WorldWideScience

Sample records for radiation oncology greater

  1. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Awad A. [Sylvester Comprehensive Cancer Center University of Miami Health System, Miami, Florida (United States); Hwang, Wei-Ting [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Holliday, Emma B. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chapman, Christina H.; Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Thomas, Charles R. [Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon (United States); Deville, Curtiland, E-mail: cdeville@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States)

    2017-05-01

    Purpose: Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Methods and Materials: Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Results: Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Conclusion: Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves.

  2. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology

    International Nuclear Information System (INIS)

    Ahmed, Awad A.; Hwang, Wei-Ting; Holliday, Emma B.; Chapman, Christina H.; Jagsi, Reshma; Thomas, Charles R.; Deville, Curtiland

    2017-01-01

    Purpose: Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Methods and Materials: Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Results: Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Conclusion: Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves.

  3. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology.

    Science.gov (United States)

    Ahmed, Awad A; Hwang, Wei-Ting; Holliday, Emma B; Chapman, Christina H; Jagsi, Reshma; Thomas, Charles R; Deville, Curtiland

    2017-05-01

    Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Clinical evaluation of radiation oncology greater area database (ROGAD). From 1992 to 1998

    International Nuclear Information System (INIS)

    Harauchi, Hajime; Inamura, Kiyonari; Umeda, Tokuo

    2001-01-01

    Radiotherapy clinical records of 8,950 cases were collected from 251 hospitals in the period from 1992 to 1998 by the activity of Radiation Oncology Greater Area Database ROGAD under the Japanese Society for Therapeutic Radiology and Oncology JASTRO, and their data were analyzed. Outlines of analysis are presented in this paper and other 5 papers in series. Also follow-up data of 814 cases by the 4th follow-up survey study carried out in 1998 were retrieved and examined. Case distribution survey according to ICD-O code for primary tumor region were worked out. Chronological change of case distribution during these seven years were examined and briefly stated in this paper. Case analyses in terms of 5 portions of topographical region were also done, and 5 papers together with this paper describe the results of the analyses. Data analysis comparison between ROGAD and the regular census revealed that the resulted analyses of collected clinical data by ROGAD from 1992 to 1998 indicated the real world of radiation therapy situation in Japan. One of the reason to state this is that ROGAD covers 34.7% of number of facilities and 36.1% of number of cases treated in Japan. The another reason is that we could reduce the rate of mis-registration and items of blanked registration by means of improvement of registration software with logical check. We made sure from our effort of this ROGAD activity for these 7 years experiences that continuation of the run of this database ROGAD would bring us much more accurate information on the radiation oncology situation in Japan. (author)

  5. Basic radiation oncology

    International Nuclear Information System (INIS)

    Beyzadeoglu, M. M.; Ebruli, C.

    2008-01-01

    Basic Radiation Oncology is an all-in-one book. It is an up-to-date bedside oriented book integrating the radiation physics, radiobiology and clinical radiation oncology. It includes the essentials of all aspects of radiation oncology with more than 300 practical illustrations, black and white and color figures. The layout and presentation is very practical and enriched with many pearl boxes. Key studies particularly randomized ones are also included at the end of each clinical chapter. Basic knowledge of all high-tech radiation teletherapy units such as tomotherapy, cyberknife, and proton therapy are also given. The first 2 sections review concepts that are crucial in radiation physics and radiobiology. The remaining 11 chapters describe treatment regimens for main cancer sites and tumor types. Basic Radiation Oncology will greatly help meeting the needs for a practical and bedside oriented oncology book for residents, fellows, and clinicians of Radiation, Medical and Surgical Oncology as well as medical students, physicians and medical physicists interested in Clinical Oncology. English Edition of the book Temel Radyasyon Onkolojisi is being published by Springer Heidelberg this year with updated 2009 AJCC Staging as Basic Radiation Oncology

  6. Technology for Innovation in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Martel, Mary K., E-mail: mmartel@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jaffray, David A. [Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Hospital, Toronto, Ontario (Canada); Benedict, Stanley H. [Department of Radiation Oncology, University of California – Davis Cancer Center, Sacramento, California (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Deye, James [Radiation Research Programs, National Cancer Institute, Bethesda, Maryland (United States); Jeraj, Robert [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin (United States); Kavanagh, Brian [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Krishnan, Sunil [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, Nancy [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Low, Daniel A. [Department of Radiation Oncology, University of California – Los Angeles, Los Angeles, California (United States); Mankoff, David [Department of Radiology, University of Washington Medical School, Seattle, Washington (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States); Ollendorf, Daniel [Institute for Clinical and Economic Review, Boston, Massachusetts (United States); and others

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

  7. Technology for Innovation in Radiation Oncology

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Martel, Mary K.; Jaffray, David A.; Benedict, Stanley H.; Hahn, Stephen M.; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A.; Mankoff, David; Marks, Lawrence B.; Ollendorf, Daniel

    2015-01-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

  8. Nanotechnology in Radiation Oncology

    Science.gov (United States)

    Wang, Andrew Z.; Tepper, Joel E.

    2014-01-01

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. PMID:25113769

  9. Technology for Innovation in Radiation Oncology.

    Science.gov (United States)

    Chetty, Indrin J; Martel, Mary K; Jaffray, David A; Benedict, Stanley H; Hahn, Stephen M; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A; Mankoff, David; Marks, Lawrence B; Ollendorf, Daniel; Paganetti, Harald; Ross, Brian; Siochi, Ramon Alfredo C; Timmerman, Robert D; Wong, John W

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Radiation oncology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Radiation Oncology Division has had as its main objectives both to operate an academic training program and to carry out research on radiation therapy of cancer. Since fiscal year 1975, following a directive from ERDA, increased effort has been given to research. The research activities have been complemented by the training program, which has been oriented toward producing radiation oncologists, giving physicians short-term experience in radiation oncology, and teaching medical students about clinical cancer and its radiation therapy. The purpose of the research effort is to improve present modalities of radiation therapy of cancer. As in previous years, the Division has operated as the Radiation Oncology Program of the Department of Radiological Sciences of the University of Puerto Rico School of Medicine. It has provided radiation oncology support to patients at the University Hospital and to academic programs of the University of Puerto Rico Medical Sciences Campus. The patients, in turn, have provided the clinical basis for the educational and research projects of the Division. Funding has been primarily from PRNC (approx. 40%) and from National Cancer Institute grants channeled through the School of Medicine (approx. 60%). Special inter-institutional relationships with the San Juan Veterans Administration Hospital and the Metropolitan Hospital in San Juan have permitted inclusion of patients from these institutions in the Division's research projects. Medical physics and radiotherapy consultations have been provided to the Radiotherapy Department of the VA Hospital

  11. Development of radiation oncology learning system combined with multi-institutional radiotherapy database (ROGAD)

    International Nuclear Information System (INIS)

    Takemura, Akihiro; Iinuma, Masahiro; Kou, Hiroko; Harauchi, Hajime; Inamura, Kiyonari

    1999-01-01

    We have constructed and are operating a multi-institutional radiotherapy database ROGAD (Radiation Oncology Greater Area Database) since 1992. One of it's purpose is 'to optimize individual radiotherapy plans'. We developed Radiation oncology learning system combined with ROGAD' which conforms to that purpose. Several medical doctors evaluated our system. According to those evaluations, we are now confident that our system is able to contribute to improvement of radiotherapy results. Our final target is to generate a good cyclic relationship among three components: radiotherapy results according to ''Radiation oncology learning system combined with ROGAD.'; The growth of ROGAD; and radiation oncology learning system. (author)

  12. Exploring the role of educational videos in radiation oncology practice

    International Nuclear Information System (INIS)

    Dally, M.J.; Denham, J.W.; Boddy, G.A.

    1994-01-01

    Patient, staff, and medical student education are essential components of modern radiation oncology practice. Greater involvement of patients in the clinical decision-making process, and the need for other health professionals to be more informed about radiation oncology, provided further demand on resources, despite ever increasing logistic constraints. Videos made by individual departments may augment traditional teaching methods and have applications in documenting clinical practice and response. 8 refs., 1 tab

  13. Quality Indicators in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Jeffrey M. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Das, Prajnan, E-mail: prajdas@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-03-15

    Oncologic specialty societies and multidisciplinary collaborative groups have dedicated considerable effort to developing evidence-based quality indicators (QIs) to facilitate quality improvement, accreditation, benchmarking, reimbursement, maintenance of certification, and regulatory reporting. In particular, the field of radiation oncology has a long history of organized quality assessment efforts and continues to work toward developing consensus quality standards in the face of continually evolving technologies and standards of care. This report provides a comprehensive review of the current state of quality assessment in radiation oncology. Specifically, this report highlights implications of the healthcare quality movement for radiation oncology and reviews existing efforts to define and measure quality in the field, with focus on dimensions of quality specific to radiation oncology within the “big picture” of oncologic quality assessment efforts.

  14. Quality Indicators in Radiation Oncology

    International Nuclear Information System (INIS)

    Albert, Jeffrey M.; Das, Prajnan

    2013-01-01

    Oncologic specialty societies and multidisciplinary collaborative groups have dedicated considerable effort to developing evidence-based quality indicators (QIs) to facilitate quality improvement, accreditation, benchmarking, reimbursement, maintenance of certification, and regulatory reporting. In particular, the field of radiation oncology has a long history of organized quality assessment efforts and continues to work toward developing consensus quality standards in the face of continually evolving technologies and standards of care. This report provides a comprehensive review of the current state of quality assessment in radiation oncology. Specifically, this report highlights implications of the healthcare quality movement for radiation oncology and reviews existing efforts to define and measure quality in the field, with focus on dimensions of quality specific to radiation oncology within the “big picture” of oncologic quality assessment efforts

  15. The American Society for Radiation Oncology's 2015 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Burmeister, Jay; Chen, Zhe; Chetty, Indrin J.; Dieterich, Sonja; Doemer, Anthony; Dominello, Michael M.; Howell, Rebecca M.; McDermott, Patrick; Nalichowski, Adrian; Prisciandaro, Joann; Ritter, Tim; Smith, Chadd; Schreiber, Eric; Shafman, Timothy; Sutlief, Steven; Xiao, Ying

    2016-01-01

    Purpose: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. Methods and Materials: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. Results: The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. Conclusions: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since

  16. Development of radiation oncology learning system combined with multi-institutional radiotherapy database (ROGAD)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Akihiro; Iinuma, Masahiro; Kou, Hiroko [Kanazawa Univ. (Japan). School of Medicine; Harauchi, Hajime; Inamura, Kiyonari

    1999-09-01

    We have constructed and are operating a multi-institutional radiotherapy database ROGAD (Radiation Oncology Greater Area Database) since 1992. One of it's purpose is 'to optimize individual radiotherapy plans'. We developed Radiation oncology learning system combined with ROGAD' which conforms to that purpose. Several medical doctors evaluated our system. According to those evaluations, we are now confident that our system is able to contribute to improvement of radiotherapy results. Our final target is to generate a good cyclic relationship among three components: radiotherapy results according to ''Radiation oncology learning system combined with ROGAD.'; The growth of ROGAD; and radiation oncology learning system. (author)

  17. Innovations in radiation oncology

    International Nuclear Information System (INIS)

    Withers, H.R.

    1988-01-01

    The series 'Medical Radiology - Diagnostic Imaging and Radiation Oncology' is the successor to the well known 'Encyclopedia of Medical Radiology/Handbuch der medizinischen Radiologie'. 'Medical Radiology' brings the state of the art on special topics in a timely fashion. This volume 'Innovation in Radiation Oncology', edited by H.R. Withers and L.J. Peters, presents data on the development of new therapeutic strategies in different oncologic diseases. 57 authors wrote 32 chapters covering a braod range of topics. The contributors have written their chapters with the practicing radiation oncologist in mind. The first chapter sets the stage by reviewing the quality of radiation oncology as it is practiced in the majority of radiation oncology centers in the United States. The second chapter examines how we may better predict the possible causes of failure of conventional radiotherapy in order that the most appropriate of a variety of therapeutic options may eventually be offered to patients on an individual basis. The third chapter discussed how our therapeutic endeavors affect the quality of life, a problem created by our ability to be successful. Following these three introductory chapters there are 29 chapters by highly qualified specialists discussing the newest ideas in subjects of concern to the practicing radiation oncologist. With 111 figs

  18. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute’s Comprehensive Research Needs Assessment

    International Nuclear Information System (INIS)

    Jagsi, Reshma; Bekelman, Justin E.; Brawley, Otis W.; Deasy, Joseph O.; Le, Quynh-Thu; Michalski, Jeff M.; Movsas, Benjamin; Thomas, Charles R.; Lawton, Colleen A.; Lawrence, Theodore S.; Hahn, Stephen M.

    2012-01-01

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patients and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.

  19. Imaging Opportunities in Radiation Oncology

    International Nuclear Information System (INIS)

    Balter, James M.; Haffty, Bruce G.; Dunnick, N. Reed; Siegel, Eliot L.

    2011-01-01

    Interdisciplinary efforts may significantly affect the way that clinical knowledge and scientific research related to imaging impact the field of Radiation Oncology. This report summarizes the findings of an intersociety workshop held in October 2008, with the express purpose of exploring 'Imaging Opportunities in Radiation Oncology.' Participants from the American Society for Radiation Oncology (ASTRO), National Institutes of Health (NIH), Radiological Society of North America (RSNA), American Association of physicists in Medicine (AAPM), American Board of Radiology (ABR), Radiation Therapy Oncology Group (RTOG), European Society for Therapeutic Radiology and Oncology (ESTRO), and Society of Nuclear Medicine (SNM) discussed areas of education, clinical practice, and research that bridge disciplines and potentially would lead to improved clinical practice. Findings from this workshop include recommendations for cross-training opportunities within the allowed structured of Radiology and Radiation Oncology residency programs, expanded representation of ASTRO in imaging related multidisciplinary groups (and reciprocal representation within ASTRO committees), increased attention to imaging validation and credentialing for clinical trials (e.g., through the American College of Radiology Imaging Network (ACRIN)), and building ties through collaborative research as well as smaller joint workshops and symposia.

  20. Continuing medical education in radiation oncology

    International Nuclear Information System (INIS)

    Chauvet, B.; Barillot, I.; Denis, F.; Cailleux, P.E.; Ardiet, J.M.; Mornex, F.

    2012-01-01

    In France, continuing medical education (CME) and professional practice evaluation (PPE) became mandatory by law in July 2009 for all health professionals. Recently published decrees led to the creation of national specialty councils to implement this organizational device. For radiation oncology, this council includes the French Society for Radiation Oncology (SFRO), the National Radiation Oncology Syndicate (SNRO) and the Association for Continuing Medical Education in Radiation Oncology (AFCOR). The Radiation Oncology National Council will propose a set of programs including CME and PPE, professional thesaurus, labels for CME actions consistent with national requirements, and will organize expertise for public instances. AFCOR remains the primary for CME, but each practitioner can freely choose an organisation for CME, provided that it is certified by the independent scientific commission. The National Order for physicians is the control authority. Radiation oncology has already a strong tradition of independent CME that will continue through this major reform. (authors)

  1. Clinical and Radiation Oncology. Vol. 1

    International Nuclear Information System (INIS)

    Jurga, L.; Adam, Z.; Autrata, R.

    2010-01-01

    The work is two-volume set and has 1,658 pages. It is divided into 5 sections: I. Principles Clinical and radiation oncology. II. Hematological Malignant tumors. III. Solid tumors. IV. Treatment options metastatic Disease. V. Clinical practice in oncology. First volume contains following sections a chapters: Section I: Principles of clinical and radiation oncology, it contains following chapters: (1) The history of clinical/experimental and radiation oncology in the Czech Republic; (2) The history of clinical/experimental and radiation oncology in the Slovak Republic - development and development of oncology in Slovakia; (3) Clinical and radiation oncology as part of evidence-based medicine; (4) Molecular biology; (5) Tumor Disease; (6) Epidemiology and prevention of malignant tumors; (7) Diagnosis, staging, stratification and monitoring of patients in oncology; (8) Imaging methods in oncology; (9) Principles of surgical treatment of cancer diseases; (10) Symptomatology and signaling of malignant tumors - systemic, paraneoplastic and paraendocrine manifestations of tumor diseases; (11) Principles of radiation oncology; (12 Modeling radiobiological effects of radiotherapy; (13) Principles of anticancer chemotherapy; (14) Hormonal manipulation in the treatment of tumors; (15) Principles of biological and targeted treatment of solid tumors; (16) Method of multimodal therapy of malignant tumors; (17) Evaluation of treatment response, performance evaluation criteria (RECIST); (18) Adverse effects of cancer chemotherapy and the principles of their prevention and treatment; (19) Biological principles of hematopoietic stem cell transplantation; (20) Design, analysis and ethical aspects of clinical studies in oncology; (21) Fundamentals of biostatistics for oncologists; (22) Information infrastructure for clinical and radiological oncology based on evidence; (23) Pharmacoeconomic aspects in oncology; (24) Respecting patient preferences when deciding on the strategy and

  2. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute's Comprehensive Research Needs Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jagsi, Reshma, E-mail: rjagsi@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Bekelman, Justin E. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Brawley, Otis W. [Department of Hematology and Oncology, Emory University, and American Cancer Society, Atlanta, Georgia (United States); Deasy, Joseph O. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Le, Quynh-Thu [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Michalski, Jeff M. [Department of Radiation Oncology, Washington University, St. Louis, MO (United States); Movsas, Benjamin [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Thomas, Charles R. [Department of Radiation Oncology, Oregon Health and Sciences University, Portland, OR (United States); Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2012-10-01

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patients and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.

  3. The American Society for Radiation Oncology's 2015 Core Physics Curriculum for Radiation Oncology Residents

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, Jay, E-mail: burmeist@karmanos.org [Department of Oncology, Karmanos Cancer Center/Wayne State University, Detroit, Michigan (United States); Chen, Zhe [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Dieterich, Sonja [Department of Radiation Oncology, University of California – Davis, Sacramento, California (United States); Doemer, Anthony [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Dominello, Michael M. [Department of Oncology, Karmanos Cancer Center/Wayne State University, Detroit, Michigan (United States); Howell, Rebecca M. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); McDermott, Patrick [Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan (United States); Nalichowski, Adrian [Karmanos Cancer Center, Detroit, Michigan (United States); Prisciandaro, Joann [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ritter, Tim [VA Ann Arbor Healthcare and the University of Michigan, Ann Arbor, Michigan (United States); Smith, Chadd [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Schreiber, Eric [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Shafman, Timothy [21st Century Oncology, Fort Myers, Florida (United States); Sutlief, Steven [Department of Radiation Oncology, University of California – San Diego, La Jolla, California (United States); Xiao, Ying [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2016-07-15

    Purpose: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. Methods and Materials: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. Results: The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. Conclusions: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since

  4. 78 FR 25304 - Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), Including On...

    Science.gov (United States)

    2013-04-30

    ..., USA, Inc., Oncology Care Systems (Radiation Oncology), Including On-Site Leased Workers From Source... Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), including on- site leased... of February 2013, Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology...

  5. Global Health in Radiation Oncology

    DEFF Research Database (Denmark)

    Rodin, Danielle; Yap, Mei Ling; Grover, Surbhi

    2017-01-01

    programs. However, formalized training and career promotion tracks in global health within radiation oncology have been slow to emerge, thereby limiting the sustained involvement of students and faculty, and restricting opportunities for leadership in this space. We examine here potential structures...... and benefits of formalized global health training in radiation oncology. We explore how defining specific competencies in this area can help trainees and practitioners integrate their activities in global health within their existing roles as clinicians, educators, or scientists. This would also help create...... and funding models might be used to further develop and expand radiation oncology services globally....

  6. American Society for Radiation Oncology (ASTRO) Survey of Radiation Biology Educators in U.S. and Canadian Radiation Oncology Residency Programs

    International Nuclear Information System (INIS)

    Rosenstein, Barry S.; Held, Kathryn D.; Rockwell, Sara; Williams, Jacqueline P.; Zeman, Elaine M.

    2009-01-01

    Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educators whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.

  7. Medical legal aspects of radiation oncology

    International Nuclear Information System (INIS)

    Wall, Terry J.

    1996-01-01

    The theoretical basis of, and practical experience in, legal liability in the clinical practice of radiation oncology is reviewed, with a view to developing suggestions to help practitioners limit their exposure to liability. New information regarding the number, size, and legal theories of litigation against radiation oncologists is presented. The most common legal bases of liability are then explored in greater detail, including 'malpractice', and informed consent, with suggestions of improving the specialty's record of documenting informed consent. Collateral consequences of suffering a malpractice claim (i.e., the National Practitioner Data Bank) will also be briefly discussed

  8. The Radiation Therapy Oncology in the context of oncological practice

    International Nuclear Information System (INIS)

    Kasdorf, P.

    2010-01-01

    This work is about the radiation therapy oncology in the context of oncological practice. The radiotherapy is a speciality within medicine that involves the generation, application and dissemination of knowledge about the biology, causes, prevention and treatment of the cancer and other pathologies by ionising radiation

  9. Project reconversion Service Hospital Radiation Oncology Clinics-Medical School

    International Nuclear Information System (INIS)

    Quarneti, A.; Levaggi, G.

    2004-01-01

    Introduction: The Health Sector operates within the framework of Social Policy and it is therefore one of the ways of distribution of public benefit, like Housing, Education and Social Security. While public spending on health has grown in recent years, its distribution has been uneven and the sector faces funding and management problems. The Service Hospital Radiation Oncology has reduced its health care liavility , lack technological development and unsufficient human resources and training. Aim: developing an inclusive reform bill Service Hospital Radiation Oncology .Material and Methods: This project tends to form a network institutional, introducing concepts of evidence-based medicine, risk models, cost analysis, coding systems, system implementation of quality management (ISO-9000 Standards). Proposes redefining radiotherapy centers and their potential participation in training resource development goals humanos.Promueve scientific research of national interest. Separate strictly administrative function, management and teaching. The project takes into account the characteristics of demand, the need to order it and organize around her, institutional network system and within the Hospital das Clinicas own related services related to Service Hospital Radiation Oncology , Encourages freedom of choice, and confers greater equity in care. The project would managed by the Hospital Clínicas. Conclusions: We believe this proposal identifies problems and opportunities, Service Hospital Radiation Oncology proposes the development of institutional network under one management model

  10. Results of the Association of Directors of Radiation Oncology Programs (ADROP) Survey of Radiation Oncology Residency Program Directors

    International Nuclear Information System (INIS)

    Harris, Eleanor; Abdel-Wahab, May; Spangler, Ann E.; Lawton, Colleen A.; Amdur, Robert J.

    2009-01-01

    Purpose: To survey the radiation oncology residency program directors on the topics of departmental and institutional support systems, residency program structure, Accreditation Council for Graduate Medical Education (ACGME) requirements, and challenges as program director. Methods: A survey was developed and distributed by the leadership of the Association of Directors of Radiation Oncology Programs to all radiation oncology program directors. Summary statistics, medians, and ranges were collated from responses. Results: Radiation oncology program directors had implemented all current required aspects of the ACGME Outcome Project into their training curriculum. Didactic curricula were similar across programs nationally, but research requirements and resources varied widely. Program directors responded that implementation of the ACGME Outcome Project and the external review process were among their greatest challenges. Protected time was the top priority for program directors. Conclusions: The Association of Directors of Radiation Oncology Programs recommends that all radiation oncology program directors have protected time and an administrative stipend to support their important administrative and educational role. Departments and institutions should provide adequate and equitable resources to the program directors and residents to meet increasingly demanding training program requirements.

  11. Radiation oncology: a primer for medical students.

    Science.gov (United States)

    Berman, Abigail T; Plastaras, John P; Vapiwala, Neha

    2013-09-01

    Radiation oncology requires a complex understanding of cancer biology, radiation physics, and clinical care. This paper equips the medical student to understand the fundamentals of radiation oncology, first with an introduction to cancer treatment and the use of radiation therapy. Considerations during radiation oncology consultations are discussed extensively with an emphasis on how to formulate an assessment and plan including which treatment modality to use. The treatment planning aspects of radiation oncology are then discussed with a brief introduction to how radiation works, followed by a detailed explanation of the nuances of simulation, including different imaging modalities, immobilization, and accounting for motion. The medical student is then instructed on how to participate in contouring, plan generation and evaluation, and the delivery of radiation on the machine. Lastly, potential adverse effects of radiation are discussed with a particular focus on the on-treatment patient.

  12. Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology.

    Science.gov (United States)

    Bibault, Jean-Emmanuel; Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita

    2018-01-01

    Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our "record-and-verify" system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique-Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017).

  13. Future directions in radiation oncology

    International Nuclear Information System (INIS)

    Peters, L.

    1996-01-01

    Full text: Cancer treatment has evolved progressively over the years as a joint result of improvements in technology and better understanding of the biological responses of neoplastic and normal cells to cytotoxic agents. Although major therapeutic 'breakthroughs' are unlikely absent the discovery of exploitable fundamental differences between cancer cells and their normal homologs, further incremental improvements in cancer treatment results can confidently be expected as we apply existing knowledge better and take advantage of new research insights. Areas in which I can foresee significant improvements (in approximate chronological order) are as follows: better physical radiation dose distributions; more effective radiation and chemoradiation protocols based on radiobiological principles; more rational use of radiation adjuvants based on biologic criteria; use of novel targets and vectors for systemic radionuclide therapy; use of genetic markers of radiosensitivity to determine radiation dose tolerances; and use of radiation as a modulator of therapeutic gene expression. Radiation research has contributed greatly to the efficacy of radiation oncology as it is now practised but has even greater potential for the future

  14. Radiation oncology medical physics education and training in Queensland

    International Nuclear Information System (INIS)

    West, M.P.; Thomas, B.J.

    2011-01-01

    Full text: The training education and accreditation program (TEAP) for radiation oncology commenced formally in Queensland in 2008 with an initial intake of nine registrars. In 2011 there are 17 registrars across four ACPSEM accredited Queensland Health departments (Mater Radiation Oncology Centre, Princess Alexandria Hospital, Royal Brisbane and Women's Hospital, Townsville Hospital). The Queensland Statewide Cancer Services Plan 2008-2017 outlines significant expansion to oncology services including increases in total number of treatment machines from 14 (2007) to 29-31 (2017) across existing and new clinical departments. A direct implication of this will be the number of qualified ROMPs needed to maintain and develop medical physics services. This presentation will outline ongoing work in the ROMP education and Training portfolio to develop, facilitate and provide training activities for ROMPs undertaking TEAP in the Queensland public system. Initiatives such as Department of Health and Aging scholarships for medical physics students, and the educational challenges associated with competency attainment will also be discussed in greater detail.

  15. Encyclopedia of radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Luther W. [Drexel Univ. College of Medicine, Philadelphia, PA (United States); Yaeger, Theodore E. (eds.) [Wake Forest Univ. School of Medicine, Winston-Salem, NC (United States). Dept. of Radiation Oncology

    2013-02-01

    The simple A to Z format provides easy access to relevant information in the field of radiation oncology. Extensive cross references between keywords and related articles enable efficient searches in a user-friendly manner. Fully searchable and hyperlinked electronic online edition. The aim of this comprehensive encyclopedia is to provide detailed information on radiation oncology. The wide range of entries are written by leading experts. They will provide basic and clinical scientists in academia, practice and industry with valuable information about the field of radiation oncology. Those in related fields, students, teachers, and interested laypeople will also benefit from the important and relevant information on the most recent developments. Please note that this publication is available as print only or online only or print + online set. Save 75% of the online list price when purchasing the bundle. For more information on the online version please type the publication title into the search box above, then click on the eReference version in the results list.

  16. Radiation Oncology in Undergraduate Medical Education: A Literature Review

    International Nuclear Information System (INIS)

    Dennis, Kristopher E.B.; Duncan, Graeme

    2010-01-01

    Purpose: To review the published literature pertaining to radiation oncology in undergraduate medical education. Methods and Materials: Ovid MEDLINE, Ovid MEDLINE Daily Update and EMBASE databases were searched for the 11-year period of January 1, 1998, through the last week of March 2009. A medical librarian used an extensive list of indexed subject headings and text words. Results: The search returned 640 article references, but only seven contained significant information pertaining to teaching radiation oncology to medical undergraduates. One article described a comprehensive oncology curriculum including recommended radiation oncology teaching objectives and sample student evaluations, two described integrating radiation oncology teaching into a radiology rotation, two described multidisciplinary anatomy-based courses intended to reinforce principles of tumor biology and radiotherapy planning, one described an exercise designed to test clinical reasoning skills within radiation oncology cases, and one described a Web-based curriculum involving oncologic physics. Conclusions: To the authors' knowledge, this is the first review of the literature pertaining to teaching radiation oncology to medical undergraduates, and it demonstrates the paucity of published work in this area of medical education. Teaching radiation oncology should begin early in the undergraduate process, should be mandatory for all students, and should impart knowledge relevant to future general practitioners rather than detailed information relevant only to oncologists. Educators should make use of available model curricula and should integrate radiation oncology teaching into existing curricula or construct stand-alone oncology rotations where the principles of radiation oncology can be conveyed. Assessments of student knowledge and curriculum effectiveness are critical.

  17. Palliative care and palliative radiation therapy education in radiation oncology: A survey of US radiation oncology program directors.

    Science.gov (United States)

    Wei, Randy L; Colbert, Lauren E; Jones, Joshua; Racsa, Margarita; Kane, Gabrielle; Lutz, Steve; Vapiwala, Neha; Dharmarajan, Kavita V

    The purpose of this study was to assess the state of palliative and supportive care (PSC) and palliative radiation therapy (RT) educational curricula in radiation oncology residency programs in the United States. We surveyed 87 program directors of radiation oncology residency programs in the United States between September 2015 and November 2015. An electronic survey on PSC and palliative RT education during residency was sent to all program directors. The survey consisted of questions on (1) perceived relevance of PSC and palliative RT to radiation oncology training, (2) formal didactic sessions on domains of PSC and palliative RT, (3) effective teaching formats for PSC and palliative RT education, and (4) perceived barriers for integrating PSC and palliative RT into the residency curriculum. A total of 57 responses (63%) was received. Most program directors agreed or strongly agreed that PSC (93%) and palliative radiation therapy (99%) are important competencies for radiation oncology residents and fellows; however, only 67% of residency programs had formal educational activities in principles and practice of PSC. Most programs had 1 or more hours of formal didactics on management of pain (67%), management of neuropathic pain (65%), and management of nausea and vomiting (63%); however, only 35%, 33%, and 30% had dedicated lectures on initial management of fatigue, assessing role of spirituality, and discussing advance care directives, respectively. Last, 85% of programs reported having a formal curriculum on palliative RT. Programs were most likely to have education on palliative radiation to brain, bone, and spine, but less likely on visceral, or skin, metastasis. Residency program directors believe that PSC and palliative RT are important competencies for their trainees and support increasing education in these 2 educational domains. Many residency programs have structured curricula on PSC and palliative radiation education, but room for improvement exists in

  18. DEGRO 2012. 18. annual congress of the German Radiation Oncology Society. Radiation oncology - medical physics - radiation biology. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The volume includes the abstracts of the contributions and posters of the 18th annual congress of the German Radiation Oncology Society DEGRO 2012. The lectures covered the following topics: Radiation physics, therapy planning; gastrointestinal tumors; radiation biology; stererotactic radiotherapy/breast carcinomas; quality management - life quality; head-neck-tumors/lymphomas; NSCL (non-small cell lung carcinomas); pelvic tumors; brain tumors/pediatric tumors. The poster sessions included the following topics: quality management, recurrent tumor therapy; brachytherapy; breast carcinomas and gynecological tumors; pelvis tumors; brain tumors; stereotactic radiotherapy; head-neck carcinomas; NSCL, proton therapy, supporting therapy; clinical radio-oncology, radiation biology, IGRT/IMRT.

  19. Radiation oncology - Linking technology and biology in the treatment of cancer

    International Nuclear Information System (INIS)

    Coleman, C. Norman

    2002-01-01

    Technical advances in radiation oncology including CT-simulation, 3D-conformal and intensity-modulated radiation therapy (IMRT) delivery techniques, and brachytherapy have allowed greater treatment precision and dose escalation. The ability to intensify treatment requires the identification of the critical targets within the treatment field, recognizing the unique biology of tumor, stroma and normal tissue. Precision is technology based while accuracy is biologically based. Therefore, the intensity of IMRT will undoubtedly mean an increase in both irradiation dose and the use of biological agents, the latter considered in the broadest sense. Radiation oncology has the potential and the opportunity to provide major contributions to the linkage between molecular and functional imaging, molecular profiling and novel therapeutics for the emerging molecular targets for cancer treatment. This process of 'credentialing' of molecular targets will require multi disciplinary imaging teams, clinicians and basic scientists. Future advances will depend on the appropriate integration of biology into the training of residents, continuing post graduate education, participation in innovative clinical research and commitment to the support of basic research as an essential component of the practice of radiation oncology

  20. Information technologies for radiation oncology

    International Nuclear Information System (INIS)

    Chen, George T.Y.

    1996-01-01

    Electronic exchange of information is profoundly altering the ways in which we share clinical information on patients, our research mission, and the ways we teach. The three panelists each describe their experiences in information exchange. Dr. Michael Vannier is Professor of Radiology at the Mallinkrodt Institute of Radiology, and directs the image processing laboratory. He will provide insights into how radiologists have used the Internet in their specialty. Dr. Joel Goldwein, Associate Professor in the Department of Radiation Oncology at the University of Pennsylvania, will describe his experiences in using the World Wide Web in the practice of academic radiation oncology and the award winning Oncolink Web Site. Dr. Timothy Fox Assistant, Professor of Radiation Oncology at Emory University will discuss wide area networking of multi-site departments, to coordinate center wide clinical, research and teaching activities

  1. Artificial Intelligence in Medicine and Radiation Oncology.

    Science.gov (United States)

    Weidlich, Vincent; Weidlich, Georg A

    2018-04-13

    Artifical Intelligence (AI) was reviewed with a focus on its potential applicability to radiation oncology. The improvement of process efficiencies and the prevention of errors were found to be the most significant contributions of AI to radiation oncology. It was found that the prevention of errors is most effective when data transfer processes were automated and operational decisions were based on logical or learned evaluations by the system. It was concluded that AI could greatly improve the efficiency and accuracy of radiation oncology operations.

  2. Radiation oncology physics: A handbook for teachers and students

    International Nuclear Information System (INIS)

    Podgorsak, E.B.

    2005-07-01

    Radiotherapy, also referred to as radiation therapy, radiation oncology or therapeutic radiology, is one of the three principal modalities used in the treatment of malignant disease (cancer), the other two being surgery and chemotherapy. In contrast to other medical specialties that rely mainly on the clinical knowledge and experience of medical specialists, radiotherapy, with its use of ionizing radiation in the treatment of cancer, relies heavily on modern technology and the collaborative efforts of several professionals whose coordinated team approach greatly influences the outcome of the treatment. The radiotherapy team consists of radiation oncologists, medical physicists, dosimetrists and radiation therapy technologists: all professionals characterized by widely differing educational backgrounds and one common link - the need to understand the basic elements of radiation physics, and the interaction of ionizing radiation with human tissue in particular. This specialized area of physics is referred to as radiation oncology physics, and proficiency in this branch of physics is an absolute necessity for anyone who aspires to achieve excellence in any of the four professions constituting the radiotherapy team. Current advances in radiation oncology are driven mainly by technological development of equipment for radiotherapy procedures and imaging; however, as in the past, these advances rely heavily on the underlying physics. This book is dedicated to students and teachers involved in programmes that train professionals for work in radiation oncology. It provides a compilation of facts on the physics as applied to radiation oncology and as such will be useful to graduate students and residents in medical physics programmes, to residents in radiation oncology, and to students in dosimetry and radiotherapy technology programmes. The level of understanding of the material covered will, of course, be different for the various student groups; however, the basic

  3. 2003 survey of Canadian radiation oncology residents

    International Nuclear Information System (INIS)

    Yee, Don; Fairchild, Alysa; Keyes, Mira; Butler, Jim; Dundas, George

    2005-01-01

    Purpose: Radiation oncology's popularity as a career in Canada has surged in the past 5 years. Consequently, resident numbers in Canadian radiation oncology residencies are at all-time highs. This study aimed to survey Canadian radiation oncology residents about their opinions of their specialty and training experiences. Methods and Materials: Residents of Canadian radiation oncology residencies that enroll trainees through the Canadian Resident Matching Service were identified from a national database. Residents were mailed an anonymous survey. Results: Eight of 101 (7.9%) potential respondents were foreign funded. Fifty-two of 101 (51.5%) residents responded. A strong record of graduating its residents was the most important factor residents considered when choosing programs. Satisfaction with their program was expressed by 92.3% of respondents, and 94.3% expressed satisfaction with their specialty. Respondents planning to practice in Canada totaled 80.8%, and 76.9% plan to have academic careers. Respondents identified job availability and receiving adequate teaching from preceptors during residency as their most important concerns. Conclusions: Though most respondents are satisfied with their programs and specialty, job availability and adequate teaching are concerns. In the future, limited time and resources and the continued popularity of radiation oncology as a career will magnify the challenge of training competent radiation oncologists in Canada

  4. Standardizing Naming Conventions in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Santanam, Lakshmi [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Hurkmans, Coen [Department of Radiation Oncology, Catharina Hospital, Eindhoven (Netherlands); Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Vliet-Vroegindeweij, Corine van [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Brame, Scott; Straube, William [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Galvin, James [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Tripuraneni, Prabhakar [Department of Radiation Oncology, Scripps Clinic, LaJolla, CA (United States); Michalski, Jeff [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Bosch, Walter, E-mail: wbosch@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Advanced Technology Consortium, Image-guided Therapy QA Center, St. Louis, MO (United States)

    2012-07-15

    Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were

  5. Standardizing naming conventions in radiation oncology.

    Science.gov (United States)

    Santanam, Lakshmi; Hurkmans, Coen; Mutic, Sasa; van Vliet-Vroegindeweij, Corine; Brame, Scott; Straube, William; Galvin, James; Tripuraneni, Prabhakar; Michalski, Jeff; Bosch, Walter

    2012-07-15

    The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were satisfactorily identified using this

  6. Standardizing Naming Conventions in Radiation Oncology

    International Nuclear Information System (INIS)

    Santanam, Lakshmi; Hurkmans, Coen; Mutic, Sasa; Vliet-Vroegindeweij, Corine van; Brame, Scott; Straube, William; Galvin, James; Tripuraneni, Prabhakar; Michalski, Jeff; Bosch, Walter

    2012-01-01

    Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were

  7. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  8. Radiation oncology systems integration

    International Nuclear Information System (INIS)

    Ragan, D.P.

    1991-01-01

    ROLE7 is intended as a complementary addition to the HL7 Standard and not as an alternative standard. Attempt should be made to mould data elements which are specific to radiation therapy with existing HL7 elements. This can be accomplished by introducing additional values to some element's table-of-options. Those elements which might be specific to radiation therapy could from new segments to be added to the Ancillary Data Reporting set. In order to accomplish ROLE7, consensus groups need be formed to identify the various functions related to radiation oncology that might motivate information exchange. For each of these functions, the specific data elements and their format must be identified. HL7 is organized with a number of applications which communicate asynchronously. Implementation of ROLE7 would allow uniform access to information across vendors and functions. It would provide improved flexibility in system selection. It would allow a more flexible and affordable upgrade path as systems in radiation oncology improve. (author). 5 refs

  9. NIH funding in Radiation Oncology – A snapshot

    Science.gov (United States)

    Steinberg, Michael; McBride, William H.; Vlashi, Erina; Pajonk, Frank

    2013-01-01

    Currently, pay lines for NIH grants are at a historical low. In this climate of fierce competition knowledge about the funding situation in a small field like Radiation Oncology becomes very important for career planning and recruitment of faculty. Unfortunately, this data cannot be easily extracted from the NIH s database because it does not discriminate between Radiology and Radiation Oncology Departments. At the start of fiscal year 2013, we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from Radiation Oncology Departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in Radiation Oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to PIs at the Full Professor level and 122 PIs held a PhD degree. In 79% of the grants the research topic fell into the field of Biology, in 13 % into the field of Medical Physics. Only 7.6% of the proposals were clinical investigations. Our data suggests that the field of Radiation Oncology is underfunded by the NIH, and that the current level of support does not match the relevance of Radiation Oncology for cancer patients or the potential of its academic work force. PMID:23523324

  10. Requirements for radiation oncology physics in Australia and New Zealand

    International Nuclear Information System (INIS)

    Oliver, L.; Fitchew, R.; Drew, J.

    2001-01-01

    This Position Paper reviews the role, standards of practice, education, training and staffing requirements for radiation oncology physics. The role and standard of practice for an expert in radiation oncology physics, as defined by the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM), are consistent with the IAEA recommendations. International standards of safe practice recommend that this physics expert be authorised by a Regulatory Authority (in consultation with the professional organisation). In order to accommodate the international and AHTAC recommendations or any requirements that may be set by a Regulatory Authority, the ACPSEM has defined the criteria for a physicist-in-training, a base level physicist, an advanced level physicist and an expert radiation oncology physicist. The ACPSEM shall compile separate registers for these different radiation oncology physicist categories. What constitutes a satisfactory means of establishing the number of physicists and support physics staff that is required in radiation oncology continues to be debated. The new ACPSEM workforce formula (Formula 2000) yields similar numbers to other international professional body recommendations. The ACPSEM recommends that Australian and New Zealand radiation oncology centres should aim to employ 223 and 46 radiation oncology physics staff respectively. At least 75% of this workforce should be physicists ( 168 in Australia and 35 in New Zealand). An additional 41 registrar physicist positions (34 in Australia and 7 in New Zealand) should be specifically created for training purposes. These registrar positions cater for the present physicist shortfall, the future expansion of radiation oncology and the expected attrition of radiation oncology physicists in the workforce. Registrar physicists shall undertake suitable tertiary education in medical physics with an organised in-house training program.The rapid advances in the theory and methodology of the new

  11. A local-area-network based radiation oncology microcomputer system

    International Nuclear Information System (INIS)

    Chu, W.K.; Taylor, T.K.; Kumar, P.P.; Imray, T.J.

    1985-01-01

    The application of computerized technology in the medical specialty of radiation oncology has gained wide acceptance in the past decade. Recognizing that most radiation oncology department personnel are familiar with computer operations and terminology, it appears reasonable to attempt to expand the computer's applications to other departmental activities, such as scheduling, record keeping, billing, treatment regimen and status, etc. Instead of sharing the processing capability available on the existent treatment minicomputer, the radiation oncology computer system is based upon a microcomputer local area network (LAN). The system was conceptualized in 1984 and completed in March 1985. This article outlines the LAN-based radiation oncology computer system

  12. Patient satisfaction in radiation oncology

    International Nuclear Information System (INIS)

    Zissiadis, Y.; Provis, A.; Dhaliwal, S.S.

    2003-01-01

    In this current economic climate where the costs of providing a good medical service are escalating, patients are demanding a higher level of service from the Radiation Oncology providers. This coupled with the rising level of patients' expectations make it absolutely paramount for Radiation Oncology providers to offer the best possible service to their patients. In order to do this, it is essential to assess the present level of patient satisfaction prior to deciding which aspects of the current service need to be changed. In this pilot study, we assess the level of patient satisfaction with aspects of the radiotherapy service and the level of patient anxiety both prior to and following radiotherapy at the Perth Radiation Oncology Centre. A questionnaire was created using a combination of the Information Satisfaction Questionnaire-1 (ISQ-1), the Very Short Questionnaire 9 (VSQ 9) and the State Trait Anxiety Index (STAI). One hundred new patients were studied, all of whom were to have radiotherapy with curative intent. The results of this study are reviewed in this presentation

  13. Grade Inflation in Medical Student Radiation Oncology Clerkships: Missed Opportunities for Feedback?

    International Nuclear Information System (INIS)

    Grover, Surbhi; Swisher-McClure, Samuel; Sosnowicz, Stasha; Li, Jiaqi; Mitra, Nandita; Berman, Abigail T.; Baffic, Cordelia; Vapiwala, Neha; Freedman, Gary M.

    2015-01-01

    Purpose: To test the hypothesis that medical student radiation oncology elective rotation grades are inflated and cannot be used to distinguish residency applicants. Methods and Materials: The records of 196 applicants to a single radiation oncology residency program in 2011 and 2012 were retrospectively reviewed. The grades for each rotation in radiation oncology were collected and converted to a standardized 4-point grading scale (honors, high pass, pass, fail). Pass/fail grades were scored as not applicable. The primary study endpoint was to compare the distribution of applicants' grades in radiation oncology with their grades in medicine, surgery, pediatrics, and obstetrics/gynecology core clerkships. Results: The mean United States Medical Licensing Examination Step 1 score of the applicants was 237 (range, 188-269), 43% had additional Masters or PhD degrees, and 74% had at least 1 publication. Twenty-nine applicants were graded for radiation oncology rotations on a pass/fail basis and were excluded from the final analysis. Of the remaining applicants (n=167), 80% received the highest possible grade for their radiation oncology rotations. Grades in radiation oncology were significantly higher than each of the other 4 clerkships studied (P<.001). Of all applicants, 195 of 196 matched into a radiation oncology residency. Higher grades in radiation oncology were associated with significantly higher grades in the pediatrics core clerkship (P=.002). However, other medical school performance metrics were not significantly associated with higher grades in radiation oncology. Conclusions: Although our study group consists of a selected group of radiation oncology applicants, their grades in radiation oncology clerkships were highly skewed toward the highest grades when compared with grades in other core clerkships. Student grading in radiation oncology clerkships should be re-evaluated to incorporate more objective and detailed performance metrics to allow for

  14. Quality in radiation oncology

    International Nuclear Information System (INIS)

    Pawlicki, Todd; Mundt, Arno J.

    2007-01-01

    A modern approach to quality was developed in the United States at Bell Telephone Laboratories during the first part of the 20th century. Over the years, those quality techniques have been adopted and extended by almost every industry. Medicine in general and radiation oncology in particular have been slow to adopt modern quality techniques. This work contains a brief description of the history of research on quality that led to the development of organization-wide quality programs such as Six Sigma. The aim is to discuss the current approach to quality in radiation oncology as well as where quality should be in the future. A strategy is suggested with the goal to provide a threshold improvement in quality over the next 10 years

  15. Impact of radiation research on clinical trials in radiation oncology

    International Nuclear Information System (INIS)

    Rubin, P.; Van Ess, J.D.

    1989-01-01

    The authors present an outline review of the history of the formation of the cooperative group called International Clinical Trials in Radiation Oncology (ICTRO), and the following areas are briefly discussed together with some projections for the direction of clinical trials in radiation oncology into the 1990s:- radiosensitizers, radioprotectors, and their combination, drug-radiation interactions, dose/time/fractionation, hyperthermia, biological response modifiers and radiolabelled antibodies, high LET, particularly neutron therapy, large field irradiation and interoperative irradiation, research studies on specific sites. (U.K.)

  16. WE-H-BRB-00: Big Data in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  17. WE-H-BRB-00: Big Data in Radiation Oncology

    International Nuclear Information System (INIS)

    2016-01-01

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  18. Contemporary Trends in Radiation Oncology Resident Research

    International Nuclear Information System (INIS)

    Verma, Vivek; Burt, Lindsay; Gimotty, Phyllis A.; Ojerholm, Eric

    2016-01-01

    Purpose: To test the hypothesis that recent resident research productivity might be different than a decade ago, and to provide contemporary information about resident scholarly activity. Methods and Materials: We compiled a list of radiation oncology residents from the 2 most recent graduating classes (June 2014 and 2015) using the Association of Residents in Radiation Oncology annual directories. We queried the PubMed database for each resident's first-authored publications from postgraduate years (PGY) 2 through 5, plus a 3-month period after residency completion. We abstracted corresponding historical data for 2002 to 2007 from the benchmark publication by Morgan and colleagues (Int J Radiat Oncol Biol Phys 2009;74:1567-1572). We tested the null hypothesis that these 2 samples had the same distribution for number of publications using the Wilcoxon rank-sum test. We explored the association of demographic factors and publication number using multivariable zero-inflated Poisson regression. Results: There were 334 residents publishing 659 eligible first-author publications during residency (range 0-17; interquartile range 0-3; mean 2.0; median 1). The contemporary and historical distributions were significantly different (P<.001); contemporary publication rates were higher. Publications accrued late in residency (27% in PGY-4, 59% in PGY-5), and most were original research (75%). In the historical cohort, half of all articles were published in 3 journals; in contrast, the top half of contemporary publications were spread over 10 journals—most commonly International Journal of Radiation Oncology • Biology • Physics (17%), Practical Radiation Oncology (7%), and Radiation Oncology (4%). Male gender, non-PhD status, and larger residency size were associated with higher number of publications in the multivariable analysis. Conclusion: We observed an increase in first-author publications during training compared with historical data from the mid-2000s. These

  19. Contemporary Trends in Radiation Oncology Resident Research

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek [Department of Radiation Oncology, University of Nebraska, Omaha, Nebraska (United States); Burt, Lindsay [Department of Radiation Oncology, University of Utah, Salt Lake City, Utah (United States); Gimotty, Phyllis A. [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Ojerholm, Eric, E-mail: eric.ojerholm@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2016-11-15

    Purpose: To test the hypothesis that recent resident research productivity might be different than a decade ago, and to provide contemporary information about resident scholarly activity. Methods and Materials: We compiled a list of radiation oncology residents from the 2 most recent graduating classes (June 2014 and 2015) using the Association of Residents in Radiation Oncology annual directories. We queried the PubMed database for each resident's first-authored publications from postgraduate years (PGY) 2 through 5, plus a 3-month period after residency completion. We abstracted corresponding historical data for 2002 to 2007 from the benchmark publication by Morgan and colleagues (Int J Radiat Oncol Biol Phys 2009;74:1567-1572). We tested the null hypothesis that these 2 samples had the same distribution for number of publications using the Wilcoxon rank-sum test. We explored the association of demographic factors and publication number using multivariable zero-inflated Poisson regression. Results: There were 334 residents publishing 659 eligible first-author publications during residency (range 0-17; interquartile range 0-3; mean 2.0; median 1). The contemporary and historical distributions were significantly different (P<.001); contemporary publication rates were higher. Publications accrued late in residency (27% in PGY-4, 59% in PGY-5), and most were original research (75%). In the historical cohort, half of all articles were published in 3 journals; in contrast, the top half of contemporary publications were spread over 10 journals—most commonly International Journal of Radiation Oncology • Biology • Physics (17%), Practical Radiation Oncology (7%), and Radiation Oncology (4%). Male gender, non-PhD status, and larger residency size were associated with higher number of publications in the multivariable analysis. Conclusion: We observed an increase in first-author publications during training compared with historical data from the mid-2000s. These

  20. Integrating the Healthcare Enterprise in Radiation Oncology Plug and Play-The Future of Radiation Oncology?

    International Nuclear Information System (INIS)

    Abdel-Wahab, May; Rengan, Ramesh; Curran, Bruce; Swerdloff, Stuart; Miettinen, Mika; Field, Colin; Ranjitkar, Sunita; Palta, Jatinder; Tripuraneni, Prabhakar

    2010-01-01

    Purpose: To describe the processes and benefits of the integrating healthcare enterprises in radiation oncology (IHE-RO). Methods: The IHE-RO process includes five basic steps. The first step is to identify common interoperability issues encountered in radiation treatment planning and the delivery process. IHE-RO committees partner with vendors to develop solutions (integration profiles) to interoperability problems. The broad application of these integration profiles across a variety of vender platforms is tested annually at the Connectathon event. Demonstration of the seamless integration and transfer of patient data to the potential users are then presented by vendors at the public demonstration event. Users can then integrate these profiles into requests for proposals and vendor contracts by institutions. Results: Incorporation of completed integration profiles into requests for proposals can be done when purchasing new equipment. Vendors can publish IHE integration statements to document the integration profiles supported by their products. As a result, users can reference integration profiles in requests for proposals, simplifying the systems acquisition process. These IHE-RO solutions are now available in many of the commercial radiation oncology-related treatment planning, delivery, and information systems. They are also implemented at cancer care sites around the world. Conclusions: IHE-RO serves an important purpose for the radiation oncology community at large.

  1. The Growth of Academic Radiation Oncology: A Survey of Endowed Professorships in Radiation Oncology

    International Nuclear Information System (INIS)

    Wasserman, Todd H.; Smith, Steven M.; Powell, Simon N.

    2009-01-01

    Purpose: The academic health of a medical specialty can be gauged by the level of university support through endowed professorships. Methods and Materials: We conducted a survey of the 86 academic programs in radiation oncology to determine the current status of endowed chairs in this discipline. Results: Over the past decade, the number of endowed chairs has more than doubled, and it has almost tripled over the past 13 years. The number of programs with at least one chair has increased from 31% to 65%. Conclusions: Coupled with other indicators of academic growth, such as the proportion of graduating residents seeking academic positions, there has been clear and sustained growth in academic radiation oncology.

  2. An Increase in Medical Student Knowledge of Radiation Oncology: A Pre-Post Examination Analysis of the Oncology Education Initiative

    International Nuclear Information System (INIS)

    Hirsch, Ariel E.; Mulleady Bishop, Pauline; Dad, Luqman; Singh, Deeptej; Slanetz, Priscilla J.

    2009-01-01

    Purpose: The Oncology Education Initiative was created to advance oncology and radiation oncology education by integrating structured didactics into the existing core radiology clerkship. We set out to determine whether the addition of structured didactics could lead to a significant increase in overall medical student knowledge about radiation oncology. Methods and Materials: We conducted a pre- and posttest examining concepts in general radiation oncology, breast cancer, and prostate cancer. The 15-question, multiple-choice exam was administered before and after a 1.5-hour didactic lecture by an attending physician in radiation oncology. Individual question changes, overall student changes, and overall categorical changes were analyzed. All hypothesis tests were two-tailed (significance level 0.05). Results: Of the 153 fourth-year students, 137 (90%) took the pre- and posttest and were present for the didactic lecture. The average test grade improved from 59% to 70% (p = 0.011). Improvement was seen in all questions except clinical vignettes involving correct identification of TNM staging. Statistically significant improvement (p ≤ 0.03) was seen in the questions regarding acute and late side effects of radiation, brachytherapy for prostate cancer, delivery of radiation treatment, and management of early-stage breast cancer. Conclusions: Addition of didactics in radiation oncology significantly improves medical students' knowledge of the topic. Despite perceived difficulty in teaching radiation oncology and the assumption that it is beyond the scope of reasonable knowledge for medical students, we have shown that even with one dedicated lecture, students can learn and absorb general principles regarding radiation oncology

  3. Practicing radiation oncology in the current health care environment - Part III: Information systems for radiation oncology practice

    International Nuclear Information System (INIS)

    Kijewski, Peter

    1996-01-01

    Purpose: This course will review topics to be considered when defining an information systems plan for a department of radiation oncology. A survey of available systems will be presented. Computer information systems can play an important role in the effective administration and operation of a department of radiation oncology. Tasks such as 1) scheduling for physicians, patients, and rooms, 2) charge collection and billing, 3) administrative reporting, and 4) treatment verification can be carried out efficiently with the assistance of computer systems. Operating a department without a state of art computer system will become increasingly difficult as hospitals and healthcare buyers increasingly rely on computer information technology. Communication of the radiation oncology system with outside systems will thus further enhance the utility of the computer system. The steps for the selection and installation of an information system will be discussed: 1) defining the objectives, 2) selecting a suitable system, 3) determining costs, 4) setting up maintenance contracts, and 5) planning for future upgrades

  4. Improving patient safety in radiation oncology

    International Nuclear Information System (INIS)

    Hendee, William R.; Herman, Michael G.

