desire as prior to the diagnosis of cancer. Forty-six percent felt less attractive than before the diagnosis of cancer, while 43% felt the same as before diagnosis. Thirty-six percent of patients received no information with regards to sexuality and cancer, while 18% received

  11. Innovations in radiation oncology

    International Nuclear Information System (INIS)

    Withers, H.R.

    1988-01-01

    The series 'Medical Radiology - Diagnostic Imaging and Radiation Oncology' is the successor to the well known 'Encyclopedia of Medical Radiology/Handbuch der medizinischen Radiologie'. 'Medical Radiology' brings the state of the art on special topics in a timely fashion. This volume 'Innovation in Radiation Oncology', edited by H.R. Withers and L.J. Peters, presents data on the development of new therapeutic strategies in different oncologic diseases. 57 authors wrote 32 chapters covering a braod range of topics. The contributors have written their chapters with the practicing radiation oncologist in mind. The first chapter sets the stage by reviewing the quality of radiation oncology as it is practiced in the majority of radiation oncology centers in the United States. The second chapter examines how we may better predict the possible causes of failure of conventional radiotherapy in order that the most appropriate of a variety of therapeutic options may eventually be offered to patients on an individual basis. The third chapter discussed how our therapeutic endeavors affect the quality of life, a problem created by our ability to be successful. Following these three introductory chapters there are 29 chapters by highly qualified specialists discussing the newest ideas in subjects of concern to the practicing radiation oncologist. With 111 figs

  12. The situation of radiation oncology patients' relatives. A stocktaking

    International Nuclear Information System (INIS)

    Momm, Felix; Lingg, Sabine; Adebahr, Sonja; Grosu, Anca-Ligia; Xander, Carola; Becker, Gerhild

    2010-01-01

    Background and Purpose: Recent studies have shown a very high importance of relatives in decisions about medical interventions. Therefore, the situation of this group was investigated in the sense of a stocktaking by interviewing the closest relatives of radiotherapy patients. Interviewed Persons and Methods: In a defined span of time (6 weeks), a total of 470 relatives (evaluable: n = 287, 61%) of radiotherapy patients were interviewed by a newly developed questionnaire about their contentment with their inclusion in the therapy course. Further, they gave information about specific needs of relatives as well as proposals for direct improvements in the context of a radiation therapy. Results: In total, the relatives were satisfied with their inclusion in the radiotherapy course and with the patient care. As an example, more than 95% of the relatives agreed with the statement ''Here in the hospital my ill relative is cared for well.'' Nevertheless, direct possibilities for improvements were found in the interdisciplinary information about oncologic topics and in the organization of the therapy course. Conclusion: In the stocktaking the situation of radiotherapy patients' relatives was generally satisfactory. Further improvements for the future can be expected mainly from interdisciplinary cancer centers having the best suppositions to care for the relatives, if necessary. Structures known from palliative care can be used as a model. (orig.)

  13. Radiation oncology in Canada.

    Science.gov (United States)

    Giuliani, Meredith; Gospodarowicz, Mary

    2018-01-01

    In this article we provide an overview of the Canadian healthcare system and the cancer care system in Canada as it pertains to the governance, funding and delivery of radiotherapy programmes. We also review the training and practice for radiation oncologists, medical physicists and radiation therapists in Canada. We describe the clinical practice of radiation medicine from patients' referral, assessment, case conferences and the radiotherapy process. Finally, we provide an overview of the practice culture for Radiation Oncology in Canada. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations.

    Science.gov (United States)

    Prabhu, Arpan V; Hansberry, David R; Agarwal, Nitin; Clump, David A; Heron, Dwight E

    2016-11-01

    Physicians encourage patients to be informed about their health care options, but much of the online health care-related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Radiation oncology-related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, RadiologyInfo.org, and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment options, making each physician-patient interaction more productive

  15. Nanotechnology in Radiation Oncology

    Science.gov (United States)

    Wang, Andrew Z.; Tepper, Joel E.

    2014-01-01

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. PMID:25113769

  16. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations

    International Nuclear Information System (INIS)

    Prabhu, Arpan V.; Hansberry, David R.; Agarwal, Nitin; Clump, David A.; Heron, Dwight E.

    2016-01-01

    Purpose: Physicians encourage patients to be informed about their health care options, but much of the online health care–related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Methods: Radiation oncology–related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, (RadiologyInfo.org), and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. Results: When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Conclusion: Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment options, making each

  17. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Arpan V. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Hansberry, David R. [Department of Radiology, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania (United States); Agarwal, Nitin [Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Clump, David A. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Heron, Dwight E., E-mail: herond2@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)

    2016-11-01

    Purpose: Physicians encourage patients to be informed about their health care options, but much of the online health care–related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Methods: Radiation oncology–related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, (RadiologyInfo.org), and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. Results: When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Conclusion: Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment

  18. Do Patients Feel Well Informed in a Radiation Oncology Service?

    Science.gov (United States)

    Jimenez-Jimenez, Esther; Mateos, Pedro; Ortiz, Irene; Aymar, Neus; Vidal, Meritxell; Roncero, Raquel; Pardo, Jose; Soto, Carmen; Fuentes, Concepción; Sabater, Sebastià

    2018-04-01

    Information received by cancer patients has gained importance in recent decades. The aim of this study was to evaluate the perception of information received by oncological patients in a radiotherapy department and to measure the importance of the other information sources. A cross-sectional study was conducted, evaluating patients who received radiotherapy. All the patients were asked two questionnaires: the EORTC QLQ-INFO26 module evaluating their satisfaction with received information, and a questionnaire analyzing other sources of information search. One hundred patients between 27 and 84 years were enrolled. Breast cancer (26 %) was the commonest cancer. Patients felt better informed about the medical tests and secondly about the performed treatment. The younger patients were those who were more satisfied with the information received and patients with no formal education felt less satisfied, with statistically significant differences. Patients did not seek external information; at the most, they asked relatives and other people with cancer. Patients were satisfied with the received information, although a high percentage would like more information. In general, patients did not search for external information sources. Age and educational level seem to influence in the satisfaction with the received information.

  19. Basic radiation oncology

    International Nuclear Information System (INIS)

    Beyzadeoglu, M. M.; Ebruli, C.

    2008-01-01

    Basic Radiation Oncology is an all-in-one book. It is an up-to-date bedside oriented book integrating the radiation physics, radiobiology and clinical radiation oncology. It includes the essentials of all aspects of radiation oncology with more than 300 practical illustrations, black and white and color figures. The layout and presentation is very practical and enriched with many pearl boxes. Key studies particularly randomized ones are also included at the end of each clinical chapter. Basic knowledge of all high-tech radiation teletherapy units such as tomotherapy, cyberknife, and proton therapy are also given. The first 2 sections review concepts that are crucial in radiation physics and radiobiology. The remaining 11 chapters describe treatment regimens for main cancer sites and tumor types. Basic Radiation Oncology will greatly help meeting the needs for a practical and bedside oriented oncology book for residents, fellows, and clinicians of Radiation, Medical and Surgical Oncology as well as medical students, physicians and medical physicists interested in Clinical Oncology. English Edition of the book Temel Radyasyon Onkolojisi is being published by Springer Heidelberg this year with updated 2009 AJCC Staging as Basic Radiation Oncology

  20. Patient-centered image and data management in radiation oncology

    International Nuclear Information System (INIS)

    Steil, Volker; Schneider, Frank; Kuepper, Beate; Wenz, Frederik; Lohr, Frank; Weisser, Gerald

    2009-01-01

    Background: recent changes in the radiotherapy (RT) workflow through the introduction of complex treatment paradigms such as intensity-modulated radiotherapy (IMRT) and, recently, image-guided radiotherapy (IGRT) with their increase in data traffic for different data classes have mandated efforts to further integrate electronic data management for RT departments in a patient- and treatment-course-centered fashion. Methods: workflow in an RT department is multidimensional and multidirectional and consists of at least five different data classes (RT/machine data, patient-related documents such as reports and letters, progress notes, DICOM (Digital Imaging and Communications in Medicine) image data, and non-DICOM image data). Data has to be handled in the framework of adaptive feedback loops with increasing frequency. This is in contrast to a radiology department where mainly DICOM image data and reports have to be widely accessible but are dealt with in a mainly unidirectional manner. When compared to a diagnostic Radiology Information System (RIS)/Picture Archiving and Communication System (PACS), additional legal requirements have to be conformed to when an integrated electronic RT data management system is installed. Among these are extended storage periods, documentation of treatment plan approval by physicians and physicist, documentation of informed consent, etc. Conclusion: since the transition to a paper- and filmless environment in medicine and especially m radiation ''neology is unavoidable this review discusses these issues and suggests a possible hardware and organizational architecture of an RT department information system under control of a Hospital Information System (HIS), based on combined features of genuine RT Record and Verify (R and V) Systems, PACS, and Electronic Medical Records (EMR). (orig.)

  1. Information technologies for radiation oncology

    International Nuclear Information System (INIS)

    Chen, George T.Y.

    1996-01-01

    Electronic exchange of information is profoundly altering the ways in which we share clinical information on patients, our research mission, and the ways we teach. The three panelists each describe their experiences in information exchange. Dr. Michael Vannier is Professor of Radiology at the Mallinkrodt Institute of Radiology, and directs the image processing laboratory. He will provide insights into how radiologists have used the Internet in their specialty. Dr. Joel Goldwein, Associate Professor in the Department of Radiation Oncology at the University of Pennsylvania, will describe his experiences in using the World Wide Web in the practice of academic radiation oncology and the award winning Oncolink Web Site. Dr. Timothy Fox Assistant, Professor of Radiation Oncology at Emory University will discuss wide area networking of multi-site departments, to coordinate center wide clinical, research and teaching activities

  2. Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.

    Science.gov (United States)

    Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe

    2016-07-01

    To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Internal qualification and credentialing of radiation oncology physicists to perform patient special procedures

    Directory of Open Access Journals (Sweden)

    Michael D Mills

    2014-01-01

    Full Text Available In the arena of radiation oncology special procedures, medical physicists are often the focus professionals for implementation and administration of advanced and complex technologies. One of the most vexing and challenging aspects of managing complexity concerns the ongoing internal qualification and credentialing of radiation oncology physicists to perform patient special procedures. To demonstrate ongoing qualification, a physicist must a document initial training and successful completion of competencies to implement and perform this procedure, b demonstrate familiarity with all aspects of the commissioning and quality assurance process, c demonstrate continuing education respecting this procedure, d demonstrate the peer-reviewed completion of a minimum number of patient special procedures during a specified time span, and e demonstrate satisfactory overall progress toward maintenance of specialty board certification. In many respects, this information complement is similar to that required by an accredited residency program in therapy physics. In this investigation, we report on the design of a management tool to qualify staff radiation oncology physicists to deliver patient procedures.

  4. Quality in radiation oncology

    International Nuclear Information System (INIS)

    Pawlicki, Todd; Mundt, Arno J.

    2007-01-01

    A modern approach to quality was developed in the United States at Bell Telephone Laboratories during the first part of the 20th century. Over the years, those quality techniques have been adopted and extended by almost every industry. Medicine in general and radiation oncology in particular have been slow to adopt modern quality techniques. This work contains a brief description of the history of research on quality that led to the development of organization-wide quality programs such as Six Sigma. The aim is to discuss the current approach to quality in radiation oncology as well as where quality should be in the future. A strategy is suggested with the goal to provide a threshold improvement in quality over the next 10 years

  5. Encyclopedia of radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Luther W. [Drexel Univ. College of Medicine, Philadelphia, PA (United States); Yaeger, Theodore E. (eds.) [Wake Forest Univ. School of Medicine, Winston-Salem, NC (United States). Dept. of Radiation Oncology

    2013-02-01

    The simple A to Z format provides easy access to relevant information in the field of radiation oncology. Extensive cross references between keywords and related articles enable efficient searches in a user-friendly manner. Fully searchable and hyperlinked electronic online edition. The aim of this comprehensive encyclopedia is to provide detailed information on radiation oncology. The wide range of entries are written by leading experts. They will provide basic and clinical scientists in academia, practice and industry with valuable information about the field of radiation oncology. Those in related fields, students, teachers, and interested laypeople will also benefit from the important and relevant information on the most recent developments. Please note that this publication is available as print only or online only or print + online set. Save 75% of the online list price when purchasing the bundle. For more information on the online version please type the publication title into the search box above, then click on the eReference version in the results list.

  6. Radiation oncology: a primer for medical students.

    Science.gov (United States)

    Berman, Abigail T; Plastaras, John P; Vapiwala, Neha

    2013-09-01

    Radiation oncology requires a complex understanding of cancer biology, radiation physics, and clinical care. This paper equips the medical student to understand the fundamentals of radiation oncology, first with an introduction to cancer treatment and the use of radiation therapy. Considerations during radiation oncology consultations are discussed extensively with an emphasis on how to formulate an assessment and plan including which treatment modality to use. The treatment planning aspects of radiation oncology are then discussed with a brief introduction to how radiation works, followed by a detailed explanation of the nuances of simulation, including different imaging modalities, immobilization, and accounting for motion. The medical student is then instructed on how to participate in contouring, plan generation and evaluation, and the delivery of radiation on the machine. Lastly, potential adverse effects of radiation are discussed with a particular focus on the on-treatment patient.

  7. Assessing Interpersonal and Communication Skills in Radiation Oncology Residents: A Pilot Standardized Patient Program

    International Nuclear Information System (INIS)

    Ju, Melody; Berman, Abigail T.; Hwang, Wei-Ting; LaMarra, Denise; Baffic, Cordelia; Suneja, Gita; Vapiwala, Neha

    2014-01-01

    Purpose: There is a lack of data for the structured development and evaluation of communication skills in radiation oncology residency training programs. Effective communication skills are increasingly emphasized by the Accreditation Council for Graduate Medical Education and are critical for a successful clinical practice. We present the design of a novel, pilot standardized patient (SP) program and the evaluation of communication skills among radiation oncology residents. Methods and Materials: Two case scenarios were developed to challenge residents in the delivery of “bad news” to patients: one scenario regarding treatment failure and the other regarding change in treatment plan. Eleven radiation oncology residents paired with 6 faculty participated in this pilot program. Each encounter was scored by the SPs, observing faculty, and residents themselves based on the Kalamazoo guidelines. Results: Overall resident performance ratings were “good” to “excellent,” with faculty assigning statistically significant higher scores and residents assigning lower scores. We found inconsistent inter rater agreement among faculty, residents, and SPs. SP feedback was also valuable in identifying areas of improvement, including more collaborative decision making and less use of medical jargon. Conclusions: The program was well received by residents and faculty and regarded as a valuable educational experience that could be used as an annual feedback tool. Poor inter rater agreement suggests a need for residents and faculty physicians to better calibrate their evaluations to true patient perceptions. High scores from faculty members substantiate the concern that resident evaluations are generally positive and nondiscriminating. Faculty should be encouraged to provide honest and critical feedback to hone residents' interpersonal skills

  8. Posttreatment follow-up of radiation oncology patients in a managed care environment

    International Nuclear Information System (INIS)

    Steinberg, Michael L.; Rose, Christopher M.

    1996-01-01

    Purpose: Health care delivery in the United States is in the midst of a structural revolution called managed care. Demands for cost control within the managed care environment force radiation oncologists to defend the need and obligation to follow their patients. Methods and Materials: We have analyzed this follow-up requirement from six potential justifications: patient care, medical-legal, quality assurance, outcome measurement, cost, and improvement of care. Results: Practical recommendations for discussing the need for follow-up with the medical directors and primary care physicians of managed care entities are given. Follow-up without valid documentation of benefit is hard to justify in this era of managed care. Conclusions: Collaborative follow-up between the referring physician, the treating radiation oncologist, and the other oncologic specialists will allow for outcome measurement and improvement in practice without driving up cost or exposing the patient to undue risk.

  9. Radiation oncology systems integration

    International Nuclear Information System (INIS)

    Ragan, D.P.

    1991-01-01

    ROLE7 is intended as a complementary addition to the HL7 Standard and not as an alternative standard. Attempt should be made to mould data elements which are specific to radiation therapy with existing HL7 elements. This can be accomplished by introducing additional values to some element's table-of-options. Those elements which might be specific to radiation therapy could from new segments to be added to the Ancillary Data Reporting set. In order to accomplish ROLE7, consensus groups need be formed to identify the various functions related to radiation oncology that might motivate information exchange. For each of these functions, the specific data elements and their format must be identified. HL7 is organized with a number of applications which communicate asynchronously. Implementation of ROLE7 would allow uniform access to information across vendors and functions. It would provide improved flexibility in system selection. It would allow a more flexible and affordable upgrade path as systems in radiation oncology improve. (author). 5 refs

  10. Patient-Physician Communication About Complementary and Alternative Medicine in a Radiation Oncology Setting

    International Nuclear Information System (INIS)

    Ge Jin; Fishman, Jessica; Vapiwala, Neha; Li, Susan Q.; Desai, Krupali; Xie, Sharon X.; Mao, Jun J.

    2013-01-01

    Purpose: Despite the extensive use of complementary and alternative medicine (CAM) among cancer patients, patient-physician communication regarding CAM therapies remains limited. This study quantified the extent of patient-physician communication about CAM and identified factors associated with its discussion in radiation therapy (RT) settings. Methods and Materials: We conducted a cross-sectional survey of 305 RT patients at an urban academic cancer center. Patients with different cancer types were recruited in their last week of RT. Participants self-reported their demographic characteristics, health status, CAM use, patient-physician communication regarding CAM, and rationale for/against discussing CAM therapies with physicians. Multivariate logistic regression was used to identify relationships between demographic/clinical variables and patients’ discussion of CAM with radiation oncologists. Results: Among the 305 participants, 133 (43.6%) reported using CAM, and only 37 (12.1%) reported discussing CAM therapies with their radiation oncologists. In multivariate analyses, female patients (adjusted odds ratio [AOR] 0.45, 95% confidence interval [CI] 0.21-0.98) and patients with full-time employment (AOR 0.32, 95% CI 0.12-0.81) were less likely to discuss CAM with their radiation oncologists. CAM users (AOR 4.28, 95% CI 1.93-9.53) were more likely to discuss CAM with their radiation oncologists than were non-CAM users. Conclusions: Despite the common use of CAM among oncology patients, discussions regarding these treatments occur rarely in the RT setting, particularly among female and full-time employed patients. Clinicians and patients should incorporate discussions of CAM to guide its appropriate use and to maximize possible benefit while minimizing potential harm.

  11. Improving patient safety in the radiation oncology setting through crew resource management.

    Science.gov (United States)

    Sundararaman, Srinath; Babbo, Angela E; Brown, John A; Doss, Richard

    2014-01-01

    This paper demonstrates how the communication patterns and protocol rigors of a methodology called crew resource management (CRM) can be adapted to a radiation oncology environment to create a culture of patient safety. CRM training was introduced to our comprehensive radiation oncology department in the autumn of 2009. With 34 full-time equivalent staff, we see 100-125 patients daily on 2 hospital campuses. We were assisted by a consulting group with considerable experience in helping hospitals incorporate CRM principles and practices. Implementation steps included developing change initiative skills for key leaders, providing training in teamwork and communications, creating site-specific tools for safety and efficiency, and collecting data to document results. Our goals were to improve patient safety, teamwork, communication, and efficiency through the use of tools we developed that emphasized teamwork and communication, cross-checking, and routinizing specific protocols. Our CRM plan relies on the following 4 pillars: patient identification methods; "pause for the cause"; enabling all staff to halt treatment and question decisions; and daily morning meetings. We discuss some of the hurdles to change we encountered. Our safety record has improved. Our near-miss rate before CRM implementation averaged 11 per month; our near-miss rate currently averages 1.2 per month. In the 5 years prior to CRM implementation, we experienced 1 treatment deviation per year, although none rose to the level of "mis-administration." Since implementing CRM, our current patient treatment setup and delivery process has eliminated all treatment deviations. Our practices have identified situations where ambiguity or conflicting documentation could have resulted in inappropriate treatment or treatment inefficiencies. Our staff members have developed an extraordinary sense of teamwork combined with a high degree of personal responsibility to assure patient safety and have spoken up when

  12. Quality Indicators in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Jeffrey M. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Das, Prajnan, E-mail: prajdas@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-03-15

    Oncologic specialty societies and multidisciplinary collaborative groups have dedicated considerable effort to developing evidence-based quality indicators (QIs) to facilitate quality improvement, accreditation, benchmarking, reimbursement, maintenance of certification, and regulatory reporting. In particular, the field of radiation oncology has a long history of organized quality assessment efforts and continues to work toward developing consensus quality standards in the face of continually evolving technologies and standards of care. This report provides a comprehensive review of the current state of quality assessment in radiation oncology. Specifically, this report highlights implications of the healthcare quality movement for radiation oncology and reviews existing efforts to define and measure quality in the field, with focus on dimensions of quality specific to radiation oncology within the “big picture” of oncologic quality assessment efforts.

  13. Quality Indicators in Radiation Oncology

    International Nuclear Information System (INIS)

    Albert, Jeffrey M.; Das, Prajnan

    2013-01-01

    Oncologic specialty societies and multidisciplinary collaborative groups have dedicated considerable effort to developing evidence-based quality indicators (QIs) to facilitate quality improvement, accreditation, benchmarking, reimbursement, maintenance of certification, and regulatory reporting. In particular, the field of radiation oncology has a long history of organized quality assessment efforts and continues to work toward developing consensus quality standards in the face of continually evolving technologies and standards of care. This report provides a comprehensive review of the current state of quality assessment in radiation oncology. Specifically, this report highlights implications of the healthcare quality movement for radiation oncology and reviews existing efforts to define and measure quality in the field, with focus on dimensions of quality specific to radiation oncology within the “big picture” of oncologic quality assessment efforts

  14. Clinical and Radiation Oncology. Vol. 1

    International Nuclear Information System (INIS)

    Jurga, L.; Adam, Z.; Autrata, R.

    2010-01-01

    The work is two-volume set and has 1,658 pages. It is divided into 5 sections: I. Principles Clinical and radiation oncology. II. Hematological Malignant tumors. III. Solid tumors. IV. Treatment options metastatic Disease. V. Clinical practice in oncology. First volume contains following sections a chapters: Section I: Principles of clinical and radiation oncology, it contains following chapters: (1) The history of clinical/experimental and radiation oncology in the Czech Republic; (2) The history of clinical/experimental and radiation oncology in the Slovak Republic - development and development of oncology in Slovakia; (3) Clinical and radiation oncology as part of evidence-based medicine; (4) Molecular biology; (5) Tumor Disease; (6) Epidemiology and prevention of malignant tumors; (7) Diagnosis, staging, stratification and monitoring of patients in oncology; (8) Imaging methods in oncology; (9) Principles of surgical treatment of cancer diseases; (10) Symptomatology and signaling of malignant tumors - systemic, paraneoplastic and paraendocrine manifestations of tumor diseases; (11) Principles of radiation oncology; (12 Modeling radiobiological effects of radiotherapy; (13) Principles of anticancer chemotherapy; (14) Hormonal manipulation in the treatment of tumors; (15) Principles of biological and targeted treatment of solid tumors; (16) Method of multimodal therapy of malignant tumors; (17) Evaluation of treatment response, performance evaluation criteria (RECIST); (18) Adverse effects of cancer chemotherapy and the principles of their prevention and treatment; (19) Biological principles of hematopoietic stem cell transplantation; (20) Design, analysis and ethical aspects of clinical studies in oncology; (21) Fundamentals of biostatistics for oncologists; (22) Information infrastructure for clinical and radiological oncology based on evidence; (23) Pharmacoeconomic aspects in oncology; (24) Respecting patient preferences when deciding on the strategy and

  15. Clinical Predictors of Survival for Patients with Stage IV Cancer Referred to Radiation Oncology.

    Directory of Open Access Journals (Sweden)

    Johnny Kao

    Full Text Available There is an urgent need for a robust, clinically useful predictive model for survival in a heterogeneous group of patients with metastatic cancer referred to radiation oncology.From May 2012 to August 2013, 143 consecutive patients with stage IV cancer were prospectively evaluated by a single radiation oncologist. We retrospectively analyzed the effect of 29 patient, laboratory and tumor-related prognostic factors on overall survival using univariate analysis. Variables that were statistically significant on univariate analysis were entered into a multivariable Cox regression to identify independent predictors of overall survival.The median overall survival was 5.5 months. Four prognostic factors significantly predicted survival on multivariable analysis including ECOG performance status (0-1 vs. 2 vs. 3-4, number of active tumors (1 to 5 vs. ≥ 6, albumin levels (≥ 3.4 vs. 2.4 to 3.3 vs. 31.4 months for very low risk patients compared to 14.5 months for low risk, 4.1 months for intermediate risk and 1.2 months for high risk (p < 0.001.These data suggest that a model that considers performance status, extent of disease, primary tumor site and serum albumin represents a simple model to accurately predict survival for patients with stage IV cancer who are potential candidates for radiation therapy.

  16. A new ambulatory classification and funding model for radiation oncology: non-admitted patients in Victorian hospitals.

    Science.gov (United States)

    Antioch, K M; Walsh, M K; Anderson, D; Wilson, R; Chambers, C; Willmer, P

    1998-01-01

    The Victorian Department of Human Services has developed a classification and funding model for non-admitted radiation oncology patients. Agencies were previously funded on an historical cost input basis. For 1996-97, payments were made according to the new Non-admitted Radiation Oncology Classification System and include four key components. Fixed grants are based on Weighted Radiation Therapy Services targets for megavoltage courses, planning procedures (dosimetry and simulation) and consultations. The additional throughput pool covers additional Weighted Radiation Therapy Services once targets are reached, with access conditional on the utilisation of a minimum number of megavoltage fields by each hospital. Block grants cover specialised treatments, such as brachytherapy, allied health payments and other support services. Compensation grants were available to bring payments up to the level of the previous year. There is potential to provide incentives to promote best practice in Australia through linking appropriate practice to funding models. Key Australian and international developments should be monitored, including economic evaluation studies, classification and funding models, and the deliberations of the American College of Radiology, the American Society for Therapeutic Radiology and Oncology, the Trans-Tasman Radiation Oncology Group and the Council of Oncology Societies of Australia. National impact on clinical practice guidelines in Australia can be achieved through the Quality of Care and Health Outcomes Committee of the National Health and Medical Research Council.

  17. Supportive care in radiation oncology

    International Nuclear Information System (INIS)

    Rotman, M.; John, M.

    1987-01-01

    The radiation therapist, concerned with the disease process and all the technical intricacies of treatment, has usually not been involved in managing the supportive aspects of caring for the patient. Yet, of the team of medical specialists and allied health personnel required in oncology, the radiation therapist is the one most responsible for overseeing the total care of the cancer patient. At times this might include emotional support, prevention and correction of tissue dysfunction, augmentation of nutrition, metabolic and electrolyte regulation, rehabilitation, and vocational support. This chapter is a brief overview of a considerable volume of literature that has occupied the interest of a rather small group of physicians, nutritionists, and psychologists. The discussion highlights the special management problems of the normal-tissue effects of radiation, the related nutritional aspects of cancer care, and certain emotional and pathologic considerations

  18. Complementary and alternative medicine in radiation oncology. Survey of patients' attitudes

    International Nuclear Information System (INIS)

    Lettner, Sabrina; Kessel, Kerstin A.; Combs, Stephanie E.

    2017-01-01

    Complementary and alternative medicine (CAM) are gaining in importance, but objective data are mostly missing. However, in previous trials, methods such as acupuncture showed significant advantages compared to standard therapies. Thus, the aim was to evaluate most frequently used methods, their significance and the general acceptance amongst cancer patients undergoing radiotherapy (RT). A questionnaire of 18 questions based on the categorical classification released by the National Centre for Complementary and Integrative Health was developed. From April to September 2015, all patients undergoing RT at the Department of Radiation Oncology, Technical University of Munich, completed the survey. Changes in attitude towards CAM were evaluated using the questionnaire after RT during the first follow-up visit (n = 31). Of 634 patients, 333 answered the questionnaire (52.5%). Of all participants, 26.4% used CAM parallel to RT. Before RT, a total of 39.3% had already used complementary medicine. The most frequently applied methods during therapy were vitamins/minerals, food supplements, physiotherapy/manual medicine, and homeopathy. The majority (71.5%) did not use any complementary treatment, mostly stating that CAM was not offered to them (73.5%). The most common reasons for use were to improve the immune system (48%), to reduce side effects (43.8%), and to not miss an opportunity (37.8%). Treatment integrated into the individual therapy concept, e.g. regular acupuncture, would be used by 63.7% of RT patients. In comparison to other studies, usage of CAM parallel to RT in our department is considered to be low. Acceptance amongst patients is present, as treatment integrated into the individual oncology therapy would be used by about two-third of patients. (orig.) [de

  19. Complementary and alternative medicine in radiation oncology : Survey of patients' attitudes.

    Science.gov (United States)

    Lettner, Sabrina; Kessel, Kerstin A; Combs, Stephanie E

    2017-05-01

    Complementary and alternative medicine (CAM) are gaining in importance, but objective data are mostly missing. However, in previous trials, methods such as acupuncture showed significant advantages compared to standard therapies. Thus, the aim was to evaluate most frequently used methods, their significance and the general acceptance amongst cancer patients undergoing radiotherapy (RT). A questionnaire of 18 questions based on the categorical classification released by the National Centre for Complementary and Integrative Health was developed. From April to September 2015, all patients undergoing RT at the Department of Radiation Oncology, Technical University of Munich, completed the survey. Changes in attitude towards CAM were evaluated using the questionnaire after RT during the first follow-up visit (n = 31). Of 634 patients, 333 answered the questionnaire (52.5%). Of all participants, 26.4% used CAM parallel to RT. Before RT, a total of 39.3% had already used complementary medicine. The most frequently applied methods during therapy were vitamins/minerals, food supplements, physiotherapy/manual medicine, and homeopathy. The majority (71.5%) did not use any complementary treatment, mostly stating that CAM was not offered to them (73.5%). The most common reasons for use were to improve the immune system (48%), to reduce side effects (43.8%), and to not miss an opportunity (37.8%). Treatment integrated into the individual therapy concept, e.g. regular acupuncture, would be used by 63.7% of RT patients. In comparison to other studies, usage of CAM parallel to RT in our department is considered to be low. Acceptance amongst patients is present, as treatment integrated into the individual oncology therapy would be used by about two-third of patients.

  20. Pretreatment quality of life predicts for locoregional control in head and neck cancer patients : A radiation therapy oncology group analysis

    NARCIS (Netherlands)

    Siddiqui, Farzan; Pajak, Thomas F.; Watkins-Bruner, Deborah; Konski, Andre A.; Coyne, James C.; Gwede, Clement K.; Garden, Adam S.; Spencer, Sharon A.; Jones, Christopher; Movsas, Benjamin

    2008-01-01

    Purpose: To analyze the prospectively collected health-related quality-of-life (HRQOL) data from patients enrolled in two Radiation Therapy Oncology Group randomized Phase III head and neck cancer trials (90-03 and 91-11) to assess their value as an independent prognostic factor for locoregional

  1. Global Health in Radiation Oncology

    DEFF Research Database (Denmark)

    Rodin, Danielle; Yap, Mei Ling; Grover, Surbhi

    2017-01-01

    programs. However, formalized training and career promotion tracks in global health within radiation oncology have been slow to emerge, thereby limiting the sustained involvement of students and faculty, and restricting opportunities for leadership in this space. We examine here potential structures...... and benefits of formalized global health training in radiation oncology. We explore how defining specific competencies in this area can help trainees and practitioners integrate their activities in global health within their existing roles as clinicians, educators, or scientists. This would also help create...... and funding models might be used to further develop and expand radiation oncology services globally....

  2. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    International Nuclear Information System (INIS)

    Pollock, Sean; Keall, Paul; Keall, Robyn

    2015-01-01

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  3. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Sean, E-mail: sean.pollock@sydney.edu.au; Keall, Paul [Radiation Physics Laboratory, University of Sydney, Sydney 2050 (Australia); Keall, Robyn [Central School of Medicine, University of Sydney, Sydney 2050, Australia and Hammond Care, Palliative Care and Supportive Care Service, Greenwich 2065 (Australia)

    2015-09-15

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  4. Imaging Opportunities in Radiation Oncology

    International Nuclear Information System (INIS)

    Balter, James M.; Haffty, Bruce G.; Dunnick, N. Reed; Siegel, Eliot L.

    2011-01-01

    Interdisciplinary efforts may significantly affect the way that clinical knowledge and scientific research related to imaging impact the field of Radiation Oncology. This report summarizes the findings of an intersociety workshop held in October 2008, with the express purpose of exploring 'Imaging Opportunities in Radiation Oncology.' Participants from the American Society for Radiation Oncology (ASTRO), National Institutes of Health (NIH), Radiological Society of North America (RSNA), American Association of physicists in Medicine (AAPM), American Board of Radiology (ABR), Radiation Therapy Oncology Group (RTOG), European Society for Therapeutic Radiology and Oncology (ESTRO), and Society of Nuclear Medicine (SNM) discussed areas of education, clinical practice, and research that bridge disciplines and potentially would lead to improved clinical practice. Findings from this workshop include recommendations for cross-training opportunities within the allowed structured of Radiology and Radiation Oncology residency programs, expanded representation of ASTRO in imaging related multidisciplinary groups (and reciprocal representation within ASTRO committees), increased attention to imaging validation and credentialing for clinical trials (e.g., through the American College of Radiology Imaging Network (ACRIN)), and building ties through collaborative research as well as smaller joint workshops and symposia.

  5. Sociodemographic analysis of patients in radiation therapy oncology group clinical trials

    International Nuclear Information System (INIS)

    Chamberlain, Robert M.; Winter, Kathryn A.; Vijayakumar, Srinivasan; Porter, Arthur T.; Roach, M.; Streeter, Oscar; Cox, James D.; Bondy, Melissa L.

    1998-01-01

    Purpose: To assess the degree to which the sociodemographic characteristics of patients enrolled in Radiation Therapy Oncology Group (RTOG) clinical trails are representative of the general population. Methods and Materials: Sociodemographic data were collected on 4016 patients entered in 33 open RTOG studies between July 1991 and June 1994. The data analyzed included educational attainment, age, gender, and race. For comparison, we obtained similar data from the U.S. Department of Census. We also compared our RTOG data with Surveillance Epidemiology and End Results (SEER) data for patients who received radiation therapy, to determine how RTOG patients compared with cancer patients in general, and with patients with cancers at sites typically treated with radiotherapy. Results: Overall, the sociodemographic characteristics of patients entered in RTOG trials were similar to those of the Census data. We found that, in every age group of African-American men and at nearly every level of educational attainment, the proportion of RTOG trial participants mirrored the proportion in the census data. Significant differences were noted only in the youngest category of African-American men, where the RTOG accrues more in the lower educational categories and fewer with college experience. For African-American women, we found a similar pattern in every age group and at each level of educational attainment. As with men, RTOG trials accrued a considerably larger proportion of younger, less educated African-American women than the census reported. Using SEER for comparison, the RTOG enrolled proportionately more African-American men to trials all cancer sites combined, and for prostate and head and neck cancer. In head and neck trials, the RTOG enrolled nearly twice as many African-American men than would be predicted by SEER data. In lung cancer trials, RTOG underrepresented African-American men significantly; however, there was no difference for brain cancer trials. There were

  6. Clinical and Radiation Oncology. Vol. 2

    International Nuclear Information System (INIS)

    Jurga, L.; Adam, Z.; Autrata, R.

    2010-01-01

    The work is two-volume set and has 1,658 pages. It is divided into 5 sections: I. Principles Clinical and radiation oncology. II. Hematological Malignant tumors. III. Solid tumors. IV. Treatment options metastatic Disease. V. Clinical practice in oncology. Second volume contains following sections a chapters: Section III: Solid nodes, it contains following chapters: (38) Central nervous system tumors; (39) Tumors of the eye, orbits and adnexas; (40) Head and neck carcinomas; (41) Lung carcinomas and pleural mesothelioma; (42) Mediastinal tumors; (43) Tumors of the esophagus; (44) Gastric carcinomas; (45) Carcinoma of the colon, rectum and anus; (46) Small intestinal cancer; (47) Liver and biliary tract carcinomas; (48) Tumors of the pancreas; (49) Tumors of the kidney and upper urinary tract; (50) Bladder tumors of the bladder, urinary tract and penis; (51) Prostate Carcinoma; (52) Testicular tumors; (53) Malignant neoplasm of the cervix, vulva and vagina; (54) Endometrial carcinoma; (55) Malignant ovarian tumors; (56) Gestational trophoblastic disease; (57) Breast carcinoma - based on a evidence-based approach; (58) Thyroid and parathyroid carcinomas; (59) Dental tumors of endocrine glands; (60) Tumors of the locomotory system; (61) Malignant melanoma; (62) Carcinomas of the skin and skin adnexa; (63) Malignant tumors in immunosuppressed patients; (64) Tumors of unknown primary localization; (65) Children's oncology; (66) Geriatric Oncology; (67) Principles of long-term survival of patients with medically and socially significant types of malignant tumors after treatment. Section IV: Options of metastic disease disease, it contains following chapters: (68) Metastases to the central nervous system; (69) Metastases in the lungs; (70) Metastases in the liver; (71) Metastases into the skeleton. Section V: Clinical practice in oncology, it contains following chapters: (72) Acute conditions in oncology; (73) Prevention and management of radiation and chemical toxicity

  7. Using Baldrige Performance Excellence Program Approaches in the Pursuit of Radiation Oncology Quality Care, Patient Satisfaction, and Workforce Commitment

    Energy Technology Data Exchange (ETDEWEB)

    Sternick, Edward S., E-mail: esternick@lifespan.org [Department of Radiation Oncology, Rhode Island Hospital/Brown Alpert Medical School, Providence, RI (United States)

    2011-06-20

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance US business competitiveness and economic growth. Administered by the National Institute of Standards and Technology, the Act created the Baldrige National Quality Program, recently renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well-suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact-based, knowledge-driven system for improving quality of care, increasing patient satisfaction, enhancing leadership effectiveness, building employee engagement, and boosting organizational innovation. This methodology also provides a valuable framework for benchmarking an individual radiation oncology practice's operations and results against guidelines defined by accreditation and professional organizations and regulatory agencies.

  8. Using Baldrige Performance Excellence Program Approaches in the Pursuit of Radiation Oncology Quality Care, Patient Satisfaction, and Workforce Commitment

    International Nuclear Information System (INIS)

    Sternick, Edward S.

    2011-01-01

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance US business competitiveness and economic growth. Administered by the National Institute of Standards and Technology, the Act created the Baldrige National Quality Program, recently renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well-suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact-based, knowledge-driven system for improving quality of care, increasing patient satisfaction, enhancing leadership effectiveness, building employee engagement, and boosting organizational innovation. This methodology also provides a valuable framework for benchmarking an individual radiation oncology practice's operations and results against guidelines defined by accreditation and professional organizations and regulatory agencies.

  9. Using baldrige performance excellence program approaches in the pursuit of radiation oncology quality care, patient satisfaction, and workforce commitment.

    Science.gov (United States)

    Sternick, Edward S

    2011-01-01

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance US business competitiveness and economic growth. Administered by the National Institute of Standards and Technology, the Act created the Baldrige National Quality Program, recently renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well-suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact-based, knowledge-driven system for improving quality of care, increasing patient satisfaction, enhancing leadership effectiveness, building employee engagement, and boosting organizational innovation. This methodology also provides a valuable framework for benchmarking an individual radiation oncology practice's operations and results against guidelines defined by accreditation and professional organizations and regulatory agencies.

  10. Using Baldrige Performance Excellence Program Approaches in the Pursuit of Radiation Oncology Quality Care, Patient Satisfaction and Workforce Commitment

    Directory of Open Access Journals (Sweden)

    Edward eSternick

    2011-06-01

    Full Text Available The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology (NIST, the Act created the Baldrige National Quality Program, recently renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well-suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact-based, knowledge-driven system for improving quality of care, increasing patient satisfaction, enhancing leadership effectiveness, building employee engagement and boosting organizational innovation. This methodology also provides a valuable framework for benchmarking an individual radiation oncology practice’s operations and results against guidelines defined by accreditation and professional organizations and regulatory agencies.

  11. Complementary and alternative medicine in radiation oncology. Survey of patients' attitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lettner, Sabrina [Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Muenchen (Germany); Kessel, Kerstin A.; Combs, Stephanie E. [Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Muenchen (Germany); Helmholtz Zentrum Muenchen, Institute of Innovative Radiotherapy (iRT), Neuherberg (Germany)

    2017-05-15

    Complementary and alternative medicine (CAM) are gaining in importance, but objective data are mostly missing. However, in previous trials, methods such as acupuncture showed significant advantages compared to standard therapies. Thus, the aim was to evaluate most frequently used methods, their significance and the general acceptance amongst cancer patients undergoing radiotherapy (RT). A questionnaire of 18 questions based on the categorical classification released by the National Centre for Complementary and Integrative Health was developed. From April to September 2015, all patients undergoing RT at the Department of Radiation Oncology, Technical University of Munich, completed the survey. Changes in attitude towards CAM were evaluated using the questionnaire after RT during the first follow-up visit (n = 31). Of 634 patients, 333 answered the questionnaire (52.5%). Of all participants, 26.4% used CAM parallel to RT. Before RT, a total of 39.3% had already used complementary medicine. The most frequently applied methods during therapy were vitamins/minerals, food supplements, physiotherapy/manual medicine, and homeopathy. The majority (71.5%) did not use any complementary treatment, mostly stating that CAM was not offered to them (73.5%). The most common reasons for use were to improve the immune system (48%), to reduce side effects (43.8%), and to not miss an opportunity (37.8%). Treatment integrated into the individual therapy concept, e.g. regular acupuncture, would be used by 63.7% of RT patients. In comparison to other studies, usage of CAM parallel to RT in our department is considered to be low. Acceptance amongst patients is present, as treatment integrated into the individual oncology therapy would be used by about two-third of patients. (orig.) [German] Komplementaer- und alternativmedizinische Behandlungen (CAM) nehmen in vielen medizinischen Bereichen trotz oftmals fehlender objektiver Daten zu. In Therapiestudien zeigen Verfahren wie Akupunktur

  12. The Radiation Therapy Oncology in the context of oncological practice

    International Nuclear Information System (INIS)

    Kasdorf, P.

    2010-01-01

    This work is about the radiation therapy oncology in the context of oncological practice. The radiotherapy is a speciality within medicine that involves the generation, application and dissemination of knowledge about the biology, causes, prevention and treatment of the cancer and other pathologies by ionising radiation

  13. Internet-Based Survey Evaluating Use of Pain Medications and Attitudes of Radiation Oncology Patients Toward Pain Intervention

    International Nuclear Information System (INIS)

    Simone, Charles B.; Vapiwala, Neha; Hampshire, Margaret K.; Metz, James M.

    2008-01-01

    Purpose: Pain is a common symptom among cancer patients, yet many patients do not receive adequate pain management. Few data exist quantifying analgesic use by radiation oncology patients. This study evaluated the causes of pain in cancer patients and investigated the reasons patients fail to receive optimal analgesic therapy. Methods and Materials: An institutional review board-approved, Internet-based questionnaire assessing analgesic use and pain control was posted on the OncoLink (available at (www.oncolink.org)) Website. Between November 2005 and April 2006, 243 patients responded. They were predominantly women (73%), white (71%), and educated beyond high school (67%) and had breast (38%), lung (6%), or ovarian (6%) cancer. This analysis evaluated the 106 patients (44%) who underwent radiotherapy. Results: Of the 106 patients, 58% reported pain from their cancer treatment, and 46% reported pain directly from their cancer. The pain was chronic in 51% and intermittent in 33%. Most (80%) did not use medication to manage their pain. Analgesic use was significantly less in patients with greater education levels (11% vs. 36%, p = 0.002), with a trend toward lower use by whites (16% vs. 32%, p 0.082) and women (17% vs. 29%, p = 0.178). The reasons for not taking analgesics included healthcare provider not recommending medication (87%), fear of addiction or dependence (79%), and inability to pay (79%). Participants experiencing pain, but not taking analgesics, pursued alternative therapies for relief. Conclusions: Many radiation oncology patients experience pain from their disease and cancer treatment. Most study participants did not use analgesics because of concerns of addiction, cost, or failure of the radiation oncologist to recommend medication. Healthcare providers should have open discussions with their patients regarding pain symptoms and treatment

  14. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute's Comprehensive Research Needs Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jagsi, Reshma, E-mail: rjagsi@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Bekelman, Justin E. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Brawley, Otis W. [Department of Hematology and Oncology, Emory University, and American Cancer Society, Atlanta, Georgia (United States); Deasy, Joseph O. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Le, Quynh-Thu [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Michalski, Jeff M. [Department of Radiation Oncology, Washington University, St. Louis, MO (United States); Movsas, Benjamin [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Thomas, Charles R. [Department of Radiation Oncology, Oregon Health and Sciences University, Portland, OR (United States); Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2012-10-01

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patients and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.

  15. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute’s Comprehensive Research Needs Assessment

    International Nuclear Information System (INIS)

    Jagsi, Reshma; Bekelman, Justin E.; Brawley, Otis W.; Deasy, Joseph O.; Le, Quynh-Thu; Michalski, Jeff M.; Movsas, Benjamin; Thomas, Charles R.; Lawton, Colleen A.; Lawrence, Theodore S.; Hahn, Stephen M.

    2012-01-01

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patients and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.

  16. Biophysical models in radiation oncology

    International Nuclear Information System (INIS)

    Cohen, L.

    1984-01-01

    The paper examines and describes dose-time relationships in clinical radiation oncology. Realistic models and parameters for specific tissues, organs, and tumor types are discussed in order to solve difficult problems which arise in radiation oncology. The computer programs presented were written to: derive parameters from experimental and clinical data; plot normal- and tumor-cell survival curves; generate iso-effect tables of tumor-curative doses; identify alternative, equally effective procedures for fraction numbers and treatment times; determine whether a proposed course of treatment is safe and adequate, and what adjustments are needed should results suggest that the procedure is unsafe or inadequate; combine the physical isodose distribution with computed cellular surviving fractions for the tumor and all normal tissues traversed by the beam, estimating the risks of recurrence or complications at various points in the irradiated volume, and adjusting the treatment plan and fractionation scheme to minimize these risks

  17. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Awad A. [Sylvester Comprehensive Cancer Center University of Miami Health System, Miami, Florida (United States); Hwang, Wei-Ting [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Holliday, Emma B. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chapman, Christina H.; Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Thomas, Charles R. [Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon (United States); Deville, Curtiland, E-mail: cdeville@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States)

    2017-05-01

    Purpose: Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Methods and Materials: Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Results: Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Conclusion: Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves.

  18. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology

    International Nuclear Information System (INIS)

    Ahmed, Awad A.; Hwang, Wei-Ting; Holliday, Emma B.; Chapman, Christina H.; Jagsi, Reshma; Thomas, Charles R.; Deville, Curtiland

    2017-01-01

    Purpose: Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Methods and Materials: Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Results: Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Conclusion: Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves.

  19. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology.

    Science.gov (United States)

    Ahmed, Awad A; Hwang, Wei-Ting; Holliday, Emma B; Chapman, Christina H; Jagsi, Reshma; Thomas, Charles R; Deville, Curtiland

    2017-05-01

    Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Standardizing Naming Conventions in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Santanam, Lakshmi [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Hurkmans, Coen [Department of Radiation Oncology, Catharina Hospital, Eindhoven (Netherlands); Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Vliet-Vroegindeweij, Corine van [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Brame, Scott; Straube, William [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Galvin, James [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Tripuraneni, Prabhakar [Department of Radiation Oncology, Scripps Clinic, LaJolla, CA (United States); Michalski, Jeff [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Bosch, Walter, E-mail: wbosch@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Advanced Technology Consortium, Image-guided Therapy QA Center, St. Louis, MO (United States)

    2012-07-15

    Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were

  1. Standardizing Naming Conventions in Radiation Oncology

    International Nuclear Information System (INIS)

    Santanam, Lakshmi; Hurkmans, Coen; Mutic, Sasa; Vliet-Vroegindeweij, Corine van; Brame, Scott; Straube, William; Galvin, James; Tripuraneni, Prabhakar; Michalski, Jeff; Bosch, Walter

    2012-01-01

    Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were

  2. Standardizing naming conventions in radiation oncology.

    Science.gov (United States)

    Santanam, Lakshmi; Hurkmans, Coen; Mutic, Sasa; van Vliet-Vroegindeweij, Corine; Brame, Scott; Straube, William; Galvin, James; Tripuraneni, Prabhakar; Michalski, Jeff; Bosch, Walter

    2012-07-15

    The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were satisfactorily identified using this

  3. Oncology

    International Nuclear Information System (INIS)

    1998-01-01

    This paper collects some scientific research works on nuclear medicine developed in Ecuador. The main topics are: Brain metastases, computed tomography assessment; Therapeutic challenge in brain metastases, chemotherapy, surgery or radiotherapy; Neurocysticercosis and oncogenesis; Neurologic complications of radiation and chemotherapy; Cerebral perfusion gammagraphy in neurology and neurosurgery; Neuro- oncologic surgical patient anesthesic management; Pain management in neuro- oncology; Treatment of metastatic lesions of the spine, surgically decompression vs radiation therapy alone; Neuroimagining in spinal metastases

  4. 78 FR 25304 - Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), Including On...

    Science.gov (United States)

    2013-04-30

    ..., USA, Inc., Oncology Care Systems (Radiation Oncology), Including On-Site Leased Workers From Source... Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), including on- site leased... of February 2013, Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology...

  5. Continuing medical education in radiation oncology

    International Nuclear Information System (INIS)

    Chauvet, B.; Barillot, I.; Denis, F.; Cailleux, P.E.; Ardiet, J.M.; Mornex, F.

    2012-01-01

    In France, continuing medical education (CME) and professional practice evaluation (PPE) became mandatory by law in July 2009 for all health professionals. Recently published decrees led to the creation of national specialty councils to implement this organizational device. For radiation oncology, this council includes the French Society for Radiation Oncology (SFRO), the National Radiation Oncology Syndicate (SNRO) and the Association for Continuing Medical Education in Radiation Oncology (AFCOR). The Radiation Oncology National Council will propose a set of programs including CME and PPE, professional thesaurus, labels for CME actions consistent with national requirements, and will organize expertise for public instances. AFCOR remains the primary for CME, but each practitioner can freely choose an organisation for CME, provided that it is certified by the independent scientific commission. The National Order for physicians is the control authority. Radiation oncology has already a strong tradition of independent CME that will continue through this major reform. (authors)

  6. Preclinical models in radiation oncology

    Directory of Open Access Journals (Sweden)

    Kahn Jenna

    2012-12-01

    Full Text Available Abstract As the incidence of cancer continues to rise, the use of radiotherapy has emerged as a leading treatment modality. Preclinical models in radiation oncology are essential tools for cancer research and therapeutics. Various model systems have been used to test radiation therapy, including in vitro cell culture assays as well as in vivo ectopic and orthotopic xenograft models. This review aims to describe such models, their advantages and disadvantages, particularly as they have been employed in the discovery of molecular targets for tumor radiosensitization. Ultimately, any model system must be judged by its utility in developing more effective cancer therapies, which is in turn dependent on its ability to simulate the biology of tumors as they exist in situ. Although every model has its limitations, each has played a significant role in preclinical testing. Continued advances in preclinical models will allow for the identification and application of targets for radiation in the clinic.

  7. Workplace Bullying in Radiology and Radiation Oncology.

    Science.gov (United States)

    Parikh, Jay R; Harolds, Jay A; Bluth, Edward I

    2017-08-01

    Workplace bullying is common in health care and has recently been reported in both radiology and radiation oncology. The purpose of this article is to increase awareness of bullying and its potential consequences in radiology and radiation oncology. Bullying behavior may involve abuse, humiliation, intimidation, or insults; is usually repetitive; and causes distress in victims. Workplace bullying is more common in health care than in other industries. Surveys of radiation therapists in the United States, student radiographers in England, and physicians-in-training showed that substantial proportions of respondents had been subjected to workplace bullying. No studies were found that addressed workplace bullying specifically in diagnostic radiology or radiation oncology residents. Potential consequences of workplace bullying in health care include anxiety, depression, and health problems in victims; harm to patients as a result of victims' reduced ability to concentrate; and reduced morale and high turnover in the workplace. The Joint Commission has established leadership standards addressing inappropriate behavior, including bullying, in the workplace. The ACR Commission on Human Resources recommends that organizations take steps to prevent bullying. Those steps include education, including education to ensure that the line between the Socratic method and bullying is not crossed, and the establishment of policies to facilitate reporting of bullying and support victims of bullying. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Future directions in radiation oncology

    International Nuclear Information System (INIS)

    Peters, L.

    1996-01-01

    Full text: Cancer treatment has evolved progressively over the years as a joint result of improvements in technology and better understanding of the biological responses of neoplastic and normal cells to cytotoxic agents. Although major therapeutic 'breakthroughs' are unlikely absent the discovery of exploitable fundamental differences between cancer cells and their normal homologs, further incremental improvements in cancer treatment results can confidently be expected as we apply existing knowledge better and take advantage of new research insights. Areas in which I can foresee significant improvements (in approximate chronological order) are as follows: better physical radiation dose distributions; more effective radiation and chemoradiation protocols based on radiobiological principles; more rational use of radiation adjuvants based on biologic criteria; use of novel targets and vectors for systemic radionuclide therapy; use of genetic markers of radiosensitivity to determine radiation dose tolerances; and use of radiation as a modulator of therapeutic gene expression. Radiation research has contributed greatly to the efficacy of radiation oncology as it is now practised but has even greater potential for the future

  9. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  10. Value: A Framework for Radiation Oncology

    Science.gov (United States)

    Teckie, Sewit; McCloskey, Susan A.; Steinberg, Michael L.

    2014-01-01

    In the current health care system, high costs without proportional improvements in quality or outcome have prompted widespread calls for change in how we deliver and pay for care. Value-based health care delivery models have been proposed. Multiple impediments exist to achieving value, including misaligned patient and provider incentives, information asymmetries, convoluted and opaque cost structures, and cultural attitudes toward cancer treatment. Radiation oncology as a specialty has recently become a focus of the value discussion. Escalating costs secondary to rapidly evolving technologies, safety breaches, and variable, nonstandardized structures and processes of delivering care have garnered attention. In response, we present a framework for the value discussion in radiation oncology and identify approaches for attaining value, including economic and structural models, process improvements, outcome measurement, and cost assessment. PMID:25113759

  11. Contrast Media Use in Radiation Oncology: A Prospective, Controlled Educational Intervention Study with Retrospective Analysis of Patient Outcomes

    Science.gov (United States)

    Barker, Christopher A.; Mutter, Robert W.; Shapiro, Lauren Q.; Zhang, Zhigang; Wolden, Suzanne L.; Yahalom, Joachim

    2016-01-01

    Purpose Intravenous contrast media (ICM) administration is recommended as part of radiation therapy (RT) simulation in a variety of clinical scenarios, but can cause adverse events. We sought to assess radiation oncology resident knowledge about ICM, and to determine if an educational intervention (EI) could improve this level of knowledge. In conjunction, we retrospectively analyzed risk factors and adverse events related to ICM use before and after the EI to determine whether any improvements in patient outcomes could be realized. Methods Over 2 years, 21 residents in radiation oncology at Memorial Sloan-Kettering Cancer Center (MSKCC) participated in a pretest-EI-posttest study based on the ACR’s Manual on Contrast Media. Medical and RT records were reviewed, and ICM use, risk factors and adverse events were recorded. Results There was no significant difference in resident understanding of ICM use in residents of different years of training (p=0.85). Understanding of ICM use increased in residents that attended the EI (p<0.05), but this was not sustained 1 year after the EI (p=0.48). Of the 6852 RT simulations that were performed at MSKCC, 1350 (19.7%) involved ICM. Mild adverse events occurred in a few patients (<5%) simulated with ICM, but there was no difference in the number of risk factors or adverse events before and after the EI. Conclusions The EI effectively improved short-term understanding of ICM use. However, the effect was not sustained. The frequency of adverse events related to ICM use was small and not significantly impacted by the EI. PMID:21129689

  12. Exploring the role of educational videos in radiation oncology practice

    International Nuclear Information System (INIS)

    Dally, M.J.; Denham, J.W.; Boddy, G.A.

    1994-01-01

    Patient, staff, and medical student education are essential components of modern radiation oncology practice. Greater involvement of patients in the clinical decision-making process, and the need for other health professionals to be more informed about radiation oncology, provided further demand on resources, despite ever increasing logistic constraints. Videos made by individual departments may augment traditional teaching methods and have applications in documenting clinical practice and response. 8 refs., 1 tab

  13. A prospective observational trial on emesis in radiotherapy: Analysis of 1020 patients recruited in 45 Italian radiation oncology centres

    International Nuclear Information System (INIS)

    Maranzano, Ernesto; De Angelis, Verena; Pergolizzi, Stefano; Lupattelli, Marco; Frata, Paolo; Spagnesi, Stefano; Frisio, Maria Luisa; Mandoliti, Giovanni; Malinverni, Giuseppe; Trippa, Fabio; Fabbietti, Letizia; Parisi, Salvatore; Di Palma, Annamaria; De Vecchi, Pietro; De Renzis, Costantino; Giorgetti, Celestino; Bergami, Tiziano; Orecchia, Roberto; Portaluri, Maurizio; Signor, Marco

    2010-01-01

    Purpose: A prospective observational multicentre trial was carried out to assess the incidence, pattern, and prognostic factors of radiation-induced emesis (RIE), and to evaluate the use of antiemetic drugs in patients treated with radiotherapy or concomitant radio-chemotherapy. The application in clinical practice of the Multinational Association of Supportive Care in Cancer guidelines was also studied. Materials and methods: Forty-five Italian radiation oncology centres took part in this trial. The accrual lasted for 3 consecutive weeks and only patients starting radiotherapy or concomitant radio-chemotherapy in this period were enrolled. Evaluation was based on diary card filled in daily by patients during treatment and one week after stopping it. Diary card recorded the intensity of nausea/vomiting and prophylactic/symptomatic antiemetic drug prescriptions. Results: A total of 1020 patients entered into the trial, and 1004 were evaluable. Vomiting and nausea occurred in 11.0% and 27.1% of patients, respectively, and 27.9% patients had both vomiting and nausea. In multifactorial analysis, the only statistically significant patient-related risk factors were concomitant chemotherapy and previous experience of vomiting induced by chemotherapy. Moreover, two radiotherapy-related factors were significant risk factors for RIE, the irradiated site (upper abdomen) and field size (>400 cm 2 ). An antiemetic drug was given only to a minority (17%) of patients receiving RT, and the prescriptions were prophylactic in 12.4% and symptomatic in 4.6%. Different compounds and a wide range of doses and schedules were used. Conclusions: These data were similar to those registered in our previous observational trial, and the radiation oncologists' attitude in underestimating RIE and under prescribing antiemetics was confirmed.

  14. Pretreatment factors significantly influence quality of life in cancer patients: A Radiation Therapy Oncology Group (RTOG) analysis

    International Nuclear Information System (INIS)

    Movsas, Benjamin; Scott, Charles; Watkins-Bruner, Deborah

    2006-01-01

    Purpose The purpose of this analysis was to assess the impact of pretreatment factors on quality of life (QOL) in cancer patients. Methods and Materials Pretreatment QOL (via Functional Assessment of Cancer Therapy [FACT], version 2) was obtained in 1,428 patients in several prospective Radiation Therapy Oncology Group (RTOG) trials including nonmetastatic head-and-neck (n = 1139), esophageal (n = 174), lung (n = 51), rectal (n = 47), and prostate (n = 17) cancer patients. Clinically meaningful differences between groups were defined as a difference of 1 standard error of measurement (SEM). Results The mean FACT score for all patients was 86 (20.7-112) with SEM of 5.3. Statistically significant differences in QOL were observed based on age, race, Karnofsky Performance Status, marital status, education level, income level, and employment status, but not by gender or primary site. Using the SEM, there were clinically meaningful differences between patients ≤50 years vs. ≥65 years. Hispanics had worse QOL than whites. FACT increased linearly with higher Karnofsky Performance Status and income levels. Married patients (or live-in relationships) had a better QOL than single, divorced, or widowed patients. College graduates had better QOL than those with less education. Conclusion Most pretreatment factors meaningfully influenced baseline QOL. The potentially devastating impact of a cancer diagnosis, particularly in young and minority patients, must be addressed

  15. Management of radiation oncology patients with a pacemaker or ICD: A new comprehensive practical guideline in The Netherlands

    International Nuclear Information System (INIS)

    Hurkmans, Coen W; Knegjens, Joost L; Oei, Bing S; Maas, Ad JJ; Uiterwaal, GJ; Borden, Arnoud J van der; Ploegmakers, Marleen MJ; Erven, Lieselot van

    2012-01-01

    Current clinical guidelines for the management of radiotherapy patients having either a pacemaker or implantable cardioverter defibrillator (both CIEDs: Cardiac Implantable Electronic Devices) do not cover modern radiotherapy techniques and do not take the patient’s perspective into account. Available data on the frequency and cause of CIED failure during radiation therapy are limited and do not converge. The Dutch Society of Radiotherapy and Oncology (NVRO) initiated a multidisciplinary task group consisting of clinical physicists, cardiologists, radiation oncologists, pacemaker and ICD technologists to develop evidence based consensus guidelines for the management of CIED patients. CIED patients receiving radiotherapy should be categorised based on the chance of device failure and the clinical consequences in case of failure. Although there is no clear cut-off point nor a clear linear relationship, in general, chances of device failure increase with increasing doses. Clinical consequences of device failures like loss of pacing, carry the most risks in pacing dependent patients. Cumulative dose and pacing dependency have been combined to categorise patients into low, medium and high risk groups. Patients receiving a dose of less than 2 Gy to their CIED are categorised as low risk, unless pacing dependent since then they are medium risk. Between 2 and 10 Gy, all patients are categorised as medium risk, while above 10 Gy every patient is categorised as high risk. Measures to secure patient safety are described for each category. This guideline for the management of CIED patients receiving radiotherapy takes into account modern radiotherapy techniques, CIED technology, the patients’ perspective and the practical aspects necessary for the safe management of these patients. The guideline is implemented in The Netherlands in 2012 and is expected to find clinical acceptance outside The Netherlands as well

  16. Clinical quality assurance in radiation oncology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    A quality assurance program in radiation oncology monitors and evaluates any departmental functions which have an impact on patient outcome. The ultimate purpose of the program is to maximize health benefit to the patient without a corresponding increase in risk. The foundation of the program should be the credo: at least do no harm, usually do some good and ideally realize the greatest good. The steep dose response relationships for tumor control and complications require a high degree of accuracy and precision throughout the entire process of radiation therapy. It has been shown that failure to control local disease with radiation may result in decreased survival and may increase the cost of care by a factor of 3. Therefore, a comprehensive quality assurance program which seeks to optimize dose delivery and which encompasses both clinical and physics components, is needed

  17. Patterns of Care in Elderly Head-and-Neck Cancer Radiation Oncology Patients: A Single-Center Cohort Study

    International Nuclear Information System (INIS)

    Huang Shaohui; O'Sullivan, Brian; Waldron, John; Lockwood, Gina; Bayley, Andrew; Kim, John; Cummings, Bernard; Dawson, Laura A.; Hope, Andrew; Cho, John; Witterick, Ian; Chen, Eric X.; Ringash, Jolie

    2011-01-01

    Purpose: To compare the patterns of care for elderly head-and-neck cancer patients with those of younger patients. Methods and Materials: A retrospective review was conducted of all new mucosal head-and-neck cancer referrals to radiation oncology between July 1, 2003 and December 31, 2007 at our institution. The clinical characteristics, treatment pattern, tolerance, and outcomes were compared between the elderly (aged ≥75 years) and younger (aged <75 years) cohorts. Results: A total of 2,312 patients, including 452 (20%) elderly and 1,860 (80%) younger patients, were studied. The elderly patients were more likely to be women (36% vs. 27%, p <.01) and to have other malignancies (23% vs. 13%, p <.01), Stage I or II disease (38% vs. 32%, p <.01), and N0 status (56% vs. 42%, p <.01). Treatment was less often curative in intent (79% vs. 93%, p <.01). For the 1,487 patients who received definitive radiotherapy (RT), no differences were found between the elderly (n = 238) and younger (n = 1,249) patients in treatment interruption, completion, or treatment-related death. Within the subset of 760 patients who received intensified treatment (concurrent chemoradiotherapy or hyperfractionated accelerated RT), no difference was seen between the elderly (n = 46) and younger (n = 714) patients in treatment interruption, completion, or treatment-related death. After a median follow-up of 2.5 years, the 2-year cause-specific survival rate after definitive RT was 72% (range, 65-78%) for the elderly vs. 86% (range, 84-88%) for the younger patients (p <.01). Conclusion: Elderly head-and-neck cancer patients exhibited different clinical characteristics and experienced different patterns of care from younger patients. Although age itself was an adverse predictor of cause-specific survival, its effect was modest. Elderly patients selected for definitive RT or intensified RT showed no evidence of impaired treatment tolerance.

  18. Poster - 03: How to manage a nuclear medicine PET-CT for radiation oncology patients

    Energy Technology Data Exchange (ETDEWEB)

    Hinse, Martin; Létourneau, Étienne; Duplan, Danny; Piché, Émilie; Rivière, Rose Nerla; Bouchard, Guillaume [Centre Intégré de Cancérologie de Laval (Canada)

    2016-08-15

    Purpose: Development of an adapted multidisciplinary procedure designed to optimize the clinical workflow between radiation therapy (RT) and nuclear medicine (NM) for a PET-CT located in the NM department. Methods : The radiation oncologist (RO) prescribes the PET-CT exam and the clinical RT therapist gives all the necessary information to the patient prior to the exam. The immobilization accessories are prepared in the RT department. The RT and NM therapists work together for radiotracer injection, patient positioning and scan acquisition. The nuclear medicine physician (NMP) will study the images, draw Biological Target Volumes (BTVs) and produce a full exam report. Results : All tasks related to a planning PET-CT are done within 48 hours from the request by the RO to the reception of the images with the NMP contours and report. Conclusions : By developing a complete procedure collectively between the RT and NM departments, the patient benefits of a quick access to a RT planning PET-CT exam including the active involvement of every medical practitioners in these fields.

  19. Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology.

    Science.gov (United States)

    Bibault, Jean-Emmanuel; Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita

    2018-01-01

    Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our "record-and-verify" system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique-Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017).

  20. Artificial Intelligence in Medicine and Radiation Oncology.

    Science.gov (United States)

    Weidlich, Vincent; Weidlich, Georg A

    2018-04-13

    Artifical Intelligence (AI) was reviewed with a focus on its potential applicability to radiation oncology. The improvement of process efficiencies and the prevention of errors were found to be the most significant contributions of AI to radiation oncology. It was found that the prevention of errors is most effective when data transfer processes were automated and operational decisions were based on logical or learned evaluations by the system. It was concluded that AI could greatly improve the efficiency and accuracy of radiation oncology operations.

  1. The situation of radiation oncology patients' relatives. A stocktaking; Die Situation der Angehoerigen von Strahlentherapiepatienten. Eine Bestandsaufnahme

    Energy Technology Data Exchange (ETDEWEB)

    Momm, Felix; Lingg, Sabine; Adebahr, Sonja; Grosu, Anca-Ligia [Klinik fuer Strahlenheilkunde, Univ. Freiburg (Germany); Xander, Carola; Becker, Gerhild [Palliativeinheit, Univ. Freiburg (Germany)

    2010-06-15

    Background and Purpose: Recent studies have shown a very high importance of relatives in decisions about medical interventions. Therefore, the situation of this group was investigated in the sense of a stocktaking by interviewing the closest relatives of radiotherapy patients. Interviewed Persons and Methods: In a defined span of time (6 weeks), a total of 470 relatives (evaluable: n = 287, 61%) of radiotherapy patients were interviewed by a newly developed questionnaire about their contentment with their inclusion in the therapy course. Further, they gave information about specific needs of relatives as well as proposals for direct improvements in the context of a radiation therapy. Results: In total, the relatives were satisfied with their inclusion in the radiotherapy course and with the patient care. As an example, more than 95% of the relatives agreed with the statement ''Here in the hospital my ill relative is cared for well.'' Nevertheless, direct possibilities for improvements were found in the interdisciplinary information about oncologic topics and in the organization of the therapy course. Conclusion: In the stocktaking the situation of radiotherapy patients' relatives was generally satisfactory. Further improvements for the future can be expected mainly from interdisciplinary cancer centers having the best suppositions to care for the relatives, if necessary. Structures known from palliative care can be used as a model. (orig.)

  2. Pretreatment Quality of Life Predicts for Locoregional Control in Head and Neck Cancer Patients: A Radiation Therapy Oncology Group Analysis

    International Nuclear Information System (INIS)

    Siddiqui, Farzan; Pajak, Thomas F.; Watkins-Bruner, Deborah; Konski, Andre A.; Coyne, James C.; Gwede, Clement K.; Garden, Adam S.; Spencer, Sharon A.; Jones, Christopher; Movsas, Benjamin

    2008-01-01

    Purpose: To analyze the prospectively collected health-related quality-of-life (HRQOL) data from patients enrolled in two Radiation Therapy Oncology Group randomized Phase III head and neck cancer trials (90-03 and 91-11) to assess their value as an independent prognostic factor for locoregional control (LRC) and/or overall survival (OS). Methods and Materials: HRQOL questionnaires, using a validated instrument, the Functional Assessment of Cancer Therapy-Head and Neck (FACT-H and N), version 2, were completed by patients before the start of treatment. OS and LRC were the outcome measures analyzed using a multivariate Cox proportional hazard model. Results: Baseline FACT-H and N data were available for 1,093 patients and missing for 417 patients. No significant difference in outcome was found between the patients with and without baseline FACT-H and N data (p = 0.58). The median follow-up time was 27.2 months for all patients and 49 months for surviving patients. Multivariate analyses were performed for both OS and LRC. Beyond tumor and nodal stage, Karnofsky performance status, primary site, cigarette use, use of concurrent chemotherapy, and altered fractionation schedules, the FACT-H and N score was independently predictive of LRC (but not OS), with p = 0.0038. The functional well-being component of the FACT-H and N predicted most significantly for LRC (p = 0.0004). Conclusions: This study represents, to our knowledge, the largest analysis of HRQOL as a prognostic factor in locally advanced head and neck cancer patients. The results of this study have demonstrated the importance of baseline HRQOL as a significant and independent predictor of LRC in patients with locally advanced head and neck cancer

  3. Fifth nationwide survey on radiation oncology of China in 2006

    International Nuclear Information System (INIS)

    Yin Weibo; Yuyun; Chen Bo; Tian Fenghua

    2007-01-01

    Objective: In order to find out the present status of Chinese Radiation Oncology, the Chinese Society of Radiation Oncology did the fifth nationwide survey on Radiation Oncology in China. Methods: Questionnaire forms had been sent through the board member of Chinese Society of Radiation Oncology to each center throughout the country. The forms, after filing, were returned for analysis. Results: On September 30th, 2006, there were 952 radiation oncology centers. They possess personnel: 5247 doctors including 2 110 residents, 1181 physicists, 6864 nurses, 4559 technicians and 1141 engineers. For equipment: There were 918 linear accelerators, 472 telecobalt units, 146 deep X-ray machine, 827 simulators, 214 CT simulators, 400 brachytherapy units, 400 treatment planning system, 796 dosimeters, 467 X-knife, 149 γ-knife (74 for head only, 75 for the head and body). Treatment: 35 503 beds (35 centers did not report the number of beds), 42 109 patients treated per day, 409 440 new patients were treated per year (no report from 45 centers). Conclusion: Radiation oncology has been developing rapidly in the last 5 years either in quantity or in quality. They are still being considered insufficient in proportion to our population. Training programs and development of QA and QC system ate needed. (authors)

  4. Global view on the radiological protection of patients: Position paper by the International Society for Radiation Oncology

    International Nuclear Information System (INIS)

    Svensson, H.

    2001-01-01

    The International Society for Radiation Oncology (ISRO) is a federation of regional and national societies. These societies include about 80 000 radiation oncologists, physicists and related specialists. The incidence of cancer per year in developing countries is about 0.08 to about 0.2% of the population. In some developed countries, up to 0.5% of the population will be diagnosed with cancer each year - this is a very high figure. You must also look at prevalence: that is, how many of those that have had the diagnosis 'cancer' are still alive. In some developed countries, up to 3% of the population have had the diagnosis 'cancer' at some stage in their life. The projected number of new cases in the year 2000 is five million for developing and five million for developed countries. On the basis of practices exercised today in many advanced developed countries, it is estimated that 50% of these would need radiotherapy. In some countries, up to 60% of cancer cases receive at least one course of radiation treatment. Of course, good quality assurance is a matter of life and death for the patient, and radiation protection and quality assurance are in many situations much the same thing. What can the international societies do in this context? We can try to inform and teach our friends in less developed countries. For this reason, many educational meetings have been organized by the ISRO. The society tries to hold these meetings outside developed areas such as Europe and north America, and to convene them in developing regions of the world, instead. By including experienced teachers from more developed areas, the society seeks to help those who do not yet have all the knowledge they need

  5. [Artificial intelligence applied to radiation oncology].

    Science.gov (United States)

    Bibault, J-E; Burgun, A; Giraud, P

    2017-05-01

    Performing randomised comparative clinical trials in radiation oncology remains a challenge when new treatment modalities become available. One of the most recent examples is the lack of phase III trials demonstrating the superiority of intensity-modulated radiation therapy in most of its current indications. A new paradigm is developing that consists in the mining of large databases to answer clinical or translational issues. Beyond national databases (such as SEER or NCDB), that often lack the necessary level of details on the population studied or the treatments performed, electronic health records can be used to create detailed phenotypic profiles of any patients. In parallel, the Record-and-Verify Systems used in radiation oncology precisely document the planned and performed treatments. Artificial Intelligence and machine learning algorithms can be used to incrementally analyse these data in order to generate hypothesis to better personalize treatments. This review discusses how these methods have already been used in previous studies. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  6. Natural background radiation and oncologic disease incidence

    International Nuclear Information System (INIS)

    Burenin, P.I.

    1982-01-01

    Cause and effect relationships between oncologic disease incidence in human population and environmental factors are examined using investigation materials of Soviet and foreign authors. The data concerning US white population are adduced. The role and contribution of natural background radiation oncologic disease prevalence have been determined with the help of system information analysis. The probable damage of oncologic disease is shown to decrease as the background radiation level diminishes. The linear nature of dose-response relationspip has been established. The necessity to include the life history of the studied population along with environmental factors in epidemiological study under conditions of multiplicity of cancerogenesis causes is emphasized

  7. Integrating the Healthcare Enterprise in Radiation Oncology Plug and Play-The Future of Radiation Oncology?

    International Nuclear Information System (INIS)

    Abdel-Wahab, May; Rengan, Ramesh; Curran, Bruce; Swerdloff, Stuart; Miettinen, Mika; Field, Colin; Ranjitkar, Sunita; Palta, Jatinder; Tripuraneni, Prabhakar

    2010-01-01

    Purpose: To describe the processes and benefits of the integrating healthcare enterprises in radiation oncology (IHE-RO). Methods: The IHE-RO process includes five basic steps. The first step is to identify common interoperability issues encountered in radiation treatment planning and the delivery process. IHE-RO committees partner with vendors to develop solutions (integration profiles) to interoperability problems. The broad application of these integration profiles across a variety of vender platforms is tested annually at the Connectathon event. Demonstration of the seamless integration and transfer of patient data to the potential users are then presented by vendors at the public demonstration event. Users can then integrate these profiles into requests for proposals and vendor contracts by institutions. Results: Incorporation of completed integration profiles into requests for proposals can be done when purchasing new equipment. Vendors can publish IHE integration statements to document the integration profiles supported by their products. As a result, users can reference integration profiles in requests for proposals, simplifying the systems acquisition process. These IHE-RO solutions are now available in many of the commercial radiation oncology-related treatment planning, delivery, and information systems. They are also implemented at cancer care sites around the world. Conclusions: IHE-RO serves an important purpose for the radiation oncology community at large.

  8. National Institutes of Health Funding in Radiation Oncology: A Snapshot

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Michael; McBride, William H.; Vlashi, Erina [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Pajonk, Frank, E-mail: fpajonk@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2013-06-01

    Currently, pay lines for National Institutes of Health (NIH) grants are at a historical low. In this climate of fierce competition, knowledge about the funding situation in a small field like radiation oncology becomes very important for career planning and recruitment of faculty. Unfortunately, these data cannot be easily extracted from the NIH's database because it does not discriminate between radiology and radiation oncology departments. At the start of fiscal year 2013 we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from radiation oncology departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in radiation oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to principal investigators at the full professor level, and 122 principal investigators held a PhD degree. In 79% of the grants, the research topic fell into the field of biology, 13% in the field of medical physics. Only 7.6% of the proposals were clinical investigations. Our data suggest that the field of radiation oncology is underfunded by the NIH and that the current level of support does not match the relevance of radiation oncology for cancer patients or the potential of its academic work force.

  9. NIH funding in Radiation Oncology – A snapshot

    Science.gov (United States)

    Steinberg, Michael; McBride, William H.; Vlashi, Erina; Pajonk, Frank

    2013-01-01

    Currently, pay lines for NIH grants are at a historical low. In this climate of fierce competition knowledge about the funding situation in a small field like Radiation Oncology becomes very important for career planning and recruitment of faculty. Unfortunately, this data cannot be easily extracted from the NIH s database because it does not discriminate between Radiology and Radiation Oncology Departments. At the start of fiscal year 2013, we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from Radiation Oncology Departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in Radiation Oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to PIs at the Full Professor level and 122 PIs held a PhD degree. In 79% of the grants the research topic fell into the field of Biology, in 13 % into the field of Medical Physics. Only 7.6% of the proposals were clinical investigations. Our data suggests that the field of Radiation Oncology is underfunded by the NIH, and that the current level of support does not match the relevance of Radiation Oncology for cancer patients or the potential of its academic work force. PMID:23523324

  10. National Institutes of Health Funding in Radiation Oncology: A Snapshot

    International Nuclear Information System (INIS)

    Steinberg, Michael; McBride, William H.; Vlashi, Erina; Pajonk, Frank

    2013-01-01

    Currently, pay lines for National Institutes of Health (NIH) grants are at a historical low. In this climate of fierce competition, knowledge about the funding situation in a small field like radiation oncology becomes very important for career planning and recruitment of faculty. Unfortunately, these data cannot be easily extracted from the NIH's database because it does not discriminate between radiology and radiation oncology departments. At the start of fiscal year 2013 we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from radiation oncology departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in radiation oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to principal investigators at the full professor level, and 122 principal investigators held a PhD degree. In 79% of the grants, the research topic fell into the field of biology, 13% in the field of medical physics. Only 7.6% of the proposals were clinical investigations. Our data suggest that the field of radiation oncology is underfunded by the NIH and that the current level of support does not match the relevance of radiation oncology for cancer patients or the potential of its academic work force

  11. National Institutes of Health funding in radiation oncology: a snapshot.

    Science.gov (United States)

    Steinberg, Michael; McBride, William H; Vlashi, Erina; Pajonk, Frank

    2013-06-01

    Currently, pay lines for National Institutes of Health (NIH) grants are at a historical low. In this climate of fierce competition, knowledge about the funding situation in a small field like radiation oncology becomes very important for career planning and recruitment of faculty. Unfortunately, these data cannot be easily extracted from the NIH's database because it does not discriminate between radiology and radiation oncology departments. At the start of fiscal year 2013 we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from radiation oncology departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in radiation oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to principal investigators at the full professor level, and 122 principal investigators held a PhD degree. In 79% of the grants, the research topic fell into the field of biology, 13% in the field of medical physics. Only 7.6% of the proposals were clinical investigations. Our data suggest that the field of radiation oncology is underfunded by the NIH and that the current level of support does not match the relevance of radiation oncology for cancer patients or the potential of its academic work force. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. WE-H-BRB-00: Big Data in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  13. WE-H-BRB-00: Big Data in Radiation Oncology

    International Nuclear Information System (INIS)

    2016-01-01

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  14. Maintenance of Certification for Radiation Oncology

    International Nuclear Information System (INIS)

    Kun, Larry E.; Ang, Kian; Erickson, Beth; Harris, Jay; Hoppe, Richard; Leibel, Steve; Davis, Larry; Hattery, Robert

    2005-01-01

    Maintenance of Certification (MOC) recognizes that in addition to medical knowledge, several essential elements involved in delivering quality care must be developed and maintained throughout one's career. The MOC process is designed to facilitate and document professional development of American Board of Radiology (ABR) diplomates in the essential elements of quality care in Radiation Oncology and Radiologic Physics. ABR MOC has been developed in accord with guidelines of the American Board of Medical Specialties. All Radiation Oncology certificates issued since 1995 are 10-year, time-limited certificates; diplomates with time-limited certificates who wish to maintain specialty certification must complete specific requirements of the American Board of Radiology MOC program. Diplomates with lifelong certificates are not required to participate but are strongly encouraged to do so. Maintenance of Certification is based on documentation of participation in the four components of MOC: (1) professional standing, (2) lifelong learning and self-assessment, (3) cognitive expertise, and (4) performance in practice. Through these components, MOC addresses six competencies-medical knowledge, patient care, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice. Details of requirements for components 1, 2, and 3 of MOC are outlined along with aspects of the fourth component currently under development

  15. 2003 survey of Canadian radiation oncology residents

    International Nuclear Information System (INIS)

    Yee, Don; Fairchild, Alysa; Keyes, Mira; Butler, Jim; Dundas, George

    2005-01-01

    Purpose: Radiation oncology's popularity as a career in Canada has surged in the past 5 years. Consequently, resident numbers in Canadian radiation oncology residencies are at all-time highs. This study aimed to survey Canadian radiation oncology residents about their opinions of their specialty and training experiences. Methods and Materials: Residents of Canadian radiation oncology residencies that enroll trainees through the Canadian Resident Matching Service were identified from a national database. Residents were mailed an anonymous survey. Results: Eight of 101 (7.9%) potential respondents were foreign funded. Fifty-two of 101 (51.5%) residents responded. A strong record of graduating its residents was the most important factor residents considered when choosing programs. Satisfaction with their program was expressed by 92.3% of respondents, and 94.3% expressed satisfaction with their specialty. Respondents planning to practice in Canada totaled 80.8%, and 76.9% plan to have academic careers. Respondents identified job availability and receiving adequate teaching from preceptors during residency as their most important concerns. Conclusions: Though most respondents are satisfied with their programs and specialty, job availability and adequate teaching are concerns. In the future, limited time and resources and the continued popularity of radiation oncology as a career will magnify the challenge of training competent radiation oncologists in Canada

  16. Developing a national radiation oncology registry: From acorns to oaks.

    Science.gov (United States)

    Palta, Jatinder R; Efstathiou, Jason A; Bekelman, Justin E; Mutic, Sasa; Bogardus, Carl R; McNutt, Todd R; Gabriel, Peter E; Lawton, Colleen A; Zietman, Anthony L; Rose, Christopher M

    2012-01-01

    The National Radiation Oncology Registry (NROR) is a collaborative initiative of the Radiation Oncology Institute and the American Society of Radiation Oncology, with input and guidance from other major stakeholders in oncology. The overarching mission of the NROR is to improve the care of cancer patients by capturing reliable information on treatment delivery and health outcomes. The NROR will collect patient-specific radiotherapy data electronically to allow for rapid comparison of the many competing treatment modalities and account for effectiveness, outcome, utilization, quality, safety, and cost. It will provide benchmark data and quality improvement tools for individual practitioners. The NROR steering committee has determined that prostate cancer provides an appropriate model to test the concept and the data capturing software in a limited number of sites. The NROR pilot project will begin with this disease-gathering treatment and outcomes data from a limited number of treatment sites across the range of practice; once feasibility is proven, it will scale up to more sites and diseases. When the NROR is fully implemented, all radiotherapy facilities, along with their radiation oncologists, will be solicited to participate in it. With the broader participation of the radiation oncology community, NROR has the potential to serve as a resource for determining national patterns of care, gaps in treatment quality, comparative effectiveness, and hypothesis generation to identify new linkages between therapeutic processes and outcomes. The NROR will benefit radiation oncologists and other care providers, payors, vendors, policy-makers, and, most importantly, cancer patients by capturing reliable information on population-based radiation treatment delivery. Copyright © 2012 (c) 2010 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved. Published by Elsevier Inc. All rights reserved.

  17. Present status and possibilities of radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, E [Essen Univ. (Gesamthochschule) (Germany, F.R.). Strahlenklinik; Essen Univ. (Gesamthochschule) (Germany, F.R.). Poliklinik)

    1979-01-01

    A survey of the current methodical possibilities of radiation therapy within the limits of interdisciplinary oncology is given. Especially new forms of fractionation and current projects to augment the effect of radiation are discussed. The question of fast neutrons, electroaffine substances and local hyperthermia are dealt with.

  18. Clinical oncology based upon radiation biology

    International Nuclear Information System (INIS)

    Hirata, Hideki

    2016-01-01

    This paper discussed the biological effects of radiation as physical energy, especially those of X-ray as electromagnetic radiation, by associating the position of clinical oncology with classical radiation cell biology as well as recent molecular biology. First, it described the physical and biological effects of radiation, cell death due to radiation and recovery, radiation effects at tissue level, and location information and dosage information in the radiotherapy of cancer. It also described the territories unresolved through radiation biology, such as low-dose high-sensitivity, bystander effects, etc. (A.O.)

  19. Utilitarian prioritization of radiation oncology patients based on maximization of population tumour control

    Science.gov (United States)

    Ebert, M. A.; Li, W.; Jennings, L.; Kearvell, R.; Bydder, S.

    2013-06-01

    An objective method for establishing patient prioritization in the context of a radiotherapy waiting list is investigated. This is based on a utilitarian objective, being the greatest probability of local tumour control in the population of patients. A numerical simulation is developed and a clinical patient case-mix is used to determine the influence of the characteristics of the patient population on resulting optimal patient scheduling. With the utilitarian objective, large gains in tumour control probability (TCP) can be achieved for individuals or cohorts by prioritizing patients for that fraction of the patient population with relatively small sacrifices in TCP for a smaller fraction of the population. For a waiting list in steady state with five patients per day commencing treatment and leaving the list (and so with five patients per day entering the list), and a mean wait time of 35 days and a maximum of 90 days, optimized wait times ranged from a mean of one day for patients with tumour types with short effective doubling times to a mean of 66.9 days for prostate cancer patients. It is found that, when seeking the optimal daily order of patients on the waiting list in a constrained simulation, the relative rather than absolute value of TCP is the determinant of the resulting optimal waiting times. An increase in the mean waiting time mostly influences (increases) the optimal waiting times of patients with fast-growing tumours. The proportional representation of groups (separated by tumour type) in the patient population has an influence on the resulting distribution of optimal waiting times for patients in those groups, though has only a minor influence on the optimal mean waiting time for each group.

  20. Utilitarian prioritization of radiation oncology patients based on maximization of population tumour control

    International Nuclear Information System (INIS)

    Ebert, M A; Li, W; Kearvell, R; Bydder, S; Jennings, L

    2013-01-01

    An objective method for establishing patient prioritization in the context of a radiotherapy waiting list is investigated. This is based on a utilitarian objective, being the greatest probability of local tumour control in the population of patients. A numerical simulation is developed and a clinical patient case-mix is used to determine the influence of the characteristics of the patient population on resulting optimal patient scheduling. With the utilitarian objective, large gains in tumour control probability (TCP) can be achieved for individuals or cohorts by prioritizing patients for that fraction of the patient population with relatively small sacrifices in TCP for a smaller fraction of the population. For a waiting list in steady state with five patients per day commencing treatment and leaving the list (and so with five patients per day entering the list), and a mean wait time of 35 days and a maximum of 90 days, optimized wait times ranged from a mean of one day for patients with tumour types with short effective doubling times to a mean of 66.9 days for prostate cancer patients. It is found that, when seeking the optimal daily order of patients on the waiting list in a constrained simulation, the relative rather than absolute value of TCP is the determinant of the resulting optimal waiting times. An increase in the mean waiting time mostly influences (increases) the optimal waiting times of patients with fast-growing tumours. The proportional representation of groups (separated by tumour type) in the patient population has an influence on the resulting distribution of optimal waiting times for patients in those groups, though has only a minor influence on the optimal mean waiting time for each group. (paper)

  1. Contemporary Trends in Radiation Oncology Resident Research

    International Nuclear Information System (INIS)

    Verma, Vivek; Burt, Lindsay; Gimotty, Phyllis A.; Ojerholm, Eric

    2016-01-01

    Purpose: To test the hypothesis that recent resident research productivity might be different than a decade ago, and to provide contemporary information about resident scholarly activity. Methods and Materials: We compiled a list of radiation oncology residents from the 2 most recent graduating classes (June 2014 and 2015) using the Association of Residents in Radiation Oncology annual directories. We queried the PubMed database for each resident's first-authored publications from postgraduate years (PGY) 2 through 5, plus a 3-month period after residency completion. We abstracted corresponding historical data for 2002 to 2007 from the benchmark publication by Morgan and colleagues (Int J Radiat Oncol Biol Phys 2009;74:1567-1572). We tested the null hypothesis that these 2 samples had the same distribution for number of publications using the Wilcoxon rank-sum test. We explored the association of demographic factors and publication number using multivariable zero-inflated Poisson regression. Results: There were 334 residents publishing 659 eligible first-author publications during residency (range 0-17; interquartile range 0-3; mean 2.0; median 1). The contemporary and historical distributions were significantly different (P<.001); contemporary publication rates were higher. Publications accrued late in residency (27% in PGY-4, 59% in PGY-5), and most were original research (75%). In the historical cohort, half of all articles were published in 3 journals; in contrast, the top half of contemporary publications were spread over 10 journals—most commonly International Journal of Radiation Oncology • Biology • Physics (17%), Practical Radiation Oncology (7%), and Radiation Oncology (4%). Male gender, non-PhD status, and larger residency size were associated with higher number of publications in the multivariable analysis. Conclusion: We observed an increase in first-author publications during training compared with historical data from the mid-2000s. These

  2. Contemporary Trends in Radiation Oncology Resident Research

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek [Department of Radiation Oncology, University of Nebraska, Omaha, Nebraska (United States); Burt, Lindsay [Department of Radiation Oncology, University of Utah, Salt Lake City, Utah (United States); Gimotty, Phyllis A. [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Ojerholm, Eric, E-mail: eric.ojerholm@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2016-11-15

    Purpose: To test the hypothesis that recent resident research productivity might be different than a decade ago, and to provide contemporary information about resident scholarly activity. Methods and Materials: We compiled a list of radiation oncology residents from the 2 most recent graduating classes (June 2014 and 2015) using the Association of Residents in Radiation Oncology annual directories. We queried the PubMed database for each resident's first-authored publications from postgraduate years (PGY) 2 through 5, plus a 3-month period after residency completion. We abstracted corresponding historical data for 2002 to 2007 from the benchmark publication by Morgan and colleagues (Int J Radiat Oncol Biol Phys 2009;74:1567-1572). We tested the null hypothesis that these 2 samples had the same distribution for number of publications using the Wilcoxon rank-sum test. We explored the association of demographic factors and publication number using multivariable zero-inflated Poisson regression. Results: There were 334 residents publishing 659 eligible first-author publications during residency (range 0-17; interquartile range 0-3; mean 2.0; median 1). The contemporary and historical distributions were significantly different (P<.001); contemporary publication rates were higher. Publications accrued late in residency (27% in PGY-4, 59% in PGY-5), and most were original research (75%). In the historical cohort, half of all articles were published in 3 journals; in contrast, the top half of contemporary publications were spread over 10 journals—most commonly International Journal of Radiation Oncology • Biology • Physics (17%), Practical Radiation Oncology (7%), and Radiation Oncology (4%). Male gender, non-PhD status, and larger residency size were associated with higher number of publications in the multivariable analysis. Conclusion: We observed an increase in first-author publications during training compared with historical data from the mid-2000s. These

  3. The Pocketable Electronic Devices in Radiation Oncology (PEDRO) Project

    DEFF Research Database (Denmark)

    De Bari, Berardino; Franco, P.; Niyazi, Maximilian

    2016-01-01

    ) members of the national radiation or clinical oncology associations of the countries involved in the study. The 15 items investigated diffusion of MEDs (smartphones and/or tablets), their impact on daily clinical activity, and the differences perceived by participants along time. Results: A total of 386...... in young professionals working in radiation oncology. Looking at these data, it is important to verify the consistency of information found within apps, in order to avoid potential errors eventually detrimental for patients. “Quality assurance” criteria should be specifically developed for medical apps...

  4. Management of radiation oncology patients with implanted cardiac pacemakers or implant able cardioverter defibrilators; Tratamiento de pacientes en radioterapia con marcapasos o desfibriladores automaticos implantables

    Energy Technology Data Exchange (ETDEWEB)

    Martin Martin, G.

    2012-07-01

    The increase in life expectancy along with the technological development in the last decades has resulted in an increase in the number of patients requiring pacemaker implants or implantable cardioverter defibrillators worldwide. An increase in the number of patients with implanted cardiac devices in radiotherapy is also expected due to the risk factors in common between heart disease and cancer. In 1994 the American Association of Physicists in Medicine (AAPM) released a report about the management of radiation oncology patients with implanted cardiac pacemakers. The addition of new technologies, both in radiotherapy units and in the manufacturing process of heart devices, has shown the need for an updated protocol for the management of these patients. In this work, the most important articles published after the report of the AAPM have been compiled, in order to analyze the effects not previously studied such as dose rate, scattered radiation, electromagnetic interference or random failures produced by neutrons and protons. Additionally, the latest recommendations given by the manufacturers have been analyzed and, finally, some indications are given as an updated guide for the management of radiation oncology patients with pacemakers or cardioverter defibrillators implanted. (Author)

  5. Advances in radiation oncology in new millennium in Korea

    International Nuclear Information System (INIS)

    Huh, Seung Jae; Park, Charn Il

    2000-01-01

    The objective of recent radiation therapy is to improve the quality of treatment and the after treatment quality of life. In Korea, sharing the same objective, significant advancement was made due to the gradual increase of patient number and rapid increase of treatment facilities. The advancement includes generalization of three-dimensional conformal radiotherapy (3D-CRT), application of linac-based stereotactic radiosurgery (SRS), and furthermore, the introduction of intensity modulated radiation therapy (IMRT). Authors in this paper prospectively review the followings: the advancement of radiation oncology in Korea, the recent status of four-dimensional radiation therapy. IMRT, the concept of the treatment with biological conformity, the trend of combined chemoradiotherapy, the importance of internet and radiation oncology information management system as influenced by the revolution of information technology, and finally the global trend of telemedicine in radiation oncology. Additionally, we suggest the methods to improve radiotherapy treatment, which include improvement of quality assurance (QA) measures by developing Koreanized QA protocol and system, regional study about clinical protocol development for phase three clinical trial, suggestion of unified treatment protocol and guideline by academic or research societies, domestic generation of treatment equipment's or system, establishment of nationwide data base of radiation-oncology-related information, and finally pattems-of-care study about major cancers

  6. Advances in radiation oncology in new millennium in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seung Jae [College of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of); Park, Charn Il [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2000-06-01

    The objective of recent radiation therapy is to improve the quality of treatment and the after treatment quality of life. In Korea, sharing the same objective, significant advancement was made due to the gradual increase of patient number and rapid increase of treatment facilities. The advancement includes generalization of three-dimensional conformal radiotherapy (3D-CRT), application of linac-based stereotactic radiosurgery (SRS), and furthermore, the introduction of intensity modulated radiation therapy (IMRT). Authors in this paper prospectively review the followings: the advancement of radiation oncology in Korea, the recent status of four-dimensional radiation therapy. IMRT, the concept of the treatment with biological conformity, the trend of combined chemoradiotherapy, the importance of internet and radiation oncology information management system as influenced by the revolution of information technology, and finally the global trend of telemedicine in radiation oncology. Additionally, we suggest the methods to improve radiotherapy treatment, which include improvement of quality assurance (QA) measures by developing Koreanized QA protocol and system, regional study about clinical protocol development for phase three clinical trial, suggestion of unified treatment protocol and guideline by academic or research societies, domestic generation of treatment equipment's or system, establishment of nationwide data base of radiation-oncology-related information, and finally pattems-of-care study about major cancers.

  7. Technology for Innovation in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Martel, Mary K., E-mail: mmartel@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jaffray, David A. [Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Hospital, Toronto, Ontario (Canada); Benedict, Stanley H. [Department of Radiation Oncology, University of California – Davis Cancer Center, Sacramento, California (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Deye, James [Radiation Research Programs, National Cancer Institute, Bethesda, Maryland (United States); Jeraj, Robert [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin (United States); Kavanagh, Brian [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Krishnan, Sunil [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, Nancy [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Low, Daniel A. [Department of Radiation Oncology, University of California – Los Angeles, Los Angeles, California (United States); Mankoff, David [Department of Radiology, University of Washington Medical School, Seattle, Washington (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States); Ollendorf, Daniel [Institute for Clinical and Economic Review, Boston, Massachusetts (United States); and others

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

  8. Technology for Innovation in Radiation Oncology.

    Science.gov (United States)

    Chetty, Indrin J; Martel, Mary K; Jaffray, David A; Benedict, Stanley H; Hahn, Stephen M; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A; Mankoff, David; Marks, Lawrence B; Ollendorf, Daniel; Paganetti, Harald; Ross, Brian; Siochi, Ramon Alfredo C; Timmerman, Robert D; Wong, John W

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Technology for Innovation in Radiation Oncology

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Martel, Mary K.; Jaffray, David A.; Benedict, Stanley H.; Hahn, Stephen M.; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A.; Mankoff, David; Marks, Lawrence B.; Ollendorf, Daniel

    2015-01-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

  10. Group consensus peer review in radiation oncology: commitment to quality.

    Science.gov (United States)

    Duggar, W Neil; Bhandari, Rahul; Yang, Chunli Claus; Vijayakumar, Srinivasan

    2018-03-27

    Peer review, especially prospective peer review, has been supported by professional organizations as an important element in optimal Radiation Oncology practice based on its demonstration of efficacy at detecting and preventing errors prior to patient treatment. Implementation of peer review is not without barriers, but solutions do exist to mitigate or eliminate some of those barriers. Peer review practice at our institution involves three key elements: new patient conference, treatment planning conference, and chart rounds. The treatment planning conference is an adaptation of the group consensus peer review model from radiology which utilizes a group of peers reviewing each treatment plan prior to implementation. The peer group in radiation oncology includes Radiation Oncologists, Physician Residents, Medical Physicists, Dosimetrists, and Therapists. Thus, technical and clinical aspects of each plan are evaluated simultaneously. Though peer review is held in high regard in Radiation Oncology, many barriers commonly exist preventing optimal implementation such as time intensiveness, repetition, and distraction from clinic time with patients. Through the use of automated review tools and commitment by individuals and administration in regards to staffing, scheduling, and responsibilities, these barriers have been mitigated to implement this Group Consensus Peer Review model into a Radiation Oncology Clinic. A Group Consensus Peer Review model has been implemented with strategies to address common barriers to effective and efficient peer review.

  11. Faculty of Radiation Oncology 2014 workforce census.

    Science.gov (United States)

    Leung, John; Munro, Philip L; James, Melissa

    2015-12-01

    This paper reports the key findings of the Faculty of Radiation Oncology 2014 workforce census and compares the results with earlier surveys. The census was conducted in mid-2014 with distribution to all radiation oncologists, educational affiliates and trainees listed on the college database. There were six email reminders and responses were anonymous. The overall response rate was 76.1%. The age range of fellows was 32-96 (mean = 49 years, median = 47 years). The majority of the radiation oncologists were male (n = 263, 63%). The minority of radiation oncologists were of Asian descent (n = 43, 13.4%). Radiation oncologists graduated from medical school on average 23 years ago (median = 22 years). A minority of fellows (n = 66, 20%) held another postgraduate qualification. Most radiation oncologists worked, on average, at two practices (median = 2, range 1-7). Practising radiation oncologists worked predominantly in the public sector (n = 131, 49%), but many worked in both the public and private sectors (n = 94, 37%), and a minority worked in the private sector only (n = 38, 14%). The largest proportion of the workforce was from New South Wales accounting for 29% of radiation oncologists. Radiation oncologists worked an average of 43 h/week (median = 43 h, range 6-80). Radiation oncologists who worked in the private sector worked less hours than their public sector or public/private sector colleagues. (38.3 vs. 42.9 vs. 44.3 h, P = 0.042). Victorians worked the fewest average hours per week at 38 h and West Australians the most at 46 h/week. Radiation oncologists averaged 48 min for each new case, 17 min per follow up and 11 min for a treatment review. Radiation oncologists averaged 246 new patients per year (median = 250, range = 20-600) with men (average = 268), Western Australians (average = 354) and those in private practice seeing more (average = 275). Most radiation

  12. The American Society for Radiation Oncology's 2015 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Burmeister, Jay; Chen, Zhe; Chetty, Indrin J.; Dieterich, Sonja; Doemer, Anthony; Dominello, Michael M.; Howell, Rebecca M.; McDermott, Patrick; Nalichowski, Adrian; Prisciandaro, Joann; Ritter, Tim; Smith, Chadd; Schreiber, Eric; Shafman, Timothy; Sutlief, Steven; Xiao, Ying

    2016-01-01

    Purpose: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. Methods and Materials: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. Results: The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. Conclusions: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since

  13. Radiation oncology in the era of precision medicine

    DEFF Research Database (Denmark)

    Baumann, Michael; Krause, Mechthild; Overgaard, Jens

    2016-01-01

    with preservation of health-related quality of life can be achieved in many patients. Two major strategies, acting synergistically, will enable further widening of the therapeutic window of radiation oncology in the era of precision medicine: technology-driven improvement of treatment conformity, including advanced...

  14. Practicing radiation oncology in the current health care environment - Part III: Information systems for radiation oncology practice

    International Nuclear Information System (INIS)

    Kijewski, Peter

    1996-01-01

    Purpose: This course will review topics to be considered when defining an information systems plan for a department of radiation oncology. A survey of available systems will be presented. Computer information systems can play an important role in the effective administration and operation of a department of radiation oncology. Tasks such as 1) scheduling for physicians, patients, and rooms, 2) charge collection and billing, 3) administrative reporting, and 4) treatment verification can be carried out efficiently with the assistance of computer systems. Operating a department without a state of art computer system will become increasingly difficult as hospitals and healthcare buyers increasingly rely on computer information technology. Communication of the radiation oncology system with outside systems will thus further enhance the utility of the computer system. The steps for the selection and installation of an information system will be discussed: 1) defining the objectives, 2) selecting a suitable system, 3) determining costs, 4) setting up maintenance contracts, and 5) planning for future upgrades

  15. Survey of Radiation Oncology Centres in Australia: report of the radiation oncology treatment quality program

    International Nuclear Information System (INIS)

    Klybaba, M.; Kenny, L.; Kron, T.; Harris, J.; O'Brien, P.

    2009-01-01

    Full text: One of the first steps towards the development of a comprehensive quality program for radiation oncology in Australia has been a survey of practice. This paper reports on the results of the survey that should inform the development of standards for radiation oncology in Australia. A questionnaire of 108 questions spanning aspects of treatment services, equipment, staff, infrastructure and available quality systems was mailed to all facilities providing radiation treatment services in Australia (n = 45). Information of 42 sites was received by June 2006 providing data on 113 operational linear accelerators of which approximately 2/3 are equipped with multi-leaf collimators. More than 75% of facilities were participating in a formal quality assurance (QA) system, with 63% following a nationally or internationally recognised system. However, there was considerable variation in the availability of policies and procedures specific to quality aspects, and the review of these. Policies for monitoring patient waiting times for treatment were documented at just 71% of all facilities. Although 85% of all centres do, in fact, monitor machine throughput, the number and types of efficiency measures varied markedly, thereby limiting the comparative use of these results. Centres identified workload as the single most common factor responsible for limiting staff involvement in both QA processes and clinical trial participation. The data collected in this 'snapshot' survey provide a unique and comprehensive baseline for future comparisons and evaluation of changes

  16. Radiation oncology a physicist's-eye view

    CERN Document Server

    Goitein, Michael

    2007-01-01

    Radiation Oncology: A Physicist's-Eye View was written for both physicists and medical oncologists with the aim of helping them approach the use of radiation in the treatment of cancer with understanding, confidence, and imagination. The book will let practitioners in one field understand the problems of, and find solutions for, practitioners in the other. It will help them to know "why" certain approaches are fruitful while, at the same time, encouraging them to ask the question "Why not?" in the face of assertions that some proposal of theirs is impractical, unreasonable, or impossible. Unlike a textbook, formal and complete developments of the topics are not among the goals. Instead, the reader will develop a foundation for understanding what the author has found to be matters of importance in radiation oncology during over thirty years of experience. Presentations cover, in largely non-technical language, the principal physical and biological aspects of radiation treatment and address practical clinical c...

  17. Minimum requirements on a QA program in radiation oncology

    International Nuclear Information System (INIS)

    Almond, P.R.

    1996-01-01

    In April, 1994, the American Association of Physicists in Medicine published a ''Comprehensive QA for radiation oncology:'' a report of the AAPM Radiation Therapy Committee. This is a comprehensive QA program which is likely to become the standard for such programs in the United States. The program stresses the interdisciplinary nature of QA in radiation oncology involving the radiation oncologists, the radiotherapy technologies (radiographers), dosimetrists, and accelerator engineers, as well as the medical physicists. This paper describes a comprehensive quality assurance program with the main emphasis on the quality assurance in radiation therapy using a linear accelerator. The paper deals with QA for a linear accelerator and simulator and QA for treatment planning computers. Next the treatment planning process and QA for individual patients is described. The main features of this report, which should apply to QA programs in any country, emphasizes the responsibilities of the medical physicist. (author). 7 refs, 9 tabs

  18. Minimum requirements on a QA program in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Almond, P R [Louisville Univ., Louisville, KY (United States). J.G. Brown Cancer Center

    1996-08-01

    In April, 1994, the American Association of Physicists in Medicine published a ``Comprehensive QA for radiation oncology:`` a report of the AAPM Radiation Therapy Committee. This is a comprehensive QA program which is likely to become the standard for such programs in the United States. The program stresses the interdisciplinary nature of QA in radiation oncology involving the radiation oncologists, the radiotherapy technologies (radiographers), dosimetrists, and accelerator engineers, as well as the medical physicists. This paper describes a comprehensive quality assurance program with the main emphasis on the quality assurance in radiation therapy using a linear accelerator. The paper deals with QA for a linear accelerator and simulator and QA for treatment planning computers. Next the treatment planning process and QA for individual patients is described. The main features of this report, which should apply to QA programs in any country, emphasizes the responsibilities of the medical physicist. (author). 7 refs, 9 tabs.

  19. International Outreach: What Is the Responsibility of ASTRO and the Major International Radiation Oncology Societies?

    International Nuclear Information System (INIS)

    Mayr, Nina A.; Hu, Kenneth S.; Liao, Zhongxing; Viswanathan, Akila N.; Wall, Terry J.; Amendola, Beatriz E.; Calaguas, Miriam J.; Palta, Jatinder R.; Yue, Ning J.; Rengan, Ramesh; Williams, Timothy R.

    2014-01-01

    In this era of globalization and rapid advances in radiation oncology worldwide, the American Society for Radiation Oncology (ASTRO) is committed to help decrease profound regional disparities through the work of the International Education Subcommittee (IES). The IES has expanded its base, reach, and activities to foster educational advances through a variety of educational methods with broad scope, in addition to committing to the advancement of radiation oncology care for cancer patients around the world, through close collaboration with our sister radiation oncology societies and other educational, governmental, and organizational groups

  20. International Outreach: What Is the Responsibility of ASTRO and the Major International Radiation Oncology Societies?

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Nina A., E-mail: ninamayr@uw.edu [Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (United States); Hu, Kenneth S. [Department of Radiation Oncology, Beth Israel Medical Center, New York, New York (United States); Liao, Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Viswanathan, Akila N. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); Wall, Terry J. [St. Luke' s Cancer Institute, Kansas City, Missouri (United States); Amendola, Beatriz E. [Innovative Cancer Institute, Miami, Florida (United States); Calaguas, Miriam J. [Department of Radiation Oncology, St. Luke' s Medical Center, Quezon City (Philippines); Palta, Jatinder R. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Yue, Ning J. [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Rengan, Ramesh [Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (United States); Williams, Timothy R. [Lynn Cancer Institute, Boca Raton Regional Hospital, Boca Raton, Florida (United States)

    2014-07-01

    In this era of globalization and rapid advances in radiation oncology worldwide, the American Society for Radiation Oncology (ASTRO) is committed to help decrease profound regional disparities through the work of the International Education Subcommittee (IES). The IES has expanded its base, reach, and activities to foster educational advances through a variety of educational methods with broad scope, in addition to committing to the advancement of radiation oncology care for cancer patients around the world, through close collaboration with our sister radiation oncology societies and other educational, governmental, and organizational groups.

  1. Paediatric Radiation Oncology. Chapter 21

    International Nuclear Information System (INIS)

    Anacak, Y.; Zaghloul, M.; Laskar, S.

    2017-01-01

    Although cancer is a typical disease of ageing adults, it can be seen at any age and cancer diagnosis in a child is not a rare situation. Every day around the world, many teenagers, young children and even infants are diagnosed with cancer. Cancer in children is an important health care problem, not only for the individual patient and medical staff, but also for families, teachers, friends and society as a whole. In every culture, children are considered innocent human beings and the diagnosis of such an ‘evil’ disease in a young child always induces feelings of unfairness and anguish. Most childhood cancers are curable; using the best treatment options, more than 80% of children with cancer may survive to adulthood. However, cure alone is not the ultimate goal for paediatric cancer treatment; late effects of treatment impact the quality of life of patients. Cure from cancer in a child means adding at least 50–60 years to his or her life, which is long enough to develop serious late effects of the treatment and the induction of secondary cancers. Thus, treatment should be tailored to minimize the exposure of healthy tissues to chemotherapy drugs and radiation. Cancer treatment can be a painful process, often involving surgery, radiotherapy and chemotherapy, and requiring very long treatment periods, which impair the motor and mental development of the child, and his or her educational activities and relations with society. Childhood cancer survivors sometimes have modest to severe sequelae of the disease itself and the treatment used, which may disrupt their development to a healthy adulthood. These cancer survivors should be fully integrated into society and be allowed to live productive lives even when lifelong rehabilitation is required to keep them active.

  2. MOSFET dosimetry on modern radiation oncology modalities

    International Nuclear Information System (INIS)

    Rosenfeld, A.B.

    2002-01-01

    The development of MOSFET dosimetry is presented with an emphasis on the development of a scanning MOSFET dosimetry system for modern radiation oncology modalities. Fundamental aspects of MOSFETs in relation to their use as dosemeters are briefly discussed. The performance of MOSFET dosemeters in conformal radiotherapy, hadron therapy, intensity-modulated radiotherapy and microbeam radiation therapy is compared with other dosimetric techniques. In particular the application of MOSFET dosemeters in the characterisation and quality assurance of the steep dose gradients associated with the penumbra of some modern radiation oncology modalities is investigated. A new in vivo, on-line, scanning MOSFET read out system is also presented. The system has the ability to read out multiple MOSFET dosemeters with excellent spatial resolution and temperature stability and minimal slow border trapping effects. (author)

  3. Use of imaging techniques in radiation oncology

    International Nuclear Information System (INIS)

    Borras, C.; Rudder, D.; Jimenez, P.

    2002-01-01

    Imaging techniques are used in radiation oncology for: disease diagnosis, tumor localization and staging, treatment simulation, treatment planning, clinical dosimetry displays, treatment verification and patient follow up. In industrialized countries, up to the 1970's, conventional radiology was used for diagnosis, simulation and planning. Gamma cameras helped tumor staging by detecting metastases. In the 1970's, simulators were developed for exclusive use in radiation oncology departments. Clinical dosimetry displays consisted mainly in axial dose distributions. Treatment verification was done placing films in the radiation beam with the patient under treatment. In the 1980's, 2-D imaging was replaced by 3-D displays with the incorporation of computerized tomography (CT) scanners, and in the 1990's of magnetic resonance imagers (MRI). Ultrasound units, briefly used in the 1960's for treatment planning purposes, were found again useful, mainly for brachytherapy dosimetry. Digital portal imagers allowed accurate treatment field verification. Treatment planning systems incorporated the capability of 'inverse planning', i.e. once the desired dose distribution is decided, the field size, gantry, collimator and couch angles, etc, can be automatically selected. At the end of the millennium, image fusion permitted excellent anatomical display of tumors and adjacent sensitive structures. The 2000's are seeing a change from anatomical to functional imaging with the advent of MRI units capable of spectroscopy at 3 Tesla and positron emission tomography (PET) units. In 2001 combined CT/PET units appeared in RT departments. In 2002, fusion of CT, MRI and PET images became available. Molecular imaging is being developed. The situation in developing countries is quite different. To start with, cancer incidence is different in developing and in industrialized countries. In addition, the health services pattern is different: Cancer treatment is mostly done in public institutions

  4. A clinical intranet model for radiation oncology

    International Nuclear Information System (INIS)

    Brooks, Ken; Fox, Tim; Davis, Larry

    1997-01-01

    Purpose: A new paradigm in computing is being formulated from advances in client-server technology. This new way of accessing data in a network is referred to variously as Web-based computing, Internet computing, or Intranet computing. The difference between an internet and intranet being that the former is for global access and the later is only for intra-departmental access. Our purpose with this work is to develop a clinically useful radiation oncology intranet for accessing physically disparate data sources. Materials and Methods: We have developed an intranet client-server system using Windows-NT Server 4.0 running Internet Information Server (IIS) on the back-end and client PCs using a typical World Wide Web (WWW) browser. The clients also take advantage of the Microsoft Open Database Connectivity (ODBC) standard for accessing commercial database systems. The various data sources used include: a traditional Radiation Oncology Information (ROIS) System (VARiS 1.3 tm ); a 3-D treatment planning system (CAD Plan tm ); a beam scanning system (Wellhoffer tm ); as well as an electronic portal imaging device (PortalVision tm ) and a CT-Simulator providing digitally reconstructed radiographs (DRRs) (Picker AcQsim tm ). We were able to leverage previously developed Microsoft Visual C++ applications without major re-writing of source code for this. Results: With the data sources and development materials used, we were able to develop a series of WWW-based clinical tool kits. The tool kits were designed to provide profession-specific clinical information. The physician's tool kit provides a treatment schedule for daily patients along with a dose summary from VARiS and the ability to review portal images and prescription images from the EPID and Picker. The physicists tool kit compares dose summaries from VARiS with an independent check against RTP beam data and serves as a quick 'chart-checker'. Finally, an administrator tool kit provides a summary of periodic charging

  5. Impact of radiation research on clinical trials in radiation oncology

    International Nuclear Information System (INIS)

    Rubin, P.; Van Ess, J.D.

    1989-01-01

    The authors present an outline review of the history of the formation of the cooperative group called International Clinical Trials in Radiation Oncology (ICTRO), and the following areas are briefly discussed together with some projections for the direction of clinical trials in radiation oncology into the 1990s:- radiosensitizers, radioprotectors, and their combination, drug-radiation interactions, dose/time/fractionation, hyperthermia, biological response modifiers and radiolabelled antibodies, high LET, particularly neutron therapy, large field irradiation and interoperative irradiation, research studies on specific sites. (U.K.)

  6. Are the American Society for Radiation Oncology Guidelines Accurate Predictors of Recurrence in Early Stage Breast Cancer Patients Treated with Balloon-Based Brachytherapy?

    Directory of Open Access Journals (Sweden)

    Moira K. Christoudias

    2013-01-01

    Full Text Available The American Society for Radiation Oncology (ASTRO consensus statement (CS provides guidelines for patient selection for accelerated partial breast irradiation (APBI following breast conserving surgery. The purpose of this study was to evaluate recurrence rates based on ASTRO CS groupings. A single institution review of 238 early stage breast cancer patients treated with balloon-based APBI via balloon based brachytherapy demonstrated a 4-year actuarial ipsilateral breast tumor recurrence (IBTR rate of 5.1%. There were no significant differences in the 4-year actuarial IBTR rates between the “suitable,” “cautionary,” and “unsuitable” ASTRO categories (0%, 7.2%, and 4.3%, resp., P=0.28. ER negative tumors had higher rates of IBTR than ER positive tumors. The ASTRO groupings are poor predictors of patient outcomes. Further studies evaluating individual clinicopathologic features are needed to determine the safety of APBI in higher risk patients.

  7. Experimental radiation pathology and oncology

    International Nuclear Information System (INIS)

    Finkel, M.P.