    2011-01-01

    Beginning in the 1990s, and emphasized in 2000 with the release of an Institute of Medicine report, healthcare providers and institutions have dedicated time and resources to reducing errors that impact the safety and well-being of patients. But in January 2010 the first of a series of articles appeared in the New York Times that described errors in radiation oncology that grievously impacted patients. In response, the American Association of Physicists in Medicine and the American Society of Radiation Oncology sponsored a working meeting entitled ''Safety in Radiation Therapy: A Call to Action''. The meeting attracted 400 attendees, including medical physicists, radiation oncologists, medical dosimetrists, radiation therapists, hospital administrators, regulators, and representatives of equipment manufacturers. The meeting was cohosted by 14 organizations in the United States and Canada. The meeting yielded 20 recommendations that provide a pathway to reducing errors and improving patient safety in radiation therapy facilities everywhere.

  5. Natural background radiation and oncologic disease incidence

    International Nuclear Information System (INIS)

    Burenin, P.I.

    1982-01-01

    Cause and effect relationships between oncologic disease incidence in human population and environmental factors are examined using investigation materials of Soviet and foreign authors. The data concerning US white population are adduced. The role and contribution of natural background radiation oncologic disease prevalence have been determined with the help of system information analysis. The probable damage of oncologic disease is shown to decrease as the background radiation level diminishes. The linear nature of dose-response relationspip has been established. The necessity to include the life history of the studied population along with environmental factors in epidemiological study under conditions of multiplicity of cancerogenesis causes is emphasized

  6. A citation anaysis of Chinese Journal of Radiation Oncology

    International Nuclear Information System (INIS)

    Yang Hua; Shi Shuxia

    2005-01-01

    Objective: To evaluate the academic level and the popularity of Chinese Journal of Radiation Oncology. Methods: According to the information of Chinese Medical Citation Index(CMCI), statistically analyzed the amount and distribution of the originals in Chinese Journal of Radiation Oncology cited by the journal included by CMCI. Results: The proportion of cited articles for original articles, short report and review were 73.8%, 58.1% and 60.7% respectively, and average cited numbers for them were 7.2, 3.0 and 3.4. The average of original articles cited by other researchers is 3.9, and there are more articles cited than other journal. The authors of these articles are from the 27 province/or municipalities, Beijing and Shanghai municipalities are in the front of Radiation Oncology research. There are 320 citing journals, and self-citing rate is 9.4%. Conclusions: The Chinese Journal of Radiation Oncology has published high quality articles, and has its own edition characteristics to keep its steady level of research. It is the one of the most important information resource for the radiation oncology researchers and the most important medical journal. (authors)

  7. Radiation oncology in Canada.

    Science.gov (United States)

    Giuliani, Meredith; Gospodarowicz, Mary

    2018-01-01

    In this article we provide an overview of the Canadian healthcare system and the cancer care system in Canada as it pertains to the governance, funding and delivery of radiotherapy programmes. We also review the training and practice for radiation oncologists, medical physicists and radiation therapists in Canada. We describe the clinical practice of radiation medicine from patients' referral, assessment, case conferences and the radiotherapy process. Finally, we provide an overview of the practice culture for Radiation Oncology in Canada. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Fifth nationwide survey on radiation oncology of China in 2006

    International Nuclear Information System (INIS)

    Yin Weibo; Yuyun; Chen Bo; Tian Fenghua

    2007-01-01

    Objective: In order to find out the present status of Chinese Radiation Oncology, the Chinese Society of Radiation Oncology did the fifth nationwide survey on Radiation Oncology in China. Methods: Questionnaire forms had been sent through the board member of Chinese Society of Radiation Oncology to each center throughout the country. The forms, after filing, were returned for analysis. Results: On September 30th, 2006, there were 952 radiation oncology centers. They possess personnel: 5247 doctors including 2 110 residents, 1181 physicists, 6864 nurses, 4559 technicians and 1141 engineers. For equipment: There were 918 linear accelerators, 472 telecobalt units, 146 deep X-ray machine, 827 simulators, 214 CT simulators, 400 brachytherapy units, 400 treatment planning system, 796 dosimeters, 467 X-knife, 149 γ-knife (74 for head only, 75 for the head and body). Treatment: 35 503 beds (35 centers did not report the number of beds), 42 109 patients treated per day, 409 440 new patients were treated per year (no report from 45 centers). Conclusion: Radiation oncology has been developing rapidly in the last 5 years either in quantity or in quality. They are still being considered insufficient in proportion to our population. Training programs and development of QA and QC system ate needed. (authors)

  9. ASTRO's Advances in Radiation Oncology: Success to date and future plans

    Directory of Open Access Journals (Sweden)

    Robert C. Miller, MD, MBA, FASTRO

    2017-07-01

    Full Text Available ASTRO's Advances in Radiation Oncology was launched as a new, peer-reviewed scientific journal in December 2015. More than 200 manuscripts have been submitted and 97 accepted for publication as of May 2017. As Advances enters its second year of publication, we have chosen to highlight subjects that will transform the way we practice radiation oncology in special issues or ongoing series: immunotherapy, biomedical analytics, and social media. A teaching case report contest for North American radiation oncology residents will be launched at American Society of Radiation Oncology 2017 to encourage participation in scientific publication by trainees early in their careers. Recognizing our social mission, Advances will also begin a series of articles devoted to highlighting the growing disparities in access to radiation oncology services in vulnerable populations in North America. We wish to encourage the American Society of Radiation Oncology membership to continue its support of the journal through high-quality manuscript submission, participation in the peer review process, and highlighting important manuscripts through sharing on social media.

  10. The Development of On-Line Statistics Program for Radiation Oncology

    International Nuclear Information System (INIS)

    Kim, Yoon Jong; Lee, Dong Hoon; Ji, Young Hoon; Lee, Dong Han; Jo, Chul Ku; Kim, Mi Sook; Ru, Sung Rul; Hong, Seung Hong

    2001-01-01

    Purpose : By developing on-line statistics program to record the information of radiation oncology to share the information with internet. It is possible to supply basic reference data for administrative plans to improve radiation oncology. Materials and methods : The information of radiation oncology statistics had been collected by paper forms about 52 hospitals in the past. Now, we can input the data by internet web browsers. The statistics program used windows NT 4.0 operation system, Internet Information Server 4.0 (IIS4.0) as a web server and the Microsoft Access MDB. We used Structured Query Language (SQL), Visual Basic, VBScript and JAVAScript to display the statistics according to years and hospitals. Results : This program shows present conditions about man power, research, therapy machines, technic, brachytherapy, clinic statistics, radiation safety management, institution, quality assurance and radioisotopes in radiation oncology department. The database consists of 38 inputs and 6 outputs windows. Statistical output windows can be increased continuously according to user need. Conclusion : We have developed statistics program to process all of the data in department of radiation oncology for reference information. Users easily could input the data by internet web browsers and share the information

  11. National Institutes of Health Funding in Radiation Oncology: A Snapshot

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Michael; McBride, William H.; Vlashi, Erina [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Pajonk, Frank, E-mail: fpajonk@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2013-06-01

    Currently, pay lines for National Institutes of Health (NIH) grants are at a historical low. In this climate of fierce competition, knowledge about the funding situation in a small field like radiation oncology becomes very important for career planning and recruitment of faculty. Unfortunately, these data cannot be easily extracted from the NIH's database because it does not discriminate between radiology and radiation oncology departments. At the start of fiscal year 2013 we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from radiation oncology departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in radiation oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to principal investigators at the full professor level, and 122 principal investigators held a PhD degree. In 79% of the grants, the research topic fell into the field of biology, 13% in the field of medical physics. Only 7.6% of the proposals were clinical investigations. Our data suggest that the field of radiation oncology is underfunded by the NIH and that the current level of support does not match the relevance of radiation oncology for cancer patients or the potential of its academic work force.

  12. National Institutes of Health Funding in Radiation Oncology: A Snapshot

    International Nuclear Information System (INIS)

    Steinberg, Michael; McBride, William H.; Vlashi, Erina; Pajonk, Frank

    2013-01-01

    Currently, pay lines for National Institutes of Health (NIH) grants are at a historical low. In this climate of fierce competition, knowledge about the funding situation in a small field like radiation oncology becomes very important for career planning and recruitment of faculty. Unfortunately, these data cannot be easily extracted from the NIH's database because it does not discriminate between radiology and radiation oncology departments. At the start of fiscal year 2013 we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from radiation oncology departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in radiation oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to principal investigators at the full professor level, and 122 principal investigators held a PhD degree. In 79% of the grants, the research topic fell into the field of biology, 13% in the field of medical physics. Only 7.6% of the proposals were clinical investigations. Our data suggest that the field of radiation oncology is underfunded by the NIH and that the current level of support does not match the relevance of radiation oncology for cancer patients or the potential of its academic work force

  13. Establishing a Global Radiation Oncology Collaboration in Education (GRaCE)

    DEFF Research Database (Denmark)

    Turner, Sandra; Eriksen, Jesper G; Trotter, Theresa

    2015-01-01

    Representatives from countries and regions world-wide who have implemented modern competency-based radiation- or clinical oncology curricula for training medical specialists, met to determine the feasibility and value of an ongoing international collaboration. In this forum, educational leaders...... with similar goals, would provide a valuable vehicle to ensure training program currency, through sharing of resources and expertise, and enhance high quality radiation oncology education. Potential projects for the Global Radiation Oncology Collaboration in Education (GRaCE) were agreed upon...

  14. Advances in radiation oncology in new millennium in Korea

    International Nuclear Information System (INIS)

    Huh, Seung Jae; Park, Charn Il

    2000-01-01

    The objective of recent radiation therapy is to improve the quality of treatment and the after treatment quality of life. In Korea, sharing the same objective, significant advancement was made due to the gradual increase of patient number and rapid increase of treatment facilities. The advancement includes generalization of three-dimensional conformal radiotherapy (3D-CRT), application of linac-based stereotactic radiosurgery (SRS), and furthermore, the introduction of intensity modulated radiation therapy (IMRT). Authors in this paper prospectively review the followings: the advancement of radiation oncology in Korea, the recent status of four-dimensional radiation therapy. IMRT, the concept of the treatment with biological conformity, the trend of combined chemoradiotherapy, the importance of internet and radiation oncology information management system as influenced by the revolution of information technology, and finally the global trend of telemedicine in radiation oncology. Additionally, we suggest the methods to improve radiotherapy treatment, which include improvement of quality assurance (QA) measures by developing Koreanized QA protocol and system, regional study about clinical protocol development for phase three clinical trial, suggestion of unified treatment protocol and guideline by academic or research societies, domestic generation of treatment equipment's or system, establishment of nationwide data base of radiation-oncology-related information, and finally pattems-of-care study about major cancers

  15. Advances in radiation oncology in new millennium in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seung Jae [College of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of); Park, Charn Il [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2000-06-01

    The objective of recent radiation therapy is to improve the quality of treatment and the after treatment quality of life. In Korea, sharing the same objective, significant advancement was made due to the gradual increase of patient number and rapid increase of treatment facilities. The advancement includes generalization of three-dimensional conformal radiotherapy (3D-CRT), application of linac-based stereotactic radiosurgery (SRS), and furthermore, the introduction of intensity modulated radiation therapy (IMRT). Authors in this paper prospectively review the followings: the advancement of radiation oncology in Korea, the recent status of four-dimensional radiation therapy. IMRT, the concept of the treatment with biological conformity, the trend of combined chemoradiotherapy, the importance of internet and radiation oncology information management system as influenced by the revolution of information technology, and finally the global trend of telemedicine in radiation oncology. Additionally, we suggest the methods to improve radiotherapy treatment, which include improvement of quality assurance (QA) measures by developing Koreanized QA protocol and system, regional study about clinical protocol development for phase three clinical trial, suggestion of unified treatment protocol and guideline by academic or research societies, domestic generation of treatment equipment's or system, establishment of nationwide data base of radiation-oncology-related information, and finally pattems-of-care study about major cancers.

  16. National Institutes of Health funding in radiation oncology: a snapshot.

    Science.gov (United States)

    Steinberg, Michael; McBride, William H; Vlashi, Erina; Pajonk, Frank

    2013-06-01

    Currently, pay lines for National Institutes of Health (NIH) grants are at a historical low. In this climate of fierce competition, knowledge about the funding situation in a small field like radiation oncology becomes very important for career planning and recruitment of faculty. Unfortunately, these data cannot be easily extracted from the NIH's database because it does not discriminate between radiology and radiation oncology departments. At the start of fiscal year 2013 we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from radiation oncology departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in radiation oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to principal investigators at the full professor level, and 122 principal investigators held a PhD degree. In 79% of the grants, the research topic fell into the field of biology, 13% in the field of medical physics. Only 7.6% of the proposals were clinical investigations. Our data suggest that the field of radiation oncology is underfunded by the NIH and that the current level of support does not match the relevance of radiation oncology for cancer patients or the potential of its academic work force. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Radiation oncology a physicist's-eye view

    CERN Document Server

    Goitein, Michael

    2007-01-01

    Radiation Oncology: A Physicist's-Eye View was written for both physicists and medical oncologists with the aim of helping them approach the use of radiation in the treatment of cancer with understanding, confidence, and imagination. The book will let practitioners in one field understand the problems of, and find solutions for, practitioners in the other. It will help them to know "why" certain approaches are fruitful while, at the same time, encouraging them to ask the question "Why not?" in the face of assertions that some proposal of theirs is impractical, unreasonable, or impossible. Unlike a textbook, formal and complete developments of the topics are not among the goals. Instead, the reader will develop a foundation for understanding what the author has found to be matters of importance in radiation oncology during over thirty years of experience. Presentations cover, in largely non-technical language, the principal physical and biological aspects of radiation treatment and address practical clinical c...

  18. Regional cancer centre demonstrates voluntary conformity with the national Radiation Oncology Practice Standards.

    Science.gov (United States)

    Manley, Stephen; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P

    2015-06-01

    Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients.

  19. Regional cancer centre demonstrates voluntary conformity with the national Radiation Oncology Practice Standards

    Energy Technology Data Exchange (ETDEWEB)

    Manley, Stephen, E-mail: stephen.manley@ncahs.health.nsw.gov.au; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P [North Coast Cancer Institute, Lismore, New South Wales (Australia)

    2015-06-15

    Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients.

  20. Regional cancer centre demonstrates voluntary conformity with the national Radiation Oncology Practice Standards

    International Nuclear Information System (INIS)

    Manley, Stephen; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P

    2015-01-01

    Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients

  1. The American Society for Radiation Oncology's 2010 core physics curriculum for radiation oncology residents.

    Science.gov (United States)

    Xiao, Ying; Bernstein, Karen De Amorim; Chetty, Indrin J; Eifel, Patricia; Hughes, Lesley; Klein, Eric E; McDermott, Patrick; Prisciandaro, Joann; Paliwal, Bhudatt; Price, Robert A; Werner-Wasik, Maria; Palta, Jatinder R

    2011-11-15

    In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Clinical and Radiation Oncology. Vol. 2

    International Nuclear Information System (INIS)

    Jurga, L.; Adam, Z.; Autrata, R.

    2010-01-01

    The work is two-volume set and has 1,658 pages. It is divided into 5 sections: I. Principles Clinical and radiation oncology. II. Hematological Malignant tumors. III. Solid tumors. IV. Treatment options metastatic Disease. V. Clinical practice in oncology. Second volume contains following sections a chapters: Section III: Solid nodes, it contains following chapters: (38) Central nervous system tumors; (39) Tumors of the eye, orbits and adnexas; (40) Head and neck carcinomas; (41) Lung carcinomas and pleural mesothelioma; (42) Mediastinal tumors; (43) Tumors of the esophagus; (44) Gastric carcinomas; (45) Carcinoma of the colon, rectum and anus; (46) Small intestinal cancer; (47) Liver and biliary tract carcinomas; (48) Tumors of the pancreas; (49) Tumors of the kidney and upper urinary tract; (50) Bladder tumors of the bladder, urinary tract and penis; (51) Prostate Carcinoma; (52) Testicular tumors; (53) Malignant neoplasm of the cervix, vulva and vagina; (54) Endometrial carcinoma; (55) Malignant ovarian tumors; (56) Gestational trophoblastic disease; (57) Breast carcinoma - based on a evidence-based approach; (58) Thyroid and parathyroid carcinomas; (59) Dental tumors of endocrine glands; (60) Tumors of the locomotory system; (61) Malignant melanoma; (62) Carcinomas of the skin and skin adnexa; (63) Malignant tumors in immunosuppressed patients; (64) Tumors of unknown primary localization; (65) Children's oncology; (66) Geriatric Oncology; (67) Principles of long-term survival of patients with medically and socially significant types of malignant tumors after treatment. Section IV: Options of metastic disease disease, it contains following chapters: (68) Metastases to the central nervous system; (69) Metastases in the lungs; (70) Metastases in the liver; (71) Metastases into the skeleton. Section V: Clinical practice in oncology, it contains following chapters: (72) Acute conditions in oncology; (73) Prevention and management of radiation and chemical toxicity

  3. Clinical oncology based upon radiation biology

    International Nuclear Information System (INIS)

    Hirata, Hideki

    2016-01-01

    This paper discussed the biological effects of radiation as physical energy, especially those of X-ray as electromagnetic radiation, by associating the position of clinical oncology with classical radiation cell biology as well as recent molecular biology. First, it described the physical and biological effects of radiation, cell death due to radiation and recovery, radiation effects at tissue level, and location information and dosage information in the radiotherapy of cancer. It also described the territories unresolved through radiation biology, such as low-dose high-sensitivity, bystander effects, etc. (A.O.)

  4. Developing a national radiation oncology registry: From acorns to oaks.

    Science.gov (United States)

    Palta, Jatinder R; Efstathiou, Jason A; Bekelman, Justin E; Mutic, Sasa; Bogardus, Carl R; McNutt, Todd R; Gabriel, Peter E; Lawton, Colleen A; Zietman, Anthony L; Rose, Christopher M

    2012-01-01

    The National Radiation Oncology Registry (NROR) is a collaborative initiative of the Radiation Oncology Institute and the American Society of Radiation Oncology, with input and guidance from other major stakeholders in oncology. The overarching mission of the NROR is to improve the care of cancer patients by capturing reliable information on treatment delivery and health outcomes. The NROR will collect patient-specific radiotherapy data electronically to allow for rapid comparison of the many competing treatment modalities and account for effectiveness, outcome, utilization, quality, safety, and cost. It will provide benchmark data and quality improvement tools for individual practitioners. The NROR steering committee has determined that prostate cancer provides an appropriate model to test the concept and the data capturing software in a limited number of sites. The NROR pilot project will begin with this disease-gathering treatment and outcomes data from a limited number of treatment sites across the range of practice; once feasibility is proven, it will scale up to more sites and diseases. When the NROR is fully implemented, all radiotherapy facilities, along with their radiation oncologists, will be solicited to participate in it. With the broader participation of the radiation oncology community, NROR has the potential to serve as a resource for determining national patterns of care, gaps in treatment quality, comparative effectiveness, and hypothesis generation to identify new linkages between therapeutic processes and outcomes. The NROR will benefit radiation oncologists and other care providers, payors, vendors, policy-makers, and, most importantly, cancer patients by capturing reliable information on population-based radiation treatment delivery. Copyright © 2012 (c) 2010 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved. Published by Elsevier Inc. All rights reserved.

  5. The road not taken and choices in radiation oncology.

    Science.gov (United States)

    Coleman, C Norman; Glatstein, Eli

    2010-01-01

    Accomplishments and contributions in a career in radiation oncology, and in medicine in general, involve individual choices that impact the direction of a specialty, decisions in patient care, consequences of treatment outcome, and personal satisfaction. Issues in radiation oncology include: the development and implementation of new radiation treatment technology; the use of multimodality and biologically based therapies; the role of nonradiation "energy" technologies, often by other medical specialties, including the need for quality assurance in treatment and data reporting; and the type of evidence, including appropriate study design, analysis, and rigorous long-term follow-up, that is sought before widespread implementation of a new treatment. Personal choices must weigh: the pressure from institutions-practices, departments, universities, and hospitals; the need to serve society and the underserved; the balance between individual reward and a greater mission; and the critical role of personal values and integrity, often requiring difficult and "life-defining" decisions. The impact that each of us makes in a career is perhaps more a result of character than of the specific details enumerated on one's curriculum vitae. The individual tapestry weaved by choosing the more or less traveled paths during a career results in many pathways that would be called success; however, the one path for which there is no good alternative is that of living and acting with integrity.

  6. Results of the 1993 Association of Residents in Radiation Oncology survey

    International Nuclear Information System (INIS)

    Ling, Stella M.; Flynn, Daniel F.

    1996-01-01

    In 1993, the Association of Residents in Radiation Oncology (ARRO) conducted its tenth annual survey of all residents training in radiation oncology in the United States. The characteristics of current residents are described. Factors influencing the choice of Radiation Oncology as a medical specialty, and posttraining career plans were identified. Residents raised issues on the adequacy of training, problems in work routine, and expressed concerns about board certification and recertification, and about decreased future practice opportunities

  7. Report of China's innovation increase and research growth in radiation oncology.

    Science.gov (United States)

    Zhu, Hongcheng; Yang, Xi; Qin, Qin; Bian, Kangqi; Zhang, Chi; Liu, Jia; Cheng, Hongyan; Sun, Xinchen

    2014-06-01

    To investigate the research status of radiation oncology in China through survey of literature in international radiation oncology journals and retrospectively compare the outputs of radiation oncology articles of the three major regions of China-Mainland (ML), Taiwan (TW) and Hong Kong (HK). Radiation oncology journals were selected from "oncology" and "radiology, nuclear & medical image" category from Science Citation Index Expand (SCIE). Articles from the ML, TW and HK were retrieved from MEDLINE. The number of total articles, clinical trials, case reports, impact factors (IF), institutions and articles published in each journals were conducted for quantity and quality comparisons. A total 818 articles from 13 radiation oncology journals were searched, of which 427 are from ML, 259 from TW, and 132 from HK. Ninety-seven clinical trials and 5 case reports are reported in China. Accumulated IF of articles from ML (1,417.11) was much higher than that of TW (1,003.093) and HK (544.711), while the average IF of articles from ML is the lowest. The total number of articles from China especially ML increased significantly in the last decade. The number of articles published from the ML has exceeded those from TW and HK. However, the quality of articles from TW and HK is better than that from ML.

  8. The Radiation Oncology Job Market: The Economics and Policy of Workforce Regulation

    International Nuclear Information System (INIS)

    Falit, Benjamin P.; Pan, Hubert Y.; Smith, Benjamin D.; Alexander, Brian M.; Zietman, Anthony L.

    2016-01-01

    Examinations of the US radiation oncology workforce offer inconsistent conclusions, but recent data raise significant concerns about an oversupply of physicians. Despite these concerns, residency slots continue to expand at an unprecedented pace. Employed radiation oncologists and professional corporations with weak contracts or loose ties to hospital administrators would be expected to suffer the greatest harm from an oversupply. The reduced cost of labor, however, would be expected to increase profitability for equipment owners, technology vendors, and entrenched professional groups. Policymakers must recognize that the number of practicing radiation oncologists is a poor surrogate for clinical capacity. There is likely to be significant opportunity to augment capacity without increasing the number of radiation oncologists by improving clinic efficiency and offering targeted incentives for geographic redistribution. Payment policy changes significantly threaten radiation oncologists' income, which may encourage physicians to care for greater patient loads, thereby obviating more personnel. Furthermore, the implementation of alternative payment models such as Medicare's Oncology Care Model threatens to decrease both the utilization and price of radiation therapy by turning referring providers into cost-conscious consumers. Medicare funds the vast majority of graduate medical education, but the extent to which the expansion in radiation oncology residency slots has been externally funded is unclear. Excess physician capacity carries a significant risk of harm to society by suboptimally allocating intellectual resources and creating comparative shortages in other, more needed disciplines. There are practical concerns associated with a market-based solution in which medical students self-regulate according to job availability, but antitrust law would likely forbid collaborative self-regulation that purports to restrict supply. Because Congress is unlikely to create

  9. The Radiation Oncology Job Market: The Economics and Policy of Workforce Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Falit, Benjamin P., E-mail: bfalit2@allianceoncology.com [Pacific Cancer Institute, Wailuku, Hawaii (United States); Pan, Hubert Y.; Smith, Benjamin D. [MD Anderson Cancer Center, Houston, Texas (United States); Alexander, Brian M. [Dana Farber Cancer Institute, Boston, Massachusetts (United States); Zietman, Anthony L. [Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-11-01

    Examinations of the US radiation oncology workforce offer inconsistent conclusions, but recent data raise significant concerns about an oversupply of physicians. Despite these concerns, residency slots continue to expand at an unprecedented pace. Employed radiation oncologists and professional corporations with weak contracts or loose ties to hospital administrators would be expected to suffer the greatest harm from an oversupply. The reduced cost of labor, however, would be expected to increase profitability for equipment owners, technology vendors, and entrenched professional groups. Policymakers must recognize that the number of practicing radiation oncologists is a poor surrogate for clinical capacity. There is likely to be significant opportunity to augment capacity without increasing the number of radiation oncologists by improving clinic efficiency and offering targeted incentives for geographic redistribution. Payment policy changes significantly threaten radiation oncologists' income, which may encourage physicians to care for greater patient loads, thereby obviating more personnel. Furthermore, the implementation of alternative payment models such as Medicare's Oncology Care Model threatens to decrease both the utilization and price of radiation therapy by turning referring providers into cost-conscious consumers. Medicare funds the vast majority of graduate medical education, but the extent to which the expansion in radiation oncology residency slots has been externally funded is unclear. Excess physician capacity carries a significant risk of harm to society by suboptimally allocating intellectual resources and creating comparative shortages in other, more needed disciplines. There are practical concerns associated with a market-based solution in which medical students self-regulate according to job availability, but antitrust law would likely forbid collaborative self-regulation that purports to restrict supply. Because Congress is unlikely

  10. Biophysical models in radiation oncology

    International Nuclear Information System (INIS)

    Cohen, L.

    1984-01-01

    The paper examines and describes dose-time relationships in clinical radiation oncology. Realistic models and parameters for specific tissues, organs, and tumor types are discussed in order to solve difficult problems which arise in radiation oncology. The computer programs presented were written to: derive parameters from experimental and clinical data; plot normal- and tumor-cell survival curves; generate iso-effect tables of tumor-curative doses; identify alternative, equally effective procedures for fraction numbers and treatment times; determine whether a proposed course of treatment is safe and adequate, and what adjustments are needed should results suggest that the procedure is unsafe or inadequate; combine the physical isodose distribution with computed cellular surviving fractions for the tumor and all normal tissues traversed by the beam, estimating the risks of recurrence or complications at various points in the irradiated volume, and adjusting the treatment plan and fractionation scheme to minimize these risks

  11. Machine learning in radiation oncology theory and applications

    CERN Document Server

    El Naqa, Issam; Murphy, Martin J

    2015-01-01

    ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided rad

  12. MOSFET dosimetry on modern radiation oncology modalities

    International Nuclear Information System (INIS)

    Rosenfeld, A.B.

    2002-01-01

    The development of MOSFET dosimetry is presented with an emphasis on the development of a scanning MOSFET dosimetry system for modern radiation oncology modalities. Fundamental aspects of MOSFETs in relation to their use as dosemeters are briefly discussed. The performance of MOSFET dosemeters in conformal radiotherapy, hadron therapy, intensity-modulated radiotherapy and microbeam radiation therapy is compared with other dosimetric techniques. In particular the application of MOSFET dosemeters in the characterisation and quality assurance of the steep dose gradients associated with the penumbra of some modern radiation oncology modalities is investigated. A new in vivo, on-line, scanning MOSFET read out system is also presented. The system has the ability to read out multiple MOSFET dosemeters with excellent spatial resolution and temperature stability and minimal slow border trapping effects. (author)

  13. DEGRO 2009. Radiation oncology - medical physics - radiation biology. Abstracts; DEGRO 2009. Radioonkologie - Medizinische Physik - Strahlenbiologie. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The special volume of the journal covers the abstracts of the DEGRO 2009 meeting on radiation oncology, medical physics, and radiation biology, covering the following topics: seldom diseases, gastrointestinal tumors, radiation reactions and radiation protection, medical care and science, central nervous system, medical physics, the non-parvicellular lung carcinomas, ear-nose-and throat, target-oriented radiotherapy plus ''X'', radio-oncology - young academics, lymphomas, mammary glands, modern radiotherapy, life quality and palliative radiotherapy, radiotherapy of the prostate carcinoma, imaging for planning and therapy, the digital documentation in clinics and practical experiences, NMR imaging and tomography, hadrons - actual status in Germany, urinal tract oncology, radiotoxicity.

  14. Internet utilization by radiation oncology patients

    International Nuclear Information System (INIS)

    Metz, J.M.; Devine, P.; DeNittis, A.; Stambaugh, M.; Jones, H.; Goldwein, J.; Whittington, R.

    2001-01-01

    Purpose: Studies describing the use of the Internet by radiation oncology patients are lacking. This multi-institutional study of cancer patients presenting to academic (AC), community (CO) and veterans (VA) radiation oncology centers was designed to analyze the use of the Internet, predictive factors for utilization, and barriers to access to the Internet. Materials and Methods: A questionnaire evaluating the use of the Internet was administered to 921 consecutive patients presenting to radiation oncology departments at AC, CO and VA Medical Centers. The study included 436 AC patients (47%), 284 CO patients (31%), and 201 VA patients (22%). A computer was available at home to 427 patients (46%) and 337 patients (37%) had Email access. The mean age of the patient population was 64 years (range=14-93). Males represented 70% of the patient population. The most common diagnoses included prostate cancer (33%), breast cancer (13%), and lung cancer (11%). Results: Overall, 265/921 patients (29%) were using the Internet to find cancer related information. The Internet was used by 42% of AC patients, 25% of CO patients and only 5% of VA patients (p<.0001). A computer was available at home in 62% AC vs. 45% CO vs. 12% VA patients (p<.0001). Patients < 60 years were much more likely to use the Internet than older patients (p<.0001). Most of the Internet users considered the information either very reliable (22%) or somewhat reliable (70%). Most patients were looking for information regarding treatment of their cancer (90%), management of side effects of treatment (74%), alternative/complementary treatments (65%) and clinical trials (51%). Unconventional medical therapies were purchased over the Internet by 12% of computer users. Products or services for the treatment or management of cancer were purchased online by 12% of Internet users. Conclusion: A significant number of cancer patients seen in radiation oncology departments at academic and community medical centers

  15. Radiation Oncology Medical Student Clerkship: Implementation and Evaluation of a Bi-institutional Pilot Curriculum

    International Nuclear Information System (INIS)

    Golden, Daniel W.; Spektor, Alexander; Rudra, Sonali; Ranck, Mark C.; Krishnan, Monica S.; Jimenez, Rachel B.; Viswanathan, Akila N.; Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J.

    2014-01-01

    Purpose: To develop and evaluate a structured didactic curriculum to complement clinical experiences during radiation oncology clerkships at 2 academic medical centers. Methods and Materials: A structured didactic curriculum was developed to teach fundamentals of radiation oncology and improve confidence in clinical competence. Curriculum lectures included: (1) an overview of radiation oncology (history, types of treatments, and basic clinic flow); (2) fundamentals of radiation biology and physics; and (3) practical aspects of radiation treatment simulation and planning. In addition, a hands-on dosimetry session taught students fundamentals of treatment planning. The curriculum was implemented at 2 academic departments in 2012. Students completed anonymous evaluations using a Likert scale to rate the usefulness of curriculum components (1 = not at all, 5 = extremely). Likert scores are reported as (median [interquartile range]). Results: Eighteen students completed the curriculum during their 4-week rotation (University of Chicago n=13, Harvard Longwood Campus n=5). All curriculum components were rated as extremely useful: introduction to radiation oncology (5 [4-5]); radiation biology and physics (5 [5-5]); practical aspects of radiation oncology (5 [4-5]); and the treatment planning session (5 [5-5]). Students rated the curriculum as “quite useful” to “extremely useful” (1) to help students understand radiation oncology as a specialty; (2) to increase student comfort with their specialty decision; and (3) to help students with their future transition to a radiation oncology residency. Conclusions: A standardized curriculum for medical students completing a 4-week radiation oncology clerkship was successfully implemented at 2 institutions. The curriculum was favorably reviewed. As a result of completing the curriculum, medical students felt more comfortable with their specialty decision and better prepared to begin radiation oncology residency

  16. Radiation Oncology Medical Student Clerkship: Implementation and Evaluation of a Bi-institutional Pilot Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Golden, Daniel W., E-mail: dgolden@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States); Spektor, Alexander [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Rudra, Sonali; Ranck, Mark C. [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States); Krishnan, Monica S.; Jimenez, Rachel B.; Viswanathan, Akila N. [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J. [Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois (United States)

    2014-01-01

    Purpose: To develop and evaluate a structured didactic curriculum to complement clinical experiences during radiation oncology clerkships at 2 academic medical centers. Methods and Materials: A structured didactic curriculum was developed to teach fundamentals of radiation oncology and improve confidence in clinical competence. Curriculum lectures included: (1) an overview of radiation oncology (history, types of treatments, and basic clinic flow); (2) fundamentals of radiation biology and physics; and (3) practical aspects of radiation treatment simulation and planning. In addition, a hands-on dosimetry session taught students fundamentals of treatment planning. The curriculum was implemented at 2 academic departments in 2012. Students completed anonymous evaluations using a Likert scale to rate the usefulness of curriculum components (1 = not at all, 5 = extremely). Likert scores are reported as (median [interquartile range]). Results: Eighteen students completed the curriculum during their 4-week rotation (University of Chicago n=13, Harvard Longwood Campus n=5). All curriculum components were rated as extremely useful: introduction to radiation oncology (5 [4-5]); radiation biology and physics (5 [5-5]); practical aspects of radiation oncology (5 [4-5]); and the treatment planning session (5 [5-5]). Students rated the curriculum as “quite useful” to “extremely useful” (1) to help students understand radiation oncology as a specialty; (2) to increase student comfort with their specialty decision; and (3) to help students with their future transition to a radiation oncology residency. Conclusions: A standardized curriculum for medical students completing a 4-week radiation oncology clerkship was successfully implemented at 2 institutions. The curriculum was favorably reviewed. As a result of completing the curriculum, medical students felt more comfortable with their specialty decision and better prepared to begin radiation oncology residency.

  17. Value: A Framework for Radiation Oncology

    Science.gov (United States)

    Teckie, Sewit; McCloskey, Susan A.; Steinberg, Michael L.

    2014-01-01

    In the current health care system, high costs without proportional improvements in quality or outcome have prompted widespread calls for change in how we deliver and pay for care. Value-based health care delivery models have been proposed. Multiple impediments exist to achieving value, including misaligned patient and provider incentives, information asymmetries, convoluted and opaque cost structures, and cultural attitudes toward cancer treatment. Radiation oncology as a specialty has recently become a focus of the value discussion. Escalating costs secondary to rapidly evolving technologies, safety breaches, and variable, nonstandardized structures and processes of delivering care have garnered attention. In response, we present a framework for the value discussion in radiation oncology and identify approaches for attaining value, including economic and structural models, process improvements, outcome measurement, and cost assessment. PMID:25113759

  18. A National Radiation Oncology Medical Student Clerkship Survey: Didactic Curricular Components Increase Confidence in Clinical Competency

    Energy Technology Data Exchange (ETDEWEB)

    Jagadeesan, Vikrant S. [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois (United States); Raleigh, David R. [Department of Radiation Oncology, School of Medicine, University of California–San Francisco, San Francisco, California (United States); Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J. [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois (United States); Golden, Daniel W., E-mail: dgolden@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois (United States)

    2014-01-01

    Purpose: Students applying to radiation oncology residency programs complete 1 or more radiation oncology clerkships. This study assesses student experiences and perspectives during radiation oncology clerkships. The impact of didactic components and number of clerkship experiences in relation to confidence in clinical competency and preparation to function as a first-year radiation oncology resident are evaluated. Methods and Materials: An anonymous, Internet-based survey was sent via direct e-mail to all applicants to a single radiation oncology residency program during the 2012-2013 academic year. The survey was composed of 3 main sections including questions regarding baseline demographic information and prior radiation oncology experience, rotation experiences, and ideal clerkship curriculum content. Results: The survey response rate was 37% (70 of 188). Respondents reported 191 unique clerkship experiences. Of the respondents, 27% (19 of 70) completed at least 1 clerkship with a didactic component geared towards their level of training. Completing a clerkship with a didactic component was significantly associated with a respondent's confidence to function as a first-year radiation oncology resident (Wilcoxon rank–sum P=.03). However, the total number of clerkships completed did not correlate with confidence to pursue radiation oncology as a specialty (Spearman ρ P=.48) or confidence to function as a first year resident (Spearman ρ P=.43). Conclusions: Based on responses to this survey, rotating students perceive that the majority of radiation oncology clerkships do not have formal didactic curricula. Survey respondents who completed a clerkship with a didactic curriculum reported feeling more prepared to function as a radiation oncology resident. However, completing an increasing number of clerkships does not appear to improve confidence in the decision to pursue radiation oncology as a career or to function as a radiation oncology resident. These

  19. A national radiation oncology medical student clerkship survey: didactic curricular components increase confidence in clinical competency.

    Science.gov (United States)

    Jagadeesan, Vikrant S; Raleigh, David R; Koshy, Matthew; Howard, Andrew R; Chmura, Steven J; Golden, Daniel W

    2014-01-01

    Students applying to radiation oncology residency programs complete 1 or more radiation oncology clerkships. This study assesses student experiences and perspectives during radiation oncology clerkships. The impact of didactic components and number of clerkship experiences in relation to confidence in clinical competency and preparation to function as a first-year radiation oncology resident are evaluated. An anonymous, Internet-based survey was sent via direct e-mail to all applicants to a single radiation oncology residency program during the 2012-2013 academic year. The survey was composed of 3 main sections including questions regarding baseline demographic information and prior radiation oncology experience, rotation experiences, and ideal clerkship curriculum content. The survey response rate was 37% (70 of 188). Respondents reported 191 unique clerkship experiences. Of the respondents, 27% (19 of 70) completed at least 1 clerkship with a didactic component geared towards their level of training. Completing a clerkship with a didactic component was significantly associated with a respondent's confidence to function as a first-year radiation oncology resident (Wilcoxon rank-sum P=.03). However, the total number of clerkships completed did not correlate with confidence to pursue radiation oncology as a specialty (Spearman ρ P=.48) or confidence to function as a first year resident (Spearman ρ P=.43). Based on responses to this survey, rotating students perceive that the majority of radiation oncology clerkships do not have formal didactic curricula. Survey respondents who completed a clerkship with a didactic curriculum reported feeling more prepared to function as a radiation oncology resident. However, completing an increasing number of clerkships does not appear to improve confidence in the decision to pursue radiation oncology as a career or to function as a radiation oncology resident. These results support further development of structured didactic

  20. A National Radiation Oncology Medical Student Clerkship Survey: Didactic Curricular Components Increase Confidence in Clinical Competency

    International Nuclear Information System (INIS)

    Jagadeesan, Vikrant S.; Raleigh, David R.; Koshy, Matthew; Howard, Andrew R.; Chmura, Steven J.; Golden, Daniel W.

    2014-01-01

    Purpose: Students applying to radiation oncology residency programs complete 1 or more radiation oncology clerkships. This study assesses student experiences and perspectives during radiation oncology clerkships. The impact of didactic components and number of clerkship experiences in relation to confidence in clinical competency and preparation to function as a first-year radiation oncology resident are evaluated. Methods and Materials: An anonymous, Internet-based survey was sent via direct e-mail to all applicants to a single radiation oncology residency program during the 2012-2013 academic year. The survey was composed of 3 main sections including questions regarding baseline demographic information and prior radiation oncology experience, rotation experiences, and ideal clerkship curriculum content. Results: The survey response rate was 37% (70 of 188). Respondents reported 191 unique clerkship experiences. Of the respondents, 27% (19 of 70) completed at least 1 clerkship with a didactic component geared towards their level of training. Completing a clerkship with a didactic component was significantly associated with a respondent's confidence to function as a first-year radiation oncology resident (Wilcoxon rank–sum P=.03). However, the total number of clerkships completed did not correlate with confidence to pursue radiation oncology as a specialty (Spearman ρ P=.48) or confidence to function as a first year resident (Spearman ρ P=.43). Conclusions: Based on responses to this survey, rotating students perceive that the majority of radiation oncology clerkships do not have formal didactic curricula. Survey respondents who completed a clerkship with a didactic curriculum reported feeling more prepared to function as a radiation oncology resident. However, completing an increasing number of clerkships does not appear to improve confidence in the decision to pursue radiation oncology as a career or to function as a radiation oncology resident. These results

  1. Workplace Bullying in Radiology and Radiation Oncology.

    Science.gov (United States)

    Parikh, Jay R; Harolds, Jay A; Bluth, Edward I

    2017-08-01

    Workplace bullying is common in health care and has recently been reported in both radiology and radiation oncology. The purpose of this article is to increase awareness of bullying and its potential consequences in radiology and radiation oncology. Bullying behavior may involve abuse, humiliation, intimidation, or insults; is usually repetitive; and causes distress in victims. Workplace bullying is more common in health care than in other industries. Surveys of radiation therapists in the United States, student radiographers in England, and physicians-in-training showed that substantial proportions of respondents had been subjected to workplace bullying. No studies were found that addressed workplace bullying specifically in diagnostic radiology or radiation oncology residents. Potential consequences of workplace bullying in health care include anxiety, depression, and health problems in victims; harm to patients as a result of victims' reduced ability to concentrate; and reduced morale and high turnover in the workplace. The Joint Commission has established leadership standards addressing inappropriate behavior, including bullying, in the workplace. The ACR Commission on Human Resources recommends that organizations take steps to prevent bullying. Those steps include education, including education to ensure that the line between the Socratic method and bullying is not crossed, and the establishment of policies to facilitate reporting of bullying and support victims of bullying. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. Present status and possibilities of radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, E [Essen Univ. (Gesamthochschule) (Germany, F.R.). Strahlenklinik; Essen Univ. (Gesamthochschule) (Germany, F.R.). Poliklinik)

    1979-01-01

    A survey of the current methodical possibilities of radiation therapy within the limits of interdisciplinary oncology is given. Especially new forms of fractionation and current projects to augment the effect of radiation are discussed. The question of fast neutrons, electroaffine substances and local hyperthermia are dealt with.

  3. TH-D-204-00: The Pursuit of Radiation Oncology Performance Excellence

    International Nuclear Information System (INIS)

    2016-01-01

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care, increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.

  4. TH-D-204-01: The Pursuit of Radiation Oncology Performance Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Sternick, E. [The Warren Alpert Medical School of Brown Univ., Providence, RI (United States)

    2016-06-15

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care, increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.

  5. TH-D-204-00: The Pursuit of Radiation Oncology Performance Excellence

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care, increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.

  6. TH-D-204-01: The Pursuit of Radiation Oncology Performance Excellence

    International Nuclear Information System (INIS)

    Sternick, E.

    2016-01-01

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology NIST, the Act created the Baldrige National Quality Program, now renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact based knowledge driven system for improving quality of care, increasing patient satisfaction, building employee engagement, and boosting organizational innovation. The methodology also provides a valuable framework for benchmarking an individual radiation oncology practice against guidelines defined by accreditation and professional organizations and regulatory agencies. Learning Objectives: To gain knowledge of the Baldrige Performance Excellence Program as it relates to Radiation Oncology. To appreciate the value of a multidisciplinary self-assessment approach in the pursuit of Radiation Oncology quality care, patient satisfaction, and workforce commitment. To acquire a set of useful measurement tools with which an individual Radiation Oncology practice can benchmark its performance against guidelines defined by accreditation and professional organizations and regulatory agencies.

  7. An Assessment of the Current US Radiation Oncology Workforce: Methodology and Global Results of the American Society for Radiation Oncology 2012 Workforce Study

    Energy Technology Data Exchange (ETDEWEB)

    Vichare, Anushree; Washington, Raynard; Patton, Caroline; Arnone, Anna [ASTRO, Fairfax, Virginia (United States); Olsen, Christine [Massachusetts General Hospital, Boston, Massachusetts, (United States); Fung, Claire Y. [Commonwealth Newburyport Cancer Center, Newburyport, Massachusetts (United States); Hopkins, Shane [William R. Bliss Cancer Center, Ames, Iowa (United States); Pohar, Surjeet, E-mail: spohar@netzero.net [Indiana University Health Cancer Center East, Indiana University, Indianapolis, Indiana (United States)

    2013-12-01

    Purpose: To determine the characteristics, needs, and concerns of the current radiation oncology workforce, evaluate best practices and opportunities for improving quality and safety, and assess what we can predict about the future workforce. Methods and Materials: An online survey was distributed to 35,204 respondents from all segments of the radiation oncology workforce, including radiation oncologists, residents, medical dosimetrists, radiation therapists, medical physicists, nurse practitioners, nurses, physician assistants, and practice managers/administrators. The survey was disseminated by the American Society for Radiation Oncology (ASTRO) together with specialty societies representing other workforce segments. An overview of the methods and global results is presented in this paper. Results: A total of 6765 completed surveys were received, a response rate of 19%, and the final analysis included 5257 respondents. Three-quarters of the radiation oncologists, residents, and physicists who responded were male, in contrast to the other segments in which two-thirds or more were female. The majority of respondents (58%) indicated they were hospital-based, whereas 40% practiced in a free-standing/satellite clinic and 2% in another setting. Among the practices represented in the survey, 21.5% were academic, 25.2% were hospital, and 53.3% were private. A perceived oversupply of professionals relative to demand was reported by the physicist, dosimetrist, and radiation therapist segments. An undersupply was perceived by physician's assistants, nurse practitioners, and nurses. The supply of radiation oncologists and residents was considered balanced. Conclusions: This survey was unique as it attempted to comprehensively assess the radiation oncology workforce by directly surveying each segment. The results suggest there is potential to improve the diversity of the workforce and optimize the supply of the workforce segments. The survey also provides a benchmark for

  8. An Assessment of the Current US Radiation Oncology Workforce: Methodology and Global Results of the American Society for Radiation Oncology 2012 Workforce Study

    International Nuclear Information System (INIS)

    Vichare, Anushree; Washington, Raynard; Patton, Caroline; Arnone, Anna; Olsen, Christine; Fung, Claire Y.; Hopkins, Shane; Pohar, Surjeet

    2013-01-01

    Purpose: To determine the characteristics, needs, and concerns of the current radiation oncology workforce, evaluate best practices and opportunities for improving quality and safety, and assess what we can predict about the future workforce. Methods and Materials: An online survey was distributed to 35,204 respondents from all segments of the radiation oncology workforce, including radiation oncologists, residents, medical dosimetrists, radiation therapists, medical physicists, nurse practitioners, nurses, physician assistants, and practice managers/administrators. The survey was disseminated by the American Society for Radiation Oncology (ASTRO) together with specialty societies representing other workforce segments. An overview of the methods and global results is presented in this paper. Results: A total of 6765 completed surveys were received, a response rate of 19%, and the final analysis included 5257 respondents. Three-quarters of the radiation oncologists, residents, and physicists who responded were male, in contrast to the other segments in which two-thirds or more were female. The majority of respondents (58%) indicated they were hospital-based, whereas 40% practiced in a free-standing/satellite clinic and 2% in another setting. Among the practices represented in the survey, 21.5% were academic, 25.2% were hospital, and 53.3% were private. A perceived oversupply of professionals relative to demand was reported by the physicist, dosimetrist, and radiation therapist segments. An undersupply was perceived by physician's assistants, nurse practitioners, and nurses. The supply of radiation oncologists and residents was considered balanced. Conclusions: This survey was unique as it attempted to comprehensively assess the radiation oncology workforce by directly surveying each segment. The results suggest there is potential to improve the diversity of the workforce and optimize the supply of the workforce segments. The survey also provides a benchmark for

  9. The American Society for Radiation Oncology's 2010 Core Physics Curriculum for Radiation Oncology Residents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Ying, E-mail: ying.xiao@jefferson.edu [Thomas Jefferson University Hospital, Philadelphia, PA (United States); De Amorim Bernstein, Karen [Montefiore Medical Center, Bronx, NY (United States); Chetty, Indrin J. [Henry Ford Health System, Detroit, MI (United States); Eifel, Patricia [M. D. Anderson Cancer Center, Houston, TX (United States); Hughes, Lesley [Cooper University Hospital, Camden, NJ (United States); Klein, Eric E. [Washington University, Saint Louis, MO (United States); McDermott, Patrick [William Beaumont Hospital, Royal Oak, MI (United States); Prisciandaro, Joann [University of Michigan, Ann Arbor, MI (United States); Paliwal, Bhudatt [University of Wisconsin, Madison, WI (United States); Price, Robert A. [Fox Chase Cancer Center, Philadelphia, PA (United States); Werner-Wasik, Maria [Thomas Jefferson University Hospital, Philadelphia, PA (United States); Palta, Jatinder R. [University of Florida, Gainesville, FL (United States)

    2011-11-15

    Purpose: In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Methods and Materials: Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. Results: The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. Conclusions: The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years.

  10. The teaching of physics and related courses to residents in radiation oncology

    International Nuclear Information System (INIS)

    Dunscombe, P.

    1989-01-01

    A survey of physics and related teaching to radiation oncology residents in 21 Canadian cancer centres was undertaken in December 1987 and January 1988. This survey illustrates a very considerable variation in the formal teaching of physics to aspiring radiation oncologists with, for example, the number of hours offered ranging from 40 to 160 in those 10 centres that have a training program. It would appear to be of benefit to radiation oncology residents, those charged with teaching them, and the radiation oncology community as a whole, to develop specific guidelines for this aspect of resident education. (8 refs., tab.)

  11. Current Status and Recommendations for the Future of Research, Teaching, and Testing in the Biological Sciences of Radiation Oncology: Report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Paul E., E-mail: pwallner@theabr.org [21st Century Oncology, LLC, and the American Board of Radiology, Bethesda, Maryland (United States); Anscher, Mitchell S. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Barker, Christopher A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Bassetti, Michael [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin (United States); Bristow, Robert G. [Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Cancer Center/University of Toronto, Toronto, Ontario (Canada); Cha, Yong I. [Department of Radiation Oncology, Norton Cancer Center, Louisville, Kentucky (United States); Dicker, Adam P. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Formenti, Silvia C. [Department of Radiation Oncology, New York University, New York, New York (United States); Graves, Edward E. [Departments of Radiation Oncology and Radiology, Stanford University, Stanford, California (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania (United States); Hei, Tom K. [Center for Radiation Research, Columbia University, New York, New York (United States); Kimmelman, Alec C. [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Kirsch, David G. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Kozak, Kevin R. [Department of Human Oncology, University of Wisconsin (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan (United States); Marples, Brian [Department of Radiation Oncology, Oakland University, Oakland, California (United States); and others

    2014-01-01

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.

  12. [Artificial intelligence applied to radiation oncology].

    Science.gov (United States)

    Bibault, J-E; Burgun, A; Giraud, P

    2017-05-01

    Performing randomised comparative clinical trials in radiation oncology remains a challenge when new treatment modalities become available. One of the most recent examples is the lack of phase III trials demonstrating the superiority of intensity-modulated radiation therapy in most of its current indications. A new paradigm is developing that consists in the mining of large databases to answer clinical or translational issues. Beyond national databases (such as SEER or NCDB), that often lack the necessary level of details on the population studied or the treatments performed, electronic health records can be used to create detailed phenotypic profiles of any patients. In parallel, the Record-and-Verify Systems used in radiation oncology precisely document the planned and performed treatments. Artificial Intelligence and machine learning algorithms can be used to incrementally analyse these data in order to generate hypothesis to better personalize treatments. This review discusses how these methods have already been used in previous studies. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  13. First Author Research Productivity of United States Radiation Oncology Residents: 2002-2007

    International Nuclear Information System (INIS)

    Morgan, Peter B.; Sopka, Dennis M.; Kathpal, Madeera; Haynes, Jeffrey C.; Lally, Brian E.; Li, Linna

    2009-01-01

    Purpose: Participation in investigative research is a required element of radiation oncology residency in the United States. Our purpose was to quantify the first author research productivity of recent U.S. radiation oncology residents during their residency training. Methods and Materials: We performed a computer-based search of PubMed and a manual review of the proceedings of the annual meetings of the American Society for Therapeutic Radiology and Oncology to identify all publications and presented abstracts with a radiation oncology resident as the first author between 2002 and 2007. Results: Of 1,098 residents trained at 81 programs, 50% published ≥1 article (range, 0-9), and 53% presented ≥1 abstract (range, 0-3) at an American Society for Therapeutic Radiology and Oncology annual meeting. The national average was 1.01 articles published and 1.09 abstracts presented per resident during 4 years of training. Of 678 articles published, 82% represented original research and 18% were review articles. Residents contributed 15% of all abstracts at American Society for Therapeutic Radiology and Oncology annual meetings, and the resident contribution to orally presented abstracts increased from 12% to 21% during the study period. Individuals training at programs with >6 residents produced roughly twice as many articles and abstracts. Holman Research Pathway residents produced double the national average of articles and abstracts. Conclusion: Although variability exists among individuals and among training programs, U.S. radiation oncology residents routinely participate in investigative research suitable for publication or presentation at a scientific meeting. These data provide national research benchmarks that can assist current and future radiation oncology residents and training programs in their self-assessment and research planning.

  14. Scientific impact of studies published in temporarily available radiation oncology journals: a citation analysis.

    Science.gov (United States)

    Nieder, Carsten; Geinitz, Hans; Andratschke, Nicolaus H; Grosu, Anca L

    2015-01-01

    The purpose of this study was to review all articles published in two temporarily available radiation oncology journals (Radiation Oncology Investigations, Journal of Radiosurgery) in order to evaluate their scientific impact. From several potential measures of impact and relevance of research, we selected article citation rate because landmark or practice-changing research is likely to be cited frequently. The citation database Scopus was used to analyse number of citations. During the time period 1996-1999 the journal Radiation Oncology Investigations published 205 articles, which achieved a median number of 6 citations (range 0-116). However, the most frequently cited article in the first 4 volumes achieved only 23 citations. The Journal of Radiosurgery published only 31 articles, all in the year 1999, which achieved a median number of 1 citation (range 0-11). No prospective randomized studies or phase I-II collaborative group trials were published in these journals. Apparently, the Journal of Radiosurgery acquired relatively few manuscripts that were interesting and important enough to impact clinical practice. Radiation Oncology Investigations' citation pattern was better and closer related to that reported in several previous studies focusing on the field of radiation oncology. The vast majority of articles published in temporarily available radiation oncology journals had limited clinical impact and achieved few citations. Highly influential research was unlikely to be submitted during the initial phase of establishing new radiation oncology journals.

  15. Considerations for Observational Research Using Large Data Sets in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Jagsi, Reshma, E-mail: rjagsi@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Bekelman, Justin E. [Departments of Radiation Oncology and Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (United States); Chen, Aileen [Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts (United States); Chen, Ronald C. [Department of Radiation Oncology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina (United States); Hoffman, Karen [Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tina Shih, Ya-Chen [Department of Medicine, Section of Hospital Medicine, The University of Chicago, Chicago, Illinois (United States); Smith, Benjamin D. [Department of Radiation Oncology, Division of Radiation Oncology, and Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yu, James B. [Yale School of Medicine, New Haven, Connecticut (United States)

    2014-09-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold

  16. Considerations for Observational Research Using Large Data Sets in Radiation Oncology

    International Nuclear Information System (INIS)

    Jagsi, Reshma; Bekelman, Justin E.; Chen, Aileen; Chen, Ronald C.; Hoffman, Karen; Tina Shih, Ya-Chen; Smith, Benjamin D.; Yu, James B.