    1975-01-01

    The program goal is to provide basic data for evaluating the hazard to man from radioactive materials deposited within the body. The original objective, to obtain dose-response information and to provide data from several species for extrapolating animal data to man, is receiving less attention at present as effort is being put into determining how radiation causes bone cancer and whether viruses play a role. The program began with the very early radiotoxicologic investigations of materials important in the development of the atomic bomb and the necessity to establish maximum permissible levels of exposure to these materials. With the demonstration that bone cancer is the most sensitive indicator of damage from transuranic elements and some of the fission products, bone pathology became the focus of attention. When it became evident that questions of human hazard cannot be answered unequivocally on the basis of dose-response relationships, different approaches were considered, and one based on knowledge of mechanisms of cancer induction seemed most likely to be successful. The detection of viruses in both radiation-induced and spontaneous bone cancer of mice, and the present evidence for a similar virus in bone cancer of man, support the hypothesis that radiation causes cancer by activating endogenous neoplastic information, which can also be expressed as oncornavirus. Present emphases therefore concern understanding the biological, biochemical, and physical attributes of the five murine oncornaviruses that have now been isolated in the course of the program; demonstrating the existence of a comparable human oncornavirus; and discovering how radiation and virus interact in the induction of bone cancer

  8. Medical legal aspects of radiation oncology

    International Nuclear Information System (INIS)

    Wall, Terry J.

    1996-01-01

    The theoretical basis of, and practical experience in, legal liability in the clinical practice of radiation oncology is reviewed, with a view to developing suggestions to help practitioners limit their exposure to liability. New information regarding the number, size, and legal theories of litigation against radiation oncologists is presented. The most common legal bases of liability are then explored in greater detail, including 'malpractice', and informed consent, with suggestions of improving the specialty's record of documenting informed consent. Collateral consequences of suffering a malpractice claim (i.e., the National Practitioner Data Bank) will also be briefly discussed

  9. Developing aspects of radiation oncology

    International Nuclear Information System (INIS)

    Fowler, J.F.

    1981-01-01

    Both physics and radiobiology provide growing points in modern radiotherapy. Better physical dose distributions appear to be still worth achieving and can be obtained from beams of protons, heavy ions, or negative pi mesons because a peak region of high dose is deposited at depth in tissue. The heavier ion and pions also have biological properties of high LET radiation which could be important: the radioresistance of hypoxic cells in tumors is less, and tissues which are proliferating fast may be relatively more vulnerable. Although fast neutrons provide ordinary physical dose distributions, their high LET properties are similar to those of ions as heavy as neon. Drugs which specifically radiosensitize hypoxic cells offer a way of determining with certainty how important hypoxic cells are in radiotherapy. Hyperthermia is in its early stages but promises to damage just those cells poor in nutrients which are relatively resistant to ionizing radiation. Radioprotecting drugs, which depend upon poor uptake in tumors but high uptake in normal tissues, are also being tested

  10. The stucture of Korean radiation oncology in 1997

    International Nuclear Information System (INIS)

    Kim, Mi Sook; Yoo, Seoung Yul; Cho, Chul Koo; Yoo, Hyung Jun; Yang, Kwang Mo; Ji, Young Hoon; Kim, Do Jun

    1999-01-01

    To measure the basic structural characteristics of radiation oncology facilities in Korea during 1997 and to compare personnel, equipment and patient loads between Korea and developed countries. Mail surveys were conducted in 1998 and data on treatment machines, personnel and performed new patients were collected. Responses were obtained from the 100 percent of facilities. The consensus data of the whole contry were summarized using Microsoft Excel program. In Korea during 1997, 42 facilities delivered megavoltage radiation therapy with 71 treatment machines, 100 radiation oncologists, 26 medical physicist, 205 technologists and 19,773 new patients. Eighty nine percent of facilities in Korea had linear accelerates at least 6 MeV maximum photon energy. Ninety five percent of facilities had simulators while five percent of facilities had no simulator. Ninety one percent of facilities had computer planning systems and eighty three percent of facilities reported that they had a written quality assurance program. Thirty six percent of facilities had only one radiation oncologist and thirty eight percent of facilities had no medical physicists. The median of the distribution of annual patients load of a facility, patients load per a machine, patients load per a radiation oncologist, patients load per a therapist and therapists per a machine in Korea were 348 patients per a year, 263 patients per a machine, 171 patients per a radiation oncologist, 81 patients per a therapist, and 3 therapists per a machine respectively. The whole scale of the radiation oncology departments in Korea was smaller than Japan and USA in population ratio regard. In case of hardware level like linear accelerators, simulators and computer planning systems, there was no big differences between Korea and USA. The patients loads of radiation oncologists and therapists had no significant differences as compared with USA. However, it was desirable to consider the part time system in USA because there

  11. Faculty of Radiation Oncology 2010 workforce survey.

    Science.gov (United States)

    Leung, John; Vukolova, Natalia

    2011-12-01

    This paper outlines the key results of the Faculty of Radiation Oncology 2010 workforce survey and compares these results with earlier data. The workforce survey was conducted in mid-2010 using a custom-designed 17-question survey. The overall response rate was 76%. The majority of radiation oncologist respondents were male (n = 212, 71%), but the majority of trainee respondents were female (n = 59, 52.7%). The age range of fellows was 32-92 years (median: 47 years; mean: 49 years) and that of trainees was 27-44 years (median: 31 years; mean: 31.7 years). Most radiation oncologists worked at more than one practice (average: two practices). The majority of radiation oncologists worked in the public sector (n = 169, 64.5%), with some working in 'combination' of public and private sectors (n = 65, 24.8%) and a minority working in the private sector only (n = 28, 10.7%). The hours worked per week ranged from 1 to 85 (mean: 44 h; median: 45 h) for radiation oncologists, while for trainees the range was 16-90 (mean: 47 h; median: 45 h). The number of new cases seen in a year ranged from 1 to 1100 (mean: 275; median: 250). Most radiation oncologists considered themselves generalists with a preferred sub-specialty (43.3%) or specialists (41.9%), while a minority considered themselves as generalists (14.8%). There are a relatively large and increasing number of radiation oncologists and trainees compared with previous years. The excessive workloads evident in previous surveys appear to have diminished. However, further work is required on assessing the impact of ongoing feminisation and sub-specialisation. © 2011 The Authors. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.

  12. SU-D-201-07: A Survey of Radiation Oncology Residents’ Training and Preparedness to Lead Patient Safety Programs in Clinics

    International Nuclear Information System (INIS)

    Spraker, M; Nyflot, M; Ford, E; Kane, G; Zeng, J; Hendrickson, K

    2016-01-01

    Purpose: Safety and quality has garnered increased attention in radiation oncology, and physicians and physicists are ideal leaders of clinical patient safety programs. However, it is not clear whether residency programs incorporate formal patient safety training and adequately equip residents to assume this leadership role. A national survey was conducted to evaluate medical and physics residents’ exposure to safety topics and their confidence with the skills required to lead clinical safety programs. Methods: Radiation oncology residents were identified in collaboration with ARRO and AAPM. The survey was released in February 2016 via email using REDCap. This included questions about exposure to safety topics, confidence leading safety programs, and interest in training opportunities (i.e. workshops). Residents rated their exposure, skills, and confidence on 4 or 5-point scales. Medical and physics residents responses were compared using chi-square tests. Results: Responses were collected from 56 of 248 (22%) physics and 139 of 690 (20%) medical residents. More than two thirds of all residents had no or only informal exposure to incident learning systems (ILS), root cause analysis (RCA), failure mode and effects analysis (FMEA), and the concept of human factors engineering (HFE). Likewise, 63% of residents had not heard of RO-ILS. Response distributions were similar, however more physics residents had formal exposure to FMEA (p<0.0001) and felt they were adequately trained to lead FMEAs in clinic (p<0.001) than medical residents. Only 36% of residents felt their patient safety training was adequate, and 58% felt more training would benefit their education. Conclusion: These results demonstrate that, despite increasing desire for patient safety training, medical and physics residents’ exposure to relevant concepts is low. Physics residents had more exposure to FMEA than medical residents, and were more confident in leading FMEA. This suggests that increasing

  13. SU-D-201-07: A Survey of Radiation Oncology Residents’ Training and Preparedness to Lead Patient Safety Programs in Clinics

    Energy Technology Data Exchange (ETDEWEB)

    Spraker, M; Nyflot, M; Ford, E; Kane, G; Zeng, J; Hendrickson, K [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: Safety and quality has garnered increased attention in radiation oncology, and physicians and physicists are ideal leaders of clinical patient safety programs. However, it is not clear whether residency programs incorporate formal patient safety training and adequately equip residents to assume this leadership role. A national survey was conducted to evaluate medical and physics residents’ exposure to safety topics and their confidence with the skills required to lead clinical safety programs. Methods: Radiation oncology residents were identified in collaboration with ARRO and AAPM. The survey was released in February 2016 via email using REDCap. This included questions about exposure to safety topics, confidence leading safety programs, and interest in training opportunities (i.e. workshops). Residents rated their exposure, skills, and confidence on 4 or 5-point scales. Medical and physics residents responses were compared using chi-square tests. Results: Responses were collected from 56 of 248 (22%) physics and 139 of 690 (20%) medical residents. More than two thirds of all residents had no or only informal exposure to incident learning systems (ILS), root cause analysis (RCA), failure mode and effects analysis (FMEA), and the concept of human factors engineering (HFE). Likewise, 63% of residents had not heard of RO-ILS. Response distributions were similar, however more physics residents had formal exposure to FMEA (p<0.0001) and felt they were adequately trained to lead FMEAs in clinic (p<0.001) than medical residents. Only 36% of residents felt their patient safety training was adequate, and 58% felt more training would benefit their education. Conclusion: These results demonstrate that, despite increasing desire for patient safety training, medical and physics residents’ exposure to relevant concepts is low. Physics residents had more exposure to FMEA than medical residents, and were more confident in leading FMEA. This suggests that increasing

  14. A local-area-network based radiation oncology microcomputer system

    International Nuclear Information System (INIS)

    Chu, W.K.; Taylor, T.K.; Kumar, P.P.; Imray, T.J.

    1985-01-01

    The application of computerized technology in the medical specialty of radiation oncology has gained wide acceptance in the past decade. Recognizing that most radiation oncology department personnel are familiar with computer operations and terminology, it appears reasonable to attempt to expand the computer's applications to other departmental activities, such as scheduling, record keeping, billing, treatment regimen and status, etc. Instead of sharing the processing capability available on the existent treatment minicomputer, the radiation oncology computer system is based upon a microcomputer local area network (LAN). The system was conceptualized in 1984 and completed in March 1985. This article outlines the LAN-based radiation oncology computer system

  15. Establishment of Database System for Radiation Oncology

    International Nuclear Information System (INIS)

    Kim, Dae Sup; Lee, Chang Ju; Yoo, Soon Mi; Kim, Jong Min; Lee, Woo Seok; Kang, Tae Young; Back, Geum Mun; Hong, Dong Ki; Kwon, Kyung Tae

    2008-01-01

    To enlarge the efficiency of operation and establish a constituency for development of new radiotherapy treatment through database which is established by arranging and indexing radiotherapy related affairs in well organized manner to have easy access by the user. In this study, Access program provided by Microsoft (MS Office Access) was used to operate the data base. The data of radiation oncology was distinguished by a business logs and maintenance expenditure in addition to stock management of accessories with respect to affairs and machinery management. Data for education and research was distinguished by education material for department duties, user manual and related thesis depending upon its property. Registration of data was designed to have input form according to its subject and the information of data was designed to be inspected by making a report. Number of machine failure in addition to its respective repairing hours from machine maintenance expenditure in a period of January 2008 to April 2009 was analyzed with the result of initial system usage and one year after the usage. Radiation oncology database system was accomplished by distinguishing work related and research related criteria. The data are arranged and collected according to its subjects and classes, and can be accessed by searching the required data through referring the descriptions from each criteria. 32.3% of total average time was reduced on analyzing repairing hours by acquiring number of machine failure in addition to its type in a period of January 2008 to April 2009 through machine maintenance expenditure. On distinguishing and indexing present and past data upon its subjective criteria through the database system for radiation oncology, the use of information can be easily accessed to enlarge the efficiency of operation, and in further, can be a constituency for improvement of work process by acquiring various information required for new radiotherapy treatment in real time.

  16. Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process

    International Nuclear Information System (INIS)

    Krasin, M.J.; Hudson, M.M.; Kaste, S.C.

    2004-01-01

    The application of PET imaging to pediatric radiation oncology allows new approaches to targeting and selection of radiation dose based not only on the size of a tumor, but also on its metabolic activity. In order to integrate PET into treatment planning for radiation oncology, logistical issues regarding patient setup, image fusion, and target selection must be addressed. Through prospective study, the role of PET in pediatric malignancies will be established for diagnosis, treatment, and surveillance. To explore the potential role of PET and its incorporation into treatment planning in pediatric radiation oncology, an example case of pediatric Hodgkin's disease is discussed. (orig.)

  17. The role of PDGF in radiation oncology

    International Nuclear Information System (INIS)

    Li, Minglun; Jendrossek, Verena; Belka, Claus

    2007-01-01

    Platelet-derived growth factor (PDGF) was originally identified as a constituent of blood serum and subsequently purified from human platelets. PDGF ligand is a dimeric molecule consisting of two disulfide-bonded chains from A-, B-, C- and D-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors. PDGF is a potent mitogen and chemoattractant for mesenchymal cells and also a chemoattractant for neutrophils and monocytes. In radiation oncology, PDGF are important for several pathologic processes, including oncogenesis, angiogenesis and fibrogenesis. Autocrine activation of PDGF was observed and interpreted as an important mechanism involved in brain and other tumors. PDGF has been shown to be fundamental for the stability of normal blood vessel formation, and may be essential for the angiogenesis in tumor tissue. PDGF also plays an important role in the proliferative disease, such as atherosclerosis and radiation-induced fibrosis, regarding its proliferative stimulation of fibroblast cells. Moreover, PDGF was also shown to stimulate production of extracellular matrix proteins, which are mainly responsible for the irreversibility of these diseases. This review introduces the structural and functional properties of PDGF and PDGF receptors and discusses the role and mechanism of PDGF signaling in normal and tumor tissues under different conditions in radiation oncology

  18. RECQ1 A159C Polymorphism Is Associated With Overall Survival of Patients With Resected Pancreatic Cancer: A Replication Study in NRG Oncology Radiation Therapy Oncology Group 9704

    Energy Technology Data Exchange (ETDEWEB)

    Li, Donghui, E-mail: dli@mdanderson.org [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Moughan, Jennifer [NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania (United States); Crane, Christopher [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hoffman, John P. [Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Regine, William F. [Department of Radiation Oncology, University of Maryland, Baltimore, Maryland (United States); Abrams, Ross A. [Rush University Medical Center, Chicago, Illinois (United States); Safran, Howard [Brown University Oncology Group, Providence, Rhode Island (United States); Liu, Chang; Chang, Ping [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Freedman, Gary M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Winter, Kathryn A. [NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania (United States); Guha, Chandan [Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York (United States); Abbruzzese, James L. [Duke University Medical Center, Durham, North Carolina (United States)

    2016-03-01

    Purpose: To confirm whether a previously observed association between RECQ1 A159C variant and clinical outcome of resectable pancreatic cancer patients treated with preoperative chemoradiation is reproducible in another patient population prospectively treated with postoperative chemoradiation. Methods and Materials: Patients were selected, according to tissue availability, from eligible patients with resected pancreatic cancer who were enrolled on the NRG Oncology Radiation Therapy Oncology Group 9704 trial of 5-fluorouacil (5-FU)-based chemoradiation preceded and followed by 5-FU or gemcitabine. Deoxyribonucleic acid was extracted from paraffin-embedded tissue sections, and genotype was determined using the Taqman method. The correlation between genotype and overall survival was analyzed using a Kaplan-Meier plot, log-rank test, and multivariate Cox proportional hazards models. Results: In the 154 of the study's 451 eligible patients with evaluable tissue, genotype distribution followed Hardy-Weinberg equilibrium (ie, 37% had genotype AA, 43% AC, and 20% CC). The RECQ1 variant AC/CC genotype carriers were associated with being node positive compared with the AA carrier (P=.03). The median survival times (95% confidence interval [CI]) for AA, AC, and CC carriers were 20.6 (16.3-26.1), 18.8 (14.2-21.6), and 14.2 (10.3-21.0) months, respectively. On multivariate analysis, patients with the AC/CC genotypes were associated with worse survival than patients with the AA genotype (hazard ratio [HR] 1.54, 95% CI 1.07-2.23, P=.022). This result seemed slightly stronger for patients on the 5-FU arm (n=82) (HR 1.64, 95% CI 0.99-2.70, P=.055) than for patients on the gemcitabine arm (n=72, HR 1.46, 95% CI 0.81-2.63, P=.21). Conclusions: Results of this study suggest that the RECQ1 A159C genotype may be a prognostic or predictive factor for resectable pancreatic cancer patients who are treated with adjuvant 5-FU before and after 5-FU-based chemoradiation. Further study is

  19. Cancer Patients and Oncology Nursing: Perspectives of Oncology ...

    African Journals Online (AJOL)

    2017-10-26

    Oct 26, 2017 ... findings of this study, nurses declared that working with cancer patients increase burnout, they are ..... of working in oncology to entire work life was 75.8% for nurses in the study .... This professional balance is important for ...

  20. Radiation Oncology in Undergraduate Medical Education: A Literature Review

    International Nuclear Information System (INIS)

    Dennis, Kristopher E.B.; Duncan, Graeme

    2010-01-01

    Purpose: To review the published literature pertaining to radiation oncology in undergraduate medical education. Methods and Materials: Ovid MEDLINE, Ovid MEDLINE Daily Update and EMBASE databases were searched for the 11-year period of January 1, 1998, through the last week of March 2009. A medical librarian used an extensive list of indexed subject headings and text words. Results: The search returned 640 article references, but only seven contained significant information pertaining to teaching radiation oncology to medical undergraduates. One article described a comprehensive oncology curriculum including recommended radiation oncology teaching objectives and sample student evaluations, two described integrating radiation oncology teaching into a radiology rotation, two described multidisciplinary anatomy-based courses intended to reinforce principles of tumor biology and radiotherapy planning, one described an exercise designed to test clinical reasoning skills within radiation oncology cases, and one described a Web-based curriculum involving oncologic physics. Conclusions: To the authors' knowledge, this is the first review of the literature pertaining to teaching radiation oncology to medical undergraduates, and it demonstrates the paucity of published work in this area of medical education. Teaching radiation oncology should begin early in the undergraduate process, should be mandatory for all students, and should impart knowledge relevant to future general practitioners rather than detailed information relevant only to oncologists. Educators should make use of available model curricula and should integrate radiation oncology teaching into existing curricula or construct stand-alone oncology rotations where the principles of radiation oncology can be conveyed. Assessments of student knowledge and curriculum effectiveness are critical.

  1. Geriatrics and radiation oncology. Pt. 1. How to identify high-risk patients and basic treatment principles

    International Nuclear Information System (INIS)

    Fels, Franziska; Kraft, Johannes W.; Grabenbauer, Gerhard G.

    2010-01-01

    Background: Until the mid of this century, 33% of the Western population will be ≥ 65 years old. The percentage of patients being ≥ 80 years old with today 5% will triple until 2050. Therefore, radiation oncologists must be familiar with special geriatric issues to meet the increasing demand for multidisciplinary cooperation and to offer useful and individual treatment concepts. Patients and Methods: This review article will provide basic data on the definition, identification and treatment of geriatric cancer patients. Results: The geriatric patient is defined by typical multimorbidity (15 items) and by age-related increased vulnerability. Best initial identification of geriatric patients will be provided by assessment including the Barthel Index evaluating self-care and activity in daily life, by the Mini-Mental Status Test that will address cognitive pattern, and by the Timed 'Up and Go' Test for evaluation of mobility. As for chemotherapy, standard treatment was associated with increased toxicity, consequently, dose modifications and supportive treatment are of special importance. Conclusion: Geriatric cancer patients need to be identified by special assessment instruments. Due to increased toxicity following chemotherapy, supportive measures seem important. Radiation treatment as a noninvasive and outpatient-based treatment remains an important and preferable option. (orig.)

  2. Apps for Radiation Oncology. A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    J.J. Calero

    2017-02-01

    Full Text Available Introduction: Software applications executed on a smart-phone or mobile device (“Apps” are increasingly used by oncologists in their daily work. A comprehensive critical review was conducted on Apps specifically designed for Radiation Oncology, which aims to provide scientific support for these tools and to guide users in choosing the most suited to their needs. Material and methods: A systematic search was conducted in mobile platforms, iOS and Android, returning 157 Apps. Excluding those whose purpose did not match the scope of the study, 31 Apps were methodically analyzed by the following items: Objective Features, List of Functionalities, Consistency in Outcomes and Usability. Results: Apps are presented in groups of features, as Dose Calculators (7 Apps, Clinical Calculators (4, Tools for Staging (7, Multipurpose (7 and Others (6. Each App is presented with the list of attributes and a brief comment. A short summary is provided at the end of each group. Discussion and Recommendations: There are numerous Apps with useful tools at the disposal of radiation oncologists. The most advisable Apps do not match the more expensive. Three all-in-one apps seem advisable above all: RadOnc Reference (in English, Easy Oncology (in German and iOncoR (in Spanish. Others recommendations are suggested for specific tasks: dose calculators, treatment-decision and staging.

  3. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial.

    Science.gov (United States)

    Michalski, Jeff M; Moughan, Jennifer; Purdy, James; Bosch, Walter; Bruner, Deborah W; Bahary, Jean-Paul; Lau, Harold; Duclos, Marie; Parliament, Matthew; Morton, Gerard; Hamstra, Daniel; Seider, Michael; Lock, Michael I; Patel, Malti; Gay, Hiram; Vigneault, Eric; Winter, Kathryn; Sandler, Howard

    2018-03-15

    Optimizing radiation therapy techniques for localized prostate cancer can affect patient outcomes. Dose escalation improves biochemical control, but no prior trials were powered to detect overall survival (OS) differences. To determine whether radiation dose escalation to 79.2 Gy compared with 70.2 Gy would improve OS and other outcomes in prostate cancer. The NRG Oncology/RTOG 0126 randomized clinical trial randomized 1532 patients from 104 North American Radiation Therapy Oncology Group institutions March 2002 through August 2008. Men with stage cT1b to T2b, Gleason score 2 to 6, and prostate-specific antigen (PSA) level of 10 or greater and less than 20 or Gleason score of 7 and PSA less than 15 received 3-dimensional conformal radiation therapy or intensity-modulated radiation therapy to 79.2 Gy in 44 fractions or 70.2 Gy in 39 fractions. Time to OS measured from randomization to death due to any cause. American Society for Therapeutic Radiology and Oncology (ASTRO)/Phoenix definitions were used for biochemical failure. Acute (≤90 days of treatment start) and late radiation therapy toxic effects (>90 days) were graded using the National Cancer Institute Common Toxicity Criteria, version 2.0, and the RTOG/European Organisation for the Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme, respectively. With a median follow-up of 8.4 (range, 0.02-13.0) years in 1499 patients (median [range] age, 71 [33-87] years; 70% had PSA <10 ng/mL, 84% Gleason score of 7, 57% T1 disease), there was no difference in OS between the 751 men in the 79.2-Gy arm and the 748 men in the 70.2-Gy arm. The 8-year rates of OS were 76% with 79.2 Gy and 75% with 70.2 Gy (hazard ratio [HR], 1.00; 95% CI, 0.83-1.20; P = .98). The 8-year cumulative rates of distant metastases were 4% for the 79.2-Gy arm and 6% for the 70.2-Gy arm (HR, 0.65; 95% CI, 0.42-1.01; P = .05). The ASTRO and Phoenix biochemical failure rates at 5 and 8 years were 31% and 20% with 79.2 Gy

  4. Implementation of nanoparticles in therapeutic radiation oncology

    Science.gov (United States)

    Beeler, Erik; Gabani, Prashant; Singh, Om V.

    2017-05-01

    Development and progress of cancer is a very complex disease process to comprehend because of the multiple changes in cellular physiology, pathology, and pathophysiology resulting from the numerous genetic changes from which cancer originates. As a result, most common treatments are not directed at the molecular level but rather at the tissue level. While personalized care is becoming an increasingly aim, the most common cancer treatments are restricted to chemotherapy, radiation, and surgery, each of which has a high likelihood of resulting in rather severe adverse side effects. For example, currently used radiation therapy does not discriminate between normal and cancerous cells and greatly relies on the external targeting of the radiation beams to specific cells and organs. Because of this, there is an immediate need for the development of new and innovative technologies that help to differentiate tumor cells and micrometastases from normal cells and facilitate the complete destruction of those cells. Recent advancements in nanoscience and nanotechnology have paved a way for the development of nanoparticles (NPs) as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery, and improve the therapeutic index of radiation and tumor response to the treatment. The application of NPs in radiation therapy has aimed to improve outcomes in radiation therapy by increasing therapeutic effect in tumors and reducing toxicity on normal tissues. Because NPs possess unique properties, such as preferential accumulation in tumors and minimal uptake in normal tissues, it makes them ideal for the delivery of radiotherapy. This review provides an overview of the recent development of NPs for carrying and delivering therapeutic radioisotopes for systemic radiation treatment for a variety of cancers in radiation oncology.

  5. DEGRO 2012. 18. annual congress of the German Radiation Oncology Society. Radiation oncology - medical physics - radiation biology. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The volume includes the abstracts of the contributions and posters of the 18th annual congress of the German Radiation Oncology Society DEGRO 2012. The lectures covered the following topics: Radiation physics, therapy planning; gastrointestinal tumors; radiation biology; stererotactic radiotherapy/breast carcinomas; quality management - life quality; head-neck-tumors/lymphomas; NSCL (non-small cell lung carcinomas); pelvic tumors; brain tumors/pediatric tumors. The poster sessions included the following topics: quality management, recurrent tumor therapy; brachytherapy; breast carcinomas and gynecological tumors; pelvis tumors; brain tumors; stereotactic radiotherapy; head-neck carcinomas; NSCL, proton therapy, supporting therapy; clinical radio-oncology, radiation biology, IGRT/IMRT.

  6. Health Economics in Radiation Oncology: Introducing the ESTRO HERO project

    International Nuclear Information System (INIS)

    Lievens, Yolande; Grau, Cai

    2012-01-01

    New evidence based regimens and novel high precision technology have reinforced the important role of radiotherapy in the management of cancer. Current data estimate that more than 50% of all cancer patients would benefit from radiotherapy during the course of their disease. Within recent years, the radiotherapy community has become more than conscious of the ever-increasing necessity to come up with objective data to endorse the crucial role and position of radiation therapy within the rapidly changing global oncology landscape. In an era of ever expanding health care costs, proven safety and effectiveness is not sufficient anymore to obtain funding, objective data about cost and cost-effectiveness are nowadays additionally requested. It is in this context that ESTRO is launching the HERO-project (Health Economics in Radiation Oncology), with the overall aim to develop a knowledge base and a model for health economic evaluation of radiation treatments at the European level. To accomplish these objectives, the HERO project will address needs, accessibility, cost and cost-effectiveness of radiotherapy. The results will raise the profile of radiotherapy in the European cancer management context and help countries prioritizing radiotherapy as a highly cost-effective treatment strategy. This article describes the different steps and aims within the HERO-project, starting from evidence on the role of radiotherapy within the global oncology landscape and highlighting weaknesses that may undermine this position.

  7. Health economics in radiation oncology: introducing the ESTRO HERO project.

    Science.gov (United States)

    Lievens, Yolande; Grau, Cai

    2012-04-01

    New evidence based regimens and novel high precision technology have reinforced the important role of radiotherapy in the management of cancer. Current data estimate that more than 50% of all cancer patients would benefit from radiotherapy during the course of their disease. Within recent years, the radiotherapy community has become more than conscious of the ever-increasing necessity to come up with objective data to endorse the crucial role and position of radiation therapy within the rapidly changing global oncology landscape. In an era of ever expanding health care costs, proven safety and effectiveness is not sufficient anymore to obtain funding, objective data about cost and cost-effectiveness are nowadays additionally requested. It is in this context that ESTRO is launching the HERO-project (Health Economics in Radiation Oncology), with the overall aim to develop a knowledge base and a model for health economic evaluation of radiation treatments at the European level. To accomplish these objectives, the HERO project will address needs, accessibility, cost and cost-effectiveness of radiotherapy. The results will raise the profile of radiotherapy in the European cancer management context and help countries prioritizing radiotherapy as a highly cost-effective treatment strategy. This article describes the different steps and aims within the HERO-project, starting from evidence on the role of radiotherapy within the global oncology landscape and highlighting weaknesses that may undermine this position. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. The radiation oncology workforce: A focus on medical dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Gregg F., E-mail: grobinson@medicaldosimetry.org [American Association of Medical Dosimetrists, Herndon, VA (United States); Mobile, Katherine [American Association of Medical Dosimetrists, Herndon, VA (United States); Yu, Yan [Thomas Jefferson University, Philadelphia, PA (United States)

    2014-07-01

    The 2012 Radiation Oncology Workforce survey was conducted to assess the current state of the entire workforce, predict its future needs and concerns, and evaluate quality improvement and safety within the field. This article describes the dosimetrist segment results. The American Society for Radiation Oncology (ASTRO) Workforce Subcommittee, in conjunction with other specialty societies, conducted an online survey targeting all segments of the radiation oncology treatment team. The data from the dosimetrist respondents are presented in this article. Of the 2573 dosimetrists who were surveyed, 890 responded, which resulted in a 35% segment response rate. Most respondents were women (67%), whereas only a third were men (33%). More than half of the medical dosimetrists were older than 45 years (69.2%), whereas the 45 to 54 years age group represented the highest percentage of respondents (37%). Most medical dosimetrists stated that their workload was appropriate (52%), with respondents working a reported average of 41.7 ± 4 hours per week. Overall, 86% of medical dosimetrists indicated that they were satisfied with their career, and 69% were satisfied in their current position. Overall, 61% of respondents felt that there was an oversupply of medical dosimetrists in the field, 14% reported that supply and demand was balanced, and the remaining 25% felt that there was an undersupply. The medical dosimetrists' greatest concerns included documentation/paperwork (78%), uninsured patients (80%), and insufficient reimbursement rates (87%). This survey provided an insight into the dosimetrist perspective of the radiation oncology workforce. Though an overwhelming majority has conveyed satisfaction concerning their career, the study allowed a spotlight to be placed on the profession's current concerns, such as insufficient reimbursement rates and possible oversupply of dosimetrists within the field.

  9. The radiation oncology workforce: A focus on medical dosimetry

    International Nuclear Information System (INIS)

    Robinson, Gregg F.; Mobile, Katherine; Yu, Yan

    2014-01-01

    The 2012 Radiation Oncology Workforce survey was conducted to assess the current state of the entire workforce, predict its future needs and concerns, and evaluate quality improvement and safety within the field. This article describes the dosimetrist segment results. The American Society for Radiation Oncology (ASTRO) Workforce Subcommittee, in conjunction with other specialty societies, conducted an online survey targeting all segments of the radiation oncology treatment team. The data from the dosimetrist respondents are presented in this article. Of the 2573 dosimetrists who were surveyed, 890 responded, which resulted in a 35% segment response rate. Most respondents were women (67%), whereas only a third were men (33%). More than half of the medical dosimetrists were older than 45 years (69.2%), whereas the 45 to 54 years age group represented the highest percentage of respondents (37%). Most medical dosimetrists stated that their workload was appropriate (52%), with respondents working a reported average of 41.7 ± 4 hours per week. Overall, 86% of medical dosimetrists indicated that they were satisfied with their career, and 69% were satisfied in their current position. Overall, 61% of respondents felt that there was an oversupply of medical dosimetrists in the field, 14% reported that supply and demand was balanced, and the remaining 25% felt that there was an undersupply. The medical dosimetrists' greatest concerns included documentation/paperwork (78%), uninsured patients (80%), and insufficient reimbursement rates (87%). This survey provided an insight into the dosimetrist perspective of the radiation oncology workforce. Though an overwhelming majority has conveyed satisfaction concerning their career, the study allowed a spotlight to be placed on the profession's current concerns, such as insufficient reimbursement rates and possible oversupply of dosimetrists within the field

  10. Decision making in radiation oncology. Vol. 1

    International Nuclear Information System (INIS)

    Lu, Jiade J.; Brady, Luther W.

    2011-01-01

    Decision Making in Radiation Oncology is a reference book designed to enable radiation oncologists, including those in training, to make diagnostic and treatment decisions effectively and efficiently. The orientation of this groundbreaking publication is entirely practical, in that the focus is on issues relating to cancer management. The design has been carefully chosen based on the belief that ''a picture is worth a thousand words'': Knowledge is conveyed through an illustrative approach using algorithms, schemas, graphics, and tables. Text is kept to a minimum, reducing the effort involved in reading while enhancing understanding. Detailed guidelines are provided for multidisciplinary cancer management as well as for radiation therapy techniques. In addition to the attention-riveting algorithms for diagnosis and treatment, strategies for the management of disease at individual stages are detailed for all the commonly diagnosed malignancies. Detailed attention is given to the core evidence that has shaped the current treatment standards and advanced radiation therapy techniques. Clinical trials that have yielded ''gold standard'' treatment and their results are documented in the schemas. Moreover, radiation techniques, including treatment planning and delivery, are also presented in an illustrative way. (orig.)

  11. Decision making in radiation oncology. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiade J. [National Univ. of Singapore (Singapore). Dept. of Radiation Oncology; Brady, Luther W. (eds.) [Drexel Univ., Philadelphia, PA (United States). Dept. of Radiation Oncology

    2011-10-15

    Decision Making in Radiation Oncology is a reference book designed to enable radiation oncologists, including those in training, to make diagnostic and treatment decisions effectively and efficiently. The orientation of this groundbreaking publication is entirely practical, in that the focus is on issues relating to cancer management. The design has been carefully chosen based on the belief that ''a picture is worth a thousand words'': Knowledge is conveyed through an illustrative approach using algorithms, schemas, graphics, and tables. Text is kept to a minimum, reducing the effort involved in reading while enhancing understanding. Detailed guidelines are provided for multidisciplinary cancer management as well as for radiation therapy techniques. In addition to the attention-riveting algorithms for diagnosis and treatment, strategies for the management of disease at individual stages are detailed for all the commonly diagnosed malignancies. Detailed attention is given to the core evidence that has shaped the current treatment standards and advanced radiation therapy techniques. Clinical trials that have yielded ''gold standard'' treatment and their results are documented in the schemas. Moreover, radiation techniques, including treatment planning and delivery, are also presented in an illustrative way. (orig.)

  12. Present status and future aspects of radiation oncology in Korea

    International Nuclear Information System (INIS)

    Huh, Seung Jae

    2006-01-01

    An analysis of the infrastructure for radiotherapy in Korea was performed to establish a baseline plan in 2006 for future development. The data were obtained from 61 radiotherapy centers. The survey covered then number of radiotherapy centers, major equipment and personnel. Centers were classified into technical level groups according to the IAEA criteria. 28,789 new patients were treated with radiation therapy in 2004. There were 104 megavoltage devices in 61 institutions, which included 96 linear accelerators, two Cobalt 60 units, three Tomotherapy units, two Cyberknife units and one proton accelerator in 2006. Thirty-five high dose rate remote after-loading systems and 20 CT-simulators were surveyed. Personnel included 132 radiation oncologists, 50 radiation oncology residents, 64 medical physicists, 130 nurses and 369 radiation therapy technologists. All of the facilities employed treatment-planning computers and simulators, among these thirty-two percent (20 facilities) used a CT-simulator. Sixty-six percent (40 facilities) used a PET/CT scanner, and 35% (22 facilities) had the capacity to implement intensity modulated radiation therapy. Twenty-five facilities (41%) were included in technical level 3 group (having one of intensity modulated radiotherapy, stereotactic radiotherapy or intra-operative radiotherapy system). Radiation oncology in Korea evolved greatly in both quality and quantity recently and demand for radiotherapy in Korea is increasing steadily. The information in this analysis represents important data to develop the future planning of equipment and human resources

  13. The role of imaging in pediatric radiation oncology

    International Nuclear Information System (INIS)

    Stowe, S.M.

    1985-01-01

    The pediatric radiation oncologist is involved in treating a different spectrum of tumors that is generally seen by the adult radiation oncologist. More than one-third of pediatric patients with malignancies suffer from acute lymphocytic leukemia and lymphomas. Approximately one-quarter of the patients have primary tumors of the brain and central nervous system, while the remaining patients mostly present with mesenchymal sarcomas as opposed to the carcinomas more generally seen in adult practice. Pediatric tumors are frequently deep seated and therefore more difficult to evaluate by physical examination that the typical adult epithelial tumors. In the following sections, the various tumor types and locations are discussed with reference to the specific imaging requirements for each of the groups. This is preceded by a brief introduction to modern radiation oncology in order to clarify the role of these modalities

  14. American Society for Radiation Oncology (ASTRO) 2012 Workforce Study: The Radiation Oncologists' and Residents' Perspectives

    International Nuclear Information System (INIS)

    Pohar, Surjeet; Fung, Claire Y.; Hopkins, Shane; Miller, Robert; Azawi, Samar; Arnone, Anna; Patton, Caroline; Olsen, Christine

    2013-01-01

    Purpose: The American Society for Radiation Oncology (ASTRO) conducted the 2012 Radiation Oncology Workforce Survey to obtain an up-to-date picture of the workforce, assess its needs and concerns, and identify quality and safety improvement opportunities. The results pertaining to radiation oncologists (ROs) and residents (RORs) are presented here. Methods: The ASTRO Workforce Subcommittee, in collaboration with allied radiation oncology professional societies, conducted a survey study in early 2012. An online survey questionnaire was sent to all segments of the radiation oncology workforce. Respondents who were actively working were included in the analysis. This manuscript describes the data for ROs and RORs. Results: A total of 3618 ROs and 568 RORs were surveyed. The response rate for both groups was 29%, with 1047 RO and 165 ROR responses. Among ROs, the 2 most common racial groups were white (80%) and Asian (15%), and the male-to-female ratio was 2.85 (74% male). The median age of ROs was 51. ROs averaged 253.4 new patient consults in a year and 22.9 on-treatment patients. More than 86% of ROs reported being satisfied or very satisfied overall with their career. Close to half of ROs reported having burnout feelings. There was a trend toward more frequent burnout feelings with increasing numbers of new patient consults. ROs' top concerns were related to documentation, reimbursement, and patients' health insurance coverage. Ninety-five percent of ROs felt confident when implementing new technology. Fifty-one percent of ROs thought that the supply of ROs was balanced with demand, and 33% perceived an oversupply. Conclusions: This study provides a current snapshot of the 2012 radiation oncology physician workforce. There was a predominance of whites and men. Job satisfaction level was high. However a substantial fraction of ROs reported burnout feelings. Perceptions about supply and demand balance were mixed. ROs top concerns reflect areas of attention for the

  15. Radiation protection in radio-oncology

    International Nuclear Information System (INIS)

    Hartz, Juliane Marie; Joost, Sophie; Hildebrandt, Guido

    2017-01-01

    Based on the high technical status of radiation protection the occupational exposure of radiological personnel is no more of predominant importance. No defined dose limits exist for patients in the frame of therapeutic applications in contrary to the radiological personnel. As a consequence walk-downs radiotherapeutic institutions twice the year have been initiated in order to guarantee a maximum of radiation protection for patient's treatment. An actualization of radiation protection knowledge of the radiological personnel is required.

  16. 2009 Canadian Radiation Oncology Resident Survey

    Energy Technology Data Exchange (ETDEWEB)

    Debenham, Brock, E-mail: debenham@ualberta.net [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada); Banerjee, Robyn [Department of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Fairchild, Alysa; Dundas, George [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada); Trotter, Theresa [Department of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Yee, Don [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada)

    2012-03-15

    Purpose: Statistics from the Canadian post-MD education registry show that numbers of Canadian radiation oncology (RO) trainees have risen from 62 in 1999 to approximately 150 per year between 2003 and 2009, contributing to the current perceived downturn in employment opportunities for radiation oncologists in Canada. When last surveyed in 2003, Canadian RO residents identified job availability as their main concern. Our objective was to survey current Canadian RO residents on their training and career plans. Methods and Materials: Trainees from the 13 Canadian residency programs using the national matching service were sought. Potential respondents were identified through individual program directors or chief resident and were e-mailed a secure link to an online survey. Descriptive statistics were used to report responses. Results: The eligible response rate was 53% (83/156). Similar to the 2003 survey, respondents generally expressed high satisfaction with their programs and specialty. The most frequently expressed perceived weakness in their training differed from 2003, with 46.5% of current respondents feeling unprepared to enter the job market. 72% plan on pursuing a postresidency fellowship. Most respondents intend to practice in Canada. Fewer than 20% of respondents believe that there is a strong demand for radiation oncologists in Canada. Conclusions: Respondents to the current survey expressed significant satisfaction with their career choice and training program. However, differences exist compared with the 2003 survey, including the current perceived lack of demand for radiation oncologists in Canada.

  17. 2009 Canadian Radiation Oncology Resident Survey

    International Nuclear Information System (INIS)

    Debenham, Brock; Banerjee, Robyn; Fairchild, Alysa; Dundas, George; Trotter, Theresa; Yee, Don

    2012-01-01

    Purpose: Statistics from the Canadian post-MD education registry show that numbers of Canadian radiation oncology (RO) trainees have risen from 62 in 1999 to approximately 150 per year between 2003 and 2009, contributing to the current perceived downturn in employment opportunities for radiation oncologists in Canada. When last surveyed in 2003, Canadian RO residents identified job availability as their main concern. Our objective was to survey current Canadian RO residents on their training and career plans. Methods and Materials: Trainees from the 13 Canadian residency programs using the national matching service were sought. Potential respondents were identified through individual program directors or chief resident and were e-mailed a secure link to an online survey. Descriptive statistics were used to report responses. Results: The eligible response rate was 53% (83/156). Similar to the 2003 survey, respondents generally expressed high satisfaction with their programs and specialty. The most frequently expressed perceived weakness in their training differed from 2003, with 46.5% of current respondents feeling unprepared to enter the job market. 72% plan on pursuing a postresidency fellowship. Most respondents intend to practice in Canada. Fewer than 20% of respondents believe that there is a strong demand for radiation oncologists in Canada. Conclusions: Respondents to the current survey expressed significant satisfaction with their career choice and training program. However, differences exist compared with the 2003 survey, including the current perceived lack of demand for radiation oncologists in Canada.

  18. Radiation oncology training in the United States: report from the Radiation Oncology Resident Training Working Group organized by the Society of Chairman of Academic Radiation Oncology Programs (SCAROP)

    International Nuclear Information System (INIS)

    1999-01-01

    Purpose: In response to the major changes occurring in healthcare, medical education, and cancer research, SCAROP addressed issues related to post-graduate education that could enhance existing programs and complement the present system. Methods and Materials: SCAROP brought together a Working Group with a broad range of representatives organized in subcommittees to address: training, curriculum, and model building. Results: The Working Group emphasized the importance of training physicians with the necessary clinical, scientific, and analytical skills, and the need to provide expert radiation oncology services to patients throughout the United States. Opportunities currently exist for graduates in academic medicine, although there may be limited time and financial resources available to support academic pursuits. Conclusions: In the face of diminishing resources for training and education and the increased scope of knowledge required, a number of models for resident training are considered that can provide flexibility to complement the present system. This report is intended to initiate dialogue among the organizations responsible for radiation oncology resident education so that resident training can continually evolve to meet the needs of cancer patients and take advantage of opportunities for progress through innovative cancer care and research

  19. Regional cancer centre demonstrates voluntary conformity with the national Radiation Oncology Practice Standards.

    Science.gov (United States)

    Manley, Stephen; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P

    2015-06-01

    Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients.

  20. Regional cancer centre demonstrates voluntary conformity with the national Radiation Oncology Practice Standards

    Energy Technology Data Exchange (ETDEWEB)

    Manley, Stephen, E-mail: stephen.manley@ncahs.health.nsw.gov.au; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P [North Coast Cancer Institute, Lismore, New South Wales (Australia)

    2015-06-15

    Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients.

  1. Regional cancer centre demonstrates voluntary conformity with the national Radiation Oncology Practice Standards

    International Nuclear Information System (INIS)

    Manley, Stephen; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P

    2015-01-01

    Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients

  2. The Growth of Academic Radiation Oncology: A Survey of Endowed Professorships in Radiation Oncology

    International Nuclear Information System (INIS)

    Wasserman, Todd H.; Smith, Steven M.; Powell, Simon N.

    2009-01-01

    Purpose: The academic health of a medical specialty can be gauged by the level of university support through endowed professorships. Methods and Materials: We conducted a survey of the 86 academic programs in radiation oncology to determine the current status of endowed chairs in this discipline. Results: Over the past decade, the number of endowed chairs has more than doubled, and it has almost tripled over the past 13 years. The number of programs with at least one chair has increased from 31% to 65%. Conclusions: Coupled with other indicators of academic growth, such as the proportion of graduating residents seeking academic positions, there has been clear and sustained growth in academic radiation oncology.

  3. Information technology resource management in radiation oncology.

    Science.gov (United States)

    Siochi, R Alfredo; Balter, Peter; Bloch, Charles D; Bushe, Harry S; Mayo, Charles S; Curran, Bruce H; Feng, Wenzheng; Kagadis, George C; Kirby, Thomas H; Stern, Robin L

    2009-09-02

    The ever-increasing data demands in a radiation oncology (RO) clinic require medical physicists to have a clearer understanding of the information technology (IT) resource management issues. Clear lines of collaboration and communication among administrators, medical physicists, IT staff, equipment service engineers and vendors need to be established. In order to develop a better understanding of the clinical needs and responsibilities of these various groups, an overview of the role of IT in RO is provided. This is followed by a list of IT related tasks and a resource map. The skill set and knowledge required to implement these tasks are described for the various RO professionals. Finally, various models for assessing one's IT resource needs are described. The exposition of ideas in this white paper is intended to be broad, in order to raise the level of awareness of the RO community; the details behind these concepts will not be given here and are best left to future task group reports.

  4. Radical radiotherapy for early glottic cancer: Results in a series of 1087 patients from two Italian radiation oncology centers. I. The case of T1N0 disease

    International Nuclear Information System (INIS)

    Cellai, Enrico; Frata, Paolo; Magrini, Stefano M.; Paiar, Fabiola; Barca, Raffaella; Fondelli, Simona; Polli, Caterina; Livi, Lorenzo; Bonetti, Bartolomea; Vitali, Elisabetta; De Stefani, Agostina; Buglione, Michela; Biti, Gianpaolo

    2005-01-01

    Purpose: To retrospectively evaluate local control rates, late damage incidence, functional results, and second tumor occurrence according to the different patient, tumor, and treatment features in a large bi-institutional series of T1 glottic cancer. Methods and Materials: A total of 831 T1 glottic cancer cases treated consecutively with radical intent at the Florence University Radiation Oncology Department (FLO) and at the Radiation Oncology Department of University of Brescia-Istituto del Radio 'O. Alberti' (BS) were studied. Actuarial cumulative local control probability (LC), disease-specific (DSS), and overall survival (OS) rates have been calculated and compared in the different clinical and therapeutic subgroups with both univariate and multivariate analysis. Types of relapse and their surgical salvage have been evaluated, along with the functional results of treatment. Late damage incidence and second tumor cumulative probability (STP) have been also calculated. Results: In the entire series, 3-, 5-, and 10-year OS was equal to 86%, 77%, and 57%, respectively. Corresponding values for LC were 86%, 84%, and 83% and for DSS 96%, 95%, and 93%, taking into account surgical salvage of relapsed cases. Eighty-seven percent of the patients were cured with function preserved. Main determinants of a worse LC at univariate analysis were: male gender, earlier treatment period, larger tumor extent, anterior commissure involvement, and the use of Cobalt 60. At multivariate analysis, only gender, tumor extent, anterior commissure involvement, and beam type retained statistical significance. Higher total doses and larger field sizes are significantly related (logistic regression) with a higher late damage incidence. Scatterplot analysis of various combinations of field dimensions and total dose showed that field dimensions >35 and 2 , together with doses of >65 Gy, offer the best local control results together with an acceptably low late damage incidence. Twenty-year STP

  5. Radical radiotherapy for early glottic cancer: Results in a series of 1087 patients from two Italian radiation oncology centers. II. The case of T2N0 disease

    International Nuclear Information System (INIS)

    Frata, Paolo; Cellai, Enrico; Magrini, Stefano M.; Bonetti, Bartolomea; Vitali, Elisabetta; Tonoli, Sandro; Buglione, Michela; Paiar, Fabiola; Barca, Raffaella; Fondelli, Simona; Polli, Caterina; Livi, Lorenzo; Biti, Gianpaolo

    2005-01-01

    Purpose: To retrospectively evaluate local control rates, late damage incidence, functional results, and second-tumor occurrence according to the different patient, tumor, and treatment features in a large bi-institutional series of T2 glottic cancer. Methods and Materials: A total of 256 T2 glottic cancer cases treated consecutively with radical intent at the Florence University Radiation Oncology Department (FLO) and at the Radiation Oncology Department of University of Brescia, Istituto del Radio 'O. Alberti' (BS) were studied. Cumulative probability of local control (LC), disease-specific survival (DSS), and overall survival (OS) rates were calculated and compared in the different clinical and therapeutic subgroups by both univariate and multivariate analysis. Types of relapse and their surgical salvage were evaluated, along with the functional results of treatment. Late-damage incidence and second-tumor cumulative probability (STP) were also calculated. Results: In the entire series, 3-year, 5-year, and 10-year OS rates were, respectively, 73%, 59%, and 37%. Corresponding values for cumulative LC probability were 73%, 73%, and 70% and for DSS, 89%, 86%, and 85%, taking into account surgical salvage of relapsed cases. Seventy-three percent of the patients were cured with function preserved. Main determinants of a worse LC at univariate analysis were larger tumor extent and impaired cord mobility. At multivariate analysis, the same factors retained statistical significance. Twenty-year STP was 23%, with second-tumor deaths less frequent than larynx cancer deaths (20 of 256 vs. 30 of 256). Incidence of late damage was higher in the first decade of accrual (22%) than in the last decade (10%, p = 0.03); the same was true for severe late damage (9% vs. 1.8%). Conclusion: Present-day radical radiotherapy can be considered a standard treatment for T2 glottic cancer. Better results are obtained in patients with less extended disease. Late damage is relatively

  6. Clinical Practice Patterns of Radiotherapy in Patients with Hepatocellular Carcinoma: A Korean Radiation Oncology Group Study (KROG 14-07)

    Science.gov (United States)

    Cha, Hyejung; Park, Hee Chul; Yu, Jeong Il; Kim, Tae Hyun; Nam, Taek-Keun; Yoon, Sang Min; Yoon, Won Sup; Kim, Jun Won; Kim, Mi Sook; Jang, Hong Seok; Choi, Youngmin; Kim, Jin Hee; Kay, Chul Seung; Jung, Inkyung; Seong, Jinsil

    2017-01-01

    Purpose The aim of this study was to examine patterns of radiotherapy (RT) in Korean patients with hepatocellular carcinoma (HCC) according to the evolving guideline for HCC established by the Korean Liver Cancer Study Group-National Cancer Center (KLCSG-NCC). Materials and Methods We reviewed 765 patients with HCC who were treated with RT between January 2011 and December 2012 in 12 institutions. Results The median follow-up period was 13.3 months (range, 0.2 to 51.7 months). Compared with previous data between 2004 and 2005, the use of RT as a first treatment has increased (9.0% vs. 40.8%). Increased application of intensity-modulated RT resulted in an increase in radiation dose (fractional dose, 1.8 Gy vs. 2.5 Gy; biologically effective dose, 53.1 Gy10 vs. 56.3 Gy10). Median overall survival was 16.2 months, which is longer than that reported in previous data (12 months). In subgroup analysis, treatments were significantly different according to stage (p < 0.001). Stereotactic body RT was used in patients with early HCC, and most patients with advanced stage were treated with three-dimensional conformal RT. Conclusion Based on the evolving KLCSG-NCC practice guideline for HCC, clinical practice patterns of RT have changed. Although RT is still used mainly in advanced HCC, the number of patients with good performance status who were treated with RT as a first treatment has increased. This change in practice patterns could result in improvement in overall survival. PMID:27338036

  7. Cancer Patients and Oncology Nursing: Perspectives of Oncology ...

    African Journals Online (AJOL)

    Background and Aim: Burnout and exhaustion is a frequent problem in oncology nursing. The aim of this study is to evaluate the aspects of oncology nurses about their profession in order to enhance the standards of oncology nursing. Materials and Methods: This survey was conducted with 70 oncology nurses working at ...

  8. Gender, Race, and Survival: A Study in Non-Small-Cell Lung Cancer Brain Metastases Patients Utilizing the Radiation Therapy Oncology Group Recursive Partitioning Analysis Classification

    International Nuclear Information System (INIS)

    Videtic, Gregory M.M.; Reddy, Chandana A.; Chao, Samuel T.; Rice, Thomas W.; Adelstein, David J.; Barnett, Gene H.; Mekhail, Tarek M.; Vogelbaum, Michael A.; Suh, John H.

    2009-01-01

    Purpose: To explore whether gender and race influence survival in non-small-cell lung cancer (NSCLC) in patients with brain metastases, using our large single-institution brain tumor database and the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) brain metastases classification. Methods and materials: A retrospective review of a single-institution brain metastasis database for the interval January 1982 to September 2004 yielded 835 NSCLC patients with brain metastases for analysis. Patient subsets based on combinations of gender, race, and RPA class were then analyzed for survival differences. Results: Median follow-up was 5.4 months (range, 0-122.9 months). There were 485 male patients (M) (58.4%) and 346 female patients (F) (41.6%). Of the 828 evaluable patients (99%), 143 (17%) were black/African American (B) and 685 (83%) were white/Caucasian (W). Median survival time (MST) from time of brain metastasis diagnosis for all patients was 5.8 months. Median survival time by gender (F vs. M) and race (W vs. B) was 6.3 months vs. 5.5 months (p = 0.013) and 6.0 months vs. 5.2 months (p = 0.08), respectively. For patients stratified by RPA class, gender, and race, MST significantly favored BFs over BMs in Class II: 11.2 months vs. 4.6 months (p = 0.021). On multivariable analysis, significant variables were gender (p = 0.041, relative risk [RR] 0.83) and RPA class (p < 0.0001, RR 0.28 for I vs. III; p < 0.0001, RR 0.51 for II vs. III) but not race. Conclusions: Gender significantly influences NSCLC brain metastasis survival. Race trended to significance in overall survival but was not significant on multivariable analysis. Multivariable analysis identified gender and RPA classification as significant variables with respect to survival.

  9. A Comparative Evaluation of Normal Tissue Doses for Patients Receiving Radiation Therapy for Hodgkin Lymphoma on the Childhood Cancer Survivor Study and Recent Children's Oncology Group Trials

    International Nuclear Information System (INIS)

    Zhou, Rachel; Ng, Angela; Constine, Louis S.; Stovall, Marilyn; Armstrong, Gregory T.; Neglia, Joseph P.; Friedman, Debra L.; Kelly, Kara; FitzGerald, Thomas J.; Hodgson, David C.

    2016-01-01

    Purpose: Survivors of pediatric Hodgkin lymphoma (HL) are recognized to have an increased risk of delayed adverse health outcomes related to radiation therapy (RT). However, the necessary latency required to observe these late effects means that the estimated risks apply to outdated treatments. We sought to compare the normal tissue dose received by children treated for HL and enrolled in the Childhood Cancer Survivor Study (CCSS) (diagnosed 1970-1986) with that of patients treated in recent Children's Oncology Group (COG) trials (enrolled 2002-2012). Methods and Materials: RT planning data were obtained for 50 HL survivors randomly sampled from the CCSS cohort and applied to computed tomography planning data sets to reconstruct the normal tissue dosimetry. For comparison, the normal tissue dosimetry data were obtained for all 191 patients with full computed tomography–based volumetric RT planning on COG protocols AHOD0031 and AHOD0831. Results: For early-stage patients, the mean female breast dose in the COG patients was on average 83.5% lower than that for CCSS patients, with an absolute reduction of 15.5 Gy. For advanced-stage patients, the mean breast dose was decreased on average by 70% (11.6 Gy average absolute dose reduction). The mean heart dose decreased on average by 22.9 Gy (68.6%) and 17.6 Gy (56.8%) for early- and advanced-stage patients, respectively. All dose comparisons for breast, heart, lung, and thyroid were significantly lower for patients in the COG trials than for the CCSS participants. Reductions in the prescribed dose were a major contributor to these dose reductions. Conclusions: These are the first data quantifying the significant reduction in the normal tissue dose using actual, rather than hypothetical, treatment plans for children with HL. These findings provide useful information when counseling families regarding the risks of contemporary RT.

  10. Palliative care and palliative radiation therapy education in radiation oncology: A survey of US radiation oncology program directors.

    Science.gov (United States)

    Wei, Randy L; Colbert, Lauren E; Jones, Joshua; Racsa, Margarita; Kane, Gabrielle; Lutz, Steve; Vapiwala, Neha; Dharmarajan, Kavita V

    The purpose of this study was to assess the state of palliative and supportive care (PSC) and palliative radiation therapy (RT) educational curricula in radiation oncology residency programs in the United States. We surveyed 87 program directors of radiation oncology residency programs in the United States between September 2015 and November 2015. An electronic survey on PSC and palliative RT education during residency was sent to all program directors. The survey consisted of questions on (1) perceived relevance of PSC and palliative RT to radiation oncology training, (2) formal didactic sessions on domains of PSC and palliative RT, (3) effective teaching formats for PSC and palliative RT education, and (4) perceived barriers for integrating PSC and palliative RT into the residency curriculum. A total of 57 responses (63%) was received. Most program directors agreed or strongly agreed that PSC (93%) and palliative radiation therapy (99%) are important competencies for radiation oncology residents and fellows; however, only 67% of residency programs had formal educational activities in principles and practice of PSC. Most programs had 1 or more hours of formal didactics on management of pain (67%), management of neuropathic pain (65%), and management of nausea and vomiting (63%); however, only 35%, 33%, and 30% had dedicated lectures on initial management of fatigue, assessing role of spirituality, and discussing advance care directives, respectively. Last, 85% of programs reported having a formal curriculum on palliative RT. Programs were most likely to have education on palliative radiation to brain, bone, and spine, but less likely on visceral, or skin, metastasis. Residency program directors believe that PSC and palliative RT are important competencies for their trainees and support increasing education in these 2 educational domains. Many residency programs have structured curricula on PSC and palliative radiation education, but room for improvement exists in

  11. Radiation oncology physics: A handbook for teachers and students

    International Nuclear Information System (INIS)

    Podgorsak, E.B.