    2014-01-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold

  17. Group consensus peer review in radiation oncology: commitment to quality.

    Science.gov (United States)

    Duggar, W Neil; Bhandari, Rahul; Yang, Chunli Claus; Vijayakumar, Srinivasan

    2018-03-27

    Peer review, especially prospective peer review, has been supported by professional organizations as an important element in optimal Radiation Oncology practice based on its demonstration of efficacy at detecting and preventing errors prior to patient treatment. Implementation of peer review is not without barriers, but solutions do exist to mitigate or eliminate some of those barriers. Peer review practice at our institution involves three key elements: new patient conference, treatment planning conference, and chart rounds. The treatment planning conference is an adaptation of the group consensus peer review model from radiology which utilizes a group of peers reviewing each treatment plan prior to implementation. The peer group in radiation oncology includes Radiation Oncologists, Physician Residents, Medical Physicists, Dosimetrists, and Therapists. Thus, technical and clinical aspects of each plan are evaluated simultaneously. Though peer review is held in high regard in Radiation Oncology, many barriers commonly exist preventing optimal implementation such as time intensiveness, repetition, and distraction from clinic time with patients. Through the use of automated review tools and commitment by individuals and administration in regards to staffing, scheduling, and responsibilities, these barriers have been mitigated to implement this Group Consensus Peer Review model into a Radiation Oncology Clinic. A Group Consensus Peer Review model has been implemented with strategies to address common barriers to effective and efficient peer review.

  18. The history and evolution of radiotherapy and radiation oncology in Austria

    International Nuclear Information System (INIS)

    Kogelnik, H. Dieter

    1996-01-01

    Austria has a longstanding and eventful history in the field of radiotherapy and radiation oncology. The founder of radiotherapy, Leopold Freund, began his well-documented first therapeutic irradiation on November 24, 1896, in Vienna. He also wrote the first textbook of radiotherapy in 1903. Further outstanding Viennese pioneers in the fields of radiotherapy, radiobiology, radiation physics, and diagnostic radiology include Gottwald Schwarz, Robert Kienboeck, and Guido Holzknecht. Because many of the leading Austrian radiologists had to emigrate in 1938, irreparable damage occurred at that time for the medical speciality of radiology. After World War II, the recovery in the field of radiotherapy and radiation oncology started in Austria in the early sixties. Eleven radiotherapy centers have been established since that time, and an independent society for radio-oncology, radiobiology, and medical radiophysics was founded in 1984. Finally, in March 1994, radiotherapy-radio-oncology became a separate clinical speciality

  19. Training program in radiation protection: implantation in a radiation oncology department

    International Nuclear Information System (INIS)

    Chretien, Mario; Morrier, Janelle; Cote, Carl; Lavallee, Marie C.

    2008-01-01

    Full text: Purpose: To introduce the radiation protection training program implemented in the radiation oncology department of the Hotel-Dieu de Quebec. This program seeks to provide an adequate training for all the clinic workers and to fulfill Canadian Nuclear Safety Commission's (CNSC) legislations. Materials and Methods: The radiation protection training program implemented is based on the use of five different education modalities: 1) Oral presentations, when the objective of the formation is to inform a large number of persons about general topics; 2) Periodic journals are published bimonthly and distributed to members of the department. They aim to answer frequently asked questions on the radiation safety domain. Each journal contains one main subject which is vulgarized and short notices, these later added to inform the readers about the departmental news and developments in radiation safety; 3) Electronic self-training presentations are divided into several units. Topics, durations, complexity and evaluations are adapted for different worker groups; 4) Posters are strategically displayed in the department in order to be read by all the radiation oncology employees, even those who are not specialized in the radiation protection area; 5) Simulations are organized for specialised workers to practice and to develop their skills in radiation protection situations as emergencies. A registration method was developed to record all training performed by each member of the department. Results: The training program implemented follows the CNSC recommendations. It allows about 150 members of the department to receive proper radiation safety training. The oral presentations allow an interaction between the trainer and the workers. The periodic journals are simple to write while ensuring continuous training. They are also easy to read and to understand. The e-learning units and their associated evaluations can be done at any time and everywhere in the department. The

  20. "Radio-oncomics" : The potential of radiomics in radiation oncology.

    Science.gov (United States)

    Peeken, Jan Caspar; Nüsslin, Fridtjof; Combs, Stephanie E

    2017-10-01

    Radiomics, a recently introduced concept, describes quantitative computerized algorithm-based feature extraction from imaging data including computer tomography (CT), magnetic resonance imaging (MRT), or positron-emission tomography (PET) images. For radiation oncology it offers the potential to significantly influence clinical decision-making and thus therapy planning and follow-up workflow. After image acquisition, image preprocessing, and defining regions of interest by structure segmentation, algorithms are applied to calculate shape, intensity, texture, and multiscale filter features. By combining multiple features and correlating them with clinical outcome, prognostic models can be created. Retrospective studies have proposed radiomics classifiers predicting, e. g., overall survival, radiation treatment response, distant metastases, or radiation-related toxicity. Besides, radiomics features can be correlated with genomic information ("radiogenomics") and could be used for tumor characterization. Distinct patterns based on data-based as well as genomics-based features will influence radiation oncology in the future. Individualized treatments in terms of dose level adaption and target volume definition, as well as other outcome-related parameters will depend on radiomics and radiogenomics. By integration of various datasets, the prognostic power can be increased making radiomics a valuable part of future precision medicine approaches. This perspective demonstrates the evidence for the radiomics concept in radiation oncology. The necessity of further studies to integrate radiomics classifiers into clinical decision-making and the radiation therapy workflow is emphasized.

  1. Authorship in Radiation Oncology: Proliferation Trends Over 30 Years

    Energy Technology Data Exchange (ETDEWEB)

    Ojerholm, Eric, E-mail: eric.ojerholm@uphs.upenn.edu; Swisher-McClure, Samuel

    2015-11-15

    Purpose: To investigate authorship trends in the radiation oncology literature. Methods and Materials: We examined the authorship credits of “original research articles” within 2 popular radiation oncology journals–International Journal of Radiation Oncology, Biology, Physics and Radiotherapy and Oncology–in 1984, 1994, 2004, and 2014. We compared the number of authors per publication during these 4 time periods using simple linear regression as a test for trend. We investigated additional author characteristics in a subset of articles. Results: A total of 2005 articles were eligible. The mean number of authors per publication rose from 4.3 in 1984 to 9.1 in 2014 (P<.001). On subset analysis of 400 articles, there was an increase in the percentage of multidisciplinary bylines (from 52% to 72%), multi-institutional bylines (from 20% to 53%), and publications with a trainee first author (from 16% to 56%) during the study period. Conclusions: The mean number of authors per publication has more than doubled over the last 30 years in the radiation oncology literature. Possible explanations include increasingly complex and collaborative research as well as honorary authorship. Explicit documentation of author contributions could help ensure that scientific work is credited according to accepted standards.

  2. Gender Trends in Radiation Oncology in the United States: A 30-Year Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Awad A. [Temple University School of Medicine, Philadelphia, Pennsylvania (United States); Egleston, Brian [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Holliday, Emma [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eastwick, Gary [Temple University School of Medicine, Philadelphia, Pennsylvania (United States); Takita, Cristiane [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Jagsi, Reshma, E-mail: rjagsi@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2014-01-01

    Purpose: Although considerable research exists regarding the role of women in the medical profession in the United States, little work has described the participation of women in academic radiation oncology. We examined women's participation in authorship of radiation oncology literature, a visible and influential activity that merits specific attention. Methods and Materials: We examined the gender of first and senior US physician-authors of articles published in the Red Journal in 1980, 1990, 2000, 2004, 2010, and 2012. The significance of trends over time was evaluated using logistic regression. Results were compared with female representation in journals of general medicine and other major medical specialties. Findings were also placed in the context of trends in the representation of women among radiation oncology faculty and residents over the past 3 decades, using Association of American Medical Colleges data. Results: The proportion of women among Red Journal first authors increased from 13.4% in 1980 to 29.7% in 2012, and the proportion among senior authors increased from 3.2% to 22.6%. The proportion of women among radiation oncology full-time faculty increased from 11% to 26.7% from 1980 to 2012. The proportion of women among radiation oncology residents increased from 27.1% to 33.3% from 1980 to 2010. Conclusions: Female first and senior authorship in the Red Journal has increased significantly, as has women's participation among full-time faculty, but women remain underrepresented among radiation oncology residents compared with their representation in the medical student body. Understanding such trends is necessary to develop appropriately targeted interventions to improve gender equity in radiation oncology.

  3. GENDER TRENDS IN RADIATION ONCOLOGY IN THE UNITED STATES: A 30 YEAR ANALYSIS

    Science.gov (United States)

    Ahmed, Awad A; Egleston, Brian; Holliday, Emma; Eastwick, Gary; Takita, Cristiane; Jagsi, Reshma

    2013-01-01

    Purpose/Objective Although considerable research exists regarding the role of women in the medical profession in the United States, little work has described the participation of women in academic radiation oncology. We examined women’s participation in authorship of radiation oncology literature, a visible and influential activity that merits specific attention. Methods and Materials We examined the gender of first and senior U.S. physician-authors of articles published in the Red Journal in 1980, 1990, 2000, 2004, 2010 and 2012. The significance of trends over time was evaluated using logistic regression. Results were compared to female representation in journals of general medicine and other major medical specialties. Findings were also placed in the context of trends in the representation of women among radiation oncology faculty and residents over the last three decades, using AAMC data. Results The proportion of women among Red Journal first authors increased from 13.4% in 1980 to 29.7% in 2012, and the proportion among senior authors increased from 3.2% to 22.6%. The proportion of women among radiation oncology full-time faculty increased from 11% to 26.7% from 1980 to 2012. The proportion of women among radiation oncology residents increased from 27.1% to 33.3% from 1980 to 2010. Conclusion Female first and senior authorship in the Red Journal has increased significantly, as has women’s participation among full-time faculty, but women remain under-represented among radiation oncology residents as compared to their representation in the medical student body. Understanding such trends is necessary to develop appropriately targeted interventions to improve gender equity in radiation oncology. PMID:24189127

  4. Gender Trends in Radiation Oncology in the United States: A 30-Year Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Awad A. [Temple University School of Medicine, Philadelphia, Pennsylvania (United States); Egleston, Brian [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Holliday, Emma [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eastwick, Gary [Temple University School of Medicine, Philadelphia, Pennsylvania (United States); Takita, Cristiane [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2014-01-01

    Purpose: Although considerable research exists regarding the role of women in the medical profession in the United States, little work has described the participation of women in academic radiation oncology. We examined women's participation in authorship of radiation oncology literature, a visible and influential activity that merits specific attention. Methods and Materials: We examined the gender of first and senior US physician-authors of articles published in the Red Journal in 1980, 1990, 2000, 2004, 2010, and 2012. The significance of trends over time was evaluated using logistic regression. Results were compared with female representation in journals of general medicine and other major medical specialties. Findings were also placed in the context of trends in the representation of women among radiation oncology faculty and residents over the past 3 decades, using Association of American Medical Colleges data. Results: The proportion of women among Red Journal first authors increased from 13.4% in 1980 to 29.7% in 2012, and the proportion among senior authors increased from 3.2% to 22.6%. The proportion of women among radiation oncology full-time faculty increased from 11% to 26.7% from 1980 to 2012. The proportion of women among radiation oncology residents increased from 27.1% to 33.3% from 1980 to 2010. Conclusions: Female first and senior authorship in the Red Journal has increased significantly, as has women's participation among full-time faculty, but women remain underrepresented among radiation oncology residents compared with their representation in the medical student body. Understanding such trends is necessary to develop appropriately targeted interventions to improve gender equity in radiation oncology.

  5. Gender trends in radiation oncology in the United States: a 30-year analysis.

    Science.gov (United States)

    Ahmed, Awad A; Egleston, Brian; Holliday, Emma; Eastwick, Gary; Takita, Cristiane; Jagsi, Reshma

    2014-01-01

    Although considerable research exists regarding the role of women in the medical profession in the United States, little work has described the participation of women in academic radiation oncology. We examined women's participation in authorship of radiation oncology literature, a visible and influential activity that merits specific attention. We examined the gender of first and senior US physician-authors of articles published in the Red Journal in 1980, 1990, 2000, 2004, 2010, and 2012. The significance of trends over time was evaluated using logistic regression. Results were compared with female representation in journals of general medicine and other major medical specialties. Findings were also placed in the context of trends in the representation of women among radiation oncology faculty and residents over the past 3 decades, using Association of American Medical Colleges data. The proportion of women among Red Journal first authors increased from 13.4% in 1980 to 29.7% in 2012, and the proportion among senior authors increased from 3.2% to 22.6%. The proportion of women among radiation oncology full-time faculty increased from 11% to 26.7% from 1980 to 2012. The proportion of women among radiation oncology residents increased from 27.1% to 33.3% from 1980 to 2010. Female first and senior authorship in the Red Journal has increased significantly, as has women's participation among full-time faculty, but women remain underrepresented among radiation oncology residents compared with their representation in the medical student body. Understanding such trends is necessary to develop appropriately targeted interventions to improve gender equity in radiation oncology. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Gender Trends in Radiation Oncology in the United States: A 30-Year Analysis

    International Nuclear Information System (INIS)

    Ahmed, Awad A.; Egleston, Brian; Holliday, Emma; Eastwick, Gary; Takita, Cristiane; Jagsi, Reshma

    2014-01-01

    Purpose: Although considerable research exists regarding the role of women in the medical profession in the United States, little work has described the participation of women in academic radiation oncology. We examined women's participation in authorship of radiation oncology literature, a visible and influential activity that merits specific attention. Methods and Materials: We examined the gender of first and senior US physician-authors of articles published in the Red Journal in 1980, 1990, 2000, 2004, 2010, and 2012. The significance of trends over time was evaluated using logistic regression. Results were compared with female representation in journals of general medicine and other major medical specialties. Findings were also placed in the context of trends in the representation of women among radiation oncology faculty and residents over the past 3 decades, using Association of American Medical Colleges data. Results: The proportion of women among Red Journal first authors increased from 13.4% in 1980 to 29.7% in 2012, and the proportion among senior authors increased from 3.2% to 22.6%. The proportion of women among radiation oncology full-time faculty increased from 11% to 26.7% from 1980 to 2012. The proportion of women among radiation oncology residents increased from 27.1% to 33.3% from 1980 to 2010. Conclusions: Female first and senior authorship in the Red Journal has increased significantly, as has women's participation among full-time faculty, but women remain underrepresented among radiation oncology residents compared with their representation in the medical student body. Understanding such trends is necessary to develop appropriately targeted interventions to improve gender equity in radiation oncology

  7. International Outreach: What Is the Responsibility of ASTRO and the Major International Radiation Oncology Societies?

    International Nuclear Information System (INIS)

    Mayr, Nina A.; Hu, Kenneth S.; Liao, Zhongxing; Viswanathan, Akila N.; Wall, Terry J.; Amendola, Beatriz E.; Calaguas, Miriam J.; Palta, Jatinder R.; Yue, Ning J.; Rengan, Ramesh; Williams, Timothy R.

    2014-01-01

    In this era of globalization and rapid advances in radiation oncology worldwide, the American Society for Radiation Oncology (ASTRO) is committed to help decrease profound regional disparities through the work of the International Education Subcommittee (IES). The IES has expanded its base, reach, and activities to foster educational advances through a variety of educational methods with broad scope, in addition to committing to the advancement of radiation oncology care for cancer patients around the world, through close collaboration with our sister radiation oncology societies and other educational, governmental, and organizational groups

  8. International Outreach: What Is the Responsibility of ASTRO and the Major International Radiation Oncology Societies?

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Nina A., E-mail: ninamayr@uw.edu [Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (United States); Hu, Kenneth S. [Department of Radiation Oncology, Beth Israel Medical Center, New York, New York (United States); Liao, Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Viswanathan, Akila N. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); Wall, Terry J. [St. Luke' s Cancer Institute, Kansas City, Missouri (United States); Amendola, Beatriz E. [Innovative Cancer Institute, Miami, Florida (United States); Calaguas, Miriam J. [Department of Radiation Oncology, St. Luke' s Medical Center, Quezon City (Philippines); Palta, Jatinder R. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Yue, Ning J. [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Rengan, Ramesh [Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (United States); Williams, Timothy R. [Lynn Cancer Institute, Boca Raton Regional Hospital, Boca Raton, Florida (United States)

    2014-07-01

    In this era of globalization and rapid advances in radiation oncology worldwide, the American Society for Radiation Oncology (ASTRO) is committed to help decrease profound regional disparities through the work of the International Education Subcommittee (IES). The IES has expanded its base, reach, and activities to foster educational advances through a variety of educational methods with broad scope, in addition to committing to the advancement of radiation oncology care for cancer patients around the world, through close collaboration with our sister radiation oncology societies and other educational, governmental, and organizational groups.

  9. The Pocketable Electronic Devices in Radiation Oncology (PEDRO) Project

    DEFF Research Database (Denmark)

    De Bari, Berardino; Franco, P.; Niyazi, Maximilian

    2016-01-01

    ) members of the national radiation or clinical oncology associations of the countries involved in the study. The 15 items investigated diffusion of MEDs (smartphones and/or tablets), their impact on daily clinical activity, and the differences perceived by participants along time. Results: A total of 386...... in young professionals working in radiation oncology. Looking at these data, it is important to verify the consistency of information found within apps, in order to avoid potential errors eventually detrimental for patients. “Quality assurance” criteria should be specifically developed for medical apps...

  10. Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process

    International Nuclear Information System (INIS)

    Krasin, M.J.; Hudson, M.M.; Kaste, S.C.

    2004-01-01

    The application of PET imaging to pediatric radiation oncology allows new approaches to targeting and selection of radiation dose based not only on the size of a tumor, but also on its metabolic activity. In order to integrate PET into treatment planning for radiation oncology, logistical issues regarding patient setup, image fusion, and target selection must be addressed. Through prospective study, the role of PET in pediatric malignancies will be established for diagnosis, treatment, and surveillance. To explore the potential role of PET and its incorporation into treatment planning in pediatric radiation oncology, an example case of pediatric Hodgkin's disease is discussed. (orig.)

  11. Results of the 2004 Association of Residents in Radiation Oncology (ARRO) Survey

    International Nuclear Information System (INIS)

    Patel, Shilpen; Jagsi, Reshma; Wilson, John; Frank, Steven; Thakkar, Vipul V.; Hansen, Eric K.

    2006-01-01

    Purpose: The aim of this study was to document adequacy of training, career plans after residency, use of the in-service examination, and motivation for choice of radiation oncology as a specialty. Methods and Materials: In 2004, the Association of Residents in Radiation Oncology (ARRO) conducted a nationwide survey of all radiation oncology residents in the United States. Results: The survey was returned by 297 residents (response rate, 54%). Of the respondents, 29% were female and 71% male. The most popular career choice was joining an established private practice (38%), followed by a permanent academic career (29%). Residents for whom a permanent academic career was not their first choice were asked whether improvements in certain areas would have led them to be more likely to pursue an academic career. The most commonly chosen factors that would have had a strong or moderate influence included higher salary (81%), choice of geographic location (76%), faculty encouragement (68%), and less time commitment (68%). Of respondents in the first 3 years of training, 78% believed that they had received adequate training to proceed to the next level of training. Of those in their fourth year of training, 75% believed that they had received adequate training to enter practice. Conclusions: Multiple factors affect the educational environment of physicians in training. Data describing concerns unique to resident physicians in radiation oncology are limited. The current survey was designed to explore a variety of issues confronting radiation oncology residents. Training programs and the Residency Review Committee should consider these results when developing new policies to improve the educational experiences of residents in radiation oncology

  12. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations.

    Science.gov (United States)

    Prabhu, Arpan V; Hansberry, David R; Agarwal, Nitin; Clump, David A; Heron, Dwight E

    2016-11-01

    Physicians encourage patients to be informed about their health care options, but much of the online health care-related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Radiation oncology-related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, RadiologyInfo.org, and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment options, making each physician-patient interaction more productive

  13. TU-G-201-00: Imaging Equipment Specification and Selection in Radiation Oncology Departments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, and potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI

  14. Toward a national consensus: teaching radiobiology to radiation oncology residents

    International Nuclear Information System (INIS)

    Zeman, Elaine M.; Dynlacht, Joseph R.; Rosenstein, Barry S.; Dewhirst, Mark W.

    2002-01-01

    Purpose: The ASTRO Joint Working Group on Radiobiology Teaching, a committee composed of members having affiliations with several national radiation oncology and biology-related societies and organizations, commissioned a survey designed to address issues of manpower, curriculum standardization, and instructor feedback as they relate to resident training in radiation biology. Methods and Materials: Radiation biology instructors at U.S. radiation oncology training programs were identified and asked to respond to a comprehensive electronic questionnaire dealing with instructor educational background, radiation biology course content, and sources of feedback with respect to curriculum planning and resident performance on standardized radiation biology examinations. Results: Eighty-five radiation biology instructors were identified, representing 73 radiation oncology residency training programs. A total of 52 analyzable responses to the questionnaire were received, corresponding to a response rate of 61.2%. Conclusion: There is a decreasing supply of instructors qualified to teach classic, and to some extent, clinical, radiobiology to radiation oncology residents. Additionally, those instructors with classic training in radiobiology are less likely to be comfortable teaching cancer molecular biology or other topics in cancer biology. Thus, a gap exists in teaching the whole complement of cancer and radiobiology curricula, particularly in those programs in which the sole responsibility for teaching falls to one faculty member (50% of training programs are in this category). On average, the percentage of total teaching time devoted to classic radiobiology (50%), clinical radiobiology (30%), and molecular and cancer biology (20%) is appropriate, relative to the current makeup of the board examination. Nevertheless large variability exists between training programs with respect to the total number of contact hours per complete radiobiology course (ranging from

  15. Radiation oncology: An Irish hospitals approach to supporting patients

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Caragh [Cork University Hospital (Ireland)], E-mail: caragh.miller@tcd.ie

    2009-02-15

    Despite advances in medical technology, cancer is still one of the leading causes of death globally, leaving many patients to deal with the emotional and psychological aspects associated with cancer and its treatment [Department of Health and Children. A strategy for cancer control in Ireland. National Cancer Forum. Dublin; 2006]. The recognition and management of psychological conditions are an integral part of comprehensive cancer care. As a result, the Health Services Executive as part of the continuing expansion of Cork Radiation Oncology Department created the role of Information and Support Radiation Therapist. This post was specially created during June 2005 to facilitate the smooth entry into the treatment for patients and family members experiencing radiotherapy for the first time. Working alongside the oncology nurses and other health professionals the Information and Support Radiation Therapist aims to provide vital education/information and support to patients and their families. The provision of this new service for patients enables departments to adopt a holistic approach to treatment. This research identifies the cancer services and psychological support services in Ireland. Up-to-date audits of the new patient services established in the Cork Radiation Oncology Department and their psychological contribution towards cancer development and treatment are also discussed.

  16. Radiation oncology: An Irish hospitals approach to supporting patients

    International Nuclear Information System (INIS)

    Miller, Caragh

    2009-01-01

    Despite advances in medical technology, cancer is still one of the leading causes of death globally, leaving many patients to deal with the emotional and psychological aspects associated with cancer and its treatment [Department of Health and Children. A strategy for cancer control in Ireland. National Cancer Forum. Dublin; 2006]. The recognition and management of psychological conditions are an integral part of comprehensive cancer care. As a result, the Health Services Executive as part of the continuing expansion of Cork Radiation Oncology Department created the role of Information and Support Radiation Therapist. This post was specially created during June 2005 to facilitate the smooth entry into the treatment for patients and family members experiencing radiotherapy for the first time. Working alongside the oncology nurses and other health professionals the Information and Support Radiation Therapist aims to provide vital education/information and support to patients and their families. The provision of this new service for patients enables departments to adopt a holistic approach to treatment. This research identifies the cancer services and psychological support services in Ireland. Up-to-date audits of the new patient services established in the Cork Radiation Oncology Department and their psychological contribution towards cancer development and treatment are also discussed

  17. Minimum requirements on a QA program in radiation oncology

    International Nuclear Information System (INIS)

    Almond, P.R.

    1996-01-01

    In April, 1994, the American Association of Physicists in Medicine published a ''Comprehensive QA for radiation oncology:'' a report of the AAPM Radiation Therapy Committee. This is a comprehensive QA program which is likely to become the standard for such programs in the United States. The program stresses the interdisciplinary nature of QA in radiation oncology involving the radiation oncologists, the radiotherapy technologies (radiographers), dosimetrists, and accelerator engineers, as well as the medical physicists. This paper describes a comprehensive quality assurance program with the main emphasis on the quality assurance in radiation therapy using a linear accelerator. The paper deals with QA for a linear accelerator and simulator and QA for treatment planning computers. Next the treatment planning process and QA for individual patients is described. The main features of this report, which should apply to QA programs in any country, emphasizes the responsibilities of the medical physicist. (author). 7 refs, 9 tabs

  18. Minimum requirements on a QA program in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Almond, P R [Louisville Univ., Louisville, KY (United States). J.G. Brown Cancer Center

    1996-08-01

    In April, 1994, the American Association of Physicists in Medicine published a ``Comprehensive QA for radiation oncology:`` a report of the AAPM Radiation Therapy Committee. This is a comprehensive QA program which is likely to become the standard for such programs in the United States. The program stresses the interdisciplinary nature of QA in radiation oncology involving the radiation oncologists, the radiotherapy technologies (radiographers), dosimetrists, and accelerator engineers, as well as the medical physicists. This paper describes a comprehensive quality assurance program with the main emphasis on the quality assurance in radiation therapy using a linear accelerator. The paper deals with QA for a linear accelerator and simulator and QA for treatment planning computers. Next the treatment planning process and QA for individual patients is described. The main features of this report, which should apply to QA programs in any country, emphasizes the responsibilities of the medical physicist. (author). 7 refs, 9 tabs.

  19. Estimation of Citation-Based Scholarly Activity Among Radiation Oncology Faculty at Domestic Residency-Training Institutions: 1996-2007

    International Nuclear Information System (INIS)

    Choi, Mehee; Fuller, Clifton D.; Thomas, Charles R.

    2009-01-01

    Purpose: Advancement in academic radiation oncology is largely contingent on research productivity and the perceived external influence of an individual's scholarly work. The purpose of this study was to use the Hirsch index (h-index) to estimate the research productivity of current radiation oncology faculty at U.S. academic institutions between 1996 and 2007. Methods and Materials: We performed bibliometric citation database searches for available radiation oncology faculty at domestic residency-training institutions (n = 826). The outcomes analyzed included the total number of manuscripts, total number of citations, and the h-index between 1996 and 2007. Analysis of overall h-index rankings with stratification by academic ranking, junior vs. senior faculty status, and gender was performed. Results: Of the 826 radiation oncologists, the mean h-index was 8.5. Of the individuals in the top 10% by the h-index, 34% were chairpersons, 88% were senior faculty, and 13% were women. A greater h-index was associated with a higher academic ranking and senior faculty status. Recursive partitioning analysis revealed an h-index threshold of 15 (p <0.0001) as an identified breakpoint between the senior and junior faculty. Overall, women had lower h-indexes compared with men (mean, 6.4 vs. 9.4); however, when stratified by academic ranking, the gender differential all but disappeared. Conclusion: Using the h-index as a partial surrogate for research productivity, it appears that radiation oncologists in academia today comprise a prolific group, however, with a highly skewed distribution. According to the present analysis, the h-index correlated with academic ranking. Thus, it potentially has utility in the process of promotion decisions. Overall, women in radiation oncology were less academically productive than men; the possible reasons for the gender differential are discussed.

  20. Survey of Radiation Oncology Centres in Australia: report of the radiation oncology treatment quality program

    International Nuclear Information System (INIS)

    Klybaba, M.; Kenny, L.; Kron, T.; Harris, J.; O'Brien, P.

    2009-01-01

    Full text: One of the first steps towards the development of a comprehensive quality program for radiation oncology in Australia has been a survey of practice. This paper reports on the results of the survey that should inform the development of standards for radiation oncology in Australia. A questionnaire of 108 questions spanning aspects of treatment services, equipment, staff, infrastructure and available quality systems was mailed to all facilities providing radiation treatment services in Australia (n = 45). Information of 42 sites was received by June 2006 providing data on 113 operational linear accelerators of which approximately 2/3 are equipped with multi-leaf collimators. More than 75% of facilities were participating in a formal quality assurance (QA) system, with 63% following a nationally or internationally recognised system. However, there was considerable variation in the availability of policies and procedures specific to quality aspects, and the review of these. Policies for monitoring patient waiting times for treatment were documented at just 71% of all facilities. Although 85% of all centres do, in fact, monitor machine throughput, the number and types of efficiency measures varied markedly, thereby limiting the comparative use of these results. Centres identified workload as the single most common factor responsible for limiting staff involvement in both QA processes and clinical trial participation. The data collected in this 'snapshot' survey provide a unique and comprehensive baseline for future comparisons and evaluation of changes

  1. Beyond the Standard Curriculum: A Review of Available Opportunities for Medical Students to Prepare for a Career in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Ankit; DeNunzio, Nicholas J.; Ahuja, Divya; Hirsch, Ariel E., E-mail: Ariel.hirsch@bmc.org

    2014-01-01

    Purpose: To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Methods and Materials: Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Results: Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. Conclusions: To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students.

  2. Beyond the standard curriculum: a review of available opportunities for medical students to prepare for a career in radiation oncology.

    Science.gov (United States)

    Agarwal, Ankit; DeNunzio, Nicholas J; Ahuja, Divya; Hirsch, Ariel E

    2014-01-01

    To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Beyond the Standard Curriculum: A Review of Available Opportunities for Medical Students to Prepare for a Career in Radiation Oncology

    International Nuclear Information System (INIS)

    Agarwal, Ankit; DeNunzio, Nicholas J.; Ahuja, Divya; Hirsch, Ariel E.

    2014-01-01

    Purpose: To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Methods and Materials: Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Results: Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. Conclusions: To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students

  4. American Society for Radiation Oncology (ASTRO) 2012 Workforce Study: The Radiation Oncologists' and Residents' Perspectives

    International Nuclear Information System (INIS)

    Pohar, Surjeet; Fung, Claire Y.; Hopkins, Shane; Miller, Robert; Azawi, Samar; Arnone, Anna; Patton, Caroline; Olsen, Christine

    2013-01-01

    Purpose: The American Society for Radiation Oncology (ASTRO) conducted the 2012 Radiation Oncology Workforce Survey to obtain an up-to-date picture of the workforce, assess its needs and concerns, and identify quality and safety improvement opportunities. The results pertaining to radiation oncologists (ROs) and residents (RORs) are presented here. Methods: The ASTRO Workforce Subcommittee, in collaboration with allied radiation oncology professional societies, conducted a survey study in early 2012. An online survey questionnaire was sent to all segments of the radiation oncology workforce. Respondents who were actively working were included in the analysis. This manuscript describes the data for ROs and RORs. Results: A total of 3618 ROs and 568 RORs were surveyed. The response rate for both groups was 29%, with 1047 RO and 165 ROR responses. Among ROs, the 2 most common racial groups were white (80%) and Asian (15%), and the male-to-female ratio was 2.85 (74% male). The median age of ROs was 51. ROs averaged 253.4 new patient consults in a year and 22.9 on-treatment patients. More than 86% of ROs reported being satisfied or very satisfied overall with their career. Close to half of ROs reported having burnout feelings. There was a trend toward more frequent burnout feelings with increasing numbers of new patient consults. ROs' top concerns were related to documentation, reimbursement, and patients' health insurance coverage. Ninety-five percent of ROs felt confident when implementing new technology. Fifty-one percent of ROs thought that the supply of ROs was balanced with demand, and 33% perceived an oversupply. Conclusions: This study provides a current snapshot of the 2012 radiation oncology physician workforce. There was a predominance of whites and men. Job satisfaction level was high. However a substantial fraction of ROs reported burnout feelings. Perceptions about supply and demand balance were mixed. ROs top concerns reflect areas of attention for the

  5. Multiple Authorship in Two English-Language Journals in Radiation Oncology.

    Science.gov (United States)

    Halperin, Edward C.; And Others

    1992-01-01

    A study of multiple authorship in 1,908 papers in the "International Journal of Radiation Oncology, Biology, and Physics" and "Radiotherapy and Oncology" from 1983-87 investigated patterns and trends in number of authors per article by journal, article type, country, author's institution, author gender, and order of listing of…

  6. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations

    International Nuclear Information System (INIS)

    Prabhu, Arpan V.; Hansberry, David R.; Agarwal, Nitin; Clump, David A.; Heron, Dwight E.

    2016-01-01

    Purpose: Physicians encourage patients to be informed about their health care options, but much of the online health care–related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Methods: Radiation oncology–related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, (RadiologyInfo.org), and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. Results: When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Conclusion: Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment options, making each

  7. Radiation Oncology and Online Patient Education Materials: Deviating From NIH and AMA Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Arpan V. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Hansberry, David R. [Department of Radiology, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania (United States); Agarwal, Nitin [Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Clump, David A. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Heron, Dwight E., E-mail: herond2@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)

    2016-11-01

    Purpose: Physicians encourage patients to be informed about their health care options, but much of the online health care–related resources can be beneficial only if patients are capable of comprehending it. This study's aim was to assess the readability level of online patient education resources for radiation oncology to conclude whether they meet the general public's health literacy needs as determined by the guidelines of the United States National Institutes of Health (NIH) and the American Medical Association (AMA). Methods: Radiation oncology–related internet-based patient education materials were downloaded from 5 major professional websites (American Society for Radiation Oncology, American Association of Physicists in Medicine, American Brachytherapy Society, (RadiologyInfo.org), and Radiation Therapy Oncology Group). Additional patient education documents were downloaded by searching for key radiation oncology phrases using Google. A total of 135 articles were downloaded and assessed for their readability level using 10 quantitative readability scales that are widely accepted in the medical literature. Results: When all 10 assessment tools for readability were taken into account, the 135 online patient education articles were written at an average grade level of 13.7 ± 2.0. One hundred nine of the 135 articles (80.7%) required a high school graduate's comprehension level (12th-grade level or higher). Only 1 of the 135 articles (0.74%) met the AMA and NIH recommendations for patient education resources to be written between the third-grade and seventh-grade levels. Conclusion: Radiation oncology websites have patient education material written at an educational level above the NIH and AMA recommendations; as a result, average American patients may not be able to fully understand them. Rewriting radiation oncology patient education resources would likely contribute to the patients' understanding of their health and treatment

  8. Assessing the Value of an Optional Radiation Oncology Clinical Rotation During the Core Clerkships in Medical School

    Energy Technology Data Exchange (ETDEWEB)

    Zaorsky, Nicholas G.; Malatesta, Theresa M.; Den, Robert B.; Wuthrick, Evan; Ahn, Peter H.; Werner-Wasik, Maria; Shi, Wenyin; Dicker, Adam P.; Anne, P. Rani; Bar-Ad, Voichita [Department of Radiation Oncology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); Showalter, Timothy N., E-mail: timothy.showalter@jeffersonhospital.org [Department of Radiation Oncology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States)

    2012-07-15

    Purpose: Few medical students are given proper clinical training in oncology, much less radiation oncology. We attempted to assess the value of adding a radiation oncology clinical rotation to the medical school curriculum. Methods and Materials: In July 2010, Jefferson Medical College began to offer a 3-week radiation oncology rotation as an elective course for third-year medical students during the core surgical clerkship. During 2010 to 2012, 52 medical students chose to enroll in this rotation. The rotation included outpatient clinics, inpatient consults, didactic sessions, and case-based presentations by the students. Tests of students' knowledge of radiation oncology were administered anonymously before and after the rotation to evaluate the educational effectiveness of the rotation. Students and radiation oncology faculty were given surveys to assess feedback about the rotation. Results: The students' prerotation test scores had an average of 64% (95% confidence interval [CI], 61-66%). The postrotation test scores improved to an average of 82% (95% CI, 80-83%; 18% absolute improvement). In examination question analysis, scores improved in clinical oncology from 63% to 79%, in radiobiology from 70% to 77%, and in medical physics from 62% to 88%. Improvements in all sections but radiobiology were statistically significant. Students rated the usefulness of the rotation as 8.1 (scale 1-9; 95% CI, 7.3-9.0), their understanding of radiation oncology as a result of the rotation as 8.8 (95% CI, 8.5-9.1), and their recommendation of the rotation to a classmate as 8.2 (95% CI, 7.6-9.0). Conclusions: Integrating a radiation oncology clinical rotation into the medical school curriculum improves student knowledge of radiation oncology, including aspects of clinical oncology, radiobiology, and medical physics. The rotation is appreciated by both students and faculty.

  9. Assessing the Value of an Optional Radiation Oncology Clinical Rotation During the Core Clerkships in Medical School

    International Nuclear Information System (INIS)

    Zaorsky, Nicholas G.; Malatesta, Theresa M.; Den, Robert B.; Wuthrick, Evan; Ahn, Peter H.; Werner-Wasik, Maria; Shi, Wenyin; Dicker, Adam P.; Anne, P. Rani; Bar-Ad, Voichita; Showalter, Timothy N.

    2012-01-01

    Purpose: Few medical students are given proper clinical training in oncology, much less radiation oncology. We attempted to assess the value of adding a radiation oncology clinical rotation to the medical school curriculum. Methods and Materials: In July 2010, Jefferson Medical College began to offer a 3-week radiation oncology rotation as an elective course for third-year medical students during the core surgical clerkship. During 2010 to 2012, 52 medical students chose to enroll in this rotation. The rotation included outpatient clinics, inpatient consults, didactic sessions, and case-based presentations by the students. Tests of students’ knowledge of radiation oncology were administered anonymously before and after the rotation to evaluate the educational effectiveness of the rotation. Students and radiation oncology faculty were given surveys to assess feedback about the rotation. Results: The students’ prerotation test scores had an average of 64% (95% confidence interval [CI], 61–66%). The postrotation test scores improved to an average of 82% (95% CI, 80–83%; 18% absolute improvement). In examination question analysis, scores improved in clinical oncology from 63% to 79%, in radiobiology from 70% to 77%, and in medical physics from 62% to 88%. Improvements in all sections but radiobiology were statistically significant. Students rated the usefulness of the rotation as 8.1 (scale 1–9; 95% CI, 7.3–9.0), their understanding of radiation oncology as a result of the rotation as 8.8 (95% CI, 8.5–9.1), and their recommendation of the rotation to a classmate as 8.2 (95% CI, 7.6–9.0). Conclusions: Integrating a radiation oncology clinical rotation into the medical school curriculum improves student knowledge of radiation oncology, including aspects of clinical oncology, radiobiology, and medical physics. The rotation is appreciated by both students and faculty.

  10. Evaluating stress, burnout and job satisfaction in New Zealand radiation oncology departments.

    Science.gov (United States)

    Jasperse, M; Herst, P; Dungey, G

    2014-01-01

    This research aimed to determine the levels of occupational stress, burnout and job satisfaction among radiation oncology workers across New Zealand. All oncology staff practising in all eight radiation oncology departments in New Zealand were invited to participate anonymously in a questionnaire, which consisted of the Maslach Burnout Inventory and measures of stress intensity associated with specific occupational stressors, stress reduction strategies and job satisfaction. A total of 171 (out of 349) complete responses were analysed using spss 19; there were 23 oncologists, 111 radiation therapists, 22 radiation nurses and 15 radiation physicists. All participants, regardless of profession, reported high stress levels associated with both patient-centred and organisational stressors. Participants scored high in all three domains of burnout: emotional exhaustion, depersonalisation and personal accomplishment. Interestingly, although organisational stressors predicted higher emotional exhaustion and emotional exhaustion predicted lower job satisfaction, patient stressors were associated with higher job satisfaction. Job satisfaction initiatives such as ongoing education, mentoring and role extension were supported by many participants as was addressing organisational stressors, such as lack of recognition and support from management and unrealistic expectations and demands. New Zealand staff exhibit higher levels of burnout than Maslach Burnout Inventory medical norms and oncology workers in previous international studies. © 2013 John Wiley & Sons Ltd.

  11. Supportive care in radiation oncology

    International Nuclear Information System (INIS)

    Rotman, M.; John, M.

    1987-01-01

    The radiation therapist, concerned with the disease process and all the technical intricacies of treatment, has usually not been involved in managing the supportive aspects of caring for the patient. Yet, of the team of medical specialists and allied health personnel required in oncology, the radiation therapist is the one most responsible for overseeing the total care of the cancer patient. At times this might include emotional support, prevention and correction of tissue dysfunction, augmentation of nutrition, metabolic and electrolyte regulation, rehabilitation, and vocational support. This chapter is a brief overview of a considerable volume of literature that has occupied the interest of a rather small group of physicians, nutritionists, and psychologists. The discussion highlights the special management problems of the normal-tissue effects of radiation, the related nutritional aspects of cancer care, and certain emotional and pathologic considerations

  12. Future trends in the supply and demand for radiation oncology physicists.

    Science.gov (United States)

    Mills, Michael D; Thornewill, Judah; Esterhay, Robert J

    2010-04-12

    Significant controversy surrounds the 2012 / 2014 decision announced by the Trustees of the American Board of Radiology (ABR) in October of 2007. According to the ABR, only medical physicists who are graduates of a Commission on Accreditation of Medical Physics Education Programs, Inc. (CAMPEP) accredited academic or residency program will be admitted for examination in the years 2012 and 2013. Only graduates of a CAMPEP accredited residency program will be admitted for examination beginning in the year 2014. An essential question facing the radiation oncology physics community is an estimation of supply and demand for medical physicists through the year 2020. To that end, a Demand & Supply dynamic model was created using STELLA software. Inputs into the model include: a) projected new cancer incidence and prevalence 1990-2020; b) AAPM member ages and retirement projections 1990-2020; c) number of ABR physics diplomates 1990-2009; d) number of patients per Qualified Medical Physicist from Abt Reports I (1995), II (2002) and III (2008); e) non-CAMPEP physicists trained 1990-2009 and projected through 2014; f) CAMPEP physicists trained 1993-2008 and projected through 2014; and g) working Qualified Medical Physicists in radiation oncology in the United States (1990-2007). The model indicates that the number of qualified medical physicists working in radiation oncology required to meet demand in 2020 will be 150-175 per year. Because there is some elasticity in the workforce, a portion of the work effort might be assumed by practicing medical physicists. However, the minimum number of new radiation oncology physicists (ROPs) required for the health of the profession is estimated to be 125 per year in 2020. The radiation oncology physics community should plan to build residency programs to support these numbers for the future of the profession.

  13. The radiation oncology workforce: A focus on medical dosimetry

    International Nuclear Information System (INIS)

    Robinson, Gregg F.; Mobile, Katherine; Yu, Yan

    2014-01-01

    The 2012 Radiation Oncology Workforce survey was conducted to assess the current state of the entire workforce, predict its future needs and concerns, and evaluate quality improvement and safety within the field. This article describes the dosimetrist segment results. The American Society for Radiation Oncology (ASTRO) Workforce Subcommittee, in conjunction with other specialty societies, conducted an online survey targeting all segments of the radiation oncology treatment team. The data from the dosimetrist respondents are presented in this article. Of the 2573 dosimetrists who were surveyed, 890 responded, which resulted in a 35% segment response rate. Most respondents were women (67%), whereas only a third were men (33%). More than half of the medical dosimetrists were older than 45 years (69.2%), whereas the 45 to 54 years age group represented the highest percentage of respondents (37%). Most medical dosimetrists stated that their workload was appropriate (52%), with respondents working a reported average of 41.7 ± 4 hours per week. Overall, 86% of medical dosimetrists indicated that they were satisfied with their career, and 69% were satisfied in their current position. Overall, 61% of respondents felt that there was an oversupply of medical dosimetrists in the field, 14% reported that supply and demand was balanced, and the remaining 25% felt that there was an undersupply. The medical dosimetrists' greatest concerns included documentation/paperwork (78%), uninsured patients (80%), and insufficient reimbursement rates (87%). This survey provided an insight into the dosimetrist perspective of the radiation oncology workforce. Though an overwhelming majority has conveyed satisfaction concerning their career, the study allowed a spotlight to be placed on the profession's current concerns, such as insufficient reimbursement rates and possible oversupply of dosimetrists within the field

  14. The radiation oncology workforce: A focus on medical dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Gregg F., E-mail: grobinson@medicaldosimetry.org [American Association of Medical Dosimetrists, Herndon, VA (United States); Mobile, Katherine [American Association of Medical Dosimetrists, Herndon, VA (United States); Yu, Yan [Thomas Jefferson University, Philadelphia, PA (United States)

    2014-07-01

    The 2012 Radiation Oncology Workforce survey was conducted to assess the current state of the entire workforce, predict its future needs and concerns, and evaluate quality improvement and safety within the field. This article describes the dosimetrist segment results. The American Society for Radiation Oncology (ASTRO) Workforce Subcommittee, in conjunction with other specialty societies, conducted an online survey targeting all segments of the radiation oncology treatment team. The data from the dosimetrist respondents are presented in this article. Of the 2573 dosimetrists who were surveyed, 890 responded, which resulted in a 35% segment response rate. Most respondents were women (67%), whereas only a third were men (33%). More than half of the medical dosimetrists were older than 45 years (69.2%), whereas the 45 to 54 years age group represented the highest percentage of respondents (37%). Most medical dosimetrists stated that their workload was appropriate (52%), with respondents working a reported average of 41.7 ± 4 hours per week. Overall, 86% of medical dosimetrists indicated that they were satisfied with their career, and 69% were satisfied in their current position. Overall, 61% of respondents felt that there was an oversupply of medical dosimetrists in the field, 14% reported that supply and demand was balanced, and the remaining 25% felt that there was an undersupply. The medical dosimetrists' greatest concerns included documentation/paperwork (78%), uninsured patients (80%), and insufficient reimbursement rates (87%). This survey provided an insight into the dosimetrist perspective of the radiation oncology workforce. Though an overwhelming majority has conveyed satisfaction concerning their career, the study allowed a spotlight to be placed on the profession's current concerns, such as insufficient reimbursement rates and possible oversupply of dosimetrists within the field.

  15. Factors Affecting Gender-based Experiences for Residents in Radiation Oncology

    International Nuclear Information System (INIS)

    Barry, Parul N.; Miller, Karen H.; Ziegler, Craig; Hertz, Rosanna; Hanna, Nevine; Dragun, Anthony E.

    2016-01-01

    Purpose: Although women constitute approximately half of medical school graduates, an uneven gender distribution exists among many specialties, including radiation oncology, where women fill only one third of residency positions. Although multiple social and societal factors have been theorized, a structured review of radiation oncology resident experiences has yet to be performed. Methods and Materials: An anonymous and voluntary survey was sent to 611 radiation oncology residents practicing in the United States. Residents were asked about their gender-based experiences in terms of mentorship, their professional and learning environment, and their partnerships and personal life. Results: A total of 203 participants submitted completed survey responses. Fifty-seven percent of respondents were men, and 43% were women, with a mean age of 31 years (standard deviation=3.7 years). Although residents in general value having a mentor, female residents prefer mentors of the same gender (P<.001), and noted having more difficulty finding a mentor (P=.042). Women were more likely to say that they have observed preferential treatment based on gender (P≤.001), and they were more likely to perceive gender-specific biases or obstacles in their professional and learning environment (P<.001). Women selected residency programs based on gender ratios (P<.001), and female residents preferred to see equal numbers of male and female faculty (P<.001). Women were also more likely to perceive work-related strain than their male counterparts (P<.001). Conclusions: Differences in experiences for male and female radiation oncology residents exist with regard to mentorship and in their professional and learning environment.

  16. Factors Affecting Gender-based Experiences for Residents in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Parul N., E-mail: pnbarr01@louisville.edu [Department of Radiation Oncology, University of Louisville, School of Medicine, Louisville, Kentucky (United States); Miller, Karen H.; Ziegler, Craig [Department of Graduate Medical Education, University of Louisville, School of Medicine, Louisville, Kentucky (United States); Hertz, Rosanna [Departments of Women' s and Gender Studies and Sociology, Wellesley College, Wellesley, Massachusetts (United States); Hanna, Nevine [Department of Radiation Oncology, University of Utah, School of Medicine, Salt Lake City, Utah (United States); Dragun, Anthony E. [Department of Radiation Oncology, University of Louisville, School of Medicine, Louisville, Kentucky (United States)

    2016-07-01

    Purpose: Although women constitute approximately half of medical school graduates, an uneven gender distribution exists among many specialties, including radiation oncology, where women fill only one third of residency positions. Although multiple social and societal factors have been theorized, a structured review of radiation oncology resident experiences has yet to be performed. Methods and Materials: An anonymous and voluntary survey was sent to 611 radiation oncology residents practicing in the United States. Residents were asked about their gender-based experiences in terms of mentorship, their professional and learning environment, and their partnerships and personal life. Results: A total of 203 participants submitted completed survey responses. Fifty-seven percent of respondents were men, and 43% were women, with a mean age of 31 years (standard deviation=3.7 years). Although residents in general value having a mentor, female residents prefer mentors of the same gender (P<.001), and noted having more difficulty finding a mentor (P=.042). Women were more likely to say that they have observed preferential treatment based on gender (P≤.001), and they were more likely to perceive gender-specific biases or obstacles in their professional and learning environment (P<.001). Women selected residency programs based on gender ratios (P<.001), and female residents preferred to see equal numbers of male and female faculty (P<.001). Women were also more likely to perceive work-related strain than their male counterparts (P<.001). Conclusions: Differences in experiences for male and female radiation oncology residents exist with regard to mentorship and in their professional and learning environment.

  17. American Association of Physicists in Medicine Task Group 263: Standardizing Nomenclatures in Radiation Oncology.

    Science.gov (United States)

    Mayo, Charles S; Moran, Jean M; Bosch, Walter; Xiao, Ying; McNutt, Todd; Popple, Richard; Michalski, Jeff; Feng, Mary; Marks, Lawrence B; Fuller, Clifton D; Yorke, Ellen; Palta, Jatinder; Gabriel, Peter E; Molineu, Andrea; Matuszak, Martha M; Covington, Elizabeth; Masi, Kathryn; Richardson, Susan L; Ritter, Timothy; Morgas, Tomasz; Flampouri, Stella; Santanam, Lakshmi; Moore, Joseph A; Purdie, Thomas G; Miller, Robert C; Hurkmans, Coen; Adams, Judy; Jackie Wu, Qing-Rong; Fox, Colleen J; Siochi, Ramon Alfredo; Brown, Norman L; Verbakel, Wilko; Archambault, Yves; Chmura, Steven J; Dekker, Andre L; Eagle, Don G; Fitzgerald, Thomas J; Hong, Theodore; Kapoor, Rishabh; Lansing, Beth; Jolly, Shruti; Napolitano, Mary E; Percy, James; Rose, Mark S; Siddiqui, Salim; Schadt, Christof; Simon, William E; Straube, William L; St James, Sara T; Ulin, Kenneth; Yom, Sue S; Yock, Torunn I

    2018-03-15

    A substantial barrier to the single- and multi-institutional aggregation of data to supporting clinical trials, practice quality improvement efforts, and development of big data analytics resource systems is the lack of standardized nomenclatures for expressing dosimetric data. To address this issue, the American Association of Physicists in Medicine (AAPM) Task Group 263 was charged with providing nomenclature guidelines and values in radiation oncology for use in clinical trials, data-pooling initiatives, population-based studies, and routine clinical care by standardizing: (1) structure names across image processing and treatment planning system platforms; (2) nomenclature for dosimetric data (eg, dose-volume histogram [DVH]-based metrics); (3) templates for clinical trial groups and users of an initial subset of software platforms to facilitate adoption of the standards; (4) formalism for nomenclature schema, which can accommodate the addition of other structures defined in the future. A multisociety, multidisciplinary, multinational group of 57 members representing stake holders ranging from large academic centers to community clinics and vendors was assembled, including physicists, physicians, dosimetrists, and vendors. The stakeholder groups represented in the membership included the AAPM, American Society for Radiation Oncology (ASTRO), NRG Oncology, European Society for Radiation Oncology (ESTRO), Radiation Therapy Oncology Group (RTOG), Children's Oncology Group (COG), Integrating Healthcare Enterprise in Radiation Oncology (IHE-RO), and Digital Imaging and Communications in Medicine working group (DICOM WG); A nomenclature system for target and organ at risk volumes and DVH nomenclature was developed and piloted to demonstrate viability across a range of clinics and within the framework of clinical trials. The final report was approved by AAPM in October 2017. The approval process included review by 8 AAPM committees, with additional review by ASTRO

  18. Faculty of Radiation Oncology 2010 workforce survey.

    Science.gov (United States)

    Leung, John; Vukolova, Natalia

    2011-12-01

    This paper outlines the key results of the Faculty of Radiation Oncology 2010 workforce survey and compares these results with earlier data. The workforce survey was conducted in mid-2010 using a custom-designed 17-question survey. The overall response rate was 76%. The majority of radiation oncologist respondents were male (n = 212, 71%), but the majority of trainee respondents were female (n = 59, 52.7%). The age range of fellows was 32-92 years (median: 47 years; mean: 49 years) and that of trainees was 27-44 years (median: 31 years; mean: 31.7 years). Most radiation oncologists worked at more than one practice (average: two practices). The majority of radiation oncologists worked in the public sector (n = 169, 64.5%), with some working in 'combination' of public and private sectors (n = 65, 24.8%) and a minority working in the private sector only (n = 28, 10.7%). The hours worked per week ranged from 1 to 85 (mean: 44 h; median: 45 h) for radiation oncologists, while for trainees the range was 16-90 (mean: 47 h; median: 45 h). The number of new cases seen in a year ranged from 1 to 1100 (mean: 275; median: 250). Most radiation oncologists considered themselves generalists with a preferred sub-specialty (43.3%) or specialists (41.9%), while a minority considered themselves as generalists (14.8%). There are a relatively large and increasing number of radiation oncologists and trainees compared with previous years. The excessive workloads evident in previous surveys appear to have diminished. However, further work is required on assessing the impact of ongoing feminisation and sub-specialisation. © 2011 The Authors. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.

  19. Health regulations about radiation oncology in Spain: The legislative dilemma between radiation protection and treatment of cancer

    International Nuclear Information System (INIS)

    Esco, R.; Biete, A.; Pardo, J.; Carceller, J.A.; Veira, C.; Palacios, A.; Vazquez, M.G.

    2001-01-01

    The Royal Decree 1566/1998 of July 17th establishes the criteria on quality in radiation therapy and is a cornerstone in Spanish regulation of this medical field. The Royal Decree gives some rules that, from a medical point of view, are considered as a good practice. Radiation protection of patients is necessary to achieve a high quality radiation oncology treatments. That is the reason why Royal decree 1566/1998 is titled 'quality criteria in radiation therapy'. A quality control program must be tailored to every single radiation oncology department and, for this reason, its standardization is difficult. Nevertheless, some medical procedures are defined by the royal decree and such procedures are the minimum criteria that all the departments must follow in the development of its own quality control program. The authors make some reflections about health regulations about radiation oncology in Spain, pointing out that a legislative dilemma between radiation protection and treatment of cancer due to application of the legislative rules may occur. The social and medical cost of rigid bureaucratic procedures is pointed out. A large amount of equipment controls and measurements takes time that could be used in treating patients. This is more important in an environment of limited technical and human resources. (author)

  20. WE-H-BRB-03: Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, T. [Johns Hopkins University (United States)

    2016-06-15

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  1. WE-H-BRB-03: Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success

    International Nuclear Information System (INIS)

    McNutt, T.

    2016-01-01

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  2. A Personal Reflection on the History of Radiation Oncology at Memorial Sloan-Kettering Cancer Center

    International Nuclear Information System (INIS)

    Chu, Florence C.H.

    2011-01-01

    Purpose: To provide a historical and personal narrative of the development of radiation oncology at Memorial Sloan-Kettering Cancer Center (MSKCC), from its founding more than 100 years ago to the present day. Methods and Materials: Historical sources include the Archives of MSKCC, publications by members of MSKCC, the author's personal records and recollections, and her communications with former colleagues, particularly Dr. Basil Hilaris, Dr. Zvi Fuks, and Dr. Beryl McCormick. Conclusions: The author, who spent 38 years at MSKCC, presents the challenges and triumphs of MSKCC's Radiation Oncology Department and details MSKCC's breakthroughs in radiation oncology. She also describes MSKCC's involvement in the founding of the American Society for Therapeutic Radiology and Oncology.

  3. Mentorship Programs in Radiation Oncology Residency Training Programs: A Critical Unmet Need

    Energy Technology Data Exchange (ETDEWEB)

    Dhami, Gurleen; Gao, Wendy; Gensheimer, Michael F. [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Trister, Andrew D. [Sage Bionetworks, Seattle, Washington (United States); Kane, Gabrielle [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Zeng, Jing, E-mail: jzeng13@uw.edu [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States)

    2016-01-01

    Purpose: To conduct a nationwide survey to evaluate the current status of resident mentorship in radiation oncology. Methods and Materials: An anonymous electronic questionnaire was sent to all residents and recent graduates at US Accreditation Council for Graduate Medical Education–accredited radiation oncology residency programs, identified in the member directory of the Association of Residents in Radiation Oncology. Factors predictive of having a mentor and satisfaction with the mentorship experience were identified using univariate and multivariate analyses. Results: The survey response rate was 25%, with 85% of respondents reporting that mentorship plays a critical role in residency training, whereas only 53% had a current mentor. Larger programs (≥10 faculty, P=.004; and ≥10 residents, P<.001) were more likely to offer a formal mentorship program, which makes it more likely for residents to have an active mentor (88% vs 44%). Residents in a formal mentoring program reported being more satisfied with the overall mentorship experience (univariate odds ratio 8.77, P<.001; multivariate odds ratio 5, P<.001). On multivariate analysis, women were less likely to be satisfied with the mentorship experience. Conclusions: This is the first survey focusing on the status of residency mentorship in radiation oncology. Our survey highlights the unmet need for mentorship in residency programs.

  4. Radiation oncology training in the United States: report from the Radiation Oncology Resident Training Working Group organized by the Society of Chairman of Academic Radiation Oncology Programs (SCAROP)

    International Nuclear Information System (INIS)

    1999-01-01

    Purpose: In response to the major changes occurring in healthcare, medical education, and cancer research, SCAROP addressed issues related to post-graduate education that could enhance existing programs and complement the present system. Methods and Materials: SCAROP brought together a Working Group with a broad range of representatives organized in subcommittees to address: training, curriculum, and model building. Results: The Working Group emphasized the importance of training physicians with the necessary clinical, scientific, and analytical skills, and the need to provide expert radiation oncology services to patients throughout the United States. Opportunities currently exist for graduates in academic medicine, although there may be limited time and financial resources available to support academic pursuits. Conclusions: In the face of diminishing resources for training and education and the increased scope of knowledge required, a number of models for resident training are considered that can provide flexibility to complement the present system. This report is intended to initiate dialogue among the organizations responsible for radiation oncology resident education so that resident training can continually evolve to meet the needs of cancer patients and take advantage of opportunities for progress through innovative cancer care and research

  5. Burnout in United States Academic Chairs of Radiation Oncology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Aaron S. [Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington (United States); Thomas, Charles R., E-mail: thomasch@ohsu.edu [Department of Radiation Medicine, Knight Cancer Institute/Oregon Health and Science University, Portland, Oregon (United States); Bonner, James A. [Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama (United States); DeWeese, Theodore L. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland (United States); Formenti, Silvia C. [Department of Radiation Oncology, New York University, New York, New York (United States); Hahn, Stephen M. [Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Mittal, Bharat B. [Department of Radiation Oncology, Northwestern University, Chicago, Ilinois (United States)

    2014-02-01

    Purpose: The aims of this study were to determine the self-reported prevalence of burnout in chairs of academic radiation oncology departments, to identify factors contributing to burnout, and to compare the prevalence of burnout with that seen in other academic chair groups. Methods and Materials: An anonymous online survey was administered to the membership of the Society of Chairs of Academic Radiation Oncology Programs (SCAROP). Burnout was measured with the Maslach Burnout Inventory-Human Services Survey (MBI-HSS). Results: Questionnaires were returned from 66 of 87 chairs (76% response rate). Seventy-nine percent of respondents reported satisfaction with their current positions. Common major stressors were budget deficits and human resource issues. One-quarter of chairs reported that it was at least moderately likely that they would step down in the next 1 to 2 years; these individuals demonstrated significantly higher emotional exhaustion. Twenty-five percent of respondents met the MBI-HSS criteria for low burnout, 75% for moderate burnout, and none for high burnout. Group MBI-HSS subscale scores demonstrated a pattern of moderate emotional exhaustion, low depersonalization, and moderate personal accomplishment, comparing favorably with other specialties. Conclusions: This is the first study of burnout in radiation oncology chairs with a high response rate and using a validated psychometric tool. Radiation oncology chairs share similar major stressors to other chair groups, but they demonstrate relatively high job satisfaction and lower burnout. Emotional exhaustion may contribute to the anticipated turnover in coming years. Further efforts addressing individual and institutional factors associated with burnout may improve the relationship with work of chairs and other department members.

  6. Burnout in United States Academic Chairs of Radiation Oncology Programs

    International Nuclear Information System (INIS)

    Kusano, Aaron S.; Thomas, Charles R.; Bonner, James A.; DeWeese, Theodore L.; Formenti, Silvia C.; Hahn, Stephen M.; Lawrence, Theodore S.; Mittal, Bharat B.

    2014-01-01

    Purpose: The aims of this study were to determine the self-reported prevalence of burnout in chairs of academic radiation oncology departments, to identify factors contributing to burnout, and to compare the prevalence of burnout with that seen in other academic chair groups. Methods and Materials: An anonymous online survey was administered to the membership of the Society of Chairs of Academic Radiation Oncology Programs (SCAROP). Burnout was measured with the Maslach Burnout Inventory-Human Services Survey (MBI-HSS). Results: Questionnaires were returned from 66 of 87 chairs (76% response rate). Seventy-nine percent of respondents reported satisfaction with their current positions. Common major stressors were budget deficits and human resource issues. One-quarter of chairs reported that it was at least moderately likely that they would step down in the next 1 to 2 years; these individuals demonstrated significantly higher emotional exhaustion. Twenty-five percent of respondents met the MBI-HSS criteria for low burnout, 75% for moderate burnout, and none for high burnout. Group MBI-HSS subscale scores demonstrated a pattern of moderate emotional exhaustion, low depersonalization, and moderate personal accomplishment, comparing favorably with other specialties. Conclusions: This is the first study of burnout in radiation oncology chairs with a high response rate and using a validated psychometric tool. Radiation oncology chairs share similar major stressors to other chair groups, but they demonstrate relatively high job satisfaction and lower burnout. Emotional exhaustion may contribute to the anticipated turnover in coming years. Further efforts addressing individual and institutional factors associated with burnout may improve the relationship with work of chairs and other department members

  7. Establishment of Database System for Radiation Oncology

    International Nuclear Information System (INIS)

    Kim, Dae Sup; Lee, Chang Ju; Yoo, Soon Mi; Kim, Jong Min; Lee, Woo Seok; Kang, Tae Young; Back, Geum Mun; Hong, Dong Ki; Kwon, Kyung Tae

    2008-01-01

    To enlarge the efficiency of operation and establish a constituency for development of new radiotherapy treatment through database which is established by arranging and indexing radiotherapy related affairs in well organized manner to have easy access by the user. In this study, Access program provided by Microsoft (MS Office Access) was used to operate the data base. The data of radiation oncology was distinguished by a business logs and maintenance expenditure in addition to stock management of accessories with respect to affairs and machinery management. Data for education and research was distinguished by education material for department duties, user manual and related thesis depending upon its property. Registration of data was designed to have input form according to its subject and the information of data was designed to be inspected by making a report. Number of machine failure in addition to its respective repairing hours from machine maintenance expenditure in a period of January 2008 to April 2009 was analyzed with the result of initial system usage and one year after the usage. Radiation oncology database system was accomplished by distinguishing work related and research related criteria. The data are arranged and collected according to its subjects and classes, and can be accessed by searching the required data through referring the descriptions from each criteria. 32.3% of total average time was reduced on analyzing repairing hours by acquiring number of machine failure in addition to its type in a period of January 2008 to April 2009 through machine maintenance expenditure. On distinguishing and indexing present and past data upon its subjective criteria through the database system for radiation oncology, the use of information can be easily accessed to enlarge the efficiency of operation, and in further, can be a constituency for improvement of work process by acquiring various information required for new radiotherapy treatment in real time.

  8. Preclinical models in radiation oncology

    Directory of Open Access Journals (Sweden)

    Kahn Jenna

    2012-12-01

    Full Text Available Abstract As the incidence of cancer continues to rise, the use of radiotherapy has emerged as a leading treatment modality. Preclinical models in radiation oncology are essential tools for cancer research and therapeutics. Various model systems have been used to test radiation therapy, including in vitro cell culture assays as well as in vivo ectopic and orthotopic xenograft models. This review aims to describe such models, their advantages and disadvantages, particularly as they have been employed in the discovery of molecular targets for tumor radiosensitization. Ultimately, any model system must be judged by its utility in developing more effective cancer therapies, which is in turn dependent on its ability to simulate the biology of tumors as they exist in situ. Although every model has its limitations, each has played a significant role in preclinical testing. Continued advances in preclinical models will allow for the identification and application of targets for radiation in the clinic.

  9. Ontario Radiation Oncology Residents' Needs in the First Postgraduate Year-Residents' Perspective Survey

    International Nuclear Information System (INIS)

    Szumacher, Ewa; Warner, Eiran; Zhang Liying; Kane, Gabrielle; Ackerman, Ida; Nyhof-Young, Joyce; Agboola, Olusegun; Metz, Catherine de; Rodrigues, George; Voruganti, Sachi; Rappolt, Susan

    2007-01-01

    Purpose: To assess radiation oncology residents' needs and satisfaction in their first postgraduate year (PGY-1) in the province of Ontario. Methods and Materials: Of 62 radiation oncology residents, 58 who had completed their PGY-1 and were either enrolled or had graduated in 2006 were invited to participate in a 31-item survey. The questionnaire explored PGY-1 residents' needs and satisfaction in four domains: clinical workload, faculty/learning environment, stress level, and discrimination/harassment. The Fisher's exact and Wilcoxon nonparametric tests were used to determine relationships between covariate items and summary scores. Results: Of 58 eligible residents, 44 (75%) responded. Eighty-four percent of residents felt that their ward and call duties were appropriate. More than 50% of respondents indicated that they often felt isolated from their radiation oncology program. Only 77% agreed that they received adequate feedback, and 40% received sufficient counseling regarding career planning. More than 93% of respondents thought that faculty members had contributed significantly to their learning experience. Approximately 50% of residents experienced excessive stress and inadequate time for leisure or for reading the medical literature. Less than 10% of residents indicated that they had been harassed or experienced discrimination. Eighty-three percent agreed or strongly agreed that their PGY-1 experience had been outstanding. Conclusions: Most Ontario residents were satisfied with their PGY-1 training program. More counseling by radiation oncology faculty members should be offered to help residents with career planning. The residents might also benefit from more exposure to 'radiation oncology' and an introduction to stress management strategies

  10. American Society for Radiation Oncology (ASTRO) 2012 Workforce Study: The Radiation Oncologists' and Residents' Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Pohar, Surjeet, E-mail: spohar@iuhealth.org [Indiana University Health East, Indianapolis, Indiana (United States); Fung, Claire Y. [Commonwealth Newburyport Cancer Center, Newburyport, Massachusetts (United States); Hopkins, Shane [William R. Bliss Cancer Center, Ames, Iowa (United States); Miller, Robert [Mayo Clinic, Rochester, Minnesota (United States); Azawi, Samar [VA Veteran Hospital/University of California Irvine, Newport Beach, California (United States); Arnone, Anna; Patton, Caroline [ASTRO, Fairfax, Virginia (United States); Olsen, Christine [Massachusetts General Hospital, Boston, Massachusetts (United States)

    2013-12-01

    Purpose: The American Society for Radiation Oncology (ASTRO) conducted the 2012 Radiation Oncology Workforce Survey to obtain an up-to-date picture of the workforce, assess its needs and concerns, and identify quality and safety improvement opportunities. The results pertaining to radiation oncologists (ROs) and residents (RORs) are presented here. Methods: The ASTRO Workforce Subcommittee, in collaboration with allied radiation oncology professional societies, conducted a survey study in early 2012. An online survey questionnaire was sent to all segments of the radiation oncology workforce. Respondents who were actively working were included in the analysis. This manuscript describes the data for ROs and RORs. Results: A total of 3618 ROs and 568 RORs were surveyed. The response rate for both groups was 29%, with 1047 RO and 165 ROR responses. Among ROs, the 2 most common racial groups were white (80%) and Asian (15%), and the male-to-female ratio was 2.85 (74% male). The median age of ROs was 51. ROs averaged 253.4 new patient consults in a year and 22.9 on-treatment patients. More than 86% of ROs reported being satisfied or very satisfied overall with their career. Close to half of ROs reported having burnout feelings. There was a trend toward more frequent burnout feelings with increasing numbers of new patient consults. ROs' top concerns were related to documentation, reimbursement, and patients' health insurance coverage. Ninety-five percent of ROs felt confident when implementing new technology. Fifty-one percent of ROs thought that the supply of ROs was balanced with demand, and 33% perceived an oversupply. Conclusions: This study provides a current snapshot of the 2012 radiation oncology physician workforce. There was a predominance of whites and men. Job satisfaction level was high. However a substantial fraction of ROs reported burnout feelings. Perceptions about supply and demand balance were mixed. ROs top concerns reflect areas of attention

  11. Education and Training Needs in Radiation Oncology in India: Opportunities for Indo–US Collaborations

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Surbhi, E-mail: Surbhi.grover@uphs.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Chadha, Manjeet [Mount Sinai Beth Israel Health System, Icahn School of Medicine, New York, New York (United States); Rengan, Ramesh [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Williams, Tim R. [Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Boca Raton, Florida (United States); Morris, Zachary S. [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Seattle, Washington (United States); Morgan, David A.L. [Breast Services, Sherwood Forest Hospitals NHS Trust, Nottinghamshire (United Kingdom); Tripuraneni, Prabhakar [Department of Radiation Oncology, Scripps Green Hospital, La Jolla, California (United States); Hu, Kenneth [Department of Radiation Oncology, NYU Lagone Medical Center, New York, New York (United States); Viswanathan, Akila N. [Department of Radiation Oncology, Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2015-12-01

    Purpose: To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. Methods and Materials: A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. Results: We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education in intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Conclusion: Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo–US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives.

  12. Education and Training Needs in Radiation Oncology in India: Opportunities for Indo–US Collaborations

    International Nuclear Information System (INIS)

    Grover, Surbhi; Chadha, Manjeet; Rengan, Ramesh; Williams, Tim R.; Morris, Zachary S.; Morgan, David A.L.; Tripuraneni, Prabhakar; Hu, Kenneth; Viswanathan, Akila N.

    2015-01-01

    Purpose: To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. Methods and Materials: A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. Results: We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education in intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Conclusion: Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo–US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives.

  13. Education and Training Needs in Radiation Oncology in India: Opportunities for Indo-US Collaborations.

    Science.gov (United States)

    Grover, Surbhi; Chadha, Manjeet; Rengan, Ramesh; Williams, Tim R; Morris, Zachary S; Morgan, David A L; Tripuraneni, Prabhakar; Hu, Kenneth; Viswanathan, Akila N

    2015-12-01

    To conduct a survey of radiation oncologists in India, to better understand specific educational needs of radiation oncology in India and define areas of collaboration with US institutions. A 20-question survey was distributed to members of the Association of Indian Radiation Oncologists and the Indian Brachytherapy Society between November 2013 and May 2014. We received a total of 132 responses. Over 50% of the physicians treat more than 200 patients per day, use 2-dimensional or 3-dimensional treatment planning techniques, and approximately 50% use image guided techniques. For education needs, most respondents agreed that further education in intensity modulated radiation therapy, image guided radiation therapy, stereotactic radiation therapy, biostatistics, and research methods for medical residents would be useful areas of collaboration with institutions in the United States. Other areas of collaboration include developing a structured training module for nursing, physics training, and developing a second-opinion clinic for difficult cases with faculty in the United States. Various areas of potential collaboration in radiation oncology education were identified through this survey. These include the following: establishing education programs focused on current technology, facilitating exchange programs for trainees in India to the United States, promoting training in research methods, establishing training modules for physicists and oncology nurses, and creating an Indo-US. Tumor Board. It would require collaboration between the Association of Indian Radiation Oncologists and the American Society for Radiation Oncology to develop these educational initiatives. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [Possibilities and perspectives of quality management in radiation oncology].

    Science.gov (United States)

    Seegenschmiedt, M H; Zehe, M; Fehlauer, F; Barzen, G

    2012-11-01

    The medical discipline radiation oncology and radiation therapy (treatment with ionizing radiation) has developed rapidly in the last decade due to new technologies (imaging, computer technology, software, organization) and is one of the most important pillars of tumor therapy. Structure and process quality play a decisive role in the quality of outcome results (therapy success, tumor response, avoidance of side effects) in this field. Since 2007 all institutions in the health and social system are committed to introduce and continuously develop a quality management (QM) system. The complex terms of reference, the complicated technical instruments, the highly specialized personnel and the time-consuming processes for planning, implementation and assessment of radiation therapy made it logical to introduce a QM system in radiation oncology, independent of the legal requirements. The Radiation Center Hamburg (SZHH) has functioned as a medical care center under medical leadership and management since 2009. The total QM and organization system implemented for the Radiation Center Hamburg was prepared in 2008 and 2009 and certified in June 2010 by the accreditation body (TÜV-Süd) for DIN EN ISO 9001:2008. The main function of the QM system of the SZHH is to make the basic principles understandable for insiders and outsiders, to have clear structures, to integrate management principles into the routine and therefore to organize the learning processes more effectively both for interior and exterior aspects.

  15. Radiation oncology in the era of precision medicine

    DEFF Research Database (Denmark)

    Baumann, Michael; Krause, Mechthild; Overgaard, Jens

    2016-01-01

    with preservation of health-related quality of life can be achieved in many patients. Two major strategies, acting synergistically, will enable further widening of the therapeutic window of radiation oncology in the era of precision medicine: technology-driven improvement of treatment conformity, including advanced...

  16. Maintenance of Certification for Radiation Oncology

    International Nuclear Information System (INIS)

    Kun, Larry E.; Ang, Kian; Erickson, Beth; Harris, Jay; Hoppe, Richard; Leibel, Steve; Davis, Larry; Hattery, Robert

    2005-01-01

    Maintenance of Certification (MOC) recognizes that in addition to medical knowledge, several essential elements involved in delivering quality care must be developed and maintained throughout one's career. The MOC process is designed to facilitate and document professional development of American Board of Radiology (ABR) diplomates in the essential elements of quality care in Radiation Oncology and Radiologic Physics. ABR MOC has been developed in accord with guidelines of the American Board of Medical Specialties. All Radiation Oncology certificates issued since 1995 are 10-year, time-limited certificates; diplomates with time-limited certificates who wish to maintain specialty certification must complete specific requirements of the American Board of Radiology MOC program. Diplomates with lifelong certificates are not required to participate but are strongly encouraged to do so. Maintenance of Certification is based on documentation of participation in the four components of MOC: (1) professional standing, (2) lifelong learning and self-assessment, (3) cognitive expertise, and (4) performance in practice. Through these components, MOC addresses six competencies-medical knowledge, patient care, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice. Details of requirements for components 1, 2, and 3 of MOC are outlined along with aspects of the fourth component currently under development

  17. The Evolving Role of Regional Radiation Oncology Societies in Resident Education.

    Science.gov (United States)

    Mattes, Malcolm D

    2015-09-01

    The goal of this study is to develop insight into how a regional radiation oncology organization like the New York Roentgen Society (NYRS) can best assist in the education and development of residents. From April to June 2012, an electronic survey was sent to all 41 post-graduate year 2-4 radiation oncology residents in the New York metropolitan area. Questions were formatted using Likert scales (ranging from 1 to 5), and the Friedman and Wilcoxon signed-rank tests were used to compare the mean ratings of each answer option. Surveys were completed by 34 residents (response rate 83 %). The three highest rated features that residents hope to get out of their membership in the NYRS included "networking" (mean 4.21), "career mentoring" (mean 4.18), and "education" (mean 4.15), all of which were rated significantly higher (p networking, career mentoring, and clinical educational content (particularly as it relates to boards review) from their regional radiation oncology society. These findings may be applicable to similar organizations in other cities, as a guide for future programming.

  18. An evaluation of a paediatric radiation oncology teaching programme incorporating a SCORPIO teaching model.

    Science.gov (United States)

    Ahern, Verity; Klein, Linda; Bentvelzen, Adam; Garlan, Karen; Jeffery, Heather

    2011-04-01

    Many radiation oncology registrars have no exposure to paediatrics during their training. To address this, the Paediatric Special Interest Group of the Royal Australian and New Zealand College of Radiologists has convened a biennial teaching course since 1997. The 2009 course incorporated the use of a Structured, Clinical, Objective-Referenced, Problem-orientated, Integrated and Organized (SCORPIO) teaching model for small group tutorials. This study evaluates whether the paediatric radiation oncology curriculum can be adapted to the SCORPIO teaching model and to evaluate the revised course from the registrars' perspective. Teaching and learning resources included a pre-course reading list, a lecture series programme and a SCORPIO workshop. Three evaluation instruments were developed: an overall Course Evaluation Survey for all participants, a SCORPIO Workshop Survey for registrars and a Teacher's SCORPIO Workshop Survey. Forty-five radiation oncology registrars, 14 radiation therapists and five paediatric oncology registrars attended. Seventy-three per cent (47/64) of all participants completed the Course Evaluation Survey and 95% (38/40) of registrars completed the SCORPIO Workshop Survey. All teachers completed the Teacher's SCORPIO Survey (10/10). The overall educational experience was rated as good or excellent by 93% (43/47) of respondents. Ratings of satisfaction with lecture sessions were predominantly good or excellent. Registrars gave the SCORPIO workshop high ratings on each of 10 aspects of quality, with 82% allocating an excellent rating overall for the SCORPIO activity. Both registrars and teachers recommended more time for the SCORPIO stations. The 2009 course met the educational needs of the radiation oncology registrars and the SCORPIO workshop was a highly valued educational component. © 2011 The Authors. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.

  19. American College of Radiology In-Training Examination for Residents in Radiation Oncology (2004-2007)

    International Nuclear Information System (INIS)

    Paulino, Arnold C.; Kurtz, Elizabeth

    2008-01-01

    Purpose: To review the results of the recent American College of Radiology (ACR) in-training examinations in radiation oncology and to provide information regarding the examination changes in recent years. Methods and Materials: A retrospective review of the 2004 to 2007 ACR in-training examination was undertaken. Results: The number of residents taking the in-training examination increased from 2004 to 2007, compatible with the increase in the number of radiation oncology residents in the United States and Canada. The number of questions decreased from approximately 510 in 2004 and 2005, to 405 in 2006 and 360 in 2007, most of these changes were in the clinical oncology section. Although the in-training examination showed construct validity with resident performance improving with each year of additional clinical oncology training, it did so only until Level 3 for biology and physics. Several changes have been made to the examination process, including allowing residents to keep the examination booklet for self-study, posting of the answer key and rationales to questions on the ACR Website, and providing hard copies to residency training directors. In addition, all questions are now A type or multiple choice questions with one best answer, similar to the American Board of Radiology written examination for radiation oncology. Conclusion: Several efforts by the ACR have been made in recent years to make the examination an educational tool for radiation oncology residents and residency directors

  20. WE-H-BRB-02: Where Do We Stand in the Applications of Big Data in Radiation Oncology?

    International Nuclear Information System (INIS)

    Xing, L.

    2016-01-01

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  1. WE-H-BRB-02: Where Do We Stand in the Applications of Big Data in Radiation Oncology?

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L. [Stanford University School of Medicine (United States)

    2016-06-15

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  2. The role of PDGF in radiation oncology

    International Nuclear Information System (INIS)

    Li, Minglun; Jendrossek, Verena; Belka, Claus

    2007-01-01

    Platelet-derived growth factor (PDGF) was originally identified as a constituent of blood serum and subsequently purified from human platelets. PDGF ligand is a dimeric molecule consisting of two disulfide-bonded chains from A-, B-, C- and D-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors. PDGF is a potent mitogen and chemoattractant for mesenchymal cells and also a chemoattractant for neutrophils and monocytes. In radiation oncology, PDGF are important for several pathologic processes, including oncogenesis, angiogenesis and fibrogenesis. Autocrine activation of PDGF was observed and interpreted as an important mechanism involved in brain and other tumors. PDGF has been shown to be fundamental for the stability of normal blood vessel formation, and may be essential for the angiogenesis in tumor tissue. PDGF also plays an important role in the proliferative disease, such as atherosclerosis and radiation-induced fibrosis, regarding its proliferative stimulation of fibroblast cells. Moreover, PDGF was also shown to stimulate production of extracellular matrix proteins, which are mainly responsible for the irreversibility of these diseases. This review introduces the structural and functional properties of PDGF and PDGF receptors and discusses the role and mechanism of PDGF signaling in normal and tumor tissues under different conditions in radiation oncology

  3. Clinical quality assurance in radiation oncology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    A quality assurance program in radiation oncology monitors and evaluates any departmental functions which have an impact on patient outcome. The ultimate purpose of the program is to maximize health benefit to the patient without a corresponding increase in risk. The foundation of the program should be the credo: at least do no harm, usually do some good and ideally realize the greatest good. The steep dose response relationships for tumor control and complications require a high degree of accuracy and precision throughout the entire process of radiation therapy. It has been shown that failure to control local disease with radiation may result in decreased survival and may increase the cost of care by a factor of 3. Therefore, a comprehensive quality assurance program which seeks to optimize dose delivery and which encompasses both clinical and physics components, is needed

  4. MO-AB-204-00: Interoperability in Radiation Oncology: IHE-RO Committee Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    You’ve experienced the frustration: vendor A’s device claims to work with vendor B’s device, but the practice doesn’t match the promise. Getting devices working together is the hidden art that Radiology and Radiation Oncology staff have to master. To assist with that difficult process, the Integrating the Healthcare Enterprise (IHE) effort was established in 1998, with the coordination of the Radiological Society of North America. Integrating the Healthcare Enterprise (IHE) is a consortium of healthcare professionals and industry partners focused on improving the way computer systems interconnect and exchange information. This is done by coordinating the use of published standards like DICOM and HL7. Several clinical and operational IHE domains exist in the healthcare arena, including Radiology and Radiation Oncology. The ASTRO-sponsored IHE Radiation Oncology (IHE-RO) domain focuses on radiation oncology specific information exchange. This session will explore the IHE Radiology and IHE RO process for; IHE solicitation process for new profiles. Improving the way computer systems interconnect and exchange information in the healthcare enterprise Supporting interconnectivity descriptions and proof of adherence by vendors Testing and assuring the vendor solutions to connectivity problems. Including IHE profiles in RFPs for future software and hardware purchases. Learning Objectives: Understand IHE role in improving interoperability in health care. Understand process of profile development and implantation. Understand how vendors prove adherence to IHE RO profiles. S. Hadley, ASTRO Supported Activity.

  5. MO-AB-204-00: Interoperability in Radiation Oncology: IHE-RO Committee Update

    International Nuclear Information System (INIS)

    2016-01-01

    You’ve experienced the frustration: vendor A’s device claims to work with vendor B’s device, but the practice doesn’t match the promise. Getting devices working together is the hidden art that Radiology and Radiation Oncology staff have to master. To assist with that difficult process, the Integrating the Healthcare Enterprise (IHE) effort was established in 1998, with the coordination of the Radiological Society of North America. Integrating the Healthcare Enterprise (IHE) is a consortium of healthcare professionals and industry partners focused on improving the way computer systems interconnect and exchange information. This is done by coordinating the use of published standards like DICOM and HL7. Several clinical and operational IHE domains exist in the healthcare arena, including Radiology and Radiation Oncology. The ASTRO-sponsored IHE Radiation Oncology (IHE-RO) domain focuses on radiation oncology specific information exchange. This session will explore the IHE Radiology and IHE RO process for; IHE solicitation process for new profiles. Improving the way computer systems interconnect and exchange information in the healthcare enterprise Supporting interconnectivity descriptions and proof of adherence by vendors Testing and assuring the vendor solutions to connectivity problems. Including IHE profiles in RFPs for future software and hardware purchases. Learning Objectives: Understand IHE role in improving interoperability in health care. Understand process of profile development and implantation. Understand how vendors prove adherence to IHE RO profiles. S. Hadley, ASTRO Supported Activity

  6. Development of a virtual private database for a multi-institutional internet-based radiation oncology database overcoming differences in protocols

    International Nuclear Information System (INIS)

    Harauchi, Hajime; Kondo, Takashi; Kumasaki, Yu

    2002-01-01

    A multi-institutional Radiation Oncology Greater Area Database (ROGAD) was started in 1991 under the direction of the Japanese Society for Therapeutic Radiology and Oncology (JASTRO). Use of ROGAD was intended to allow reflection of results of data analysis into treatment strategy and treatment planning for individual cases, to provide quality assurance, to maximize the efficacy of radiotherapy, to allow assessment of new technologies or new modalities, and to optimize medical decision making. ROGAD collected 13,448 radiotherapy treatment cases from 325 facilities during the period from 1992 to 2001. In 2000, questionnaires were sent to 725 radiotherapy facilities throughout Japan, to further obtain the situation of the radiation oncology database. Workers at 179 facilities replied that ''the protocol of my facility is different from ROGAD protocol and I must send data according to the ROGAD protocol''. So, we developed the Virtual Private Database System (VPDS) which is operated as if an oncologist had a database solely owned by his own facility, in spite of actually operating ROGAD. VPDS realizes integration of different plural databases, regardless of differences in entry methods, protocols, definitions and interpretations of contents of clinical data elements between facilities. (author)

  7. ASTRO's core physics curriculum for radiation oncology residents

    International Nuclear Information System (INIS)

    Klein, Eric E.; Balter, James M.; Chaney, Edward L.; Gerbi, Bruce J.; Hughes, Lesley

    2004-01-01

    In 2002, the Radiation Physics Committee of the American Society of Therapeutic Radiology and Oncology (ASTRO) appointed an Ad-hoc Committee on Physics Teaching to Medical Residents. The main initiative of the committee was to develop a core curriculum for physics education. Prior publications that have analyzed physics teaching have pointed to wide discrepancies among teaching programs. The committee was composed of physicists or physicians from various residency program based institutions. Simultaneously, members had associations with the American Association of Physicists in Medicine (AAPM), ASTRO, Association of Residents in Radiation Oncology (ARRO), American Board of Radiology (ABR), and the American College of Radiology (ACR). The latter two organizations' representatives were on the physics examination committees, as one of the main agendas was to provide a feedback loop between the examining organizations and ASTRO. The document resulted in a recommended 54-h course. Some of the subjects were based on American College of Graduate Medical Education (ACGME) requirements (particles, hyperthermia), whereas the majority of the subjects along with the appropriated hours per subject were devised and agreed upon by the committee. For each subject there are learning objectives and for each hour there is a detailed outline of material to be covered. Some of the required subjects/h are being taught in most institutions (i.e., Radiation Measurement and Calibration for 4 h), whereas some may be new subjects (4 h of Imaging for Radiation Oncology). The curriculum was completed and approved by the ASTRO Board in late 2003 and is slated for dissemination to the community in 2004. It is our hope that teaching physicists will adopt the recommended curriculum for their classes, and simultaneously that the ABR for its written physics examination and the ACR for its training examination will use the recommended curriculum as the basis for subject matter and depth of

  8. Japanese structure survey of radiation oncology in 2007 with special reference to designated cancer care hospitals

    International Nuclear Information System (INIS)

    Numasaki, Hodaka; Shibuya, Hitoshi; Nishio, Masamichi

    2011-01-01

    Background and Purpose: The structure of radiation oncology in designated cancer care hospitals in Japan was investigated in terms of equipment, personnel, patient load, and geographic distribution. The effect of changes in the health care policy in Japan on radiotherapy structure was also examined. Material and Methods: The Japanese Society of Therapeutic Radiology and Oncology surveyed the national structure of radiation oncology in 2007. The structures of 349 designated cancer care hospitals and 372 other radiotherapy facilities were compared. Results: Respective findings for equipment and personnel at designated cancer care hospitals and other facilities included the following: linear accelerators/facility: 1.3 and 1.0; annual patients/linear accelerator: 296.5 and 175.0; and annual patient load/full-time equivalent radiation oncologist was 237.0 and 273.3, respectively. Geographically, the number of designated cancer care hospitals was associated with population size. Conclusion: The structure of radiation oncology in Japan in terms of equipment, especially for designated cancer care hospitals, was as mature as that in European countries and the United States, even though the medical costs in relation to GDP in Japan are lower. There is still a shortage of manpower. The survey data proved to be important to fully understand the radiation oncology medical care system in Japan. (orig.)

  9. 3D planning and radiation oncology residents' training

    International Nuclear Information System (INIS)

    Jayaraman, Subramania

    1991-01-01

    Radiation treatments in radiation oncology clinics have been always planned to irradiate three dimensional (3D) volumes. Though the term 3D planning has come in vogue only in recent years, the essence of 3D planning had been always there. This is because the patient is a 3D subject and every treatment option adopted in a radiotherapy clinic has to be based on a 3D judgement of its acceptability. An essential aspect of training of radiation oncology residents is to help them understand the different techniques and methods used to get an acceptable 3D dose delivery. The tools of 3D planning should be introduced to the residents for their educational value. The regular use of these tools may require not only fast computers and work stations, but also a change of routine in the department. This might be difficult since the departmental routine can evolve only gradually. On the other hand, an insight about the advantages of the tools could be gained through a simple personal computer. Some examples of using the 3D planning tools through a personal computer, for educational purposes have been presented here, using clinical contexts routinely encountered. (author). 5 refs., 10 figs

  10. Health Economics in Radiation Oncology: Introducing the ESTRO HERO project

    International Nuclear Information System (INIS)

    Lievens, Yolande; Grau, Cai

    2012-01-01

    New evidence based regimens and novel high precision technology have reinforced the important role of radiotherapy in the management of cancer. Current data estimate that more than 50% of all cancer patients would benefit from radiotherapy during the course of their disease. Within recent years, the radiotherapy community has become more than conscious of the ever-increasing necessity to come up with objective data to endorse the crucial role and position of radiation therapy within the rapidly changing global oncology landscape. In an era of ever expanding health care costs, proven safety and effectiveness is not sufficient anymore to obtain funding, objective data about cost and cost-effectiveness are nowadays additionally requested. It is in this context that ESTRO is launching the HERO-project (Health Economics in Radiation Oncology), with the overall aim to develop a knowledge base and a model for health economic evaluation of radiation treatments at the European level. To accomplish these objectives, the HERO project will address needs, accessibility, cost and cost-effectiveness of radiotherapy. The results will raise the profile of radiotherapy in the European cancer management context and help countries prioritizing radiotherapy as a highly cost-effective treatment strategy. This article describes the different steps and aims within the HERO-project, starting from evidence on the role of radiotherapy within the global oncology landscape and highlighting weaknesses that may undermine this position.

  11. Experience of wireless local area network in a radiation oncology department.

    Science.gov (United States)

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2010-01-01

    The aim of this work is to develop a wireless local area network (LAN) between different types of users (Radiation Oncologists, Radiological Physicists, Radiation Technologists, etc) for efficient patient data management and to made easy the availability of information (chair side) to improve the quality of patient care in Radiation Oncology department. We have used mobile workstations (Laptops) and stationary workstations, all equipped with wireless-fidelity (Wi-Fi) access. Wireless standard 802.11g (as recommended by Institute of Electrical and Electronic Engineers (IEEE, Piscataway, NJ) has been used. The wireless networking was configured with the Service Set Identifier (SSID), Media Access Control (MAC) address filtering, and Wired Equivalent Privacy (WEP) network securities. We are successfully using this wireless network in sharing the indigenously developed patient information management software. The proper selection of the hardware and the software combined with a secure wireless LAN setup will lead to a more efficient and productive radiation oncology department.

  12. Faculty of Radiation Oncology 2014 workforce census.

    Science.gov (United States)

    Leung, John; Munro, Philip L; James, Melissa

    2015-12-01

    This paper reports the key findings of the Faculty of Radiation Oncology 2014 workforce census and compares the results with earlier surveys. The census was conducted in mid-2014 with distribution to all radiation oncologists, educational affiliates and trainees listed on the college database. There were six email reminders and responses were anonymous. The overall response rate was 76.1%. The age range of fellows was 32-96 (mean = 49 years, median = 47 years). The majority of the radiation oncologists were male (n = 263, 63%). The minority of radiation oncologists were of Asian descent (n = 43, 13.4%). Radiation oncologists graduated from medical school on average 23 years ago (median = 22 years). A minority of fellows (n = 66, 20%) held another postgraduate qualification. Most radiation oncologists worked, on average, at two practices (median = 2, range 1-7). Practising radiation oncologists worked predominantly in the public sector (n = 131, 49%), but many worked in both the public and private sectors (n = 94, 37%), and a minority worked in the private sector only (n = 38, 14%). The largest proportion of the workforce was from New South Wales accounting for 29% of radiation oncologists. Radiation oncologists worked an average of 43 h/week (median = 43 h, range 6-80). Radiation oncologists who worked in the private sector worked less hours than their public sector or public/private sector colleagues. (38.3 vs. 42.9 vs. 44.3 h, P = 0.042). Victorians worked the fewest average hours per week at 38 h and West Australians the most at 46 h/week. Radiation oncologists averaged 48 min for each new case, 17 min per follow up and 11 min for a treatment review. Radiation oncologists averaged 246 new patients per year (median = 250, range = 20-600) with men (average = 268), Western Australians (average = 354) and those in private practice seeing more (average = 275). Most radiation

  13. Risk management of radiation therapy. Survey by north Japan radiation therapy oncology group

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Abe, Yoshinao; Yamada, Shogo; Hareyama, Masato; Nakamura, Ryuji; Sugita, Tadashi; Miyano, Takashi

    2004-01-01

    A North Japan Radiation Oncology Group (NJRTOG) survey was carried out to disclose the risk management of radiation therapy. During April 2002, we sent questionnaires to radiation therapy facilities in northern Japan. There were 31 replies from 27 facilities. Many incidents and accidents were reported, including old cases. Although 60% of facilities had a risk management manual and/or risk manager, only 20% had risk management manuals for radiation therapy. Eighty five percent of radiation oncologists thought that incidents may be due to a lack of manpower. Ninety percent of radiation oncologists want to know the type of cases happened in other facilities. The risk management system is still insufficient for radiation therapy. We hope that our data will be a great help to develop risk management strategies for radiation therapy for all radiation oncologists in Japan. (author)

  14. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO)

    International Nuclear Information System (INIS)

    2009-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  15. Making the right software choice for clinically used equipment in radiation oncology

    International Nuclear Information System (INIS)

    Vorwerk, Hilke; Zink, Klemens; Wagner, Daniela Michaela; Engenhart-Cabillic, Rita

    2014-01-01

    The customer of a new system for clinical use in radiation oncology must consider many options in order to find the optimal combination of software tools. Many commercial systems are available and each system has a large number of technical features. However an appraisal of the technical capabilities, especially the options for clinical implementations, is hardly assessable at first view. The intention of this article was to generate an assessment of the necessary functionalities for high precision radiotherapy and their integration in ROKIS (Radiation oncology clinic information system) for future customers, especially with regard to clinical applicability. Therefore we analysed the clinically required software functionalities and divided them into three categories: minimal, enhanced and optimal requirements for high conformal radiation treatment

  16. Final report from the Spanish Society of Radiotherapy and Oncology Infrastructures Commission about department standards recommendable in radiation oncology

    International Nuclear Information System (INIS)

    Esco, R.; Pardo, J.; Palacios, A.; Biete, A.; Fernandez, J.; Valls, A.; Herrazquin, L.; Roman, P.; Magallon, R.

    2001-01-01

    The publication of the Royal Decree 1566/1988 of July 17 th , about Quality Assurance and Control in Radiation Therapy, mandates the elaboration of protocols in Radiation Therapy. Those protocols must contemplate the material and human resources necessary to implement a quality practical radiation therapy according to law. In order to establish norms regarding human and material resources, it is necessary to establish beforehand some patient care standards that serve as a frame of reference to determine the resources needed for each procedure. Furthermore, the necessary coordination of resources, material and humans that have to be present in a correct patient care planning, mandates the publication of rules that are easy to interpret and follow up. In this direction, both editions of the 'White Book of Oncology in Spain', the 'GAT Document for Radiotherapy', and the rules edited by the Committee of Experts in Radiation Therapy of the Academy of Medical Sciences of Catalunya and Balears, have represented an important advance in the establishment of these criteria in Spain. The Spanish Society of Radiation Therapy and Oncology (AERO), in an attempt to facilitate to all its associates and the health authorities some criteria for planning and implementing resources, requested its Commission of Infrastructures to elaborate a set of rules to determine the necessary resources in each radiation therapy procedure. The objective of this document is to establish some recommendations about the minimal necessities of treatment units and staff, determining their respective work capabilities, to be able to develop a quality radiation therapy in departments already existing. In summary, it is intended that the patient care is limited in a way that quality is not affected by patient overload. Also it tries to offer the Public Administration some planning criteria useful to create the necessary services of Radiation Oncology, with the adequate resources, which will bring a

  17. Postgraduate Education in Radiation Oncology in Low- and Middle-income Countries

    DEFF Research Database (Denmark)

    Eriksen, J. G.

    2017-01-01

    Radiation therapy is one of the most cost-effective ways to treat cancer patients on both a curative and palliative basis in low- and middle-income countries (LMICs). Despite this, the gap in radiation oncology capacity is enormous and is even increasing due to a rapid rise in the incidence...

  18. Delegation of medical tasks in French radiation oncology departments: current situation and impact on residents' training.

    Science.gov (United States)

    Thureau, S; Challand, T; Bibault, J-E; Biau, J; Cervellera, M; Diaz, O; Faivre, J-C; Fumagalli, I; Leroy, T; Lescut, N; Martin, V; Pichon, B; Riou, O; Dubray, B; Giraud, P; Hennequin, C

    2013-10-01

    A national survey was conducted among the radiation oncology residents about their clinical activities and responsibilities. The aim was to evaluate the clinical workload and to assess how medical tasks are delegated and supervised. A first questionnaire was administered to radiation oncology residents during a national course. A second questionnaire was mailed to 59 heads of departments. The response rate was 62% for radiation oncology residents (99 questionnaires) and 51% for heads of department (30). Eighteen heads of department (64%) declared having written specifications describing the residents' clinical tasks and roles, while only 31 radiation oncology residents (34%) knew about such a document (P=0.009). A majority of residents were satisfied with the amount of medical tasks that were delegated to them. Older residents complained about insufficient exposure to new patient's consultation, treatment planning and portal images validation. The variations observed between departments may induce heterogeneous trainings and should be addressed specifically. National specifications are necessary to reduce heterogeneities in training, and to insure that the residents' training covers all the professional skills required to practice radiation oncology. A frame endorsed by academic and professional societies would also clarify the responsibilities of both residents and seniors. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  19. A new ambulatory classification and funding model for radiation oncology: non-admitted patients in Victorian hospitals.

    Science.gov (United States)

    Antioch, K M; Walsh, M K; Anderson, D; Wilson, R; Chambers, C; Willmer, P

    1998-01-01

    The Victorian Department of Human Services has developed a classification and funding model for non-admitted radiation oncology patients. Agencies were previously funded on an historical cost input basis. For 1996-97, payments were made according to the new Non-admitted Radiation Oncology Classification System and include four key components. Fixed grants are based on Weighted Radiation Therapy Services targets for megavoltage courses, planning procedures (dosimetry and simulation) and consultations. The additional throughput pool covers additional Weighted Radiation Therapy Services once targets are reached, with access conditional on the utilisation of a minimum number of megavoltage fields by each hospital. Block grants cover specialised treatments, such as brachytherapy, allied health payments and other support services. Compensation grants were available to bring payments up to the level of the previous year. There is potential to provide incentives to promote best practice in Australia through linking appropriate practice to funding models. Key Australian and international developments should be monitored, including economic evaluation studies, classification and funding models, and the deliberations of the American College of Radiology, the American Society for Therapeutic Radiology and Oncology, the Trans-Tasman Radiation Oncology Group and the Council of Oncology Societies of Australia. National impact on clinical practice guidelines in Australia can be achieved through the Quality of Care and Health Outcomes Committee of the National Health and Medical Research Council.

  20. The Negative Impact of Stark Law Exemptions on Graduate Medical Education and Health Care Costs: The Example of Radiation Oncology

    International Nuclear Information System (INIS)

    Anscher, Mitchell S.; Anscher, Barbara M.; Bradley, Cathy J.

    2010-01-01

    Purpose: To survey radiation oncology training programs to determine the impact of ownership of radiation oncology facilities by non-radiation oncologists on these training programs and to place these findings in a health policy context based on data from the literature. Methods and Materials: A survey was designed and e-mailed to directors of all 81 U.S. radiation oncology training programs in this country. Also, the medical and health economic literature was reviewed to determine the impact that ownership of radiation oncology facilities by non-radiation oncologists may have on patient care and health care costs. Prostate cancer treatment is used to illustrate the primary findings. Results: Seventy-three percent of the surveyed programs responded. Ownership of radiation oncology facilities by non-radiation oncologists is a widespread phenomenon. More than 50% of survey respondents reported the existence of these arrangements in their communities, with a resultant reduction in patient volumes 87% of the time. Twenty-seven percent of programs in communities with these business arrangements reported a negative impact on residency training as a result of decreased referrals to their centers. Furthermore, the literature suggests that ownership of radiation oncology facilities by non-radiation oncologists is associated with both increased utilization and increased costs but is not associated with increased access to services in traditionally underserved areas. Conclusions: Ownership of radiation oncology facilities by non-radiation oncologists appears to have a negative impact on residency training by shifting patients away from training programs and into community practices. In addition, the literature supports the conclusion that self-referral results in overutilization of expensive services without benefit to patients. As a result of these findings, recommendations are made to study further how physician ownership of radiation oncology facilities influence graduate

  1. The stucture of Korean radiation oncology in 1997

    International Nuclear Information System (INIS)

    Kim, Mi Sook; Yoo, Seoung Yul; Cho, Chul Koo; Yoo, Hyung Jun; Yang, Kwang Mo; Ji, Young Hoon; Kim, Do Jun

    1999-01-01

    To measure the basic structural characteristics of radiation oncology facilities in Korea during 1997 and to compare personnel, equipment and patient loads between Korea and developed countries. Mail surveys were conducted in 1998 and data on treatment machines, personnel and performed new patients were collected. Responses were obtained from the 100 percent of facilities. The consensus data of the whole contry were summarized using Microsoft Excel program. In Korea during 1997, 42 facilities delivered megavoltage radiation therapy with 71 treatment machines, 100 radiation oncologists, 26 medical physicist, 205 technologists and 19,773 new patients. Eighty nine percent of facilities in Korea had linear accelerates at least 6 MeV maximum photon energy. Ninety five percent of facilities had simulators while five percent of facilities had no simulator. Ninety one percent of facilities had computer planning systems and eighty three percent of facilities reported that they had a written quality assurance program. Thirty six percent of facilities had only one radiation oncologist and thirty eight percent of facilities had no medical physicists. The median of the distribution of annual patients load of a facility, patients load per a machine, patients load per a radiation oncologist, patients load per a therapist and therapists per a machine in Korea were 348 patients per a year, 263 patients per a machine, 171 patients per a radiation oncologist, 81 patients per a therapist, and 3 therapists per a machine respectively. The whole scale of the radiation oncology departments in Korea was smaller than Japan and USA in population ratio regard. In case of hardware level like linear accelerators, simulators and computer planning systems, there was no big differences between Korea and USA. The patients loads of radiation oncologists and therapists had no significant differences as compared with USA. However, it was desirable to consider the part time system in USA because there

  2. The internet radiation oncology journal club - a multi-institutional collaborative education project

    International Nuclear Information System (INIS)

    Goldsmith, Brian J.; Donaldson, Sarah S.; Mendenhall, William M.; Recht, Abram; Hoppe, Richard T.; Grigsby, Perry W.; Turrisi, Andrew T.; Tepper, Joel E.; Roach, Mack; Larson, David A.; Withers, H. Rodney; Purdy, James A.

    1997-01-01

    Purpose/Objective: The high volume of literature publication in radiation oncology poses a substantial selection and reading challenge. Busy health care providers may, from time to time, fail to identify and read important papers, resulting in delays in improvement of practice standards. Residency training programs have historically used journal clubs as a solution to this education challenge. In June 1995, radiation oncologists and scientists from nine institutions began the Internet Radiation Oncology Journal Club (IROJC) - a pilot project created to improve radiation oncology education worldwide by identifying noteworthy literature and stimulating an internet-based forum for literature discussion. Materials and Methods: The IROJC is a free-of-charge, moderated e-mailing list hosted by BIOSCI - a set of electronic communication forums used by biological scientists worldwide. Eleven radiation oncologists and scientists with internationally-recognized subspecialty expertise serve as IROJC editors. Each month, editors select noteworthy contemporary literature for inclusion. Selected references, often accompanied by editorial comments, are transmitted over the internet to IROJC readers. Readers request subscription by sending an e-mail message to biosci-server at net.bio.net, with 'subscribe radoncjc' in the body of the message. A website (www.bio.net/hypermail/RADIATION-ONCOLOGY), which includes an archive of back issues, is also available. Results: By February 1997, the IROJC's email-format enrollment numbered more than 670 readers from over 14 countries, its website was browsed by an average of 25 unique readers per week, and both figures were increasing steadily. An exciting online dialogue of literature- and practice-based comments and questions had emerged with increasing readership participation. Conclusion: Our pilot experience with the IROJC project has been promising. The observed increase in enrollment, website use, and readership discourse suggests

  3. Health economics in radiation oncology: introducing the ESTRO HERO project.

    Science.gov (United States)

    Lievens, Yolande; Grau, Cai

    2012-04-01

    New evidence based regimens and novel high precision technology have reinforced the important role of radiotherapy in the management of cancer. Current data estimate that more than 50% of all cancer patients would benefit from radiotherapy during the course of their disease. Within recent years, the radiotherapy community has become more than conscious of the ever-increasing necessity to come up with objective data to endorse the crucial role and position of radiation therapy within the rapidly changing global oncology landscape. In an era of ever expanding health care costs, proven safety and effectiveness is not sufficient anymore to obtain funding, objective data about cost and cost-effectiveness are nowadays additionally requested. It is in this context that ESTRO is launching the HERO-project (Health Economics in Radiation Oncology), with the overall aim to develop a knowledge base and a model for health economic evaluation of radiation treatments at the European level. To accomplish these objectives, the HERO project will address needs, accessibility, cost and cost-effectiveness of radiotherapy. The results will raise the profile of radiotherapy in the European cancer management context and help countries prioritizing radiotherapy as a highly cost-effective treatment strategy. This article describes the different steps and aims within the HERO-project, starting from evidence on the role of radiotherapy within the global oncology landscape and highlighting weaknesses that may undermine this position. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Special report: results of the 2000-2002 association of residents in radiation oncology (arro) surveys

    International Nuclear Information System (INIS)

    Jagsi, Reshma; Chronowski, Gregory M.; Buck, David A.; Kang, Song; Palermo, James

    2004-01-01

    Between 2000 and 2002, the Association of Residents in Radiation Oncology (ARRO) conducted its 18th, 19th, and 20th annual surveys of all residents training in radiation oncology in the United States. This report summarizes these results. The demographic characteristics of residents in training between 2000 and 2002 are detailed, as are issues regarding the quality of training and career choices of residents entering practice

  5. Investigation of the possible use of Arglabin, new antitumor medicine to prevent oncological diseases after radiation

    International Nuclear Information System (INIS)

    Shaikenov, T.; Karabalin, B.; Rakhimov, K.; Adekenov, S.

    1996-01-01

    Background: One of the heaviest effects of radiation exposure and its pollutants to the environment is a growth of oncologic diseases as a sequence of breakage of genetic body substance and transmission of Genetic load to the next generation. People of Kazakstan are anxious of the present situation with harmful effect of remaining radiation doses.Purpose of research: the examination of molecular mechanisms of action for a new drug 'Arglabin' was done with the purpose of preventing the malignant tumor occurrence for those people living on the territory of higher risk (in high radiation locations). Research work of the mechanisms of action for 'Arglabin' drug: - examination of the drug effectiveness to enzymes of prenylated proteins; - examination of the drug effectiveness on functioning the oncogene products; - examination of drug metabolism. Research work of the possibility for using 'Arglabin' to prevent oncology diseases includes: - establishment of experimental model of increased risk of oncologic disease on different groups of laboratory animals using the low-dosage radiation sphere; - examination of the drug effectiveness in oncology diseases prevention; - determination of mechanisms and the prevention's results on cancer

  6. Comparison of Onsite Versus Online Chart Reviews as Part of the American College of Radiation Oncology Accreditation Program.

    Science.gov (United States)

    Hepel, Jaroslaw T; Heron, Dwight E; Mundt, Arno J; Yashar, Catheryn; Feigenberg, Steven; Koltis, Gordon; Regine, William F; Prasad, Dheerendra; Patel, Shilpen; Sharma, Navesh; Hebert, Mary; Wallis, Norman; Kuettel, Michael

    2017-05-01

    Accreditation based on peer review of professional standards of care is essential in ensuring quality and safety in administration of radiation therapy. Traditionally, medical chart reviews have been performed by a physical onsite visit. The American College of Radiation Oncology Accreditation Program has remodeled its process whereby electronic charts are reviewed remotely. Twenty-eight radiation oncology practices undergoing accreditation had three charts per practice undergo both onsite and online review. Onsite review was performed by a single reviewer for each practice. Online review consisted of one or more disease site-specific reviewers for each practice. Onsite and online reviews were blinded and scored on a 100-point scale on the basis of 20 categories. A score of less than 75 was failing, and a score of 75 to 79 was marginal. Any failed charts underwent rereview by a disease site team leader. Eighty-four charts underwent both onsite and online review. The mean scores were 86.0 and 86.9 points for charts reviewed onsite and online, respectively. Comparison of onsite and online reviews revealed no statistical difference in chart scores ( P = .43). Of charts reviewed, 21% had a marginal (n = 8) or failing (n = 10) score. There was no difference in failing charts ( P = .48) or combined marginal and failing charts ( P = .13) comparing onsite and online reviews. The American College of Radiation Oncology accreditation process of online chart review results in comparable review scores and rate of failing scores compared with traditional on-site review. However, the modern online process holds less potential for bias by using multiple reviewers per practice and allows for greater oversight via disease site team leader rereview.