    2005-07-01

    Radiotherapy, also referred to as radiation therapy, radiation oncology or therapeutic radiology, is one of the three principal modalities used in the treatment of malignant disease (cancer), the other two being surgery and chemotherapy. In contrast to other medical specialties that rely mainly on the clinical knowledge and experience of medical specialists, radiotherapy, with its use of ionizing radiation in the treatment of cancer, relies heavily on modern technology and the collaborative efforts of several professionals whose coordinated team approach greatly influences the outcome of the treatment. The radiotherapy team consists of radiation oncologists, medical physicists, dosimetrists and radiation therapy technologists: all professionals characterized by widely differing educational backgrounds and one common link - the need to understand the basic elements of radiation physics, and the interaction of ionizing radiation with human tissue in particular. This specialized area of physics is referred to as radiation oncology physics, and proficiency in this branch of physics is an absolute necessity for anyone who aspires to achieve excellence in any of the four professions constituting the radiotherapy team. Current advances in radiation oncology are driven mainly by technological development of equipment for radiotherapy procedures and imaging; however, as in the past, these advances rely heavily on the underlying physics. This book is dedicated to students and teachers involved in programmes that train professionals for work in radiation oncology. It provides a compilation of facts on the physics as applied to radiation oncology and as such will be useful to graduate students and residents in medical physics programmes, to residents in radiation oncology, and to students in dosimetry and radiotherapy technology programmes. The level of understanding of the material covered will, of course, be different for the various student groups; however, the basic

  12. Requirements for radiation oncology physics in Australia and New Zealand

    International Nuclear Information System (INIS)

    Oliver, L.; Fitchew, R.; Drew, J.

    2001-01-01

    This Position Paper reviews the role, standards of practice, education, training and staffing requirements for radiation oncology physics. The role and standard of practice for an expert in radiation oncology physics, as defined by the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM), are consistent with the IAEA recommendations. International standards of safe practice recommend that this physics expert be authorised by a Regulatory Authority (in consultation with the professional organisation). In order to accommodate the international and AHTAC recommendations or any requirements that may be set by a Regulatory Authority, the ACPSEM has defined the criteria for a physicist-in-training, a base level physicist, an advanced level physicist and an expert radiation oncology physicist. The ACPSEM shall compile separate registers for these different radiation oncology physicist categories. What constitutes a satisfactory means of establishing the number of physicists and support physics staff that is required in radiation oncology continues to be debated. The new ACPSEM workforce formula (Formula 2000) yields similar numbers to other international professional body recommendations. The ACPSEM recommends that Australian and New Zealand radiation oncology centres should aim to employ 223 and 46 radiation oncology physics staff respectively. At least 75% of this workforce should be physicists ( 168 in Australia and 35 in New Zealand). An additional 41 registrar physicist positions (34 in Australia and 7 in New Zealand) should be specifically created for training purposes. These registrar positions cater for the present physicist shortfall, the future expansion of radiation oncology and the expected attrition of radiation oncology physicists in the workforce. Registrar physicists shall undertake suitable tertiary education in medical physics with an organised in-house training program.The rapid advances in the theory and methodology of the new

  13. SU-E-T-452: Identifying Inefficiencies in Radiation Oncology Workflow and Prioritizing Solutions for Process Improvement and Patient Safety

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, N; Driewer, J; Denniston, K; Zhen, W; Enke, C [University of Nebraska Medical Center, Omaha, NE (United States); Jacobs, K; Poole, M; McMahon, R; Wilson, K; Yager, A [Nebraska Medicine, Omaha, NE (United States)

    2015-06-15

    Purpose: Successful radiation therapy requires multi-step processes susceptible to unnecessary delays that can negatively impact clinic workflow, patient satisfaction, and safety. This project applied process improvement tools to assess workflow bottlenecks and identify solutions to barriers for effective implementation. Methods: We utilized the DMAIC (define, measure, analyze, improve, control) methodology, limiting our scope to the treatment planning process. From May through December of 2014, times and dates of each step from simulation to treatment were recorded for 507 cases. A value-stream map created from this dataset directed our selection of outcome measures (Y metrics). Critical goals (X metrics) that would accomplish the Y metrics were identified. Barriers to actions were binned into control-impact matrices, in order to stratify them into four groups: in/out of control and high/low impact. Solutions to each barrier were then categorized into benefit-effort matries to identify those of high benefit and low effort. Results: For 507 cases, the mean time from simulation to treatment was 235 total hours. The mean process and wait time were 60 and 132 hours, respectively. The Y metric was to increase the ratio of all non-emergent plans completed the business day prior to treatment from 47% to 75%. Project X metrics included increasing the number of IMRT QAs completed at least 24 hours prior to treatment from 19% to 80% and the number of non-IMRT plans approved at least 24 hours prior to treatment from 33% to 80%. Intervals from simulation to target contour and from initial plan completion to plan approval were identified as periods that could benefit from intervention. Barriers to actions were binned into control-impact matrices and solutions by benefit-effort matrices. Conclusion: The DMAIC method can be successfully applied in radiation therapy clinics to identify inefficiencies and prioritize solutions for the highest impact.

  14. The American Society for Radiation Oncology's 2010 core physics curriculum for radiation oncology residents.

    Science.gov (United States)

    Xiao, Ying; Bernstein, Karen De Amorim; Chetty, Indrin J; Eifel, Patricia; Hughes, Lesley; Klein, Eric E; McDermott, Patrick; Prisciandaro, Joann; Paliwal, Bhudatt; Price, Robert A; Werner-Wasik, Maria; Palta, Jatinder R

    2011-11-15

    In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Geographic Analysis of the Radiation Oncology Workforce

    International Nuclear Information System (INIS)

    Aneja, Sanjay; Smith, Benjamin D.; Gross, Cary P.; Wilson, Lynn D.; Haffty, Bruce G.; Roberts, Kenneth; Yu, James B.

    2012-01-01

    Purpose: To evaluate trends in the geographic distribution of the radiation oncology (RO) workforce. Methods and Materials: We used the 1995 and 2007 versions of the Area Resource File to map the ratio of RO to the population aged 65 years or older (ROR) within different health service areas (HSA) within the United States. We used regression analysis to find associations between population variables and 2007 ROR. We calculated Gini coefficients for ROR to assess the evenness of RO distribution and compared that with primary care physicians and total physicians. Results: There was a 24% increase in the RO workforce from 1995 to 2007. The overall growth in the RO workforce was less than that of primary care or the overall physician workforce. The mean ROR among HSAs increased by more than one radiation oncologist per 100,000 people aged 65 years or older, from 5.08 per 100,000 to 6.16 per 100,000. However, there remained consistent geographic variability concerning RO distribution, specifically affecting the non-metropolitan HSAs. Regression analysis found higher ROR in HSAs that possessed higher education (p = 0.001), higher income (p < 0.001), lower unemployment rates (p < 0.001), and higher minority population (p = 0.022). Gini coefficients showed RO distribution less even than for both primary care physicians and total physicians (0.326 compared with 0.196 and 0.292, respectively). Conclusions: Despite a modest growth in the RO workforce, there exists persistent geographic maldistribution of radiation oncologists allocated along socioeconomic and racial lines. To solve problems surrounding the RO workforce, issues concerning both gross numbers and geographic distribution must be addressed.

  16. Geographic Analysis of the Radiation Oncology Workforce

    Energy Technology Data Exchange (ETDEWEB)

    Aneja, Sanjay [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Cancer Outcomes, Policy, and Effectiveness Research Center at Yale, New Haven, CT (United States); Smith, Benjamin D. [University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gross, Cary P. [Cancer Outcomes, Policy, and Effectiveness Research Center at Yale, New Haven, CT (United States); Department of General Internal Medicine, Yale University School of Medicine, New Haven, CT (United States); Wilson, Lynn D. [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Haffty, Bruce G. [Cancer Institute of New Jersey, New Brunswick, NJ (United States); Roberts, Kenneth [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Yu, James B., E-mail: james.b.yu@yale.edu [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Cancer Outcomes, Policy, and Effectiveness Research Center at Yale, New Haven, CT (United States)

    2012-04-01

    Purpose: To evaluate trends in the geographic distribution of the radiation oncology (RO) workforce. Methods and Materials: We used the 1995 and 2007 versions of the Area Resource File to map the ratio of RO to the population aged 65 years or older (ROR) within different health service areas (HSA) within the United States. We used regression analysis to find associations between population variables and 2007 ROR. We calculated Gini coefficients for ROR to assess the evenness of RO distribution and compared that with primary care physicians and total physicians. Results: There was a 24% increase in the RO workforce from 1995 to 2007. The overall growth in the RO workforce was less than that of primary care or the overall physician workforce. The mean ROR among HSAs increased by more than one radiation oncologist per 100,000 people aged 65 years or older, from 5.08 per 100,000 to 6.16 per 100,000. However, there remained consistent geographic variability concerning RO distribution, specifically affecting the non-metropolitan HSAs. Regression analysis found higher ROR in HSAs that possessed higher education (p = 0.001), higher income (p < 0.001), lower unemployment rates (p < 0.001), and higher minority population (p = 0.022). Gini coefficients showed RO distribution less even than for both primary care physicians and total physicians (0.326 compared with 0.196 and 0.292, respectively). Conclusions: Despite a modest growth in the RO workforce, there exists persistent geographic maldistribution of radiation oncologists allocated along socioeconomic and racial lines. To solve problems surrounding the RO workforce, issues concerning both gross numbers and geographic distribution must be addressed.

  17. A Phase II Study of Intensity Modulated Radiation Therapy to the Pelvis for Postoperative Patients With Endometrial Carcinoma: Radiation Therapy Oncology Group Trial 0418

    Energy Technology Data Exchange (ETDEWEB)

    Jhingran, Anuja, E-mail: ajhingra@mdanderson.org [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Winter, Kathryn [RTOG Statistical Center, Philadelphia, Pennsylvania (United States); Portelance, Lorraine [University of Miami, Miami, Florida (United States); Miller, Brigitte [Carolinas Medical Center North East, Concord, North Carolina (United States); Salehpour, Mohammad [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gaur, Rakesh [St. Luke' s Hospital, Kansas City, Missouri (United States); Souhami, Luis [McGill University Health Centre, Montreal, Quebec (Canada); Small, William [Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illionis (United States); Berk, Lawrence [H. Lee Moffitt Cancer Center, Tampa, Florida (United States); Gaffney, David [Huntsman Cancer Hospital, Salt Lake City, Utah (United States)

    2012-09-01

    Purpose: To determine the feasibility of pelvic intensity modulated radiation therapy (IMRT) for patients with endometrial cancer in a multi-institutional setting and to determine whether this treatment is associated with fewer short-term bowel adverse events than standard radiation therapy. Methods: Patients with adenocarcinoma of the endometrium treated with pelvic radiation therapy alone were eligible. Guidelines for target definition and delineation, dose prescription, and dose-volume constraints for the targets and critical normal structures were detailed in the study protocol and a web-based atlas. Results: Fifty-eight patients were accrued by 25 institutions; 43 were eligible for analysis. Forty-two patients (98%) had an acceptable IMRT plan; 1 had an unacceptable variation from the prescribed dose to the nodal planning target volume. The proportions of cases in which doses to critical normal structures exceeded protocol criteria were as follows: bladder, 67%; rectum, 76%; bowel, 17%; and femoral heads, 33%. Twelve patients (28%) developed grade {>=}2 short-term bowel adverse events. Conclusions: Pelvic IMRT for endometrial cancer is feasible across multiple institutions with use of a detailed protocol and centralized quality assurance (QA). For future trials, contouring of vaginal and nodal tissue will need continued monitoring with good QA and better definitions will be needed for organs at risk.

  18. Efficacy of routine pre-radiation dental screening and dental follow-up in head and neck oncology patients on intermediate and late radiation effects. A retrospective evaluation

    International Nuclear Information System (INIS)

    Schuurhuis, Jennifer M.; Stokman, Monique A.; Roodenburg, Johannes L.N.; Reintsema, Harry; Langendijk, Johannes A.; Vissink, Arjan; Spijkervet, Frederik K.L.

    2011-01-01

    Background and purpose: Head–neck radiotherapy is accompanied by a life-long risk of developing severe oral problems. This study retrospectively assessed oral foci detected during pre-radiation dental screening and follow-up in order to assess risk factors for developing oral problems after radiotherapy. Materials and methods: Charts of 185 consecutive head–neck cancer patients, subjected to a pre-radiation dental screening in University Medical Center Groningen, the Netherlands, between January 2004 and December 2008 were reviewed. Eighty (partially) dentulous patients scheduled for curative head–neck radiotherapy met the inclusion criteria. Results: Oral foci were found in 76% of patients, predominantly periodontal disease. Osteoradionecrosis had developed in 9 out of 80 patients (11%). Overall, patients presenting with periodontal pockets ⩾6 mm at dental screening had an increased risk (19%) of developing osteoradionecrosis compared to the total group of patients. Patients in whom periodontal disease treatment was composed of initial periodontal in stead of removal of the affected teeth, the risk of developing osteoradionecrosis was even higher, viz. 33%. Conclusions: A worse periodontal condition at dental screening and initial periodontal therapy to safeguard these patients to develop severe oral sequelae after radiotherapy were shown to be major risk factors of developing osteoradionecrosis.

  19. Efficacy of routine pre-radiation dental screening and dental follow-up in head and neck oncology patients on intermediate and late radiation effects. A retrospective evaluation.

    Science.gov (United States)

    Schuurhuis, Jennifer M; Stokman, Monique A; Roodenburg, Johannes L N; Reintsema, Harry; Langendijk, Johannes A; Vissink, Arjan; Spijkervet, Frederik K L

    2011-12-01

    Head-neck radiotherapy is accompanied by a life-long risk of developing severe oral problems. This study retrospectively assessed oral foci detected during pre-radiation dental screening and follow-up in order to assess risk factors for developing oral problems after radiotherapy. Charts of 185 consecutive head-neck cancer patients, subjected to a pre-radiation dental screening in the University Medical Center Groningen, the Netherlands, between January 2004 and December 2008 were reviewed. Eighty (partially) dentulous patients scheduled for curative head-neck radiotherapy met the inclusion criteria. Oral foci were found in 76% of patients, predominantly periodontal disease. Osteoradionecrosis had developed in 9 out of 80 patients (11%). Overall, patients presenting with periodontal pockets ≥ 6mm at dental screening had an increased risk (19%) of developing osteoradionecrosis compared to the total group of patients. Patients in whom periodontal disease treatment was composed of initial periodontal in stead of removal of the affected teeth, the risk of developing osteoradionecrosis was even higher, viz. 33%. A worse periodontal condition at dental screening and initial periodontal therapy to safeguard these patients to develop severe oral sequelae after radiotherapy were shown to be major risk factors of developing osteoradionecrosis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. The road not taken and choices in radiation oncology.

    Science.gov (United States)

    Coleman, C Norman; Glatstein, Eli

    2010-01-01

    Accomplishments and contributions in a career in radiation oncology, and in medicine in general, involve individual choices that impact the direction of a specialty, decisions in patient care, consequences of treatment outcome, and personal satisfaction. Issues in radiation oncology include: the development and implementation of new radiation treatment technology; the use of multimodality and biologically based therapies; the role of nonradiation "energy" technologies, often by other medical specialties, including the need for quality assurance in treatment and data reporting; and the type of evidence, including appropriate study design, analysis, and rigorous long-term follow-up, that is sought before widespread implementation of a new treatment. Personal choices must weigh: the pressure from institutions-practices, departments, universities, and hospitals; the need to serve society and the underserved; the balance between individual reward and a greater mission; and the critical role of personal values and integrity, often requiring difficult and "life-defining" decisions. The impact that each of us makes in a career is perhaps more a result of character than of the specific details enumerated on one's curriculum vitae. The individual tapestry weaved by choosing the more or less traveled paths during a career results in many pathways that would be called success; however, the one path for which there is no good alternative is that of living and acting with integrity.

  1. 3D planning and radiation oncology residents' training

    International Nuclear Information System (INIS)

    Jayaraman, Subramania

    1991-01-01

    Radiation treatments in radiation oncology clinics have been always planned to irradiate three dimensional (3D) volumes. Though the term 3D planning has come in vogue only in recent years, the essence of 3D planning had been always there. This is because the patient is a 3D subject and every treatment option adopted in a radiotherapy clinic has to be based on a 3D judgement of its acceptability. An essential aspect of training of radiation oncology residents is to help them understand the different techniques and methods used to get an acceptable 3D dose delivery. The tools of 3D planning should be introduced to the residents for their educational value. The regular use of these tools may require not only fast computers and work stations, but also a change of routine in the department. This might be difficult since the departmental routine can evolve only gradually. On the other hand, an insight about the advantages of the tools could be gained through a simple personal computer. Some examples of using the 3D planning tools through a personal computer, for educational purposes have been presented here, using clinical contexts routinely encountered. (author). 5 refs., 10 figs

  2. The History and Role of Accelerators in Radiation Oncology

    Science.gov (United States)

    Smith, Alfred

    2003-04-01

    Over one million people are diagnosed with cancer (excluding skin cancer) each year in the United States - about half of those patients will receive radiation as part of their treatment. Radiation Oncology is the field of medicine that specializes in the treatment of cancer with radiation. The evolution of Radiation Oncology, and its success as a cancer treatment modality, has generally paralleled developments in imaging and accelerator technologies. Accelerators, the topic of this paper, have proven to be highly reliable, safe and efficient sources of radiation for cancer treatment. Advances in accelerator technology, especially those that have provided higher energies and dose rates, and more localized (to the tumor volume) dose distributions, have enabled significant improvements in the outcomes of cancer treatments. The use of Cobalt 60 beams has greatly declined in the past decade. Radiation beams used in cancer treatment include x-rays, electrons, protons, negative pions, neutrons, and ions of helium, carbon, neon and silicon. X-rays and electrons, produced by linear electron accelerators, have been the most widely used. The history of medical accelerators can be traced from Roentgen's discovery of x-rays in 1895. The evolution of medical electron accelerators will be discussed and the use of x-ray tubes, electrostatic accelerators, betatrons, and linear accelerators will be described. Heavy particle cancer treatments began in 1955 using proton beams from the Berkeley 184-inch cyclotron. Accelerators that have been used for heavy particle therapy include the Berkeley Bevalac, Los Alamos Pion Facility, Fermi Laboratory, and various research and medical cyclotrons and synchrotrons. Heavy particle accelerators and their application for cancer treatment will be discussed.

  3. Internet-based communications in radiation oncology

    International Nuclear Information System (INIS)

    Goldwein, Joel W.

    1996-01-01

    Currently, it is estimated that 40 million Americans have access to the Internet. The emergence of widely available software, inexpensive hardware and affordable connectivity have all led to an explosive growth in its use. Medicine in general and radiation oncology specifically are deriving great benefits from this technology. The use of this technology will result in a paradigm shift that is likely to change the way we all communicate. An understanding of the technology is therefore mandatory. The objectives of the course are to provide a practical introduction to the use of Internet technologies as they relate to our profession. The following topics will be reviewed. 1. A brief history of the Internet 2. Getting connected to the Internet 3. Internet venues - The Web, ftp, USENETS ... 4. Basic software tools - email, browsers ... 5. Specific Internet resources 6. Advanced Internet utilization 7. Business and the Internet 8. Intranet utilization 9. Philosophical and medicolegal issues 10. Predictions of the future Upon completion, the attendee will be familiar with the Internet, how it works, and how it can be used to fulfill the research, educational, and clinical care missions of our profession

  4. The American Society for Radiation Oncology's 2015 Core Physics Curriculum for Radiation Oncology Residents

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, Jay, E-mail: burmeist@karmanos.org [Department of Oncology, Karmanos Cancer Center/Wayne State University, Detroit, Michigan (United States); Chen, Zhe [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Dieterich, Sonja [Department of Radiation Oncology, University of California – Davis, Sacramento, California (United States); Doemer, Anthony [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Dominello, Michael M. [Department of Oncology, Karmanos Cancer Center/Wayne State University, Detroit, Michigan (United States); Howell, Rebecca M. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); McDermott, Patrick [Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan (United States); Nalichowski, Adrian [Karmanos Cancer Center, Detroit, Michigan (United States); Prisciandaro, Joann [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ritter, Tim [VA Ann Arbor Healthcare and the University of Michigan, Ann Arbor, Michigan (United States); Smith, Chadd [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Schreiber, Eric [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Shafman, Timothy [21st Century Oncology, Fort Myers, Florida (United States); Sutlief, Steven [Department of Radiation Oncology, University of California – San Diego, La Jolla, California (United States); Xiao, Ying [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2016-07-15

    Purpose: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. Methods and Materials: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. Results: The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. Conclusions: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since

  5. Neurocognitive outcome in brain metastases patients treated with accelerated-fractionation vs. accelerated-hyperfractionated radiotherapy: an analysis from Radiation Therapy Oncology Group Study 91-04

    International Nuclear Information System (INIS)

    Regine, W.F.; Scott, C.; Murray, K.; Curran, W.

    2001-01-01

    Purpose: To evaluate neurocognitive outcome as measured by the Mini-Mental Status Examination (MMSE) among patients with unresectable brain metastases randomly assigned to accelerated fractionation (AF) vs. accelerated hyperfractionated (AH) whole-brain radiation therapy (WBRT). Methods and Materials: The Radiation Therapy Oncology Group (RTOG) accrued 445 patients with unresectable brain metastases to a Phase III comparison of AH (1.6 Gy b.i.d. to 54.4 Gy) vs. AF (3 Gy q.d. to 30 Gy). All had a KPS of ≥ 70 and a neurologic function status of 0-2. Three hundred fifty-nine patients had MMSEs performed and were eligible for this analysis. Changes in the MMSE were analyzed according to criteria previously defined in the literature. Results: The median survival was 4.5 months for both arms. The average change in MMSE at 2 and 3 months was a drop of 1.4 and 1.1, respectively, in the AF arm as compared to a drop of 0.7 and 1.3, respectively, in the AH arm (p=NS). Overall, 91 patients at 2 months and 23 patients at 3 months had both follow-up MMSE and computed tomography/magnetic resonance imaging documentation of the status of their brain metastases. When an analysis was performed taking into account control of brain metastases, a significant effect on MMSE was observed with time and associated proportional increase in uncontrolled brain metastases. At 2 months, the average change in MMSE score was a drop of 0.6 for those whose brain metastases were radiologically controlled as compared to a drop of 1.9 for those with uncontrolled brain metastases (p=0.47). At 3 months, the average change in MMSE score was a drop of 0.5 for those whose brain metastases were radiologically controlled as compared to a drop of 6.3 for those with uncontrolled brain metastases (p=0.02). Conclusion: Use of AH as compared to AF-WBRT was not associated with a significant difference in neurocognitive function as measured by MMSE in this patient population with unresectable brain metastases and

  6. Patterns of Radiation Therapy Practice for Patients Treated for Intact Cervical Cancer in 2005 to 2007: A Quality Research in Radiation Oncology Study

    Energy Technology Data Exchange (ETDEWEB)

    Eifel, Patricia J., E-mail: peifel@mdanderson.org [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ho, Alex; Khalid, Najma [American College of Radiology Clinical Research Center, Philadelphia, Pennsylvania (United States); Erickson, Beth [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Owen, Jean [American College of Radiology Clinical Research Center, Philadelphia, Pennsylvania (United States)

    2014-06-01

    Purpose: To assess practice patterns and compliance with clinical performance measures for radiation therapy (RT) for patients with intact carcinoma of the cervix. Methods and Materials: Trained research associates reviewed the records of 261 randomly selected patients who received RT for cervix carcinoma between 2005 and 2007 from 45 facilities randomly selected after stratification by practice type. National estimates of patient and treatment characteristics were calculated from survey data using SUDAAN statistical software. Results: From the survey data, we estimated that only 8% of US facilities treated on average more than 3 eligible patients per year. No small or medium nonacademic facilities in the survey treated more than 3 eligible patients per year. Approximately 65.5% of patients began treatment in a facility that treated 3 or fewer eligible patients per year. Although 87.5% of patients had brachytherapy as part of their treatment, the proportion treated with external beam RT only was about double that estimated from the 1996 to 1999 survey. The use of high-dose-rate brachytherapy sharply increased, particularly in small nonacademic facilities. Overall, patients treated in nonacademic facilities were more likely to have incomplete or protracted treatment; 43% of patients treated in small nonacademic facilities did not have treatment completed within 10 weeks. Also, patients treated in facilities that treated 3 or fewer eligible patients per year were significantly less likely to receive concurrent chemotherapy than were patients treated in other facilities. Conclusion: Survey results indicate a disturbingly high rate of noncompliance with established criteria for high-quality care of patients with cervical cancer. Noncompliance rates are particularly high in nonacademic facilities, especially those that treat relatively few patients with intact cervical cancer.

  7. A randomized phase III study of accelerated hyperfractionation versus standard in patients with unresected brain metastases: a report of the radiation therapy oncology group (RTOG) 9104

    International Nuclear Information System (INIS)

    Murray, Kevin J.; Scott, Charles; Greenberg, Harvey M.; Emami, Bahman; Seider, Michael; Vora, Nayana L.; Olson, Craig; Whitton, Anthony; Movsas, Benjamin; Curran, Walter

    1997-01-01

    Purpose: To compare 1-year survival and acute toxicity rates between an accelerated hyperfractionated (AH) radiotherapy (1.6 Gy b.i.d.) to a total dose of 54.4 Gy vs. an accelerated fractionation (AF) of 30 Gy in 10 daily fractions in patients with unresected brain metastasis. Methods and Materials: The Radiation Therapy Oncology Group (RTOG) accrued 445 patients to a Phase III comparison of accelerated hyperfractionation vs. standard fractionation from 1991 through 1995. All patients had histologic proof of malignancy at the primary site. Brain metastasis were measurable by CT or MRI scan and all patients had a Karnofsky performance score (KPS) of at least 70 and a neurologic function classification of 1 or 2. For AH, 32 Gy in 20 fractions over 10 treatment days (1.6 Gy twice daily) was delivered to the whole brain. A boost of 22.4 Gy in 14 fractions was delivered to each lesion with a 2-cm margin. Results: The average age in both groups was 60 years; nearly two-thirds of all patients had lung primaries. Of the 429 eligible and analyzable patients, the median survival time was 4.5 months in both arms. The 1-year survival rate was 19% in the AF arm vs. 16% in the AH arm. No difference in median or 1-year survival was observed among patients with solitary metastasis between treatment arms. Recursive partitioning analysis (RPA) classes have previously been identified and patients with a KPS of 70 or more, a controlled primary tumor, less than 65 years of age, and brain metastases only (RPA class I), had a 1-year survival of 35% in the AF arm vs. 25% in the AH arm (p = 0.95). In a multivariate model, only age, KPS, extent of metastatic disease (intracranial metastases only vs. intra- and extracranial metastases), and status of primary (controlled vs. uncontrolled) were statistically significant (at p < 0.05). Treatment assignment was not statistically significant. Overall Grade III or IV toxicity was equivalent in both arms, and one fatal toxicity at 44 days secondary

  8. Postgraduate Education in Radiation Oncology in Low- and Middle-income Countries

    DEFF Research Database (Denmark)

    Eriksen, J. G.

    2017-01-01

    Radiation therapy is one of the most cost-effective ways to treat cancer patients on both a curative and palliative basis in low- and middle-income countries (LMICs). Despite this, the gap in radiation oncology capacity is enormous and is even increasing due to a rapid rise in the incidence...

  9. Results of the Association of Directors of Radiation Oncology Programs (ADROP) Survey of Radiation Oncology Residency Program Directors

    International Nuclear Information System (INIS)

    Harris, Eleanor; Abdel-Wahab, May; Spangler, Ann E.; Lawton, Colleen A.; Amdur, Robert J.

    2009-01-01

    Purpose: To survey the radiation oncology residency program directors on the topics of departmental and institutional support systems, residency program structure, Accreditation Council for Graduate Medical Education (ACGME) requirements, and challenges as program director. Methods: A survey was developed and distributed by the leadership of the Association of Directors of Radiation Oncology Programs to all radiation oncology program directors. Summary statistics, medians, and ranges were collated from responses. Results: Radiation oncology program directors had implemented all current required aspects of the ACGME Outcome Project into their training curriculum. Didactic curricula were similar across programs nationally, but research requirements and resources varied widely. Program directors responded that implementation of the ACGME Outcome Project and the external review process were among their greatest challenges. Protected time was the top priority for program directors. Conclusions: The Association of Directors of Radiation Oncology Programs recommends that all radiation oncology program directors have protected time and an administrative stipend to support their important administrative and educational role. Departments and institutions should provide adequate and equitable resources to the program directors and residents to meet increasingly demanding training program requirements.

  10. Description of the role of nonphysician practitioners in radiation oncology

    International Nuclear Information System (INIS)

    Kelvin, Joanne Frankel; Moore-Higgs, Giselle Josephine

    1999-01-01

    Purpose: With changes in reimbursement and a decrease in the number of residents, there is a need to explore new ways of achieving high-quality patient care in radiation oncology. One mechanism is the implementation of nonphysician practitioner roles. The purpose of this paper is to describe the roles and responsibilities of clinical nurse specialists (CNSs), nurse practitioners (NPs), and physician assistants (PAs) currently working in the field of radiation oncology in the United States. Methods and Materials: A nationwide mailing was sent to elicit responses to an 8-page self-report questionnaire. Results: The final sample of 86 included 45 (52%) CNSs, 31 (36%) NPs, and 10 (12%) PAs. Two-thirds worked in private practice settings. Most of the nonphysician practitioners frequently obtained histories (57-90%) and ordered laboratory studies (52-68%). However, NPs and PAs were more likely than CNSs to frequently perform 'medical' services such as perform physical exams (42-80% vs. 19-36%), order radiologic studies (50% vs. 17%), and prescribe medication (60-84% vs. 26%). CNSs were more likely to provide 'supportive' services such as develop educational materials, participate in quality improvement initiatives, and develop policies and procedures. Conclusions: Nonphysician practitioners are not substituting for physicians, but rather are working in collaboration with them, performing designated tasks

  11. Validation and predictive power of radiation therapy oncology group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06

    International Nuclear Information System (INIS)

    Scott, Charles B.; Scarantino, Charles; Urtasun, Raul; Movsas, Benjamin; Jones, Christopher U.; Simpson, Joseph R.; Fischbach, A. Jennifer; Curran, Walter J.

    1996-01-01

    Background/Purpose: The recursive partitioning analysis (RPA) classes for malignant glioma patients were previously established by Curran et al. (JNCI 85:704-10, 1993) using data on over 1500 patients from the Radiation Therapy Oncology Group (RTOG). The current analysis was to validate the RPA classes on a new dataset (RTOG 90-06) and determine the predictive power of the RPA classes. Patients and Methods: There are six RPA classes for malignant glioma patients that comprise distinct groups of patients with significantly different survival outcome. RTOG 90-06 is a randomized phase III study of 712 patients accrued from 1990 to 1994. The minimum potential follow-up is 18 months. The treatment arms were combined for the purpose of this analysis. There were 84, 13, 105, 240, 150, and 23 patients in the six RPA classes from RTOG 90-06. Results: The median survival times (MST) and two-year survivals for the six RPA classes in RTOG 90-06 are compared to those published by Curran et al. (JNCI 1993). The RPA classes appear in descending order in the following table. The MST and 2-year survivals for the RTOG RPA classes were within 95% confidence intervals of the 90-06 estimates for classes I, III, IV, and V. The RPA classes explained 43% of the variation (squared error loss). By comparison, a model containing only histology explains only 13% of the variation. The RPA classes are statistically distinct with all comparisons exceeding 0.0001, except those involving class II. Conclusion: The validity of the model is verified by the reliability of the RPA classes to define distinct groups with respect to survival. Further evidence is given by prediction of MST and 2-year survival for all classes except class II. The RPA classes explained a good portion of the variation in the data. RPA class II did not perform well which may be an artifact of the small sample size or an indication that this class is not distinct. The validation of the RPA classes attests to their usefulness as

  12. Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: A report using RTOG 90-06

    International Nuclear Information System (INIS)

    Scott, Charles B.; Scarantino, Charles; Urtasun, Raul; Movsas, Benjamin; Jones, Christopher U.; Simpson, Joseph R.; Fischbach, A. Jennifer; Curran, Walter J.

    1998-01-01

    Purpose: The recursive partitioning analysis (RPA) classes for malignant glioma patients were previously established using data on over 1500 patients entered on Radiation Therapy Oncology Group (RTOG) clinical trials. The purpose of the current analysis was to validate the RPA classes with a new dataset (RTOG 90-06), determine the predictive power of the RPA classes, and establish the usefulness of the database norms for the RPA classes. Patients and Methods: There are six RPA classes for malignant glioma patients that comprise distinct groups of patients with significantly different survival outcome. RTOG 90-06 is a randomized Phase III study of 712 patients accrued from 1990 to 1994. The minimum potential follow-up is 18 months. The treatment arms were combined for the purpose of this analysis. There were 84, 13, 105, 240, 150, and 23 patients in the RPA Classes I-VI from RTOG 90-06, respectively. Results: The median survival times (MST) and 2-year survival rates for the six RPA classes in RTOG 90-06 are compared to those previously published. The MST and 2-year survival rates for the RTOG RPA classes were within 95% confidence intervals of the 90-06 estimates for Classes I, III, IV, and V. The RPA classes explained 43% of the variation (squared error loss). By comparison, a Cox model explains 30% of the variation. The RPA classes within RTOG 90-06 are statistically distinct with all comparisons exceeding 0.0001, except those involving Class II. A survival analysis from a prior RTOG study indicated that 72.0 Gy had superior outcome to literature controls; analysis of this data by RPA classes indicates the survival results were not superior to the RTOG database norms. Conclusion: The validity of the model is verified by the reliability of the RPA classes to define distinct groups with respect to survival. Further evidence is given by prediction of MST and 2-year survival for all classes except Class II. The RPA classes explained a good portion of the variation in

  13. NRG Oncology Radiation Therapy Oncology Group 0822: A Phase 2 Study of Preoperative Chemoradiation Therapy Using Intensity Modulated Radiation Therapy in Combination With Capecitabine and Oxaliplatin for Patients With Locally Advanced Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Theodore S., E-mail: tshong1@mgh.harvard.edu [Massachusetts General Hospital, Boston, Massachusetts (United States); Moughan, Jennifer [NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania (United States); Garofalo, Michael C. [University of Maryland School of Medicine, Baltimore, Maryland (United States); Bendell, Johanna [Sarah Cannon Research Institute, Nashville, Tennessee (United States); Berger, Adam C. [Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Oldenburg, Nicklas B.E. [North Main Radiation Oncology, Providence, Rhode Island (United States); Anne, Pramila Rani [Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Perera, Francisco [London Regional Cancer Program/Western Ontario, London, Ontario (Canada); Lee, R. Jeffrey [Intermountain Medical Center, Salt Lake City, Utah (United States); Jabbour, Salma K. [Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Nowlan, Adam [Piedmont Hospital, Atlanta, Georgia (United States); DeNittis, Albert [Main Line Community Clinical Oncology Program, Wynnewood, Pennsylvania (United States); Crane, Christopher [University of Texas-MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: To evaluate the rate of gastrointestinal (GI) toxicity of neoadjuvant chemoradiation with capecitabine, oxaliplatin, and intensity modulated radiation therapy (IMRT) in cT3-4 rectal cancer. Methods and Materials: Patients with localized, nonmetastatic T3 or T4 rectal cancer <12 cm from the anal verge were enrolled in a prospective, multi-institutional, single-arm study of preoperative chemoradiation. Patients received 45 Gy with IMRT in 25 fractions, followed by a 3-dimensional conformal boost of 5.4 Gy in 3 fractions with concurrent capecitabine/oxaliplatin (CAPOX). Surgery was performed 4 to 8 weeks after the completion of therapy. Patients were recommended to receive FOLFOX chemotherapy after surgery. The primary endpoint of the study was acute grade 2 to 5 GI toxicity. Seventy-one patients provided 80% probability to detect at least a 12% reduction in the specified GI toxicity with the treatment of CAPOX and IMRT, at a significance level of .10 (1-sided). Results: Seventy-nine patients were accrued, of whom 68 were evaluable. Sixty-one patients (89.7%) had cT3 disease, and 37 (54.4%) had cN (+) disease. Postoperative chemotherapy was given to 42 of 68 patients. Fifty-eight patients had target contours drawn per protocol, 5 patients with acceptable variation, and 5 patients with unacceptable variations. Thirty-five patients (51.5%) experienced grade ≥2 GI toxicity, 12 patients (17.6%) experienced grade 3 or 4 diarrhea, and pCR was achieved in 10 patients (14.7%). With a median follow-up time of 3.98 years, the 4-year rate of locoregional failure was 7.4% (95% confidence interval [CI]: 1.0%-13.7%). The 4-year rates of OS and DFS were 82.9% (95% CI: 70.1%-90.6%) and 60.6% (95% CI: 47.5%-71.4%), respectively. Conclusion: The use of IMRT in neoadjuvant chemoradiation for rectal cancer did not reduce the rate of GI toxicity.

  14. Japanese structure survey of radiation oncology in 2007 with special reference to designated cancer care hospitals

    International Nuclear Information System (INIS)

    Numasaki, Hodaka; Shibuya, Hitoshi; Nishio, Masamichi

    2011-01-01

    Background and Purpose: The structure of radiation oncology in designated cancer care hospitals in Japan was investigated in terms of equipment, personnel, patient load, and geographic distribution. The effect of changes in the health care policy in Japan on radiotherapy structure was also examined. Material and Methods: The Japanese Society of Therapeutic Radiology and Oncology surveyed the national structure of radiation oncology in 2007. The structures of 349 designated cancer care hospitals and 372 other radiotherapy facilities were compared. Results: Respective findings for equipment and personnel at designated cancer care hospitals and other facilities included the following: linear accelerators/facility: 1.3 and 1.0; annual patients/linear accelerator: 296.5 and 175.0; and annual patient load/full-time equivalent radiation oncologist was 237.0 and 273.3, respectively. Geographically, the number of designated cancer care hospitals was associated with population size. Conclusion: The structure of radiation oncology in Japan in terms of equipment, especially for designated cancer care hospitals, was as mature as that in European countries and the United States, even though the medical costs in relation to GDP in Japan are lower. There is still a shortage of manpower. The survey data proved to be important to fully understand the radiation oncology medical care system in Japan. (orig.)

  15. Patient information in radiation oncology: a cross-sectional pilot study using the EORTC QLQ-INFO26 module

    International Nuclear Information System (INIS)

    Adler, Johannes; Paelecke-Habermann, Yvonne; Jahn, Patrick; Landenberger, Margarete; Leplow, Bernd; Vordermark, Dirk

    2009-01-01

    The availability of alternative sources of information, e. g. the internet, may influence the quantity and quality of information cancer patients receive regarding their disease and treatment. The purpose of the present study was to assess perception of information in cancer patients during radiotherapy as well as media preferences and specifically the utilization of the internet. In a cross-sectional, single-centre study 94 patients currently undergoing radiotherapy were asked to complete two questionnaires. The EORTC QLQ-INFO26 module was used to assess the quality and quantity of information received by patients in the areas disease, medical tests, treatment, other services, different places of care and how to help themselves, as well as qualitative aspects as helpfulness of and satisfaction with this information. The importance of different media, in particular the internet, was investigated by a nine-item questionnaire. The response rate was n = 72 patients (77%). Patients felt best informed concerning medical tests (mean ± SD score 79 ± 22, scale 0-100) followed by disease (68 ± 21). Treatment (52 ± 24) and different places of care and other services (30 ± 36 and 30 ± 30, respectively) ranked last. 37% of patients were very satisfied and 37% moderately satisfied with the amount of information received, 61% wished more information. Among eight media, brochures, television and internet were ranked as most important. 41% used the internet themselves or via friends or family, mostly for research of classic and alternative treatment options. Unavailability and the necessity of computer skills were most mentioned obstacles. In a single-center pilot study, radiotherapy patients indicated having received most information about medical tests and their disease. Patients very satisfied with their information had received the largest amount of information. Brochures, television and internet were the most important media. Individual patient needs should be

  16. The Negative Impact of Stark Law Exemptions on Graduate Medical Education and Health Care Costs: The Example of Radiation Oncology

    International Nuclear Information System (INIS)

    Anscher, Mitchell S.; Anscher, Barbara M.; Bradley, Cathy J.

    2010-01-01

    Purpose: To survey radiation oncology training programs to determine the impact of ownership of radiation oncology facilities by non-radiation oncologists on these training programs and to place these findings in a health policy context based on data from the literature. Methods and Materials: A survey was designed and e-mailed to directors of all 81 U.S. radiation oncology training programs in this country. Also, the medical and health economic literature was reviewed to determine the impact that ownership of radiation oncology facilities by non-radiation oncologists may have on patient care and health care costs. Prostate cancer treatment is used to illustrate the primary findings. Results: Seventy-three percent of the surveyed programs responded. Ownership of radiation oncology facilities by non-radiation oncologists is a widespread phenomenon. More than 50% of survey respondents reported the existence of these arrangements in their communities, with a resultant reduction in patient volumes 87% of the time. Twenty-seven percent of programs in communities with these business arrangements reported a negative impact on residency training as a result of decreased referrals to their centers. Furthermore, the literature suggests that ownership of radiation oncology facilities by non-radiation oncologists is associated with both increased utilization and increased costs but is not associated with increased access to services in traditionally underserved areas. Conclusions: Ownership of radiation oncology facilities by non-radiation oncologists appears to have a negative impact on residency training by shifting patients away from training programs and into community practices. In addition, the literature supports the conclusion that self-referral results in overutilization of expensive services without benefit to patients. As a result of these findings, recommendations are made to study further how physician ownership of radiation oncology facilities influence graduate

  17. Predictors of Patient Satisfaction in Pediatric Oncology.

    Science.gov (United States)

    Davis, Josh; Burrows, James F; Ben Khallouq, Bertha; Rosen, Paul

    To understand key drivers of patient satisfaction in pediatric hematology/oncology. The "top-box" scores of patient satisfaction surveys from 4 pediatric hematology/oncology practices were collected from 2012 to 2014 at an integrated Children's Health Network. One item, "Likelihood of recommending practice," was used as the surrogate for overall patient satisfaction, and all other items were correlated to this item. A total of 1244 satisfaction surveys were included in this analysis. The most important predictors of overall patient satisfaction were cheerfulness of practice ( r = .69), wait time ( r = .60), and staff working together ( r = .60). The lowest scoring items were getting clinic on phone, information about delays, and wait time at clinic. Families bringing their children for outpatient care in a hematology/oncology practice want to experience a cheerful and collaborative medical team. Wait time at clinic may be a key driver in the overall experience for families with children with cancer. Future work should be directed at using this evidence to drive patient experience improvement processes in pediatric hematology/oncology.

  18. A citation anaysis of Chinese Journal of Radiation Oncology

    International Nuclear Information System (INIS)

    Yang Hua; Shi Shuxia

    2005-01-01

    Objective: To evaluate the academic level and the popularity of Chinese Journal of Radiation Oncology. Methods: According to the information of Chinese Medical Citation Index(CMCI), statistically analyzed the amount and distribution of the originals in Chinese Journal of Radiation Oncology cited by the journal included by CMCI. Results: The proportion of cited articles for original articles, short report and review were 73.8%, 58.1% and 60.7% respectively, and average cited numbers for them were 7.2, 3.0 and 3.4. The average of original articles cited by other researchers is 3.9, and there are more articles cited than other journal. The authors of these articles are from the 27 province/or municipalities, Beijing and Shanghai municipalities are in the front of Radiation Oncology research. There are 320 citing journals, and self-citing rate is 9.4%. Conclusions: The Chinese Journal of Radiation Oncology has published high quality articles, and has its own edition characteristics to keep its steady level of research. It is the one of the most important information resource for the radiation oncology researchers and the most important medical journal. (authors)

  19. TH-D-204-00: The Pursuit of Radiation Oncology Performance Excellence

    International Nuclear Information System (INIS)

    2016-01-01

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care, increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.

  20. TH-D-204-01: The Pursuit of Radiation Oncology Performance Excellence

    International Nuclear Information System (INIS)

    Sternick, E.

    2016-01-01

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care, increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.

  1. TH-D-204-01: The Pursuit of Radiation Oncology Performance Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Sternick, E. [The Warren Alpert Medical School of Brown Univ., Providence, RI (United States)

    2016-06-15

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care, increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.

  2. TH-D-204-00: The Pursuit of Radiation Oncology Performance Excellence

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care, increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.

  3. Education and Training Needs in Radiation Oncology in India: Opportunities for Indo–US Collaborations

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Surbhi, E-mail: Surbhi.grover@uphs.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Chadha, Manjeet [Mount Sinai Beth Israel Health System, Icahn School of Medicine, New York, New York (United States); Rengan, Ramesh [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Williams, Tim R. [Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Boca Raton, Florida (United States); Morris, Zachary S. [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Seattle, Washington (United States); Morgan, David A.L. [Breast Services, Sherwood Forest Hospitals NHS Trust, Nottinghamshire (United Kingdom); Tripuraneni, Prabhakar [Department of Radiation Oncology, Scripps Green Hospital, La Jolla, California (United States); Hu, Kenneth [Department of Radiation Oncology, NYU Lagone Medical Center, New York, New York (United States); Viswanathan, Akila N. [Department of Radiation Oncology, Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2015-12-01

    Purpose: To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. Methods and Materials: A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. Results: We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education in intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Conclusion: Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo–US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives.

  4. Education and Training Needs in Radiation Oncology in India: Opportunities for Indo–US Collaborations

    International Nuclear Information System (INIS)

    Grover, Surbhi; Chadha, Manjeet; Rengan, Ramesh; Williams, Tim R.; Morris, Zachary S.; Morgan, David A.L.; Tripuraneni, Prabhakar; Hu, Kenneth; Viswanathan, Akila N.

    2015-01-01

    Purpose: To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. Methods and Materials: A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. Results: We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education in intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Conclusion: Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo–US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives.

  5. Education and Training Needs in Radiation Oncology in India: Opportunities for Indo-US Collaborations.

    Science.gov (United States)

    Grover, Surbhi; Chadha, Manjeet; Rengan, Ramesh; Williams, Tim R; Morris, Zachary S; Morgan, David A L; Tripuraneni, Prabhakar; Hu, Kenneth; Viswanathan, Akila N

    2015-12-01

    To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education in intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo-US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Radiotherapy and immune reaction of oncologic patients

    International Nuclear Information System (INIS)

    Pankina, V.Kh.; Sarkisyan, Yu.KH.

    1978-01-01

    Represented is a review of data accumulated in literature (1970-1976) on oppression of protection of oncologic patients and more oppression of immune reactions during radiotherapy. Underlined is the significance of studying immune homeostasis in a clinic of radiotherapy to evaluate total resistance of patients before the beginning and in the process of treatment. The prognostic significance of immunodepressive disturbances in patients with malignant tumors is elucidated

  7. Molecular Targets for Radiation Oncology in Prostate Cancer

    International Nuclear Information System (INIS)

    Wang, Tao; Languino, Lucia R.; Lian, Jane; Stein, Gary; Blute, Michael; FitzGerald, Thomas J.

    2011-01-01

    Recent selected developments of the molecular science of prostate cancer (PrCa) biology and radiation oncology are reviewed. We present potential targets for molecular integration treatment strategies with radiation therapy (RT), and highlight potential strategies for molecular treatment in combination with RT for patient care. We provide a synopsis of the information to date regarding molecular biology of PrCa, and potential integrated research strategy for improved treatment of PrCa. Many patients with early-stage disease at presentation can be treated effectively with androgen ablation treatment, surgery, or RT. However, a significant portion of men are diagnosed with advanced stage/high-risk disease and these patients progress despite curative therapeutic intervention. Unfortunately, management options for these patients are limited and are not always successful including treatment for hormone refractory disease. In this review, we focus on molecules of extracellular matrix component, apoptosis, androgen receptor, RUNX, and DNA methylation. Expanding our knowledge of the molecular biology of PrCa will permit the development of novel treatment strategies integrated with RT to improve patient outcome

  8. Individualized Prediction of Overall Survival After Postoperative Radiation Therapy in Patients With Early-Stage Cervical Cancer: A Korean Radiation Oncology Group Study (KROG 13-03)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jin [Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul (Korea, Republic of); Han, Seungbong [Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan, College of Medicine, Seoul (Korea, Republic of); Kim, Young Seok, E-mail: ysk@amc.seoul.kr [Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul (Korea, Republic of); Nam, Joo-Hyun [Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul (Korea, Republic of); Kim, Hak Jae [Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Jae Weon [Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul (Korea, Republic of); Park, Won [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Byoung-Gie [Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Jin Hee [Department of Radiation Oncology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu (Korea, Republic of); Cha, Soon Do [Department of Obstetrics and Gynecology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu (Korea, Republic of); Kim, Juree [Department of Radiation Oncology, Cheil General Hospital and Women' s Healthcare Center, Kwandong University, College of Medicine, Seoul (Korea, Republic of); Lee, Ki-Heon [Department of Obstetrics and Gynecology, Cheil General Hospital and Women' s Healthcare Center, Kwandong University, College of Medicine, Seoul (Korea, Republic of); Yoon, Mee Sun [Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Jeollanam-do (Korea, Republic of); and others

    2013-11-15

    Purpose: A nomogram is a predictive statistical model that generates the continuous probability of a clinical event such as death or recurrence. The aim of the study was to construct a nomogram to predict 5-year overall survival after postoperative radiation therapy for stage IB to IIA cervical cancer. Methods and Materials: The clinical data from 1702 patients with early-stage cervical cancer, treated at 10 participating hospitals from 1990 to 2011, were reviewed to develop a prediction nomogram based on the Cox proportional hazards model. Demographic, clinical, and pathologic variables were included and analyzed to formulate the nomogram. The discrimination and calibration power of the model was measured using a concordance index (c-index) and calibration curve. Results: The median follow-up period for surviving patients was 75.6 months, and the 5-year overall survival probability was 87.1%. The final model was constructed using the following variables: age, number of positive pelvic lymph nodes, parametrial invasion, lymphovascular invasion, and the use of concurrent chemotherapy. The nomogram predicted the 5-year overall survival with a c-index of 0.69, which was superior to the predictive power of the International Federation of Gynecology and Obstetrics (FIGO) staging system (c-index of 0.54). Conclusions: A survival-predicting nomogram that offers an accurate level of prediction and discrimination was developed based on a large multi-center study. The model may be more useful than the FIGO staging system for counseling individual patients regarding prognosis.

  9. Individualized Prediction of Overall Survival After Postoperative Radiation Therapy in Patients With Early-Stage Cervical Cancer: A Korean Radiation Oncology Group Study (KROG 13-03)

    International Nuclear Information System (INIS)

    Lee, Hyun Jin; Han, Seungbong; Kim, Young Seok; Nam, Joo-Hyun; Kim, Hak Jae; Kim, Jae Weon; Park, Won; Kim, Byoung-Gie; Kim, Jin Hee; Cha, Soon Do; Kim, Juree; Lee, Ki-Heon; Yoon, Mee Sun

    2013-01-01

    Purpose: A nomogram is a predictive statistical model that generates the continuous probability of a clinical event such as death or recurrence. The aim of the study was to construct a nomogram to predict 5-year overall survival after postoperative radiation therapy for stage IB to IIA cervical cancer. Methods and Materials: The clinical data from 1702 patients with early-stage cervical cancer, treated at 10 participating hospitals from 1990 to 2011, were reviewed to develop a prediction nomogram based on the Cox proportional hazards model. Demographic, clinical, and pathologic variables were included and analyzed to formulate the nomogram. The discrimination and calibration power of the model was measured using a concordance index (c-index) and calibration curve. Results: The median follow-up period for surviving patients was 75.6 months, and the 5-year overall survival probability was 87.1%. The final model was constructed using the following variables: age, number of positive pelvic lymph nodes, parametrial invasion, lymphovascular invasion, and the use of concurrent chemotherapy. The nomogram predicted the 5-year overall survival with a c-index of 0.69, which was superior to the predictive power of the International Federation of Gynecology and Obstetrics (FIGO) staging system (c-index of 0.54). Conclusions: A survival-predicting nomogram that offers an accurate level of prediction and discrimination was developed based on a large multi-center study. The model may be more useful than the FIGO staging system for counseling individual patients regarding prognosis

  10. Importance of the mini-mental status examination in the treatment of patients with brain metastases: a report from the radiation therapy oncology group protocol 91-04

    International Nuclear Information System (INIS)

    Murray, Kevin J.; Scott, Charles; Zachariah, Babu; Michalski, Jeff M.; Demas, William; Vora, Nayana L.; Whitton, Anthony; Movsas, Benjamin

    2000-01-01

    Purpose: Little information is available on the importance of pretreatment Mini-Mental Status Exam (MMSE) on long-term survival and neurologic function following treatment for unresectable brain metastases. This study examines the importance of the MMSE in predicting outcome in a group of patients treated with an accelerated fractionation regimen of 30 Gy in 10 daily fractions in 2 weeks. Materials and Methods: The Radiation Therapy Oncology Group (RTOG) accrued 445 patients to a Phase III comparison of accelerated hyperfractionated (AH) radiotherapy (1.6 Gy b.i.d.) to a total dose of 54.4 Gy vs. an accelerated fractionation (AF) of 30 Gy in 10 daily fractions from 1991 through 1995. All patients had histologic proof of malignancy at the primary site. Brain metastases were measurable by CT or MRI scan and all patients had a Karnofsky performance score (KPS) of at least 70 and a neurologic function classification of 1 or 2. Two hundred twenty-four patients were entered on the accelerated fractionated arm, and 182 were eligible for analysis (7 patients were judged ineligible, no MMSE information in 29, no survival data in 1, no forms submitted in 1). Results: Average age was 60 years; 58% were male and 25% had a single intracranial lesion on their pretherapy evaluation. KPS was 70 in 32%, 80 in 31%, 90 in 29%, and 100 in 14%. The average MMSE was 26.5, which is the lower quartile for normal in the U.S. population. The range of the MMSE scores was 11-30 with 30 being the maximum. A score of less than 23 indicates possible dementia, which occurred in 16% of the patients prior to treatment. The median time from diagnosis to treatment was 5 days (range, 0-158 days). The median survival was 4.2 months with a 95% confidence interval of 3.7-5.1 months. Thirty-seven percent of the patients were alive at 6 months, and 17% were alive at 1 year. The following variables were examined in a Cox proportional-hazards model to determine their prognostic value for overall survival

  11. WE-G-BRA-03: Developing a Culture of Patient Safety Utilizing the National Radiation Oncology Incident Learning System (ROILS)

    Energy Technology Data Exchange (ETDEWEB)

    Hasson, B; Workie, D; Geraghty, C [Anne Arundel Medical Center, Annapolis, MD (United States)

    2015-06-15

    Purpose: To transition from an in-house incident reporting system to a ROILS standards system with the intent to develop a safety focused culture in the Department and enroll in ROILS. Methods: Since the AAPM Safety Summit (2010) several safety and reporting systems have been implemented within the Department. Specific checklists and SBAR reporting systems were introduced. However, the active learning component was lost due to reporting being viewed with distrust and possible retribution.To Facilitate introducing ROILS each leader in the Department received a copy of the ROILS participation guide. Four specific tasks were assigned to each leader: develop a reporting tree, begin the ROILS based system, facilitate adopting ROILS Terminology, and educate the staff on expectations of safety culture. Next, the ROILS questions were broken down into area specific questions (10–15) per departmental area. Excel spreadsheets were developed for each area and setup for error reporting entries. The Role of the Process Improvement Committee (PI) has been modified to review and make recommendations based on the ROILS entries. Results: The ROILS based Reporting has been in place for 4 months. To date 64 reports have been entered. Since the adoption of ROILS the reporting of incidents has increased from 2/month to 18/month on average. Three reports had a dosimetric effect on the patient (<5%) dose variance. The large majority of entries have been Characterized as Processes not followed or not sure how to Characterize, and Human Behavior. Conclusion: The majority of errors are typo’s that create confusion. The introduction of the ROILS standards has provided a platform for making changes to policies that increase patient safety. The goal is to develop a culture that sees reporting at a national level as a safe and effective way to improve our safety, and to dynamically learn from other institutions reporting.

  12. WE-G-BRA-03: Developing a Culture of Patient Safety Utilizing the National Radiation Oncology Incident Learning System (ROILS)

    International Nuclear Information System (INIS)

    Hasson, B; Workie, D; Geraghty, C

    2015-01-01

    Purpose: To transition from an in-house incident reporting system to a ROILS standards system with the intent to develop a safety focused culture in the Department and enroll in ROILS. Methods: Since the AAPM Safety Summit (2010) several safety and reporting systems have been implemented within the Department. Specific checklists and SBAR reporting systems were introduced. However, the active learning component was lost due to reporting being viewed with distrust and possible retribution.To Facilitate introducing ROILS each leader in the Department received a copy of the ROILS participation guide. Four specific tasks were assigned to each leader: develop a reporting tree, begin the ROILS based system, facilitate adopting ROILS Terminology, and educate the staff on expectations of safety culture. Next, the ROILS questions were broken down into area specific questions (10–15) per departmental area. Excel spreadsheets were developed for each area and setup for error reporting entries. The Role of the Process Improvement Committee (PI) has been modified to review and make recommendations based on the ROILS entries. Results: The ROILS based Reporting has been in place for 4 months. To date 64 reports have been entered. Since the adoption of ROILS the reporting of incidents has increased from 2/month to 18/month on average. Three reports had a dosimetric effect on the patient (<5%) dose variance. The large majority of entries have been Characterized as Processes not followed or not sure how to Characterize, and Human Behavior. Conclusion: The majority of errors are typo’s that create confusion. The introduction of the ROILS standards has provided a platform for making changes to policies that increase patient safety. The goal is to develop a culture that sees reporting at a national level as a safe and effective way to improve our safety, and to dynamically learn from other institutions reporting

  13. The impact of concurrent granulocyte macrophage-colony stimulating factor on radiation-induced mucositis in head and neck cancer patients: A double-blind placebo-controlled prospective Phase III study by Radiation Therapy Oncology Group 9901

    International Nuclear Information System (INIS)

    Ryu, Janice K.; Swann, Suzanne; LeVeque, Francis; Scarantino, Charles W.; Johnson, Darlene J.; Chen, Allan; Fortin, Andre; Pollock, JonDavid; Kim, Harold; Ang, Kian K.