  7. The situation of radiation oncology training programs and their graduates in 1997

    International Nuclear Information System (INIS)

    Crewson, Philip E.; Sunshine, Jonathan H.; Schepps, Barbara

    1999-01-01

    Purpose: In light of concerns about the job market, the American College of Radiology (ACR) studied the employment situation of 1997 radiation oncology graduates, and the status and plans of radiation oncology training programs. Methods and Materials: In April-May 1997, and in a December follow-up, the ACR surveyed all radiation oncology residency directors about the employment situation of their 1997 residency and fellowship graduates and about their programs. Ninety-four percent of those surveyed responded. We compared findings with surveys from 1995 and 1996. Differences were assessed with p ≤ 0.05 as the test of statistical significance. Results: By six months after graduation, 98% of residency graduates and all fellowship graduates were employed. Program directors reported approximately 95% of graduates had positions that reasonably matched their training and personal employment goals. Programs have reduced beginning residency slots by 22% over the past three years, and further reductions are planned. Many observers were disappointed with fill rates in the 1997 National Match, but by the December follow-up, 96% of beginning-year residency slots were filled. Conclusion: Unemployment continues to be low, and one 'softer' indicator, the job market perceptions of residency program directors, showed improvement

  8. Radiation Oncology Terminology Linker: A Step Towards a Linked Data Knowledge Base.

    Science.gov (United States)

    Lustberg, Tim; van Soest, Johan; Fick, Peter; Fijten, Rianne; Hendriks, Tim; Puts, Sander; Dekker, Andre

    2018-01-01

    Performing image feature extraction in radiation oncology is often dependent on the organ and tumor delineations provided by clinical staff. These delineation names are free text DICOM metadata fields resulting in undefined information, which requires effort to use in large-scale image feature extraction efforts. In this work we present a scale-able solution to overcome these naming convention challenges with a REST service using Semantic Web technology to convert this information to linked data. As a proof of concept an open source software is used to compute radiation oncology image features. The results of this work can be found in a public Bitbucket repository.

  9. Interventional Radiation Oncology (IRO): Transition of a magnetic resonance simulator to a brachytherapy suite.

    Science.gov (United States)

    Anderson, Roberta; Armour, Elwood; Beeckler, Courtney; Briner, Valerie; Choflet, Amanda; Cox, Andrea; Fader, Amanda N; Hannah, Marie N; Hobbs, Robert; Huang, Ellen; Kiely, Marilyn; Lee, Junghoon; Morcos, Marc; McMillan, Paige E; Miller, Dave; Ng, Sook Kien; Prasad, Rashmi; Souranis, Annette; Thomsen, Robert; DeWeese, Theodore L; Viswanathan, Akila N

    2018-03-13

    As a core component of a new gynecologic cancer radiation program, we envisioned, structured, and implemented a novel Interventional Radiation Oncology (IRO) unit and magnetic resonance (MR)-brachytherapy environment in an existing MR simulator. We describe the external and internal processes required over a 6-8 month time frame to develop a clinical and research program for gynecologic brachytherapy and to successfully convert an MR simulator into an IRO unit. Support of the institution and department resulted in conversion of an MR simulator to a procedural suite. Development of the MR gynecologic brachytherapy program required novel equipment, staffing, infrastructural development, and cooperative team development with anesthetists, nurses, therapists, physicists, and physicians to ensure a safe and functional environment. Creation of a separate IRO unit permitted a novel billing structure. The creation of an MR-brachytherapy environment in an MR simulator is feasible. Developing infrastructure includes several collaborative elements. Unique to the field of radiation oncology, formalizing the space as an Interventional Radiation Oncology unit permits a sustainable financial structure. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. The script concordance test in radiation oncology: validation study of a new tool to assess clinical reasoning

    International Nuclear Information System (INIS)

    Lambert, Carole; Gagnon, Robert; Nguyen, David; Charlin, Bernard

    2009-01-01

    The Script Concordance test (SCT) is a reliable and valid tool to evaluate clinical reasoning in complex situations where experts' opinions may be divided. Scores reflect the degree of concordance between the performance of examinees and that of a reference panel of experienced physicians. The purpose of this study is to demonstrate SCT's usefulness in radiation oncology. A 90 items radiation oncology SCT was administered to 155 participants. Three levels of experience were tested: medical students (n = 70), radiation oncology residents (n = 38) and radiation oncologists (n = 47). Statistical tests were performed to assess reliability and to document validity. After item optimization, the test comprised 30 cases and 70 questions. Cronbach alpha was 0.90. Mean scores were 51.62 (± 8.19) for students, 71.20 (± 9.45) for residents and 76.67 (± 6.14) for radiation oncologists. The difference between the three groups was statistically significant when compared by the Kruskall-Wallis test (p < 0.001). The SCT is reliable and useful to discriminate among participants according to their level of experience in radiation oncology. It appears as a useful tool to document the progression of reasoning during residency training

  11. TH-A-16A-01: Image Quality for the Radiation Oncology Physicist: Review of the Fundamentals and Implementation

    International Nuclear Information System (INIS)

    Seibert, J; Imbergamo, P

    2014-01-01

    The expansion and integration of diagnostic imaging technologies such as On Board Imaging (OBI) and Cone Beam Computed Tomography (CBCT) into radiation oncology has required radiation oncology physicists to be responsible for and become familiar with assessing image quality. Unfortunately many radiation oncology physicists have had little or no training or experience in measuring and assessing image quality. Many physicists have turned to automated QA analysis software without having a fundamental understanding of image quality measures. This session will review the basic image quality measures of imaging technologies used in the radiation oncology clinic, such as low contrast resolution, high contrast resolution, uniformity, noise, and contrast scale, and how to measure and assess them in a meaningful way. Additionally a discussion of the implementation of an image quality assurance program in compliance with Task Group recommendations will be presented along with the advantages and disadvantages of automated analysis methods. Learning Objectives: Review and understanding of the fundamentals of image quality. Review and understanding of the basic image quality measures of imaging modalities used in the radiation oncology clinic. Understand how to implement an image quality assurance program and to assess basic image quality measures in a meaningful way

  12. SU-E-T-524: Web-Based Radiation Oncology Incident Reporting and Learning System (ROIRLS)

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, R; Palta, J; Hagan, M [Virginia Commonwealth University, Richmond, VA (United States); National Radiation Oncology Program (10P4H), Richmond, VA (United States); Grover, S; Malik, G [TSG Innovations Inc., Richmond, VA (United States)

    2014-06-01

    Purpose: Describe a Web-based Radiation Oncology Incident Reporting and Learning system that has the potential to improve quality of care for radiation therapy patients. This system is an important facet of continuing effort by our community to maintain and improve safety of radiotherapy.Material and Methods: The VA National Radiation Oncology Program office has embarked on a program to electronically collect adverse events and near miss data of radiation treatment of over 25,000 veterans treated with radiotherapy annually. Software used for this program is deployed on the VAs intranet as a Website. All data entry forms (adverse event or near miss reports, work product reports) utilize standard causal, RT process step taxonomies and data dictionaries defined in AAPM and ASTRO reports on error reporting (AAPM Work Group Report on Prevention of Errors and ASTROs safety is no accident report). All reported incidents are investigated by the radiation oncology domain experts. This system encompasses the entire feedback loop of reporting an incident, analyzing it for salient details, and developing interventions to prevent it from happening again. The operational workflow is similar to that of the Aviation Safety Reporting System. This system is also synergistic with ROSIS and SAFRON. Results: The ROIRLS facilitates the collection of data that help in tracking adverse events and near misses and develop new interventions to prevent such incidents. The ROIRLS electronic infrastructure is fully integrated with each registered facility profile data thus minimizing key strokes and multiple entries by the event reporters. Conclusions: OIRLS is expected to improve the quality and safety of a broad spectrum of radiation therapy patients treated in the VA and fulfills our goal of Effecting Quality While Treating Safely The Radiation Oncology Incident Reporting and Learning System software used for this program has been developed, conceptualized and maintained by TSG Innovations

  13. SU-E-T-524: Web-Based Radiation Oncology Incident Reporting and Learning System (ROIRLS)

    International Nuclear Information System (INIS)

    Kapoor, R; Palta, J; Hagan, M; Grover, S; Malik, G

    2014-01-01

    Purpose: Describe a Web-based Radiation Oncology Incident Reporting and Learning system that has the potential to improve quality of care for radiation therapy patients. This system is an important facet of continuing effort by our community to maintain and improve safety of radiotherapy.Material and Methods: The VA National Radiation Oncology Program office has embarked on a program to electronically collect adverse events and near miss data of radiation treatment of over 25,000 veterans treated with radiotherapy annually. Software used for this program is deployed on the VAs intranet as a Website. All data entry forms (adverse event or near miss reports, work product reports) utilize standard causal, RT process step taxonomies and data dictionaries defined in AAPM and ASTRO reports on error reporting (AAPM Work Group Report on Prevention of Errors and ASTROs safety is no accident report). All reported incidents are investigated by the radiation oncology domain experts. This system encompasses the entire feedback loop of reporting an incident, analyzing it for salient details, and developing interventions to prevent it from happening again. The operational workflow is similar to that of the Aviation Safety Reporting System. This system is also synergistic with ROSIS and SAFRON. Results: The ROIRLS facilitates the collection of data that help in tracking adverse events and near misses and develop new interventions to prevent such incidents. The ROIRLS electronic infrastructure is fully integrated with each registered facility profile data thus minimizing key strokes and multiple entries by the event reporters. Conclusions: OIRLS is expected to improve the quality and safety of a broad spectrum of radiation therapy patients treated in the VA and fulfills our goal of Effecting Quality While Treating Safely The Radiation Oncology Incident Reporting and Learning System software used for this program has been developed, conceptualized and maintained by TSG Innovations

  14. Internal qualification and credentialing of radiation oncology physicists to perform patient special procedures

    Directory of Open Access Journals (Sweden)

    Michael D Mills

    2014-01-01

    Full Text Available In the arena of radiation oncology special procedures, medical physicists are often the focus professionals for implementation and administration of advanced and complex technologies. One of the most vexing and challenging aspects of managing complexity concerns the ongoing internal qualification and credentialing of radiation oncology physicists to perform patient special procedures. To demonstrate ongoing qualification, a physicist must a document initial training and successful completion of competencies to implement and perform this procedure, b demonstrate familiarity with all aspects of the commissioning and quality assurance process, c demonstrate continuing education respecting this procedure, d demonstrate the peer-reviewed completion of a minimum number of patient special procedures during a specified time span, and e demonstrate satisfactory overall progress toward maintenance of specialty board certification. In many respects, this information complement is similar to that required by an accredited residency program in therapy physics. In this investigation, we report on the design of a management tool to qualify staff radiation oncology physicists to deliver patient procedures.

  15. Meeting the challenge of managed care - Part III: Information systems for radiation oncology practice

    International Nuclear Information System (INIS)

    Kijewski, Peter

    1997-01-01

    Purpose: This course will review topics to be considered when defining an information systems plan for a department of radiation oncology. A survey of available systems will be presented. Computer information systems can play an important role in the effective administration and operation of a department of radiation oncology. Tasks such as 1) scheduling for physicians, patients, and rooms, 2) charge collection and billing, 3) administrative reporting, and 4) treatment verification can be carried out efficiently with the assistance of computer systems. Operating a department without a state of art computer system will become increasingly difficult as hospitals and healthcare buyers increasingly rely on computer information technology. Communication of the radiation oncology system with outside systems will thus further enhance the utility of the computer system. The steps for the selection and installation of an information system will be discussed: 1) defining the objectives, 2) selecting a suitable system, 3) determining costs, 4) setting up maintenance contracts, and 5) planning for future upgrades

  16. Apps for Radiation Oncology. A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    J.J. Calero

    2017-02-01

    Full Text Available Introduction: Software applications executed on a smart-phone or mobile device (“Apps” are increasingly used by oncologists in their daily work. A comprehensive critical review was conducted on Apps specifically designed for Radiation Oncology, which aims to provide scientific support for these tools and to guide users in choosing the most suited to their needs. Material and methods: A systematic search was conducted in mobile platforms, iOS and Android, returning 157 Apps. Excluding those whose purpose did not match the scope of the study, 31 Apps were methodically analyzed by the following items: Objective Features, List of Functionalities, Consistency in Outcomes and Usability. Results: Apps are presented in groups of features, as Dose Calculators (7 Apps, Clinical Calculators (4, Tools for Staging (7, Multipurpose (7 and Others (6. Each App is presented with the list of attributes and a brief comment. A short summary is provided at the end of each group. Discussion and Recommendations: There are numerous Apps with useful tools at the disposal of radiation oncologists. The most advisable Apps do not match the more expensive. Three all-in-one apps seem advisable above all: RadOnc Reference (in English, Easy Oncology (in German and iOncoR (in Spanish. Others recommendations are suggested for specific tasks: dose calculators, treatment-decision and staging.

  17. Present status and future aspects of radiation oncology in Korea

    International Nuclear Information System (INIS)

    Huh, Seung Jae

    2006-01-01

    An analysis of the infrastructure for radiotherapy in Korea was performed to establish a baseline plan in 2006 for future development. The data were obtained from 61 radiotherapy centers. The survey covered then number of radiotherapy centers, major equipment and personnel. Centers were classified into technical level groups according to the IAEA criteria. 28,789 new patients were treated with radiation therapy in 2004. There were 104 megavoltage devices in 61 institutions, which included 96 linear accelerators, two Cobalt 60 units, three Tomotherapy units, two Cyberknife units and one proton accelerator in 2006. Thirty-five high dose rate remote after-loading systems and 20 CT-simulators were surveyed. Personnel included 132 radiation oncologists, 50 radiation oncology residents, 64 medical physicists, 130 nurses and 369 radiation therapy technologists. All of the facilities employed treatment-planning computers and simulators, among these thirty-two percent (20 facilities) used a CT-simulator. Sixty-six percent (40 facilities) used a PET/CT scanner, and 35% (22 facilities) had the capacity to implement intensity modulated radiation therapy. Twenty-five facilities (41%) were included in technical level 3 group (having one of intensity modulated radiotherapy, stereotactic radiotherapy or intra-operative radiotherapy system). Radiation oncology in Korea evolved greatly in both quality and quantity recently and demand for radiotherapy in Korea is increasing steadily. The information in this analysis represents important data to develop the future planning of equipment and human resources

  18. The History and Role of Accelerators in Radiation Oncology

    Science.gov (United States)

    Smith, Alfred

    2003-04-01

    Over one million people are diagnosed with cancer (excluding skin cancer) each year in the United States - about half of those patients will receive radiation as part of their treatment. Radiation Oncology is the field of medicine that specializes in the treatment of cancer with radiation. The evolution of Radiation Oncology, and its success as a cancer treatment modality, has generally paralleled developments in imaging and accelerator technologies. Accelerators, the topic of this paper, have proven to be highly reliable, safe and efficient sources of radiation for cancer treatment. Advances in accelerator technology, especially those that have provided higher energies and dose rates, and more localized (to the tumor volume) dose distributions, have enabled significant improvements in the outcomes of cancer treatments. The use of Cobalt 60 beams has greatly declined in the past decade. Radiation beams used in cancer treatment include x-rays, electrons, protons, negative pions, neutrons, and ions of helium, carbon, neon and silicon. X-rays and electrons, produced by linear electron accelerators, have been the most widely used. The history of medical accelerators can be traced from Roentgen's discovery of x-rays in 1895. The evolution of medical electron accelerators will be discussed and the use of x-ray tubes, electrostatic accelerators, betatrons, and linear accelerators will be described. Heavy particle cancer treatments began in 1955 using proton beams from the Berkeley 184-inch cyclotron. Accelerators that have been used for heavy particle therapy include the Berkeley Bevalac, Los Alamos Pion Facility, Fermi Laboratory, and various research and medical cyclotrons and synchrotrons. Heavy particle accelerators and their application for cancer treatment will be discussed.

  19. Evaluation of Health Economics in Radiation Oncology: A Systematic Review

    International Nuclear Information System (INIS)

    Nguyen, Timothy K.; Goodman, Chris D.; Boldt, R. Gabriel; Warner, Andrew; Palma, David A.; Rodrigues, George B.; Lock, Michael I.; Mishra, Mark V.; Zaric, Gregory S.; Louie, Alexander V.

    2016-01-01

    Purpose: Despite the rising costs in radiation oncology, the impact of health economics research on radiation therapy practice analysis patterns is unclear. We performed a systematic review of cost-effectiveness analyses (CEAs) and cost-utility analyses (CUAs) to identify trends in reporting quality in the radiation oncology literature over time. Methods and Materials: A systematic review of radiation oncology economic evaluations up to 2014 was performed, using MEDLINE and EMBASE databases. The Consolidated Health Economic Evaluation Reporting Standards guideline informed data abstraction variables including study demographics, economic parameters, and methodological details. Tufts Medical Center CEA registry quality scores provided a basis for qualitative assessment of included studies. Studies were stratified by 3 time periods (1995-2004, 2005-2009, and 2010-2014). The Cochran-Armitage trend test and linear trend test were used to identify trends over time. Results: In total, 102 articles were selected for final review. Most studies were in the context of a model (61%) or clinical trial (28%). Many studies lacked a conflict of interest (COI) statement (67%), a sponsorship statement (48%), a reported study time horizon (35%), and the use of discounting (29%). There was a significant increase over time in the reporting of a COI statement (P<.001), health care payer perspective (P=.019), sensitivity analyses using multivariate (P=.043) or probabilistic methods (P=.011), incremental cost-effectiveness threshold (P<.001), secondary source utility weights (P=.010), and cost effectiveness acceptability curves (P=.049). There was a trend toward improvement in Tuft scores over time (P=.065). Conclusions: Recent reports demonstrate improved reporting rates in economic evaluations; however, there remains significant room for improvement as reporting rates are still suboptimal. As fiscal pressures rise, we will rely on economic assessments to guide our practice decisions

  20. Evaluation of Health Economics in Radiation Oncology: A Systematic Review

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Timothy K.; Goodman, Chris D. [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Boldt, R. Gabriel [London Health Sciences Centre, London, Ontario (Canada); Warner, Andrew; Palma, David A. [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Rodrigues, George B. [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Department of Epidemiology and Biostatistics, Western University, London, Ontario (Canada); Lock, Michael I. [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Mishra, Mark V. [Department of Radiation Oncology, University of Maryland, Baltimore, Maryland (United States); Zaric, Gregory S. [Department of Epidemiology and Biostatistics, Western University, London, Ontario (Canada); Ivey Business School, Western University, London, Ontario (Canada); Louie, Alexander V., E-mail: Dr.alexlouie@gmail.com [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Department of Epidemiology and Biostatistics, Western University, London, Ontario (Canada)

    2016-04-01

    Purpose: Despite the rising costs in radiation oncology, the impact of health economics research on radiation therapy practice analysis patterns is unclear. We performed a systematic review of cost-effectiveness analyses (CEAs) and cost-utility analyses (CUAs) to identify trends in reporting quality in the radiation oncology literature over time. Methods and Materials: A systematic review of radiation oncology economic evaluations up to 2014 was performed, using MEDLINE and EMBASE databases. The Consolidated Health Economic Evaluation Reporting Standards guideline informed data abstraction variables including study demographics, economic parameters, and methodological details. Tufts Medical Center CEA registry quality scores provided a basis for qualitative assessment of included studies. Studies were stratified by 3 time periods (1995-2004, 2005-2009, and 2010-2014). The Cochran-Armitage trend test and linear trend test were used to identify trends over time. Results: In total, 102 articles were selected for final review. Most studies were in the context of a model (61%) or clinical trial (28%). Many studies lacked a conflict of interest (COI) statement (67%), a sponsorship statement (48%), a reported study time horizon (35%), and the use of discounting (29%). There was a significant increase over time in the reporting of a COI statement (P<.001), health care payer perspective (P=.019), sensitivity analyses using multivariate (P=.043) or probabilistic methods (P=.011), incremental cost-effectiveness threshold (P<.001), secondary source utility weights (P=.010), and cost effectiveness acceptability curves (P=.049). There was a trend toward improvement in Tuft scores over time (P=.065). Conclusions: Recent reports demonstrate improved reporting rates in economic evaluations; however, there remains significant room for improvement as reporting rates are still suboptimal. As fiscal pressures rise, we will rely on economic assessments to guide our practice decisions

  1. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths … worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious

  2. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  3. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (Spanish Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  4. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  5. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  6. 12th Quadrennial Congress of the International Association for Radiation Research incorporating the 50th Annual Meeting of Radiation Research Society, RANZCR Radiation Oncology Annual Scientific Meeting and AINSE Radiation Science Conference

    International Nuclear Information System (INIS)

    2003-01-01

    The 12th International Congress of Radiation Research (ICRR2003), for the first time held in the Southern Hemisphere under the auspices of the International Association of Radiation Research (IARR). The Australian affiliate of IARR is the Australian Institute of Nuclear Science and Engineering (AINSE). As with recent Congresses, the annual scientific meeting of the Radiation Research Society will be incorporated into the program. The Congress will be further enhanced by the integration of the annual scientific meeting of the Faculty of Radiation Oncology of the Royal Australian and New Zealand College of Radiologists, and the AINSE Radiation Science Conference. An exciting programme was presented with the main threads being radiation oncology, radiation biology, radiation chemistry/physics, radiation protection and the environment. Items in INIS scope have been separately indexed

  7. Association of preresidency peer-reviewed publications with radiation oncology resident choice of academic versus private practice career.

    Science.gov (United States)

    McClelland, Shearwood; Thomas, Charles R; Wilson, Lynn D; Holliday, Emma B; Jaboin, Jerry J

    The decision of radiation oncology residents to pursue academic versus private practice careers plays a central role in shaping the present and future of the field, but factors that are potentially predictive of this decision are lacking. This study was performed to examine the role of several factors publicly available before residency on postresidency career choice, including preresidency peer-reviewed publications (PRPs), which have been associated with resident career choice in comparably competitive subspecialties such as neurosurgery. Using a combination of Internet searches, telephone interviews, and the 2015 Association of Residents in Radiation Oncology directory, a list of 2016 radiation oncology resident graduates was compiled, along with their postresidency career choice. PRP was defined as the number of PubMed publications encompassing the end of the calendar year (2010) in which residency applications were due; this number was then correlated with career choice. A total of 163 residents from 76 Accreditation Council for Graduate Medical Education-certified programs were examined: 78% were male, 22% were MDs/PhDs, and 79 graduates (48%) chose academic careers. Fifty-two percent of graduates had at least 1 PRP at the time of application to radiation oncology residency; 35% had more than 1 PRP. Regarding career choice, the difference between 0 and 1+ PRP was statistically significant (odds ratio, 3.3; P 1 PRP. Sex, PhD, or non-PhD dual degree status were not associated with career choice. Radiation oncology residency graduates with 1 or more PRPs at the time of residency application were roughly 2 times more likely to choose an academic career as their initial career choice than graduates with no preresidency PRPs. This information may prove useful to medical students, medical school advisors, and residency program directors and deserves further prospective investigation. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier

  8. Radiation oncology training in Poland: results of a national survey (2007)

    International Nuclear Information System (INIS)

    Niemiec, M.; Kepka, L.; Lindner, B.; Bujko, K.; Lindner, B.; Maciejewski, B.

    2008-01-01

    The aim of this survey was to evaluate the quality of training in radiation oncology in Poland in relation to the ESTRO recommendations, and to learn motivations, level of satisfaction, complaints, suggestions and career plans of radiation oncologists.The detailed questionnaire was addressed to radiation oncologists from all centres in Poland who have been certified as specialists after 1990. Of the 212 approached, 103 radiation oncologists responded to the questionnaire (49%). In general, 40% of respondents declared that the majority of tutors/supervisors devoted sufficient time to their training (60% in academic, 28% in regional centres); 60% had access to the literature, and 50% to the internet. The number of treated patients during the training period ranged from 10 to 3000 (median: 375). 69% of the respondents completed a training in another Polish oncology centre (median duration - 2 months), 21% underwent such training abroad, 55% attended international courses/ conferences. Respondents from academic centres had access and attended national and/or international training more often than those from regional centres. Financial matters have been listed as a major obstacle for out-door training by 93% of respondents. 64% of respondents were pleased or rather pleased with the general quality of training, and the remaining 36% were unsatisfied (these mainly from regional centres). Considering career plans, 72% respondents wanted to continue practice at their employing institutions; however 24% have declared a wish to continue their career abroad. This first national survey has shown some weak points in radiotherapy training in Poland, mainly the quality differences between the departments in favour of academic centres. Some of the problems can and should be solved by the Polish Society of Radiation Oncology, others need legislation changes and decisions at the level of the Ministry of Health. (authors)

  9. International Conference on Advances in Radiation Oncology (ICARO). Book of extended synopses

    International Nuclear Information System (INIS)

    2009-01-01

    The major theme of the ICARO meeting was to review technological advances in radiation oncology and its application in routine clinical practice, especially in mid- and low-income countries. A major goal of the conference was to educate clinicians on the challenges of new technology in terms of assessing cost benefits, staffing, education, and Quality Assurance (QA), as these issues are frequently not properly considered when decisions are made to purchase new technologies. The main objectives of the conference were: - To exchange information on the current advances in the field among leading experts; - To define future challenges and directions in the clinical use of radiotherapy; - To explore the applications of improved imaging tools in treatment planning; - To review the current status of evidence based recommendations for the treatment of common cancers. - To review the current role and future potential of technological and molecular /biological innovations in radiation oncology. This conference is of interest to individuals involved in the application of new technologies in radiation oncology. In particular, the conference attempted to put technological developments into the perspective of the priorities of low and middle-income countries. Each of the 150 papers in this Book of Extended Synopses has been indexed separately

  10. Industry Funding Among Leadership in Medical Oncology and Radiation Oncology in 2015.

    Science.gov (United States)

    Yoo, Stella K; Ahmed, Awad A; Ileto, Jan; Zaorsky, Nicholas G; Deville, Curtiland; Holliday, Emma B; Wilson, Lynn D; Jagsi, Reshma; Thomas, Charles R

    2017-10-01

    To quantify and determine the relationship between oncology departmental/division heads and private industry vis-à-vis potential financial conflict of interests (FCOIs) as publicly reported by the Centers for Medicare and Medicaid Services Open Payments database. We extracted the names of the chairs/chiefs in medical oncology (MO) and chairs of radiation oncology (RO) for 81 different institutions with both RO and MO training programs as reported by the Association of American Medical Colleges. For each leader, the amount of consulting fees and research payments received in 2015 was determined. Logistic modeling was used to assess associations between the 2 endpoints of receiving a consulting fee and receiving a research payment with various institution-specific and practitioner-specific variables included as covariates: specialty, sex, National Cancer Institute designation, PhD status, and geographic region. The majority of leaders in MO were reported to have received consulting fees or research payments (69.5%) compared with a minority of RO chairs (27.2%). Among those receiving payments, the average (range) consulting fee was $13,413 ($200-$70,423) for MO leaders and $6463 ($837-$16,205) for RO chairs; the average research payment for MO leaders receiving payments was $240,446 ($156-$1,234,762) and $295,089 ($160-$1,219,564) for RO chairs. On multivariable regression when the endpoint was receipt of a research payment, those receiving a consulting fee (odds ratio [OR]: 5.34; 95% confidence interval [CI]: 2.22-13.65) and MO leaders (OR: 5.54; 95% CI: 2.62-12.18) were more likely to receive research payments. Examination of the receipt of consulting fees as the endpoint showed that those receiving a research payment (OR: 5.41; 95% CI: 2.23-13.99) and MO leaders (OR: 3.06; 95% CI: 1.21-8.13) were more likely to receive a consulting fee. Leaders in academic oncology receive consulting or research payments from industry. Relationships between oncology leaders and

  11. Oncology

    International Nuclear Information System (INIS)

    1998-01-01

    This paper collects some scientific research works on nuclear medicine developed in Ecuador. The main topics are: Brain metastases, computed tomography assessment; Therapeutic challenge in brain metastases, chemotherapy, surgery or radiotherapy; Neurocysticercosis and oncogenesis; Neurologic complications of radiation and chemotherapy; Cerebral perfusion gammagraphy in neurology and neurosurgery; Neuro- oncologic surgical patient anesthesic management; Pain management in neuro- oncology; Treatment of metastatic lesions of the spine, surgically decompression vs radiation therapy alone; Neuroimagining in spinal metastases

  12. The American Society for Radiation Oncology’s 2010 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Xiao Ying; De Amorim Bernstein, Karen; Chetty, Indrin J.; Eifel, Patricia; Hughes, Lesley; Klein, Eric E.; McDermott, Patrick; Prisciandaro, Joann; Paliwal, Bhudatt; Price, Robert A.; Werner-Wasik, Maria; Palta, Jatinder R.

    2011-01-01

    Purpose: In 2004, the American Society for Radiation Oncology (ASTRO) published its first physics education curriculum for residents, which was updated in 2007. A committee composed of physicists and physicians from various residency program teaching institutions was reconvened again to update the curriculum in 2009. Methods and Materials: Members of this committee have associations with ASTRO, the American Association of Physicists in Medicine, the Association of Residents in Radiation Oncology, the American Board of Radiology (ABR), and the American College of Radiology. Members reviewed and updated assigned subjects from the last curriculum. The updated curriculum was carefully reviewed by a representative from the ABR and other physics and clinical experts. Results: The new curriculum resulted in a recommended 56-h course, excluding initial orientation. Learning objectives are provided for each subject area, and a detailed outline of material to be covered is given for each lecture hour. Some recent changes in the curriculum include the addition of Radiation Incidents and Bioterrorism Response Training as a subject and updates that reflect new treatment techniques and modalities in a number of core subjects. The new curriculum was approved by the ASTRO board in April 2010. We anticipate that physicists will use this curriculum for structuring their teaching programs, and subsequently the ABR will adopt this educational program for its written examination. Currently, the American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee updated suggested references and the glossary. Conclusions: The ASTRO physics education curriculum for radiation oncology residents has been updated. To ensure continued commitment to a current and relevant curriculum, the subject matter will be updated again in 2 years.

  13. Defining a Leader Role curriculum for radiation oncology: A global Delphi consensus study

    NARCIS (Netherlands)

    Turner, Sandra; Seel, Matthew; Trotter, Theresa; Giuliani, Meredith; Benstead, Kim; Eriksen, Jesper G.; Poortmans, Philip; Verfaillie, Christine; Westerveld, Henrike; Cross, Shamira; Chan, Ming-Ka; Shaw, Timothy

    2017-01-01

    The need for radiation oncologists and other radiation oncology (RO) professionals to lead quality improvement activities and contribute to shaping the future of our specialty is self-evident. Leadership knowledge, skills and behaviours, like other competencies, can be learned (Blumenthal et al.,

  14. Methodology in use for the assessment of carcinogenic risk. II. Radiation. Oncology overview

    International Nuclear Information System (INIS)

    1983-04-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Assessment of carcinogenic risk from environmental and occupational exposures to ionizing radiation; Assessment of carcinogenic risk from exposure to ionizing radiation used for medical diagnosis or treatment; Assessment of carcinogenic risk from exposure to ionizing radiation following nuclear bomb explosions; Comparison of risk from radiation sources with risk from nonradiation sources; Experimental studies to assess risk of carcinogenesis following exposure to ionizing radiation; Theoretical aspects of dose-response relationships in the assessment of carcinogenic risk from exposure to ionizing radiation; Public policy and standards for acceptable risk from exposure to ionizing radiation; General reviews on the assessment of risk from exposure to ionizing radiation

  15. Decision making in radiation oncology. Vol. 1

    International Nuclear Information System (INIS)

    Lu, Jiade J.; Brady, Luther W.

    2011-01-01

    Decision Making in Radiation Oncology is a reference book designed to enable radiation oncologists, including those in training, to make diagnostic and treatment decisions effectively and efficiently. The orientation of this groundbreaking publication is entirely practical, in that the focus is on issues relating to cancer management. The design has been carefully chosen based on the belief that ''a picture is worth a thousand words'': Knowledge is conveyed through an illustrative approach using algorithms, schemas, graphics, and tables. Text is kept to a minimum, reducing the effort involved in reading while enhancing understanding. Detailed guidelines are provided for multidisciplinary cancer management as well as for radiation therapy techniques. In addition to the attention-riveting algorithms for diagnosis and treatment, strategies for the management of disease at individual stages are detailed for all the commonly diagnosed malignancies. Detailed attention is given to the core evidence that has shaped the current treatment standards and advanced radiation therapy techniques. Clinical trials that have yielded ''gold standard'' treatment and their results are documented in the schemas. Moreover, radiation techniques, including treatment planning and delivery, are also presented in an illustrative way. (orig.)

  16. Decision making in radiation oncology. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiade J. [National Univ. of Singapore (Singapore). Dept. of Radiation Oncology; Brady, Luther W. (eds.) [Drexel Univ., Philadelphia, PA (United States). Dept. of Radiation Oncology

    2011-10-15

    Decision Making in Radiation Oncology is a reference book designed to enable radiation oncologists, including those in training, to make diagnostic and treatment decisions effectively and efficiently. The orientation of this groundbreaking publication is entirely practical, in that the focus is on issues relating to cancer management. The design has been carefully chosen based on the belief that ''a picture is worth a thousand words'': Knowledge is conveyed through an illustrative approach using algorithms, schemas, graphics, and tables. Text is kept to a minimum, reducing the effort involved in reading while enhancing understanding. Detailed guidelines are provided for multidisciplinary cancer management as well as for radiation therapy techniques. In addition to the attention-riveting algorithms for diagnosis and treatment, strategies for the management of disease at individual stages are detailed for all the commonly diagnosed malignancies. Detailed attention is given to the core evidence that has shaped the current treatment standards and advanced radiation therapy techniques. Clinical trials that have yielded ''gold standard'' treatment and their results are documented in the schemas. Moreover, radiation techniques, including treatment planning and delivery, are also presented in an illustrative way. (orig.)

  17. International Conference on Advances in Radiation Oncology (ICARO): outcomes of an IAEA meeting.

    Science.gov (United States)

    Salminen, Eeva K; Kiel, Krystyna; Ibbott, Geoffrey S; Joiner, Michael C; Rosenblatt, Eduardo; Zubizarreta, Eduardo; Wondergem, Jan; Meghzifene, Ahmed

    2011-02-04

    The IAEA held the International Conference on Advances in Radiation Oncology (ICARO) in Vienna on 27-29 April 2009. The Conference dealt with the issues and requirements posed by the transition from conventional radiotherapy to advanced modern technologies, including staffing, training, treatment planning and delivery, quality assurance (QA) and the optimal use of available resources. The current role of advanced technologies (defined as 3-dimensional and/or image guided treatment with photons or particles) in current clinical practice and future scenarios were discussed.ICARO was organized by the IAEA at the request of the Member States and co-sponsored and supported by other international organizations to assess advances in technologies in radiation oncology in the face of economic challenges that most countries confront. Participants submitted research contributions, which were reviewed by a scientific committee and presented via 46 lectures and 103 posters. There were 327 participants from 70 Member States as well as participants from industry and government. The ICARO meeting provided an independent forum for the interaction of participants from developed and developing countries on current and developing issues related to radiation oncology.

  18. International Conference on Advances in Radiation Oncology (ICARO: Outcomes of an IAEA Meeting

    Directory of Open Access Journals (Sweden)

    Wondergem Jan

    2011-02-01

    Full Text Available Abstract The IAEA held the International Conference on Advances in Radiation Oncology (ICARO in Vienna on 27-29 April 2009. The Conference dealt with the issues and requirements posed by the transition from conventional radiotherapy to advanced modern technologies, including staffing, training, treatment planning and delivery, quality assurance (QA and the optimal use of available resources. The current role of advanced technologies (defined as 3-dimensional and/or image guided treatment with photons or particles in current clinical practice and future scenarios were discussed. ICARO was organized by the IAEA at the request of the Member States and co-sponsored and supported by other international organizations to assess advances in technologies in radiation oncology in the face of economic challenges that most countries confront. Participants submitted research contributions, which were reviewed by a scientific committee and presented via 46 lectures and 103 posters. There were 327 participants from 70 Member States as well as participants from industry and government. The ICARO meeting provided an independent forum for the interaction of participants from developed and developing countries on current and developing issues related to radiation oncology.

  19. An evaluation of a paediatric radiation oncology teaching programme incorporating a SCORPIO teaching model

    International Nuclear Information System (INIS)

    Ahern, Verity

    2011-01-01

    Full text: Many radiation oncology registrars have no exposure to paedi atrics during their training, To address this, the Paediatric Special Interest Group of the Royal Australian and New Zealand College of Radiologists has convened a biennial teaching course since 1997. The 2009 course incorpo rated the use of a Structured, Clinical, Objective-Referenced, Problem orientated, Integrated and Organized (SCORPIO) teaching model for small group tutorials. This study evaluates whether the paediatric radiation oncol ogy curriculum can be adapted to the SCORPIO teaching model and to evaluate the revised course from the registrars' perspective. Methods: Teaching and learning resources included a pre-course reading list, a lecture series programme and a SCORPIO workshop. Three evaluation instruments were developed: an overall Course Evaluation Survey for all participants, a SCORPIO Workshop Survey for registrars and a Teacher's SCORPIO Workshop Survey. Results: Forty-five radiation oncology registrars, 14 radiation therapists and five paediatric oncology registrars attended. Seventy-three per cent (47/64) of all participants completed the Course Evaluation Survey and 95% (38/40) of registrars completed the SCORPIO Workshop Survey. All teachers com pleted the Teacher's SCORPIO Survey (10/10). The overall educational expe rience was rated as good or excellent by 93% (43/47) of respondents. Ratings of satisfaction with lecture sessions were predominantly good or excellent. Registrars gave the SCORPIO workshop high ratings on each of 10 aspects of quality, with 82% allocating an excellent rating overall for the SCORPIO activity. Both registrars and teachers recommended more time for the SCORPIO stations. Conclusions: The 2009 course met the educational needs of the radiation oncology registrars and the SCORPIO workshop was a highly valued educa tional component.

  20. Development and Impact Evaluation of an E-Learning Radiation Oncology Module

    Energy Technology Data Exchange (ETDEWEB)

    Alfieri, Joanne, E-mail: Joanne.alfieri@mail.mcgill.ca [Department of Radiation Oncology, McGill University Health Centre, Montreal, QC (Canada); Portelance, Lorraine; Souhami, Luis [Department of Radiation Oncology, McGill University Health Centre, Montreal, QC (Canada); Steinert, Yvonne; McLeod, Peter [Centre for Medical Education, McGill University, Montreal, QC (Canada); Gallant, Fleure [Department of Radiation Oncology, McGill University Health Centre, Montreal, QC (Canada); Artho, Giovanni [Department of Radiology, McGill University Health Centre, Montreal, QC (Canada)

    2012-03-01

    Purpose: Radiation oncologists are faced with the challenge of irradiating tumors to a curative dose while limiting toxicity to healthy surrounding tissues. This can be achieved only with superior knowledge of radiologic anatomy and treatment planning. Educational resources designed to meet these specific needs are lacking. A web-based interactive module designed to improve residents' knowledge and application of key anatomy concepts pertinent to radiotherapy treatment planning was developed, and its effectiveness was assessed. Methods and Materials: The module, based on gynecologic malignancies, was developed in collaboration with a multidisciplinary team of subject matter experts. Subsequently, a multi-centre randomized controlled study was conducted to test the module's effectiveness. Thirty-six radiation oncology residents participated in the study; 1920 were granted access to the module (intervention group), and 17 in the control group relied on traditional methods to acquire their knowledge. Pretests and posttests were administered to all participants. Statistical analysis was carried out using paired t test, analysis of variance, and post hoc tests. Results: The randomized control study revealed that the intervention group's pretest and posttest mean scores were 35% and 52%, respectively, and those of the control group were 37% and 42%, respectively. The mean improvement in test scores was 17% (p < 0.05) for the intervention group and 5% (p = not significant) for the control group. Retrospective pretest and posttest surveys showed a statistically significant change on all measured module objectives. Conclusions: The use of an interactive e-learning teaching module for radiation oncology is an effective method to improve the radiologic anatomy knowledge and treatment planning skills of radiation oncology residents.

  1. Development and Impact Evaluation of an E-Learning Radiation Oncology Module

    International Nuclear Information System (INIS)

    Alfieri, Joanne; Portelance, Lorraine; Souhami, Luis; Steinert, Yvonne; McLeod, Peter; Gallant, Fleure; Artho, Giovanni

    2012-01-01

    Purpose: Radiation oncologists are faced with the challenge of irradiating tumors to a curative dose while limiting toxicity to healthy surrounding tissues. This can be achieved only with superior knowledge of radiologic anatomy and treatment planning. Educational resources designed to meet these specific needs are lacking. A web-based interactive module designed to improve residents' knowledge and application of key anatomy concepts pertinent to radiotherapy treatment planning was developed, and its effectiveness was assessed. Methods and Materials: The module, based on gynecologic malignancies, was developed in collaboration with a multidisciplinary team of subject matter experts. Subsequently, a multi-centre randomized controlled study was conducted to test the module's effectiveness. Thirty-six radiation oncology residents participated in the study; 1920 were granted access to the module (intervention group), and 17 in the control group relied on traditional methods to acquire their knowledge. Pretests and posttests were administered to all participants. Statistical analysis was carried out using paired t test, analysis of variance, and post hoc tests. Results: The randomized control study revealed that the intervention group's pretest and posttest mean scores were 35% and 52%, respectively, and those of the control group were 37% and 42%, respectively. The mean improvement in test scores was 17% (p < 0.05) for the intervention group and 5% (p = not significant) for the control group. Retrospective pretest and posttest surveys showed a statistically significant change on all measured module objectives. Conclusions: The use of an interactive e-learning teaching module for radiation oncology is an effective method to improve the radiologic anatomy knowledge and treatment planning skills of radiation oncology residents.

  2. Development of new on line statistical program for the Korean society for radiation oncology

    International Nuclear Information System (INIS)

    Song, Si Yeol; Ahn, Seung Do; Choi, Eun Kyung; Chung, Weon Kuu; Shin, Kyung Hwan; Cho, Kwan Ho

    2015-01-01

    To develop new on-line statistical program for the Korean Society for Radiation Oncology (KOSRO) to collect and extract medical data in radiation oncology more efficiently. The statistical program is a web-based program. The directory was placed in a sub-folder of the homepage of KOSRO and its web address is http://www.kosro.or.kr/asda. The operating systems server is Linux and the webserver is the Apache HTTP server. For database (DB) server, MySQL is adopted and dedicated scripting language is the PHP. Each ID and password are controlled independently and all screen pages for data input or analysis are made to be friendly to users. Scroll-down menu is actively used for the convenience of user and the consistence of data analysis. Year of data is one of top categories and main topics include human resource, equipment, clinical statistics, specialized treatment and research achievement. Each topic or category has several subcategorized topics. Real-time on-line report of analysis is produced immediately after entering each data and the administrator is able to monitor status of data input of each hospital. Backup of data as spread sheets can be accessed by the administrator and be used for academic works by any members of the KOSRO. The new on-line statistical program was developed to collect data from nationwide departments of radiation oncology. Intuitive screen and consistent input structure are expected to promote entering data of member hospitals and annual statistics should be a cornerstone of advance in radiation oncology

  3. Development of new on-line statistical program for the Korean Society for Radiation Oncology.

    Science.gov (United States)

    Song, Si Yeol; Ahn, Seung Do; Chung, Weon Kuu; Shin, Kyung Hwan; Choi, Eun Kyung; Cho, Kwan Ho

    2015-06-01

    To develop new on-line statistical program for the Korean Society for Radiation Oncology (KOSRO) to collect and extract medical data in radiation oncology more efficiently. The statistical program is a web-based program. The directory was placed in a sub-folder of the homepage of KOSRO and its web address is http://www.kosro.or.kr/asda. The operating systems server is Linux and the webserver is the Apache HTTP server. For database (DB) server, MySQL is adopted and dedicated scripting language is the PHP. Each ID and password are controlled independently and all screen pages for data input or analysis are made to be friendly to users. Scroll-down menu is actively used for the convenience of user and the consistence of data analysis. Year of data is one of top categories and main topics include human resource, equipment, clinical statistics, specialized treatment and research achievement. Each topic or category has several subcategorized topics. Real-time on-line report of analysis is produced immediately after entering each data and the administrator is able to monitor status of data input of each hospital. Backup of data as spread sheets can be accessed by the administrator and be used for academic works by any members of the KOSRO. The new on-line statistical program was developed to collect data from nationwide departments of radiation oncology. Intuitive screen and consistent input structure are expected to promote entering data of member hospitals and annual statistics should be a cornerstone of advance in radiation oncology.

  4. Development of new on line statistical program for the Korean society for radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Song, Si Yeol; Ahn, Seung Do; Choi, Eun Kyung [Dept. of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Chung, Weon Kuu [Dept. of Radiation Oncology, Kyung Hee University Hospital at Kangdong, Kyung Hee University School of Medicine, Seoul (Korea, Republic of); Shin, Kyung Hwan [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cho, Kwan Ho [Dept. of Radiation Oncology, Proton Therapy Center, National Cancer Center Hospital, Goyang (Korea, Republic of)

    2015-06-15

    To develop new on-line statistical program for the Korean Society for Radiation Oncology (KOSRO) to collect and extract medical data in radiation oncology more efficiently. The statistical program is a web-based program. The directory was placed in a sub-folder of the homepage of KOSRO and its web address is http://www.kosro.or.kr/asda. The operating systems server is Linux and the webserver is the Apache HTTP server. For database (DB) server, MySQL is adopted and dedicated scripting language is the PHP. Each ID and password are controlled independently and all screen pages for data input or analysis are made to be friendly to users. Scroll-down menu is actively used for the convenience of user and the consistence of data analysis. Year of data is one of top categories and main topics include human resource, equipment, clinical statistics, specialized treatment and research achievement. Each topic or category has several subcategorized topics. Real-time on-line report of analysis is produced immediately after entering each data and the administrator is able to monitor status of data input of each hospital. Backup of data as spread sheets can be accessed by the administrator and be used for academic works by any members of the KOSRO. The new on-line statistical program was developed to collect data from nationwide departments of radiation oncology. Intuitive screen and consistent input structure are expected to promote entering data of member hospitals and annual statistics should be a cornerstone of advance in radiation oncology.

  5. The role of imaging in pediatric radiation oncology

    International Nuclear Information System (INIS)

    Stowe, S.M.

    1985-01-01

    The pediatric radiation oncologist is involved in treating a different spectrum of tumors that is generally seen by the adult radiation oncologist. More than one-third of pediatric patients with malignancies suffer from acute lymphocytic leukemia and lymphomas. Approximately one-quarter of the patients have primary tumors of the brain and central nervous system, while the remaining patients mostly present with mesenchymal sarcomas as opposed to the carcinomas more generally seen in adult practice. Pediatric tumors are frequently deep seated and therefore more difficult to evaluate by physical examination that the typical adult epithelial tumors. In the following sections, the various tumor types and locations are discussed with reference to the specific imaging requirements for each of the groups. This is preceded by a brief introduction to modern radiation oncology in order to clarify the role of these modalities

  6. Teaching and assessing systems-based practice: a pilot course in health care policy, finance, and law for radiation oncology residents.

    Science.gov (United States)

    Mitchell, James D; Parhar, Preeti; Narayana, Ashwatha

    2010-09-01

    Under the Accreditation Council for Graduate Medical Education (ACGME) Outcome Project, residency programs are required to provide data on educational outcomes and evidence for how this information is used to improve resident education. To teach and assess systems-based practice through a course in health care policy, finance, and law for radiation oncology residents, and to determine its efficacy. We designed a pilot course in health care policy, finance, and law related to radiation oncology. Invited experts gave lectures on policy issues important to radiation oncology and half of the participants attended the American Society for Therapeutic Radiation and Oncology (ASTRO) Advocacy Day. Participants completed pre- and postcourse tests to assess their knowledge of health policy. Six radiation oncology residents participated, with 5 (84%) completing all components. For the 5 residents completing all assessments, the mean precourse score was 64% and the mean postcourse score was 84% (P  =  .05). Improvement was noted in all 3 sections of health policy, finance, and medical law. At the end of the course, 5 of 6 residents were motivated to learn about health policy, and 4 of 6 agreed it was important for physicians to be involved in policy matters. Teaching radiation oncology residents systems-based practice through a course on health policy, finance, and law is feasible and was well received. Such a course can help teaching programs comply with the ACGME Outcome Project and would also be applicable to trainees in other specialties.

  7. SU-A-210-01: Why Should We Learn Radiation Oncology Billing?

    International Nuclear Information System (INIS)

    Wu, H.

    2015-01-01

    The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’s long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the

  8. SU-A-210-01: Why Should We Learn Radiation Oncology Billing?

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H. [Willis-Knighton Medical Center (United States)

    2015-06-15

    The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’s long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the

  9. Radiation oncology in Australia: a historical and evolutionary perspective

    International Nuclear Information System (INIS)

    Sandeman, T.F.

    1996-01-01

    This presentation tracks the development of the therapeutic application of radiation in Australia. Within six months of Roentgen's discovery, the Crooke's x-ray tube and later a radium plaque was used in Australia for treatment, in particular by the dermatologists. By 1920s radiology was an established specialty. A series of conferences was held between 1930 and 1940 to discuss the provision of cancer treatment, the integration of research and particularly, the establishment of central registry. The author also paid tribute to a a series of scientific personalities for their contribution to the Australian radiation oncology. 22 refs., ills

  10. A Profile of Academic Training Program Directors and Chairs in Radiation Oncology

    International Nuclear Information System (INIS)

    Wilson, Lynn D.; Haffty, Bruce G.; Smith, Benjamin D.

    2013-01-01

    Purpose: To identify objective characteristics and benchmarks for program leadership in academic radiation oncology. Methods and Materials: A study of the 87 Accreditation Council for Graduate Medical Education radiation oncology training program directors (PD) and their chairs was performed. Variables included age, gender, original training department, highest degree, rank, endowed chair assignment, National Institutes of Health (NIH) funding, and Hirsch index (H-index). Data were gathered from online sources such as departmental websites, NIH RePORTER, and Scopus. Results: There were a total of 87 PD. The median age was 48, and 14 (16%) were MD/PhD. A total of 21 (24%) were female, and rank was relatively equally distributed above instructor. Of the 26 professors, at least 7 (27%) were female. At least 24 (28%) were working at the institution from which they had received their training. A total of 6 individuals held endowed chairs. Only 2 PD had active NIH funding in 2012. The median H-index was 12 (range, 0-51) but the index dropped to 9 (range, 0-38) when those who served as both PD and chair were removed from the group. A total of 76 chairs were identified at the time of the study. The median age was 55, and 9 (12%) were MD/PhD. A total of 7 (9%) of the chairs were female, and rank was professor for all with the exception of 1 who was listed as “Head” and was an associate professor. Of the 76 chairs, at least 10 (13%) were working at the institution from which they received their training. There were a total of 21 individuals with endowed chairs. A total of 13 (17%) had NIH funding in 2012. The median H-index was 29 (range, 3-60). Conclusions: These data provide benchmarks for individuals and departments evaluating leadership positions in the field of academic radiation oncology. Such data are useful for evaluating leadership trends over time and comparing academic radiation oncology with other specialties

  11. A Profile of Academic Training Program Directors and Chairs in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lynn D., E-mail: Lynn.wilson@yale.edu [Department of Therapeutic Radiology, Yale University School of Medicine, Smilow Cancer Hospital, New Haven, Connecticut (United States); Haffty, Bruce G. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D. [Department of Radiation Oncology, UMDNJ-RWJMS, Cancer Institute of New Jersey, New Brunswick, New Jersey (United States)

    2013-04-01

    Purpose: To identify objective characteristics and benchmarks for program leadership in academic radiation oncology. Methods and Materials: A study of the 87 Accreditation Council for Graduate Medical Education radiation oncology training program directors (PD) and their chairs was performed. Variables included age, gender, original training department, highest degree, rank, endowed chair assignment, National Institutes of Health (NIH) funding, and Hirsch index (H-index). Data were gathered from online sources such as departmental websites, NIH RePORTER, and Scopus. Results: There were a total of 87 PD. The median age was 48, and 14 (16%) were MD/PhD. A total of 21 (24%) were female, and rank was relatively equally distributed above instructor. Of the 26 professors, at least 7 (27%) were female. At least 24 (28%) were working at the institution from which they had received their training. A total of 6 individuals held endowed chairs. Only 2 PD had active NIH funding in 2012. The median H-index was 12 (range, 0-51) but the index dropped to 9 (range, 0-38) when those who served as both PD and chair were removed from the group. A total of 76 chairs were identified at the time of the study. The median age was 55, and 9 (12%) were MD/PhD. A total of 7 (9%) of the chairs were female, and rank was professor for all with the exception of 1 who was listed as “Head” and was an associate professor. Of the 76 chairs, at least 10 (13%) were working at the institution from which they received their training. There were a total of 21 individuals with endowed chairs. A total of 13 (17%) had NIH funding in 2012. The median H-index was 29 (range, 3-60). Conclusions: These data provide benchmarks for individuals and departments evaluating leadership positions in the field of academic radiation oncology. Such data are useful for evaluating leadership trends over time and comparing academic radiation oncology with other specialties.

  12. Oncologic imaging

    International Nuclear Information System (INIS)

    Bragg, D.G.; Rubin, P.; Youker, J.E.

    1985-01-01

    This book presents papers on nuclear medicine. Topics considered include the classification of cancers, oncologic diagnosis, brain and spinal cord neoplasms, lymph node metastases, the larynx and hypopharynx, thyroid cancer, breast cancer, esophageal cancer, bladder cancer, tumors of the skeletal system, pediatric oncology, computed tomography and radiation therapy treatment planning, and the impact of future technology on oncologic diagnosis

  13. Establishing a Global Radiation Oncology Collaboration in Education (GRaCE): Objectives and priorities.

    Science.gov (United States)

    Turner, Sandra; Eriksen, Jesper G; Trotter, Theresa; Verfaillie, Christine; Benstead, Kim; Giuliani, Meredith; Poortmans, Philip; Holt, Tanya; Brennan, Sean; Pötter, Richard

    2015-10-01

    Representatives from countries and regions world-wide who have implemented modern competency-based radiation- or clinical oncology curricula for training medical specialists, met to determine the feasibility and value of an ongoing international collaboration. In this forum, educational leaders from the ESTRO School, encompassing many European countries adopting the ESTRO Core Curriculum, and clinician educators from Canada, Denmark, the United Kingdom, Australia and New Zealand considered the training and educational arrangements within their jurisdictions, identifying similarities and challenges between programs. Common areas of educational interest and need were defined, which included development of new competency statements and assessment tools, and the application of the latter. The group concluded that such an international cooperation, which might expand to include others with similar goals, would provide a valuable vehicle to ensure training program currency, through sharing of resources and expertise, and enhance high quality radiation oncology education. Potential projects for the Global Radiation Oncology Collaboration in Education (GRaCE) were agreed upon, as was a strategy designed to maintain momentum. This paper describes the rationale for establishing this collaboration, presents a comparative view of training in the jurisdictions represented, and reports early goals and priorities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Patterns of symptom control and palliative care-focused original research articles in the International Journal of Radiation Oncology *Biology* Physics and the Radiotherapy and Oncology Journal, 2005-2014.

    Science.gov (United States)

    Shi, Diana D; DiGiovanni, Julia; Skamene, Sonia; Noveroske Philbrick, Sarah; Wang, Yanbing; Barnes, Elizabeth A; Chow, Edward; Sullivan, Adam; Balboni, Tracy A

    2018-04-01

    A significant portion of radiation treatment (30-40%) is delivered with palliative intent. Given the frequency of palliative care (PC) in radiation oncology, we determined the patterns of research focusing on symptom control and palliative care (SCPC) in two prominent radiation oncology journals from 2005-2014. Original research manuscripts published from 2005-2014 in the International Journal of Radiation Oncology *Biology* Physics (Red Journal) and the Radiotherapy and Oncology Journal (Green Journal) were reviewed to categorize articles as PC and/or SCPC. Articles were categorized as PC if it pertained to any aspect of treatment of metastatic cancer, and as SCPC if symptom control in the metastatic cancer setting was the goal of the research inquiry and/or any domain of palliative clinical practice guidelines was the goal of research inquiry. From 2005-2014, 4.9% (312/6,386) of original research articles published in the Red Journal and 3.5% (84/2,406) published in the Green Journal pertained to metastatic cancer, and were categorized as PC. In the Red Journal, 1.3% (84/6,386) of original research articles were categorized as SCPC; 1.3% (32/2,406) of articles in the Green Journal were categorized as SCPC. There was no trend observed in the proportion of SCPC articles published over time in the Red Journal (P=0.76), the Green Journal (P=0.48), or both journals in aggregate (P=0.38). Despite the fact that palliative radiotherapy is a critical part of radiation oncology practice, PC and SCPC-focused original research is poorly represented in the Red Journal and the Green Journal.

  15. R-IDEAL: A Framework for Systematic Clinical Evaluation of Technical Innovations in Radiation Oncology.

    Science.gov (United States)

    Verkooijen, Helena M; Kerkmeijer, Linda G W; Fuller, Clifton D; Huddart, Robbert; Faivre-Finn, Corinne; Verheij, Marcel; Mook, Stella; Sahgal, Arjun; Hall, Emma; Schultz, Chris

    2017-01-01

    The pace of innovation in radiation oncology is high and the window of opportunity for evaluation narrow. Financial incentives, industry pressure, and patients' demand for high-tech treatments have led to widespread implementation of innovations before, or even without, robust evidence of improved outcomes has been generated. The standard phase I-IV framework for drug evaluation is not the most efficient and desirable framework for assessment of technological innovations. In order to provide a standard assessment methodology for clinical evaluation of innovations in radiotherapy, we adapted the surgical IDEAL framework to fit the radiation oncology setting. Like surgery, clinical evaluation of innovations in radiation oncology is complicated by continuous technical development, team and operator dependence, and differences in quality control. Contrary to surgery, radiotherapy innovations may be used in various ways, e.g., at different tumor sites and with different aims, such as radiation volume reduction and dose escalation. Also, the effect of radiation treatment can be modeled, allowing better prediction of potential benefits and improved patient selection. Key distinctive features of R-IDEAL include the important role of predicate and modeling studies (Stage 0), randomization at an early stage in the development of the technology, and long-term follow-up for late toxicity. We implemented R-IDEAL for clinical evaluation of a recent innovation in radiation oncology, the MRI-guided linear accelerator (MR-Linac). MR-Linac combines a radiotherapy linear accelerator with a 1.5-T MRI, aiming for improved targeting, dose escalation, and margin reduction, and is expected to increase the use of hypofractionation, improve tumor control, leading to higher cure rates and less toxicity. An international consortium, with participants from seven large cancer institutes from Europe and North America, has adopted the R-IDEAL framework to work toward coordinated, evidence

  16. The state of survivorship care in radiation oncology: Results from a nationally distributed survey.

    Science.gov (United States)

    Frick, Melissa A; Rosenthal, Seth A; Vapiwala, Neha; Monzon, Brian T; Berman, Abigail T

    2018-04-18

    Survivorship care has become an increasingly critical component of oncologic care as well as a quality practice and reimbursement metric. To the authors' knowledge, the current climate of survivorship medicine in radiation oncology has not been investigated fully. An institutional review board-approved, Internet-based survey examining practices and preparedness in survivorship care was distributed to radiation oncology practices participating in the American College of Radiology Radiation Oncology Practice Accreditation program between November 2016 and January 2017. A total of 78 surveys were completed. Among these, 2 were nonphysicians, resulting in 76 evaluable responses. Radiation oncologists (ROs) frequently reported that they are the primary provider in the evaluation of late toxicities and the recurrence of primary cancer. Although approximately 68% of ROs frequently discuss plans for future care with survivors, few provide a written survivorship care plan to their patients (18%) or the patients' primary care providers (24%). Patient prognosis, disease site, and reimbursement factors often influence the provision of survivorship care. Although ROs report that several platforms offer training in survivorship medicine, the quality of these resources is variable and extensive instruction is rare. Fewer than one-half of ROs believe they are expertly trained in survivorship care. ROs play an active role within the multidisciplinary team in the cancer-related follow-up care of survivors. Investigation of barriers to the provision of survivorship care and optimization of service delivery should be pursued further. The development of high-quality, easily accessible educational programming is needed so that ROs can participate more effectively in the care of cancer survivors. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  17. American Society of Radiation Oncology Recommendations for Documenting Intensity-Modulated Radiation Therapy Treatments

    International Nuclear Information System (INIS)

    Holmes, Timothy; Das, Rupak; Low, Daniel; Yin Fangfang; Balter, James; Palta, Jatinder; Eifel, Patricia

    2009-01-01

    Despite the widespread use of intensity-modulated radiation therapy (IMRT) for approximately a decade, a lack of adequate guidelines for documenting these treatments persists. Proper IMRT treatment documentation is necessary for accurate reconstruction of prior treatments when a patient presents with a marginal recurrence. This is especially crucial when the follow-up care is managed at a second treatment facility not involved in the initial IMRT treatment. To address this issue, an American Society for Radiation Oncology (ASTRO) workgroup within the American ASTRO Radiation Physics Committee was formed at the request of the ASTRO Research Council to develop a set of recommendations for documenting IMRT treatments. This document provides a set of comprehensive recommendations for documenting IMRT treatments, as well as image-guidance procedures, with example forms provided.

  18. Analysis of the payment rates and classification of services on radiation oncology

    International Nuclear Information System (INIS)

    Shin, K. H.; Shin, H. S.; Pyo, H. R.; Lee, K. C.; Lee, Y. T.; Myoung, H. B.; Yeom, Y. K.

    1997-01-01

    The main purpose of this study is to develop new payment rates for services of radiation oncology, considering costs of treating patients. A survey of forty hospitals has been conducted in order to analyze the costs of treating patients. Before conducting the survey, we evaluated and reclassified the individual service items currently using as payments units on the fee-for-service reimbursement system. This study embodies the analysis of replies received from the twenty four hospitals. The survey contains information about the hospitals' costs of 1995 for the reclassified service items on radiation oncology. After we adjust the hospital costs by the operating rate of medical equipment, we compare the adjusted costs with the current payment rates of individual services. The current payment rates were 5.05-6.58 times lower than the adjusted costs in treatment planning services, 2.22 times lower in block making service, 1.57-2.86 times lower in external beam irradiation services, 3.82-5.01 times lower in intracavitary and interstitial irradiation and 1.12-2.55 times lower in total body irradiation. We could conclude that the current payment system on radiation oncology does not only reflect the costs of treating patients appropriately but also classify the service items correctly. For an example, when the appropriate costs and classification are applied to TBI, the payment rates of TBI should be increased five times more than current level. (author)

  19. The role of medical physicists in developing a generic research framework for the assessment of new radiation oncology technology and treatments in radiation oncology

    International Nuclear Information System (INIS)

    Grand, M.M.; Amin, R.; Cornes, D.A.; Duchesne, G.; Haworth, A.; Kron, T.; Burmeister, B.

    2010-01-01

    Full text: TROG Cancer Research has secured funding from the Australian Government Department of Health and Ageing to develop and pilot an evaluation framework for new radiation oncology technologies and treatments. Four site specific projects will be undertaken to test the framework including IMRT for nasopharynx, anal canal and post-prostatectomy and IGRT for prostate fiducial markers. Multidisciplinary Expert Groups that include medical physicists, have been appointed for each site specific project. Each project will collect data from at least ten treatment centres who have been credentialed. The Framework will have the capacity to gather information to substantiate the clinical efficacy and cost effectiveness of new technologies and treatments in radiation oncology. The framework will be tested by gathering data to evaluate the superiority of IMRT and lGRT over other treatments and economic analysis will examine the potential trade-off between efficiency and the clinical gains to a patient. It is anticipated that the outcome of this research will inform future funding decisions. The involvement of medical physicists has been central to development of the framework, protocol development and the credentialing process. (author)

  20. Use of imaging techniques in radiation oncology

    International Nuclear Information System (INIS)

    Borras, C.; Rudder, D.; Jimenez, P.

    2002-01-01

    -strapped for funding and forced to prioritize needs- while advanced diagnostic imaging equipment is bought by private facilities. CT may be used for patient diagnosis and treatment follow up, but rarely for treatment planning and dosimetry purposes. MRI and/or PET, where available (Argentina, Brazil, Chile and Mexico have PET units), are used to diagnose cancer, but not for treatment planning purposes. Because of the lack of prevention and early detection programs, cancers are diagnosed at later stages, and tumor extension is mostly evaluated by clinical examination. Often radiation treatments are given for palliative purposes, where an accurate tumor localization in 3-D is not critical. Simulators are rare and other imaging units in radiation oncology departments, inexistent. Treatment planning systems, where available, provide 2-D displays, rarely overlaid on anatomical structures, except in brachytherapy where anatomical information is obtained with AP and lateral radiographs taken with a conventional x-ray unit. Portal films to verify treatment fields are rarely taken, as x-ray film is very expensive and the treatment machines have such heavy patient workloads that they cannot be spared for treatment simulation and verification. Furthermore, technicians are poorly trained and many facilities operate without medical physicists who could develop adequate protocols to optimize the use of existing equipment. The gap in cancer detection and treatment between industrialized and developing countries is widening. In the United States, 39.6 million CT procedures were performed in 2001, a 51% increase from 1998, and about 50% of the CT scanners purchased that year had multislice capability. In the same year the number of MRI procedures rose to 18 million, with 60% of the MRI's installed having magnets of 1.5 Tesla or greater. At the end of 2002, at least 21 companies provided products for the various stages of the Intensity Modulated Radiation Therapy (IMRT) process: imaging

  1. A syllabus for the education and training of radiation oncology nurses

    International Nuclear Information System (INIS)

    2007-01-01

    A dramatic rise in cancer incidence across the developing world is stretching already limited resources and equipment. Shortages of qualified staff and equipment are growing constraints to treating cancer efficiently. More than 5000 radiotherapy machines are presently needed to help patients fight cancer. But the entire developing world has only about 2200 such machines. Experts predict a long term crisis in managing cancer, with an estimated five million new patients requiring radiation therapy every year. Meeting the challenge is not simply a matter of providing appropriate equipment. There must be sufficient trained and knowledgeable staff with clinical and medical physics expertise to deliver a safe and effective radiation dose. Appropriate facilities and radiation protection infrastructure for monitoring and regulatory control are needed. Moreover, cancer treatment must be carried out in a comprehensive context of prevention, early diagnosis and palliative care. In the early stages of development of a radiotherapy department or unit the staffing needs of radiotherapy services should also be specifically and carefully addressed. To make radiotherapy available to all patients who need it, human resources should be urgently expanded globally along with the rational acquisition of additional equipment. The recommended staffing - for a basic radiotherapy facility with 1 teletherapy machine, simulator and high dose-rate brachytherapy - should be: 5 radiation oncologists, 4 medical physicists, 7-8 radiation therapy technologists (RTTs), 3 oncology nurses and 1 maintenance engineer. Where possible, training should be undertaken in centres with patient populations, equipment and training programmes relevant to the needs of the country. Radiotherapy staff should also be required to obtain a qualification adequate for registration in their own country. The human resources listed above could treat on average about 1000 patients per year by extending operations to a

  2. Safety practices, perceptions, and behaviors in radiation oncology: A national survey of radiation therapists.

    Science.gov (United States)

    Woodhouse, Kristina Demas; Hashemi, David; Betcher, Kathryn; Doucette, Abigail; Weaver, Allison; Monzon, Brian; Rosenthal, Seth A; Vapiwala, Neha

    Radiation therapy is complex and demands high vigilance and precise coordination. Radiation therapists (RTTs) directly deliver radiation and are often the first to discover an error. Yet, few studies have examined the practices of RTTs regarding patient safety. We conducted a national survey to explore the perspectives of RTTs related to quality and safety. In 2016, an electronic survey was sent to a random sample of 1500 RTTs in the United States. The survey assessed department safety, error reporting, safety knowledge, and culture. Questions were multiple choice or recorded on a Likert scale. Results were summarized using descriptive statistics and analyzed using multivariate logistic regression. A total of 702 RTTs from 49 states (47% response rate) completed the survey. Respondents represented a broad distribution across practice settings. Most RTTs rated department patient safety as excellent (61%) or very good (32%), especially if they had an incident learning system (ILS) (odds ratio, 2.0). Only 21% reported using an ILS despite 58% reporting an accessible ILS in their department. RTTs felt errors were most likely to occur with longer shifts and poor multidisciplinary communication; 40% reported that burnout and anxiety negatively affected their ability to deliver care. Workplace bullying was also reported among 17%. Overall, there was interest (62%) in improving knowledge in patient safety. Although most RTTs reported excellent safety cultures within their facilities, overall, there was limited access to and utilization of ILSs by RTTs. Workplace issues identified may also represent barriers to delivering quality care. RTTs were also interested in additional resources regarding quality and safety. These results will further enhance safety initiatives and inform future innovative educational efforts in radiation oncology. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  3. 2009 Canadian Radiation Oncology Resident Survey

    International Nuclear Information System (INIS)

    Debenham, Brock; Banerjee, Robyn; Fairchild, Alysa; Dundas, George; Trotter, Theresa; Yee, Don

    2012-01-01

    Purpose: Statistics from the Canadian post-MD education registry show that numbers of Canadian radiation oncology (RO) trainees have risen from 62 in 1999 to approximately 150 per year between 2003 and 2009, contributing to the current perceived downturn in employment opportunities for radiation oncologists in Canada. When last surveyed in 2003, Canadian RO residents identified job availability as their main concern. Our objective was to survey current Canadian RO residents on their training and career plans. Methods and Materials: Trainees from the 13 Canadian residency programs using the national matching service were sought. Potential respondents were identified through individual program directors or chief resident and were e-mailed a secure link to an online survey. Descriptive statistics were used to report responses. Results: The eligible response rate was 53% (83/156). Similar to the 2003 survey, respondents generally expressed high satisfaction with their programs and specialty. The most frequently expressed perceived weakness in their training differed from 2003, with 46.5% of current respondents feeling unprepared to enter the job market. 72% plan on pursuing a postresidency fellowship. Most respondents intend to practice in Canada. Fewer than 20% of respondents believe that there is a strong demand for radiation oncologists in Canada. Conclusions: Respondents to the current survey expressed significant satisfaction with their career choice and training program. However, differences exist compared with the 2003 survey, including the current perceived lack of demand for radiation oncologists in Canada.

  4. 2009 Canadian Radiation Oncology Resident Survey

    Energy Technology Data Exchange (ETDEWEB)

    Debenham, Brock, E-mail: debenham@ualberta.net [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada); Banerjee, Robyn [Department of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Fairchild, Alysa; Dundas, George [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada); Trotter, Theresa [Department of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Yee, Don [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada)

    2012-03-15

    Purpose: Statistics from the Canadian post-MD education registry show that numbers of Canadian radiation oncology (RO) trainees have risen from 62 in 1999 to approximately 150 per year between 2003 and 2009, contributing to the current perceived downturn in employment opportunities for radiation oncologists in Canada. When last surveyed in 2003, Canadian RO residents identified job availability as their main concern. Our objective was to survey current Canadian RO residents on their training and career plans. Methods and Materials: Trainees from the 13 Canadian residency programs using the national matching service were sought. Potential respondents were identified through individual program directors or chief resident and were e-mailed a secure link to an online survey. Descriptive statistics were used to report responses. Results: The eligible response rate was 53% (83/156). Similar to the 2003 survey, respondents generally expressed high satisfaction with their programs and specialty. The most frequently expressed perceived weakness in their training differed from 2003, with 46.5% of current respondents feeling unprepared to enter the job market. 72% plan on pursuing a postresidency fellowship. Most respondents intend to practice in Canada. Fewer than 20% of respondents believe that there is a strong demand for radiation oncologists in Canada. Conclusions: Respondents to the current survey expressed significant satisfaction with their career choice and training program. However, differences exist compared with the 2003 survey, including the current perceived lack of demand for radiation oncologists in Canada.

  5. Development of a model web-based system to support a statewide quality consortium in radiation oncology.

    Science.gov (United States)

    Moran, Jean M; Feng, Mary; Benedetti, Lisa A; Marsh, Robin; Griffith, Kent A; Matuszak, Martha M; Hess, Michael; McMullen, Matthew; Fisher, Jennifer H; Nurushev, Teamour; Grubb, Margaret; Gardner, Stephen; Nielsen, Daniel; Jagsi, Reshma; Hayman, James A; Pierce, Lori J

    A database in which patient data are compiled allows analytic opportunities for continuous improvements in treatment quality and comparative effectiveness research. We describe the development of a novel, web-based system that supports the collection of complex radiation treatment planning information from centers that use diverse techniques, software, and hardware for radiation oncology care in a statewide quality collaborative, the Michigan Radiation Oncology Quality Consortium (MROQC). The MROQC database seeks to enable assessment of physician- and patient-reported outcomes and quality improvement as a function of treatment planning and delivery techniques for breast and lung cancer patients. We created tools to collect anonymized data based on all plans. The MROQC system representing 24 institutions has been successfully deployed in the state of Michigan. Since 2012, dose-volume histogram and Digital Imaging and Communications in Medicine-radiation therapy plan data and information on simulation, planning, and delivery techniques have been collected. Audits indicated >90% accurate data submission and spurred refinements to data collection methodology. This model web-based system captures detailed, high-quality radiation therapy dosimetry data along with patient- and physician-reported outcomes and clinical data for a radiation therapy collaborative quality initiative. The collaborative nature of the project has been integral to its success. Our methodology can be applied to setting up analogous consortiums and databases. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  6. Faculty of Radiation Oncology 2012 trainee survey: perspectives on choice of specialty training and future work practice preferences.

    Science.gov (United States)

    Leung, John; Le, Hien; Turner, Sandra; Munro, Philip; Vukolova, Natalia

    2014-02-01

    This paper reports the key findings of the first Faculty of Radiation Oncology survey of trainees dealing with experiences and perceptions on work practices and choice of specialty. The survey was conducted in mid 2012 using a 37-question instrument. This was distributed by email to 159 current trainees and advertised through the Radiation Oncology Trainees Committee and other channels. There were six email reminders. Respondents were reassured that their responses were anonymous. The overall response rate was 82.8%. Gender was balanced among respondents with 67 (51.5%) being male and 63 (48.5%) being female. The most common age bracket was the 31 to 35 years range. There were similar proportions of trainee responders in each of the five years of training. A substantial number of trainees held other degrees besides medical degrees. The large majority were satisfied with radiation oncology as a career choice and with the Training Network within which they were training. Interest in oncology patients, lifestyle after training and work hours were given as the major reasons for choosing radiation oncology as a career. Nearly half of trainees were interested in undertaking some of their training in a part-time capacity and working part time as a radiation oncologist in the future. Over 70% of trainees stated they were working 36-55 clinical hours per week with additional non-clinical tasks, after-hours work and on-call duties. Nearly half of all trainees reported having one or less hours of protected time per week. Nonetheless, 40% of respondents indicated they had enough time to pursue outside interests. Radiation treatment planning and maintaining currency in general medicine were considered the most difficult aspects of training in radiation oncology. Most respondents were keen on the concept of fostering a research mentor. In terms of views on practice after completion of training, the majority were interested in pursuing a fellowship, and nearly all expressed an

  7. Faculty of Radiation Oncology 2012 trainee survey: perspectives on choice of speciality training and future work practice preference

    International Nuclear Information System (INIS)

    Leung, John; Le, Hien; Turner, Sandra; Munro, Philip; Vukolova, Natalia

    2014-01-01

    This paper reports the key findings of the first Faculty of Radiation Oncology survey of trainees dealing with experiences and perceptions on work practices and choice of specialty. The survey was conducted in mid 2012 using a 37-question instrument. This was distributed by email to 159 current trainees and advertised through the Radiation Oncology Trainees Committee and other channels. There were six email reminders. Respondents were reassured that their responses were anonymous. The overall response rate was 82.8%. Gender was balanced among respondents with 67 (51.5%) being male and 63 (48.5%) being female. The most common age bracket was the 31 to 35 years range. There were similar proportions of trainee responders in each of the five years of training. A substantial number of trainees held other degrees besides medical degrees. The large majority were satisfied with radiation oncology as a career choice and with the Training Network within which they were training. Interest in oncology patients, lifestyle after training and work hours were given as the major reasons for choosing radiation oncology as a career. Nearly half of trainees were interested in undertaking some of their training in a part-time capacity and working part time as a radiation oncologist in the future. Over 70% of trainees stated they were working 36–55 clinical hours per week with additional non-clinical tasks, after-hours work and on-call duties. Nearly half of all trainees reported having one or less hours of protected time per week. Nonetheless, 40% of respondents indicated they had enough time to pursue outside interests. Radiation treatment planning and maintaining currency in general medicine were considered the most difficult aspects of training in radiation oncology. Most respondents were keen on the concept of fostering a research mentor. In terms of views on practice after completion of training, the majority were interested in pursuing a fellowship, and nearly all expressed an

  8. Predictors of Radiation Therapy–Related Gastrointestinal Toxicity From Anal Cancer Dose-Painted Intensity Modulated Radiation Therapy: Secondary Analysis of NRG Oncology RTOG 0529

    International Nuclear Information System (INIS)

    Olsen, Jeffrey R.; Moughan, Jennifer; Myerson, Robert; Abitbol, Andre; Doncals, Desiree E.; Johnson, Douglas; Schefter, Tracey E.; Chen, Yuhchyau; Fisher, Barbara; Michalski, Jeff; Narayan, Samir; Chang, Albert; Crane, Christopher H.; Kachnic, Lisa

    2017-01-01

    Purpose: NRG Oncology RTOG 0529 assessed the feasibility of dose-painted intensity modulated radiation therapy (DP-IMRT) to reduce the acute morbidity of chemoradiation with 5-fluorouracil (5FU) and mitomycin-C (MMC) for T2-4N0-3M0 anal cancer. This secondary analysis was performed to identify patient and treatment factors associated with acute and late gastrointestinal (GI) adverse events (AEs). Methods and Materials: NRG Oncology RTOG 0529 treatment plans were reviewed to extract dose-volume data for tightly contoured small bowel, loosely contoured anterior pelvic contents (APC), and uninvolved colon outside the target volume (UC). Univariate logistic regression was performed to evaluate association between volumes of each structure receiving doses ≥5 to 60 Gy (V5-V60) in 5-Gy increments between patients with and without grade ≥2 acute and late GI AEs, and grade ≥3 acute GI AEs. Additional patient and treatment factors were evaluated in multivariate logistic regression (acute AEs) or Cox proportional hazards models (late AEs). Results: Among 52 evaluable patients, grade ≥2 acute, grade ≥2 late, and grade ≥3 acute GI AEs were observed in 35, 17, and 10 patients, respectively. Trends (P 4 cm, and worse Zubrod performance status. Small bowel volumes of 186.0 cc, 155.0 cc, 41.0 cc, and 30.4 cc receiving doses greater than 25, 30, 35, and 40 Gy, respectively, correlated with increased risk of acute grade ≥2 GI AEs. Conclusions: Acute and late GI AEs from 5FU/MMC chemoradiation using DP-IMRT correlate with radiation dose to the small bowel and APC. Such associations will be incorporated in the dose-volume normal tissue constraint design for future NRG oncology anal cancer studies.

  9. Non-physician practitioners in radiation oncology: advanced practice nurses and physician assistants

    International Nuclear Information System (INIS)

    Kelvin, Joanne Frankel; Moore-Higgs, Giselle J.; Maher, Karen E.; Dubey, Ajay K.; Austin-Seymour, Mary M.; Daly, Nancy Riese; Mendenhall, Nancy Price; Kuehn, Eric F.

    1999-01-01

    Purpose: With changes in reimbursement and a decrease in the number of residents, there is a need to explore new ways of achieving high quality patient care in radiation oncology. One mechanism is the implementation of non-physician practitioner roles, such as the advanced practice nurse (APN) and physician assistant (PA). This paper provides information for radiation oncologists and nurses making decisions about: (1) whether or not APNs or PAs are appropriate for their practice, (2) which type of provider would be most effective, and (3) how best to implement this role. Methods: Review of the literature and personal perspective. Conclusions: Specific issues addressed regarding APN and PA roles in radiation oncology include: definition of roles, regulation, prescriptive authority, reimbursement, considerations in implementation of the role, educational needs, and impact on resident training. A point of emphasis is that the non-physician practitioner is not a replacement or substitute for either a resident or a radiation oncologist. Instead, this role is a complementary one. The non-physician practitioner can assist in the diagnostic work-up of patients, manage symptoms, provide education to patients and families, and assist them in coping. This support facilitates the physician's ability to focus on the technical aspects of prescribing radiotherapy

  10. MO-C-BRB-01: Introduction [Diagnostic radiology and radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Boone, J. [University of California Davis School of Medicine (United States)

    2015-06-15

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  11. Implementation of nanoparticles in therapeutic radiation oncology

    Science.gov (United States)

    Beeler, Erik; Gabani, Prashant; Singh, Om V.

    2017-05-01

    Development and progress of cancer is a very complex disease process to comprehend because of the multiple changes in cellular physiology, pathology, and pathophysiology resulting from the numerous genetic changes from which cancer originates. As a result, most common treatments are not directed at the molecular level but rather at the tissue level. While personalized care is becoming an increasingly aim, the most common cancer treatments are restricted to chemotherapy, radiation, and surgery, each of which has a high likelihood of resulting in rather severe adverse side effects. For example, currently used radiation therapy does not discriminate between normal and cancerous cells and greatly relies on the external targeting of the radiation beams to specific cells and organs. Because of this, there is an immediate need for the development of new and innovative technologies that help to differentiate tumor cells and micrometastases from normal cells and facilitate the complete destruction of those cells. Recent advancements in nanoscience and nanotechnology have paved a way for the development of nanoparticles (NPs) as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery, and improve the therapeutic index of radiation and tumor response to the treatment. The application of NPs in radiation therapy has aimed to improve outcomes in radiation therapy by increasing therapeutic effect in tumors and reducing toxicity on normal tissues. Because NPs possess unique properties, such as preferential accumulation in tumors and minimal uptake in normal tissues, it makes them ideal for the delivery of radiotherapy. This review provides an overview of the recent development of NPs for carrying and delivering therapeutic radioisotopes for systemic radiation treatment for a variety of cancers in radiation oncology.

  12. WE-H-BRB-01: Overview of the ASTRO-NIH-AAPM 2015 Workshop On Exploring Opportunities for Radiation Oncology in the Era of Big Data

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, S. [University of California Davis Medical Center (United States)

    2016-06-15

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  13. WE-H-BRB-01: Overview of the ASTRO-NIH-AAPM 2015 Workshop On Exploring Opportunities for Radiation Oncology in the Era of Big Data

    International Nuclear Information System (INIS)

    Benedict, S.

    2016-01-01

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  14. Proceedings of the 2009 International Conference on Advances in Radiation Oncology (ICARO)

    International Nuclear Information System (INIS)

    2010-01-01

    Cancer has become the second leading cause of death worldwide. At least half of all cancer cases occur in low and middle income (LMI) countries. However, all countries are facing an increased demand for health services for cancer treatment, and a changing and more expensive environment in diagnosis, and treatment, including radiation therapy. The use of radiation therapy in cancer treatment has brought tremendous benefits to cancer patients globally. It is a very cost effective modality for cancer treatment and has a major role in both the cure and palliation of cancer in a multidisciplinary setting. Advances in imaging and treatment delivery have changed radiation therapy approaches in many diseases in high income countries, but are expensive and often difficult to deliver. In particular, the benefits of radiotherapy are not evenly distributed in the world since countries with high income can provide access to the most advanced technology as opposed to what is available for cancer patients in countries with limited resources. The acquisition of advanced technology is often based on consumer demand rather than real clinical need. New techniques of treatment - if they are to use resources from available services - should be introduced to clinical practice only either in the framework of clinical studies or after critical and objective assessment has shown clinical benefits to be superior to previous practice. The International Conference on Advances in Radiation Oncology (ICARO) was organized, at the request of the Member States, to discuss and assess new advances in radiation oncology in the context of physical and economic challenges that all countries face today. Participants submitted research studies, which were reviewed by members of the scientific committee and presented in the form of 46 lectures and 103 posters. The programme dealt with the requirements - when transferring to advanced radiation technology - for staff training, treatment planning and

  15. Medical Student–Reported Outcomes of a Radiation Oncologist–Led Preclinical Course in Oncology: A Five-Year Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Ankit; Koottappillil, Brian; Shah, Bhartesh; Ahuja, Divya; Hirsch, Ariel E., E-mail: Ariel.hirsch@bmc.org

    2015-07-15

    Purpose: There is a recognized need for more robust training in oncology for medical students. At our institution, we have offered a core dedicated oncology block, led by a radiation oncologist course director, during the second year of the medical school curriculum since the 2008-2009 academic year. Herein, we report the outcomes of the oncology block over the past 5 years through an analysis of student perceptions of the course, both immediately after completion of the block and in the third year. Methods and Materials: We analyzed 2 separate surveys. The first assessed student impressions of how well the course met each of the course's learning objectives through a survey that was administered to students immediately after the oncology block in 2012. The second was administered after students completed the oncology block during the required radiology clerkship in the third year. All questions used a 5-level Likert scale and were analyzed by use of a Wilcoxon signed-rank test. Results: Of the 169 students who took the oncology course in 2012, 127 (75.1%) completed the course feedback survey. Over 73% of students agreed or strongly agreed that the course met its 3 learning objectives. Of the 699 medical students who took the required radiology clerkship between 2010 and 2013, 538 participated in the second survey, for a total response rate of 77%. Of these students, 368 (68.4%) agreed or strongly agreed that the course was effective in contributing to their overall medical education. Conclusion: Student perceptions of the oncology block are favorable and have improved across multiple categories since the inception of the course. Students self-reported that a dedicated preclinical oncology block was effective in helping identify the basics of cancer therapy and laying the foundation for clinical electives in oncology, including radiation oncology.

  16. Medical Student–Reported Outcomes of a Radiation Oncologist–Led Preclinical Course in Oncology: A Five-Year Analysis

    International Nuclear Information System (INIS)

    Agarwal, Ankit; Koottappillil, Brian; Shah, Bhartesh; Ahuja, Divya; Hirsch, Ariel E.

    2015-01-01

    Purpose: There is a recognized need for more robust training in oncology for medical students. At our institution, we have offered a core dedicated oncology block, led by a radiation oncologist course director, during the second year of the medical school curriculum since the 2008-2009 academic year. Herein, we report the outcomes of the oncology block over the past 5 years through an analysis of student perceptions of the course, both immediately after completion of the block and in the third year. Methods and Materials: We analyzed 2 separate surveys. The first assessed student impressions of how well the course met each of the course's learning objectives through a survey that was administered to students immediately after the oncology block in 2012. The second was administered after students completed the oncology block during the required radiology clerkship in the third year. All questions used a 5-level Likert scale and were analyzed by use of a Wilcoxon signed-rank test. Results: Of the 169 students who took the oncology course in 2012, 127 (75.1%) completed the course feedback survey. Over 73% of students agreed or strongly agreed that the course met its 3 learning objectives. Of the 699 medical students who took the required radiology clerkship between 2010 and 2013, 538 participated in the second survey, for a total response rate of 77%. Of these students, 368 (68.4%) agreed or strongly agreed that the course was effective in contributing to their overall medical education. Conclusion: Student perceptions of the oncology block are favorable and have improved across multiple categories since the inception of the course. Students self-reported that a dedicated preclinical oncology block was effective in helping identify the basics of cancer therapy and laying the foundation for clinical electives in oncology, including radiation oncology

  17. Modern Radiation Therapy for Extranodal Lymphomas: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Yahalom, Joachim, E-mail: yahalomj@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Illidge, Tim [Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, The Christie National Health Service Foundation Trust, Manchester (United Kingdom); Specht, Lena [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Hoppe, Richard T. [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Li, Ye-Xiong [Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Tsang, Richard [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Wirth, Andrew [Division of Radiation Oncology, Peter MacCallum Cancer Institute, St. Andrews Place, East Melbourne (Australia)

    2015-05-01

    Extranodal lymphomas (ENLs) comprise about a third of all non-Hodgkin lymphomas (NHL). Radiation therapy (RT) is frequently used as either primary therapy (particularly for indolent ENL), consolidation after systemic therapy, salvage treatment, or palliation. The wide range of presentations of ENL, involving any organ in the body and the spectrum of histological sub-types, poses a challenge both for routine clinical care and for the conduct of prospective and retrospective studies. This has led to uncertainty and lack of consistency in RT approaches between centers and clinicians. Thus far there is a lack of guidelines for the use of RT in the management of ENL. This report presents an effort by the International Lymphoma Radiation Oncology Group (ILROG) to harmonize and standardize the principles of treatment of ENL, and to address the technical challenges of simulation, volume definition and treatment planning for the most frequently involved organs. Specifically, detailed recommendations for RT volumes are provided. We have applied the same modern principles of involved site radiation therapy as previously developed and published as guidelines for Hodgkin lymphoma and nodal NHL. We have adopted RT volume definitions based on the International Commission on Radiation Units and Measurements (ICRU), as has been widely adopted by the field of radiation oncology for solid tumors. Organ-specific recommendations take into account histological subtype, anatomy, the treatment intent, and other treatment modalities that may be have been used before RT.

  18. Modern Radiation Therapy for Extranodal Lymphomas: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    International Nuclear Information System (INIS)

    Yahalom, Joachim; Illidge, Tim; Specht, Lena; Hoppe, Richard T.; Li, Ye-Xiong; Tsang, Richard; Wirth, Andrew

    2015-01-01

    Extranodal lymphomas (ENLs) comprise about a third of all non-Hodgkin lymphomas (NHL). Radiation therapy (RT) is frequently used as either primary therapy (particularly for indolent ENL), consolidation after systemic therapy, salvage treatment, or palliation. The wide range of presentations of ENL, involving any organ in the body and the spectrum of histological sub-types, poses a challenge both for routine clinical care and for the conduct of prospective and retrospective studies. This has led to uncertainty and lack of consistency in RT approaches between centers and clinicians. Thus far there is a lack of guidelines for the use of RT in the management of ENL. This report presents an effort by the International Lymphoma Radiation Oncology Group (ILROG) to harmonize and standardize the principles of treatment of ENL, and to address the technical challenges of simulation, volume definition and treatment planning for the most frequently involved organs. Specifically, detailed recommendations for RT volumes are provided. We have applied the same modern principles of involved site radiation therapy as previously developed and published as guidelines for Hodgkin lymphoma and nodal NHL. We have adopted RT volume definitions based on the International Commission on Radiation Units and Measurements (ICRU), as has been widely adopted by the field of radiation oncology for solid tumors. Organ-specific recommendations take into account histological subtype, anatomy, the treatment intent, and other treatment modalities that may be have been used before RT

  19. "Assessing the methodological quality of systematic reviews in radiation oncology: A systematic review".

    Science.gov (United States)

    Hasan, Haroon; Muhammed, Taaha; Yu, Jennifer; Taguchi, Kelsi; Samargandi, Osama A; Howard, A Fuchsia; Lo, Andrea C; Olson, Robert; Goddard, Karen

    2017-10-01

    The objective of our study was to evaluate the methodological quality of systematic reviews and meta-analyses in Radiation Oncology. A systematic literature search was conducted for all eligible systematic reviews and meta-analyses in Radiation Oncology from 1966 to 2015. Methodological characteristics were abstracted from all works that satisfied the inclusion criteria and quality was assessed using the critical appraisal tool, AMSTAR. Regression analyses were performed to determine factors associated with a higher score of quality. Following exclusion based on a priori criteria, 410 studies (157 systematic reviews and 253 meta-analyses) satisfied the inclusion criteria. Meta-analyses were found to be of fair to good quality while systematic reviews were found to be of less than fair quality. Factors associated with higher scores of quality in the multivariable analysis were including primary studies consisting of randomized control trials, performing a meta-analysis, and applying a recommended guideline related to establishing a systematic review protocol and/or reporting. Systematic reviews and meta-analyses may introduce a high risk of bias if applied to inform decision-making based on AMSTAR. We recommend that decision-makers in Radiation Oncology scrutinize the methodological quality of systematic reviews and meta-analyses prior to assessing their utility to inform evidence-based medicine and researchers adhere to methodological standards outlined in validated guidelines when embarking on a systematic review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Close to Home: Employment Outcomes for Recent Radiation Oncology Graduates

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Awad A. [Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida (United States); Holliday, Emma B. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Ileto, Jan [New York University, New York, New York (United States); Yoo, Stella K. [Department of Radiation Oncology, University of Southern California, Los Angeles, California (United States); Green, Michael [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Orman, Amber [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (United States); Deville, Curtiland [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Haffty, Bruce G. [Department of Radiation Oncology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey (United States); Wilson, Lynn D., E-mail: Lynn.wilson@yale.edu [Department of Therapeutic Radiology, Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut (United States)

    2016-07-01

    Purpose: To characterize the practice type and location of radiation oncology (RO) residents graduating in 2013. Methods and Materials: Graduates completing RO residency in 2013 were identified, and for each, postgraduate practice setting (academic vs private practice) and location were identified. Characteristics of the graduates, including details regarding their institutions of medical school and residency education, were collected and analyzed. Results: Data were obtained from 146 of the 154 RO graduates from the class of 2013. Employment data were available for 142 graduates. Approximately one-third of graduates were employed in the same state as residency (36.6%), approximately two-thirds (62.0%) in the same region as residency, and nearly three-fourths (73.9%) in the same region as medical school or residency completion. Of the 66 graduates (46.5%) working in academics, 40.9% were at the same institution where they completed residency. Most trainees (82.4%) attended medical schools with RO residency programs. Conclusions: Although personal factors may attract students to train in a particular area, the location of medical school and residency experiences may influence RO graduate practice location choice. Trends in the geographic distribution of graduating radiation oncologists can help identify and better understand disparities in access to RO care. Steps to improve access to RO care may include interventions at the medical student or resident level, such as targeting students at medical schools without associated residency programs and greater resident exposure to underserved areas.

  1. Close to Home: Employment Outcomes for Recent Radiation Oncology Graduates

    International Nuclear Information System (INIS)

    Ahmed, Awad A.; Holliday, Emma B.; Ileto, Jan; Yoo, Stella K.; Green, Michael; Orman, Amber; Deville, Curtiland; Jagsi, Reshma; Haffty, Bruce G.; Wilson, Lynn D.

    2016-01-01

    Purpose: To characterize the practice type and location of radiation oncology (RO) residents graduating in 2013. Methods and Materials: Graduates completing RO residency in 2013 were identified, and for each, postgraduate practice setting (academic vs private practice) and location were identified. Characteristics of the graduates, including details regarding their institutions of medical school and residency education, were collected and analyzed. Results: Data were obtained from 146 of the 154 RO graduates from the class of 2013. Employment data were available for 142 graduates. Approximately one-third of graduates were employed in the same state as residency (36.6%), approximately two-thirds (62.0%) in the same region as residency, and nearly three-fourths (73.9%) in the same region as medical school or residency completion. Of the 66 graduates (46.5%) working in academics, 40.9% were at the same institution where they completed residency. Most trainees (82.4%) attended medical schools with RO residency programs. Conclusions: Although personal factors may attract students to train in a particular area, the location of medical school and residency experiences may influence RO graduate practice location choice. Trends in the geographic distribution of graduating radiation oncologists can help identify and better understand disparities in access to RO care. Steps to improve access to RO care may include interventions at the medical student or resident level, such as targeting students at medical schools without associated residency programs and greater resident exposure to underserved areas.

  2. Close to Home: Employment Outcomes for Recent Radiation Oncology Graduates.

    Science.gov (United States)

    Ahmed, Awad A; Holliday, Emma B; Ileto, Jan; Yoo, Stella K; Green, Michael; Orman, Amber; Deville, Curtiland; Jagsi, Reshma; Haffty, Bruce G; Wilson, Lynn D

    2016-07-01

    To characterize the practice type and location of radiation oncology (RO) residents graduating in 2013. Graduates completing RO residency in 2013 were identified, and for each, postgraduate practice setting (academic vs private practice) and location were identified. Characteristics of the graduates, including details regarding their institutions of medical school and residency education, were collected and analyzed. Data were obtained from 146 of the 154 RO graduates from the class of 2013. Employment data were available for 142 graduates. Approximately one-third of graduates were employed in the same state as residency (36.6%), approximately two-thirds (62.0%) in the same region as residency, and nearly three-fourths (73.9%) in the same region as medical school or residency completion. Of the 66 graduates (46.5%) working in academics, 40.9% were at the same institution where they completed residency. Most trainees (82.4%) attended medical schools with RO residency programs. Although personal factors may attract students to train in a particular area, the location of medical school and residency experiences may influence RO graduate practice location choice. Trends in the geographic distribution of graduating radiation oncologists can help identify and better understand disparities in access to RO care. Steps to improve access to RO care may include interventions at the medical student or resident level, such as targeting students at medical schools without associated residency programs and greater resident exposure to underserved areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Current status of SCI and SCIE publications in the field of radiation oncology in Korea

    International Nuclear Information System (INIS)

    Kang, Jin Oh

    2007-01-01

    To investigate current status of SCI (Science Citation Index) and SCI Expanded publication of Korean radiation oncologists. Published SCI and SCIE articles the conditions of first author's address as 'Korea' and 'Radiation Oncology' or 'Therapeutic Radiology' were searched from Pubmed database. From 1990 to 2006, 146 SCI articles and 32 SCIE articles were published. Most frequently published journal was international Journal of Radiation Oncology Biology Physics, where 56 articles were found. Articles with 30 or more citations were only five and 10 or more citations were 26. Yonsei University, which had 57 published articles, was the top among 19 affiliations which had one or more SCI and SCIE articles. Authors with five or more articles were 9 and Seong J. of Yonsei University was the top with 19 articles. The investigations showed disappointing results. The members of Korean Society of Radiation Oncologists must consider a strategy to increase SCI and SCIE publications

  4. Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.

    Science.gov (United States)

    Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe

    2016-07-01

    To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Development of an electronic radiation oncology patient information management system.

    Science.gov (United States)

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2008-01-01

    The quality of patient care is critically influenced by the availability of accurate information and its efficient management. Radiation oncology consists of many information components, for example there may be information related to the patient (e.g., profile, disease site, stage, etc.), to people (radiation oncologists, radiological physicists, technologists, etc.), and to equipment (diagnostic, planning, treatment, etc.). These different data must be integrated. A comprehensive information management system is essential for efficient storage and retrieval of the enormous amounts of information. A radiation therapy patient information system (RTPIS) has been developed using open source software. PHP and JAVA script was used as the programming languages, MySQL as the database, and HTML and CSF as the design tool. This system utilizes typical web browsing technology using a WAMP5 server. Any user having a unique user ID and password can access this RTPIS. The user ID and password is issued separately to each individual according to the person's job responsibilities and accountability, so that users will be able to only access data that is related to their job responsibilities. With this system authentic users will be able to use a simple web browsing procedure to gain instant access. All types of users in the radiation oncology department should find it user-friendly. The maintenance of the system will not require large human resources or space. The file storage and retrieval process would be be satisfactory, unique, uniform, and easily accessible with adequate data protection. There will be very little possibility of unauthorized handling with this system. There will also be minimal risk of loss or accidental destruction of information.

  6. Development of an electronic radiation oncology patient information management system

    Directory of Open Access Journals (Sweden)

    Mandal Abhijit

    2008-01-01

    Full Text Available The quality of patient care is critically influenced by the availability of accurate information and its efficient management. Radiation oncology consists of many information components, for example there may be information related to the patient (e.g., profile, disease site, stage, etc., to people (radiation oncologists, radiological physicists, technologists, etc., and to equipment (diagnostic, planning, treatment, etc.. These different data must be integrated. A comprehensive information management system is essential for efficient storage and retrieval of the enormous amounts of information. A radiation therapy patient information system (RTPIS has been developed using open source software. PHP and JAVA script was used as the programming languages, MySQL as the database, and HTML and CSF as the design tool. This system utilizes typical web browsing technology using a WAMP5 server. Any user having a unique user ID and password can access this RTPIS. The user ID and password is issued separately to each individual according to the person′s job responsibilities and accountability, so that users will be able to only access data that is related to their job responsibilities. With this system authentic users will be able to use a simple web browsing procedure to gain instant access. All types of users in the radiation oncology department should find it user-friendly. The maintenance of the system will not require large human resources or space. The file storage and retrieval process would be be satisfactory, unique, uniform, and easily accessible with adequate data protection. There will be very little possibility of unauthorized handling with this system. There will also be minimal risk of loss or accidental destruction of information.

  7. Implementing and Integrating a Clinically-Driven Electronic Medical Record (EMR for Radiation Oncology in a Large Medical Enterprise

    Directory of Open Access Journals (Sweden)

    John Paxton Kirkpatrick

    2013-04-01

    Full Text Available Purpose/Objective: While our department is heavily invested in computer-based treatment planning, we historically relied on paper-based charts for management of Radiation Oncology patients. In early 2009, we initiated the process of conversion to an electronic medical record (EMR eliminating the need for paper charts. Key goals included the ability to readily access information wherever and whenever needed, without compromising safety, treatment quality, confidentiality or productivity.Methodology: In February, 2009, we formed a multi-disciplinary team of Radiation Oncology physicians, nurses, therapists, administrators, physicists/dosimetrists, and information technology (IT specialists, along with staff from the Duke Health System IT department. The team identified all existing processes and associated information/reports, established the framework for the EMR system and generated, tested and implemented specific EMR processes.Results: Two broad classes of information were identified: information which must be readily accessed by anyone in the health system versus that used solely within the Radiation Oncology department. Examples of the former are consultation reports, weekly treatment check notes and treatment summaries; the latter includes treatment plans, daily therapy records and quality assurance reports. To manage the former, we utilized the enterprise-wide system , which required an intensive effort to design and implement procedures to export information from Radiation Oncology into that system. To manage "Radiation Oncology" data, we used our existing system (ARIA, Varian Medical Systems. The ability to access both systems simultaneously from a single workstation (WS was essential, requiring new WS and modified software. As of January, 2010, all new treatments were managed solely with an EMR. We find that an EMR makes information more widely accessible and does not compromise patient safety, treatment quality or confidentiality

  8. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    OpenAIRE

    Zhou J; Zamdborg L; Sebastian E

    2015-01-01

    Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy ...

  9. Molecular biology in radiation oncology. Radiation oncology perspective of BRCA1 and BRCA2

    International Nuclear Information System (INIS)

    Coleman, C.N.

    1999-01-01

    The breast cancer susceptibility genes, BRCA1 and BRCA2, are used to illustrate the application of molecular biology to clinical radiation oncology. Identified by linkage analysis and cloned, the structure of the genes and the numerous mutations are determined by molecular biology techniques that examine the structure of the DNA and the proteins made by the normal and mutant alleles. Mutations in the non-transcribed portion of the gene will not be found in protein structure assays and may be important in gene function. In addition to potential deleterious mutations, normal polymorphisms of the gene will also be detected, therefore not all differences in gene sequence may represent important mutations, a finding that complicates genetic screening and counseling. The localization of the protein in the nucleus, the expression in relation to cell cycle and the association with RAD51 led to the discovery that the two BRCA genes may be involved in transcriptional regulation and DNA repair. The defect in DNA repair can increase radiosensitivity which might improve local control using breast-conserving treatment in a tumor which is homozygous for the loss of the gene (i.e., BRCA1 and BRCA2 are tumor suppressor genes). This is supported by the early reports of a high rate of local control with breast-conserving therapy. Nonetheless, this radiosensitivity theoretically may also lead to increased susceptibility to carcinogenic effects in surviving cells, a finding that might not be observed for decades. The susceptibility to radiation-induced DNA damage appears also to make the cells more sensitive to chemotherapy. Understanding the role of the normal BRCA genes in DNA repair might help define a novel mechanism for radiation sensitization by interfering with the normal gene function using a variety of molecular or biochemical therapies

  10. Establishing a Global Radiation Oncology Collaboration in Education (GRaCE): Objectives and priorities

    NARCIS (Netherlands)

    Turner, S.; Eriksen, J.G.; Trotter, T.; Verfaillie, C.; Benstead, K.; Giuliani, M.; Poortmans, P.; Holt, T.; Brennan, S.; Potter, R.

    2015-01-01

    Representatives from countries and regions world-wide who have implemented modern competency-based radiation- or clinical oncology curricula for training medical specialists, met to determine the feasibility and value of an ongoing international collaboration. In this forum, educational leaders from

  11. Meeting the challenge of managed care - Part II: Designing a radiation oncology department and setting up a clinical practice program

    International Nuclear Information System (INIS)

    Halman, Marc A.; Szerlag, Chester

    1997-01-01

    Objective: Identify the business practices necessary to develop a successful radiation oncology department in the current health care environment. Course content will be of interest to new practitioners establishing first time programs or joining existing groups as well as experienced radiation oncologists who are challenged with redesigning programs to be competitive. Course Content: During this session, the following topics will be discussed: 1) Space planning and equipment selection 2) Personnel; creating efficiencies while promoting productivity 3) Professional and Technical Billing; establishing proper fee structures and coding procedures 4) Utilizing benchmarking as a tool to improve operations 5) Information technology in radiation oncology 6) Current and Future Trends: a) Oncology networks b) Reimbursement: managed care and capitation c) Downsizing d) Relative Value Units

  12. Evaluating the quality, clinical relevance, and resident perception of the radiation oncology in-training examination: A national survey.

    Science.gov (United States)

    Kim, Hyun; Bar Ad, Voichita; McAna, John; Dicker, Adam P

    2016-01-01

    The yearly radiation oncology in-training examination (ITE) by the American College of Radiology is a widely used, norm-referenced educational assessment, with high test reliability and psychometric performance. We distributed a national survey to evaluate the academic radiation oncology community's perception of the ITE. In June 2014, a 7-question online survey was distributed via e-mail to current radiation oncology residents, program directors, and attending physicians who had completed residency in the past 5 years or junior attendings. Survey questions were designed on a 5-point Likert scale. Sign test was performed with P ≤ .05 considered statistically different from neutral. Thirty-one program directors (33.3%), 114 junior attendings (35.4%), and 225 residents (41.2%) responded. Junior attendings and program directors reported that the ITE directly contributed to their preparation for the American Board of Radiology written certification (P = .050 and .004, respectively). Residents did not perceive the examination as an accurate assessment of relevant clinical and scientific knowledge (P ITE. Although the current examination allows limited feedback, establishing a venue for individualized feedback may allow continual and timely improvement of the ITE. Adopting a criterion-referenced examination may further increase resident investment in and utilization of this valuable learning tool. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  13. Description of the role of nonphysician practitioners in radiation oncology

    International Nuclear Information System (INIS)

    Kelvin, Joanne Frankel; Moore-Higgs, Giselle Josephine

    1999-01-01

    Purpose: With changes in reimbursement and a decrease in the number of residents, there is a need to explore new ways of achieving high-quality patient care in radiation oncology. One mechanism is the implementation of nonphysician practitioner roles. The purpose of this paper is to describe the roles and responsibilities of clinical nurse specialists (CNSs), nurse practitioners (NPs), and physician assistants (PAs) currently working in the field of radiation oncology in the United States. Methods and Materials: A nationwide mailing was sent to elicit responses to an 8-page self-report questionnaire. Results: The final sample of 86 included 45 (52%) CNSs, 31 (36%) NPs, and 10 (12%) PAs. Two-thirds worked in private practice settings. Most of the nonphysician practitioners frequently obtained histories (57-90%) and ordered laboratory studies (52-68%). However, NPs and PAs were more likely than CNSs to frequently perform 'medical' services such as perform physical exams (42-80% vs. 19-36%), order radiologic studies (50% vs. 17%), and prescribe medication (60-84% vs. 26%). CNSs were more likely to provide 'supportive' services such as develop educational materials, participate in quality improvement initiatives, and develop policies and procedures. Conclusions: Nonphysician practitioners are not substituting for physicians, but rather are working in collaboration with them, performing designated tasks

  14. Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?

    Science.gov (United States)

    Thompson, Reid F; Valdes, Gilmer; Fuller, Clifton D; Carpenter, Colin M; Morin, Olivier; Aneja, Sanjay; Lindsay, William D; Aerts, Hugo J W L; Agrimson, Barbara; Deville, Curtiland; Rosenthal, Seth A; Yu, James B; Thomas, Charles R

    2018-06-12

    Artificial intelligence (AI) is emerging as a technology with the power to transform established industries, and with applications from automated manufacturing to advertising and facial recognition to fully autonomous transportation. Advances in each of these domains have led some to call AI the "fourth" industrial revolution [1]. In healthcare, AI is emerging as both a productive and disruptive force across many disciplines. This is perhaps most evident in Diagnostic Radiology and Pathology, specialties largely built around the processing and complex interpretation of medical images, where the role of AI is increasingly seen as both a boon and a threat. In Radiation Oncology as well, AI seems poised to reshape the specialty in significant ways, though the impact of AI has been relatively limited at present, and may rightly seem more distant to many, given the predominantly interpersonal and complex interventional nature of the specialty. In this overview, we will explore the current state and anticipated future impact of AI on Radiation Oncology, in detail, focusing on key topics from multiple stakeholder perspectives, as well as the role our specialty may play in helping to shape the future of AI within the larger spectrum of medicine. Published by Elsevier B.V.

  15. Defining a Leader Role curriculum for radiation oncology: A global Delphi consensus study.

    Science.gov (United States)

    Turner, Sandra; Seel, Matthew; Trotter, Theresa; Giuliani, Meredith; Benstead, Kim; Eriksen, Jesper G; Poortmans, Philip; Verfaillie, Christine; Westerveld, Henrike; Cross, Shamira; Chan, Ming-Ka; Shaw, Timothy

    2017-05-01

    The need for radiation oncologists and other radiation oncology (RO) professionals to lead quality improvement activities and contribute to shaping the future of our specialty is self-evident. Leadership knowledge, skills and behaviours, like other competencies, can be learned (Blumenthal et al., 2012). The objective of this study was to define a globally applicable competency set specific to radiation oncology for the CanMEDS Leader Role (Frank et al., 2015). A modified Delphi consensus process delivering two rounds of on-line surveys was used. Participants included trainees, radiation/clinical oncologists and other RO team members (radiation therapists, physicists, and nurses), professional educators and patients. 72 of 95 (76%) invitees from nine countries completed the Round 1 (R1) survey. Of the 72 respondents to RI, 70 completed Round 2 (R2) (97%). In R1, 35 items were deemed for 'inclusion' and 21 for 'exclusion', leaving 41 'undetermined'. After review of items, informed by participant comments, 14 competencies from the 'inclusion' group went into the final curriculum; 12 from the 'undetermined' group went to R2. In R2, 6 items reached consensus for inclusion. This process resulted in 20 RO Leader Role competencies with apparent global applicability. This is the first step towards developing learning, teaching and assessment tools for this important area of training. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of a residency program in radiation oncology physics: an inverse planning approach.