    2007-01-01

    Purpose: Based on early clinical evidence of potential mucosal protection by granulocyte-macrophage colony stimulating factor (GM-CSF), the Radiation Therapy Oncology Group conducted a double-blind, placebo-controlled, randomized study to test the efficacy and safety of GM-CSF in reducing the severity and duration of mucosal injury and pain (mucositis) associated with curative radiotherapy (RT) in head-and-neck cancer patients. Methods and Materials: Eligible patients included those with head-and-neck cancer with radiation ports encompassing >50% of oral cavity and/or oropharynx. Standard RT ports were used to cover the primary tumor and regional lymphatics at risk in standard fractionation to 60-70 Gy. Concurrent cisplatin chemotherapy was allowed. Patients were randomized to receive subcutaneous injection of GM-CSF 250 μg/m 2 or placebo 3 times a week. Mucosal reaction was assessed during the course of RT using the National Cancer Institute Common Toxicity Criteria and the protocol-specific scoring system. Results: Between October 2000 and September 2002, 130 patients from 36 institutions were accrued. Nine patients (7%) were excluded from the analysis, 3 as a result of drug unavailability. More than 80% of the patients participated in the quality-of-life endpoint of this study. The GM-CSF did not cause any increase in toxicity compared with placebo. There was no statistically significant difference in the average mean mucositis score in the GM-CSF and placebo arms by a t test (p = 0.4006). Conclusion: This placebo-controlled, randomized study demonstrated no significant effect of GM-CSF given concurrently compared with placebo in reducing the severity or duration of RT-induced mucositis in patients undergoing definitive RT for head-and-neck cancer

  14. Oncology healthcare professionals' perspectives on the psychosocial support needs of cancer patients during oncology treatment.

    Science.gov (United States)

    Aldaz, Bruno E; Treharne, Gareth J; Knight, Robert G; Conner, Tamlin S; Perez, David

    2017-09-01

    This study explored oncology healthcare professionals' perspectives on the psychosocial support needs of diverse cancer patients during oncology treatment. Six themes were identified using thematic analysis. Healthcare professionals highlighted the importance of their sensitivity, respect and emotional tact during appointments in order to effectively identify and meet the needs of oncology patients. Participants also emphasised the importance of building rapport that recognises patients as people. Patients' acceptance of treatment-related distress and uncertainty was described as required for uptake of available psychosocial supportive services. We offer some practical implications that may help improve cancer patients' experiences during oncology treatment.

  15. Psycho-Oncology: A Patient's View.

    Science.gov (United States)

    Garcia-Prieto, Patricia

    2018-01-01

    Culturally the most important, valued, and less stigmatized part of cancer care is the medical part: The surgeon cutting the tumors out and the oncologist leading the strategic decision-making of the medical treatments available. The least valued and stigmatized part of cancer remains the psychosocial care. This chapter describes-through the eyes of an academic, psychologist, stage IV melanoma patient, and patient advocate-how one patient navigated changing psycho-oncological needs from early stage-to-stage IV through a whole range of psychological interventions available. Her voice joins that of all cancer patients around the world whom are urgently calling for psycho-oncological care to be fully recognized as a central part of cancer treatment.

  16. Delegation of medical tasks in French radiation oncology departments: current situation and impact on residents' training.

    Science.gov (United States)

    Thureau, S; Challand, T; Bibault, J-E; Biau, J; Cervellera, M; Diaz, O; Faivre, J-C; Fumagalli, I; Leroy, T; Lescut, N; Martin, V; Pichon, B; Riou, O; Dubray, B; Giraud, P; Hennequin, C

    2013-10-01

    A national survey was conducted among the radiation oncology residents about their clinical activities and responsibilities. The aim was to evaluate the clinical workload and to assess how medical tasks are delegated and supervised. A first questionnaire was administered to radiation oncology residents during a national course. A second questionnaire was mailed to 59 heads of departments. The response rate was 62% for radiation oncology residents (99 questionnaires) and 51% for heads of department (30). Eighteen heads of department (64%) declared having written specifications describing the residents' clinical tasks and roles, while only 31 radiation oncology residents (34%) knew about such a document (P=0.009). A majority of residents were satisfied with the amount of medical tasks that were delegated to them. Older residents complained about insufficient exposure to new patient's consultation, treatment planning and portal images validation. The variations observed between departments may induce heterogeneous trainings and should be addressed specifically. National specifications are necessary to reduce heterogeneities in training, and to insure that the residents' training covers all the professional skills required to practice radiation oncology. A frame endorsed by academic and professional societies would also clarify the responsibilities of both residents and seniors. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  17. Machine learning in radiation oncology theory and applications

    CERN Document Server

    El Naqa, Issam; Murphy, Martin J

    2015-01-01

    ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided rad

  18. WE-G-9A-01: Radiation Oncology Outcomes Informatics

    International Nuclear Information System (INIS)

    Mayo, C; Miller, R; Sloan, J; Wu, Q; Howell, R

    2014-01-01

    The construction of databases and support software to enable routine and systematic aggregation, analysis and reporting of patient outcomes data is emerging as an important area. “How have results for our patients been affected by the improvements we have made in our practice and in the technologies we use?” To answer this type of fundamental question about the overall pattern of efficacy observed, it is necessary to systematically gather and analyze data on all patients treated within a clinic. Clinical trials answer, in great depth and detail, questions about outcomes for the subsets of patients enrolled in a given trial. However, routine aggregation and analysis of key treatment parameter data and outcomes information for all patients is necessary to recognize emergent patterns that would be of interest from a public health or practice perspective and could better inform design of clinical trials or the evolution of best practice principals. To address these questions, Radiation Oncology outcomes databases need to be constructed to enable combination essential data from a broad group of data types including: diagnosis and staging, dose volume histogram metrics, patient reported outcomes, toxicity metrics, performance status, treatment plan parameters, demographics, DICOM data and demographics. Developing viable solutions to automate aggregation and analysis of this data requires multidisciplinary efforts to define nomenclatures, modify clinical processes and develop software and database tools requires detailed understanding of both clinical and technical issues. This session will cover the developing area of Radiation Oncology Outcomes Informatics. Learning Objectives: Audience will be able to speak to the technical requirements (software, database, web services) which must be considered in designing an outcomes database. Audience will be able to understand the content and the role of patient reported outcomes as compared to traditional toxicity measures

  19. WE-G-9A-01: Radiation Oncology Outcomes Informatics

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, C; Miller, R; Sloan, J [Mayo Clinic, Rochester, MN (United States); Wu, Q [Duke University Medical Center, Durham, NC (United States); Howell, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    The construction of databases and support software to enable routine and systematic aggregation, analysis and reporting of patient outcomes data is emerging as an important area. “How have results for our patients been affected by the improvements we have made in our practice and in the technologies we use?” To answer this type of fundamental question about the overall pattern of efficacy observed, it is necessary to systematically gather and analyze data on all patients treated within a clinic. Clinical trials answer, in great depth and detail, questions about outcomes for the subsets of patients enrolled in a given trial. However, routine aggregation and analysis of key treatment parameter data and outcomes information for all patients is necessary to recognize emergent patterns that would be of interest from a public health or practice perspective and could better inform design of clinical trials or the evolution of best practice principals. To address these questions, Radiation Oncology outcomes databases need to be constructed to enable combination essential data from a broad group of data types including: diagnosis and staging, dose volume histogram metrics, patient reported outcomes, toxicity metrics, performance status, treatment plan parameters, demographics, DICOM data and demographics. Developing viable solutions to automate aggregation and analysis of this data requires multidisciplinary efforts to define nomenclatures, modify clinical processes and develop software and database tools requires detailed understanding of both clinical and technical issues. This session will cover the developing area of Radiation Oncology Outcomes Informatics. Learning Objectives: Audience will be able to speak to the technical requirements (software, database, web services) which must be considered in designing an outcomes database. Audience will be able to understand the content and the role of patient reported outcomes as compared to traditional toxicity measures

  20. Meeting the challenge of managed care - Part III: Information systems for radiation oncology practice

    International Nuclear Information System (INIS)

    Kijewski, Peter

    1997-01-01

    Purpose: This course will review topics to be considered when defining an information systems plan for a department of radiation oncology. A survey of available systems will be presented. Computer information systems can play an important role in the effective administration and operation of a department of radiation oncology. Tasks such as 1) scheduling for physicians, patients, and rooms, 2) charge collection and billing, 3) administrative reporting, and 4) treatment verification can be carried out efficiently with the assistance of computer systems. Operating a department without a state of art computer system will become increasingly difficult as hospitals and healthcare buyers increasingly rely on computer information technology. Communication of the radiation oncology system with outside systems will thus further enhance the utility of the computer system. The steps for the selection and installation of an information system will be discussed: 1) defining the objectives, 2) selecting a suitable system, 3) determining costs, 4) setting up maintenance contracts, and 5) planning for future upgrades

  1. DEGRO 2009. Radiation oncology - medical physics - radiation biology. Abstracts; DEGRO 2009. Radioonkologie - Medizinische Physik - Strahlenbiologie. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The special volume of the journal covers the abstracts of the DEGRO 2009 meeting on radiation oncology, medical physics, and radiation biology, covering the following topics: seldom diseases, gastrointestinal tumors, radiation reactions and radiation protection, medical care and science, central nervous system, medical physics, the non-parvicellular lung carcinomas, ear-nose-and throat, target-oriented radiotherapy plus ''X'', radio-oncology - young academics, lymphomas, mammary glands, modern radiotherapy, life quality and palliative radiotherapy, radiotherapy of the prostate carcinoma, imaging for planning and therapy, the digital documentation in clinics and practical experiences, NMR imaging and tomography, hadrons - actual status in Germany, urinal tract oncology, radiotoxicity.

  2. American Society for Radiation Oncology (ASTRO) Survey of Radiation Biology Educators in U.S. and Canadian Radiation Oncology Residency Programs

    International Nuclear Information System (INIS)

    Rosenstein, Barry S.; Held, Kathryn D.; Rockwell, Sara; Williams, Jacqueline P.; Zeman, Elaine M.

    2009-01-01

    Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educators whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.

  3. Nuclear oncology: From genotype to patient care

    International Nuclear Information System (INIS)

    1997-01-01

    Nuclear medicine is the medical specialty best suited to translate the exploding body of knowledge obtained from research in genetics and molecular biology into the care of patients. This fourth annual nuclear oncology conference will address how this can be done and how positron emission tomography (PET) and single photon emission tomography (SPECT) can be used in the care of patients with cancer or with increased genetic risk of developing cancer. The course will include illustrative patient studies showing how PET and SPECT can help in diagnosis, staging and treatment planning and monitoring of patients with cancer

  4. Experience of wireless local area network in a radiation oncology department.

    Science.gov (United States)

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2010-01-01

    The aim of this work is to develop a wireless local area network (LAN) between different types of users (Radiation Oncologists, Radiological Physicists, Radiation Technologists, etc) for efficient patient data management and to made easy the availability of information (chair side) to improve the quality of patient care in Radiation Oncology department. We have used mobile workstations (Laptops) and stationary workstations, all equipped with wireless-fidelity (Wi-Fi) access. Wireless standard 802.11g (as recommended by Institute of Electrical and Electronic Engineers (IEEE, Piscataway, NJ) has been used. The wireless networking was configured with the Service Set Identifier (SSID), Media Access Control (MAC) address filtering, and Wired Equivalent Privacy (WEP) network securities. We are successfully using this wireless network in sharing the indigenously developed patient information management software. The proper selection of the hardware and the software combined with a secure wireless LAN setup will lead to a more efficient and productive radiation oncology department.

  5. Molecular biology in radiation oncology. Radiation oncology perspective of BRCA1 and BRCA2

    International Nuclear Information System (INIS)

    Coleman, C.N.

    1999-01-01

    The breast cancer susceptibility genes, BRCA1 and BRCA2, are used to illustrate the application of molecular biology to clinical radiation oncology. Identified by linkage analysis and cloned, the structure of the genes and the numerous mutations are determined by molecular biology techniques that examine the structure of the DNA and the proteins made by the normal and mutant alleles. Mutations in the non-transcribed portion of the gene will not be found in protein structure assays and may be important in gene function. In addition to potential deleterious mutations, normal polymorphisms of the gene will also be detected, therefore not all differences in gene sequence may represent important mutations, a finding that complicates genetic screening and counseling. The localization of the protein in the nucleus, the expression in relation to cell cycle and the association with RAD51 led to the discovery that the two BRCA genes may be involved in transcriptional regulation and DNA repair. The defect in DNA repair can increase radiosensitivity which might improve local control using breast-conserving treatment in a tumor which is homozygous for the loss of the gene (i.e., BRCA1 and BRCA2 are tumor suppressor genes). This is supported by the early reports of a high rate of local control with breast-conserving therapy. Nonetheless, this radiosensitivity theoretically may also lead to increased susceptibility to carcinogenic effects in surviving cells, a finding that might not be observed for decades. The susceptibility to radiation-induced DNA damage appears also to make the cells more sensitive to chemotherapy. Understanding the role of the normal BRCA genes in DNA repair might help define a novel mechanism for radiation sensitization by interfering with the normal gene function using a variety of molecular or biochemical therapies

  6. Malnutrition in paediatric oncology patients

    African Journals Online (AJOL)

    Nutritional status of paediatric cancer patients at diagnosis ... Professor and Executive Head, Department of Paediatrics and Child Health, Stellenbosch University and Tygerberg Hospital, .... can lead to decreased oral intake, weight loss.

  7. R-IDEAL : A Framework for Systematic Clinical Evaluation of Technical Innovations in Radiation Oncology

    NARCIS (Netherlands)

    Verkooijen, Helena M; Kerkmeijer, LGW; Fuller, Clifton D; Huddart, Robbert; Faivre-Finn, Corinne; Verheij, Marcel; Mook, Stella; Sahgal, Arjun; Hall, Emma; Schultz, Chris

    2017-01-01

    The pace of innovation in radiation oncology is high and the window of opportunity for evaluation narrow. Financial incentives, industry pressure, and patients' demand for high-tech treatments have led to widespread implementation of innovations before, or even without, robust evidence of improved

  8. Final report from the Spanish Society of Radiotherapy and Oncology Infrastructures Commission about department standards recommendable in radiation oncology

    International Nuclear Information System (INIS)

    Esco, R.; Pardo, J.; Palacios, A.; Biete, A.; Fernandez, J.; Valls, A.; Herrazquin, L.; Roman, P.; Magallon, R.

    2001-01-01

    The publication of the Royal Decree 1566/1988 of July 17 th , about Quality Assurance and Control in Radiation Therapy, mandates the elaboration of protocols in Radiation Therapy. Those protocols must contemplate the material and human resources necessary to implement a quality practical radiation therapy according to law. In order to establish norms regarding human and material resources, it is necessary to establish beforehand some patient care standards that serve as a frame of reference to determine the resources needed for each procedure. Furthermore, the necessary coordination of resources, material and humans that have to be present in a correct patient care planning, mandates the publication of rules that are easy to interpret and follow up. In this direction, both editions of the 'White Book of Oncology in Spain', the 'GAT Document for Radiotherapy', and the rules edited by the Committee of Experts in Radiation Therapy of the Academy of Medical Sciences of Catalunya and Balears, have represented an important advance in the establishment of these criteria in Spain. The Spanish Society of Radiation Therapy and Oncology (AERO), in an attempt to facilitate to all its associates and the health authorities some criteria for planning and implementing resources, requested its Commission of Infrastructures to elaborate a set of rules to determine the necessary resources in each radiation therapy procedure. The objective of this document is to establish some recommendations about the minimal necessities of treatment units and staff, determining their respective work capabilities, to be able to develop a quality radiation therapy in departments already existing. In summary, it is intended that the patient care is limited in a way that quality is not affected by patient overload. Also it tries to offer the Public Administration some planning criteria useful to create the necessary services of Radiation Oncology, with the adequate resources, which will bring a

  9. Project reconversion Service Hospital Radiation Oncology Clinics-Medical School

    International Nuclear Information System (INIS)

    Quarneti, A.; Levaggi, G.

    2004-01-01

    Introduction: The Health Sector operates within the framework of Social Policy and it is therefore one of the ways of distribution of public benefit, like Housing, Education and Social Security. While public spending on health has grown in recent years, its distribution has been uneven and the sector faces funding and management problems. The Service Hospital Radiation Oncology has reduced its health care liavility , lack technological development and unsufficient human resources and training. Aim: developing an inclusive reform bill Service Hospital Radiation Oncology .Material and Methods: This project tends to form a network institutional, introducing concepts of evidence-based medicine, risk models, cost analysis, coding systems, system implementation of quality management (ISO-9000 Standards). Proposes redefining radiotherapy centers and their potential participation in training resource development goals humanos.Promueve scientific research of national interest. Separate strictly administrative function, management and teaching. The project takes into account the characteristics of demand, the need to order it and organize around her, institutional network system and within the Hospital das Clinicas own related services related to Service Hospital Radiation Oncology , Encourages freedom of choice, and confers greater equity in care. The project would managed by the Hospital Clínicas. Conclusions: We believe this proposal identifies problems and opportunities, Service Hospital Radiation Oncology proposes the development of institutional network under one management model

  10. Evaluating stress, burnout and job satisfaction in New Zealand radiation oncology departments.

    Science.gov (United States)

    Jasperse, M; Herst, P; Dungey, G

    2014-01-01

    This research aimed to determine the levels of occupational stress, burnout and job satisfaction among radiation oncology workers across New Zealand. All oncology staff practising in all eight radiation oncology departments in New Zealand were invited to participate anonymously in a questionnaire, which consisted of the Maslach Burnout Inventory and measures of stress intensity associated with specific occupational stressors, stress reduction strategies and job satisfaction. A total of 171 (out of 349) complete responses were analysed using spss 19; there were 23 oncologists, 111 radiation therapists, 22 radiation nurses and 15 radiation physicists. All participants, regardless of profession, reported high stress levels associated with both patient-centred and organisational stressors. Participants scored high in all three domains of burnout: emotional exhaustion, depersonalisation and personal accomplishment. Interestingly, although organisational stressors predicted higher emotional exhaustion and emotional exhaustion predicted lower job satisfaction, patient stressors were associated with higher job satisfaction. Job satisfaction initiatives such as ongoing education, mentoring and role extension were supported by many participants as was addressing organisational stressors, such as lack of recognition and support from management and unrealistic expectations and demands. New Zealand staff exhibit higher levels of burnout than Maslach Burnout Inventory medical norms and oncology workers in previous international studies. © 2013 John Wiley & Sons Ltd.

  11. Factors which influence quality of life in patients with non-small cell lung cancer (NSCLC): A radiation therapy oncology group study (RTOG 89-01)

    International Nuclear Information System (INIS)

    Scott, C.B.; Sause, W.T.; Johnson, D.; Dar, A.R.; Wasserman, T.H.; Rubin, P.; Khandekar, J.; Byhardt, R.B.; Taylor, S.; McDonald, A.

    1997-01-01

    Purpose: Prospectively evaluate the quality of life (QOL) of patients with NSCLC participating in a randomized phase III study conducted by the RTOG and Eastern Cooperative Oncology Group. Determine the factors which influence QOL during and post therapy. Materials and Methods: From (4(90)) to (4(94)) to 75 patients (pts) were randomized on RTOG 89-01 between a regimen containing radiation therapy (RT) versus a regimen containing surgery (S). All pts received induction vinblastine and cisplatin, followed by either S or RT and consolidation chemotherapy (CT). Pts were given the self-assessment QOL forms prior to the start of therapy, post induction CT, post RT or S, and periodically during follow-up. Two questionnaires were used: Functional Assessment of Cancer Therapy for lung cancer patients (FACT-L) and Functional Living Index-Cancer (FLIC). The FACT-L consists of 44 questions covering 6 domains (physical, social, and emotional well-being, relationship with physician, fulfilment, and lung cancer specific concerns), FLIC contains 22 questions summing to one total score. Results: 51 pts participated in the QOL endpoint, 24 were excluded: 3 pts refused, institution did not administer QOL questionnaires in 9 pts, 3 completed QOL after start of therapy, 1 institution refused to participate, 5 questionnaires were incomplete/unusable, 1 pt could not read English, and 2 were ineligible for treatment. Participation in QOL was not predicted by any pretreatment characteristic. Women had worse pretreatment QOL (p<0.005, by FLIC) and more problems with disease-related symptoms (p<0.005, by FACT) than men. Pts with KPS 90-100 had better pretreatment QOL than pts with KPS 60-80 (p<0.025, FLIC). Neither race, marital status, education level, age, prior weight loss, nor disease symptoms statistically significantly influenced pretreatment QOL. Initial QOL did not predict overall survival. FACT-L was reported on 25 pts post induction CT. Follow-up FACT-L was available on 12 pts

  12. Quantitative assessment of workload and stressors in clinical radiation oncology.

    Science.gov (United States)

    Mazur, Lukasz M; Mosaly, Prithima R; Jackson, Marianne; Chang, Sha X; Burkhardt, Katharin Deschesne; Adams, Robert D; Jones, Ellen L; Hoyle, Lesley; Xu, Jing; Rockwell, John; Marks, Lawrence B

    2012-08-01

    Workload level and sources of stressors have been implicated as sources of error in multiple settings. We assessed workload levels and sources of stressors among radiation oncology professionals. Furthermore, we explored the potential association between workload and the frequency of reported radiotherapy incidents by the World Health Organization (WHO). Data collection was aimed at various tasks performed by 21 study participants from different radiation oncology professional subgroups (simulation therapists, radiation therapists, physicists, dosimetrists, and physicians). Workload was assessed using National Aeronautics and Space Administration Task-Load Index (NASA TLX). Sources of stressors were quantified using observational methods and segregated using a standard taxonomy. Comparisons between professional subgroups and tasks were made using analysis of variance ANOVA, multivariate ANOVA, and Duncan test. An association between workload levels (NASA TLX) and the frequency of radiotherapy incidents (WHO incidents) was explored (Pearson correlation test). A total of 173 workload assessments were obtained. Overall, simulation therapists had relatively low workloads (NASA TLX range, 30-36), and physicists had relatively high workloads (NASA TLX range, 51-63). NASA TLX scores for physicians, radiation therapists, and dosimetrists ranged from 40-52. There was marked intertask/professional subgroup variation (P<.0001). Mental demand (P<.001), physical demand (P=.001), and effort (P=.006) significantly differed among professional subgroups. Typically, there were 3-5 stressors per cycle of analyzed tasks with the following distribution: interruptions (41.4%), time factors (17%), technical factors (13.6%), teamwork issues (11.6%), patient factors (9.0%), and environmental factors (7.4%). A positive association between workload and frequency of reported radiotherapy incidents by the WHO was found (r = 0.87, P value=.045). Workload level and sources of stressors vary

  13. Quantitative Assessment of Workload and Stressors in Clinical Radiation Oncology

    International Nuclear Information System (INIS)

    Mazur, Lukasz M.; Mosaly, Prithima R.; Jackson, Marianne; Chang, Sha X.; Burkhardt, Katharin Deschesne; Adams, Robert D.; Jones, Ellen L.; Hoyle, Lesley; Xu, Jing; Rockwell, John; Marks, Lawrence B.

    2012-01-01

    Purpose: Workload level and sources of stressors have been implicated as sources of error in multiple settings. We assessed workload levels and sources of stressors among radiation oncology professionals. Furthermore, we explored the potential association between workload and the frequency of reported radiotherapy incidents by the World Health Organization (WHO). Methods and Materials: Data collection was aimed at various tasks performed by 21 study participants from different radiation oncology professional subgroups (simulation therapists, radiation therapists, physicists, dosimetrists, and physicians). Workload was assessed using National Aeronautics and Space Administration Task-Load Index (NASA TLX). Sources of stressors were quantified using observational methods and segregated using a standard taxonomy. Comparisons between professional subgroups and tasks were made using analysis of variance ANOVA, multivariate ANOVA, and Duncan test. An association between workload levels (NASA TLX) and the frequency of radiotherapy incidents (WHO incidents) was explored (Pearson correlation test). Results: A total of 173 workload assessments were obtained. Overall, simulation therapists had relatively low workloads (NASA TLX range, 30-36), and physicists had relatively high workloads (NASA TLX range, 51-63). NASA TLX scores for physicians, radiation therapists, and dosimetrists ranged from 40-52. There was marked intertask/professional subgroup variation (P<.0001). Mental demand (P<.001), physical demand (P=.001), and effort (P=.006) significantly differed among professional subgroups. Typically, there were 3-5 stressors per cycle of analyzed tasks with the following distribution: interruptions (41.4%), time factors (17%), technical factors (13.6%), teamwork issues (11.6%), patient factors (9.0%), and environmental factors (7.4%). A positive association between workload and frequency of reported radiotherapy incidents by the WHO was found (r = 0.87, P value=.045

  14. Quantitative Assessment of Workload and Stressors in Clinical Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, Lukasz M., E-mail: lukasz_mazur@ncsu.edu [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Industrial Extension Service, North Carolina State University, Raleigh, North Carolina (United States); Biomedical Engineering, North Carolina State University, Raleigh, North Carolina (United States); Mosaly, Prithima R. [Industrial Extension Service, North Carolina State University, Raleigh, North Carolina (United States); Jackson, Marianne; Chang, Sha X.; Burkhardt, Katharin Deschesne; Adams, Robert D.; Jones, Ellen L.; Hoyle, Lesley [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Xu, Jing [Industrial Extension Service, North Carolina State University, Raleigh, North Carolina (United States); Rockwell, John; Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States)

    2012-08-01

    Purpose: Workload level and sources of stressors have been implicated as sources of error in multiple settings. We assessed workload levels and sources of stressors among radiation oncology professionals. Furthermore, we explored the potential association between workload and the frequency of reported radiotherapy incidents by the World Health Organization (WHO). Methods and Materials: Data collection was aimed at various tasks performed by 21 study participants from different radiation oncology professional subgroups (simulation therapists, radiation therapists, physicists, dosimetrists, and physicians). Workload was assessed using National Aeronautics and Space Administration Task-Load Index (NASA TLX). Sources of stressors were quantified using observational methods and segregated using a standard taxonomy. Comparisons between professional subgroups and tasks were made using analysis of variance ANOVA, multivariate ANOVA, and Duncan test. An association between workload levels (NASA TLX) and the frequency of radiotherapy incidents (WHO incidents) was explored (Pearson correlation test). Results: A total of 173 workload assessments were obtained. Overall, simulation therapists had relatively low workloads (NASA TLX range, 30-36), and physicists had relatively high workloads (NASA TLX range, 51-63). NASA TLX scores for physicians, radiation therapists, and dosimetrists ranged from 40-52. There was marked intertask/professional subgroup variation (P<.0001). Mental demand (P<.001), physical demand (P=.001), and effort (P=.006) significantly differed among professional subgroups. Typically, there were 3-5 stressors per cycle of analyzed tasks with the following distribution: interruptions (41.4%), time factors (17%), technical factors (13.6%), teamwork issues (11.6%), patient factors (9.0%), and environmental factors (7.4%). A positive association between workload and frequency of reported radiotherapy incidents by the WHO was found (r = 0.87, P value=.045

  15. "Radio-oncomics" : The potential of radiomics in radiation oncology.

    Science.gov (United States)

    Peeken, Jan Caspar; Nüsslin, Fridtjof; Combs, Stephanie E

    2017-10-01

    Radiomics, a recently introduced concept, describes quantitative computerized algorithm-based feature extraction from imaging data including computer tomography (CT), magnetic resonance imaging (MRT), or positron-emission tomography (PET) images. For radiation oncology it offers the potential to significantly influence clinical decision-making and thus therapy planning and follow-up workflow. After image acquisition, image preprocessing, and defining regions of interest by structure segmentation, algorithms are applied to calculate shape, intensity, texture, and multiscale filter features. By combining multiple features and correlating them with clinical outcome, prognostic models can be created. Retrospective studies have proposed radiomics classifiers predicting, e. g., overall survival, radiation treatment response, distant metastases, or radiation-related toxicity. Besides, radiomics features can be correlated with genomic information ("radiogenomics") and could be used for tumor characterization. Distinct patterns based on data-based as well as genomics-based features will influence radiation oncology in the future. Individualized treatments in terms of dose level adaption and target volume definition, as well as other outcome-related parameters will depend on radiomics and radiogenomics. By integration of various datasets, the prognostic power can be increased making radiomics a valuable part of future precision medicine approaches. This perspective demonstrates the evidence for the radiomics concept in radiation oncology. The necessity of further studies to integrate radiomics classifiers into clinical decision-making and the radiation therapy workflow is emphasized.

  16. American Society for Radiation Oncology (ASTRO) 2012 Workforce Study: The Radiation Oncologists' and Residents' Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Pohar, Surjeet, E-mail: spohar@iuhealth.org [Indiana University Health East, Indianapolis, Indiana (United States); Fung, Claire Y. [Commonwealth Newburyport Cancer Center, Newburyport, Massachusetts (United States); Hopkins, Shane [William R. Bliss Cancer Center, Ames, Iowa (United States); Miller, Robert [Mayo Clinic, Rochester, Minnesota (United States); Azawi, Samar [VA Veteran Hospital/University of California Irvine, Newport Beach, California (United States); Arnone, Anna; Patton, Caroline [ASTRO, Fairfax, Virginia (United States); Olsen, Christine [Massachusetts General Hospital, Boston, Massachusetts (United States)

    2013-12-01

    Purpose: The American Society for Radiation Oncology (ASTRO) conducted the 2012 Radiation Oncology Workforce Survey to obtain an up-to-date picture of the workforce, assess its needs and concerns, and identify quality and safety improvement opportunities. The results pertaining to radiation oncologists (ROs) and residents (RORs) are presented here. Methods: The ASTRO Workforce Subcommittee, in collaboration with allied radiation oncology professional societies, conducted a survey study in early 2012. An online survey questionnaire was sent to all segments of the radiation oncology workforce. Respondents who were actively working were included in the analysis. This manuscript describes the data for ROs and RORs. Results: A total of 3618 ROs and 568 RORs were surveyed. The response rate for both groups was 29%, with 1047 RO and 165 ROR responses. Among ROs, the 2 most common racial groups were white (80%) and Asian (15%), and the male-to-female ratio was 2.85 (74% male). The median age of ROs was 51. ROs averaged 253.4 new patient consults in a year and 22.9 on-treatment patients. More than 86% of ROs reported being satisfied or very satisfied overall with their career. Close to half of ROs reported having burnout feelings. There was a trend toward more frequent burnout feelings with increasing numbers of new patient consults. ROs' top concerns were related to documentation, reimbursement, and patients' health insurance coverage. Ninety-five percent of ROs felt confident when implementing new technology. Fifty-one percent of ROs thought that the supply of ROs was balanced with demand, and 33% perceived an oversupply. Conclusions: This study provides a current snapshot of the 2012 radiation oncology physician workforce. There was a predominance of whites and men. Job satisfaction level was high. However a substantial fraction of ROs reported burnout feelings. Perceptions about supply and demand balance were mixed. ROs top concerns reflect areas of attention

  17. Efficacy of routine pre-radiation dental screening and dental follow-up in head and neck oncology patients on intermediate and late radiation effects. A retrospective evaluation

    NARCIS (Netherlands)

    Schuurhuis, Jennifer M.; Stokman, Monique A.; Roodenburg, Johannes L. N.; Reintsema, Harry; Langendijk, Johannes A.; Vissink, Arjan; Spijkervet, Frederik K. L.

    2011-01-01

    Background and purpose: Head-neck radiotherapy is accompanied by a life-long risk of developing severe oral problems. This study retrospectively assessed oral foci detected during pre-radiation dental screening and follow-up in order to assess risk factors for developing oral problems after

  18. American Society of Radiation Oncology Recommendations for Documenting Intensity-Modulated Radiation Therapy Treatments

    International Nuclear Information System (INIS)

    Holmes, Timothy; Das, Rupak; Low, Daniel; Yin Fangfang; Balter, James; Palta, Jatinder; Eifel, Patricia

    2009-01-01

    Despite the widespread use of intensity-modulated radiation therapy (IMRT) for approximately a decade, a lack of adequate guidelines for documenting these treatments persists. Proper IMRT treatment documentation is necessary for accurate reconstruction of prior treatments when a patient presents with a marginal recurrence. This is especially crucial when the follow-up care is managed at a second treatment facility not involved in the initial IMRT treatment. To address this issue, an American Society for Radiation Oncology (ASTRO) workgroup within the American ASTRO Radiation Physics Committee was formed at the request of the ASTRO Research Council to develop a set of recommendations for documenting IMRT treatments. This document provides a set of comprehensive recommendations for documenting IMRT treatments, as well as image-guidance procedures, with example forms provided.

  19. The oncologic and the geriatric patient

    International Nuclear Information System (INIS)

    Philotheou, Geraldine M

    2002-01-01

    The oncologic and the geriatric patient have special needs in the nuclear medicine department. The nuclear medicine technologists must be knowledgeable and compassionate when dealing with these patients. The diagnosis of cancer will have a sociological and psychological impact on the patient, to which the technologist must relate in an empathetic way. Furthermore, the technologist should take cognisance of the patient's physical condition and be able to modify the examination accordingly. Dealing with the geriatric patient should be correctly placed on the continuum between a gerontological and geriatric approach taking into consideration normal changes due to aging. The patient experience when undergoing the high technology nuclear medicine diagnostic procedure is unique and all effort must be made to ensure the success of the examination and the satisfaction of the patient (Au)

  20. Safety practices, perceptions, and behaviors in radiation oncology: A national survey of radiation therapists.

    Science.gov (United States)

    Woodhouse, Kristina Demas; Hashemi, David; Betcher, Kathryn; Doucette, Abigail; Weaver, Allison; Monzon, Brian; Rosenthal, Seth A; Vapiwala, Neha

    Radiation therapy is complex and demands high vigilance and precise coordination. Radiation therapists (RTTs) directly deliver radiation and are often the first to discover an error. Yet, few studies have examined the practices of RTTs regarding patient safety. We conducted a national survey to explore the perspectives of RTTs related to quality and safety. In 2016, an electronic survey was sent to a random sample of 1500 RTTs in the United States. The survey assessed department safety, error reporting, safety knowledge, and culture. Questions were multiple choice or recorded on a Likert scale. Results were summarized using descriptive statistics and analyzed using multivariate logistic regression. A total of 702 RTTs from 49 states (47% response rate) completed the survey. Respondents represented a broad distribution across practice settings. Most RTTs rated department patient safety as excellent (61%) or very good (32%), especially if they had an incident learning system (ILS) (odds ratio, 2.0). Only 21% reported using an ILS despite 58% reporting an accessible ILS in their department. RTTs felt errors were most likely to occur with longer shifts and poor multidisciplinary communication; 40% reported that burnout and anxiety negatively affected their ability to deliver care. Workplace bullying was also reported among 17%. Overall, there was interest (62%) in improving knowledge in patient safety. Although most RTTs reported excellent safety cultures within their facilities, overall, there was limited access to and utilization of ILSs by RTTs. Workplace issues identified may also represent barriers to delivering quality care. RTTs were also interested in additional resources regarding quality and safety. These results will further enhance safety initiatives and inform future innovative educational efforts in radiation oncology. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  1. Health regulations about radiation oncology in Spain: The legislative dilemma between radiation protection and treatment of cancer

    International Nuclear Information System (INIS)

    Esco, R.; Biete, A.; Pardo, J.; Carceller, J.A.; Veira, C.; Palacios, A.; Vazquez, M.G.

    2001-01-01

    The Royal Decree 1566/1998 of July 17th establishes the criteria on quality in radiation therapy and is a cornerstone in Spanish regulation of this medical field. The Royal Decree gives some rules that, from a medical point of view, are considered as a good practice. Radiation protection of patients is necessary to achieve a high quality radiation oncology treatments. That is the reason why Royal decree 1566/1998 is titled 'quality criteria in radiation therapy'. A quality control program must be tailored to every single radiation oncology department and, for this reason, its standardization is difficult. Nevertheless, some medical procedures are defined by the royal decree and such procedures are the minimum criteria that all the departments must follow in the development of its own quality control program. The authors make some reflections about health regulations about radiation oncology in Spain, pointing out that a legislative dilemma between radiation protection and treatment of cancer due to application of the legislative rules may occur. The social and medical cost of rigid bureaucratic procedures is pointed out. A large amount of equipment controls and measurements takes time that could be used in treating patients. This is more important in an environment of limited technical and human resources. (author)

  2. An Increase in Medical Student Knowledge of Radiation Oncology: A Pre-Post Examination Analysis of the Oncology Education Initiative

    International Nuclear Information System (INIS)

    Hirsch, Ariel E.; Mulleady Bishop, Pauline; Dad, Luqman; Singh, Deeptej; Slanetz, Priscilla J.

    2009-01-01

    Purpose: The Oncology Education Initiative was created to advance oncology and radiation oncology education by integrating structured didactics into the existing core radiology clerkship. We set out to determine whether the addition of structured didactics could lead to a significant increase in overall medical student knowledge about radiation oncology. Methods and Materials: We conducted a pre- and posttest examining concepts in general radiation oncology, breast cancer, and prostate cancer. The 15-question, multiple-choice exam was administered before and after a 1.5-hour didactic lecture by an attending physician in radiation oncology. Individual question changes, overall student changes, and overall categorical changes were analyzed. All hypothesis tests were two-tailed (significance level 0.05). Results: Of the 153 fourth-year students, 137 (90%) took the pre- and posttest and were present for the didactic lecture. The average test grade improved from 59% to 70% (p = 0.011). Improvement was seen in all questions except clinical vignettes involving correct identification of TNM staging. Statistically significant improvement (p ≤ 0.03) was seen in the questions regarding acute and late side effects of radiation, brachytherapy for prostate cancer, delivery of radiation treatment, and management of early-stage breast cancer. Conclusions: Addition of didactics in radiation oncology significantly improves medical students' knowledge of the topic. Despite perceived difficulty in teaching radiation oncology and the assumption that it is beyond the scope of reasonable knowledge for medical students, we have shown that even with one dedicated lecture, students can learn and absorb general principles regarding radiation oncology

  3. Grade Inflation in Medical Student Radiation Oncology Clerkships: Missed Opportunities for Feedback?

    International Nuclear Information System (INIS)

    Grover, Surbhi; Swisher-McClure, Samuel; Sosnowicz, Stasha; Li, Jiaqi; Mitra, Nandita; Berman, Abigail T.; Baffic, Cordelia; Vapiwala, Neha; Freedman, Gary M.

    2015-01-01

    Purpose: To test the hypothesis that medical student radiation oncology elective rotation grades are inflated and cannot be used to distinguish residency applicants. Methods and Materials: The records of 196 applicants to a single radiation oncology residency program in 2011 and 2012 were retrospectively reviewed. The grades for each rotation in radiation oncology were collected and converted to a standardized 4-point grading scale (honors, high pass, pass, fail). Pass/fail grades were scored as not applicable. The primary study endpoint was to compare the distribution of applicants' grades in radiation oncology with their grades in medicine, surgery, pediatrics, and obstetrics/gynecology core clerkships. Results: The mean United States Medical Licensing Examination Step 1 score of the applicants was 237 (range, 188-269), 43% had additional Masters or PhD degrees, and 74% had at least 1 publication. Twenty-nine applicants were graded for radiation oncology rotations on a pass/fail basis and were excluded from the final analysis. Of the remaining applicants (n=167), 80% received the highest possible grade for their radiation oncology rotations. Grades in radiation oncology were significantly higher than each of the other 4 clerkships studied (P<.001). Of all applicants, 195 of 196 matched into a radiation oncology residency. Higher grades in radiation oncology were associated with significantly higher grades in the pediatrics core clerkship (P=.002). However, other medical school performance metrics were not significantly associated with higher grades in radiation oncology. Conclusions: Although our study group consists of a selected group of radiation oncology applicants, their grades in radiation oncology clerkships were highly skewed toward the highest grades when compared with grades in other core clerkships. Student grading in radiation oncology clerkships should be re-evaluated to incorporate more objective and detailed performance metrics to allow for

  4. Patient/Family Education for Newly Diagnosed Pediatric Oncology Patients.

    Science.gov (United States)

    Landier, Wendy; Ahern, JoAnn; Barakat, Lamia P; Bhatia, Smita; Bingen, Kristin M; Bondurant, Patricia G; Cohn, Susan L; Dobrozsi, Sarah K; Haugen, Maureen; Herring, Ruth Anne; Hooke, Mary C; Martin, Melissa; Murphy, Kathryn; Newman, Amy R; Rodgers, Cheryl C; Ruccione, Kathleen S; Sullivan, Jeneane; Weiss, Marianne; Withycombe, Janice; Yasui, Lise; Hockenberry, Marilyn

    There is a paucity of data to support evidence-based practices in the provision of patient/family education in the context of a new childhood cancer diagnosis. Since the majority of children with cancer are treated on pediatric oncology clinical trials, lack of effective patient/family education has the potential to negatively affect both patient and clinical trial outcomes. The Children's Oncology Group Nursing Discipline convened an interprofessional expert panel from within and beyond pediatric oncology to review available and emerging evidence and develop expert consensus recommendations regarding harmonization of patient/family education practices for newly diagnosed pediatric oncology patients across institutions. Five broad principles, with associated recommendations, were identified by the panel, including recognition that (1) in pediatric oncology, patient/family education is family-centered; (2) a diagnosis of childhood cancer is overwhelming and the family needs time to process the diagnosis and develop a plan for managing ongoing life demands before they can successfully learn to care for the child; (3) patient/family education should be an interprofessional endeavor with 3 key areas of focus: (a) diagnosis/treatment, (b) psychosocial coping, and (c) care of the child; (4) patient/family education should occur across the continuum of care; and (5) a supportive environment is necessary to optimize learning. Dissemination and implementation of these recommendations will set the stage for future studies that aim to develop evidence to inform best practices, and ultimately to establish the standard of care for effective patient/family education in pediatric oncology.

  5. [Possibilities and perspectives of quality management in radiation oncology].

    Science.gov (United States)

    Seegenschmiedt, M H; Zehe, M; Fehlauer, F; Barzen, G

    2012-11-01

    The medical discipline radiation oncology and radiation therapy (treatment with ionizing radiation) has developed rapidly in the last decade due to new technologies (imaging, computer technology, software, organization) and is one of the most important pillars of tumor therapy. Structure and process quality play a decisive role in the quality of outcome results (therapy success, tumor response, avoidance of side effects) in this field. Since 2007 all institutions in the health and social system are committed to introduce and continuously develop a quality management (QM) system. The complex terms of reference, the complicated technical instruments, the highly specialized personnel and the time-consuming processes for planning, implementation and assessment of radiation therapy made it logical to introduce a QM system in radiation oncology, independent of the legal requirements. The Radiation Center Hamburg (SZHH) has functioned as a medical care center under medical leadership and management since 2009. The total QM and organization system implemented for the Radiation Center Hamburg was prepared in 2008 and 2009 and certified in June 2010 by the accreditation body (TÜV-Süd) for DIN EN ISO 9001:2008. The main function of the QM system of the SZHH is to make the basic principles understandable for insiders and outsiders, to have clear structures, to integrate management principles into the routine and therefore to organize the learning processes more effectively both for interior and exterior aspects.

  6. Board-Certified Oncology Pharmacists: Their Potential Contribution to Reducing a Shortfall in Oncology Patient Visits.

    Science.gov (United States)

    Ignoffo, Robert; Knapp, Katherine; Barnett, Mitchell; Barbour, Sally Yowell; D'Amato, Steve; Iacovelli, Lew; Knudsen, Jasen; Koontz, Susannah E; Mancini, Robert; McBride, Ali; McCauley, Dayna; Medina, Patrick; O'Bryant, Cindy L; Scarpace, Sarah; Stricker, Steve; Trovato, James A

    2016-04-01

    With an aging US population, the number of patients who need cancer treatment will increase significantly by 2020. On the basis of a predicted shortage of oncology physicians, nonphysician health care practitioners will need to fill the shortfall in oncology patient visits, and nurse practitioners and physician assistants have already been identified for this purpose. This study proposes that appropriately trained oncology pharmacists can also contribute. The purpose of this study is to estimate the supply of Board of Pharmacy Specialties-certified oncology pharmacists (BCOPs) and their potential contribution to the care of patients with cancer through 2020. Data regarding accredited oncology pharmacy residencies, new BCOPs, and total BCOPs were used to estimate oncology residencies, new BCOPs, and total BCOPs through 2020. A Delphi panel process was used to estimate patient visits, identify patient care services that BCOPs could provide, and study limitations. By 2020, there will be an estimated 3,639 BCOPs, and approximately 62% of BCOPs will have completed accredited oncology pharmacy residencies. Delphi panelists came to consensus (at least 80% agreement) on eight patient care services that BCOPs could provide. Although the estimates given by our model indicate that BCOPs could provide 5 to 7 million 30-minute patient visits annually, sensitivity analysis, based on factors that could reduce potential visit availability resulted in 2.5 to 3.5 million visits by 2020 with the addition of BCOPs to the health care team. BCOPs can contribute to a projected shortfall in needed patient visits for cancer treatment. BCOPs, along with nurse practitioners and physician assistants could substantially reduce, but likely not eliminate, the shortfall of providers needed for oncology patient visits. Copyright © 2016 by American Society of Clinical Oncology.

  7. Target volume definition in radiation oncology

    CERN Document Server

    Grosu, Anca-Ligia

    2015-01-01

    The main objective of this book is to provide radiation oncologists with a clear, up-to-date guide to tumor delineation and contouring of organs at risk. With this in mind, a detailed overview of recent advances in imaging for radiation treatment planning is presented. Novel concepts for target volume delineation are explained, taking into account the innovations in imaging technology. Special attention is paid to the role of the newer imaging modalities, such as positron emission tomography and diffusion and perfusion magnetic resonance imaging. All of the most important tumor entities treate

  8. Detailed prospective peer review in a community radiation oncology clinic.

    Science.gov (United States)

    Mitchell, James D; Chesnut, Thomas J; Eastham, David V; Demandante, Carlo N; Hoopes, David J

    In 2012, we instituted detailed prospective peer review of new cases. We present the outcomes of peer review on patient management and time required for peer review. Peer review rounds were held 3 to 4 days weekly and required 2 physicians to review pertinent information from the electronic medical record and treatment planning system. Eight aspects were reviewed for each case: 1) workup and staging; 2) treatment intent and prescription; 3) position, immobilization, and simulation; 4) motion assessment and management; 5) target contours; 6) normal tissue contours; 7) target dosimetry; and 8) normal tissue dosimetry. Cases were marked as, "Meets standard of care," "Variation," or "Major deviation." Changes in treatment plan were noted. As our process evolved, we recorded the time spent reviewing each case. From 2012 to 2014, we collected peer review data on 442 of 465 (95%) radiation therapy patients treated in our hospital-based clinic. Overall, 91 (20.6%) of the cases were marked as having a variation, and 3 (0.7%) as major deviation. Forty-two (9.5%) of the cases were altered after peer review. An overall peer review score of "Variation" or "Major deviation" was highly associated with a change in treatment plan (P peer review. Indicators on position, immobilization, simulation, target contours, target dosimetry, motion management, normal tissue contours, and normal tissue dosimetry were significantly associated with a change in treatment plan. The mean time spent on each case was 7 minutes. Prospective peer review is feasible in a community radiation oncology practice. Our process led to changes in 9.5% of cases. Peer review should focus on technical factors such as target contours and dosimetry. Peer review required 7 minutes per case. Published by Elsevier Inc.

  9. Toward a national consensus: teaching radiobiology to radiation oncology residents

    International Nuclear Information System (INIS)

    Zeman, Elaine M.; Dynlacht, Joseph R.; Rosenstein, Barry S.; Dewhirst, Mark W.

    2002-01-01

    Purpose: The ASTRO Joint Working Group on Radiobiology Teaching, a committee composed of members having affiliations with several national radiation oncology and biology-related societies and organizations, commissioned a survey designed to address issues of manpower, curriculum standardization, and instructor feedback as they relate to resident training in radiation biology. Methods and Materials: Radiation biology instructors at U.S. radiation oncology training programs were identified and asked to respond to a comprehensive electronic questionnaire dealing with instructor educational background, radiation biology course content, and sources of feedback with respect to curriculum planning and resident performance on standardized radiation biology examinations. Results: Eighty-five radiation biology instructors were identified, representing 73 radiation oncology residency training programs. A total of 52 analyzable responses to the questionnaire were received, corresponding to a response rate of 61.2%. Conclusion: There is a decreasing supply of instructors qualified to teach classic, and to some extent, clinical, radiobiology to radiation oncology residents. Additionally, those instructors with classic training in radiobiology are less likely to be comfortable teaching cancer molecular biology or other topics in cancer biology. Thus, a gap exists in teaching the whole complement of cancer and radiobiology curricula, particularly in those programs in which the sole responsibility for teaching falls to one faculty member (50% of training programs are in this category). On average, the percentage of total teaching time devoted to classic radiobiology (50%), clinical radiobiology (30%), and molecular and cancer biology (20%) is appropriate, relative to the current makeup of the board examination. Nevertheless large variability exists between training programs with respect to the total number of contact hours per complete radiobiology course (ranging from

  10. Burnout in United States Academic Chairs of Radiation Oncology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Aaron S. [Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (United States); Thomas, Charles R., E-mail: thomasch@ohsu.edu [Department of Radiation Medicine, Knight Cancer Institute/Oregon Health and Science University, Portland, Oregon (United States); Bonner, James A. [Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama (United States); DeWeese, Theodore L. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland (United States); Formenti, Silvia C. [Department of Radiation Oncology, New York University, New York, New York (United States); Hahn, Stephen M. [Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Mittal, Bharat B. [Department of Radiation Oncology, Northwestern University, Chicago, Ilinois (United States)

    2014-02-01

    Purpose: The aims of this study were to determine the self-reported prevalence of burnout in chairs of academic radiation oncology departments, to identify factors contributing to burnout, and to compare the prevalence of burnout with that seen in other academic chair groups. Methods and Materials: An anonymous online survey was administered to the membership of the Society of Chairs of Academic Radiation Oncology Programs (SCAROP). Burnout was measured with the Maslach Burnout Inventory-Human Services Survey (MBI-HSS). Results: Questionnaires were returned from 66 of 87 chairs (76% response rate). Seventy-nine percent of respondents reported satisfaction with their current positions. Common major stressors were budget deficits and human resource issues. One-quarter of chairs reported that it was at least moderately likely that they would step down in the next 1 to 2 years; these individuals demonstrated significantly higher emotional exhaustion. Twenty-five percent of respondents met the MBI-HSS criteria for low burnout, 75% for moderate burnout, and none for high burnout. Group MBI-HSS subscale scores demonstrated a pattern of moderate emotional exhaustion, low depersonalization, and moderate personal accomplishment, comparing favorably with other specialties. Conclusions: This is the first study of burnout in radiation oncology chairs with a high response rate and using a validated psychometric tool. Radiation oncology chairs share similar major stressors to other chair groups, but they demonstrate relatively high job satisfaction and lower burnout. Emotional exhaustion may contribute to the anticipated turnover in coming years. Further efforts addressing individual and institutional factors associated with burnout may improve the relationship with work of chairs and other department members.

  11. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    OpenAIRE

    Zhou J; Zamdborg L; Sebastian E

    2015-01-01

    Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy ...

  12. Burnout in United States Academic Chairs of Radiation Oncology Programs

    International Nuclear Information System (INIS)

    Kusano, Aaron S.; Thomas, Charles R.; Bonner, James A.; DeWeese, Theodore L.; Formenti, Silvia C.; Hahn, Stephen M.; Lawrence, Theodore S.; Mittal, Bharat B.

    2014-01-01

    Purpose: The aims of this study were to determine the self-reported prevalence of burnout in chairs of academic radiation oncology departments, to identify factors contributing to burnout, and to compare the prevalence of burnout with that seen in other academic chair groups. Methods and Materials: An anonymous online survey was administered to the membership of the Society of Chairs of Academic Radiation Oncology Programs (SCAROP). Burnout was measured with the Maslach Burnout Inventory-Human Services Survey (MBI-HSS). Results: Questionnaires were returned from 66 of 87 chairs (76% response rate). Seventy-nine percent of respondents reported satisfaction with their current positions. Common major stressors were budget deficits and human resource issues. One-quarter of chairs reported that it was at least moderately likely that they would step down in the next 1 to 2 years; these individuals demonstrated significantly higher emotional exhaustion. Twenty-five percent of respondents met the MBI-HSS criteria for low burnout, 75% for moderate burnout, and none for high burnout. Group MBI-HSS subscale scores demonstrated a pattern of moderate emotional exhaustion, low depersonalization, and moderate personal accomplishment, comparing favorably with other specialties. Conclusions: This is the first study of burnout in radiation oncology chairs with a high response rate and using a validated psychometric tool. Radiation oncology chairs share similar major stressors to other chair groups, but they demonstrate relatively high job satisfaction and lower burnout. Emotional exhaustion may contribute to the anticipated turnover in coming years. Further efforts addressing individual and institutional factors associated with burnout may improve the relationship with work of chairs and other department members

  13. Cancer patients and oncology nursing: Perspectives of oncology nurses in Turkey.

    Science.gov (United States)

    Kamisli, S; Yuce, D; Karakilic, B; Kilickap, S; Hayran, M

    2017-09-01

    Burnout and exhaustion is a frequent problem in oncology nursing. The aim of this study is to evaluate the aspects of oncology nurses about their profession in order to enhance the standards of oncology nursing. This survey was conducted with 70 oncology nurses working at Hacettepe University Oncology Hospital. Data were collected between January-April 2012. Each participant provided a study form comprising questions about sociodemographic information; about difficulties, positive aspects and required skills for oncology nursing; and questions evaluating level of participation and clinical perception of oncology nursing. Mean age of nurses was 29.9 ± 5.7 years. More than half of the participants were married (51.4%) and 30% had at least one child. Percent of nurses working in oncology for their entire work life was 75.8%. Most frequently expressed difficulties were exhaustion (58.6%), coping with the psychological problems of the patients (25.7%), and frequent deaths (24.3%); positive aspects were satisfaction (37.1%), changing the perceptions about life (30%), and empathy (14.3%); and required skills were patience (60%), empathy (57.1%), and experience (50%). For difficulties of oncology nursing, 28.3% of difficulties could be attributed to job-related factors, 30.3% to patient-related factors, and 77% of difficulties to individual factors. The independent predictors of participation level of the nurses were self-thoughts of skills and positive aspects of oncology nursing. According to the findings of this study, nurses declared that working with cancer patients increase burnout, they are insufficient in managing work stress and giving psychological care to patients, but their job satisfaction, clinical skills and awareness regarding priorities of life has increased.

  14. Randomized study of chemotherapy/radiation therapy combinations for favorable patients with locally advanced inoperable nonsmall cell lung cancer: radiation therapy oncology group (RTOG) 92-04

    International Nuclear Information System (INIS)

    Komaki, Ritsuko; Scott, Charles; Ettinger, David; Lee, Jin S.; Fossella, Frank V.; Curran, Walter; Evans, R.F.; Rubin, Philip; Byhardt, Roger W.

    1997-01-01

    Purpose: The purpose of this study was to compare the severity and distribution of the toxicities associated with the two different combinations of chemotherapy and radiotherapy. Methods and Materials: This prospective randomized trial studied toxicities associated with induction chemotherapy followed by concurrent treatment (Arm 1) vs. immediate concurrent chemotherapy/radiotherapy (CT/RT) (Arm 2). Arm 1 consisted of vinblastine (VB), 5 mg/M 2 IV bolus weekly, weeks 1-5 and cisplatin (DDP), 100 mg/M 2 days 1 and 29, DDP 75 mg/M 2 , days 50, 71, and 92. Daily RT started on day 50; a total dose of 63 Gy was given in 34 fractions in 7 weeks. In Arm 2 RT started day 1; a total dose of 69.6 Gy was given in 58 fractions of 1.2 Gy bid, 5 days per week for 6 weeks with DDP 50 mg/M 2 i.v. days 1 and 8, and oral VP-16 50 mg b.i.d. during the first 10 days of RT. DDP/VP-16 were repeated beginning day 29. Survival was used as the Phase II endpoint. Results: Between July 1992 and February 1994, 168 patients were randomized; 162 evaluable patients had minimum follow-up of 20 months. Eighty patients were registered to Arm 1 and 82 to Arm 2. Pretreatment characteristics were distributed evenly. Arm 1 had significantly more Grade 4 hematologic toxicity (62%) than Arm 2 (33%) (p = 0.021). Acute nonhematologic Grade 3+ toxicity was also greater (p = 0.018) in Arm 2 than Arm 1 due mainly to esophagitis (38 vs. 6%; p < 0.0001). Grade 3+ late esophageal toxicity was 12% on Arm 2 compared to 3% on Arm 1 (p = 0.006). There were no differences between the two arms in compliance with protocol specifications for either RT or CT. At 1 year, 31.7% of patients had in-field progression on Arm 1 compared to 19.8% on Arm 2 (p = 0.042), but overall progression-free survival rates were nearly identical; 50 and 49% for Arms I and II, respectively, at 12 months. One-year and median survivals were 65% and 15.5 months on Arm 1 compared to 58% and 14.4 months on Arm 2. Conclusion: Whereas hematologic

  15. Carcinoma of the urethra: radiation oncology.

    Science.gov (United States)

    Koontz, Bridget F; Lee, W Robert

    2010-08-01

    Urethral cancer is a rare but aggressive neoplasm. Early-stage distal lesions can be successfully treated with a single modality. Results for definitive radiotherapy using either or both external beam radiation therapy and brachytherapy have shown excellent cure rates in men and women. The primary advantage of radiotherapy is organ preservation. Advanced tumors, however, have poor outcomes with single modality treatment. Results have been improved using a combination of radiotherapy and chemotherapy, chiefly 5-fluorouracil and mitomycin C. Although literature is limited to case reports because of the rarity of the disease, the markedly improved results compared with older results of surgery with or without radiation warrant consideration. Copyright 2010 Elsevier Inc. All rights reserved.

  16. WE-H-BRB-03: Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, T. [Johns Hopkins University (United States)

    2016-06-15

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  17. WE-H-BRB-02: Where Do We Stand in the Applications of Big Data in Radiation Oncology?

    International Nuclear Information System (INIS)

    Xing, L.

    2016-01-01

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  18. WE-H-BRB-03: Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success

    International Nuclear Information System (INIS)

    McNutt, T.

    2016-01-01

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  19. WE-H-BRB-02: Where Do We Stand in the Applications of Big Data in Radiation Oncology?

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L. [Stanford University School of Medicine (United States)

    2016-06-15

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  20. Lack of Prognostic Impact of Adjuvant Radiation on Oncologic Outcomes in Elderly Women with Breast Cancer.