    Science.gov (United States)

    Khan, Rao F H; Dunscombe, Peter B

    2016-03-08

    Over the last two decades, there has been a concerted effort in North America to organize medical physicists' clinical training programs along more structured and formal lines. This effort has been prompted by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP) which has now accredited about 90 residency programs. Initially the accreditation focused on standardized and higher quality clinical physics training; the development of rounded professionals who can function at a high level in a multidisciplinary environment was recognized as a priority of a radiation oncology physics residency only lately. In this report, we identify and discuss the implementation of, and the essential components of, a radiation oncology physics residency designed to produce knowledgeable and effective clinical physicists for today's safety-conscious and collaborative work environment. Our approach is that of inverse planning, by now familiar to all radiation oncology physicists, in which objectives and constraints are identified prior to the design of the program. Our inverse planning objectives not only include those associated with traditional residencies (i.e., clinical physics knowledge and critical clinical skills), but also encompass those other attributes essential for success in a modern radiation therapy clinic. These attributes include formal training in management skills and leadership, teaching and communication skills, and knowledge of error management techniques and patient safety. The constraints in our optimization exercise are associated with the limited duration of a residency and the training resources available. Without compromising the knowledge and skills needed for clinical tasks, we have successfully applied the model to the University of Calgary's two-year residency program. The program requires 3840 hours of overall commitment from the trainee, of which 7%-10% is spent in obtaining formal training in nontechnical "soft skills".

  17. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    Science.gov (United States)

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. © 2016 American College of Veterinary Radiology.

  18. MO-C-BRB-03: RSNA President [Diagnostic radiology and radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Arenson, R. [RSNA (United States)

    2015-06-15

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  19. MO-C-BRB-02: ASTRO President [Diagnostic radiology and radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, B. [ASTRO (United States)

    2015-06-15

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  20. Practicing radiation oncology today - Part I: Meeting the challenge of managed care

    International Nuclear Information System (INIS)

    Botnick, Leslie E.; Cohen, Hilary H.; Hinkle, Milton; Rose, Christopher M.

    1996-01-01

    Objective: The change in health care delivery is forcing radiation oncologists to examine every aspect of how they organize themselves, deliver care, evaluate the quality of that care, and how they are reimbursed for this process. While managed care has been implicated as the new paradigm that will change the way that health care is delivered, the authors maintain that outcomes research may be just as important a stimulus for change. This course will attempt to examine how managed care and outcomes research are impacting upon radiation oncology practice, and what radiation oncologists can do to maintain patient care standards. This course will introduce certain concepts that will be discussed in subsequent courses on Informatics and Evaluating New Technology. Topics Covered: 1. The Managed Care Nomenclature Explained: HMO's, PPO's, POS's, Carve-Outs 2. Outcomes Research: What it can and cannot do 3. Moving from QA to CQI to Benchmarking 4. Using Analytical Tools to Evaluate Capital Purchases and Operational Requirements 5. Evaluating Staffing Needs: Traditional jobs, Cross-training, Outsourcing, Physician extenders 6. Introduction to Evaluation of Technology 7. Introduction to Evaluation of Informatics 8. Potential gains from Shared Services 9. Networking vs. Mergers vs. Oncology IPA's vs. MSO's 10. Evaluating Managed Care Strategies and Contracts

  1. A syllabus for the education and training of radiation oncology nurses

    International Nuclear Information System (INIS)

    2009-01-01

    A dramatic rise in cancer incidence across the developing world is stretching already limited resources and equipment. Shortages of qualified staff and equipment are growing constraints to treating cancer efficiently. More than 5000 radiotherapy machines are presently needed to help patients fight cancer, yet the entire developing world has only about 2200 such machines. Experts predict a long term crisis in managing cancer, with an estimated five million new patients requiring radiotherapy every year. Meeting the challenge is not simply a matter of providing appropriate equipment. There must be sufficient trained and knowledgeable staff with clinical and medical physics expertise to deliver a safe and effective radiation dose. Appropriate facilities and radiation protection infrastructure for monitoring and regulatory control are needed. Cancer treatment must be carried out in a comprehensive context of prevention, early diagnosis and palliative care. In the early stages of development of a radiotherapy department or unit, the staffing needs of radiotherapy services should also be specifically and carefully addressed. To make radiotherapy available to all patients who need it, human resources should be urgently expanded globally, along with the rational acquisition of additional equipment. The recommended staffing - for a basic radiotherapy facility with 1 teletherapy machine, simulator and high dose rate brachytherapy (HDR) - should be: 5 radiation oncologists, 4 medical physicists, 7-8 radiotherapy technologists (RTTs), 3 oncology nurses and 1 maintenance engineer. Where possible, training should be undertaken in centres with patient populations, equipment and training programmes relevant to the needs of the country. Radiotherapy staff should also be required to obtain a qualification adequate for registration in their own country. The human resources listed above could treat on average about 1000 patients per year by extending operations to a minimum of 12

  2. A syllabus for the education and training of radiation oncology nurses

    International Nuclear Information System (INIS)

    2008-01-01

    A dramatic rise in cancer incidence across the developing world is stretching already limited resources and equipment. Shortages of qualified staff and equipment are growing constraints to treating cancer efficiently. More than 5000 radiotherapy machines are presently needed to help patients fight cancer, yet the entire developing world has only about 2200 such machines. Experts predict a long term crisis in managing cancer, with an estimated five million new patients requiring radiotherapy every year. Meeting the challenge is not simply a matter of providing appropriate equipment. There must be sufficient trained and knowledgeable staff with clinical and medical physics expertise to deliver a safe and effective radiation dose. Appropriate facilities and radiation protection infrastructure for monitoring and regulatory control are needed. Cancer treatment must be carried out in a comprehensive context of prevention, early diagnosis and palliative care. In the early stages of development of a radiotherapy department or unit, the staffing needs of radiotherapy services should also be specifically and carefully addressed. To make radiotherapy available to all patients who need it, human resources should be urgently expanded globally, along with the rational acquisition of additional equipment. The recommended staffing - for a basic radiotherapy facility with 1 teletherapy machine, simulator and high dose rate brachytherapy (HDR) - should be: 5 radiation oncologists, 4 medical physicists, 7-8 radiotherapy technologists (RTTs), 3 oncology nurses and 1 maintenance engineer. Where possible, training should be undertaken in centres with patient populations, equipment and training programmes relevant to the needs of the country. Radiotherapy staff should also be required to obtain a qualification adequate for registration in their own country. The human resources listed above could treat on average about 1000 patients per year by extending operations to a minimum of 12

  3. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    Science.gov (United States)

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  4. Application of systems and control theory-based hazard analysis to radiation oncology.

    Science.gov (United States)

    Pawlicki, Todd; Samost, Aubrey; Brown, Derek W; Manger, Ryan P; Kim, Gwe-Ya; Leveson, Nancy G

    2016-03-01

    Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis. The STPA procedure starts with the definition of high-level accidents for radiation oncology at the medical center and the hazards leading to those accidents. From there, the hierarchical safety control structure of the radiation oncology clinic is modeled, i.e., the controls that are used to prevent accidents and provide effective treatment. Using STPA, unsafe control actions (behaviors) are identified that can lead to the hazards as well as causal scenarios that can lead to the identified unsafe control. This information can be used to eliminate or mitigate potential hazards. The STPA procedure is demonstrated on a new online adaptive cranial radiosurgery procedure that omits the CT simulation step and uses CBCT for localization, planning, and surface imaging system during treatment. The STPA procedure generated a comprehensive set of causal scenarios that are traced back to system hazards and accidents. Ten control loops were created for the new SRS procedure, which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Eighty three unsafe control actions were identified as well as 472 causal scenarios that could lead to those unsafe control actions. STPA provides a method for understanding the role of management decisions and hospital operations on system safety and generating process design requirements to prevent hazards and accidents. The interaction of people, hardware, and software is highlighted. The method of STPA produces results that can be used to improve

  5. Hypoxia and tumor metabolism in radiation oncology: Targets visualized by positron emission tomography

    NARCIS (Netherlands)

    Wijsman, R.; Kaanders, J.H.A.M.; Oyen, W.J.G.; Bussink, J.

    2013-01-01

    Due to the amazing leap of technology in radiation oncology in the past few years, cancer treatment will become more individualized. Molecular imaging with PET contributed to this with its many tracers available, each of them visualizing a specific feature of a tumor and its microenvironment

  6. Medical Device Recalls in Radiation Oncology: Analysis of US Food and Drug Administration Data, 2002-2015

    International Nuclear Information System (INIS)

    Connor, Michael J.; Tringale, Kathryn; Moiseenko, Vitali; Marshall, Deborah C.; Moore, Kevin; Cervino, Laura; Atwood, Todd; Brown, Derek; Mundt, Arno J.; Pawlicki, Todd; Recht, Abram; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose: To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non–radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Methods and Materials: Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by Pearson χ"2 test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; P<.001). Time from 510(k) market approval to recall was shorter among RODs (P<.001) and progressively shortened over time. Radiation oncology devices had fewer recalled devices in commerce than other devices (P<.001). Conclusions: Compared with other class II devices, RODs experience recalls sooner after market approval and are trending sooner still. Most of these recalls were moderate in severity, and software issues are prevalent. Comprehensive analysis of recall data can identify areas for device improvement, such as better system design among RODs.

  7. Medical Device Recalls in Radiation Oncology: Analysis of US Food and Drug Administration Data, 2002-2015

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Michael J. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); University of California Irvine School of Medicine, Irvine, California (United States); Tringale, Kathryn; Moiseenko, Vitali; Marshall, Deborah C.; Moore, Kevin; Cervino, Laura; Atwood, Todd; Brown, Derek; Mundt, Arno J.; Pawlicki, Todd [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-06-01

    Purpose: To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non–radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Methods and Materials: Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by Pearson χ{sup 2} test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; P<.001). Time from 510(k) market approval to recall was shorter among RODs (P<.001) and progressively shortened over time. Radiation oncology devices had fewer recalled devices in commerce than other devices (P<.001). Conclusions: Compared with other class II devices, RODs experience recalls sooner after market approval and are trending sooner still. Most of these recalls were moderate in severity, and software issues are prevalent. Comprehensive analysis of recall data can identify areas for device improvement, such as better system design among RODs.

  8. Development of a Quality and Safety Competency Curriculum for Radiation Oncology Residency: An International Delphi Study

    International Nuclear Information System (INIS)

    Adleman, Jenna; Gillan, Caitlin; Caissie, Amanda; Davis, Carol-Anne; Liszewski, Brian; McNiven, Andrea; Giuliani, Meredith

    2017-01-01

    Purpose: To develop an entry-to-practice quality and safety competency profile for radiation oncology residency. Methods and Materials: A comprehensive list of potential quality and safety competency items was generated from public and professional resources and interprofessional focus groups. Redundant or out-of-scope items were eliminated through investigator consensus. Remaining items were subjected to an international 2-round modified Delphi process involving experts in radiation oncology, radiation therapy, and medical physics. During Round 1, each item was scored independently on a 9-point Likert scale indicating appropriateness for inclusion in the competency profile. Items indistinctly ranked for inclusion or exclusion were re-evaluated through web conference discussion and reranked in Round 2. Results: An initial 1211 items were compiled from 32 international sources and distilled to 105 unique potential quality and safety competency items. Fifteen of the 50 invited experts participated in round 1: 10 radiation oncologists, 4 radiation therapists, and 1 medical physicist from 13 centers in 5 countries. Round 1 rankings resulted in 80 items included, 1 item excluded, and 24 items indeterminate. Two areas emerged more prominently within the latter group: change management and human factors. Web conference with 5 participants resulted in 9 of these 24 items edited for content or clarity. In Round 2, 12 participants rescored all indeterminate items resulting in 10 items ranked for inclusion. The final 90 enabling competency items were organized into thematic groups consisting of 18 key competencies under headings adapted from Deming's System of Profound Knowledge. Conclusions: This quality and safety competency profile may inform minimum training standards for radiation oncology residency programs.

  9. Development of a Quality and Safety Competency Curriculum for Radiation Oncology Residency: An International Delphi Study

    Energy Technology Data Exchange (ETDEWEB)

    Adleman, Jenna [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Gillan, Caitlin [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Caissie, Amanda [Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Saint John Regional Hospital, Saint John, New Brunswick (Canada); Davis, Carol-Anne [Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Nova Scotia Cancer Centre, Halifax, Nova Scotia (Canada); Liszewski, Brian [Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); McNiven, Andrea [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Giuliani, Meredith, E-mail: Meredith.Giuliani@rmp.uhn.ca [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada)

    2017-06-01

    Purpose: To develop an entry-to-practice quality and safety competency profile for radiation oncology residency. Methods and Materials: A comprehensive list of potential quality and safety competency items was generated from public and professional resources and interprofessional focus groups. Redundant or out-of-scope items were eliminated through investigator consensus. Remaining items were subjected to an international 2-round modified Delphi process involving experts in radiation oncology, radiation therapy, and medical physics. During Round 1, each item was scored independently on a 9-point Likert scale indicating appropriateness for inclusion in the competency profile. Items indistinctly ranked for inclusion or exclusion were re-evaluated through web conference discussion and reranked in Round 2. Results: An initial 1211 items were compiled from 32 international sources and distilled to 105 unique potential quality and safety competency items. Fifteen of the 50 invited experts participated in round 1: 10 radiation oncologists, 4 radiation therapists, and 1 medical physicist from 13 centers in 5 countries. Round 1 rankings resulted in 80 items included, 1 item excluded, and 24 items indeterminate. Two areas emerged more prominently within the latter group: change management and human factors. Web conference with 5 participants resulted in 9 of these 24 items edited for content or clarity. In Round 2, 12 participants rescored all indeterminate items resulting in 10 items ranked for inclusion. The final 90 enabling competency items were organized into thematic groups consisting of 18 key competencies under headings adapted from Deming's System of Profound Knowledge. Conclusions: This quality and safety competency profile may inform minimum training standards for radiation oncology residency programs.

  10. Radiation oncology training in France: demography, analysis of motivations of the young specialists, evaluation of the training

    International Nuclear Information System (INIS)

    Kantor, G.; Kantor, G.; Gerard, G.P.; Kantor, G.; Bey, P.; Huguet, F.; Toledano, A.; Lafond, C.; Quero, L.; Servagi, S.

    2005-01-01

    During the 5 past national courses organised by the French society of radiation oncology (SFRO), three different types of survey were performed to analyse demography, motivations and quality of training of the young specialists. During the 5 past years, 50 radiation oncologists were training for the whole country (about 15 per year were graduated). A recent increase the number of young specialists is observed with a total number of 50 in 2000 to 75 in 2005. Nevertheless, the number of young specialists is dramatically insufficient and exposes for the future to an important demographic crisis. Analysis of motivations of choice for radiation oncology confirms the influence of a practical stage of oncology during the second cycle of the medical studies for 60% of the young specialists. Analysis of practical and theoretical training was performed according to the point of view and living experiences of the students. On the other hand, informations from teachers were less complete. Some needs are emphasised as: 1) the quality of the follow during the training (importance of the recent implementation of a logbook); 2) importance of theoretical and practical training at the radiotherapy department: 3) help and incentive for research and scientific publication. (author)

  11. Radiation oncology career decision variables for graduating trainees seeking positions in 2003-2004

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lynn D [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Flynn, Daniel F [Department of Radiation Oncology, Holy Family Hospital, Methuen, MA (United States); Haffty, Bruce G [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States)

    2005-06-01

    Purpose: Radiation oncology trainees must consider an array of variables when deciding upon an academic or private practice career path. This prospective evaluation of the 2004 graduating radiation oncology trainees, evaluates such variables and provides additional descriptive data. Methods: A survey that included 15 questions (one subjective, eleven categorical, and 3 continuous variables) was mailed to the 144 graduating radiation oncology trainees in United States programs in January of 2004. Questions were designed to gather information regarding factors that may have influenced career path choices. The responses were anonymous, and no identifying information was sought. Survey data were collated and analyzed for differences in both categorical and continuous variables as they related to choice of academic or private practice career path. Results: Sixty seven (47%) of the surveys were returned. Forty-five percent of respondents indicated pursuit of an academic career. All respondents participated in research during training with 73% participating in research publication authorship. Post graduate year-3 was the median in which career path was chosen, and 20% thought that a fellowship position was 'perhaps' necessary to secure an academic position. Thirty percent of the respondents revealed that the timing of the American Board of Radiology examination influenced their career path decision. Eighteen variables were offered as possibly influencing career path choice within the survey, and the top five identified by those seeking an academic path were: (1) colleagues, (2) clinical research, (3) teaching, (4) geography, (5) and support staff. For those seeking private practice, the top choices were: (1) lifestyle, (2) practice environment, (3) patient care, (4) geography, (5) colleagues. Female gender (p = 0.064), oral meeting presentation (p = 0.053), and international meeting presentation (p 0.066) were the variables most significantly associated with pursuing an

  12. Radiation oncology career decision variables for graduating trainees seeking positions in 2003-2004

    International Nuclear Information System (INIS)

    Wilson, Lynn D.; Flynn, Daniel F.; Haffty, Bruce G.

    2005-01-01

    Purpose: Radiation oncology trainees must consider an array of variables when deciding upon an academic or private practice career path. This prospective evaluation of the 2004 graduating radiation oncology trainees, evaluates such variables and provides additional descriptive data. Methods: A survey that included 15 questions (one subjective, eleven categorical, and 3 continuous variables) was mailed to the 144 graduating radiation oncology trainees in United States programs in January of 2004. Questions were designed to gather information regarding factors that may have influenced career path choices. The responses were anonymous, and no identifying information was sought. Survey data were collated and analyzed for differences in both categorical and continuous variables as they related to choice of academic or private practice career path. Results: Sixty seven (47%) of the surveys were returned. Forty-five percent of respondents indicated pursuit of an academic career. All respondents participated in research during training with 73% participating in research publication authorship. Post graduate year-3 was the median in which career path was chosen, and 20% thought that a fellowship position was 'perhaps' necessary to secure an academic position. Thirty percent of the respondents revealed that the timing of the American Board of Radiology examination influenced their career path decision. Eighteen variables were offered as possibly influencing career path choice within the survey, and the top five identified by those seeking an academic path were: (1) colleagues, (2) clinical research, (3) teaching, (4) geography, (5) and support staff. For those seeking private practice, the top choices were: (1) lifestyle, (2) practice environment, (3) patient care, (4) geography, (5) colleagues. Female gender (p = 0.064), oral meeting presentation (p = 0.053), and international meeting presentation (p 0.066) were the variables most significantly associated with pursuing an

  13. R-IDEAL : A Framework for Systematic Clinical Evaluation of Technical Innovations in Radiation Oncology

    NARCIS (Netherlands)

    Verkooijen, Helena M; Kerkmeijer, LGW; Fuller, Clifton D; Huddart, Robbert; Faivre-Finn, Corinne; Verheij, Marcel; Mook, Stella; Sahgal, Arjun; Hall, Emma; Schultz, Chris

    2017-01-01

    The pace of innovation in radiation oncology is high and the window of opportunity for evaluation narrow. Financial incentives, industry pressure, and patients' demand for high-tech treatments have led to widespread implementation of innovations before, or even without, robust evidence of improved

  14. Meeting the challenge of managed care - Part I: Radiation oncology as an important part of multi-modal care

    International Nuclear Information System (INIS)

    Rose, Christopher M.; Botnick, Leslie E.; Hinkle, Milton; Linden, Jeffrey

    1997-01-01

    Radiation Oncology is an important component in multi-modality cancer care. Managed care has defined a number of different ways that radiation oncologists can interact with the other members of the cancer team. This course will review those options. The change in health care delivery is forcing radiation oncologists to examine every aspect of how they organize themselves, deliver care, evaluate that care, and how they are reimbursed for this process. This course will attempt to examine how the pressures of the new paradigms of health care delivery; managed care and outcomes research are impacting upon radiation therapy practice, and what radiation oncologists can do to maintain patient care standards. I. Introduction: A. Managed Care: What it is and where it is going 1. PPO's 2. HMO's 3. POS plans 4. Carve-outs B. Outcomes Research: What it can and cannot do 1. Patterns of care and SEER 2. Rand 3. ''Surrogate outcomes:'' patient satisfaction, quality of life indicators II. Moving from QA and CQI and Benchmarking A. Radiation Oncologists cannot take anything for granted B. Using analytical tools to evaluate all aspects of the radiation oncology practice. 1. Capital Purchases 2. Operational Aspects III Evaluating Staffing Needs A. What traditional jobs in the department should stay? B. Is the cross-training seen in the rest of the hospital appropriate in radiation oncology C. Outsourcing and multi-department organization as ways to improve efficiency D. What about physician extenders? E. What residents, newly trained radiation oncologists, and physician-practice managers must acknowledge to each other IV. Evaluating Technology A. See second and third talks in this series B. Improving efficiency: how does this help when one is not at capacity C. Increasing throughput D. Decreasing cost V. Informatics A. See second and third talks in this series B. What should one expect the computer to do for you C. Some personal observations VI. Gains from Share Services A. Should

  15. Expanding the use of real‐time electromagnetic tracking in radiation oncology

    Science.gov (United States)

    Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.

    2011-01-01

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017

  16. Quality in radiotherapy: the actions of the French society for radiation oncology

    International Nuclear Information System (INIS)

    Mazeron, J.J.; Mornex, F.; Eschwege, F.; Lartigau, E.

    2009-01-01

    In response to recent accidents at external radiotherapy units, the t Minister of Health has set up an extensive programme to improve the quality and safety of this type of treatment. We give an account here of the activities carried out by the French Society of Radiation Oncology (SFRO) as part of this programme, commonly referred to as the 'road-map'. (authors)

  17. Assessment and improvement of radiation oncology trainee contouring ability utilizing consensus-based penalty metrics

    International Nuclear Information System (INIS)

    Hallock, Abhirami; Read, Nancy; D'Souza, David

    2012-01-01

    The objective of this study was to develop and assess the feasibility of utilizing consensus-based penalty metrics for the purpose of critical structure and organ at risk (OAR) contouring quality assurance and improvement. A Delphi study was conducted to obtain consensus on contouring penalty metrics to assess trainee-generated OAR contours. Voxel-based penalty metric equations were used to score regions of discordance between trainee and expert contour sets. The utility of these penalty metric scores for objective feedback on contouring quality was assessed by using cases prepared for weekly radiation oncology radiation oncology trainee treatment planning rounds. In two Delphi rounds, six radiation oncology specialists reached agreement on clinical importance/impact and organ radiosensitivity as the two primary criteria for the creation of the Critical Structure Inter-comparison of Segmentation (CriSIS) penalty functions. Linear/quadratic penalty scoring functions (for over- and under-contouring) with one of four levels of severity (none, low, moderate and high) were assigned for each of 20 OARs in order to generate a CriSIS score when new OAR contours are compared with reference/expert standards. Six cases (central nervous system, head and neck, gastrointestinal, genitourinary, gynaecological and thoracic) then were used to validate 18 OAR metrics through comparison of trainee and expert contour sets using the consensus derived CriSIS functions. For 14 OARs, there was an improvement in CriSIS score post-educational intervention. The use of consensus-based contouring penalty metrics to provide quantitative information for contouring improvement is feasible.

  18. Internet-Based Survey Evaluating Use of Pain Medications and Attitudes of Radiation Oncology Patients Toward Pain Intervention

    International Nuclear Information System (INIS)

    Simone, Charles B.; Vapiwala, Neha; Hampshire, Margaret K.; Metz, James M.

    2008-01-01

    Purpose: Pain is a common symptom among cancer patients, yet many patients do not receive adequate pain management. Few data exist quantifying analgesic use by radiation oncology patients. This study evaluated the causes of pain in cancer patients and investigated the reasons patients fail to receive optimal analgesic therapy. Methods and Materials: An institutional review board-approved, Internet-based questionnaire assessing analgesic use and pain control was posted on the OncoLink (available at (www.oncolink.org)) Website. Between November 2005 and April 2006, 243 patients responded. They were predominantly women (73%), white (71%), and educated beyond high school (67%) and had breast (38%), lung (6%), or ovarian (6%) cancer. This analysis evaluated the 106 patients (44%) who underwent radiotherapy. Results: Of the 106 patients, 58% reported pain from their cancer treatment, and 46% reported pain directly from their cancer. The pain was chronic in 51% and intermittent in 33%. Most (80%) did not use medication to manage their pain. Analgesic use was significantly less in patients with greater education levels (11% vs. 36%, p = 0.002), with a trend toward lower use by whites (16% vs. 32%, p 0.082) and women (17% vs. 29%, p = 0.178). The reasons for not taking analgesics included healthcare provider not recommending medication (87%), fear of addiction or dependence (79%), and inability to pay (79%). Participants experiencing pain, but not taking analgesics, pursued alternative therapies for relief. Conclusions: Many radiation oncology patients experience pain from their disease and cancer treatment. Most study participants did not use analgesics because of concerns of addiction, cost, or failure of the radiation oncologist to recommend medication. Healthcare providers should have open discussions with their patients regarding pain symptoms and treatment

  19. Application of organ tolerance dose-constraints in clinical studies in radiation oncology

    International Nuclear Information System (INIS)

    Doerr, Wolfgang; Herrmann, Thomas; Baumann, Michael

    2014-01-01

    In modern radiation oncology, tolerance dose-constraints for organs at risk (OAR) must be considered for treatment planning, but particularly in order to design clinical studies. Tolerance dose tables, however, only address one aspect of the therapeutic ratio of any clinical study, i.e., the limitation of adverse events, but not the desired potential improvement in the tumor effect of a novel treatment strategy. A sensible application of ''tolerance doses'' in a clinical situation requires consideration of various critical aspects addressed here: definition of tolerance dose, specification of an endpoint/symptom, consideration of radiation quality and irradiation protocol, exposed volume and dose distribution, and patient-related factors of radiosensitivity. The currently most comprehensive estimates of OAR radiation tolerance are in the QUANTEC compilations (2010). However, these tolerance dose values must only be regarded as a rough orientation and cannot answer the relevant question for the patients, i.e., if the study can achieve a therapeutic advantage; this can obviously be answered only by the final scientific analysis of the study results. Despite all limitations, the design of clinical studies should currently refer to the QUANTEC values for appreciation of the risk of complications, if needed supplemented by one's own data or further information from the literature. The implementation of a consensus on the safety interests of the patients and on an application and approval process committed to progress in medicine, with transparent quality-assuring requirements with regard to the structural safeguarding of the study activities, plays a central role in clinical research in radiation oncology. (orig.) [de

  20. Evaluation of high-fidelity simulation training in radiation oncology using an outcomes logic model

    International Nuclear Information System (INIS)

    Giuliani, Meredith; Gillan, Caitlin; Wong, Olive; Harnett, Nicole; Milne, Emily; Moseley, Doug; Thompson, Robert; Catton, Pamela; Bissonnette, Jean-Pierre

    2014-01-01

    To evaluate the feasibility and educational value of high-fidelity, interprofessional team-based simulation in radiation oncology. The simulation event was conducted in a radiation oncology department during a non-clinical day. It involved 5 simulation scenarios that were run over three 105 minute timeslots in a single day. High-acuity, low-frequency clinical situations were selected and included HDR brachytherapy emergency, 4D CT artifact management, pediatric emergency clinical mark-up, electron scalp trial set-up and a cone beam CT misregistration incident. A purposive sample of a minimum of 20 trainees was required to assess recruitment feasibility. A faculty radiation oncologist (RO), medical physicist (MP) or radiation therapist (RTT), facilitated each case. Participants completed a pre event survey of demographic data and motivation for participation. A post event survey collected perceptions of familiarity with the clinical content, comfort with interprofessional practice, and event satisfaction, scored on a 1–10 scale in terms of clinical knowledge, clinical decision making, clinical skills, exposure to other trainees and interprofessional communication. Means and standard deviations were calculated. Twenty-one trainees participated including 6 ROs (29%), 6 MPs (29%), and 9 RTTs (43%). All 12 cases (100%) were completed within the allocated 105 minutes. Nine faculty facilitators, (3MP, 2 RO, 4 RTTs) were required for 405 minutes each. Additional costs associated with this event were 154 hours to build the high fidelity scenarios, 2 standardized patients (SPs) for a total of 15.5 hours, and consumables.The mean (±SD) educational value score reported by participants with respect to clinical knowledge was 8.9 (1.1), clinical decision making 8.9 (1.3), clinical skills 8.9 (1.1), exposure to other trainees 9.1 (2.3) and interprofessional communication 9.1 (1.0). Fifteen (71%) participants reported the cases were of an appropriate complexity. The importance

  1. Faculty of Radiation Oncology 2014 Workforce Census: a comparison of New Zealand and Australian responses.

    Science.gov (United States)

    James, Melissa; Munro, Philip M; Leung, John

    2015-04-17

    This paper outlines the key results of the Royal Australian and New Zealand College of Radiologists (RANZCR) Faculty of Radiation Oncology (FRO) 2014 workforce census, and compares the results of New Zealand and Australian responses in order to identify similarities and differences in workforce characteristics. The workforce census was conducted online in mid-2014. The census was distributed to all radiation oncologists (Fellows, life members, educational affiliates, retired) and radiation oncology trainees on the RANZCR membership database. Six weekly reminders were sent to non-respondents and all responses were aggregated for analysis. This paper addresses only consultant radiation oncologist responses. The combined response rate for New Zealand radiation oncologists was 85.7% (compared with 76% from Australian respondents). The census found that the demographic characteristics of New Zealand and Australian radiation oncologists are similar. Points of difference include (i) the role of educational affiliates in New Zealand, (ii) New Zealand radiation oncologists reporting higher hours spent at work, (iii) New Zealand radiation oncologists spending a higher proportion of time on clinical duties, (iv) A lower proportion of New Zealand radiation oncologists with higher degrees, and (v) private/ public workplace mix. A comparison by country would suggest that there are many similarities, but also some important differences that may affect workforce issues in New Zealand. Separate datasets are useful for RANZCR to better inform members, governments and other key stakeholders in each country. Separate datasets also provide a basis for comparison with future surveys to facilitate the monitoring of trends.

  2. Program director and chief resident perspectives on the educational environment of US radiation oncology programs.

    Science.gov (United States)

    Berriochoa, Camille; Weller, Michael; Berry, Danielle; Reddy, Chandana A; Koyfman, Shlomo; Tendulkar, Rahul

    Our goals were toexamine the educational approachesused at radiation oncology residency programs nationwide andto evaluate program director(PD) and chief resident (CR) perceptions of their educational environment. We distributed a survey regarding curricular structure via email toall identified US radiation oncology residency PDs and CRs. Pearson χ 2 test was used toevaluate whether differences existed between answers provided by the 2 study populations. The survey was disseminated to 200 individuals in 85 US residency programs: 49/85PDs(58%)and 74/115 (64%)CRs responded. More than one-half of PDs and CRs report that attending physicians discussed management, reviewed contours, and conducted mock oral board examinations with the residents. At nearly 50% of programs, the majority of teaching conferences use a lecture-based approach, whereas only 20% reported predominant utilization of the Socratic method. However, both PDs (63%) and CRs (49%) reported that Socratic teaching is more effective than didactic lectures (16% and 20%, respectively), with the remainder responding that they are equally effective. Teaching sessions were reported to be resident-led ≥75% of the time by 50% of CRs versus 18% of PDs (P = .002). Significantly more CRs than PDs felt that faculty-led teaching conferences were more effective than resident-led conferences (62% vs 26%, respectively; P Socratic-based teaching conferences. Increased communication between PDs and CRs can better align perceptions with educational goals. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  3. Quantitative assessment of workload and stressors in clinical radiation oncology.

    Science.gov (United States)

    Mazur, Lukasz M; Mosaly, Prithima R; Jackson, Marianne; Chang, Sha X; Burkhardt, Katharin Deschesne; Adams, Robert D; Jones, Ellen L; Hoyle, Lesley; Xu, Jing; Rockwell, John; Marks, Lawrence B

    2012-08-01

    Workload level and sources of stressors have been implicated as sources of error in multiple settings. We assessed workload levels and sources of stressors among radiation oncology professionals. Furthermore, we explored the potential association between workload and the frequency of reported radiotherapy incidents by the World Health Organization (WHO). Data collection was aimed at various tasks performed by 21 study participants from different radiation oncology professional subgroups (simulation therapists, radiation therapists, physicists, dosimetrists, and physicians). Workload was assessed using National Aeronautics and Space Administration Task-Load Index (NASA TLX). Sources of stressors were quantified using observational methods and segregated using a standard taxonomy. Comparisons between professional subgroups and tasks were made using analysis of variance ANOVA, multivariate ANOVA, and Duncan test. An association between workload levels (NASA TLX) and the frequency of radiotherapy incidents (WHO incidents) was explored (Pearson correlation test). A total of 173 workload assessments were obtained. Overall, simulation therapists had relatively low workloads (NASA TLX range, 30-36), and physicists had relatively high workloads (NASA TLX range, 51-63). NASA TLX scores for physicians, radiation therapists, and dosimetrists ranged from 40-52. There was marked intertask/professional subgroup variation (P<.0001). Mental demand (P<.001), physical demand (P=.001), and effort (P=.006) significantly differed among professional subgroups. Typically, there were 3-5 stressors per cycle of analyzed tasks with the following distribution: interruptions (41.4%), time factors (17%), technical factors (13.6%), teamwork issues (11.6%), patient factors (9.0%), and environmental factors (7.4%). A positive association between workload and frequency of reported radiotherapy incidents by the WHO was found (r = 0.87, P value=.045). Workload level and sources of stressors vary

  4. Quantitative Assessment of Workload and Stressors in Clinical Radiation Oncology

    International Nuclear Information System (INIS)

    Mazur, Lukasz M.; Mosaly, Prithima R.; Jackson, Marianne; Chang, Sha X.; Burkhardt, Katharin Deschesne; Adams, Robert D.; Jones, Ellen L.; Hoyle, Lesley; Xu, Jing; Rockwell, John; Marks, Lawrence B.

    2012-01-01

    Purpose: Workload level and sources of stressors have been implicated as sources of error in multiple settings. We assessed workload levels and sources of stressors among radiation oncology professionals. Furthermore, we explored the potential association between workload and the frequency of reported radiotherapy incidents by the World Health Organization (WHO). Methods and Materials: Data collection was aimed at various tasks performed by 21 study participants from different radiation oncology professional subgroups (simulation therapists, radiation therapists, physicists, dosimetrists, and physicians). Workload was assessed using National Aeronautics and Space Administration Task-Load Index (NASA TLX). Sources of stressors were quantified using observational methods and segregated using a standard taxonomy. Comparisons between professional subgroups and tasks were made using analysis of variance ANOVA, multivariate ANOVA, and Duncan test. An association between workload levels (NASA TLX) and the frequency of radiotherapy incidents (WHO incidents) was explored (Pearson correlation test). Results: A total of 173 workload assessments were obtained. Overall, simulation therapists had relatively low workloads (NASA TLX range, 30-36), and physicists had relatively high workloads (NASA TLX range, 51-63). NASA TLX scores for physicians, radiation therapists, and dosimetrists ranged from 40-52. There was marked intertask/professional subgroup variation (P<.0001). Mental demand (P<.001), physical demand (P=.001), and effort (P=.006) significantly differed among professional subgroups. Typically, there were 3-5 stressors per cycle of analyzed tasks with the following distribution: interruptions (41.4%), time factors (17%), technical factors (13.6%), teamwork issues (11.6%), patient factors (9.0%), and environmental factors (7.4%). A positive association between workload and frequency of reported radiotherapy incidents by the WHO was found (r = 0.87, P value=.045

  5. Quantitative Assessment of Workload and Stressors in Clinical Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, Lukasz M., E-mail: lukasz_mazur@ncsu.edu [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Industrial Extension Service, North Carolina State University, Raleigh, North Carolina (United States); Biomedical Engineering, North Carolina State University, Raleigh, North Carolina (United States); Mosaly, Prithima R. [Industrial Extension Service, North Carolina State University, Raleigh, North Carolina (United States); Jackson, Marianne; Chang, Sha X.; Burkhardt, Katharin Deschesne; Adams, Robert D.; Jones, Ellen L.; Hoyle, Lesley [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Xu, Jing [Industrial Extension Service, North Carolina State University, Raleigh, North Carolina (United States); Rockwell, John; Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States)

    2012-08-01

    Purpose: Workload level and sources of stressors have been implicated as sources of error in multiple settings. We assessed workload levels and sources of stressors among radiation oncology professionals. Furthermore, we explored the potential association between workload and the frequency of reported radiotherapy incidents by the World Health Organization (WHO). Methods and Materials: Data collection was aimed at various tasks performed by 21 study participants from different radiation oncology professional subgroups (simulation therapists, radiation therapists, physicists, dosimetrists, and physicians). Workload was assessed using National Aeronautics and Space Administration Task-Load Index (NASA TLX). Sources of stressors were quantified using observational methods and segregated using a standard taxonomy. Comparisons between professional subgroups and tasks were made using analysis of variance ANOVA, multivariate ANOVA, and Duncan test. An association between workload levels (NASA TLX) and the frequency of radiotherapy incidents (WHO incidents) was explored (Pearson correlation test). Results: A total of 173 workload assessments were obtained. Overall, simulation therapists had relatively low workloads (NASA TLX range, 30-36), and physicists had relatively high workloads (NASA TLX range, 51-63). NASA TLX scores for physicians, radiation therapists, and dosimetrists ranged from 40-52. There was marked intertask/professional subgroup variation (P<.0001). Mental demand (P<.001), physical demand (P=.001), and effort (P=.006) significantly differed among professional subgroups. Typically, there were 3-5 stressors per cycle of analyzed tasks with the following distribution: interruptions (41.4%), time factors (17%), technical factors (13.6%), teamwork issues (11.6%), patient factors (9.0%), and environmental factors (7.4%). A positive association between workload and frequency of reported radiotherapy incidents by the WHO was found (r = 0.87, P value=.045

  6. Undergraduate cancer education in Spain: The debate, the opportunities and the initiatives of the University Forum of the Spanish Society of Radiation Oncology (SEOR).

    Science.gov (United States)

    Lara, Pedro; Calvo, Felipe A; Guedea, Ferran; Bilbao, Pedro; Biete, Alberto

    2013-11-09

    Most medical schools in Spain (80%) offer undergraduate training in oncology. This education is highly variable in terms of content (theory and practical training), number of credits, and the medical specialty and departmental affiliation of the professors. Much of this variability is due to university traditions in the configuration of credits and programmes, and also to the structure of the hospital-based practical training. Undergraduate medical students deserve a more coherent and modern approach to education with a strong emphasis on clinical practice. Oncology is an interdisciplinary science that requires the input of professors from multiple specialties to provide the primary body of knowledge and skills needed to obtain both a theoretical and clinical understanding of cancer. Clinical skills should be a key focus due to their importance in the current model of integrated medical management and care. Clinical radiation oncology is a traditional and comprehensive hospital-based platform for undergraduate education in oncology. In Spain, a significant number (n = 80) of radiation oncology specialists have a contractual relationship to teach university courses. Most Spanish universities (80%) have a radiation oncologist on staff, some of whom are department chairs and many others are full professors who have been hired and promoted under competitive conditions of evaluation as established by the National Agency for Quality Evaluation. The Spanish Society of Radiation Oncology (SEOR) has identified new opportunities to improve undergraduate education in oncology. In this article, we discuss proposals related to theoretical (20 items) and practical clinical training (9 items). We also describe the SEOR University Forum, which is an initiative to develop a strategic plan to implement and organize cancer education at the undergraduate level in an interdisciplinary teaching spirit and with a strong contribution from radiation oncologists.

  7. Radiation therapists' and radiation oncology medical physicists' perceptions of work and the working environment in Australia: a qualitative study.

    Science.gov (United States)

    Halkett, G K B; McKay, J; Hegney, D G; Breen, Lauren J; Berg, M; Ebert, M A; Davis, M; Kearvell, R

    2017-09-01

    Workforce recruitment and retention are issues in radiation oncology. The working environment is likely to have an impact on retention; however, there is a lack of research in this area. The objectives of this study were to: investigate radiation therapists' (RTs) and radiation oncology medical physicists' (ROMPs) perceptions of work and the working environment; and determine the factors that influence the ability of RTs and ROMPs to undertake their work and how these factors affect recruitment and retention. Semi-structured interviews were conducted and thematic analysis was used. Twenty-eight RTs and 21 ROMPs participated. The overarching themes were delivering care, support in work, working conditions and lifestyle. The overarching themes were mostly consistent across both groups; however, the exemplars reflected the different roles and perspectives of RTs and ROMPs. Participants described the importance they placed on treating patients and improving their lives. Working conditions were sometimes difficult with participants reporting pressure at work, large workloads and longer hours and overtime. Insufficient staff numbers impacted on the effectiveness of staff, the working environment and intentions to stay. Staff satisfaction is likely to be improved if changes are made to the working environment. We make recommendations that may assist departments to support RTs and ROMPs. © 2016 John Wiley & Sons Ltd.

  8. The changing face of radiation oncology in Australia 1950:1995: a personal view

    International Nuclear Information System (INIS)

    Bourne, R.G.

    1995-01-01

    An overview of the change in practice of radiation oncology in Australia in the last 45 years is given. In 1950, orthovoltage X-rays were used to treat a wide spectrum of malignant disease but results were impaired by poor depth dose and significant reactions; radium and radon were used commonly and superficial X-ray therapy was used for a large number of skin cancers as well as many benign skin conditions. Since megavoltage X-ray therapy was introduced to Australia and with earlier diagnosis, high standards for qualification as a radiation oncologist set by the Royal Australasian College of Radiologists (RACR), improved imaging and tumour localisation, improved beam characteristics, computerisation and dosimetry, patients are now better treated with improved local control and less morbidity. However, public facilities have been chronically underfunded by governments resulting in waiting lists for treatment, and free standing private practices are important in sharing the ever increasing workload consequent to the increasing and ageing population. It is estimated that he use of brachytherapy has fallen but is enjoying a resurgence of interest, and that radiobiology has had some influence on radiation treatment. Health education has improved and the needs and expectations of patients better appreciated and helped. Statistical evaluation of treatment is better understood. The formation of the faculty of Radiation Oncology of the RACR has given fresh impetus to the specialty, but is estimated that undergraduate training and academic positions remains insufficient. 1 tab., 1 fig

  9. Use of partnership strategies to build radiation oncology disparities research programs in five Western Pennsylvania communities: an organizational case study.

    Science.gov (United States)

    Morgenlander, Keith H; Heron, Dwight E; Schenken, Larry L

    2009-01-01

    Many cancer treatment and prevention trials as well as surveillance programs suffer from a disproportionately low rate of accrual and a high rate of noncompliance or dropouts of racial minorities and the poor. One suggested strategy to help remediate this trend is to directly involve those targeted populations within the development, implementation, and evaluation of these services. The Radiation Oncology Community Outreach Group (ROCOG) and Neighborhood Cancer Care Cooperative (NCCC) are designed based upon this type of highly collaborative organizational structure, consistent with the general principles of community-based participatory research. Funded by the National Cancer Institute Cancer Disparities Research Partnership program, ROCOG/NCCC provide oncology-focused, community hospital-based initiatives intended to help close the cancer disparities gap. This article presents a descriptive case study of the organizational and political process that preceded our grant proposal submission, the potential benefits and difficulties associated with our extensive collaborative model, and an example of how highly competitive health care organizations can become partners in narrowly focused initiatives aimed at a greater social good.

  10. A quality management model for radiation oncology physics

    International Nuclear Information System (INIS)

    Sternick, E.S.

    1991-01-01

    State-of-the-art radiation physics quality programs operate in a data rich environment. Given the abundance of recordable events, any formalism that serves to identify and monitor a set of attributes correlated with quality is to be regarded as an important management tool. The hierarchical tree structure model describes one such useful planning method. Of the several different types of tree structures, one of the most appropriate for quality management is the pyramid model. In this model, the associations between an overall program objective and the intermediate steps leading to its attainment, are indicated by both horizontal and vertical connectors. The overall objective of the system under study occupies the vertex of the pyramid, while the level immediately below contains its principal components. Further subdivisions of each component occur in successively lower levels. The tree finally terminates at a base level consisting of actions or requirements that must be fulfilled in order to satisfy the overall objective. A pyramid model for a radiation oncology physics quality program is discussed in detail. (author). 21 refs., 4 figs., 6 tabs

  11. Molecular Targets for Radiation Oncology in Prostate Cancer

    International Nuclear Information System (INIS)

    Wang, Tao; Languino, Lucia R.; Lian, Jane; Stein, Gary; Blute, Michael; FitzGerald, Thomas J.

    2011-01-01

    Recent selected developments of the molecular science of prostate cancer (PrCa) biology and radiation oncology are reviewed. We present potential targets for molecular integration treatment strategies with radiation therapy (RT), and highlight potential strategies for molecular treatment in combination with RT for patient care. We provide a synopsis of the information to date regarding molecular biology of PrCa, and potential integrated research strategy for improved treatment of PrCa. Many patients with early-stage disease at presentation can be treated effectively with androgen ablation treatment, surgery, or RT. However, a significant portion of men are diagnosed with advanced stage/high-risk disease and these patients progress despite curative therapeutic intervention. Unfortunately, management options for these patients are limited and are not always successful including treatment for hormone refractory disease. In this review, we focus on molecules of extracellular matrix component, apoptosis, androgen receptor, RUNX, and DNA methylation. Expanding our knowledge of the molecular biology of PrCa will permit the development of novel treatment strategies integrated with RT to improve patient outcome

  12. Ethics in the Legal and Business Practices of Radiation Oncology.

    Science.gov (United States)

    Wall, Terry J

    2017-10-01

    Ethical issues arise when a professional endeavor such as medicine, which seeks to place the well-being of others over the self-interest of the practitioner, meets granular business and legal decisions involved in making a livelihood out of a professional calling. The use of restrictive covenants, involvement in self-referral patterns, and maintaining appropriate comity among physicians while engaged in the marketplace are common challenges in radiation oncology practice. A paradigm of analysis is presented to help navigate these management challenges. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Current technological clinical practice in breast radiotherapy; results of a survey in EORTC-Radiation Oncology Group affiliated institutions

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Hurkmans, Coen W; Kuten, Abraham; Westenberg, Helen A

    PURPOSE: To evaluate the current technological clinical practice of radiation therapy of the breast in institutions participating in the EORTC-Radiation Oncology Group (EORTC-ROG). MATERIALS AND METHODS: A survey was conducted between August 2008 and January 2009 on behalf of the Breast Working

  14. Stress and Burnout Among Residency Program Directors in United States Radiation Oncology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Sonya [Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California (United States); Kusano, Aaron S. [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Carter, Justin Nathaniel; Gable, Laura [Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California (United States); Thomas, Charles R. [Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon (United States); Chang, Daniel T., E-mail: dtchang@stanford.edu [Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California (United States)

    2015-11-15

    Purpose: To evaluate stressors among radiation oncology residency program directors (PDs) and determine the prevalence and indicators of burnout. Methods and Materials: An anonymous, online, cross-sectional survey was offered to PDs of US radiation oncology programs in the fall of 2014. Survey content examined individual and program demographics, perceptions surrounding the role of PD, and commonly encountered stressors. Burnout was assessed using the validated Maslach Burnout Inventory-Human Services Survey. Results: In total, 47 of 88 PDs (53%) responded to the survey. Although 78% of respondents reported feeling “satisfied” or “highly satisfied” with their current role, 85% planned to remain as PD for <5 years. The most commonly cited stressors were satisfying Accreditation Council for Graduate Medical Education/Residency Review Committee requirements (47%), administrative duties (30%) and resident morale (28%). Three-quarters of respondents were satisfied that they became PDs. Overall, 11% of respondents met criteria for low burnout, 83% for moderate burnout, and 6% for high burnout. Not having served as a PD at a prior institution correlated with high depersonalization (OR 6.75, P=.04) and overall burnout (odds ratio [OR], 15.6; P=.04). Having more years on faculty prior to becoming PD correlated with less emotional exhaustion (OR, 0.44, P=.05) and depersonalization (OR, 0.20, P=.04). Finally, having dedicated time for PD duties correlated with less emotional exhaustion (OR, 0.27, P=.04). Conclusions: Moderate levels of burnout are common in U.S. radiation oncology PDs with regulatory stressors being common. Despite this, many PDs are fulfilled with their role. Longitudinal studies assessing dynamic external factors and their influence on PD burnout would be beneficial.

  15. Assessing Interpersonal and Communication Skills in Radiation Oncology Residents: A Pilot Standardized Patient Program

    International Nuclear Information System (INIS)

    Ju, Melody; Berman, Abigail T.; Hwang, Wei-Ting; LaMarra, Denise; Baffic, Cordelia; Suneja, Gita; Vapiwala, Neha

    2014-01-01

    Purpose: There is a lack of data for the structured development and evaluation of communication skills in radiation oncology residency training programs. Effective communication skills are increasingly emphasized by the Accreditation Council for Graduate Medical Education and are critical for a successful clinical practice. We present the design of a novel, pilot standardized patient (SP) program and the evaluation of communication skills among radiation oncology residents. Methods and Materials: Two case scenarios were developed to challenge residents in the delivery of “bad news” to patients: one scenario regarding treatment failure and the other regarding change in treatment plan. Eleven radiation oncology residents paired with 6 faculty participated in this pilot program. Each encounter was scored by the SPs, observing faculty, and residents themselves based on the Kalamazoo guidelines. Results: Overall resident performance ratings were “good” to “excellent,” with faculty assigning statistically significant higher scores and residents assigning lower scores. We found inconsistent inter rater agreement among faculty, residents, and SPs. SP feedback was also valuable in identifying areas of improvement, including more collaborative decision making and less use of medical jargon. Conclusions: The program was well received by residents and faculty and regarded as a valuable educational experience that could be used as an annual feedback tool. Poor inter rater agreement suggests a need for residents and faculty physicians to better calibrate their evaluations to true patient perceptions. High scores from faculty members substantiate the concern that resident evaluations are generally positive and nondiscriminating. Faculty should be encouraged to provide honest and critical feedback to hone residents' interpersonal skills

  16. Stress and Burnout Among Residency Program Directors in United States Radiation Oncology Programs

    International Nuclear Information System (INIS)

    Aggarwal, Sonya; Kusano, Aaron S.; Carter, Justin Nathaniel; Gable, Laura; Thomas, Charles R.; Chang, Daniel T.

    2015-01-01

    Purpose: To evaluate stressors among radiation oncology residency program directors (PDs) and determine the prevalence and indicators of burnout. Methods and Materials: An anonymous, online, cross-sectional survey was offered to PDs of US radiation oncology programs in the fall of 2014. Survey content examined individual and program demographics, perceptions surrounding the role of PD, and commonly encountered stressors. Burnout was assessed using the validated Maslach Burnout Inventory-Human Services Survey. Results: In total, 47 of 88 PDs (53%) responded to the survey. Although 78% of respondents reported feeling “satisfied” or “highly satisfied” with their current role, 85% planned to remain as PD for <5 years. The most commonly cited stressors were satisfying Accreditation Council for Graduate Medical Education/Residency Review Committee requirements (47%), administrative duties (30%) and resident morale (28%). Three-quarters of respondents were satisfied that they became PDs. Overall, 11% of respondents met criteria for low burnout, 83% for moderate burnout, and 6% for high burnout. Not having served as a PD at a prior institution correlated with high depersonalization (OR 6.75, P=.04) and overall burnout (odds ratio [OR], 15.6; P=.04). Having more years on faculty prior to becoming PD correlated with less emotional exhaustion (OR, 0.44, P=.05) and depersonalization (OR, 0.20, P=.04). Finally, having dedicated time for PD duties correlated with less emotional exhaustion (OR, 0.27, P=.04). Conclusions: Moderate levels of burnout are common in U.S. radiation oncology PDs with regulatory stressors being common. Despite this, many PDs are fulfilled with their role. Longitudinal studies assessing dynamic external factors and their influence on PD burnout would be beneficial.

  17. Radiation Therapy Oncology Group clinical trials with misonidazole

    International Nuclear Information System (INIS)

    Wasserman, T.H.; Stetz, J.; Phillips, T.L.

    1981-01-01

    This paper presents a review of the progressive clinical trials of the hypoxic cell radiosensitizer, misonidazole, in the Radiation Therapy Oncology Group (RTOG). Presentation is made of all the schemas of the recently completed and currently active RTOG Phase II and Phase III studies. Detailed information is provided on the clinical toxicity of the Phase II trials, specifically regarding neurotoxicity. With limitations in drug total dose, a variety of dose schedules have proven to be tolerable, with a moderate incidence of nausea and vomiting and mild peripheral neuropathy or central neuropathy. No other organ toxicity has been seen, specifically no liver, renal or bone marrow toxicities. An additional Phase III malignant glioma trial in the Brain Tumor Study Group is described

  18. Monoclonal antibodies: potential role in radiation therapy and oncology

    International Nuclear Information System (INIS)

    Order, S.E.

    1982-01-01

    Specificity, which is a hallmark of the immune system, will be used in radiation oncology in both diagnosis and therapy through the application of radiolabelled monoclonal and polyclonal antibodies. Antigenic specificities, antibody preparations, and the tumor as a target for radiolabelled antibody is reviewed. Several clinical situations, i.e. single tumor cell suspensions, intraperitoneal single cells and masses, and solid tumors are reviewed in regard to both immune antibody targeting and specific differences between tumors in these regions. The concentration of tumor associated antigens is introductory to radiolabelled antibodies in diagnosis. In the radiation therapy of solid tumors, data regarding tumor dose, tumor effective half-life, varied antibody preparations, and the use of radiolabelled antibody as a method of tumor implantation is discussed using antiferritin 131 I-IgG as a model in hepatoma. The theoretical applications of monoclonal antibody integrated in cancer therapy are then presented as a new goal for future development

  19. Integrity of the National Resident Matching Program for Radiation Oncology: National Survey of Applicant Experiences

    International Nuclear Information System (INIS)

    Holliday, Emma B.; Thomas, Charles R.; Kusano, Aaron S.