    Science.gov (United States)

    Omidvari, Shapour; Talei, Abdolrasoul; Tahmasebi, Sedigheh; Moaddabshoar, Leila; Dayani, Maliheh; Mosalaei, Ahmad; Ahmadloo, Niloofar; Ansari, Mansour; Mohammadianpanah, Mohammad

    2015-01-01

    Radiotherapy plays an important role as adjuvant treatment in locally advanced breast cancer and in those patients who have undergone breast-conserving surgery. This study aimed to investigate the prognostic impact of adjuvant radiation on oncologic outcomes in elderly women with breast cancer. In this retrospective study, we reviewed and analyzed the characteristics, treatment outcome and survival of elderly women (aged ≥ 60 years) with breast cancer who were treated and followed-up between 1993 and 2014. The median follow up for the surviving patients was 38 (range 3-207) months. One hundred and seventy-eight patients with a median age of 74 (range 60-95) years were enrolled in the study. Of the total, 60 patients received postoperative adjuvant radiation (radiation group) and the remaining 118 did not (control group). Patients in the radiation group were significantly younger than those in the control group (P value=0.004). In addition, patients in radiation group had higher node stage (P value<0.001) and disease stage (P=0.003) and tended to have higher tumor grade (P=0.031) and received more frequent (P value <0.001) adjuvant and neoadjuvant chemotherapy compared to those in the control group. There was no statistically significant difference between two groups regarding the local control, disease-free survival and overall survival rates. In this study, we did not find a prognostic impact for adjuvant radiation on oncologic outcomes in elderly women with breast cancer.

  1. Comprehensive quality management program for radiation oncology

    International Nuclear Information System (INIS)

    Dawson, J.; Roy, T.; Abrath, F.; Wu, T.; Gu, J.; McDonald, R.; Kim, H.; Haenchen, M.

    1994-01-01

    A quality management program for both external beam irradiation (electron and photon modes) and brachytherapy (high dose rate (HDR) and low dose rate (LDR) has been developed. The program follows current USA federal regulations for therapeutic administration of by-product materials. After implementation of the program, 54 HDR patients, 36 LDR brachytherapy patients and 311 external beam patients (including 30 stereotactic radiosurgery cases) were treated. The results of this program are presented

  2. A National Radiation Oncology Medical Student Clerkship Survey: Didactic Curricular Components Increase Confidence in Clinical Competency

    Energy Technology Data Exchange (ETDEWEB)

    Jagadeesan, Vikrant S. [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois (United States); Raleigh, David R. [Department of Radiation Oncology, School of Medicine, University of California–San Francisco, San Francisco, California (United States); Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J. [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois (United States); Golden, Daniel W., E-mail: dgolden@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois (United States)

    2014-01-01

    Purpose: Students applying to radiation oncology residency programs complete 1 or more radiation oncology clerkships. This study assesses student experiences and perspectives during radiation oncology clerkships. The impact of didactic components and number of clerkship experiences in relation to confidence in clinical competency and preparation to function as a first-year radiation oncology resident are evaluated. Methods and Materials: An anonymous, Internet-based survey was sent via direct e-mail to all applicants to a single radiation oncology residency program during the 2012-2013 academic year. The survey was composed of 3 main sections including questions regarding baseline demographic information and prior radiation oncology experience, rotation experiences, and ideal clerkship curriculum content. Results: The survey response rate was 37% (70 of 188). Respondents reported 191 unique clerkship experiences. Of the respondents, 27% (19 of 70) completed at least 1 clerkship with a didactic component geared towards their level of training. Completing a clerkship with a didactic component was significantly associated with a respondent's confidence to function as a first-year radiation oncology resident (Wilcoxon rank–sum P=.03). However, the total number of clerkships completed did not correlate with confidence to pursue radiation oncology as a specialty (Spearman ρ P=.48) or confidence to function as a first year resident (Spearman ρ P=.43). Conclusions: Based on responses to this survey, rotating students perceive that the majority of radiation oncology clerkships do not have formal didactic curricula. Survey respondents who completed a clerkship with a didactic curriculum reported feeling more prepared to function as a radiation oncology resident. However, completing an increasing number of clerkships does not appear to improve confidence in the decision to pursue radiation oncology as a career or to function as a radiation oncology resident. These

  3. A national radiation oncology medical student clerkship survey: didactic curricular components increase confidence in clinical competency.

    Science.gov (United States)

    Jagadeesan, Vikrant S; Raleigh, David R; Koshy, Matthew; Howard, Andrew R; Chmura, Steven J; Golden, Daniel W

    2014-01-01

    Students applying to radiation oncology residency programs complete 1 or more radiation oncology clerkships. This study assesses student experiences and perspectives during radiation oncology clerkships. The impact of didactic components and number of clerkship experiences in relation to confidence in clinical competency and preparation to function as a first-year radiation oncology resident are evaluated. An anonymous, Internet-based survey was sent via direct e-mail to all applicants to a single radiation oncology residency program during the 2012-2013 academic year. The survey was composed of 3 main sections including questions regarding baseline demographic information and prior radiation oncology experience, rotation experiences, and ideal clerkship curriculum content. The survey response rate was 37% (70 of 188). Respondents reported 191 unique clerkship experiences. Of the respondents, 27% (19 of 70) completed at least 1 clerkship with a didactic component geared towards their level of training. Completing a clerkship with a didactic component was significantly associated with a respondent's confidence to function as a first-year radiation oncology resident (Wilcoxon rank-sum P=.03). However, the total number of clerkships completed did not correlate with confidence to pursue radiation oncology as a specialty (Spearman ρ P=.48) or confidence to function as a first year resident (Spearman ρ P=.43). Based on responses to this survey, rotating students perceive that the majority of radiation oncology clerkships do not have formal didactic curricula. Survey respondents who completed a clerkship with a didactic curriculum reported feeling more prepared to function as a radiation oncology resident. However, completing an increasing number of clerkships does not appear to improve confidence in the decision to pursue radiation oncology as a career or to function as a radiation oncology resident. These results support further development of structured didactic

  4. A National Radiation Oncology Medical Student Clerkship Survey: Didactic Curricular Components Increase Confidence in Clinical Competency

    International Nuclear Information System (INIS)

    Jagadeesan, Vikrant S.; Raleigh, David R.; Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J.; Golden, Daniel W.

    2014-01-01

    Purpose: Students applying to radiation oncology residency programs complete 1 or more radiation oncology clerkships. This study assesses student experiences and perspectives during radiation oncology clerkships. The impact of didactic components and number of clerkship experiences in relation to confidence in clinical competency and preparation to function as a first-year radiation oncology resident are evaluated. Methods and Materials: An anonymous, Internet-based survey was sent via direct e-mail to all applicants to a single radiation oncology residency program during the 2012-2013 academic year. The survey was composed of 3 main sections including questions regarding baseline demographic information and prior radiation oncology experience, rotation experiences, and ideal clerkship curriculum content. Results: The survey response rate was 37% (70 of 188). Respondents reported 191 unique clerkship experiences. Of the respondents, 27% (19 of 70) completed at least 1 clerkship with a didactic component geared towards their level of training. Completing a clerkship with a didactic component was significantly associated with a respondent's confidence to function as a first-year radiation oncology resident (Wilcoxon rank–sum P=.03). However, the total number of clerkships completed did not correlate with confidence to pursue radiation oncology as a specialty (Spearman ρ P=.48) or confidence to function as a first year resident (Spearman ρ P=.43). Conclusions: Based on responses to this survey, rotating students perceive that the majority of radiation oncology clerkships do not have formal didactic curricula. Survey respondents who completed a clerkship with a didactic curriculum reported feeling more prepared to function as a radiation oncology resident. However, completing an increasing number of clerkships does not appear to improve confidence in the decision to pursue radiation oncology as a career or to function as a radiation oncology resident. These results

  5. Radiation oncology in Australia: a historical and evolutionary perspective

    International Nuclear Information System (INIS)

    Sandeman, T.F.

    1996-01-01

    This presentation tracks the development of the therapeutic application of radiation in Australia. Within six months of Roentgen's discovery, the Crooke's x-ray tube and later a radium plaque was used in Australia for treatment, in particular by the dermatologists. By 1920s radiology was an established specialty. A series of conferences was held between 1930 and 1940 to discuss the provision of cancer treatment, the integration of research and particularly, the establishment of central registry. The author also paid tribute to a a series of scientific personalities for their contribution to the Australian radiation oncology. 22 refs., ills

  6. Future trends in the supply and demand for radiation oncology physicists.

    Science.gov (United States)

    Mills, Michael D; Thornewill, Judah; Esterhay, Robert J

    2010-04-12

    Significant controversy surrounds the 2012 / 2014 decision announced by the Trustees of the American Board of Radiology (ABR) in October of 2007. According to the ABR, only medical physicists who are graduates of a Commission on Accreditation of Medical Physics Education Programs, Inc. (CAMPEP) accredited academic or residency program will be admitted for examination in the years 2012 and 2013. Only graduates of a CAMPEP accredited residency program will be admitted for examination beginning in the year 2014. An essential question facing the radiation oncology physics community is an estimation of supply and demand for medical physicists through the year 2020. To that end, a Demand & Supply dynamic model was created using STELLA software. Inputs into the model include: a) projected new cancer incidence and prevalence 1990-2020; b) AAPM member ages and retirement projections 1990-2020; c) number of ABR physics diplomates 1990-2009; d) number of patients per Qualified Medical Physicist from Abt Reports I (1995), II (2002) and III (2008); e) non-CAMPEP physicists trained 1990-2009 and projected through 2014; f) CAMPEP physicists trained 1993-2008 and projected through 2014; and g) working Qualified Medical Physicists in radiation oncology in the United States (1990-2007). The model indicates that the number of qualified medical physicists working in radiation oncology required to meet demand in 2020 will be 150-175 per year. Because there is some elasticity in the workforce, a portion of the work effort might be assumed by practicing medical physicists. However, the minimum number of new radiation oncology physicists (ROPs) required for the health of the profession is estimated to be 125 per year in 2020. The radiation oncology physics community should plan to build residency programs to support these numbers for the future of the profession.

  7. Radiation oncology: radiobiological and physiological perspectives

    International Nuclear Information System (INIS)

    Awwad, H.K.

    1990-01-01

    This book deals with the normal tissue and tumor radiation-induced responses in terms of the underlying radiobiological and physiological process. Coverage includes the following topics: Functional test for normal tissue responses. Relation to the underlying target cell, Clinical structural end-points, e.g., increased lung density in CT-scan. Conditions and parameters of the LQ-model in clinical applications. An NSD-type of formalism is still clinically applicable. Clinical importance of the kinetics of recovery. The notion of normal tissue tolerance and tumor control. The steepness of the response curve. How accurate radiotherpy should be. The volume effect: clinical, biological and physiological perspectives. The tumor bed effect, residual damage and the problems of reirradiation. Radiation-induced perturbations of the immune response. Clinical consequences. Exploitation to a therapeutic benefit. Hypoxia in human solid tumors. Probing and methods of control. Growth of human tumors. Parameters, measurement and clinical implications. The dose-rate effect. The optimum use of low dose rate irradiation in human cancer

  8. Assessment of new radiation oncology technology and treatments in radiation oncology the ANROTAT project and collection of IMRT specific data

    International Nuclear Information System (INIS)

    Haworth, A.; Corry, J.; Kron, T.; Duchesne, G.; Ng, M.; Burmeister, B.

    2010-01-01

    Full text: Medical physicists (MP) are familiar with assessing new radiation oncology technology and treatments ( ROT A T) for their own departments but are not usually involved in providing advice to government for funding these technologies. This paper describes the role of the MP within the Commonwealth Government Department of Health and Aging initiative to develop a generic framework for assessment of ROTAT and the collection of data to support Med care Benefits Scheme (MBS) funding of IMRT. The clinical trials group TROG is developing a generic framework for the assessment of NROTAT. This will be tested and data collected to support applications for MBS funding of IMRT and IGRT. The tumour sites of nasopharynx, post-prostatectomy and anal canal have been selected to represent sites that are commonly, occasionally and rarely treated with IMRT respectively. Site selection for data collection will represent a broad range of clinical practices. Data quality is assured through TROG QA procedures and will include dosimetry audits. The final report will assess the clinical efficacy, cost effectiveness and safety of IMRT compared to 3DCRT. Existing clinical trial protocols form the basis for data collection and surrogate endpoints are being developed. Key publications have been identified that correlate specific dose-volume histogram parameters with clinical end-points, recognising limitations of these data in the 1MRT setting. Engagement of MPs within this project will help ensure collection of high quality data that ultimately aims to secure appropriate funding to ensure our patients receive best clinical care. (author)

  9. Acute Thoracic Findings in Oncologic Patients.

    Science.gov (United States)

    Carter, Brett W; Erasmus, Jeremy J

    2015-07-01

    Cancer is the second most common cause of mortality in the United States, with >500,000 deaths reported annually. Acute or emergent findings in this group of patients can be a life-threatening phenomenon that results from malignancy or as a complication of therapy. In many cases, these events can be the first clinical manifestation of malignant disease. Oncologic emergencies have been classified as metabolic, hematologic, and structural emergencies. Within the thorax, most acute oncologic findings involve the lungs and airways in the form of drug toxicity, pulmonary infections, or malignant airway compression; the cardiovascular system in the form of pulmonary embolism, superior vena cava syndrome, cardiac tamponade, or massive hemoptysis; the mediastinum in the form of esophageal perforation, acute mediastinitis, or esophagorespiratory fistula; and the osseous spine and spinal cord in the form of invasion and cord compression. Given the life-threatening nature of many of these disease processes, awareness of such complications is critical to making an accurate diagnosis and formulating appropriate treatment strategies.

  10. Radiation oncology medical physics education and training in Queensland

    International Nuclear Information System (INIS)

    West, M.P.; Thomas, B.J.

    2011-01-01

    Full text: The training education and accreditation program (TEAP) for radiation oncology commenced formally in Queensland in 2008 with an initial intake of nine registrars. In 2011 there are 17 registrars across four ACPSEM accredited Queensland Health departments (Mater Radiation Oncology Centre, Princess Alexandria Hospital, Royal Brisbane and Women's Hospital, Townsville Hospital). The Queensland Statewide Cancer Services Plan 2008-2017 outlines significant expansion to oncology services including increases in total number of treatment machines from 14 (2007) to 29-31 (2017) across existing and new clinical departments. A direct implication of this will be the number of qualified ROMPs needed to maintain and develop medical physics services. This presentation will outline ongoing work in the ROMP education and Training portfolio to develop, facilitate and provide training activities for ROMPs undertaking TEAP in the Queensland public system. Initiatives such as Department of Health and Aging scholarships for medical physics students, and the educational challenges associated with competency attainment will also be discussed in greater detail.

  11. Sci-Thur PM – Colourful Interactions: Highlights 05: Opal–the Oncology Patient Application

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Ackeem; Herrera, David; Kildea, John; Hijal, Tarek; Hendren, Laurie [Medical Physics Unit, McGill University Health Centre, Division of Radiation Oncology, McGill University Health Centre, School of Computer Science, McGill University (Canada)

    2016-08-15

    We describe Opal (Oncology portal and application), the mobile phone app and patient portal that we have developed and are deploying for Radiation Oncology patients at our cancer centre. Opal is a novel tool to empower patients with their own personal medical data, including appointment schedules, consultation notes, test results, radiotherapy treatment planning information and wait time management. Furthermore, due to its integration with our electronic medical record and treatment planning database, Opal will allow us to collect patient reported outcomes from consenting patients and link them directly with dose volume histograms and other treatment data.

  12. Sci-Thur PM – Colourful Interactions: Highlights 05: Opal–the Oncology Patient Application

    International Nuclear Information System (INIS)

    Joseph, Ackeem; Herrera, David; Kildea, John; Hijal, Tarek; Hendren, Laurie

    2016-01-01

    We describe Opal (Oncology portal and application), the mobile phone app and patient portal that we have developed and are deploying for Radiation Oncology patients at our cancer centre. Opal is a novel tool to empower patients with their own personal medical data, including appointment schedules, consultation notes, test results, radiotherapy treatment planning information and wait time management. Furthermore, due to its integration with our electronic medical record and treatment planning database, Opal will allow us to collect patient reported outcomes from consenting patients and link them directly with dose volume histograms and other treatment data.

  13. ASTRO's core physics curriculum for radiation oncology residents

    International Nuclear Information System (INIS)

    Klein, Eric E.; Balter, James M.; Chaney, Edward L.; Gerbi, Bruce J.; Hughes, Lesley

    2004-01-01

    In 2002, the Radiation Physics Committee of the American Society of Therapeutic Radiology and Oncology (ASTRO) appointed an Ad-hoc Committee on Physics Teaching to Medical Residents. The main initiative of the committee was to develop a core curriculum for physics education. Prior publications that have analyzed physics teaching have pointed to wide discrepancies among teaching programs. The committee was composed of physicists or physicians from various residency program based institutions. Simultaneously, members had associations with the American Association of Physicists in Medicine (AAPM), ASTRO, Association of Residents in Radiation Oncology (ARRO), American Board of Radiology (ABR), and the American College of Radiology (ACR). The latter two organizations' representatives were on the physics examination committees, as one of the main agendas was to provide a feedback loop between the examining organizations and ASTRO. The document resulted in a recommended 54-h course. Some of the subjects were based on American College of Graduate Medical Education (ACGME) requirements (particles, hyperthermia), whereas the majority of the subjects along with the appropriated hours per subject were devised and agreed upon by the committee. For each subject there are learning objectives and for each hour there is a detailed outline of material to be covered. Some of the required subjects/h are being taught in most institutions (i.e., Radiation Measurement and Calibration for 4 h), whereas some may be new subjects (4 h of Imaging for Radiation Oncology). The curriculum was completed and approved by the ASTRO Board in late 2003 and is slated for dissemination to the community in 2004. It is our hope that teaching physicists will adopt the recommended curriculum for their classes, and simultaneously that the ABR for its written physics examination and the ACR for its training examination will use the recommended curriculum as the basis for subject matter and depth of

  14. Evaluation of Health Economics in Radiation Oncology: A Systematic Review

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Timothy K.; Goodman, Chris D. [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Boldt, R. Gabriel [London Health Sciences Centre, London, Ontario (Canada); Warner, Andrew; Palma, David A. [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Rodrigues, George B. [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Department of Epidemiology and Biostatistics, Western University, London, Ontario (Canada); Lock, Michael I. [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Mishra, Mark V. [Department of Radiation Oncology, University of Maryland, Baltimore, Maryland (United States); Zaric, Gregory S. [Department of Epidemiology and Biostatistics, Western University, London, Ontario (Canada); Ivey Business School, Western University, London, Ontario (Canada); Louie, Alexander V., E-mail: Dr.alexlouie@gmail.com [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Department of Epidemiology and Biostatistics, Western University, London, Ontario (Canada)

    2016-04-01

    Purpose: Despite the rising costs in radiation oncology, the impact of health economics research on radiation therapy practice analysis patterns is unclear. We performed a systematic review of cost-effectiveness analyses (CEAs) and cost-utility analyses (CUAs) to identify trends in reporting quality in the radiation oncology literature over time. Methods and Materials: A systematic review of radiation oncology economic evaluations up to 2014 was performed, using MEDLINE and EMBASE databases. The Consolidated Health Economic Evaluation Reporting Standards guideline informed data abstraction variables including study demographics, economic parameters, and methodological details. Tufts Medical Center CEA registry quality scores provided a basis for qualitative assessment of included studies. Studies were stratified by 3 time periods (1995-2004, 2005-2009, and 2010-2014). The Cochran-Armitage trend test and linear trend test were used to identify trends over time. Results: In total, 102 articles were selected for final review. Most studies were in the context of a model (61%) or clinical trial (28%). Many studies lacked a conflict of interest (COI) statement (67%), a sponsorship statement (48%), a reported study time horizon (35%), and the use of discounting (29%). There was a significant increase over time in the reporting of a COI statement (P<.001), health care payer perspective (P=.019), sensitivity analyses using multivariate (P=.043) or probabilistic methods (P=.011), incremental cost-effectiveness threshold (P<.001), secondary source utility weights (P=.010), and cost effectiveness acceptability curves (P=.049). There was a trend toward improvement in Tuft scores over time (P=.065). Conclusions: Recent reports demonstrate improved reporting rates in economic evaluations; however, there remains significant room for improvement as reporting rates are still suboptimal. As fiscal pressures rise, we will rely on economic assessments to guide our practice decisions

  15. Evaluation of Health Economics in Radiation Oncology: A Systematic Review

    International Nuclear Information System (INIS)

    Nguyen, Timothy K.; Goodman, Chris D.; Boldt, R. Gabriel; Warner, Andrew; Palma, David A.; Rodrigues, George B.; Lock, Michael I.; Mishra, Mark V.; Zaric, Gregory S.; Louie, Alexander V.

    2016-01-01

    Purpose: Despite the rising costs in radiation oncology, the impact of health economics research on radiation therapy practice analysis patterns is unclear. We performed a systematic review of cost-effectiveness analyses (CEAs) and cost-utility analyses (CUAs) to identify trends in reporting quality in the radiation oncology literature over time. Methods and Materials: A systematic review of radiation oncology economic evaluations up to 2014 was performed, using MEDLINE and EMBASE databases. The Consolidated Health Economic Evaluation Reporting Standards guideline informed data abstraction variables including study demographics, economic parameters, and methodological details. Tufts Medical Center CEA registry quality scores provided a basis for qualitative assessment of included studies. Studies were stratified by 3 time periods (1995-2004, 2005-2009, and 2010-2014). The Cochran-Armitage trend test and linear trend test were used to identify trends over time. Results: In total, 102 articles were selected for final review. Most studies were in the context of a model (61%) or clinical trial (28%). Many studies lacked a conflict of interest (COI) statement (67%), a sponsorship statement (48%), a reported study time horizon (35%), and the use of discounting (29%). There was a significant increase over time in the reporting of a COI statement (P<.001), health care payer perspective (P=.019), sensitivity analyses using multivariate (P=.043) or probabilistic methods (P=.011), incremental cost-effectiveness threshold (P<.001), secondary source utility weights (P=.010), and cost effectiveness acceptability curves (P=.049). There was a trend toward improvement in Tuft scores over time (P=.065). Conclusions: Recent reports demonstrate improved reporting rates in economic evaluations; however, there remains significant room for improvement as reporting rates are still suboptimal. As fiscal pressures rise, we will rely on economic assessments to guide our practice decisions

  16. Clinical Implications of TiGRT Algorithm for External Audit in Radiation Oncology

    OpenAIRE

    Daryoush Shahbazi-Gahrouei; Mohsen Saeb; Shahram Monadi; Iraj Jabbari

    2017-01-01

    Background: Performing audits play an important role in quality assurance program in radiation oncology. Among different algorithms, TiGRT is one of the common application software for dose calculation. This study aimed to clinical implications of TiGRT algorithm to measure dose and compared to calculated dose delivered to the patients for a variety of cases, with and without the presence of inhomogeneities and beam modifiers. Materials and Methods: Nonhomogeneous phantom as quality dose veri...

  17. Results of the 1993 Association of Residents in Radiation Oncology survey

    International Nuclear Information System (INIS)

    Ling, Stella M.; Flynn, Daniel F.

    1996-01-01

    In 1993, the Association of Residents in Radiation Oncology (ARRO) conducted its tenth annual survey of all residents training in radiation oncology in the United States. The characteristics of current residents are described. Factors influencing the choice of Radiation Oncology as a medical specialty, and posttraining career plans were identified. Residents raised issues on the adequacy of training, problems in work routine, and expressed concerns about board certification and recertification, and about decreased future practice opportunities

  18. Establishing a Global Radiation Oncology Collaboration in Education (GRaCE)

    DEFF Research Database (Denmark)

    Turner, Sandra; Eriksen, Jesper G; Trotter, Theresa

    2015-01-01

    Representatives from countries and regions world-wide who have implemented modern competency-based radiation- or clinical oncology curricula for training medical specialists, met to determine the feasibility and value of an ongoing international collaboration. In this forum, educational leaders...... with similar goals, would provide a valuable vehicle to ensure training program currency, through sharing of resources and expertise, and enhance high quality radiation oncology education. Potential projects for the Global Radiation Oncology Collaboration in Education (GRaCE) were agreed upon...

  19. Industry Funding Among Leadership in Medical Oncology and Radiation Oncology in 2015.

    Science.gov (United States)

    Yoo, Stella K; Ahmed, Awad A; Ileto, Jan; Zaorsky, Nicholas G; Deville, Curtiland; Holliday, Emma B; Wilson, Lynn D; Jagsi, Reshma; Thomas, Charles R

    2017-10-01

    To quantify and determine the relationship between oncology departmental/division heads and private industry vis-à-vis potential financial conflict of interests (FCOIs) as publicly reported by the Centers for Medicare and Medicaid Services Open Payments database. We extracted the names of the chairs/chiefs in medical oncology (MO) and chairs of radiation oncology (RO) for 81 different institutions with both RO and MO training programs as reported by the Association of American Medical Colleges. For each leader, the amount of consulting fees and research payments received in 2015 was determined. Logistic modeling was used to assess associations between the 2 endpoints of receiving a consulting fee and receiving a research payment with various institution-specific and practitioner-specific variables included as covariates: specialty, sex, National Cancer Institute designation, PhD status, and geographic region. The majority of leaders in MO were reported to have received consulting fees or research payments (69.5%) compared with a minority of RO chairs (27.2%). Among those receiving payments, the average (range) consulting fee was $13,413 ($200-$70,423) for MO leaders and $6463 ($837-$16,205) for RO chairs; the average research payment for MO leaders receiving payments was $240,446 ($156-$1,234,762) and $295,089 ($160-$1,219,564) for RO chairs. On multivariable regression when the endpoint was receipt of a research payment, those receiving a consulting fee (odds ratio [OR]: 5.34; 95% confidence interval [CI]: 2.22-13.65) and MO leaders (OR: 5.54; 95% CI: 2.62-12.18) were more likely to receive research payments. Examination of the receipt of consulting fees as the endpoint showed that those receiving a research payment (OR: 5.41; 95% CI: 2.23-13.99) and MO leaders (OR: 3.06; 95% CI: 1.21-8.13) were more likely to receive a consulting fee. Leaders in academic oncology receive consulting or research payments from industry. Relationships between oncology leaders and

  20. Analysis of the payment rates and classification of services on radiation oncology

    International Nuclear Information System (INIS)

    Shin, K. H.; Shin, H. S.; Pyo, H. R.; Lee, K. C.; Lee, Y. T.; Myoung, H. B.; Yeom, Y. K.

    1997-01-01

    The main purpose of this study is to develop new payment rates for services of radiation oncology, considering costs of treating patients. A survey of forty hospitals has been conducted in order to analyze the costs of treating patients. Before conducting the survey, we evaluated and reclassified the individual service items currently using as payments units on the fee-for-service reimbursement system. This study embodies the analysis of replies received from the twenty four hospitals. The survey contains information about the hospitals' costs of 1995 for the reclassified service items on radiation oncology. After we adjust the hospital costs by the operating rate of medical equipment, we compare the adjusted costs with the current payment rates of individual services. The current payment rates were 5.05-6.58 times lower than the adjusted costs in treatment planning services, 2.22 times lower in block making service, 1.57-2.86 times lower in external beam irradiation services, 3.82-5.01 times lower in intracavitary and interstitial irradiation and 1.12-2.55 times lower in total body irradiation. We could conclude that the current payment system on radiation oncology does not only reflect the costs of treating patients appropriately but also classify the service items correctly. For an example, when the appropriate costs and classification are applied to TBI, the payment rates of TBI should be increased five times more than current level. (author)

  1. Management of respiratory motion in radiation oncology

    International Nuclear Information System (INIS)

    Vedam, Subrahmanya Sastry

    2003-01-01

    images obtained during simulation by reducing the motion artifacts typically seen during CT imaging. An analysis of several patient breathing patterns with (audio instructions and visual feedback) and without training, indicated that breathing training improved the reproducibility of amplitude and/or frequency of patient breathing cycles. A phantom based study by superposition of sinusoidal motion of a 'simulated' tumor onto the initial beam aperture as formed by the multileaf collimator revealed that target dose measurements obtained with such a motion synchronized setup were equivalent to those delivered to a static target by a static beam. An attempt to acquire respiration synchronized (4D) CT images of a motion phantom and a patient also yielded a 4D CT data set with reduced motion artifacts. Respiratory gated and respiration synchronized radiotherapy are both viable approaches to account for respiratory motion during radiotherapy. While respiratory gated radiotherapy has been successfully implemented in some centers, several technical advances are required for clinical implementation of respiration synchronized radiotherapy. Future applicability of either of the above approaches as routine treatment procedures will be determined by their potential clinical gains over currently available methods

  2. Development of radiation oncology learning system combined with multi-institutional radiotherapy database (ROGAD)

    International Nuclear Information System (INIS)

    Takemura, Akihiro; Iinuma, Masahiro; Kou, Hiroko; Harauchi, Hajime; Inamura, Kiyonari

    1999-01-01

    We have constructed and are operating a multi-institutional radiotherapy database ROGAD (Radiation Oncology Greater Area Database) since 1992. One of it's purpose is 'to optimize individual radiotherapy plans'. We developed Radiation oncology learning system combined with ROGAD' which conforms to that purpose. Several medical doctors evaluated our system. According to those evaluations, we are now confident that our system is able to contribute to improvement of radiotherapy results. Our final target is to generate a good cyclic relationship among three components: radiotherapy results according to ''Radiation oncology learning system combined with ROGAD.'; The growth of ROGAD; and radiation oncology learning system. (author)

  3. The state of survivorship care in radiation oncology: Results from a nationally distributed survey.

    Science.gov (United States)

    Frick, Melissa A; Rosenthal, Seth A; Vapiwala, Neha; Monzon, Brian T; Berman, Abigail T

    2018-04-18

    Survivorship care has become an increasingly critical component of oncologic care as well as a quality practice and reimbursement metric. To the authors' knowledge, the current climate of survivorship medicine in radiation oncology has not been investigated fully. An institutional review board-approved, Internet-based survey examining practices and preparedness in survivorship care was distributed to radiation oncology practices participating in the American College of Radiology Radiation Oncology Practice Accreditation program between November 2016 and January 2017. A total of 78 surveys were completed. Among these, 2 were nonphysicians, resulting in 76 evaluable responses. Radiation oncologists (ROs) frequently reported that they are the primary provider in the evaluation of late toxicities and the recurrence of primary cancer. Although approximately 68% of ROs frequently discuss plans for future care with survivors, few provide a written survivorship care plan to their patients (18%) or the patients' primary care providers (24%). Patient prognosis, disease site, and reimbursement factors often influence the provision of survivorship care. Although ROs report that several platforms offer training in survivorship medicine, the quality of these resources is variable and extensive instruction is rare. Fewer than one-half of ROs believe they are expertly trained in survivorship care. ROs play an active role within the multidisciplinary team in the cancer-related follow-up care of survivors. Investigation of barriers to the provision of survivorship care and optimization of service delivery should be pursued further. The development of high-quality, easily accessible educational programming is needed so that ROs can participate more effectively in the care of cancer survivors. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  4. The American Society for Radiation Oncology's 2010 Core Physics Curriculum for Radiation Oncology Residents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Ying, E-mail: ying.xiao@jefferson.edu [Thomas Jefferson University Hospital, Philadelphia, PA (United States); De Amorim Bernstein, Karen [Montefiore Medical Center, Bronx, NY (United States); Chetty, Indrin J. [Henry Ford Health System, Detroit, MI (United States); Eifel, Patricia [M. D. Anderson Cancer Center, Houston, TX (United States); Hughes, Lesley [Cooper University Hospital, Camden, NJ (United States); Klein, Eric E. [Washington University, Saint Louis, MO (United States); McDermott, Patrick [William Beaumont Hospital, Royal Oak, MI (United States); Prisciandaro, Joann [University of Michigan, Ann Arbor, MI (United States); Paliwal, Bhudatt [University of Wisconsin, Madison, WI (United States); Price, Robert A. [Fox Chase Cancer Center, Philadelphia, PA (United States); Werner-Wasik, Maria [Thomas Jefferson University Hospital, Philadelphia, PA (United States); Palta, Jatinder R. [University of Florida, Gainesville, FL (United States)

    2011-11-15

    Purpose: In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Methods and Materials: Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. Results: The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. Conclusions: The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years.

  5. SU-E-T-524: Web-Based Radiation Oncology Incident Reporting and Learning System (ROIRLS)

    International Nuclear Information System (INIS)

    Kapoor, R; Palta, J; Hagan, M; Grover, S; Malik, G

    2014-01-01

    Purpose: Describe a Web-based Radiation Oncology Incident Reporting and Learning system that has the potential to improve quality of care for radiation therapy patients. This system is an important facet of continuing effort by our community to maintain and improve safety of radiotherapy.Material and Methods: The VA National Radiation Oncology Program office has embarked on a program to electronically collect adverse events and near miss data of radiation treatment of over 25,000 veterans treated with radiotherapy annually. Software used for this program is deployed on the VAs intranet as a Website. All data entry forms (adverse event or near miss reports, work product reports) utilize standard causal, RT process step taxonomies and data dictionaries defined in AAPM and ASTRO reports on error reporting (AAPM Work Group Report on Prevention of Errors and ASTROs safety is no accident report). All reported incidents are investigated by the radiation oncology domain experts. This system encompasses the entire feedback loop of reporting an incident, analyzing it for salient details, and developing interventions to prevent it from happening again. The operational workflow is similar to that of the Aviation Safety Reporting System. This system is also synergistic with ROSIS and SAFRON. Results: The ROIRLS facilitates the collection of data that help in tracking adverse events and near misses and develop new interventions to prevent such incidents. The ROIRLS electronic infrastructure is fully integrated with each registered facility profile data thus minimizing key strokes and multiple entries by the event reporters. Conclusions: OIRLS is expected to improve the quality and safety of a broad spectrum of radiation therapy patients treated in the VA and fulfills our goal of Effecting Quality While Treating Safely The Radiation Oncology Incident Reporting and Learning System software used for this program has been developed, conceptualized and maintained by TSG Innovations

  6. SU-E-T-524: Web-Based Radiation Oncology Incident Reporting and Learning System (ROIRLS)

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, R; Palta, J; Hagan, M [Virginia Commonwealth University, Richmond, VA (United States); National Radiation Oncology Program (10P4H), Richmond, VA (United States); Grover, S; Malik, G [TSG Innovations Inc., Richmond, VA (United States)

    2014-06-01

    Purpose: Describe a Web-based Radiation Oncology Incident Reporting and Learning system that has the potential to improve quality of care for radiation therapy patients. This system is an important facet of continuing effort by our community to maintain and improve safety of radiotherapy.Material and Methods: The VA National Radiation Oncology Program office has embarked on a program to electronically collect adverse events and near miss data of radiation treatment of over 25,000 veterans treated with radiotherapy annually. Software used for this program is deployed on the VAs intranet as a Website. All data entry forms (adverse event or near miss reports, work product reports) utilize standard causal, RT process step taxonomies and data dictionaries defined in AAPM and ASTRO reports on error reporting (AAPM Work Group Report on Prevention of Errors and ASTROs safety is no accident report). All reported incidents are investigated by the radiation oncology domain experts. This system encompasses the entire feedback loop of reporting an incident, analyzing it for salient details, and developing interventions to prevent it from happening again. The operational workflow is similar to that of the Aviation Safety Reporting System. This system is also synergistic with ROSIS and SAFRON. Results: The ROIRLS facilitates the collection of data that help in tracking adverse events and near misses and develop new interventions to prevent such incidents. The ROIRLS electronic infrastructure is fully integrated with each registered facility profile data thus minimizing key strokes and multiple entries by the event reporters. Conclusions: OIRLS is expected to improve the quality and safety of a broad spectrum of radiation therapy patients treated in the VA and fulfills our goal of Effecting Quality While Treating Safely The Radiation Oncology Incident Reporting and Learning System software used for this program has been developed, conceptualized and maintained by TSG Innovations

  7. Ethics in the Legal and Business Practices of Radiation Oncology.

    Science.gov (United States)

    Wall, Terry J

    2017-10-01

    Ethical issues arise when a professional endeavor such as medicine, which seeks to place the well-being of others over the self-interest of the practitioner, meets granular business and legal decisions involved in making a livelihood out of a professional calling. The use of restrictive covenants, involvement in self-referral patterns, and maintaining appropriate comity among physicians while engaged in the marketplace are common challenges in radiation oncology practice. A paradigm of analysis is presented to help navigate these management challenges. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Oncologic Outcomes of Patients With Gleason Score 7 and Tertiary Gleason Pattern 5 After Radical Prostatectomy

    OpenAIRE

    Leng, Yi-Hsueh; Lee, Won Jun; Yang, Seung Ok; Lee, Jeong Ki; Jung, Tae Young; Kim, Yun Beom

    2013-01-01

    Purpose We evaluated oncologic outcomes following radical prostatectomy (RP) in patients with a Gleason score (GS) of 7 with tertiary Gleason pattern 5 (TGP5). Materials and Methods We retrospectively reviewed the medical records of 310 patients who underwent RP from 2005 to 2010. Twenty-four patients who received neoadjuvant or adjuvant antiandrogen deprivation or radiation therapy were excluded. Just 239 (GS 6 to 8) of the remaining 286 patients were included in the study. Patients were cla...

  9. Dummy Run of Quality Assurance Program in a Phase 3 Randomized Trial Investigating the Role of Internal Mammary Lymph Node Irradiation in Breast Cancer Patients: Korean Radiation Oncology Group 08-06 Study

    International Nuclear Information System (INIS)

    Chung, Yoonsun; Kim, Jun Won; Shin, Kyung Hwan; Kim, Su Ssan; Ahn, Sung-Ja; Park, Won; Lee, Hyung-Sik; Kim, Dong Won; Lee, Kyu Chan; Suh, Hyun Suk; Kim, Jin Hee; Shin, Hyun Soo; Kim, Yong Bae; Suh, Chang-Ok

    2015-01-01

    Purpose: The Korean Radiation Oncology Group (KROG) 08-06 study protocol allowed radiation therapy (RT) technique to include or exclude breast cancer patients from receiving radiation therapy to the internal mammary lymph node (IMN). The purpose of this study was to assess dosimetric differences between the 2 groups and potential influence on clinical outcome by a dummy run procedure. Methods and Materials: All participating institutions were asked to produce RT plans without irradiation (Arm 1) and with irradiation to the IMN (Arm 2) for 1 breast-conservation treatment case (breast-conserving surgery [BCS]) and 1 mastectomy case (modified radical mastectomy [MRM]) whose computed tomography images were provided. We assessed interinstitutional variations in IMN delineation and evaluated the dose-volume histograms of the IMN and normal organs. A reference IMN was delineated by an expert panel group based on the study guidelines. Also, we analyzed the potential influence of actual dose variation observed in this study on patient survival. Results: Although physicians intended to exclude the IMN within the RT field, the data showed almost 59.0% of the prescribed dose was delivered to the IMN in Arm 1. However, the mean doses covering the IMN in Arm 1 and Arm 2 were significantly different for both cases (P<.001). Due to the probability of overdose in Arm 1, the estimated gain in 7-year disease-free survival rate would be reduced from 10% to 7.9% for BCS cases and 7.1% for MRM cases. The radiation doses to the ipsilateral lung, heart, and coronary artery were lower in Arm 1 than in Arm 2. Conclusions: Although this dummy run study indicated that a substantial dose was delivered to the IMN, even in the nonirradiation group, the dose differences between the 2 groups were statistically significant. However, this dosimetric profile should be studied further with actual patient samples and be taken into consideration when analyzing clinical outcomes according to IMN

  10. Dummy Run of Quality Assurance Program in a Phase 3 Randomized Trial Investigating the Role of Internal Mammary Lymph Node Irradiation in Breast Cancer Patients: Korean Radiation Oncology Group 08-06 Study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yoonsun [Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Jun Won [Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Shin, Kyung Hwan [Department of Radiation Oncology, Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Kim, Su Ssan [Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul (Korea, Republic of); Ahn, Sung-Ja [Department of Radiation Oncology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Park, Won [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lee, Hyung-Sik [Department of Radiation Oncology, Dong-A University Hospital, Dong-A University School of Medicine, Busan (Korea, Republic of); Kim, Dong Won [Department of Radiation Oncology, Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of); Lee, Kyu Chan [Department of Radiation Oncology, Gachon University Gil Medical Center, Incheon (Korea, Republic of); Suh, Hyun Suk [Department of Radiation Oncology, Ewha Womans University Mokdong Hospital, Seoul (Korea, Republic of); Kim, Jin Hee [Department of Radiation Oncology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu (Korea, Republic of); Shin, Hyun Soo [Department of Radiation Oncology, Bundang CHA Hospital, School of Medicine, CHA University, Seongnam (Korea, Republic of); Kim, Yong Bae, E-mail: ybkim3@yuhs.ac [Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of); Suh, Chang-Ok [Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-02-01

    Purpose: The Korean Radiation Oncology Group (KROG) 08-06 study protocol allowed radiation therapy (RT) technique to include or exclude breast cancer patients from receiving radiation therapy to the internal mammary lymph node (IMN). The purpose of this study was to assess dosimetric differences between the 2 groups and potential influence on clinical outcome by a dummy run procedure. Methods and Materials: All participating institutions were asked to produce RT plans without irradiation (Arm 1) and with irradiation to the IMN (Arm 2) for 1 breast-conservation treatment case (breast-conserving surgery [BCS]) and 1 mastectomy case (modified radical mastectomy [MRM]) whose computed tomography images were provided. We assessed interinstitutional variations in IMN delineation and evaluated the dose-volume histograms of the IMN and normal organs. A reference IMN was delineated by an expert panel group based on the study guidelines. Also, we analyzed the potential influence of actual dose variation observed in this study on patient survival. Results: Although physicians intended to exclude the IMN within the RT field, the data showed almost 59.0% of the prescribed dose was delivered to the IMN in Arm 1. However, the mean doses covering the IMN in Arm 1 and Arm 2 were significantly different for both cases (P<.001). Due to the probability of overdose in Arm 1, the estimated gain in 7-year disease-free survival rate would be reduced from 10% to 7.9% for BCS cases and 7.1% for MRM cases. The radiation doses to the ipsilateral lung, heart, and coronary artery were lower in Arm 1 than in Arm 2. Conclusions: Although this dummy run study indicated that a substantial dose was delivered to the IMN, even in the nonirradiation group, the dose differences between the 2 groups were statistically significant. However, this dosimetric profile should be studied further with actual patient samples and be taken into consideration when analyzing clinical outcomes according to IMN

  11. An evaluation system for electronic retrospective analyses in radiation oncology: implemented exemplarily for pancreatic cancer

    Science.gov (United States)

    Kessel, Kerstin A.; Jäger, Andreas; Bohn, Christian; Habermehl, Daniel; Zhang, Lanlan; Engelmann, Uwe; Bougatf, Nina; Bendl, Rolf; Debus, Jürgen; Combs, Stephanie E.

    2013-03-01

    To date, conducting retrospective clinical analyses is rather difficult and time consuming. Especially in radiation oncology, handling voluminous datasets from various information systems and different documentation styles efficiently is crucial for patient care and research. With the example of patients with pancreatic cancer treated with radio-chemotherapy, we performed a therapy evaluation by using analysis tools connected with a documentation system. A total number of 783 patients have been documented into a professional, web-based documentation system. Information about radiation therapy, diagnostic images and dose distributions have been imported. For patients with disease progression after neoadjuvant chemoradiation, we designed and established an analysis workflow. After automatic registration of the radiation plans with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose-volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence. All results are stored in the database and included in statistical calculations. The main goal of using an automatic evaluation system is to reduce time and effort conducting clinical analyses, especially with large patient groups. We showed a first approach and use of some existing tools, however manual interaction is still necessary. Further steps need to be taken to enhance automation. Already, it has become apparent that the benefits of digital data management and analysis lie in the central storage of data and reusability of the results. Therefore, we intend to adapt the evaluation system to other types of tumors in radiation oncology.

  12. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Valicenti, Richard K., E-mail: Richard.valicenti@ucdmc.ucdavis.edu [Department of Radiation Oncology, University of California, Davis School of Medicine, Davis, California (United States); Thompson, Ian [Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States); Albertsen, Peter [Division of Urology, University of Connecticut Health Center, Farmington, Connecticut (United States); Davis, Brian J. [Department of Radiation Oncology, Mayo Medical School, Rochester, Minnesota (United States); Goldenberg, S. Larry [Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia (Canada); Wolf, J. Stuart [Department of Urology, University of Michigan, Ann Arbor, Michigan (United States); Sartor, Oliver [Department of Medicine and Urology, Tulane Medical School, New Orleans, Louisiana (United States); Klein, Eric [Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio (United States); Hahn, Carol [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Michalski, Jeff [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Roach, Mack [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Faraday, Martha M. [Four Oaks, Inc (United States)

    2013-08-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review.

  13. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    International Nuclear Information System (INIS)

    Valicenti, Richard K.; Thompson, Ian; Albertsen, Peter; Davis, Brian J.; Goldenberg, S. Larry; Wolf, J. Stuart; Sartor, Oliver; Klein, Eric; Hahn, Carol; Michalski, Jeff; Roach, Mack; Faraday, Martha M.

    2013-01-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review

  14. Informal patient payments in oncology practice

    Directory of Open Access Journals (Sweden)

    Fomenko, Tetiana

    2012-07-01

    Full Text Available BACKGROUND: In Europe, new cases of cancer are diagnosed in 4 million people yearly, of whom 837 000 die. In Ukraine of 160 000 new cases almost 100 000 die. With proper treatment, one third of cancer cases is curable, but informal payments (IPP in health care limit access to treatment. We aimed to explore the experience of people treated for cancer to identify obstacles in obtaining health care and the expert opinion about health care for cancer patients in Ukraine.METHODS: The study is exploratory. Semi-structured in-depth interviews were conducted with 15 convenience sample patients or their relatives as well as with three experts between October 2011 – April 2012. RESULTS. Solicitation or receipt of IPP depends on the organizational culture. Respondents do not mind about IPP, but want this to be their own decision. IPP are often considered a “thank” to the medical staff for the service. The significant percentage of expenditures while in treatment for patients is due to purchases of medicines at their own expense. The problem of a long process of diagnostics and incomplete information by the medical staff about the stage of cancer and possible prognoses are essential for the respondents. According to experts not sufficient number of specialists and equipment for proper diagnosis and treatment is another problem. The attitude of medical staff to the patient with cancer largely depends on the personal features of the staff.CONCLUSIONS: Significant problems perceived by cancer patients are related to purchase of medicines at their own expense, structural and organizational features of hospitals, where they are staying for the treatment. Informal payments largely depend on the personal qualities of medical staff. The government must ensure fairness and equal access in getting care in oncology practice because it mainly affects the health of the nation.

  15. Informational needs of gastrointestinal oncology patients.

    Science.gov (United States)

    Papadakos, Janet; Urowitz, Sara; Olmstead, Craig; Jusko Friedman, Audrey; Zhu, Jason; Catton, Pamela

    2015-12-01

    In response to the dearth of consumer health information for patients with gastrointestinal cancers, this study examined the informational needs of these patients to build a plan for future resource development. Although studies have examined informational needs of some such cancers, no published literature has investigated the comprehensive informational needs across all sites of gastrointestinal cancer. A cross-sectional needs assessment comprising a self-administered questionnaire was conducted at an ambulatory gastrointestinal oncology clinic in Toronto, Canada. Patient informational needs were measured, including importance of information, amount desired and preferred mode of delivery. Informational needs were grouped into six domains: medical, practical, physical, emotional, social and spiritual. Eighty-two surveys were analysed. The majority of the respondents were male (53.8%), over the age of 50 (77.8%), and born outside of Canada (51.9%). While many did not speak English as a child (46.3%), and do not speak English at home (22.2%), nearly all indicated comfort with receiving health information in English (97.5%). The majority of respondents were college educated (79.3%) and married (73%). Multiple cancer types were reported; the most common being colorectal (39%), followed by pancreatic (12%) and cancers of the gallbladder or bile duct (12%). Overall, respondents placed highest importance on medical information (P < 0.001). Preferred education modalities were pamphlets, websites and one-on-one discussions with health-care professionals. This study highlights the principal informational needs of patients with gastrointestinal malignancies, along with preferred modality for information delivery. This information will guide the development of educational resources for future patients. © 2014 John Wiley & Sons Ltd.

  16. A Phase 2 Trial of Radiation Therapy With Concurrent Paclitaxel Chemotherapy After Surgery in Patients With High-Risk Endometrial Cancer: A Korean Gynecologic Oncologic Group Study

    International Nuclear Information System (INIS)

    Cho, Hanbyoul; Nam, Byung-Ho; Kim, Seok Mo; Cho, Chi-Heum; Kim, Byoung Gie; Ryu, Hee-Sug; Kang, Soon Beom; Kim, Jae-Hoon

    2014-01-01

    Purpose: A phase 2 study was completed by the Korean Gynecologic Oncologic Group to evaluate the efficacy and toxicity of concurrent chemoradiation with weekly paclitaxel in patients with high-risk endometrial cancer. Methods and Materials: Pathologic requirements included endometrial endometrioid adenocarcinoma stages III and IV. Radiation therapy consisted of a total dose of 4500 to 5040 cGy in 5 fractions per week for 6 weeks. Paclitaxel 60 mg/m 2 was administered once weekly for 5 weeks during radiation therapy. Results: Fifty-seven patients were enrolled between January 2006 and March 2008. The median follow-up time was 60.0 months (95% confidence interval [CI], 51.0-58.2). All grade 3/4 toxicities were hematologic and usually self-limited. There was no life-threatening toxicity. The cumulative incidence of intrapelvic recurrence sites was 1.9% (1/52), and the cumulative incidence of extrapelvic recurrence sites was 34.6% (18/52). The estimated 5-year disease-free and overall survival rates were 63.5% (95% CI, 50.4-76.5) and 82.7% (95% CI, 72.4-92.9), respectively. Conclusions: Concurrent chemoradiation with weekly paclitaxel is well tolerated and seems to be effective for high-risk endometrioid endometrial cancers. This approach appears reasonable to be tested for efficacy in a prospective, randomized controlled study

  17. A Phase 2 Trial of Radiation Therapy With Concurrent Paclitaxel Chemotherapy After Surgery in Patients With High-Risk Endometrial Cancer: A Korean Gynecologic Oncologic Group Study

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hanbyoul [Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Institute of Women' s Life Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Nam, Byung-Ho [Cancer Biostatistics Branch, Research Institute for National Cancer Control and Evaluation, National Cancer Center, Goyang (Korea, Republic of); Kim, Seok Mo [Department of Obstetrics and Gynecology, Chonnam National University School of Medicine, Gwangju (Korea, Republic of); Cho, Chi-Heum [Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu (Korea, Republic of); Kim, Byoung Gie [Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Ryu, Hee-Sug [Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon (Korea, Republic of); Kang, Soon Beom [Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul (Korea, Republic of); Kim, Jae-Hoon, E-mail: jaehoonkim@yuhs.ac [Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Institute of Women' s Life Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-09-01

    Purpose: A phase 2 study was completed by the Korean Gynecologic Oncologic Group to evaluate the efficacy and toxicity of concurrent chemoradiation with weekly paclitaxel in patients with high-risk endometrial cancer. Methods and Materials: Pathologic requirements included endometrial endometrioid adenocarcinoma stages III and IV. Radiation therapy consisted of a total dose of 4500 to 5040 cGy in 5 fractions per week for 6 weeks. Paclitaxel 60 mg/m{sup 2} was administered once weekly for 5 weeks during radiation therapy. Results: Fifty-seven patients were enrolled between January 2006 and March 2008. The median follow-up time was 60.0 months (95% confidence interval [CI], 51.0-58.2). All grade 3/4 toxicities were hematologic and usually self-limited. There was no life-threatening toxicity. The cumulative incidence of intrapelvic recurrence sites was 1.9% (1/52), and the cumulative incidence of extrapelvic recurrence sites was 34.6% (18/52). The estimated 5-year disease-free and overall survival rates were 63.5% (95% CI, 50.4-76.5) and 82.7% (95% CI, 72.4-92.9), respectively. Conclusions: Concurrent chemoradiation with weekly paclitaxel is well tolerated and seems to be effective for high-risk endometrioid endometrial cancers. This approach appears reasonable to be tested for efficacy in a prospective, randomized controlled study.

  18. WE-E-17A-07: Patient-Specific Mathematical Neuro-Oncology: Biologically-Informed Radiation Therapy and Imaging Physics

    International Nuclear Information System (INIS)

    Swanson, K; Corwin, D; Rockne, R

    2014-01-01

    Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiation therapy (RT) plans and to quantify and predict response to RT in glioblastoma. We investigate the biological correlates and imaging physics driving T2-MRI based response to radiation therapy using an MRI simulator. Methods: We have integrated a patient-specific biomathematical model of glioblastoma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated RT optimization to construct individualized, biologically-guided plans. Patient-individualized simulations of the standard-of-care and optimized plans are compared in terms of several biological metrics quantified on MRI. An extension of the PI model is used to investigate the role of angiogenesis and its correlates in glioma response to therapy with the Proliferation-Invasion-Hypoxia- Necrosis-Angiogenesis model (PIHNA). The PIHNA model is used with a brain tissue phantom to predict tumor-induced vasogenic edema, tumor and tissue density that is used in a multi-compartmental MRI signal equation for generation of simulated T2- weighted MRIs. Results: Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized RT plans would have a significant impact on delaying tumor progression, with Days Gained increases from 21% to 105%. For the T2- MRI simulations, initial validation tests compared average simulated T2 values for white matter, tumor, and peripheral edema to values cited in the literature. Simulated results closely match the characteristic T2 value for each tissue. Conclusion: Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for RT generated biologically-guided doses that decreased normal tissue dose and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma. Simulated T2-MRI

  19. WE-E-17A-07: Patient-Specific Mathematical Neuro-Oncology: Biologically-Informed Radiation Therapy and Imaging Physics

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, K; Corwin, D [Northwestern University, Chicago, IL (United States); Rockne, R

    2014-06-15

    Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiation therapy (RT) plans and to quantify and predict response to RT in glioblastoma. We investigate the biological correlates and imaging physics driving T2-MRI based response to radiation therapy using an MRI simulator. Methods: We have integrated a patient-specific biomathematical model of glioblastoma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated RT optimization to construct individualized, biologically-guided plans. Patient-individualized simulations of the standard-of-care and optimized plans are compared in terms of several biological metrics quantified on MRI. An extension of the PI model is used to investigate the role of angiogenesis and its correlates in glioma response to therapy with the Proliferation-Invasion-Hypoxia- Necrosis-Angiogenesis model (PIHNA). The PIHNA model is used with a brain tissue phantom to predict tumor-induced vasogenic edema, tumor and tissue density that is used in a multi-compartmental MRI signal equation for generation of simulated T2- weighted MRIs. Results: Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized RT plans would have a significant impact on delaying tumor progression, with Days Gained increases from 21% to 105%. For the T2- MRI simulations, initial validation tests compared average simulated T2 values for white matter, tumor, and peripheral edema to values cited in the literature. Simulated results closely match the characteristic T2 value for each tissue. Conclusion: Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for RT generated biologically-guided doses that decreased normal tissue dose and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma. Simulated T2-MRI

  20. Application of 80-kVp scan and raw data-based iterative reconstruction for reduced iodine load abdominal-pelvic CT in patients at risk of contrast-induced nephropathy referred for oncological assessment: effects on radiation dose, image quality and renal function.

    Science.gov (United States)

    Nagayama, Yasunori; Tanoue, Shota; Tsuji, Akinori; Urata, Joji; Furusawa, Mitsuhiro; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yoshida, Eri; Yoshida, Morikatsu; Kidoh, Masafumi; Tateishi, Machiko; Yamashita, Yasuyuki

    2018-05-01

    To evaluate the image quality, radiation dose, and renal safety of contrast medium (CM)-reduced abdominal-pelvic CT combining 80-kVp and sinogram-affirmed iterative reconstruction (SAFIRE) in patients with renal dysfunction for oncological assessment. We included 45 patients with renal dysfunction (estimated glomerular filtration rate  60 ml per lmin per 1.73 m 2 ) who underwent standard oncological abdominal-pelvic CT (600 mgI kg -1 , 120-kVp, filtered-back projection) were included as controls. CT attenuation, image noise, and contrast-to-noise ratio (CNR) were compared. Two observers performed subjective image analysis on a 4-point scale. Size-specific dose estimate and renal function 1-3 months after CT were measured. The size-specific dose estimate and iodine load of 80-kVp protocol were 32 and 41%,, respectively, lower than of 120-kVp protocol (p 0.05). No significant kidney injury associated with CM administration was observed. 80-kVp abdominal-pelvic CT with SAFIRE yields diagnostic image quality in oncology patients with renal dysfunction under substantially reduced iodine and radiation dose without renal safety concerns. Advances in knowledge: Using 80-kVp and SAFIRE allows for 40% iodine load and 32% radiation dose reduction for abdominal-pelvic CT without compromising image quality and renal function in oncology patients at risk of contrast-induced nephropathy.

  1. Monoclonal antibodies: potential role in radiation therapy and oncology

    International Nuclear Information System (INIS)

    Order, S.E.

    1982-01-01

    Specificity, which is a hallmark of the immune system, will be used in radiation oncology in both diagnosis and therapy through the application of radiolabelled monoclonal and polyclonal antibodies. Antigenic specificities, antibody preparations, and the tumor as a target for radiolabelled antibody is reviewed. Several clinical situations, i.e. single tumor cell suspensions, intraperitoneal single cells and masses, and solid tumors are reviewed in regard to both immune antibody targeting and specific differences between tumors in these regions. The concentration of tumor associated antigens is introductory to radiolabelled antibodies in diagnosis. In the radiation therapy of solid tumors, data regarding tumor dose, tumor effective half-life, varied antibody preparations, and the use of radiolabelled antibody as a method of tumor implantation is discussed using antiferritin 131 I-IgG as a model in hepatoma. The theoretical applications of monoclonal antibody integrated in cancer therapy are then presented as a new goal for future development

  2. SU-F-T-505: A Novel Approach for Sparing Critical Organs at Risk for Cancer Patients Undergoing Radiation Oncology Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lavvafi, H; Pourriahi, M; Elahinia, H; Elahinia, M; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States)

    2016-06-15

    Purpose: A major goal of an effective radiation treatment plan is to deliver the maximum dose to the tumor while minimizing radiation exposure to the surrounding normal structures. For example, due to the radiation exposure to neighboring critical structures during prostate cancer treatment, a significant increase in cancer risk was observed for the bladder (77%) and the rectum (105%) over the following decade. Consequently, an effective treatment plan necessitates limiting the exposure to such organs which can best be achieved by physically displacing the organ at-risk. The goal of this study is to present a prototype for an organ re-positioner device designed and fabricated to physically move the rectum away from the path of radiation beam during external beam and brachytherapy treatments. This device affords patient comfort and provides a fully controlled motion to safely relocate the rectum during treatment. Methods: The NiTi shape memory alloy was designed and optimized for manufacturing a rectal re-positioner device through cooling and heating the core alloy for its shaping. This has been achieved through a prototyped custom designed electronic circuit in order to induce the reversible austenitic transformation and was tested rigorously to ensure the integrity of the actuated motion in displacement of the target anatomy. Results: The desirable NiTi shape-setting was configured for easy insertion and based on anatomical constraint. When the final prototype was evaluated, accuracy and precision of the maximum displacement and temperature changes revealed that the device could safely be used within the target anatomy. Conclusion: The organ re-positioner device is a promising tool that can be implemented in clinical setting. It provides a controlled and safe displacement of the delicate organ(s) at risk. The location of the organ being treated could also be identified using conventional onboard imaging devices or MV imaging available on-board most modern clinical

  3. X-rays sensing properties of MEH-PPV, Alq₃ and additive components: a new organic dosimeter as a candidate for minimizing the risk of accidents of patients undergoing radiation oncology.

    Science.gov (United States)

    Schimitberger, T; Ferreira, G R; Akcelrud, L C; Saraiva, M F; Bianchi, R F

    2013-01-01

    In this paper, we report our experimental design in searching a smart and easy-to-read dosimeter used to detect 6 MV X-rays for improving patient safety in radiation oncology. The device was based on an organic emissive solutions of poly(2-methoxy-5(2'-ethylhexyloxy)-p-phenylenevinylene) (MEH-PPV), aluminum-tris-(8-hydroxyquinoline) (Alq₃) and additive components which were characterized by UV-Vis absorption, photoluminescence and CIE color coordinate diagram. The optical properties of MEH-PPV/Alq₃ solutions have been examined as function of radiation dose over the range of 0-100 Gy. It has shown that MEH-PPV/Alq₃ solutions are specifically sensitive to X-rays, since the effect of radiation on this organic system is strongly correlated with the efficient spectral overlap between Alq₃ emission and the absorption of degraded MEH-PPV, which alters the color and photoemission of MEH-PPV/Alq₃ mixtures from red to yellow, and then to green. The rate of this change is more sensitive when MEH-PPV/Alq₃ is irradiated in the presence of benzoyl peroxide than when in the presence of hindered phenolic stabilizers, respectively, an accelerator and an inhibitor to activate or inhibit free radical formation. This gives rise to optimize the response curve of the dosimeter. It is clear from the experimental results that organic emissive semiconductors have potential to be used as dedicated and low-cost dosimeters to provide an independent check of beam output of a linear accelerator and therefore to give patients the opportunity to have information on the dose prescription or equipment-related problems a few minutes before being exposed to radiation. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. SU-E-T-570: Management of Radiation Oncology Patients with Cochlear Implant and Other Bionic Devices in the Brain and Head and Neck Regions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F.Q; Chen, Z; Nath, R [Yale New Haven Hospital, New Haven, CT (United States); Yale UniversitySchool of Medicine, New Haven, CT (United States)

    2014-06-01

    Purpose: To investigate the current status of clinical usage of cochlear implant (CI) and other bionic devices (BD) in the brain and head and neck regions (BH and N) and their management in patients during radiotherapy to ensure patient health and safety as well as optimum radiation delivery. Methods: Literature review was performed with both CIs and radiotherapy and their variants as keywords in PubMed, INSPEC and other sources. The focus was on CIs during radiotherapy, but it also included other BDs in BHȦN, such as auditory brainstem implant, bionic retinal implant, and hearing aids, among others. Results: Interactions between CIs and radiation may cause CIs malfunction. The presence of CIs may also cause suboptimum dose distribution if a treatment plan was not well designed. A few studies were performed for the hearing functions of CIs under irradiations of 4 MV and 6 MV x-rays. However, x-rays with higher energies (10 to 18 MV) broadly used in radiotherapy have not been explored. These higher energetic beams are more damaging to electronics due to strong penetrating power and also due to neutrons generated in the treatment process. Modern CIs are designed with more and more complicated integrated circuits, which may be more susceptible to radiation damage and malfunction. Therefore, careful management is important for safety and treatment outcomes. Conclusion: Although AAPM TG-34, TG-63, and TG-203 (update of TG-34, not published yet) reports may be referenced for management of CIs and other BDs in the brain and H and N regions, a site- and device-specified guideline should be developed for CIs and other BDs. Additional evaluation of CI functions under clinically relevant set-ups should also be performed to provide clinicians with better knowledge in clinical decision making.

  5. The Radiation Oncology Job Market: The Economics and Policy of Workforce Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Falit, Benjamin P., E-mail: bfalit2@allianceoncology.com [Pacific Cancer Institute, Wailuku, Hawaii (United States); Pan, Hubert Y.; Smith, Benjamin D. [MD Anderson Cancer Center, Houston, Texas (United States); Alexander, Brian M. [Dana Farber Cancer Institute, Boston, Massachusetts (United States); Zietman, Anthony L. [Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-11-01

    Examinations of the US radiation oncology workforce offer inconsistent conclusions, but recent data raise significant concerns about an oversupply of physicians. Despite these concerns, residency slots continue to expand at an unprecedented pace. Employed radiation oncologists and professional corporations with weak contracts or loose ties to hospital administrators would be expected to suffer the greatest harm from an oversupply. The reduced cost of labor, however, would be expected to increase profitability for equipment owners, technology vendors, and entrenched professional groups. Policymakers must recognize that the number of practicing radiation oncologists is a poor surrogate for clinical capacity. There is likely to be significant opportunity to augment capacity without increasing the number of radiation oncologists by improving clinic efficiency and offering targeted incentives for geographic redistribution. Payment policy changes significantly threaten radiation oncologists' income, which may encourage physicians to care for greater patient loads, thereby obviating more personnel. Furthermore, the implementation of alternative payment models such as Medicare's Oncology Care Model threatens to decrease both the utilization and price of radiation therapy by turning referring providers into cost-conscious consumers. Medicare funds the vast majority of graduate medical education, but the extent to which the expansion in radiation oncology residency slots has been externally funded is unclear. Excess physician capacity carries a significant risk of harm to society by suboptimally allocating intellectual resources and creating comparative shortages in other, more needed disciplines. There are practical concerns associated with a market-based solution in which medical students self-regulate according to job availability, but antitrust law would likely forbid collaborative self-regulation that purports to restrict supply. Because Congress is unlikely

  6. The Radiation Oncology Job Market: The Economics and Policy of Workforce Regulation

    International Nuclear Information System (INIS)

    Falit, Benjamin P.; Pan, Hubert Y.; Smith, Benjamin D.; Alexander, Brian M.; Zietman, Anthony L.

    2016-01-01

    Examinations of the US radiation oncology workforce offer inconsistent conclusions, but recent data raise significant concerns about an oversupply of physicians. Despite these concerns, residency slots continue to expand at an unprecedented pace. Employed radiation oncologists and professional corporations with weak contracts or loose ties to hospital administrators would be expected to suffer the greatest harm from an oversupply. The reduced cost of labor, however, would be expected to increase profitability for equipment owners, technology vendors, and entrenched professional groups. Policymakers must recognize that the number of practicing radiation oncologists is a poor surrogate for clinical capacity. There is likely to be significant opportunity to augment capacity without increasing the number of radiation oncologists by improving clinic efficiency and offering targeted incentives for geographic redistribution. Payment policy changes significantly threaten radiation oncologists' income, which may encourage physicians to care for greater patient loads, thereby obviating more personnel. Furthermore, the implementation of alternative payment models such as Medicare's Oncology Care Model threatens to decrease both the utilization and price of radiation therapy by turning referring providers into cost-conscious consumers. Medicare funds the vast majority of graduate medical education, but the extent to which the expansion in radiation oncology residency slots has been externally funded is unclear. Excess physician capacity carries a significant risk of harm to society by suboptimally allocating intellectual resources and creating comparative shortages in other, more needed disciplines. There are practical concerns associated with a market-based solution in which medical students self-regulate according to job availability, but antitrust law would likely forbid collaborative self-regulation that purports to restrict supply. Because Congress is unlikely to create

  7. Risk management of radiation therapy. Survey by north Japan radiation therapy oncology group

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Abe, Yoshinao; Yamada, Shogo; Hareyama, Masato; Nakamura, Ryuji; Sugita, Tadashi; Miyano, Takashi

    2004-01-01

    A North Japan Radiation Oncology Group (NJRTOG) survey was carried out to disclose the risk management of radiation therapy. During April 2002, we sent questionnaires to radiation therapy facilities in northern Japan. There were 31 replies from 27 facilities. Many incidents and accidents were reported, including old cases. Although 60% of facilities had a risk management manual and/or risk manager, only 20% had risk management manuals for radiation therapy. Eighty five percent of radiation oncologists thought that incidents may be due to a lack of manpower. Ninety percent of radiation oncologists want to know the type of cases happened in other facilities. The risk management system is still insufficient for radiation therapy. We hope that our data will be a great help to develop risk management strategies for radiation therapy for all radiation oncologists in Japan. (author)

  8. Non-physician practitioners in radiation oncology: advanced practice nurses and physician assistants

    International Nuclear Information System (INIS)

    Kelvin, Joanne Frankel; Moore-Higgs, Giselle J.; Maher, Karen E.; Dubey, Ajay K.; Austin-Seymour, Mary M.; Daly, Nancy Riese; Mendenhall, Nancy Price; Kuehn, Eric F.

    1999-01-01

    Purpose: With changes in reimbursement and a decrease in the number of residents, there is a need to explore new ways of achieving high quality patient care in radiation oncology. One mechanism is the implementation of non-physician practitioner roles, such as the advanced practice nurse (APN) and physician assistant (PA). This paper provides information for radiation oncologists and nurses making decisions about: (1) whether or not APNs or PAs are appropriate for their practice, (2) which type of provider would be most effective, and (3) how best to implement this role. Methods: Review of the literature and personal perspective. Conclusions: Specific issues addressed regarding APN and PA roles in radiation oncology include: definition of roles, regulation, prescriptive authority, reimbursement, considerations in implementation of the role, educational needs, and impact on resident training. A point of emphasis is that the non-physician practitioner is not a replacement or substitute for either a resident or a radiation oncologist. Instead, this role is a complementary one. The non-physician practitioner can assist in the diagnostic work-up of patients, manage symptoms, provide education to patients and families, and assist them in coping. This support facilitates the physician's ability to focus on the technical aspects of prescribing radiotherapy

  9. A syllabus for the education and training of radiation oncology nurses

    International Nuclear Information System (INIS)

    2007-01-01

    A dramatic rise in cancer incidence across the developing world is stretching already limited resources and equipment. Shortages of qualified staff and equipment are growing constraints to treating cancer efficiently. More than 5000 radiotherapy machines are presently needed to help patients fight cancer. But the entire developing world has only about 2200 such machines. Experts predict a long term crisis in managing cancer, with an estimated five million new patients requiring radiation therapy every year. Meeting the challenge is not simply a matter of providing appropriate equipment. There must be sufficient trained and knowledgeable staff with clinical and medical physics expertise to deliver a safe and effective radiation dose. Appropriate facilities and radiation protection infrastructure for monitoring and regulatory control are needed. Moreover, cancer treatment must be carried out in a comprehensive context of prevention, early diagnosis and palliative care. In the early stages of development of a radiotherapy department or unit the staffing needs of radiotherapy services should also be specifically and carefully addressed. To make radiotherapy available to all patients who need it, human resources should be urgently expanded globally along with the rational acquisition of additional equipment. The recommended staffing - for a basic radiotherapy facility with 1 teletherapy machine, simulator and high dose-rate brachytherapy - should be: 5 radiation oncologists, 4 medical physicists, 7-8 radiation therapy technologists (RTTs), 3 oncology nurses and 1 maintenance engineer. Where possible, training should be undertaken in centres with patient populations, equipment and training programmes relevant to the needs of the country. Radiotherapy staff should also be required to obtain a qualification adequate for registration in their own country. The human resources listed above could treat on average about 1000 patients per year by extending operations to a

  10. Radiation protection in radio-oncology; Strahlenschutz in der Radioonkologie

    Energy Technology Data Exchange (ETDEWEB)

    Hartz, Juliane Marie; Joost, Sophie; Hildebrandt, Guido [Universitaetsmedizin Rostock (Germany). Klinik und Poliklinik fuer Strahlentherapie

    2017-07-01

    Based on the high technical status of radiation protection the occupational exposure of radiological personnel is no more of predominant importance. No defined dose limits exist for patients in the frame of therapeutic applications in contrary to the radiological personnel. As a consequence walk-downs radiotherapeutic institutions twice the year have been initiated in order to guarantee a maximum of radiation protection for patient's treatment. An actualization of radiation protection knowledge of the radiological personnel is required.

  11. A Comparative Evaluation of Normal Tissue Doses for Patients Receiving Radiation Therapy for Hodgkin Lymphoma on the Childhood Cancer Survivor Study and Recent Children's Oncology Group Trials

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rachel; Ng, Angela [Department of Radiation Therapy, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Constine, Louis S. [Department of Radiation Oncology, University of Rochester, Rochester, New York (United States); Stovall, Marilyn [Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Armstrong, Gregory T. [Epidemiology/Cancer Control Department, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Neglia, Joseph P. [Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota (United States); Friedman, Debra L. [Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Kelly, Kara [Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Department of Pediatrics, Columbia University Medical Center, New York, New York (United States); FitzGerald, Thomas J. [Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, Massachusetts (United States); Imaging and Radiation Oncology Core Group, Lincoln, Rhode Island (United States); Hodgson, David C., E-mail: David.hodgson@rmp.uhn.on.ca [Department of Radiation Oncology, University of Toronto, and Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada)

    2016-06-01

    Purpose: Survivors of pediatric Hodgkin lymphoma (HL) are recognized to have an increased risk of delayed adverse health outcomes related to radiation therapy (RT). However, the necessary latency required to observe these late effects means that the estimated risks apply to outdated treatments. We sought to compare the normal tissue dose received by children treated for HL and enrolled in the Childhood Cancer Survivor Study (CCSS) (diagnosed 1970-1986) with that of patients treated in recent Children's Oncology Group (COG) trials (enrolled 2002-2012). Methods and Materials: RT planning data were obtained for 50 HL survivors randomly sampled from the CCSS cohort and applied to computed tomography planning data sets to reconstruct the normal tissue dosimetry. For comparison, the normal tissue dosimetry data were obtained for all 191 patients with full computed tomography–based volumetric RT planning on COG protocols AHOD0031 and AHOD0831. Results: For early-stage patients, the mean female breast dose in the COG patients was on average 83.5% lower than that for CCSS patients, with an absolute reduction of 15.5 Gy. For advanced-stage patients, the mean breast dose was decreased on average by 70% (11.6 Gy average absolute dose reduction). The mean heart dose decreased on average by 22.9 Gy (68.6%) and 17.6 Gy (56.8%) for early- and advanced-stage patients, respectively. All dose comparisons for breast, heart, lung, and thyroid were significantly lower for patients in the COG trials than for the CCSS participants. Reductions in the prescribed dose were a major contributor to these dose reductions. Conclusions: These are the first data quantifying the significant reduction in the normal tissue dose using actual, rather than hypothetical, treatment plans for children with HL. These findings provide useful information when counseling families regarding the risks of contemporary RT.

  12. Development of a model web-based system to support a statewide quality consortium in radiation oncology.

    Science.gov (United States)

    Moran, Jean M; Feng, Mary; Benedetti, Lisa A; Marsh, Robin; Griffith, Kent A; Matuszak, Martha M; Hess, Michael; McMullen, Matthew; Fisher, Jennifer H; Nurushev, Teamour; Grubb, Margaret; Gardner, Stephen; Nielsen, Daniel; Jagsi, Reshma; Hayman, James A; Pierce, Lori J

    A database in which patient data are compiled allows analytic opportunities for continuous improvements in treatment quality and comparative effectiveness research. We describe the development of a novel, web-based system that supports the collection of complex radiation treatment planning information from centers that use diverse techniques, software, and hardware for radiation oncology care in a statewide quality collaborative, the Michigan Radiation Oncology Quality Consortium (MROQC). The MROQC database seeks to enable assessment of physician- and patient-reported outcomes and quality improvement as a function of treatment planning and delivery techniques for breast and lung cancer patients. We created tools to collect anonymized data based on all plans. The MROQC system representing 24 institutions has been successfully deployed in the state of Michigan. Since 2012, dose-volume histogram and Digital Imaging and Communications in Medicine-radiation therapy plan data and information on simulation, planning, and delivery techniques have been collected. Audits indicated >90% accurate data submission and spurred refinements to data collection methodology. This model web-based system captures detailed, high-quality radiation therapy dosimetry data along with patient- and physician-reported outcomes and clinical data for a radiation therapy collaborative quality initiative. The collaborative nature of the project has been integral to its success. Our methodology can be applied to setting up analogous consortiums and databases. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  13. The need for psycho-oncological support for melanoma patients

    Science.gov (United States)

    Mayer, Simone; Teufel, Martin; Schaeffeler, Norbert; Keim, Ulrike; Garbe, Claus; Eigentler, Thomas Kurt; Zipfel, Stephan; Forschner, Andrea

    2017-01-01

    Abstract Despite an increasing number of promising treatment options, only a limited number of studies concerning melanoma patients’ psycho-oncological distress have been carried out. However, multiple screening tools are in use to assess the need for psycho-oncological support. This study aimed first to identify parameters in melanoma patients that are associated with a higher risk for being psycho-oncologically distressed and second to compare patients’ self-evaluation concerning the need for psycho-oncological support with the results of established screening tools. We performed a cross-sectional study including 254 melanoma patients from the Center for Dermatooncology at the University of Tuebingen. The study was performed between June 2010 and February 2013. Several screening instruments were included: the Distress Thermometer (DT), Hospital Anxiety and Depression Scale and the patients’ subjective evaluation concerning psycho-oncological support. Binary logistic regression was performed to identify factors that indicate the need for psycho-oncological support. Patients’ subjective evaluation concerning the need for psycho-oncological support, female gender, and psychotherapeutic or psychiatric treatment at present or in the past had the highest impact on values above threshold in the DT. The odds ratio of patients’ self-evaluation (9.89) was even higher than somatic factors like female gender (1.85), duration of illness (0.99), or increasing age (0.97). Patients’ self-evaluation concerning the need for psycho-oncological support indicated a moderate correlation with the results of the screening tools included. In addition to the results obtained by screening tools like the DT, we could demonstrate that patients’ self-evaluation is an important instrument to identify patients who need psycho-oncological support. PMID:28906378

  14. Radiation Oncology Medical Student Clerkship: Implementation and Evaluation of a Bi-institutional Pilot Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Golden, Daniel W., E-mail: dgolden@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States); Spektor, Alexander [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Rudra, Sonali; Ranck, Mark C. [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States); Krishnan, Monica S.; Jimenez, Rachel B.; Viswanathan, Akila N. [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J. [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States)

    2014-01-01

    Purpose: To develop and evaluate a structured didactic curriculum to complement clinical experiences during radiation oncology clerkships at 2 academic medical centers. Methods and Materials: A structured didactic curriculum was developed to teach fundamentals of radiation oncology and improve confidence in clinical competence. Curriculum lectures included: (1) an overview of radiation oncology (history, types of treatments, and basic clinic flow); (2) fundamentals of radiation biology and physics; and (3) practical aspects of radiation treatment simulation and planning. In addition, a hands-on dosimetry session taught students fundamentals of treatment planning. The curriculum was implemented at 2 academic departments in 2012. Students completed anonymous evaluations using a Likert scale to rate the usefulness of curriculum components (1 = not at all, 5 = extremely). Likert scores are reported as (median [interquartile range]). Results: Eighteen students completed the curriculum during their 4-week rotation (University of Chicago n=13, Harvard Longwood Campus n=5). All curriculum components were rated as extremely useful: introduction to radiation oncology (5 [4-5]); radiation biology and physics (5 [5-5]); practical aspects of radiation oncology (5 [4-5]); and the treatment planning session (5 [5-5]). Students rated the curriculum as “quite useful” to “extremely useful” (1) to help students understand radiation oncology as a specialty; (2) to increase student comfort with their specialty decision; and (3) to help students with their future transition to a radiation oncology residency. Conclusions: A standardized curriculum for medical students completing a 4-week radiation oncology clerkship was successfully implemented at 2 institutions. The curriculum was favorably reviewed. As a result of completing the curriculum, medical students felt more comfortable with their specialty decision and better prepared to begin radiation oncology residency.

  15. Radiation Oncology Medical Student Clerkship: Implementation and Evaluation of a Bi-institutional Pilot Curriculum

    International Nuclear Information System (INIS)

    Golden, Daniel W.; Spektor, Alexander; Rudra, Sonali; Ranck, Mark C.; Krishnan, Monica S.; Jimenez, Rachel B.; Viswanathan, Akila N.; Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J.

    2014-01-01

    Purpose: To develop and evaluate a structured didactic curriculum to complement clinical experiences during radiation oncology clerkships at 2 academic medical centers. Methods and Materials: A structured didactic curriculum was developed to teach fundamentals of radiation oncology and improve confidence in clinical competence. Curriculum lectures included: (1) an overview of radiation oncology (history, types of treatments, and basic clinic flow); (2) fundamentals of radiation biology and physics; and (3) practical aspects of radiation treatment simulation and planning. In addition, a hands-on dosimetry session taught students fundamentals of treatment planning. The curriculum was implemented at 2 academic departments in 2012. Students completed anonymous evaluations using a Likert scale to rate the usefulness of curriculum components (1 = not at all, 5 = extremely). Likert scores are reported as (median [interquartile range]). Results: Eighteen students completed the curriculum during their 4-week rotation (University of Chicago n=13, Harvard Longwood Campus n=5). All curriculum components were rated as extremely useful: introduction to radiation oncology (5 [4-5]); radiation biology and physics (5 [5-5]); practical aspects of radiation oncology (5 [4-5]); and the treatment planning session (5 [5-5]). Students rated the curriculum as “quite useful” to “extremely useful” (1) to help students understand radiation oncology as a specialty; (2) to increase student comfort with their specialty decision; and (3) to help students with their future transition to a radiation oncology residency. Conclusions: A standardized curriculum for medical students completing a 4-week radiation oncology clerkship was successfully implemented at 2 institutions. The curriculum was favorably reviewed. As a result of completing the curriculum, medical students felt more comfortable with their specialty decision and better prepared to begin radiation oncology residency

  16. Defining a Leader Role curriculum for radiation oncology: A global Delphi consensus study.

    Science.gov (United States)

    Turner, Sandra; Seel, Matthew; Trotter, Theresa; Giuliani, Meredith; Benstead, Kim; Eriksen, Jesper G; Poortmans, Philip; Verfaillie, Christine; Westerveld, Henrike; Cross, Shamira; Chan, Ming-Ka; Shaw, Timothy

    2017-05-01

    The need for radiation oncologists and other radiation oncology (RO) professionals to lead quality improvement activities and contribute to shaping the future of our specialty is self-evident. Leadership knowledge, skills and behaviours, like other competencies, can be learned (Blumenthal et al., 2012). The objective of this study was to define a globally applicable competency set specific to radiation oncology for the CanMEDS Leader Role (Frank et al., 2015). A modified Delphi consensus process delivering two rounds of on-line surveys was used. Participants included trainees, radiation/clinical oncologists and other RO team members (radiation therapists, physicists, and nurses), professional educators and patients. 72 of 95 (76%) invitees from nine countries completed the Round 1 (R1) survey. Of the 72 respondents to RI, 70 completed Round 2 (R2) (97%). In R1, 35 items were deemed for 'inclusion' and 21 for 'exclusion', leaving 41 'undetermined'. After review of items, informed by participant comments, 14 competencies from the 'inclusion' group went into the final curriculum; 12 from the 'undetermined' group went to R2. In R2, 6 items reached consensus for inclusion. This process resulted in 20 RO Leader Role competencies with apparent global applicability. This is the first step towards developing learning, teaching and assessment tools for this important area of training. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sport and oxidative stress in oncological patients.

    Science.gov (United States)

    Knop, K; Schwan, R; Bongartz, M; Bloch, W; Brixius, K; Baumann, F

    2011-12-01

    Oxidative stress is thought to be an important factor in the onset, progression and recurrence of cancer. In order to investigate how it is influenced by physical activity, we measured oxidative stress and antioxidative capacity (aoC) in 12 women with breast cancer and 6 men with prostate cancer, before and after long hiking trips. Before the hike, the men had a ROS-concentration of 1.8±0.6 mM H2O2 and an aoC of 0.7±0.6 mM Trolox-equivalent (Tro), while the women had a ROS-concentration of 3.1±0.7 mM H2O2 and an aoC of 1.2±0.2 mM Tro. After the hike, women showed no significant change in ROS and a significant increase in aoC (1.3±0.2 mM Tro), while the ROS concentration in men increased significantly (2.1±0.3 mM H2O2) and their aoC decreased (0.25±0.1 mM Tro). After a regenerative phase, the ROS concentration of the men decreased to 1.7±0.4 mM H2O2 and their aoC recovered significantly (1.2±0.4 mM Tro), while the women presented no significant change in the concentration of H2O2 but showed an ulterior increase in antioxidant capacity (2.05±0.43 mM Tro). From this data we conclude that physical training programs as for example long distance hiking trips can improve the aoC in the blood of oncological patients. © Georg Thieme Verlag KG Stuttgart · New York.

  18. The changing face of radiation oncology in Australia 1950:1995: a personal view

    International Nuclear Information System (INIS)

    Bourne, R.G.

    1995-01-01

    An overview of the change in practice of radiation oncology in Australia in the last 45 years is given. In 1950, orthovoltage X-rays were used to treat a wide spectrum of malignant disease but results were impaired by poor depth dose and significant reactions; radium and radon were used commonly and superficial X-ray therapy was used for a large number of skin cancers as well as many benign skin conditions. Since megavoltage X-ray therapy was introduced to Australia and with earlier diagnosis, high standards for qualification as a radiation oncologist set by the Royal Australasian College of Radiologists (RACR), improved imaging and tumour localisation, improved beam characteristics, computerisation and dosimetry, patients are now better treated with improved local control and less morbidity. However, public facilities have been chronically underfunded by governments resulting in waiting lists for treatment, and free standing private practices are important in sharing the ever increasing workload consequent to the increasing and ageing population. It is estimated that he use of brachytherapy has fallen but is enjoying a resurgence of interest, and that radiobiology has had some influence on radiation treatment. Health education has improved and the needs and expectations of patients better appreciated and helped. Statistical evaluation of treatment is better understood. The formation of the faculty of Radiation Oncology of the RACR has given fresh impetus to the specialty, but is estimated that undergraduate training and academic positions remains insufficient. 1 tab., 1 fig

  19. The teaching of physics and related courses to residents in radiation oncology

    International Nuclear Information System (INIS)

    Dunscombe, P.

    1989-01-01

    A survey of physics and related teaching to radiation oncology residents in 21 Canadian cancer centres was undertaken in December 1987 and January 1988. This survey illustrates a very considerable variation in the formal teaching of physics to aspiring radiation oncologists with, for example, the number of hours offered ranging from 40 to 160 in those 10 centres that have a training program. It would appear to be of benefit to radiation oncology residents, those charged with teaching them, and the radiation oncology community as a whole, to develop specific guidelines for this aspect of resident education. (8 refs., tab.)

  20. Is there a role for radiation therapists within veterinary oncology?

    Energy Technology Data Exchange (ETDEWEB)

    Surjan, Yolanda, E-mail: Yolanda.Surjan@newcastle.edu.au [Medical Radiation Science (MRS), School of Health Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Warren-Forward, Helen [Medical Radiation Science (MRS), School of Health Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Milross, Christopher [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, Sydney (Australia)

    2011-08-15

    Role expansion recognises enlargement of existing scope of practice within radiation therapy (RT). Over the past decade, there has been increasing involvement and movement towards advanced practice in the form of role extension in specialised areas of practice including brachytherapy, image fusion and quality assurance. It is also recognised that radiation therapy expert practitioners exist in the areas of imaging immobilisation, treatment, education and research. The acquisition of additional skills has hastened the need for autonomy within the RT profession and with this comes the responsibility to share our knowledge and specialist abilities with the wider community. Radiation therapy is a highly specialised profession working to treat a commonly encountered ailment like cancer and we should ask ourselves what other community members could benefit from our knowledge and skills. Cancer is not limited to the human population but affects animals as readily and severely. Particular types of cancers have been identified as being comparable with that of humans; one such tumour is squamous cell carcinoma (SCC). Squamous cell carcinoma is the most commonly found tumour of the eye and adnexa in horses. Comparatively, SCC in humans is the most common cancer in Australia. Whilst human treatment is well established with surgery and radiation therapy offering comparable control rates, the treatment within Australia's Veterinary Oncology field is currently at a standstill. It is reported, however, that the use of interstitial brachytherapy has been shown to be highly effective and thoroughly practiced and established within the United States of America (USA). This paper reviews current literature in readiness for the potential for radiation therapy cross-over into the veterinary sphere with regard to the implementation of treatment and radiation safety protocols for the use of interstitial brachytherapy in horses.

  1. Is there a role for radiation therapists within veterinary oncology?

    International Nuclear Information System (INIS)

    Surjan, Yolanda; Warren-Forward, Helen; Milross, Christopher

    2011-01-01

    Role expansion recognises enlargement of existing scope of practice within radiation therapy (RT). Over the past decade, there has been increasing involvement and movement towards advanced practice in the form of role extension in specialised areas of practice including brachytherapy, image fusion and quality assurance. It is also recognised that radiation therapy expert practitioners exist in the areas of imaging immobilisation, treatment, education and research. The acquisition of additional skills has hastened the need for autonomy within the RT profession and with this comes the responsibility to share our knowledge and specialist abilities with the wider community. Radiation therapy is a highly specialised profession working to treat a commonly encountered ailment like cancer and we should ask ourselves what other community members could benefit from our knowledge and skills. Cancer is not limited to the human population but affects animals as readily and severely. Particular types of cancers have been identified as being comparable with that of humans; one such tumour is squamous cell carcinoma (SCC). Squamous cell carcinoma is the most commonly found tumour of the eye and adnexa in horses. Comparatively, SCC in humans is the most common cancer in Australia. Whilst human treatment is well established with surgery and radiation therapy offering comparable control rates, the treatment within Australia's Veterinary Oncology field is currently at a standstill. It is reported, however, that the use of interstitial brachytherapy has been shown to be highly effective and thoroughly practiced and established within the United States of America (USA). This paper reviews current literature in readiness for the potential for radiation therapy cross-over into the veterinary sphere with regard to the implementation of treatment and radiation safety protocols for the use of interstitial brachytherapy in horses.

  2. The role of medical physicists in developing a generic research framework for the assessment of new radiation oncology technology and treatments in radiation oncology

    International Nuclear Information System (INIS)

    Grand, M.M.; Amin, R.; Cornes, D.A.; Duchesne, G.; Haworth, A.; Kron, T.; Burmeister, B.

    2010-01-01

    Full text: TROG Cancer Research has secured funding from the Australian Government Department of Health and Ageing to develop and pilot an evaluation framework for new radiation oncology technologies and treatments. Four site specific projects will be undertaken to test the framework including IMRT for nasopharynx, anal canal and post-prostatectomy and IGRT for prostate fiducial markers. Multidisciplinary Expert Groups that include medical physicists, have been appointed for each site specific project. Each project will collect data from at least ten treatment centres who have been credentialed. The Framework will have the capacity to gather information to substantiate the clinical efficacy and cost effectiveness of new technologies and treatments in radiation oncology. The framework will be tested by gathering data to evaluate the superiority of IMRT and lGRT over other treatments and economic analysis will examine the potential trade-off between efficiency and the clinical gains to a patient. It is anticipated that the outcome of this research will inform future funding decisions. The involvement of medical physicists has been central to development of the framework, protocol development and the credentialing process. (author)

  3. Lessons Learnt from Past Incidents and Accidents in Radiation Oncology.

    Science.gov (United States)

    Knöös, T

    2017-09-01

    The purpose of this report is to review and compile what have been and can be learnt from incidents and accidents in radiation oncology, especially in external beam and brachytherapy. Some major accidents from the last 20 years will be discussed. The relationship between major events and minor or so-called near misses is mentioned, leading to the next topic of exploring the knowledge hidden among them. The main lessons learnt from the discussion here and elsewhere are that a well-functioning and safe radiotherapy department should help staff to work with awareness and alertness and that documentation and procedures should be in place and known by everyone. It also requires that trained and educated staff with the required competences are in place and, finally, functions and responsibilities are defined and well known. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Radiation Therapy Oncology Group clinical trials with misonidazole

    International Nuclear Information System (INIS)

    Wasserman, T.H.; Stetz, J.; Phillips, T.L.

    1981-01-01

    This paper presents a review of the progressive clinical trials of the hypoxic cell radiosensitizer, misonidazole, in the Radiation Therapy Oncology Group (RTOG). Presentation is made of all the schemas of the recently completed and currently active RTOG Phase II and Phase III studies. Detailed information is provided on the clinical toxicity of the Phase II trials, specifically regarding neurotoxicity. With limitations in drug total dose, a variety of dose schedules have proven to be tolerable, with a moderate incidence of nausea and vomiting and mild peripheral neuropathy or central neuropathy. No other organ toxicity has been seen, specifically no liver, renal or bone marrow toxicities. An additional Phase III malignant glioma trial in the Brain Tumor Study Group is described

  5. Comparison of methods for prioritizing risk in radiation oncology

    International Nuclear Information System (INIS)

    Biazotto, Bruna; Tokarski, Marcio

    2016-01-01

    Proactive risk management tools, such as Failure Mode and Effect Analysis (FEMA), were imported from engineering and have been widely used in Radiation Oncology. An important step in this process is the risk prioritization and there are many methods to do that. This paper compares the risk prioritization of computerized planning phase in interstitial implants with high dose rate brachytherapy performed with Health Care Failure Mode and Effect Analysis (HFMEA) and FMEA with guidelines given by the Task Group 100 (TG 100) of the American Association of Physicists in Medicine. Out of the 33 possible failure modes of this process, 21 require more attention when evaluated by HFMEA and 22, when evaluated by FMEA TG 100. Despite the high coincidence between the methods, the execution of HFMEA was simpler. (author)

  6. R-IDEAL: A Framework for Systematic Clinical Evaluation of Technical Innovations in Radiation Oncology.

    Science.gov (United States)

    Verkooijen, Helena M; Kerkmeijer, Linda G W; Fuller, Clifton D; Huddart, Robbert; Faivre-Finn, Corinne; Verheij, Marcel; Mook, Stella; Sahgal, Arjun; Hall, Emma; Schultz, Chris

    2017-01-01

    The pace of innovation in radiation oncology is high and the window of opportunity for evaluation narrow. Financial incentives, industry pressure, and patients' demand for high-tech treatments have led to widespread implementation of innovations before, or even without, robust evidence of improved outcomes has been generated. The standard phase I-IV framework for drug evaluation is not the most efficient and desirable framework for assessment of technological innovations. In order to provide a standard assessment methodology for clinical evaluation of innovations in radiotherapy, we adapted the surgical IDEAL framework to fit the radiation oncology setting. Like surgery, clinical evaluation of innovations in radiation oncology is complicated by continuous technical development, team and operator dependence, and differences in quality control. Contrary to surgery, radiotherapy innovations may be used in various ways, e.g., at different tumor sites and with different aims, such as radiation volume reduction and dose escalation. Also, the effect of radiation treatment can be modeled, allowing better prediction of potential benefits and improved patient selection. Key distinctive features of R-IDEAL include the important role of predicate and modeling studies (Stage 0), randomization at an early stage in the development of the technology, and long-term follow-up for late toxicity. We implemented R-IDEAL for clinical evaluation of a recent innovation in radiation oncology, the MRI-guided linear accelerator (MR-Linac). MR-Linac combines a radiotherapy linear accelerator with a 1.5-T MRI, aiming for improved targeting, dose escalation, and margin reduction, and is expected to increase the use of hypofractionation, improve tumor control, leading to higher cure rates and less toxicity. An international consortium, with participants from seven large cancer institutes from Europe and North America, has adopted the R-IDEAL framework to work toward coordinated, evidence

  7. Radiation therapy in elderly patients

    International Nuclear Information System (INIS)

    Durdux, C.; Boisserie, T.; Gisselbrecht, M.

    2009-01-01

    Cancer is a disease that predominantly occurs in older patients who represent a quarter of the population in western countries. Numerous types of cancer are observed in elderly people. Radiotherapy is one of the most powerful treatment against cancer. Most of published studies have demonstrated feasibility of radiotherapy in curative or palliative intent whatever cancer types are considered. Complete geriatric assessment and a multidisciplinary approach are the key points. The purpose of this review is to highlight sights of radiation oncology specifically related to aging. Particular emphasis is placed on logistic and technical aspects of radiation, as dose, irradiated volume and fractionation. (authors)

  8. Through a glass darkly: predicting the future of radiation oncology

    International Nuclear Information System (INIS)

    Peters, Lester J.

    1995-01-01

    To position ourselves professionally for the inevitable transition to managed care demands serious self-appraisal. Like most procedural medical specialties, radiation oncology is currently ill prepared for a capitated system of payment. To prosper under capitation, we need to increase the utility of radiation therapy per unit cost. This can be achieved by making the following adaptive responses: (a) we must ensure that the needs of medical practice drive the use of costly technology and not vice versa; (b) we must subordinate firmly held beliefs and prejudices to solid scientific data and be prepared to modify our practice when more cost-effective alternatives exist; and (c) we must be increasingly conscious of outcome, not process, in deciding among treatment options; and (d) we must acknowledge the need to prioritize the use of finite resources so that the maximum effort is expended on those who have the most to gain from treatment. These changes will permit us to develop guidelines for appropriate use of radiation therapy, and to demonstrate the excellent value of the service we can provide, which is the ultimate key to success. Though the future may at times seem bleak, we can shape it with our actions: the best way to predict the future is to create it

  9. Radiation oncology training in Poland: results of a national survey (2007)

    International Nuclear Information System (INIS)

    Niemiec, M.; Kepka, L.; Lindner, B.; Bujko, K.; Lindner, B.; Maciejewski, B.

    2008-01-01

    The aim of this survey was to evaluate the quality of training in radiation oncology in Poland in relation to the ESTRO recommendations, and to learn motivations, level of satisfaction, complaints, suggestions and career plans of radiation oncologists.The detailed questionnaire was addressed to radiation oncologists from all centres in Poland who have been certified as specialists after 1990. Of the 212 approached, 103 radiation oncologists responded to the questionnaire (49%). In general, 40% of respondents declared that the majority of tutors/supervisors devoted sufficient time to their training (60% in academic, 28% in regional centres); 60% had access to the literature, and 50% to the internet. The number of treated patients during the training period ranged from 10 to 3000 (median: 375). 69% of the respondents completed a training in another Polish oncology centre (median duration - 2 months), 21% underwent such training abroad, 55% attended international courses/ conferences. Respondents from academic centres had access and attended national and/or international training more often than those from regional centres. Financial matters have been listed as a major obstacle for out-door training by 93% of respondents. 64% of respondents were pleased or rather pleased with the general quality of training, and the remaining 36% were unsatisfied (these mainly from regional centres). Considering career plans, 72% respondents wanted to continue practice at their employing institutions; however 24% have declared a wish to continue their career abroad. This first national survey has shown some weak points in radiotherapy training in Poland, mainly the quality differences between the departments in favour of academic centres. Some of the problems can and should be solved by the Polish Society of Radiation Oncology, others need legislation changes and decisions at the level of the Ministry of Health. (authors)

  10. Clinical Training of Medical Physicists Specializing in Radiation Oncology

    International Nuclear Information System (INIS)

    2009-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for radiation therapy. There is a general and growing awareness that radiation medicine is increasingly dependant on well trained medical physicists that are based in the clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognised by the members of the Regional Cooperative Agreement (RCA) for research, development and training related to nuclear sciences for Asia and the Pacific. Consequently a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in radiation therapy was started in 2005 with the appointment of a core drafting committee of regional and international experts. Since 2005 the IAEA has convened two additional consultant group meetings including additional experts to prepare the present publication. The publication drew heavily, particularly in the initial stages, from the experience and documents of the Clinical Training Programme for Radiation Oncology Medical Physicists as developed by the Australasian College of Physical Scientists and Engineers in Medicine. Their

  11. Expanding the use of real‐time electromagnetic tracking in radiation oncology

    Science.gov (United States)

    Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.

    2011-01-01

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017

  12. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    Science.gov (United States)

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  13. Scientific impact of studies published in temporarily available radiation oncology journals: a citation analysis.

    Science.gov (United States)

    Nieder, Carsten; Geinitz, Hans; Andratschke, Nicolaus H; Grosu, Anca L

    2015-01-01

    The purpose of this study was to review all articles published in two temporarily available radiation oncology journals (Radiation Oncology Investigations, Journal of Radiosurgery) in order to evaluate their scientific impact. From several potential measures of impact and relevance of research, we selected article citation rate because landmark or practice-changing research is likely to be cited frequently. The citation database Scopus was used to analyse number of citations. During the time period 1996-1999 the journal Radiation Oncology Investigations published 205 articles, which achieved a median number of 6 citations (range 0-116). However, the most frequently cited article in the first 4 volumes achieved only 23 citations. The Journal of Radiosurgery published only 31 articles, all in the year 1999, which achieved a median number of 1 citation (range 0-11). No prospective randomized studies or phase I-II collaborative group trials were published in these journals. Apparently, the Journal of Radiosurgery acquired relatively few manuscripts that were interesting and important enough to impact clinical practice. Radiation Oncology Investigations' citation pattern was better and closer related to that reported in several previous studies focusing on the field of radiation oncology. The vast majority of articles published in temporarily available radiation oncology journals had limited clinical impact and achieved few citations. Highly influential research was unlikely to be submitted during the initial phase of establishing new radiation oncology journals.

  14. Radiation oncology: what can we achieve by optimized dose delivery?

    International Nuclear Information System (INIS)

    Lawrence, T.

    2003-01-01

    Spectacular technical advances have marked the last twenty years in radiation oncology. This revolution began with CT-based planning which was followed by 3D conformal therapy. The latter approach produced two important capabilities. The most obvious was that tumors could be viewed in their true location with respect to normal tissues and treated with beams that were not in the axial plane. A second equally important advance was the development of 3D planning tools such as dose volume histograms. These tools permitted quantitative comparison of treatment plans and have supported the development of models relating normal tissue irradiation to the risk of complication. The '3D hypothesis' - that 3D treatment planning would permit higher doses of radiation to be safely delivered-has been proven. Dose escalation studies have been successfully conducted in the lung (= 100 Gy), liver (= 90 Gy), brain (= 90 Gy), and prostate (= 78 Gy). Prospective phase II and phase III trials suggest improved outcome using these higher doses for tumors in the liver and prostate compared to doses considered acceptable in the 2D era. The next technical revolution is underway, with advances in '4D' radiotherapy (accounting fully for organ motion) and in intensity-modulated radiation therapy (IMRT) to further improve the conformality and accuracy of treatment. Proton therapy will improve dose distributions still further. These improved dose distributions can be combined with more accurate tumor delineation provided by functional imaging to offer the potential for additional dose escalation without toxicity and for improved tumor control. These developments permit us to ask if we are approaching the limits of dose optimization and how (if?) research in radiation delivery should proceed

  15. ASTRO's 2007 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Klein, Eric E.; Gerbi, Bruce J.; Price, Robert A.; Balter, James M.; Paliwal, Bhudatt; Hughes, Lesley; Huang, Eugene

    2007-01-01

    In 2004, American Society for Therapeutic Radiology and Oncology (ASTRO) published a curriculum for physics education. The document described a 54-hour course. In 2006, the committee reconvened to update the curriculum. The committee is composed of physicists and physicians from various residency program teaching institutions. Simultaneously, members have associations with American Association of Physicists in Medicine, ASTRO, Association of Residents in Radiation Oncology, American Board of Radiology, and American College of Radiology. Representatives from the latter two organizations are key to provide feedback between the examining organizations and ASTRO. Subjects are based on Accreditation Council for Graduate Medical Education requirements (particles and hyperthermia), whereas the majority of subjects and appropriated hours/subject were developed by consensus. The new curriculum is 55 hours, containing new subjects, redistribution of subjects with updates, and reorganization of core topics. For each subject, learning objectives are provided, and for each lecture hour, a detailed outline of material to be covered is provided. Some changes include a decrease in basic radiologic physics, addition of informatics as a subject, increase in intensity-modulated radiotherapy, and migration of some brachytherapy hours to radiopharmaceuticals. The new curriculum was approved by the ASTRO board in late 2006. It is hoped that physicists will adopt the curriculum for structuring their didactic teaching program, and simultaneously, American Board of Radiology, for its written examination. American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee added suggested references, a glossary, and a condensed version of lectures for a Postgraduate Year 2 resident physics orientation. To ensure continued commitment to a current and relevant curriculum, subject matter will be updated again in 2 years

  16. A syllabus for the education and training of radiation oncology nurses

    International Nuclear Information System (INIS)

    2009-01-01

    A dramatic rise in cancer incidence across the developing world is stretching already limited resources and equipment. Shortages of qualified staff and equipment are growing constraints to treating cancer efficiently. More than 5000 radiotherapy machines are presently needed to help patients fight cancer, yet the entire developing world has only about 2200 such machines. Experts predict a long term crisis in managing cancer, with an estimated five million new patients requiring radiotherapy every year. Meeting the challenge is not simply a matter of providing appropriate equipment. There must be sufficient trained and knowledgeable staff with clinical and medical physics expertise to deliver a safe and effective radiation dose. Appropriate facilities and radiation protection infrastructure for monitoring and regulatory control are needed. Cancer treatment must be carried out in a comprehensive context of prevention, early diagnosis and palliative care. In the early stages of development of a radiotherapy department or unit, the staffing needs of radiotherapy services should also be specifically and carefully addressed. To make radiotherapy available to all patients who need it, human resources should be urgently expanded globally, along with the rational acquisition of additional equipment. The recommended staffing - for a basic radiotherapy facility with 1 teletherapy machine, simulator and high dose rate brachytherapy (HDR) - should be: 5 radiation oncologists, 4 medical physicists, 7-8 radiotherapy technologists (RTTs), 3 oncology nurses and 1 maintenance engineer. Where possible, training should be undertaken in centres with patient populations, equipment and training programmes relevant to the needs of the country. Radiotherapy staff should also be required to obtain a qualification adequate for registration in their own country. The human resources listed above could treat on average about 1000 patients per year by extending operations to a minimum of 12

  17. A syllabus for the education and training of radiation oncology nurses

    International Nuclear Information System (INIS)

    2008-01-01

    A dramatic rise in cancer incidence across the developing world is stretching already limited resources and equipment. Shortages of qualified staff and equipment are growing constraints to treating cancer efficiently. More than 5000 radiotherapy machines are presently needed to help patients fight cancer, yet the entire developing world has only about 2200 such machines. Experts predict a long term crisis in managing cancer, with an estimated five million new patients requiring radiotherapy every year. Meeting the challenge is not simply a matter of providing appropriate equipment. There must be sufficient trained and knowledgeable staff with clinical and medical physics expertise to deliver a safe and effective radiation dose. Appropriate facilities and radiation protection infrastructure for monitoring and regulatory control are needed. Cancer treatment must be carried out in a comprehensive context of prevention, early diagnosis and palliative care. In the early stages of development of a radiotherapy department or unit, the staffing needs of radiotherapy services should also be specifically and carefully addressed. To make radiotherapy available to all patients who need it, human resources should be urgently expanded globally, along with the rational acquisition of additional equipment. The recommended staffing - for a basic radiotherapy facility with 1 teletherapy machine, simulator and high dose rate brachytherapy (HDR) - should be: 5 radiation oncologists, 4 medical physicists, 7-8 radiotherapy technologists (RTTs), 3 oncology nurses and 1 maintenance engineer. Where possible, training should be undertaken in centres with patient populations, equipment and training programmes relevant to the needs of the country. Radiotherapy staff should also be required to obtain a qualification adequate for registration in their own country. The human resources listed above could treat on average about 1000 patients per year by extending operations to a minimum of 12

  18. Development of a residency program in radiation oncology physics: an inverse planning approach.

    Science.gov (United States)

    Khan, Rao F H; Dunscombe, Peter B

    2016-03-08

    Over the last two decades, there has been a concerted effort in North America to organize medical physicists' clinical training programs along more structured and formal lines. This effort has been prompted by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP) which has now accredited about 90 residency programs. Initially the accreditation focused on standardized and higher quality clinical physics training; the development of rounded professionals who can function at a high level in a multidisciplinary environment was recognized as a priority of a radiation oncology physics residency only lately. In this report, we identify and discuss the implementation of, and the essential components of, a radiation oncology physics residency designed to produce knowledgeable and effective clinical physicists for today's safety-conscious and collaborative work environment. Our approach is that of inverse planning, by now familiar to all radiation oncology physicists, in which objectives and constraints are identified prior to the design of the program. Our inverse planning objectives not only include those associated with traditional residencies (i.e., clinical physics knowledge and critical clinical skills), but also encompass those other attributes essential for success in a modern radiation therapy clinic. These attributes include formal training in management skills and leadership, teaching and communication skills, and knowledge of error management techniques and patient safety. The constraints in our optimization exercise are associated with the limited duration of a residency and the training resources available. Without compromising the knowledge and skills needed for clinical tasks, we have successfully applied the model to the University of Calgary's two-year residency program. The program requires 3840 hours of overall commitment from the trainee, of which 7%-10% is spent in obtaining formal training in nontechnical "soft skills".

  19. Close to Home: Employment Outcomes for Recent Radiation Oncology Graduates

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Awad A. [Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida (United States); Holliday, Emma B. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Ileto, Jan [New York University, New York, New York (United States); Yoo, Stella K. [Department of Radiation Oncology, University of Southern California, Los Angeles, California (United States); Green, Michael [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Orman, Amber [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (United States); Deville, Curtiland [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Haffty, Bruce G. [Department of Radiation Oncology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey (United States); Wilson, Lynn D., E-mail: Lynn.wilson@yale.edu [Department of Therapeutic Radiology, Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut (United States)

    2016-07-01

    Purpose: To characterize the practice type and location of radiation oncology (RO) residents graduating in 2013. Methods and Materials: Graduates completing RO residency in 2013 were identified, and for each, postgraduate practice setting (academic vs private practice) and location were identified. Characteristics of the graduates, including details regarding their institutions of medical school and residency education, were collected and analyzed. Results: Data were obtained from 146 of the 154 RO graduates from the class of 2013. Employment data were available for 142 graduates. Approximately one-third of graduates were employed in the same state as residency (36.6%), approximately two-thirds (62.0%) in the same region as residency, and nearly three-fourths (73.9%) in the same region as medical school or residency completion. Of the 66 graduates (46.5%) working in academics, 40.9% were at the same institution where they completed residency. Most trainees (82.4%) attended medical schools with RO residency programs. Conclusions: Although personal factors may attract students to train in a particular area, the location of medical school and residency experiences may influence RO graduate practice location choice. Trends in the geographic distribution of graduating radiation oncologists can help identify and better understand disparities in access to RO care. Steps to improve access to RO care may include interventions at the medical student or resident level, such as targeting students at medical schools without associated residency programs and greater resident exposure to underserved areas.

  20. A quality management model for radiation oncology physics

    International Nuclear Information System (INIS)

    Sternick, E.S.

    1991-01-01

    State-of-the-art radiation physics quality programs operate in a data rich environment. Given the abundance of recordable events, any formalism that serves to identify and monitor a set of attributes correlated with quality is to be regarded as an important management tool. The hierarchical tree structure model describes one such useful planning method. Of the several different types of tree structures, one of the most appropriate for quality management is the pyramid model. In this model, the associations between an overall program objective and the intermediate steps leading to its attainment, are indicated by both horizontal and vertical connectors. The overall objective of the system under study occupies the vertex of the pyramid, while the level immediately below contains its principal components. Further subdivisions of each component occur in successively lower levels. The tree finally terminates at a base level consisting of actions or requirements that must be fulfilled in order to satisfy the overall objective. A pyramid model for a radiation oncology physics quality program is discussed in detail. (author). 21 refs., 4 figs., 6 tabs

  1. Close to Home: Employment Outcomes for Recent Radiation Oncology Graduates

    International Nuclear Information System (INIS)

    Ahmed, Awad A.; Holliday, Emma B.; Ileto, Jan; Yoo, Stella K.; Green, Michael; Orman, Amber; Deville, Curtiland; Jagsi, Reshma; Haffty, Bruce G.; Wilson, Lynn D.

    2016-01-01

    Purpose: To characterize the practice type and location of radiation oncology (RO) residents graduating in 2013. Methods and Materials: Graduates completing RO residency in 2013 were identified, and for each, postgraduate practice setting (academic vs private practice) and location were identified. Characteristics of the graduates, including details regarding their institutions of medical school and residency education, were collected and analyzed. Results: Data were obtained from 146 of the 154 RO graduates from the class of 2013. Employment data were available for 142 graduates. Approximately one-third of graduates were employed in the same state as residency (36.6%), approximately two-thirds (62.0%) in the same region as residency, and nearly three-fourths (73.9%) in the same region as medical school or residency completion. Of the 66 graduates (46.5%) working in academics, 40.9% were at the same institution where they completed residency. Most trainees (82.4%) attended medical schools with RO residency programs. Conclusions: Although personal factors may attract students to train in a particular area, the location of medical school and residency experiences may influence RO graduate practice location choice. Trends in the geographic distribution of graduating radiation oncologists can help identify and better understand disparities in access to RO care. Steps to improve access to RO care may include interventions at the medical student or resident level, such as targeting students at medical schools without associated residency programs and greater resident exposure to underserved areas.

  2. Close to Home: Employment Outcomes for Recent Radiation Oncology Graduates.

    Science.gov (United States)

    Ahmed, Awad A; Holliday, Emma B; Ileto, Jan; Yoo, Stella K; Green, Michael; Orman, Amber; Deville, Curtiland; Jagsi, Reshma; Haffty, Bruce G; Wilson, Lynn D

    2016-07-01

    To characterize the practice type and location of radiation oncology (RO) residents graduating in 2013. Graduates completing RO residency in 2013 were identified, and for each, postgraduate practice setting (academic vs private practice) and location were identified. Characteristics of the graduates, including details regarding their institutions of medical school and residency education, were collected and analyzed. Data were obtained from 146 of the 154 RO graduates from the class of 2013. Employment data were available for 142 graduates. Approximately one-third of graduates were employed in the same state as residency (36.6%), approximately two-thirds (62.0%) in the same region as residency, and nearly three-fourths (73.9%) in the same region as medical school or residency completion. Of the 66 graduates (46.5%) working in academics, 40.9% were at the same institution where they completed residency. Most trainees (82.4%) attended medical schools with RO residency programs. Although personal factors may attract students to train in a particular area, the location of medical school and residency experiences may influence RO graduate practice location choice. Trends in the geographic distribution of graduating radiation oncologists can help identify and better understand disparities in access to RO care. Steps to improve access to RO care may include interventions at the medical student or resident level, such as targeting students at medical schools without associated residency programs and greater resident exposure to underserved areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Obturator prostheses in post-oncological maxillofacial patients: our experience

    Directory of Open Access Journals (Sweden)

    Edoardo Brauner

    2014-12-01

    Full Text Available Background: Surgical procedures for tumors of the paranasal sinus, palatal epithelium, minor salivary glands or osteosarcoma of the upper jaw require a partial or total maxillectomy of the upper jaw. When the surgical procedure and/or radiation therapy result in a communication, the solution is necessarily prosthetical, through a palatal obturator that recreates a partition between the oral and nasal cavities. Methods: Authors selected 32 post-oncological patients with the upper maxilla completely edentulous prosthetically rehabilitated with a palatal obturator. Results: No serious complications or adverse reactions were reported during the fabrication of surgical or definitive obturators. All patients stated to benefit the palatal obturator in terms of quality of life. Conclusion: Prosthetic rehabilitation of edentulous maxillectomy with oral communication is a demanding challenge for the prosthodontist. The goals of prosthetic rehabilitation include separation of oral and nasal cavities to allow adequate deglutition and articulation of teeth, restore midfacial soft tissue contour and a satisfactory esthetic outcome. When, for any reason, the patient is not a suitable candidate for an implant-retained overdenture, a total removable prosthesis should ensure the most comfort in terms of swallowing, phonation and aesthetics.

  4. Prospective Evaluation of Quality of Life and Neurocognitive Effects in Patients With Multiple Brain Metastases Receiving Whole-Brain Radiotherapy With or Without Thalidomide on Radiation Therapy Oncology Group (RTOG) Trial 0118

    International Nuclear Information System (INIS)

    Corn, Benjamin W.; Moughan, Jennifer M.S.; Knisely, Jonathan P.S.; Fox, Sherry W.; Chakravarti, Arnab; Yung, W.K. Alfred; Curran, Walter J.; Robins, H. Ian; Brachman, David G.; Henderson, Randal H.; Mehta, Minesh P.; Movsas, Benjamin

    2008-01-01

    Purpose: Radiation Therapy Oncology Group (RTOG) 0118 randomized patients with multiple brain metastases to whole-brain radiotherapy (WBRT) ± thalidomide. This secondary analysis of 156 patients examined neurocognitive and quality of life (QOL) outcomes. Methods and Materials: Quality of life was determined with the Spitzer Quality of Life Index (SQLI). The Folstein Mini-Mental Status Exam (MMSE) assessed neurocognitive function. SQLI and MMSE were administered at baseline and at 2-month intervals. MMSE was scored with a threshold value associated with neurocognitive functioning (absolute cutoff level of 23) and with the use of corrections for age and educational level. Results: Baseline SQLI predicted survival. Patients with SQLI of 7-10 vs. <7 had median survival time (MST) of 4.8 vs. 3.1 months, p = 0.05. Both arms showed steady neurocognitive declines, but SQLI scores remained stable. Higher levels of neurocognitive decline were observed with age and education-level corrections. Of patients considered baseline age/educational level neurocognitive failures, 32% died of intracranial progression. Conclusions: Quality of life and neuropsychological testing can be prospectively administered on a Phase III cooperative group trial. The MMSE should be evaluated with adjustments for age and educational level. Baseline SQLI is predictive of survival. Despite neurocognitive declines, QOL remained stable during treatment and follow-up. Poor neurocognitive function may predict clinical deterioration. Lack of an untreated control arm makes it difficult to determine the contribution of the respective interventions (i.e., WBRT, thalidomide) to neurocognitive decline. The RTOG has developed a trial to study the role of preventative strategies aimed at forestalling neurocognitive decline in this population

  5. Multiple Authorship in Two English-Language Journals in Radiation Oncology.

    Science.gov (United States)

    Halperin, Edward C.; And Others

    1992-01-01

    A study of multiple authorship in 1,908 papers in the "International Journal of Radiation Oncology, Biology, and Physics" and "Radiotherapy and Oncology" from 1983-87 investigated patterns and trends in number of authors per article by journal, article type, country, author's institution, author gender, and order of listing of…

  6. [Strategies for improving care of oncologic patients: SHARE Project results].

    Science.gov (United States)

    Reñones Crego, María de la Concepción; Fernández Pérez, Dolores; Vena Fernández, Carmen; Zamudio Sánchez, Antonio

    2016-01-01

    Cancer treatment is a major burden for the patient and its family that requires an individualized management by healthcare professionals. Nurses are in charge of coordinating care and are the closest healthcare professionals to patient and family; however, in Spain, there are not standard protocols yet for the management of oncology patients. The Spanish Oncology Nursing Society developed between 2012 and 2014 the SHARE project, with the aim of establishing strategies to improve quality of life and nursing care in oncology patients. It was developed in 3 phases. First, a literature search and review was performed to identify nursing strategies, interventions and tools to improve cancer patients' care. At the second stage, these interventions were agreed within a group of oncology nursing experts; and at the third phase, a different group of experts in oncology care categorized the interventions to identify the ones with highest priority and most feasible to be implemented. As a result, 3 strategic actions were identified to improve nursing care during cancer treatment: To provide a named nurse to carry out the follow up process by attending to the clinic or telephonic consultation, develop therapeutic education with adapted protocols for each tumor type and treatment and ensure specific training for nurses on the management of the cancer patients. Strategic actions proposed in this paper aim to improve cancer patients' healthcare and quality of life through the development of advanced nursing roles based on a higher level of autonomy, situating nurses as care coordinators to assure an holistic care in oncology patients. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  7. A comparison of the structure of radiation oncology in the United States and Japan

    International Nuclear Information System (INIS)

    Owen, Jean B.; Hanks, Gerald E.; Teshima, Teruki; Sato, Shinichiro; Tsunemoto, Hiroshi; Inoue, Toshihiko

    1996-01-01

    Purpose: The United States and Japan have very different backgrounds in their medical care systems. In the field of radiation oncology, national surveys on structure have been conducted for both countries and compared to illustrate any similarities and differences present from 1989-1990. Methods and Materials: The Patterns of Care Study Facility Survey conducted in 1989 in the United States and the National Survey of Structure in Japan in 1990 were compared to evaluate the equipment pattern, staffing pattern, compliance rate with the 'blue book' (3) guideline, and the geographic distribution of institutions. Results: In the United States, a total of 598,184 (49% of the total of newly diagnosed) patients were treated with radiation therapy. In Japan, 62,829 (approximately 15% of the total of newly diagnosed) patients were treated. The numbers of external megavoltage treatment machines were 2,397 in the United States and 494 in Japan. The numbers of full time equivalent (FTE) radiation oncologists were 2,335 in the United States and 366 in Japan. Only 15% of United States facilities and 11% of Japan facilities complied with the narrow blue book guideline for the patients per FTE radiation oncologist (200-250), while the most common ratio was 151-200 patients/FTE in the United States and 51-100 in Japan. In Japan, more than 60% of institutions were staffed by a part-time radiation oncologist (FTE < 1.0). Between geographic regions, there was variation in the percentage of cancer patients treated with radiation therapy for both the United States (42-56%) and Japan (6-25%). Conclusion: There is a major difference in the usage of radiation therapy for treating cancer between the United States and Japan with 49% of all new cancer patients treated in the United States and approximately 15% treated in Japan. Equipment structure in the United States is more complete than in Japan with important differences in treatment simulators, treatment planning computers, and support

  8. PRIMARY OPEN-ANGLE GLAUCOMA IN ONCOLOGIC PATIENTS

    Directory of Open Access Journals (Sweden)

    A. A. Ryabtseva

    2015-01-01

    Full Text Available Background: Glaucoma-induced visual impairment negatively influences quality of life of oncologic patients. Yet, tumor in itself and methods of its treatment may promote glaucoma progression. Aim: To study characteristics and course of primary open-angle glaucoma in oncologic patients. Materials and methods: We analyzed case reports of 19 oncologic patients after primary open-angle glaucoma-related sinus trabeculectomy (34 eyes and laser cyclopexy (1 eye. Diagnosed malignancies included colorectal cancer in 5 patients, uterine body and cervical cancer in 4 patients, chronic lymphocytic leukemia in 1 patient, renal cell carcinoma in 1 patient, adrenal cancer in 1 patient, prostatic cancer in 1 patient, breast cancer in 1 patient, vulvar cancer in 1 patient, tongue root cancer in 1 patient. Antiglaucomatous surgery was accomplished during the first 5 years from the diagnosis of tumor in 14 patients. In 9 patients, chemotherapy or hormone therapy was continued by the time of surgery. Follow-up of the patients was undertaken in 4–12 months after the antiglaucomatous operation; it included routine ophthalmological examination and dry eye syndrome functional tests. Results: Duration of postoperative period was 4 months or more. All patients had uveitis postoperatively. During late postoperative period, choroidal detachment was diagnosed in 4 patients. Bleb scarring was found in 2 patients. All patients received hypotensive treatment postoperatively including selective and non-selective beta-adrenergic blockers. Conjunctival and corneal xerosis was observed in all patients. Conclusion: In oncologic patients undergoing antiglaucomatous surgery, long-term (4 months or more postoperative anti-inflammatory therapy is needed along with monthly ophthalmological follow-up during the first year after the operation. In patients with ongoing cytostatic drug treatment, artificial tear should be administrated.

  9. Managing patients with oncologic complications in the emergency department [digest].

    Science.gov (United States)

    Wacker, David; McCurdy, Michael T; Nusbaum, Jeffrey; Gupta, Nachi

    2018-01-22

    As the prevalence of cancer continues to increase in the general population and improvements in cancer treatment prolong survival, the incidence of patients presenting to the emergency department with oncologic complications will, similarly, continue to rise. This issue reviews 3 of the more common presentations of oncology patients to the emergency department: metastatic spinal cord compression, tumor lysis syndrome, and febrile neutropenia. Signs and symptoms of these conditions can be varied and nonspecific, and may be related to the malignancy itself or to an adverse effect of the cancer treatment. Timely evidence-based decisions in the emergency department regarding diagnostic testing, medications, and arrangement of disposition and oncology follow-up can significantly improve a cancer patient's quality of life. [Points & Pearls is a digest of Emergency Medicine Practice.].

  10. How Big Data, Comparative Effectiveness Research, and Rapid-Learning Health-Care Systems Can Transform Patient Care in Radiation Oncology.

    Science.gov (United States)

    Sanders, Jason C; Showalter, Timothy N

    2018-01-01

    Big data and comparative effectiveness research methodologies can be applied within the framework of a rapid-learning health-care system (RLHCS) to accelerate discovery and to help turn the dream of fully personalized medicine into a reality. We synthesize recent advances in genomics with trends in big data to provide a forward-looking perspective on the potential of new advances to usher in an era of personalized radiation therapy, with emphases on the power of RLHCS to accelerate discovery and the future of individualized radiation treatment planning.

  11. Nonspecialty Nurse Education: Evaluation of the Oncology Intensives Initiative, an Oncology Curriculum to Improve Patient Care

    Science.gov (United States)

    Bagley, Kimberly A; Dunn, Sarah E; Chuang, Eliseu Y; Dorr, Victoria J; Thompson, Julie A; Smith, Sophia K

    2018-04-01

    A community hospital combined its medical and surgical patients with cancer on one unit, which resulted in nurses not trained in oncology caring for this patient population. The Oncology Intensives Initiative (ONCii) involved the (a) design and implementation of a daylong didactic boot camp class and a four-hour simulation session and (b) the examination of nurses' worries, attitudes, self-efficacy, and perception of interdisciplinary teamwork. A two-group, pre-/post-test design was implemented. Group 1 consisted of nurses who attended the didactic boot camp classes alone, whereas group 2 was comprised of nurses who attended the didactic boot camp classes and the simulation sessions. Results of data analysis showed a decrease in worries and an increase in positive attitudes toward chemotherapy administration in both groups, as well as an increase in self-efficacy among members of group 2.

  12. Radiation oncology career decision variables for graduating trainees seeking positions in 2003-2004

    International Nuclear Information System (INIS)

    Wilson, Lynn D.; Flynn, Daniel F.; Haffty, Bruce G.

    2005-01-01

    Purpose: Radiation oncology trainees must consider an array of variables when deciding upon an academic or private practice career path. This prospective evaluation of the 2004 graduating radiation oncology trainees, evaluates such variables and provides additional descriptive data. Methods: A survey that included 15 questions (one subjective, eleven categorical, and 3 continuous variables) was mailed to the 144 graduating radiation oncology trainees in United States programs in January of 2004. Questions were designed to gather information regarding factors that may have influenced career path choices. The responses were anonymous, and no identifying information was sought. Survey data were collated and analyzed for differences in both categorical and continuous variables as they related to choice of academic or private practice career path. Results: Sixty seven (47%) of the surveys were returned. Forty-five percent of respondents indicated pursuit of an academic career. All respondents participated in research during training with 73% participating in research publication authorship. Post graduate year-3 was the median in which career path was chosen, and 20% thought that a fellowship position was 'perhaps' necessary to secure an academic position. Thirty percent of the respondents revealed that the timing of the American Board of Radiology examination influenced their career path decision. Eighteen variables were offered as possibly influencing career path choice within the survey, and the top five identified by those seeking an academic path were: (1) colleagues, (2) clinical research, (3) teaching, (4) geography, (5) and support staff. For those seeking private practice, the top choices were: (1) lifestyle, (2) practice environment, (3) patient care, (4) geography, (5) colleagues. Female gender (p = 0.064), oral meeting presentation (p = 0.053), and international meeting presentation (p 0.066) were the variables most significantly associated with pursuing an

  13. Radiation oncology career decision variables for graduating trainees seeking positions in 2003-2004

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lynn D [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Flynn, Daniel F [Department of Radiation Oncology, Holy Family Hospital, Methuen, MA (United States); Haffty, Bruce G [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States)

    2005-06-01

    Purpose: Radiation oncology trainees must consider an array of variables when deciding upon an academic or private practice career path. This prospective evaluation of the 2004 graduating radiation oncology trainees, evaluates such variables and provides additional descriptive data. Methods: A survey that included 15 questions (one subjective, eleven categorical, and 3 continuous variables) was mailed to the 144 graduating radiation oncology trainees in United States programs in January of 2004. Questions were designed to gather information regarding factors that may have influenced career path choices. The responses were anonymous, and no identifying information was sought. Survey data were collated and analyzed for differences in both categorical and continuous variables as they related to choice of academic or private practice career path. Results: Sixty seven (47%) of the surveys were returned. Forty-five percent of respondents indicated pursuit of an academic career. All respondents participated in research during training with 73% participating in research publication authorship. Post graduate year-3 was the median in which career path was chosen, and 20% thought that a fellowship position was 'perhaps' necessary to secure an academic position. Thirty percent of the respondents revealed that the timing of the American Board of Radiology examination influenced their career path decision. Eighteen variables were offered as possibly influencing career path choice within the survey, and the top five identified by those seeking an academic path were: (1) colleagues, (2) clinical research, (3) teaching, (4) geography, (5) and support staff. For those seeking private practice, the top choices were: (1) lifestyle, (2) practice environment, (3) patient care, (4) geography, (5) colleagues. Female gender (p = 0.064), oral meeting presentation (p = 0.053), and international meeting presentation (p 0.066) were the variables most significantly associated with pursuing an

  14. Practicing radiation oncology today - Part I: Meeting the challenge of managed care

    International Nuclear Information System (INIS)

    Botnick, Leslie E.; Cohen, Hilary H.; Hinkle, Milton; Rose, Christopher M.

    1996-01-01

    Objective: The change in health care delivery is forcing radiation oncologists to examine every aspect of how they organize themselves, deliver care, evaluate the quality of that care, and how they are reimbursed for this process. While managed care has been implicated as the new paradigm that will change the way that health care is delivered, the authors maintain that outcomes research may be just as important a stimulus for change. This course will attempt to examine how managed care and outcomes research are impacting upon radiation oncology practice, and what radiation oncologists can do to maintain patient care standards. This course will introduce certain concepts that will be discussed in subsequent courses on Informatics and Evaluating New Technology. Topics Covered: 1. The Managed Care Nomenclature Explained: HMO's, PPO's, POS's, Carve-Outs 2. Outcomes Research: What it can and cannot do 3. Moving from QA to CQI to Benchmarking 4. Using Analytical Tools to Evaluate Capital Purchases and Operational Requirements 5. Evaluating Staffing Needs: Traditional jobs, Cross-training, Outsourcing, Physician extenders 6. Introduction to Evaluation of Technology 7. Introduction to Evaluation of Informatics 8. Potential gains from Shared Services 9. Networking vs. Mergers vs. Oncology IPA's vs. MSO's 10. Evaluating Managed Care Strategies and Contracts

  15. Development of radiation oncology learning system combined with multi-institutional radiotherapy database (ROGAD)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Akihiro; Iinuma, Masahiro; Kou, Hiroko [Kanazawa Univ. (Japan). School of Medicine; Harauchi, Hajime; Inamura, Kiyonari

    1999-09-01

    We have constructed and are operating a multi-institutional radiotherapy database ROGAD (Radiation Oncology Greater Area Database) since 1992. One of it's purpose is 'to optimize individual radiotherapy plans'. We developed Radiation oncology learning system combined with ROGAD' which conforms to that purpose. Several medical doctors evaluated our system. According to those evaluations, we are now confident that our system is able to contribute to improvement of radiotherapy results. Our final target is to generate a good cyclic relationship among three components: radiotherapy results according to ''Radiation oncology learning system combined with ROGAD.'; The growth of ROGAD; and radiation oncology learning system. (author)

  16. Implementing and Integrating a Clinically-Driven Electronic Medical Record (EMR for Radiation Oncology in a Large Medical Enterprise

    Directory of Open Access Journals (Sweden)

    John Paxton Kirkpatrick

    2013-04-01

    Full Text Available Purpose/Objective: While our department is heavily invested in computer-based treatment planning, we historically relied on paper-based charts for management of Radiation Oncology patients. In early 2009, we initiated the process of conversion to an electronic medical record (EMR eliminating the need for paper charts. Key goals included the ability to readily access information wherever and whenever needed, without compromising safety, treatment quality, confidentiality or productivity.Methodology: In February, 2009, we formed a multi-disciplinary team of Radiation Oncology physicians, nurses, therapists, administrators, physicists/dosimetrists, and information technology (IT specialists, along with staff from the Duke Health System IT department. The team identified all existing processes and associated information/reports, established the framework for the EMR system and generated, tested and implemented specific EMR processes.Results: Two broad classes of information were identified: information which must be readily accessed by anyone in the health system versus that used solely within the Radiation Oncology department. Examples of the former are consultation reports, weekly treatment check notes and treatment summaries; the latter includes treatment plans, daily therapy records and quality assurance reports. To manage the former, we utilized the enterprise-wide system , which required an intensive effort to design and implement procedures to export information from Radiation Oncology into that system. To manage "Radiation Oncology" data, we used our existing system (ARIA, Varian Medical Systems. The ability to access both systems simultaneously from a single workstation (WS was essential, requiring new WS and modified software. As of January, 2010, all new treatments were managed solely with an EMR. We find that an EMR makes information more widely accessible and does not compromise patient safety, treatment quality or confidentiality

  17. Training program in radiation protection: implantation in a radiation oncology department

    International Nuclear Information System (INIS)

    Chretien, Mario; Morrier, Janelle; Cote, Carl; Lavallee, Marie C.

    2008-01-01

    Full text: Purpose: To introduce the radiation protection training program implemented in the radiation oncology department of the Hotel-Dieu de Quebec. This program seeks to provide an adequate training for all the clinic workers and to fulfill Canadian Nuclear Safety Commission's (CNSC) legislations. Materials and Methods: The radiation protection training program implemented is based on the use of five different education modalities: 1) Oral presentations, when the objective of the formation is to inform a large number of persons about general topics; 2) Periodic journals are published bimonthly and distributed to members of the department. They aim to answer frequently asked questions on the radiation safety domain. Each journal contains one main subject which is vulgarized and short notices, these later added to inform the readers about the departmental news and developments in radiation safety; 3) Electronic self-training presentations are divided into several units. Topics, durations, complexity and evaluations are adapted for different worker groups; 4) Posters are strategically displayed in the department in order to be read by all the radiation oncology employees, even those who are not specialized in the radiation protection area; 5) Simulations are organized for specialised workers to practice and to develop their skills in radiation protection situations as emergencies. A registration method was developed to record all training performed by each member of the department. Results: The training program implemented follows the CNSC recommendations. It allows about 150 members of the department to receive proper radiation safety training. The oral presentations allow an interaction between the trainer and the workers. The periodic journals are simple to write while ensuring continuous training. They are also easy to read and to understand. The e-learning units and their associated evaluations can be done at any time and everywhere in the department. The

  18. Faculty of Radiation Oncology 2012 trainee survey: perspectives on choice of specialty training and future work practice preferences.

    Science.gov (United States)

    Leung, John; Le, Hien; Turner, Sandra; Munro, Philip; Vukolova, Natalia

    2014-02-01

    This paper reports the key findings of the first Faculty of Radiation Oncology survey of trainees dealing with experiences and perceptions on work practices and choice of specialty. The survey was conducted in mid 2012 using a 37-question instrument. This was distributed by email to 159 current trainees and advertised through the Radiation Oncology Trainees Committee and other channels. There were six email reminders. Respondents were reassured that their responses were anonymous. The overall response rate was 82.8%. Gender was balanced among respondents with 67 (51.5%) being male and 63 (48.5%) being female. The most common age bracket was the 31 to 35 years range. There were similar proportions of trainee responders in each of the five years of training. A substantial number of trainees held other degrees besides medical degrees. The large majority were satisfied with radiation oncology as a career choice and with the Training Network within which they were training. Interest in oncology patients, lifestyle after training and work hours were given as the major reasons for choosing radiation oncology as a career. Nearly half of trainees were interested in undertaking some of their training in a part-time capacity and working part time as a radiation oncologist in the future. Over 70% of trainees stated they were working 36-55 clinical hours per week with additional non-clinical tasks, after-hours work and on-call duties. Nearly half of all trainees reported having one or less hours of protected time per week. Nonetheless, 40% of respondents indicated they had enough time to pursue outside interests. Radiation treatment planning and maintaining currency in general medicine were considered the most difficult aspects of training in radiation oncology. Most respondents were keen on the concept of fostering a research mentor. In terms of views on practice after completion of training, the majority were interested in pursuing a fellowship, and nearly all expressed an

  19. Faculty of Radiation Oncology 2012 trainee survey: perspectives on choice of speciality training and future work practice preference

    International Nuclear Information System (INIS)

    Leung, John; Le, Hien; Turner, Sandra; Munro, Philip; Vukolova, Natalia

    2014-01-01

    This paper reports the key findings of the first Faculty of Radiation Oncology survey of trainees dealing with experiences and perceptions on work practices and choice of specialty. The survey was conducted in mid 2012 using a 37-question instrument. This was distributed by email to 159 current trainees and advertised through the Radiation Oncology Trainees Committee and other channels. There were six email reminders. Respondents were reassured that their responses were anonymous. The overall response rate was 82.8%. Gender was balanced among respondents with 67 (51.5%) being male and 63 (48.5%) being female. The most common age bracket was the 31 to 35 years range. There were similar proportions of trainee responders in each of the five years of training. A substantial number of trainees held other degrees besides medical degrees. The large majority were satisfied with radiation oncology as a career choice and with the Training Network within which they were training. Interest in oncology patients, lifestyle after training and work hours were given as the major reasons for choosing radiation oncology as a career. Nearly half of trainees were interested in undertaking some of their training in a part-time capacity and working part time as a radiation oncologist in the future. Over 70% of trainees stated they were working 36–55 clinical hours per week with additional non-clinical tasks, after-hours work and on-call duties. Nearly half of all trainees reported having one or less hours of protected time per week. Nonetheless, 40% of respondents indicated they had enough time to pursue outside interests. Radiation treatment planning and maintaining currency in general medicine were considered the most difficult aspects of training in radiation oncology. Most respondents were keen on the concept of fostering a research mentor. In terms of views on practice after completion of training, the majority were interested in pursuing a fellowship, and nearly all expressed an

  20. Special report: results of the 2000-2002 association of residents in radiation oncology (arro) surveys

    International Nuclear Information System (INIS)

    Jagsi, Reshma; Chronowski, Gregory M.; Buck, David A.; Kang, Song; Palermo, James

    2004-01-01

    Between 2000 and 2002, the Association of Residents in Radiation Oncology (ARRO) conducted its 18th, 19th, and 20th annual surveys of all residents training in radiation oncology in the United States. This report summarizes these results. The demographic characteristics of residents in training between 2000 and 2002 are detailed, as are issues regarding the quality of training and career choices of residents entering practice

  1. Radiation therapists' and radiation oncology medical physicists' perceptions of work and the working environment in Australia: a qualitative study.

    Science.gov (United States)

    Halkett, G K B; McKay, J; Hegney, D G; Breen, Lauren J; Berg, M; Ebert, M A; Davis, M; Kearvell, R

    2017-09-01

    Workforce recruitment and retention are issues in radiation oncology. The working environment is likely to have an impact on retention; however, there is a lack of research in this area. The objectives of this study were to: investigate radiation therapists' (RTs) and radiation oncology medical physicists' (ROMPs) perceptions of work and the working environment; and determine the factors that influence the ability of RTs and ROMPs to undertake their work and how these factors affect recruitment and retention. Semi-structured interviews were conducted and thematic analysis was used. Twenty-eight RTs and 21 ROMPs participated. The overarching themes were delivering care, support in work, working conditions and lifestyle. The overarching themes were mostly consistent across both groups; however, the exemplars reflected the different roles and perspectives of RTs and ROMPs. Participants described the importance they placed on treating patients and improving their lives. Working conditions were sometimes difficult with participants reporting pressure at work, large workloads and longer hours and overtime. Insufficient staff numbers impacted on the effectiveness of staff, the working environment and intentions to stay. Staff satisfaction is likely to be improved if changes are made to the working environment. We make recommendations that may assist departments to support RTs and ROMPs. © 2016 John Wiley & Sons Ltd.

  2. Beyond the Standard Curriculum: A Review of Available Opportunities for Medical Students to Prepare for a Career in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Ankit; DeNunzio, Nicholas J.; Ahuja, Divya; Hirsch, Ariel E., E-mail: Ariel.hirsch@bmc.org

    2014-01-01

    Purpose: To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Methods and Materials: Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Results: Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. Conclusions: To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students.

  3. Beyond the standard curriculum: a review of available opportunities for medical students to prepare for a career in radiation oncology.

    Science.gov (United States)

    Agarwal, Ankit; DeNunzio, Nicholas J; Ahuja, Divya; Hirsch, Ariel E

    2014-01-01

    To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Beyond the Standard Curriculum: A Review of Available Opportunities for Medical Students to Prepare for a Career in Radiation Oncology

    International Nuclear Information System (INIS)

    Agarwal, Ankit; DeNunzio, Nicholas J.; Ahuja, Divya; Hirsch, Ariel E.

    2014-01-01

    Purpose: To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Methods and Materials: Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Results: Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. Conclusions: To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students

  5. WE-H-BRB-01: Overview of the ASTRO-NIH-AAPM 2015 Workshop On Exploring Opportunities for Radiation Oncology in the Era of Big Data

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, S. [University of California Davis Medical Center (United States)

    2016-06-15

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  6. WE-H-BRB-01: Overview of the ASTRO-NIH-AAPM 2015 Workshop On Exploring Opportunities for Radiation Oncology in the Era of Big Data

    International Nuclear Information System (INIS)

    Benedict, S.

    2016-01-01

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  7. ASTRO's Advances in Radiation Oncology: Success to date and future plans

    Directory of Open Access Journals (Sweden)

    Robert C. Miller, MD, MBA, FASTRO

    2017-07-01

    Full Text Available ASTRO's Advances in Radiation Oncology was launched as a new, peer-reviewed scientific journal in December 2015. More than 200 manuscripts have been submitted and 97 accepted for publication as of May 2017. As Advances enters its second year of publication, we have chosen to highlight subjects that will transform the way we practice radiation oncology in special issues or ongoing series: immunotherapy, biomedical analytics, and social media. A teaching case report contest for North American radiation oncology residents will be launched at American Society of Radiation Oncology 2017 to encourage participation in scientific publication by trainees early in their careers. Recognizing our social mission, Advances will also begin a series of articles devoted to highlighting the growing disparities in access to radiation oncology services in vulnerable populations in North America. We wish to encourage the American Society of Radiation Oncology membership to continue its support of the journal through high-quality manuscript submission, participation in the peer review process, and highlighting important manuscripts through sharing on social media.

  8. Application of organ tolerance dose-constraints in clinical studies in radiation oncology

    International Nuclear Information System (INIS)

    Doerr, Wolfgang; Herrmann, Thomas; Baumann, Michael

    2014-01-01

    In modern radiation oncology, tolerance dose-constraints for organs at risk (OAR) must be considered for treatment planning, but particularly in order to design clinical studies. Tolerance dose tables, however, only address one aspect of the therapeutic ratio of any clinical study, i.e., the limitation of adverse events, but not the desired potential improvement in the tumor effect of a novel treatment strategy. A sensible application of ''tolerance doses'' in a clinical situation requires consideration of various critical aspects addressed here: definition of tolerance dose, specification of an endpoint/symptom, consideration of radiation quality and irradiation protocol, exposed volume and dose distribution, and patient-related factors of radiosensitivity. The currently most comprehensive estimates of OAR radiation tolerance are in the QUANTEC compilations (2010). However, these tolerance dose values must only be regarded as a rough orientation and cannot answer the relevant question for the patients, i.e., if the study can achieve a therapeutic advantage; this can obviously be answered only by the final scientific analysis of the study results. Despite all limitations, the design of clinical studies should currently refer to the QUANTEC values for appreciation of the risk of complications, if needed supplemented by one's own data or further information from the literature. The implementation of a consensus on the safety interests of the patients and on an application and approval process committed to progress in medicine, with transparent quality-assuring requirements with regard to the structural safeguarding of the study activities, plays a central role in clinical research in radiation oncology. (orig.) [de

  9. Supply and Demand for Radiation Oncology in the United States: Updated Projections for 2015 to 2025

    International Nuclear Information System (INIS)

    Pan, Hubert Y.; Haffty, Bruce G.; Falit, Benjamin P.; Buchholz, Thomas A.; Wilson, Lynn D.; Hahn, Stephen M.; Smith, Benjamin D.

    2016-01-01

    Purpose: Prior studies have forecasted demand for radiation therapy to grow 10 times faster than the supply between 2010 and 2020. We updated these projections for 2015 to 2025 to determine whether this imbalance persists and to assess the accuracy of prior projections. Methods and Materials: The demand for radiation therapy between 2015 and 2025 was estimated by combining current radiation utilization rates determined by the Surveillance, Epidemiology, and End Results data with population projections provided by the US Census Bureau. The supply of radiation oncologists was forecast by using workforce demographics and full-time equivalent (FTE) status provided by the American Society for Radiation Oncology (ASTRO), current resident class sizes, and expected survival per life tables from the US Centers for Disease Control. Results: Between 2015 and 2025, the annual total number of patients receiving radiation therapy during their initial treatment course is expected to increase by 19%, from 490,000 to 580,000. Assuming a graduating resident class size of 200, the number of FTE physicians is expected to increase by 27%, from 3903 to 4965. In comparison with prior projections, the new projected demand for radiation therapy in 2020 dropped by 24,000 cases (a 4% relative decline). This decrease is attributable to an overall reduction in the use of radiation to treat cancer, from 28% of all newly diagnosed cancers in the prior projections down to 26% for the new projections. By contrast, the new projected supply of radiation oncologists in 2020 increased by 275 FTEs in comparison with the prior projection for 2020 (a 7% relative increase), attributable to rising residency class sizes. Conclusion: The supply of radiation oncologists is expected to grow more quickly than the demand for radiation therapy from 2015 to 2025. Further research is needed to determine whether this is an appropriate correction or will result in excess capacity.

  10. Supply and Demand for Radiation Oncology in the United States: Updated Projections for 2015 to 2025

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hubert Y. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Haffty, Bruce G. [Department of Radiation Oncology, Robert Wood Johnson Medical School – University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey (United States); Falit, Benjamin P. [Radiation Oncology Associates, Lowell, Massachusetts (United States); Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wilson, Lynn D. [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States); Hahn, Stephen M. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: bsmith3@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-11-01

    Purpose: Prior studies have forecasted demand for radiation therapy to grow 10 times faster than the supply between 2010 and 2020. We updated these projections for 2015 to 2025 to determine whether this imbalance persists and to assess the accuracy of prior projections. Methods and Materials: The demand for radiation therapy between 2015 and 2025 was estimated by combining current radiation utilization rates determined by the Surveillance, Epidemiology, and End Results data with population projections provided by the US Census Bureau. The supply of radiation oncologists was forecast by using workforce demographics and full-time equivalent (FTE) status provided by the American Society for Radiation Oncology (ASTRO), current resident class sizes, and expected survival per life tables from the US Centers for Disease Control. Results: Between 2015 and 2025, the annual total number of patients receiving radiation therapy during their initial treatment course is expected to increase by 19%, from 490,000 to 580,000. Assuming a graduating resident class size of 200, the number of FTE physicians is expected to increase by 27%, from 3903 to 4965. In comparison with prior projections, the new projected demand for radiation therapy in 2020 dropped by 24,000 cases (a 4% relative decline). This decrease is attributable to an overall reduction in the use of radiation to treat cancer, from 28% of all newly diagnosed cancers in the prior projections down to 26% for the new projections. By contrast, the new projected supply of radiation oncologists in 2020 increased by 275 FTEs in comparison with the prior projection for 2020 (a 7% relative increase), attributable to rising residency class sizes. Conclusion: The supply of radiation oncologists is expected to grow more quickly than the demand for radiation therapy from 2015 to 2025. Further research is needed to determine whether this is an appropriate correction or will result in excess capacity.

  11. Anesthesia Practice in Pediatric Radiation Oncology: Mayo Clinic Arizona's Experience 2014-2016.

    Science.gov (United States)

    Khurmi, Narjeet; Patel, Perene; Koushik, Sarang; Daniels, Thomas; Kraus, Molly

    2018-02-01

    Understanding the goals of targeted radiation therapy in pediatrics is critical to developing high quality and safe anesthetic plans in this patient population. An ideal anesthetic plan includes allaying anxiety and achieving optimal immobilization, while ensuring rapid and efficient recovery. We conducted a retrospective chart review of children receiving anesthesia for radiation oncology procedures from 1/1/2014 to 7/31/2016. No anesthetics were excluded from the analysis. The electronic anesthesia records were analyzed for perianesthetic complications along with efficiency data. To compare our results to past and current data, we identified relevant medical literature covering a period from 1984-2017. A total of 997 anesthetic procedures were delivered in 58 unique patients. The vast majority of anesthetics were single-agent anesthesia with propofol. The average duration of radiation treatment was 13.24 min. The average duration of anesthesia was 37.81 min, and the average duration to meet discharge criteria in the recovery room was 29.50 min. There were seven instances of perianesthetic complications (0.7%) and no complications noted for the 80 CT simulations. Two of the seven complications occurred in patients receiving total body irradiation. The 5-year survival rate for pediatric cancers has improved greatly in part due to more effective and targeted radiation therapy. Providing an anesthetic with minimal complications is critical for successful daily radiation treatment. The results of our data analysis corroborate other contemporary studies showing minimal risk to patients undergoing radiation therapy under general anesthesia with propofol. Our data reveal that single-agent anesthesia with propofol administered by a dedicated anesthesia team is safe and efficient and should be considered for patients requiring multiple radiation treatments under anesthesia.

  12. Radiation Therapy for Primary Cutaneous Anaplastic Large Cell Lymphoma: An International Lymphoma Radiation Oncology Group Multi-institutional Experience

    Energy Technology Data Exchange (ETDEWEB)

    Million, Lynn, E-mail: lmillion@stanford.edu [Stanford Cancer Institute, Stanford, California (United States); Yi, Esther J.; Wu, Frank; Von Eyben, Rie [Stanford Cancer Institute, Stanford, California (United States); Campbell, Belinda A. [Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Dabaja, Bouthaina [The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tsang, Richard W. [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Ng, Andrea [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Wilson, Lynn D. [Department of Therapeutic Radiology/Radiation Oncology, Yale School of Medicine, Yale Cancer Center, New Haven, Connecticut (United States); Ricardi, Umberto [Department of Oncology, University of Turin, Turin (Italy); Kirova, Youlia [Institut Curie, Paris (France); Hoppe, Richard T. [Stanford Cancer Institute, Stanford, California (United States)

    2016-08-01

    Purpose: To collect response rates of primary cutaneous anaplastic large cell lymphoma, a rare cutaneous T-cell lymphoma, to radiation therapy (RT), and to determine potential prognostic factors predictive of outcome. Methods and Materials: The study was a retrospective analysis of patients with primary cutaneous anaplastic large cell lymphoma who received RT as primary therapy or after surgical excision. Data collected include initial stage of disease, RT modality (electron/photon), total dose, fractionation, response to treatment, and local recurrence. Radiation therapy was delivered at 8 participating International Lymphoma Radiation Oncology Group institutions worldwide. Results: Fifty-six patients met the eligibility criteria, and 63 tumors were treated: head and neck (27%), trunk (14%), upper extremities (27%), and lower extremities (32%). Median tumor size was 2.25 cm (range, 0.6-12 cm). T classification included T1, 40 patients (71%); T2, 12 patients (21%); and T3, 4 patients (7%). The median radiation dose was 35 Gy (range, 6-45 Gy). Complete clinical response (CCR) was achieved in 60 of 63 tumors (95%) and partial response in 3 tumors (5%). After CCR, 1 tumor recurred locally (1.7%) after 36 Gy and 7 months after RT. This was the only patient to die of disease. Conclusions: Primary cutaneous anaplastic large cell lymphoma is a rare, indolent cutaneous lymphoma with a low death rate. This analysis, which was restricted to patients selected for treatment with radiation, indicates that achieving CCR was independent of radiation dose. Because there were too few failures (<2%) for statistical analysis on dose response, 30 Gy seems to be adequate for local control, and even lower doses may suffice.

  13. The history and evolution of radiotherapy and radiation oncology in Austria

    International Nuclear Information System (INIS)

    Kogelnik, H. Dieter

    1996-01-01

    Austria has a longstanding and eventful history in the field of radiotherapy and radiation oncology. The founder of radiotherapy, Leopold Freund, began his well-documented first therapeutic irradiation on November 24, 1896, in Vienna. He also wrote the first textbook of radiotherapy in 1903. Further outstanding Viennese pioneers in the fields of radiotherapy, radiobiology, radiation physics, and diagnostic radiology include Gottwald Schwarz, Robert Kienboeck, and Guido Holzknecht. Because many of the leading Austrian radiologists had to emigrate in 1938, irreparable damage occurred at that time for the medical speciality of radiology. After World War II, the recovery in the field of radiotherapy and radiation oncology started in Austria in the early sixties. Eleven radiotherapy centers have been established since that time, and an independent society for radio-oncology, radiobiology, and medical radiophysics was founded in 1984. Finally, in March 1994, radiotherapy-radio-oncology became a separate clinical speciality

  14. A Personal Reflection on the History of Radiation Oncology at Memorial Sloan-Kettering Cancer Center

    International Nuclear Information System (INIS)

    Chu, Florence C.H.

    2011-01-01

    Purpose: To provide a historical and personal narrative of the development of radiation oncology at Memorial Sloan-Kettering Cancer Center (MSKCC), from its founding more than 100 years ago to the present day. Methods and Materials: Historical sources include the Archives of MSKCC, publications by members of MSKCC, the author's personal records and recollections, and her communications with former colleagues, particularly Dr. Basil Hilaris, Dr. Zvi Fuks, and Dr. Beryl McCormick. Conclusions: The author, who spent 38 years at MSKCC, presents the challenges and triumphs of MSKCC's Radiation Oncology Department and details MSKCC's breakthroughs in radiation oncology. She also describes MSKCC's involvement in the founding of the American Society for Therapeutic Radiology and Oncology.

  15. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    International Nuclear Information System (INIS)

    Moore, Kevin L.; Moiseenko, Vitali; Kagadis, George C.; McNutt, Todd R.; Mutic, Sasa

    2014-01-01

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy

  16. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States); Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); McNutt, Todd R. [Department of Radiation Oncology and Molecular Radiation Science, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Mutic, Sasa [Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri 63110 (United States)

    2014-01-15

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  17. Vision 20/20: Automation and advanced computing in clinical radiation oncology.

    Science.gov (United States)

    Moore, Kevin L; Kagadis, George C; McNutt, Todd R; Moiseenko, Vitali; Mutic, Sasa

    2014-01-01

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  18. Breast cancer patients' presentation for oncological treatment: a ...

    African Journals Online (AJOL)

    Introduction: Breast cancer patients are presenting at advanced stages for oncological treatment in Nigeria and World Health Organization predicted developing countries' breast cancer incidence and mortality to increase by year 2020. Methods: Prospective observational hospital based study that enrolled breast cancer ...

  19. Characteristics of potential drug-related problems among oncology patients

    NARCIS (Netherlands)

    Bulsink, Arjan; Imholz, Alex L. T.; Brouwers, Jacobus R. B. J.; Jansman, Frank G. A.

    Background Oncology patients are more at risk for drug related problems because of treatment with (combinations of) anticancer drugs, as they have a higher risk for organ failure or altered metabolism with progression of their disease. Objective The aim of this study was to characterize and to

  20. The American Society for Radiation Oncology’s 2010 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Xiao Ying; De Amorim Bernstein, Karen; Chetty, Indrin J.; Eifel, Patricia; Hughes, Lesley; Klein, Eric E.; McDermott, Patrick; Prisciandaro, Joann; Paliwal, Bhudatt; Price, Robert A.; Werner-Wasik, Maria; Palta, Jatinder R.

    2011-01-01

    Purpose: In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Methods and Materials: Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. Results: The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. Conclusions: The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years.

  1. Report of China's innovation increase and research growth in radiation oncology.

    Science.gov (United States)

    Zhu, Hongcheng; Yang, Xi; Qin, Qin; Bian, Kangqi; Zhang, Chi; Liu, Jia; Cheng, Hongyan; Sun, Xinchen

    2014-06-01

    To investigate the research status of radiation oncology in China through survey of literature in international radiation oncology journals and retrospectively compare the outputs of radiation oncology articles of the three major regions of China-Mainland (ML), Taiwan (TW) and Hong Kong (HK). Radiation oncology journals were selected from "oncology" and "radiology, nuclear & medical image" category from Science Citation Index Expand (SCIE). Articles from the ML, TW and HK were retrieved from MEDLINE. The number of total articles, clinical trials, case reports, impact factors (IF), institutions and articles published in each journals were conducted for quantity and quality comparisons. A total 818 articles from 13 radiation oncology journals were searched, of which 427 are from ML, 259 from TW, and 132 from HK. Ninety-seven clinical trials and 5 case reports are reported in China. Accumulated IF of articles from ML (1,417.11) was much higher than that of TW (1,003.093) and HK (544.711), while the average IF of articles from ML is the lowest. The total number of articles from China especially ML increased significantly in the last decade. The number of articles published from the ML has exceeded those from TW and HK. However, the quality of articles from TW and HK is better than that from ML.

  2. Quality Control and Quality Assurance of Radiation Oncology

    International Nuclear Information System (INIS)

    Abaza, A.

    2016-01-01

    Radiotherapy (RT) has played important roles in cancer treatment for more than one century. The development of RT techniques allows high-dose irradiation to tumors while reducing the radiation doses delivered to surrounding normal tissues. However, RT is a complex process and involves understanding of the principles of medical physics, radiobiology, radiation safety, dosimetry, radiation treatment planning, simulation and interaction of radiation with other treatment modalities. Each step in the integrated process of RT needs quality control and quality assurance (QA) to prevent errors and to ensure that patients will receive the prescribed treatment correctly. The aim of this study is to help the radio therapists in identifying a system for QA that balances patient safety and quality with available resources. Recent advances in RT focus on the need for a systematic RT QA program that balances patient safety and quality with available resources. It is necessary to develop more formal error mitigation and process analysis methods, such as failure mode and effect analysis (FMEA), to focus available QA resources optimally on the process components. External audit programs are also effective. Additionally, Clinical trial QA has a significant role in enhancing the quality of care. The International Atomic Energy Agency (IAEA) has operated both an on-site and off-site postal dosimetry audit to improve practice and to assure the dose from RT equipment. Both postal dosimetry audit and clinical trial RTQA, especially for advanced technologies, in collaboration with global networks, will serve to enhance patient safety and quality of care

  3. American Association of Physicists in Medicine Task Group 263: Standardizing Nomenclatures in Radiation Oncology.

    Science.gov (United States)

    Mayo, Charles S; Moran, Jean M; Bosch, Walter; Xiao, Ying; McNutt, Todd; Popple, Richard; Michalski, Jeff; Feng, Mary; Marks, Lawrence B; Fuller, Clifton D; Yorke, Ellen; Palta, Jatinder; Gabriel, Peter E; Molineu, Andrea; Matuszak, Martha M; Covington, Elizabeth; Masi, Kathryn; Richardson, Susan L; Ritter, Timothy; Morgas, Tomasz; Flampouri, Stella; Santanam, Lakshmi; Moore, Joseph A; Purdie, Thomas G; Miller, Robert C; Hurkmans, Coen; Adams, Judy; Jackie Wu, Qing-Rong; Fox, Colleen J; Siochi, Ramon Alfredo; Brown, Norman L; Verbakel, Wilko; Archambault, Yves; Chmura, Steven J; Dekker, Andre L; Eagle, Don G; Fitzgerald, Thomas J; Hong, Theodore; Kapoor, Rishabh; Lansing, Beth; Jolly, Shruti; Napolitano, Mary E; Percy, James; Rose, Mark S; Siddiqui, Salim; Schadt, Christof; Simon, William E; Straube, William L; St James, Sara T; Ulin, Kenneth; Yom, Sue S; Yock, Torunn I

    2018-03-15

    A substantial barrier to the single- and multi-institutional aggregation of data to supporting clinical trials, practice quality improvement efforts, and development of big data analytics resource systems is the lack of standardized nomenclatures for expressing dosimetric data. To address this issue, the American Association of Physicists in Medicine (AAPM) Task Group 263 was charged with providing nomenclature guidelines and values in radiation oncology for use in clinical trials, data-pooling initiatives, population-based studies, and routine clinical care by standardizing: (1) structure names across image processing and treatment planning system platforms; (2) nomenclature for dosimetric data (eg, dose-volume histogram [DVH]-based metrics); (3) templates for clinical trial groups and users of an initial subset of software platforms to facilitate adoption of the standards; (4) formalism for nomenclature schema, which can accommodate the addition of other structures defined in the future. A multisociety, multidisciplinary, multinational group of 57 members representing stake holders ranging from large academic centers to community clinics and vendors was assembled, including physicists, physicians, dosimetrists, and vendors. The stakeholder groups represented in the membership included the AAPM, American Society for Radiation Oncology (ASTRO), NRG Oncology, European Society for Radiation Oncology (ESTRO), Radiation Therapy Oncology Group (RTOG), Children's Oncology Group (COG), Integrating Healthcare Enterprise in Radiation Oncology (IHE-RO), and Digital Imaging and Communications in Medicine working group (DICOM WG); A nomenclature system for target and organ at risk volumes and DVH nomenclature was developed and piloted to demonstrate viability across a range of clinics and within the framework of clinical trials. The final report was approved by AAPM in October 2017. The approval process included review by 8 AAPM committees, with additional review by ASTRO

  4. An Assessment of the Current US Radiation Oncology Workforce: Methodology and Global Results of the American Society for Radiation Oncology 2012 Workforce Study

    Energy Technology Data Exchange (ETDEWEB)

    Vichare, Anushree; Washington, Raynard; Patton, Caroline; Arnone, Anna [ASTRO, Fairfax, Virginia (United States); Olsen, Christine [Massachusetts General Hospital, Boston, Massachusetts, (United States); Fung, Claire Y. [Commonwealth Newburyport Cancer Center, Newburyport, Massachusetts (United States); Hopkins, Shane [William R. Bliss Cancer Center, Ames, Iowa (United States); Pohar, Surjeet, E-mail: spohar@netzero.net [Indiana University Health Cancer Center East, Indiana University, Indianapolis, Indiana (United States)

    2013-12-01

    Purpose: To determine the characteristics, needs, and concerns of the current radiation oncology workforce, evaluate best practices and opportunities for improving quality and safety, and assess what we can predict about the future workforce. Methods and Materials: An online survey was distributed to 35,204 respondents from all segments of the radiation oncology workforce, including radiation oncologists, residents, medical dosimetrists, radiation therapists, medical physicists, nurse practitioners, nurses, physician assistants, and practice managers/administrators. The survey was disseminated by the American Society for Radiation Oncology (ASTRO) together with specialty societies representing other workforce segments. An overview of the methods and global results is presented in this paper. Results: A total of 6765 completed surveys were received, a response rate of 19%, and the final analysis included 5257 respondents. Three-quarters of the radiation oncologists, residents, and physicists who responded were male, in contrast to the other segments in which two-thirds or more were female. The majority of respondents (58%) indicated they were hospital-based, whereas 40% practiced in a free-standing/satellite clinic and 2% in another setting. Among the practices represented in the survey, 21.5% were academic, 25.2% were hospital, and 53.3% were private. A perceived oversupply of professionals relative to demand was reported by the physicist, dosimetrist, and radiation therapist segments. An undersupply was perceived by physician's assistants, nurse practitioners, and nurses. The supply of radiation oncologists and residents was considered balanced. Conclusions: This survey was unique as it attempted to comprehensively assess the radiation oncology workforce by directly surveying each segment. The results suggest there is potential to improve the diversity of the workforce and optimize the supply of the workforce segments. The survey also provides a benchmark for

  5. An Assessment of the Current US Radiation Oncology Workforce: Methodology and Global Results of the American Society for Radiation Oncology 2012 Workforce Study

    International Nuclear Information System (INIS)

    Vichare, Anushree; Washington, Raynard; Patton, Caroline; Arnone, Anna; Olsen, Christine; Fung, Claire Y.; Hopkins, Shane; Pohar, Surjeet

    2013-01-01

    Purpose: To determine the characteristics, needs, and concerns of the current radiation oncology workforce, evaluate best practices and opportunities for improving quality and safety, and assess what we can predict about the future workforce. Methods and Materials: An online survey was distributed to 35,204 respondents from all segments of the radiation oncology workforce, including radiation oncologists, residents, medical dosimetrists, radiation therapists, medical physicists, nurse practitioners, nurses, physician assistants, and practice managers/administrators. The survey was disseminated by the American Society for Radiation Oncology (ASTRO) together with specialty societies representing other workforce segments. An overview of the methods and global results is presented in this paper. Results: A total of 6765 completed surveys were received, a response rate of 19%, and the final analysis included 5257 respondents. Three-quarters of the radiation oncologists, residents, and physicists who responded were male, in contrast to the other segments in which two-thirds or more were female. The majority of respondents (58%) indicated they were hospital-based, whereas 40% practiced in a free-standing/satellite clinic and 2% in another setting. Among the practices represented in the survey, 21.5% were academic, 25.2% were hospital, and 53.3% were private. A perceived oversupply of professionals relative to demand was reported by the physicist, dosimetrist, and radiation therapist segments. An undersupply was perceived by physician's assistants, nurse practitioners, and nurses. The supply of radiation oncologists and residents was considered balanced. Conclusions: This survey was unique as it attempted to comprehensively assess the radiation oncology workforce by directly surveying each segment. The results suggest there is potential to improve the diversity of the workforce and optimize the supply of the workforce segments. The survey also provides a benchmark for

  6. SU-E-T-222: How to Define and Manage Quality Metrics in Radiation Oncology.

    Science.gov (United States)

    Harrison, A; Cooper, K; DeGregorio, N; Doyle, L; Yu, Y

    2012-06-01

    Since the 2001 IOM Report Crossing the Quality Chasm: A New Health System for the 21st Century, the need to provide quality metrics in health care has increased. Quality metrics have yet to be defined for the field of radiation oncology. This study represents one institutes initial efforts defining and measuring quality metrics using our electronic medical record and verify system(EMR) as a primary data collection tool. This effort began by selecting meaningful quality metrics rooted in the IOM definition of quality (safe, timely, efficient, effective, equitable and patient-centered care) that were also measurable targets based on current data input and workflow. Elekta MOSAIQ 2.30.04D1 was used to generate reports on the number of Special Physics Consults(SPC) charged as a surrogate for treatment complexity, daily patient time in department(DTP) as a measure of efficiency and timeliness, and time from CT-simulation to first LINAC appointment(STL). The number of IMRT QAs delivered in the department was also analyzed to assess complexity. Although initial MOSAIQ reports were easily generated, the data needed to be assessed and adjusted for outliers. Patients with delays outside of radiation oncology such as chemotherapy or surgery were excluded from STL data. We found an average STL of six days for all CT-simulated patients and an average DTP of 52 minutes total time, with 23 minutes in the LINAC vault. Annually, 7.3% of all patient require additional physics support indicated by SPC. Utilizing our EMR, an entire year's worth of useful data characterizing our clinical experience was analyzed in less than one day. Having baseline quality metrics is necessary to improve patient care. Future plans include dissecting this data into more specific categories such as IMRT DTP, workflow timing following CT-simulation, beam-on hours, chart review outcomes, and dosimetric quality indicators. © 2012 American Association of Physicists in Medicine.

  7. Fifteen-minute music intervention reduces pre-radiotherapy anxiety in oncology patients.

    Science.gov (United States)

    Chen, Lee-Chen; Wang, Tze-Fang; Shih, Yi-Nuo; Wu, Le-Jung

    2013-08-01

    Oncology patients may respond to radiation treatment with anxiety expressed as stress, fear, depression, and frustration. This study aimed to investigate effects of music intervention on reducing pre-radiotherapy anxiety in oncology patients. Quasi-experimental study with purposeful sampling was conducted in the Department of Radiation Oncology, at Far Eastern Memorial Hospital, Taipei, Taiwan. Subjects were assigned into a music group (n = 100) receiving 15 min of music therapy prior to radiation and a control group (n = 100) receiving 15 min rest prior to radiation. Both groups were evaluated for pre- and post-test anxiety using the State-Trait Anxiety Inventory. Physiological indicators of anxiety were measured pre- and post-test. Baseline State/Trait scores and vital signs were comparable between groups (P > 0.05). Mean change in pre- and post-test State/Trait scores showed significant decreases from baseline to post-test in both groups (all P music therapy and control groups in mean change of State anxiety scores (mean decreases 7.19 and 1.04, respectively; P music and control groups (-5.69 ± 0.41 mmHg vs. -0.67 ± 1.29 mmHg, respectively; P = 0.009). Music therapy decreased State anxiety levels, Trait anxiety levels and systolic blood pressure in oncology patients who received the intervention prior to radiotherapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Hospitalization and other risk factors for depressive and anxious symptoms in oncological and non-oncological patients.

    Science.gov (United States)

    De Fazio, Pasquale; Cerminara, Gregorio; Ruberto, Stefania; Caroleo, Mariarita; Puca, Maurizio; Rania, Ornella; Suffredini, Elina; Procopio, Leonardo; Segura-Garcìa, Cristina

    2017-04-01

    Depression and anxiety are common in hospitalized patients. In particular, oncological patients might be vulnerable to depression and anxiety. The aim of this study is to assess and compare different variables and the prevalence of anxiety and depression symptoms between oncological and medically ill inpatients and to identify variables that can influence depressive and anxious symptoms during hospitalization of patients. A total of 360 consecutive hospitalized patients completed the following questionnaires: Hospital Anxiety and Depression Scale (HADS), Patients Health Questionnaire-9, General Health Questionnaire (GHQ-12), 12-Item Short-Form Survey: physical component summary (PCS), and mental component summary (MCS). Patients were divided into oncological patients and non-oncological patients: groups 1 and 2. Only two significant differences were evident between the groups: the PCS of 12-item Short-form Survey was higher in non-oncological patient (p < 0.000), and the GHQ total score was higher in oncological patients. Variables significantly associated with HADS-D ≥ 8 were lower MCS, higher GHQ-12 score, lower PCS, more numerous previous hospitalizations, longer duration of hospitalization, and positive psychiatric family history. Variables significantly associated with HADS-A ≥ 8 were lower MCS, higher GHQ-12 score, positive psychiatric family history, longer duration of hospitalization, and younger age. Anxiety and depression symptoms in concurrent general medical conditions were associated with a specific sociodemographic profile, and this association has implications for clinical care. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. First Author Research Productivity of United States Radiation Oncology Residents: 2002-2007

    International Nuclear Information System (INIS)

    Morgan, Peter B.; Sopka, Dennis M.; Kathpal, Madeera; Haynes, Jeffrey C.; Lally, Brian E.; Li, Linna

    2009-01-01

    Purpose: Participation in investigative research is a required element of radiation oncology residency in the United States. Our purpose was to quantify the first author research productivity of recent U.S. radiation oncology residents during their residency training. Methods and Materials: We performed a computer-based search of PubMed and a manual review of the proceedings of the annual meetings of the American Society for Therapeutic Radiology and Oncology to identify all publications and presented abstracts with a radiation oncology resident as the first author between 2002 and 2007. Results: Of 1,098 residents trained at 81 programs, 50% published ≥1 article (range, 0-9), and 53% presented ≥1 abstract (range, 0-3) at an American Society for Therapeutic Radiology and Oncology annual meeting. The national average was 1.01 articles published and 1.09 abstracts presented per resident during 4 years of training. Of 678 articles published, 82% represented original research and 18% were review articles. Residents contributed 15% of all abstracts at American Society for Therapeutic Radiology and Oncology annual meetings, and the resident contribution to orally presented abstracts increased from 12% to 21% during the study period. Individuals training at programs with >6 residents produced roughly twice as many articles and abstracts. Holman Research Pathway residents produced double the national average of articles and abstracts. Conclusion: Although variability exists among individuals and among training programs, U.S. radiation oncology residents routinely participate in investigative research suitable for publication or presentation at a scientific meeting. These data provide national research benchmarks that can assist current and future radiation oncology residents and training programs in their self-assessment and research planning.

  10. Proceedings of the 2009 International Conference on Advances in Radiation Oncology (ICARO)

    International Nuclear Information System (INIS)

    2010-01-01

    Cancer has become the second leading cause of death worldwide. At least half of all cancer cases occur in low and middle income (LMI) countries. However, all countries are facing an increased demand for health services for cancer treatment, and a changing and more expensive environment in diagnosis, and treatment, including radiation therapy. The use of radiation therapy in cancer treatment has brought tremendous benefits to cancer patients globally. It is a very cost effective modality for cancer treatment and has a major role in both the cure and palliation of cancer in a multidisciplinary setting. Advances in imaging and treatment delivery have changed radiation therapy approaches in many diseases in high income countries, but are expensive and often difficult to deliver. In particular, the benefits of radiotherapy are not evenly distributed in the world since countries with high income can provide access to the most advanced technology as opposed to what is available for cancer patients in countries with limited resources. The acquisition of advanced technology is often based on consumer demand rather than real clinical need. New techniques of treatment - if they are to use resources from available services - should be introduced to clinical practice only either in the framework of clinical studies or after critical and objective assessment has shown clinical benefits to be superior to previous practice. The International Conference on Advances in Radiation Oncology (ICARO) was organized, at the request of the Member States, to discuss and assess new advances in radiation oncology in the context of physical and economic challenges that all countries face today. Participants submitted research studies, which were reviewed by members of the scientific committee and presented in the form of 46 lectures and 103 posters. The programme dealt with the requirements - when transferring to advanced radiation technology - for staff training, treatment planning and

  11. Who Enrolls Onto Clinical Oncology Trials? A Radiation Patterns of Care Study Analysis

    International Nuclear Information System (INIS)

    Movsas, Benjamin; Moughan, Jennifer; Owen, Jean; Coia, Lawrence R.; Zelefsky, Michael J.; Hanks, Gerald; Wilson, J. Frank

    2007-01-01

    Purpose: To identify factors significantly influencing accrual to clinical protocols by analyzing radiation Patterns of Care Study (PCS) surveys of 3,047 randomly selected radiotherapy (RT) patients. Methods and Materials: Patterns of Care Study surveys from disease sites studied for the periods 1992-1994 and 1996-1999 (breast cancer, n = 1,080; prostate cancer, n = 1,149; esophageal cancer, n = 818) were analyzed. The PCS is a National Cancer Institute-funded national survey of randomly selected RT institutions in the United States. Patients with nonmetastatic disease who received RT as definitive or adjuvant therapy were randomly selected from eligible patients at each institution. To determine national estimates, individual patient records were weighted by the relative contribution of each institution and patients within each institution. Data regarding participation in clinical trials were recorded. The factors age, gender, race, type of insurance, and practice type of treating institution (academic or not) were studied by univariate and multivariate analyses. Results: Overall, only 2.7% of all patients were accrued to clinical protocols. Of these, 57% were enrolled on institutional review board-approved institutional trials, and 43% on National Cancer Institute collaborative group studies. On multivariate analysis, patients treated at academic facilities (p = 0.0001) and white patients (vs. African Americans, p = 0.0002) were significantly more likely to participate in clinical oncology trials. Age, gender, type of cancer, and type of insurance were not predictive. Conclusions: Practice type and race significantly influence enrollment onto clinical oncology trials. This suggests that increased communication and education regarding protocols, particularly focusing on physicians in nonacademic settings and minority patients, will be essential to enhance accrual

  12. Gender Trends in Radiation Oncology in the United States: A 30-Year Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Awad A. [Temple University School of Medicine, Philadelphia, Pennsylvania (United States); Egleston, Brian [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Holliday, Emma [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eastwick, Gary [Temple University School of Medicine, Philadelphia, Pennsylvania (United States); Takita, Cristiane [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Jagsi, Reshma, E-mail: rjagsi@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2014-01-01

    Purpose: Although considerable research exists regarding the role of women in the medical profession in the United States, little work has described the participation of women in academic radiation oncology. We examined women's participation in authorship of radiation oncology literature, a visible and influential activity that merits specific attention. Methods and Materials: We examined the gender of first and senior US physician-authors of articles published in the Red Journal in 1980, 1990, 2000, 2004, 2010, and 2012. The significance of trends over time was evaluated using logistic regression. Results were compared wi