    2015-01-01

    Purpose: The aim of this study was to examine the experiences of radiation oncology applicants and to evaluate the prevalence of behaviors that may be in conflict with established ethical standards. Methods and Materials: An anonymous survey was sent to all 2013 applicants to a single domestic radiation oncology residency program through the National Resident Matching Program (NRMP). Questions included demographics, survey of observed behaviors, and opinions regarding the interview and matching process. Descriptive statistics were presented. Characteristics and experiences of respondents who matched were compared with those who did not match. Results: Questionnaires were returned by 87 of 171 applicants for a 51% response rate. Eighty-two questionnaires were complete and included for analysis. Seventy-eight respondents (95.1%) reported being asked at least 1 question in conflict with the NRMP code of conduct. When asked where else they were interviewing, 64% stated that this query made them uncomfortable. Forty-five respondents (54.9%) reported unsolicited post-interview contact by programs, and 31 (37.8%) felt pressured to give assurances. Fifteen respondents (18.3%) reported being told their rank position or that they were “ranked to match” prior to Match day, with 27% of those individuals indicating this information influenced how they ranked programs. Half of respondents felt applicants often made dishonest or misleading assurances, one-third reported that they believed their desired match outcome could be improved by deliberately misleading programs, and more than two-thirds felt their rank position could be improved by having faculty from their home institutions directly contact programs on their behalf. Conclusions: Radiation oncology applicants report a high prevalence of behaviors in conflict with written NRMP policies. Post-interview communication should be discouraged in order to enhance fairness and support the professional development of future

  20. Integrity of the National Resident Matching Program for Radiation Oncology: National Survey of Applicant Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Emma B. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thomas, Charles R., E-mail: thomasch@ohsu.edu [Department of Radiation Medicine, OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon (United States); Kusano, Aaron S. [Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington (United States)

    2015-07-01

    Purpose: The aim of this study was to examine the experiences of radiation oncology applicants and to evaluate the prevalence of behaviors that may be in conflict with established ethical standards. Methods and Materials: An anonymous survey was sent to all 2013 applicants to a single domestic radiation oncology residency program through the National Resident Matching Program (NRMP). Questions included demographics, survey of observed behaviors, and opinions regarding the interview and matching process. Descriptive statistics were presented. Characteristics and experiences of respondents who matched were compared with those who did not match. Results: Questionnaires were returned by 87 of 171 applicants for a 51% response rate. Eighty-two questionnaires were complete and included for analysis. Seventy-eight respondents (95.1%) reported being asked at least 1 question in conflict with the NRMP code of conduct. When asked where else they were interviewing, 64% stated that this query made them uncomfortable. Forty-five respondents (54.9%) reported unsolicited post-interview contact by programs, and 31 (37.8%) felt pressured to give assurances. Fifteen respondents (18.3%) reported being told their rank position or that they were “ranked to match” prior to Match day, with 27% of those individuals indicating this information influenced how they ranked programs. Half of respondents felt applicants often made dishonest or misleading assurances, one-third reported that they believed their desired match outcome could be improved by deliberately misleading programs, and more than two-thirds felt their rank position could be improved by having faculty from their home institutions directly contact programs on their behalf. Conclusions: Radiation oncology applicants report a high prevalence of behaviors in conflict with written NRMP policies. Post-interview communication should be discouraged in order to enhance fairness and support the professional development of future

  1. Predictors of Radiation Therapy–Related Gastrointestinal Toxicity From Anal Cancer Dose-Painted Intensity Modulated Radiation Therapy: Secondary Analysis of NRG Oncology RTOG 0529

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Jeffrey R., E-mail: Jeffrey.R.Olsen@ucdenver.edu [University of Colorado Denver, Aurora, Colorado (United States); Moughan, Jennifer [NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania (United States); Myerson, Robert [Washington University, St. Louis, Missouri (United States); Abitbol, Andre [Baptist Hospital of Miami, Miami, Florida (United States); Doncals, Desiree E. [Summa Akron City Hospital accruals for Akron City Hospital, Akron, Ohio (United States); Johnson, Douglas [Florida Radiation Oncology Group–Baptist Regional, Jacksonville, Florida (United States); Schefter, Tracey E. [University of Colorado Denver, Aurora, Colorado (United States); Chen, Yuhchyau [University of Rochester Medical Center, Rochester, New York (United States); Fisher, Barbara [London Regional Cancer Program—University of Western Ontario, London, Ontario (Canada); Michalski, Jeff [Washington University, St. Louis, Missouri (United States); Narayan, Samir [Michigan Cancer Research Consortium CCOP, Ann Arbor, Michigan (United States); Chang, Albert [University of California San Francisco, San Francisco, California (United States); Crane, Christopher H. [Memorial Sloan Kettering Cancer Center, New York, New York (United States); Kachnic, Lisa [Vanderbilt University Medical Center, Nashville, Tennessee (United States)

    2017-06-01

    Purpose: NRG Oncology RTOG 0529 assessed the feasibility of dose-painted intensity modulated radiation therapy (DP-IMRT) to reduce the acute morbidity of chemoradiation with 5-fluorouracil (5FU) and mitomycin-C (MMC) for T2-4N0-3M0 anal cancer. This secondary analysis was performed to identify patient and treatment factors associated with acute and late gastrointestinal (GI) adverse events (AEs). Methods and Materials: NRG Oncology RTOG 0529 treatment plans were reviewed to extract dose-volume data for tightly contoured small bowel, loosely contoured anterior pelvic contents (APC), and uninvolved colon outside the target volume (UC). Univariate logistic regression was performed to evaluate association between volumes of each structure receiving doses ≥5 to 60 Gy (V5-V60) in 5-Gy increments between patients with and without grade ≥2 acute and late GI AEs, and grade ≥3 acute GI AEs. Additional patient and treatment factors were evaluated in multivariate logistic regression (acute AEs) or Cox proportional hazards models (late AEs). Results: Among 52 evaluable patients, grade ≥2 acute, grade ≥2 late, and grade ≥3 acute GI AEs were observed in 35, 17, and 10 patients, respectively. Trends (P<.05) toward statistically significant associations were observed between grade ≥2 acute GI AEs and small bowel dose (V20-V40), grade ≥2 late GI AEs and APC dose (V60), grade ≥3 acute GI AEs and APC dose (V5-V25), increasing age, tumor size >4 cm, and worse Zubrod performance status. Small bowel volumes of 186.0 cc, 155.0 cc, 41.0 cc, and 30.4 cc receiving doses greater than 25, 30, 35, and 40 Gy, respectively, correlated with increased risk of acute grade ≥2 GI AEs. Conclusions: Acute and late GI AEs from 5FU/MMC chemoradiation using DP-IMRT correlate with radiation dose to the small bowel and APC. Such associations will be incorporated in the dose-volume normal tissue constraint design for future NRG oncology anal cancer studies.

  2. Medical Device Recalls in Radiation Oncology: Analysis of US Food and Drug Administration Data, 2002-2015.

    Science.gov (United States)

    Connor, Michael J; Tringale, Kathryn; Moiseenko, Vitali; Marshall, Deborah C; Moore, Kevin; Cervino, Laura; Atwood, Todd; Brown, Derek; Mundt, Arno J; Pawlicki, Todd; Recht, Abram; Hattangadi-Gluth, Jona A

    2017-06-01

    To analyze all recalls involving radiation oncology devices (RODs) from the US Food and Drug Administration (FDA)'s recall database, comparing these with non-radiation oncology device recalls to identify discipline-specific trends that may inform improvements in device safety. Recall data on RODs from 2002 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems). Outcomes included determined cause of recall, recall class (severity), quantity in commerce, time until recall termination (date FDA determines recall is complete), and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by Pearson χ 2 test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. There were 502 ROD recalls and 9534 other class II device recalls during 2002 to 2015. Most recalls were for external beam devices (66.7%) and planning systems (22.9%), and recall events peaked in 2011. Radiation oncology devices differed significantly from other devices in all recall outcomes (P≤.04). Recall cause was commonly software related (49% vs 10% for other devices). Recall severity was more often moderate among RODs (97.6% vs 87.2%) instead of severe (0.2% vs 4.4%; Panalysis of recall data can identify areas for device improvement, such as better system design among RODs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Journey Toward High Reliability: A Comprehensive Safety Program to Improve Quality of Care and Safety Culture in a Large, Multisite Radiation Oncology Department.

    Science.gov (United States)

    Woodhouse, Kristina Demas; Volz, Edna; Maity, Amit; Gabriel, Peter E; Solberg, Timothy D; Bergendahl, Howard W; Hahn, Stephen M

    2016-05-01

    High-reliability organizations (HROs) focus on continuous identification and improvement of safety issues. We sought to advance a large, multisite radiation oncology department toward high reliability through the implementation of a comprehensive safety culture (SC) program at the University of Pennsylvania Department of Radiation Oncology. In 2011, with guidance from safety literature and experts in HROs, we designed an SC framework to reduce radiation errors. All state-reported medical events (SRMEs) from 2009 to 2016 were retrospectively reviewed and plotted on a control chart. Changes in SC grade were assessed using the Agency for Healthcare Research and Quality Hospital Survey. Outcomes measured included the number of radiation treatment fractions and days between SRMEs, as well as SC grade. Multifaceted safety initiatives were implemented at our main academic center and across all network sites. Postintervention results demonstrate increased staff fundamental safety knowledge, enhanced peer review with an electronic system, and special cause variation of SRMEs on control chart analysis. From 2009 to 2016, the number of days and fractions between SRMEs significantly increased, from a mean of 174 to 541 days (P safety framework. Our multifaceted initiatives, focusing on culture and system changes, can be successfully implemented in a large academic radiation oncology department to yield measurable improvements in SC and outcomes. Copyright © 2016 by American Society of Clinical Oncology.

  4. Results of the 2013-2015 Association of Residents in Radiation Oncology Survey of Chief Residents in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, Nima, E-mail: nabaviza@ohsu.edu [Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon (United States); Burt, Lindsay M. [Department of Radiation Oncology, University of Utah, Salt Lake City, Utah (United States); Mancini, Brandon R. [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Morris, Zachary S. [Department of Human Oncology, University of Wisconsin, Madison, Wisconsin (United States); Walker, Amanda J. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Miller, Seth M. [Department of Radiation Oncology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina (United States); Bhavsar, Shripal [Department of Radiation Oncology, Integris Cancer Institute, Oklahoma City, Oklahoma (United States); Mohindra, Pranshu [Department of Radiation Oncology, University of Maryland, Baltimore, Maryland (United States); Kim, Miranda B. [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Kharofa, Jordan [Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio (United States)

    2016-02-01

    Purpose: The purpose of this project was to survey radiation oncology chief residents to define their residency experience and readiness for independent practice. Methods and Materials: During the academic years 2013 to 2014 and 2014 to 2015, the Association of Residents in Radiation Oncology (ARRO) conducted an electronic survey of post-graduate year-5 radiation oncology residents in the United States during the final 3 months of training. Descriptive statistics are reported. Results: Sixty-six chief residents completed the survey in 2013 to 2014 (53% response rate), and 69 completed the survey in 2014 to 2015 (64% response rate). Forty to 85% percent of residents reported inadequate exposure to high-dose rate and low-dose rate brachytherapy. Nearly all residents in both years (>90%) reported adequate clinical experience for the following disease sites: breast, central nervous system, gastrointestinal, genitourinary, head and neck, and lung. However, as few as 56% reported adequate experience in lymphoma or pediatric malignancies. More than 90% of residents had participated in retrospective research projects, with 20% conducting resident-led prospective clinical trials and 50% conducting basic science or translational projects. Most chief residents reported working 60 or fewer hours per week in the clinical/hospital setting and performing fewer than 15 hours per week tasks that were considered to have little or no educational value. There was more than 80% compliance with Accreditation Council for Graduate Medical Education (ACGME) work hour limits. Fifty-five percent of graduating residents intended to join an established private practice group, compared to 25% who headed for academia. Residents perceive the job market to be more competitive than previous years. Conclusions: This first update of the ARRO chief resident survey since the 2007 to 2008 academic year documents US radiation oncology residents' experiences and conditions over a 2-year period

  5. Results of the 2013-2015 Association of Residents in Radiation Oncology Survey of Chief Residents in the United States.

    Science.gov (United States)

    Nabavizadeh, Nima; Burt, Lindsay M; Mancini, Brandon R; Morris, Zachary S; Walker, Amanda J; Miller, Seth M; Bhavsar, Shripal; Mohindra, Pranshu; Kim, Miranda B; Kharofa, Jordan

    2016-02-01

    The purpose of this project was to survey radiation oncology chief residents to define their residency experience and readiness for independent practice. During the academic years 2013 to 2014 and 2014 to 2015, the Association of Residents in Radiation Oncology (ARRO) conducted an electronic survey of post-graduate year-5 radiation oncology residents in the United States during the final 3 months of training. Descriptive statistics are reported. Sixty-six chief residents completed the survey in 2013 to 2014 (53% response rate), and 69 completed the survey in 2014 to 2015 (64% response rate). Forty to 85% percent of residents reported inadequate exposure to high-dose rate and low-dose rate brachytherapy. Nearly all residents in both years (>90%) reported adequate clinical experience for the following disease sites: breast, central nervous system, gastrointestinal, genitourinary, head and neck, and lung. However, as few as 56% reported adequate experience in lymphoma or pediatric malignancies. More than 90% of residents had participated in retrospective research projects, with 20% conducting resident-led prospective clinical trials and 50% conducting basic science or translational projects. Most chief residents reported working 60 or fewer hours per week in the clinical/hospital setting and performing fewer than 15 hours per week tasks that were considered to have little or no educational value. There was more than 80% compliance with Accreditation Council for Graduate Medical Education (ACGME) work hour limits. Fifty-five percent of graduating residents intended to join an established private practice group, compared to 25% who headed for academia. Residents perceive the job market to be more competitive than previous years. This first update of the ARRO chief resident survey since the 2007 to 2008 academic year documents US radiation oncology residents' experiences and conditions over a 2-year period. This analysis may serve as a valuable tool for those seeking to

  6. Results of the 2013-2015 Association of Residents in Radiation Oncology Survey of Chief Residents in the United States

    International Nuclear Information System (INIS)

    Nabavizadeh, Nima; Burt, Lindsay M.; Mancini, Brandon R.; Morris, Zachary S.; Walker, Amanda J.; Miller, Seth M.; Bhavsar, Shripal; Mohindra, Pranshu; Kim, Miranda B.; Kharofa, Jordan

    2016-01-01

    Purpose: The purpose of this project was to survey radiation oncology chief residents to define their residency experience and readiness for independent practice. Methods and Materials: During the academic years 2013 to 2014 and 2014 to 2015, the Association of Residents in Radiation Oncology (ARRO) conducted an electronic survey of post-graduate year-5 radiation oncology residents in the United States during the final 3 months of training. Descriptive statistics are reported. Results: Sixty-six chief residents completed the survey in 2013 to 2014 (53% response rate), and 69 completed the survey in 2014 to 2015 (64% response rate). Forty to 85% percent of residents reported inadequate exposure to high-dose rate and low-dose rate brachytherapy. Nearly all residents in both years (>90%) reported adequate clinical experience for the following disease sites: breast, central nervous system, gastrointestinal, genitourinary, head and neck, and lung. However, as few as 56% reported adequate experience in lymphoma or pediatric malignancies. More than 90% of residents had participated in retrospective research projects, with 20% conducting resident-led prospective clinical trials and 50% conducting basic science or translational projects. Most chief residents reported working 60 or fewer hours per week in the clinical/hospital setting and performing fewer than 15 hours per week tasks that were considered to have little or no educational value. There was more than 80% compliance with Accreditation Council for Graduate Medical Education (ACGME) work hour limits. Fifty-five percent of graduating residents intended to join an established private practice group, compared to 25% who headed for academia. Residents perceive the job market to be more competitive than previous years. Conclusions: This first update of the ARRO chief resident survey since the 2007 to 2008 academic year documents US radiation oncology residents' experiences and conditions over a 2-year period. This

  7. Clinical Implications of TiGRT Algorithm for External Audit in Radiation Oncology

    OpenAIRE

    Daryoush Shahbazi-Gahrouei; Mohsen Saeb; Shahram Monadi; Iraj Jabbari

    2017-01-01

    Background: Performing audits play an important role in quality assurance program in radiation oncology. Among different algorithms, TiGRT is one of the common application software for dose calculation. This study aimed to clinical implications of TiGRT algorithm to measure dose and compared to calculated dose delivered to the patients for a variety of cases, with and without the presence of inhomogeneities and beam modifiers. Materials and Methods: Nonhomogeneous phantom as quality dose veri...

  8. The role of radiation therapy in childhood acute leukemia. A review from the viewpoint of basic and clinical radiation oncology

    International Nuclear Information System (INIS)

    Nozaki, Miwako

    2003-01-01

    Radiation therapy has been playing important roles in the treatment of childhood acute leukemia since the 1970s. The first is the preventive cranial irradiation for central nervous system therapy in acute lymphoblastic leukemia. The second is the total body irradiation as conditioning before bone marrow transplantation for children with acute myeloid leukemia in first remission and with acute lymphoblastic leukemia in second remission. Although some late effects have been reported, a part of them could be overcome by technical improvement in radiation and salvage therapy. Radiation therapy for children might have a successful outcome on a delicate balance between efficiencies and potential late toxicities. The role of radiation therapy for childhood acute leukemia was reviewed from the standpoint of basic and clinical radiation oncology in this paper. (author)

  9. ''Radio-oncomics''. The potential of radiomics in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Peeken, Jan Caspar; Nuesslin, Fridtjof [Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Combs, Stephanie E. [Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Helmholtz Zentrum Muenchen, Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Neuherberg (Germany)

    2017-10-15

    Radiomics, a recently introduced concept, describes quantitative computerized algorithm-based feature extraction from imaging data including computer tomography (CT), magnetic resonance imaging (MRT), or positron-emission tomography (PET) images. For radiation oncology it offers the potential to significantly influence clinical decision-making and thus therapy planning and follow-up workflow. After image acquisition, image preprocessing, and defining regions of interest by structure segmentation, algorithms are applied to calculate shape, intensity, texture, and multiscale filter features. By combining multiple features and correlating them with clinical outcome, prognostic models can be created. Retrospective studies have proposed radiomics classifiers predicting, e. g., overall survival, radiation treatment response, distant metastases, or radiation-related toxicity. Besides, radiomics features can be correlated with genomic information (''radiogenomics'') and could be used for tumor characterization. Distinct patterns based on data-based as well as genomics-based features will influence radiation oncology in the future. Individualized treatments in terms of dose level adaption and target volume definition, as well as other outcome-related parameters will depend on radiomics and radiogenomics. By integration of various datasets, the prognostic power can be increased making radiomics a valuable part of future precision medicine approaches. This perspective demonstrates the evidence for the radiomics concept in radiation oncology. The necessity of further studies to integrate radiomics classifiers into clinical decision-making and the radiation therapy workflow is emphasized. (orig.) [German] Radiomics beschreibt eine algorithmusbasierte Berechnung von Merkmalen auf Basis von Bilddatensaetzen einschliesslich Computertomographie (CT), Magnetresonanztomographie (MRT) und Positronenemissionstomographie (PET). Radiomics hat das Potenzial, die

  10. Advances in the physics of radiation oncology - 50 years of contributions by US Medical Physicists

    International Nuclear Information System (INIS)

    Suntharalingam, N.

    2008-01-01

    Medical Physicists have a long standing record in the advancement of the discipline of Radiation Oncology, not only in the United States but world-wide, going back to the pre-world war II era. In the United States the contributions of Failla and Quimby, first at Memorial Hospital and then at Columbia University in New York, laid the foundation for the Profession of Medical Physics in the US. Radiation Therapy first used low and high kilovoltage machines for external beam therapy. Radium (Parker) and radon seeds (Quimby) were used for brachytherapy. Subsequently, clinical Van-de-Graaff machines (Trump and Wright) and the Betatron (Kerst, Adams and Skaggs) provided the required photon beams and also made available clinically useful electron beams. The work of John Laughlin, Larry Lanzl, Jacques Ovadia together with Gail Adams and Lester Skaggs, needs to be recognized for their pioneering efforts. With the introduction of Cobalt-60 Teletherapy (Harold Johns and the Canadian Group, Gilbert Fletcher and the MD Anderson Group) and Linear Accelerators (Henry Kaplan and the Stanford Group, and Varian), in the late 1950s ∼ 1960, there was even a greater need for the strong participation of medical physicists, as a useful technical resource to the physicians

  11. The situation of radiation oncology practice training programs and their graduates in 1998

    International Nuclear Information System (INIS)

    Bushee, Gerald R.; Sunshine, Jonathan H.; Schepps, Barbara

    2000-01-01

    Purpose: To keep the profession apprised of current trends in the job market, the American College of Radiology (ACR) studied the employment situation of 1998 radiation oncology graduates and the status and plans of radiation oncology training programs in the United States. Methods and Materials: In April-May 1998, and again in a December 1998-January 1999 follow-up, the ACR surveyed all radiation oncology residency directors in the U.S. about the employment situation of their 1998 residency and fellowship graduates as well as changes in their programs. Eighty-five percent (71/84) of those surveyed responded. We compare current findings with similar 1997 and earlier surveys and report statistically significant differences (p ≤ 0.05). Results: By 6 months after graduation, there were no graduating residents or fellows who had not secured a position, although the status of two was unknown. At that time, about 93% of all graduates had secured positions that directors said reasonably matched graduates' training and personal goals. Program directors reported that accomplished and planned changes in their programs will reduce the annual number of residency graduates by about one-fifth since 1993. However, the number of beginning residency positions offered in 1998 was 149, up from 116 in 1997 and only a few percent below the 1993 level. By the December 1998-January 1999 follow-up, fill rates for offered training positions were 94% for residencies and 80% for fellowships, figures that are similar to those reported for past years. Directors' perceptions of the job market are much more positive. For example, only 11% of residency directors viewed the market as more difficult this year than typical of recent years, as against 48% in 1997 and 82% in 1996. Conclusion: Unemployment continues to be low, and another, 'softer' indicator, the job market perceptions of residency program directors, continues to improve. Possibly as a result, plans for program reductions are

  12. Improving patient safety in the radiation oncology setting through crew resource management.

    Science.gov (United States)

    Sundararaman, Srinath; Babbo, Angela E; Brown, John A; Doss, Richard

    2014-01-01

    This paper demonstrates how the communication patterns and protocol rigors of a methodology called crew resource management (CRM) can be adapted to a radiation oncology environment to create a culture of patient safety. CRM training was introduced to our comprehensive radiation oncology department in the autumn of 2009. With 34 full-time equivalent staff, we see 100-125 patients daily on 2 hospital campuses. We were assisted by a consulting group with considerable experience in helping hospitals incorporate CRM principles and practices. Implementation steps included developing change initiative skills for key leaders, providing training in teamwork and communications, creating site-specific tools for safety and efficiency, and collecting data to document results. Our goals were to improve patient safety, teamwork, communication, and efficiency through the use of tools we developed that emphasized teamwork and communication, cross-checking, and routinizing specific protocols. Our CRM plan relies on the following 4 pillars: patient identification methods; "pause for the cause"; enabling all staff to halt treatment and question decisions; and daily morning meetings. We discuss some of the hurdles to change we encountered. Our safety record has improved. Our near-miss rate before CRM implementation averaged 11 per month; our near-miss rate currently averages 1.2 per month. In the 5 years prior to CRM implementation, we experienced 1 treatment deviation per year, although none rose to the level of "mis-administration." Since implementing CRM, our current patient treatment setup and delivery process has eliminated all treatment deviations. Our practices have identified situations where ambiguity or conflicting documentation could have resulted in inappropriate treatment or treatment inefficiencies. Our staff members have developed an extraordinary sense of teamwork combined with a high degree of personal responsibility to assure patient safety and have spoken up when

  13. Burnout, stress and satisfaction among Australian and New Zealand radiation oncology trainees.

    Science.gov (United States)

    Leung, John; Rioseco, Pilar

    2017-02-01

    To evaluate the incidence of burnout among radiation oncology trainees in Australia and New Zealand and the stress and satisfaction factors related to burnout. A survey of trainees was conducted in mid-2015. There were 42 Likert scale questions on stress, 14 Likert scale questions on satisfaction and the Maslach Burnout Inventory-Human Services Survey assessed burnout. A principal component analysis identified specific stress and satisfaction areas. Categorical variables for the stress and satisfaction factors were computed. Associations between respondent's characteristics and stress and satisfaction subscales were examined by independent sample t-tests and analysis of variance. Effect sizes were calculated using Cohens's d when significant mean differences were observed. This was also done for respondent characteristics and the three burnout subscales. Multiple regression analyses were performed. The response rate was 81.5%. The principal component analysis for stress identified five areas: demands on time, professional development/training, delivery demands, interpersonal demands and administration/organizational issues. There were no significant differences by demographic group or area of interest after P-values were adjusted for the multiple tests conducted. The principal component analysis revealed two satisfaction areas: resources/professional activities and value/delivery of services. There were no significant differences by demographic characteristics or area of interest in the level of satisfaction after P-values were adjusted for the multiple tests conducted. The burnout results revealed 49.5% of respondents scored highly in emotional exhaustion and/or depersonalization and 13.1% had burnout in all three measures. Multiple regression analysis revealed the stress subscales 'demands on time' and 'interpersonal demands' were associated with emotional exhaustion. 'Interpersonal demands' was also associated with depersonalization and correlated negatively

  14. Japanese Structure Survey of Radiation Oncology in 2005 Based on Institutional Stratification of Patterns of Care Study

    International Nuclear Information System (INIS)

    Teshima, Teruki; Numasaki, Hodaka; Shibuya, Hitoshi; Nishio, Masamichi; Ikeda, Hiroshi; Ito, Hisao; Sekiguchi, Kenji; Kamikonya, Norihiko; Koizumi, Masahiko; Tago, Masao; Nagata, Yasushi; Masaki, Hidekazu; Nishimura, Tetsuo; Yamada, Shogo

    2008-01-01

    Purpose: To evaluate the structure of radiation oncology in Japan in terms of equipment, personnel, patient load, and geographic distribution to identify and improve any deficiencies. Methods and Materials: A questionnaire-based national structure survey was conducted between March 2006 and February 2007 by the Japanese Society of Therapeutic Radiology and Oncology. These data were analyzed in terms of the institutional stratification of the Patterns of Care Study. Results: The total numbers of new cancer patients and total cancer patients (new and repeat) treated with radiotherapy in 2005 were estimated at approximately 162,000 and 198,000, respectively. In actual use were 765 linear accelerators, 11 telecobalt machines, 48 GammaKnife machines, 64 60 Co remote-controlled after-loading systems, and 119 192 Ir remote-controlled after-loading systems. The linear accelerator systems used dual-energy function in 498 systems (65%), three-dimensional conformal radiotherapy in 462 (60%), and intensity-modulated radiotherapy in 170 (22%). There were 426 Japanese Society of Therapeutic Radiology and Oncology-certified radiation oncologists, 774 full-time equivalent radiation oncologists, 117 medical physicists, and 1,635 radiation therapists. Geographically, a significant variation was found in the use of radiotherapy, from 0.9 to 2.1 patients/1,000 population. The annual patient load/FTE radiation oncologist was 247, exceeding the Blue Book guidelines level. Patterns of Care Study stratification can clearly discriminate the maturity of structures according to their academic nature and caseload. Conclusions: The Japanese structure has clearly improved during the past 15 years in terms of equipment and its use, although the shortage of manpower and variations in maturity disclosed by this Patterns of Care Study stratification remain problematic. These constitute the targets for nationwide improvement in quality assurance and quality control

  15. Information technology resource management in radiation oncology.

    Science.gov (United States)

    Siochi, R Alfredo; Balter, Peter; Bloch, Charles D; Bushe, Harry S; Mayo, Charles S; Curran, Bruce H; Feng, Wenzheng; Kagadis, George C; Kirby, Thomas H; Stern, Robin L

    2009-09-02

    The ever-increasing data demands in a radiation oncology (RO) clinic require medical physicists to have a clearer understanding of the information technology (IT) resource management issues. Clear lines of collaboration and communication among administrators, medical physicists, IT staff, equipment service engineers and vendors need to be established. In order to develop a better understanding of the clinical needs and responsibilities of these various groups, an overview of the role of IT in RO is provided. This is followed by a list of IT related tasks and a resource map. The skill set and knowledge required to implement these tasks are described for the various RO professionals. Finally, various models for assessing one's IT resource needs are described. The exposition of ideas in this white paper is intended to be broad, in order to raise the level of awareness of the RO community; the details behind these concepts will not be given here and are best left to future task group reports.

  16. Lack of Prognostic Impact of Adjuvant Radiation on Oncologic Outcomes in Elderly Women with Breast Cancer.

    Science.gov (United States)

    Omidvari, Shapour; Talei, Abdolrasoul; Tahmasebi, Sedigheh; Moaddabshoar, Leila; Dayani, Maliheh; Mosalaei, Ahmad; Ahmadloo, Niloofar; Ansari, Mansour; Mohammadianpanah, Mohammad

    2015-01-01

    Radiotherapy plays an important role as adjuvant treatment in locally advanced breast cancer and in those patients who have undergone breast-conserving surgery. This study aimed to investigate the prognostic impact of adjuvant radiation on oncologic outcomes in elderly women with breast cancer. In this retrospective study, we reviewed and analyzed the characteristics, treatment outcome and survival of elderly women (aged ≥ 60 years) with breast cancer who were treated and followed-up between 1993 and 2014. The median follow up for the surviving patients was 38 (range 3-207) months. One hundred and seventy-eight patients with a median age of 74 (range 60-95) years were enrolled in the study. Of the total, 60 patients received postoperative adjuvant radiation (radiation group) and the remaining 118 did not (control group). Patients in the radiation group were significantly younger than those in the control group (P value=0.004). In addition, patients in radiation group had higher node stage (P value<0.001) and disease stage (P=0.003) and tended to have higher tumor grade (P=0.031) and received more frequent (P value <0.001) adjuvant and neoadjuvant chemotherapy compared to those in the control group. There was no statistically significant difference between two groups regarding the local control, disease-free survival and overall survival rates. In this study, we did not find a prognostic impact for adjuvant radiation on oncologic outcomes in elderly women with breast cancer.

  17. Updated European core curriculum for radiotherapists (radiation oncologists). Recommended curriculum for the specialist training of medical practitioners in radiotherapy (radiation oncology) within Europe.

    NARCIS (Netherlands)

    Baumann, M.; Leer, J.W.H.; Dahl, O.; Neve, W. de; Hunter, R.; Rampling, R.; Verfaillie, C.

    2004-01-01

    AIM: To produce updated state-of-the-art recommendations for harmonised medical specialist training in radiotherapy within Europe. MATERIAL AND METHODS: The Minimum Curriculum for the Theoretical Education in Radiation Oncology in Europe from 1991 was updated under consideration of new developments

  18. Geographic Analysis of the Radiation Oncology Workforce

    Energy Technology Data Exchange (ETDEWEB)

    Aneja, Sanjay [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Cancer Outcomes, Policy, and Effectiveness Research Center at Yale, New Haven, CT (United States); Smith, Benjamin D. [University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gross, Cary P. [Cancer Outcomes, Policy, and Effectiveness Research Center at Yale, New Haven, CT (United States); Department of General Internal Medicine, Yale University School of Medicine, New Haven, CT (United States); Wilson, Lynn D. [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Haffty, Bruce G. [Cancer Institute of New Jersey, New Brunswick, NJ (United States); Roberts, Kenneth [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Yu, James B., E-mail: james.b.yu@yale.edu [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States); Cancer Outcomes, Policy, and Effectiveness Research Center at Yale, New Haven, CT (United States)

    2012-04-01

    Purpose: To evaluate trends in the geographic distribution of the radiation oncology (RO) workforce. Methods and Materials: We used the 1995 and 2007 versions of the Area Resource File to map the ratio of RO to the population aged 65 years or older (ROR) within different health service areas (HSA) within the United States. We used regression analysis to find associations between population variables and 2007 ROR. We calculated Gini coefficients for ROR to assess the evenness of RO distribution and compared that with primary care physicians and total physicians. Results: There was a 24% increase in the RO workforce from 1995 to 2007. The overall growth in the RO workforce was less than that of primary care or the overall physician workforce. The mean ROR among HSAs increased by more than one radiation oncologist per 100,000 people aged 65 years or older, from 5.08 per 100,000 to 6.16 per 100,000. However, there remained consistent geographic variability concerning RO distribution, specifically affecting the non-metropolitan HSAs. Regression analysis found higher ROR in HSAs that possessed higher education (p = 0.001), higher income (p < 0.001), lower unemployment rates (p < 0.001), and higher minority population (p = 0.022). Gini coefficients showed RO distribution less even than for both primary care physicians and total physicians (0.326 compared with 0.196 and 0.292, respectively). Conclusions: Despite a modest growth in the RO workforce, there exists persistent geographic maldistribution of radiation oncologists allocated along socioeconomic and racial lines. To solve problems surrounding the RO workforce, issues concerning both gross numbers and geographic distribution must be addressed.

  19. Geographic Analysis of the Radiation Oncology Workforce

    International Nuclear Information System (INIS)

    Aneja, Sanjay; Smith, Benjamin D.; Gross, Cary P.; Wilson, Lynn D.; Haffty, Bruce G.; Roberts, Kenneth; Yu, James B.

    2012-01-01

    Purpose: To evaluate trends in the geographic distribution of the radiation oncology (RO) workforce. Methods and Materials: We used the 1995 and 2007 versions of the Area Resource File to map the ratio of RO to the population aged 65 years or older (ROR) within different health service areas (HSA) within the United States. We used regression analysis to find associations between population variables and 2007 ROR. We calculated Gini coefficients for ROR to assess the evenness of RO distribution and compared that with primary care physicians and total physicians. Results: There was a 24% increase in the RO workforce from 1995 to 2007. The overall growth in the RO workforce was less than that of primary care or the overall physician workforce. The mean ROR among HSAs increased by more than one radiation oncologist per 100,000 people aged 65 years or older, from 5.08 per 100,000 to 6.16 per 100,000. However, there remained consistent geographic variability concerning RO distribution, specifically affecting the non-metropolitan HSAs. Regression analysis found higher ROR in HSAs that possessed higher education (p = 0.001), higher income (p < 0.001), lower unemployment rates (p < 0.001), and higher minority population (p = 0.022). Gini coefficients showed RO distribution less even than for both primary care physicians and total physicians (0.326 compared with 0.196 and 0.292, respectively). Conclusions: Despite a modest growth in the RO workforce, there exists persistent geographic maldistribution of radiation oncologists allocated along socioeconomic and racial lines. To solve problems surrounding the RO workforce, issues concerning both gross numbers and geographic distribution must be addressed.

  20. 21. Annual meeting of the German radiation Oncology Society. Abstracts; 21. Jahrestagung der Deutschen Gesellschaft fuer Radioonkologie. Abstractband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The volume includes the abstracts o the 21. annual meeting of the German radiation oncology society covering the following topics: gastrointestinal carcinoma; prostate carcinoma; supportive therapies, quality assurance and benign lesions; innovative therapy concepts; dosimetry, irradiation technology and planning; NSCLC, SCLC; radiation biology; head and neck carcinoma, particle therapy; brain carcinoma and metastases, mamma carcinoma and gynecologic tumors.

  1. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    International Nuclear Information System (INIS)

    Hahn, S; Jaffray, D; Chetty, I; Benedict, S

    2014-01-01

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologies in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their

  2. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, S [University of Pennsylvania, Philadelphia, PA (United States); Jaffray, D [Princess Margaret Hospital, Toronto, ON (Canada); Chetty, I [Henry Ford Health System, Detroit, MI (United States); Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States)

    2014-06-15

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologies in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their

  3. French Radiotherapy Database: Results of a survey of French radiation oncology centers in 2007

    International Nuclear Information System (INIS)

    Chauvet, B.; Bolla, M.; Eschwege, F.; Lipinski, F.; Mazeron, J.J.; Mornex, F.; Alies-Patin, A.; Weissmann, H.; Bara, C.; Chantome, G.; Fournie, E.; Bourguignon, M.; Estivalet, S.; Faue, P.; Lipinski, F.; Pointreau, Y.

    2009-01-01

    The second year, the French Radiotherapy Database presents information from French radiation oncology centers. Among 179 centers, 159 have participated (90 %). The number of accelerators increased from 371 to 384 between 2006 and 2007, 11 % of these machines are more than 15 years old. On average, centers are open 50 hours per week for treatment and 9.5 % more for maintenance. The lack of dedicated CT remains a difficulty: 158 from 159 centers have an access to a CT, but only 50 % have a dedicated scanner. There is no progress compared to 2006. The proportion of centers having a MU double calculation system has increased from 51 to 58 %. Two thirds of centers do not implement in vivo dosimetry. The activity is stable around 190 000 treatments per year. Three-dimension conformal radiotherapy is used for more than half of treatments in 77.2 % of private centers and 50 % of public hospitals. Intensity modulated radiotherapy remains rarely used. The number of radiation oncologists and technologists remains stable. The number of radio physicists has increased from 7.6 %. Despite some progress, the difficulties of this speciality persist in France and are equally distributed across all regions, and between private and public centers. In 2009, the French Society for Radiation Oncology and the associated partners will continue this survey, which interest is recognized by both professionals and health administrations. (authors)

  4. Survey of sexual educational needs in radiation oncology patients

    International Nuclear Information System (INIS)

    Chen, L.; Sweeney, P.; Wallace, G.; Neish, P.; Vijayakumar, S.

    1997-01-01

    Purpose: To assess the knowledge of and need for education about sexuality in oncology patients treated with radiation therapy. Methods and Materials: Patients who received radiation therapy for any disease site were given a self-assessment survey to complete to determine their opinions on sexuality and needs for sexual education. The surveys were given to patients on follow-up visit seen approximately 6 months to 2 years after radiation therapy. All patients were diagnosed with a malignancy and asked to participate on a voluntary basis; confidentiality was ensured by excluding any identifying patient information on the survey form. Respondents were polled with a survey that consisted of 17 questions about their sexual activity. Questions were broadly categorized into the following: definition of sexual activity, frequency of sexual activity prior to and after diagnosis and treatment of cancer, perception of sexual attractiveness, sexual satisfaction in the relationship, patient perception of partner's sexual satisfaction in the relationship, educational needs with regard to sexuality after therapy for cancer, and demographic information. Results: All patients were over age 18, and received radiation therapy as part of the treatment. Patients with all disease sites were included in the survey, regardless of stage or diagnosis. A total of 28 patients completed the survey form, which was approved by our institutional review board. Forty-three percent of patients felt that the cancer diagnosis or treatment effect was the cause of not engaging in sexual intercourse. Fifty percent reported not having the same sexual desire as before the diagnosis of cancer, while 46% reported having the same sexual desire as prior to the diagnosis of cancer. Forty-six percent felt less attractive than before the diagnosis of cancer, while 43% felt the same as before diagnosis. Thirty-six percent of patients received no information with regards to sexuality and cancer, while 18% received

  5. Internet-based communications in radiation oncology

    International Nuclear Information System (INIS)

    Goldwein, Joel W.

    1996-01-01

    Currently, it is estimated that 40 million Americans have access to the Internet. The emergence of widely available software, inexpensive hardware and affordable connectivity have all led to an explosive growth in its use. Medicine in general and radiation oncology specifically are deriving great benefits from this technology. The use of this technology will result in a paradigm shift that is likely to change the way we all communicate. An understanding of the technology is therefore mandatory. The objectives of the course are to provide a practical introduction to the use of Internet technologies as they relate to our profession. The following topics will be reviewed. 1. A brief history of the Internet 2. Getting connected to the Internet 3. Internet venues - The Web, ftp, USENETS ... 4. Basic software tools - email, browsers ... 5. Specific Internet resources 6. Advanced Internet utilization 7. Business and the Internet 8. Intranet utilization 9. Philosophical and medicolegal issues 10. Predictions of the future Upon completion, the attendee will be familiar with the Internet, how it works, and how it can be used to fulfill the research, educational, and clinical care missions of our profession

  6. Cost-benefit analysis of establishing and operating radiation oncology services in Fiji.

    Science.gov (United States)

    Kim, Eunkyoung; Cho, Yoon-Min; Kwon, Soonman; Park, Kunhee

    2017-10-01

    Rising demand for services of cancer patients has been recognised by the Government of Fiji as a national health priority. Increasing attention has been paid to the lack of service of radiation therapy or radiotherapy in Fiji. This study aims to estimate and compare the costs and benefits of introducing radiation oncology services in Fiji from the societal perspective. Time horizon for cost-benefit analysis (CBA) was 15 years from 2021 to 2035. The benefits and costs were converted to the present values of 2016. Estimates for the CBA model were taken from previous studies and expert opinions and data obtained from field visits to Fiji in January 2016. Sensitivity analyses with changing assumptions were undertaken. The estimated net benefit, applying the national minimum wage (NMW) to measure monetary value for life-year gained, was -31,624,421 FJD with 0.69 of benefit-cost (B/C) ratio. If gross national income (GNI) per capita was used for the value of life years, net benefit was 3,975,684 FJD (B/C ratio: 1.04). With a pessimistic scenario, establishing the center appeared to be not cost-beneficial, and the net benefit was -53,634,682 FJD (B/C ratio: 0.46); net benefit with an optimistic scenario was estimated 23,178,189 FJD (B/C ratio: 1.20). Based on the CBA results from using GNI per capita instead of the NMW, this project would be cost-beneficial. Introducing a radiation oncology center in Fiji would have potential impacts on financial sustainability, financial protection, and accessibility and equity of the health system. Copyright © 2017 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  7. Molecular radio-oncology

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild; Cordes, Nils

    2016-01-01

    This book concisely reviews our current understanding of hypoxia, molecular targeting, DNA repair, cancer stem cells, and tumor pathophysiology, while also discussing novel strategies for putting these findings into practice in daily clinical routine. Radiotherapy is an important part of modern multimodal cancer treatment, and the past several years have witnessed not only substantial improvements in radiation techniques and the use of new beam qualities, but also major strides in our understanding of molecular tumor biology and tumor radiation response. Against this backdrop, the book highlights recent efforts to identify reasonable and clinically applicable biomarkers using broad-spectrum tissue microarrays and high-throughput systems biology approaches like genomics and epigenomics. In particular, it describes in detail how such molecular information is now being exploited for diagnostic imaging and imaging throughout treatment using the example of positron emission tomography. By discussing all these issues in the context of modern radiation oncology, the book provides a broad, up-to-date overview of the molecular aspects of radiation oncology that will hopefully foster its further optimization.

  8. Molecular radio-oncology

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Krause, Mechthild; Cordes, Nils (eds.) [Technische Univ. Dresden (Germany). Faculty of Medicine and University Hospital

    2016-07-01

    This book concisely reviews our current understanding of hypoxia, molecular targeting, DNA repair, cancer stem cells, and tumor pathophysiology, while also discussing novel strategies for putting these findings into practice in daily clinical routine. Radiotherapy is an important part of modern multimodal cancer treatment, and the past several years have witnessed not only substantial improvements in radiation techniques and the use of new beam qualities, but also major strides in our understanding of molecular tumor biology and tumor radiation response. Against this backdrop, the book highlights recent efforts to identify reasonable and clinically applicable biomarkers using broad-spectrum tissue microarrays and high-throughput systems biology approaches like genomics and epigenomics. In particular, it describes in detail how such molecular information is now being exploited for diagnostic imaging and imaging throughout treatment using the example of positron emission tomography. By discussing all these issues in the context of modern radiation oncology, the book provides a broad, up-to-date overview of the molecular aspects of radiation oncology that will hopefully foster its further optimization.

  9. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Valicenti, Richard K., E-mail: Richard.valicenti@ucdmc.ucdavis.edu [Department of Radiation Oncology, University of California, Davis School of Medicine, Davis, California (United States); Thompson, Ian [Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States); Albertsen, Peter [Division of Urology, University of Connecticut Health Center, Farmington, Connecticut (United States); Davis, Brian J. [Department of Radiation Oncology, Mayo Medical School, Rochester, Minnesota (United States); Goldenberg, S. Larry [Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia (Canada); Wolf, J. Stuart [Department of Urology, University of Michigan, Ann Arbor, Michigan (United States); Sartor, Oliver [Department of Medicine and Urology, Tulane Medical School, New Orleans, Louisiana (United States); Klein, Eric [Glickman Urological Kidney Institute, Cleveland Clinic, Cleveland, Ohio (United States); Hahn, Carol [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Michalski, Jeff [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Roach, Mack [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Faraday, Martha M. [Four Oaks, Inc (United States)

    2013-08-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review.

  10. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    International Nuclear Information System (INIS)

    Valicenti, Richard K.; Thompson, Ian; Albertsen, Peter; Davis, Brian J.; Goldenberg, S. Larry; Wolf, J. Stuart; Sartor, Oliver; Klein, Eric; Hahn, Carol; Michalski, Jeff; Roach, Mack; Faraday, Martha M.

    2013-01-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review

  11. Initial employment experiences of 1997 graduates of radiation oncology training programs

    International Nuclear Information System (INIS)

    Bushee, Gerald R.; Sunshine, Jonathan H.; Simon, Carol; Schepps, Barbara

    2001-01-01

    Purpose: To inform the profession of current trends in the job market, the American College of Radiology (ACR) sought to detail the job-hunting experiences and outcomes of 1997 graduates of radiation oncology training programs. Methods and Materials: In early 1998, questionnaires were mailed to all graduates; 67% responded. Results were compared with similar surveys of 1996 graduates. Results: Similar to past years, immediately after graduation, 13% of residency graduates and 1 of 10 fellowship graduates encountered serious employment difficulties - that is, spent some time working locums, working outside radiation oncology, or unemployed. By 6-12 months after graduation, approximately 2% of all residency graduates were working outside the profession and approximately 3% were not working at all. Eighty-five percent of residency graduates and 7 of 8 fellowship graduates reported that their employment reasonably matched their training and individual goals. On average, graduates' actual salaries approximately corresponded to expected salaries. Eleven percent of all graduates were in nonownership-track jobs, a significant decline since 1996. For residents and fellows combined, 46% had a job with at least one characteristic some observers associate with a weak job market, but fewer than half of those with one of these characteristics actually disliked it. These percentages are similar to 1996. Women graduates were more likely than men to have spouse-related restrictions on job location but less likely to end up in a self-reportedly undesirable location. Conclusion: Unemployment remained low. Some other indicators of the employment market showed improvement, while others did not

  12. Safety and quality assurance management in radiation oncology, What is the role for qualiticians?: example of the Centre Alexis Vautrin; Management de la qualite et de la securite en radiotherapie. Quel role pour les qualiticiens?: exemple au centre Alexis-Vautrin

    Energy Technology Data Exchange (ETDEWEB)

    Aigle, D. [Centre Alexis-Vautrin, Unite qualite et organisation, 54 - Vandoeuvre-les-Nancy (France); Sobczyk, C.; Androni, M.L.; Peiffert, D.; Beckendorf, V.; Marchesi, V.; Buchheit, I.; Noel, A. [Centre Alexis-Vautrin, Dept. de Radiotherapie, 54 - Vandoeuvre-les-Nancy (France)

    2009-10-15

    Since 2007, the Centre Alexis-Vautrin Cancer Institute in Nancy began its safety and quality assurance management policy in the department of radiation oncology. This development induced a collaborative work flow between the quality unit and the department of radiation oncology, with a definition of the responsibilities. The quality unit provides its methodology for the quality assurance, the professionals of the radiation oncology department their expertise. In parallel, a quality referee was nominated in the radiation oncology department to implement the projects for improvement, linked with the quality assurance unit, and under the control of the radiation oncology department staff. (authors)

  13. Radiotherapy and oncology. Medical technical radiology assistant, vocational training. 4. rev. ed.

    International Nuclear Information System (INIS)

    Sauer, R.

    2003-01-01

    The toolbook is arranged in seven main parts. 1. General Part, with the chapters: - History of radiology and radiation therapy - Radiation therapy, radiotherapy, radiation oncology - Organisational aspects of radiation oncology in the hospital department and private practice - The MTRA in radiation therapy. 2. General Oncology, with the chapters: Tumor pathology - Epidemiology and aethiology - Tumor prophylaxis (prevention) - Fundamentals of tumor treatment - Tumor treatment strategies - Fundamentals of surgical tumor treatment - Fundamentals of internal medicine treatment of tumors. 3. Foundations of Radiation Therapy, with the chapters: - Radiation physics - Dose concepts and dose units - Radiobiology - Foundations of radiopathology - Special pathology - Instrumentation. 4. Radiation Treatment, with the chapters: Irradiation planning - Daily radiation treatment - Psychological patient management - Emergency management. 5. Special Oncology of Tumors, with 16 chapters discussing tumors of specific organs, and 2 chapters dealing with palliative radiation therapy and supportive treatment. 6. Radiation Therapy of Benign Neoplasms, with the chapters: Survey - Antiphlogistic radiation treatment - Radiation treatment for alleviation of irritations and pains induced by chronic inflammatory or degenerative processes - Radiation treatment of hypertropic lesions of the connective and supporting tissue, and benign tumors - Irradiation for immunosuppression - Castration by irradiation. 7. Radiation Protection. (orig./CB) [de

  14. The efficacy and usefulness of problem based learning in undergraduate medical school education of radiation oncology

    International Nuclear Information System (INIS)

    Uchino, Minako; Itazawa, Tomoko; Someya, Masanori; Nakamura, Satoaki

    2007-01-01

    The Japanese Association for Therapeutic Radiation Oncology (JASTRO) holds a seminar for medical students every summer, which has developed into a joint program with a session addressing radiation treatment planning. To clarify this topic for medical students, we have incorporated Problem Based Learning skills into the session. Not only has the students' comprehension improved but the instructors have also found this teaching experience valuable and productive in advancing their own clinical skills. Our experience suggests that the application of this Problem Based Learning session for radiation treatment planning in undergraduate medical school education has proven to be effective. (author)

  15. A comparison of the structure of radiation oncology in the United States and Japan

    International Nuclear Information System (INIS)

    Owen, Jean B.; Hanks, Gerald E.; Teshima, Teruki; Sato, Shinichiro; Tsunemoto, Hiroshi; Inoue, Toshihiko

    1996-01-01

    Purpose: The United States and Japan have very different backgrounds in their medical care systems. In the field of radiation oncology, national surveys on structure have been conducted for both countries and compared to illustrate any similarities and differences present from 1989-1990. Methods and Materials: The Patterns of Care Study Facility Survey conducted in 1989 in the United States and the National Survey of Structure in Japan in 1990 were compared to evaluate the equipment pattern, staffing pattern, compliance rate with the 'blue book' (3) guideline, and the geographic distribution of institutions. Results: In the United States, a total of 598,184 (49% of the total of newly diagnosed) patients were treated with radiation therapy. In Japan, 62,829 (approximately 15% of the total of newly diagnosed) patients were treated. The numbers of external megavoltage treatment machines were 2,397 in the United States and 494 in Japan. The numbers of full time equivalent (FTE) radiation oncologists were 2,335 in the United States and 366 in Japan. Only 15% of United States facilities and 11% of Japan facilities complied with the narrow blue book guideline for the patients per FTE radiation oncologist (200-250), while the most common ratio was 151-200 patients/FTE in the United States and 51-100 in Japan. In Japan, more than 60% of institutions were staffed by a part-time radiation oncologist (FTE < 1.0). Between geographic regions, there was variation in the percentage of cancer patients treated with radiation therapy for both the United States (42-56%) and Japan (6-25%). Conclusion: There is a major difference in the usage of radiation therapy for treating cancer between the United States and Japan with 49% of all new cancer patients treated in the United States and approximately 15% treated in Japan. Equipment structure in the United States is more complete than in Japan with important differences in treatment simulators, treatment planning computers, and support

  16. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial.

    Science.gov (United States)

    Michalski, Jeff M; Moughan, Jennifer; Purdy, James; Bosch, Walter; Bruner, Deborah W; Bahary, Jean-Paul; Lau, Harold; Duclos, Marie; Parliament, Matthew; Morton, Gerard; Hamstra, Daniel; Seider, Michael; Lock, Michael I; Patel, Malti; Gay, Hiram; Vigneault, Eric; Winter, Kathryn; Sandler, Howard

    2018-03-15

    Optimizing radiation therapy techniques for localized prostate cancer can affect patient outcomes. Dose escalation improves biochemical control, but no prior trials were powered to detect overall survival (OS) differences. To determine whether radiation dose escalation to 79.2 Gy compared with 70.2 Gy would improve OS and other outcomes in prostate cancer. The NRG Oncology/RTOG 0126 randomized clinical trial randomized 1532 patients from 104 North American Radiation Therapy Oncology Group institutions March 2002 through August 2008. Men with stage cT1b to T2b, Gleason score 2 to 6, and prostate-specific antigen (PSA) level of 10 or greater and less than 20 or Gleason score of 7 and PSA less than 15 received 3-dimensional conformal radiation therapy or intensity-modulated radiation therapy to 79.2 Gy in 44 fractions or 70.2 Gy in 39 fractions. Time to OS measured from randomization to death due to any cause. American Society for Therapeutic Radiology and Oncology (ASTRO)/Phoenix definitions were used for biochemical failure. Acute (≤90 days of treatment start) and late radiation therapy toxic effects (>90 days) were graded using the National Cancer Institute Common Toxicity Criteria, version 2.0, and the RTOG/European Organisation for the Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme, respectively. With a median follow-up of 8.4 (range, 0.02-13.0) years in 1499 patients (median [range] age, 71 [33-87] years; 70% had PSA <10 ng/mL, 84% Gleason score of 7, 57% T1 disease), there was no difference in OS between the 751 men in the 79.2-Gy arm and the 748 men in the 70.2-Gy arm. The 8-year rates of OS were 76% with 79.2 Gy and 75% with 70.2 Gy (hazard ratio [HR], 1.00; 95% CI, 0.83-1.20; P = .98). The 8-year cumulative rates of distant metastases were 4% for the 79.2-Gy arm and 6% for the 70.2-Gy arm (HR, 0.65; 95% CI, 0.42-1.01; P = .05). The ASTRO and Phoenix biochemical failure rates at 5 and 8 years were 31% and 20% with 79.2 Gy

  17. Comparison of methods for prioritizing risk in radiation oncology

    International Nuclear Information System (INIS)

    Biazotto, Bruna; Tokarski, Marcio

    2016-01-01

    Proactive risk management tools, such as Failure Mode and Effect Analysis (FEMA), were imported from engineering and have been widely used in Radiation Oncology. An important step in this process is the risk prioritization and there are many methods to do that. This paper compares the risk prioritization of computerized planning phase in interstitial implants with high dose rate brachytherapy performed with Health Care Failure Mode and Effect Analysis (HFMEA) and FMEA with guidelines given by the Task Group 100 (TG 100) of the American Association of Physicists in Medicine. Out of the 33 possible failure modes of this process, 21 require more attention when evaluated by HFMEA and 22, when evaluated by FMEA TG 100. Despite the high coincidence between the methods, the execution of HFMEA was simpler. (author)

  18. Through a glass darkly: predicting the future of radiation oncology

    International Nuclear Information System (INIS)

    Peters, Lester J.

    1995-01-01

    To position ourselves professionally for the inevitable transition to managed care demands serious self-appraisal. Like most procedural medical specialties, radiation oncology is currently ill prepared for a capitated system of payment. To prosper under capitation, we need to increase the utility of radiation therapy per unit cost. This can be achieved by making the following adaptive responses: (a) we must ensure that the needs of medical practice drive the use of costly technology and not vice versa; (b) we must subordinate firmly held beliefs and prejudices to solid scientific data and be prepared to modify our practice when more cost-effective alternatives exist; and (c) we must be increasingly conscious of outcome, not process, in deciding among treatment options; and (d) we must acknowledge the need to prioritize the use of finite resources so that the maximum effort is expended on those who have the most to gain from treatment. These changes will permit us to develop guidelines for appropriate use of radiation therapy, and to demonstrate the excellent value of the service we can provide, which is the ultimate key to success. Though the future may at times seem bleak, we can shape it with our actions: the best way to predict the future is to create it

  19. An evaluation system for electronic retrospective analyses in radiation oncology: implemented exemplarily for pancreatic cancer

    Science.gov (United States)

    Kessel, Kerstin A.; Jäger, Andreas; Bohn, Christian; Habermehl, Daniel; Zhang, Lanlan; Engelmann, Uwe; Bougatf, Nina; Bendl, Rolf; Debus, Jürgen; Combs, Stephanie E.

    2013-03-01

    To date, conducting retrospective clinical analyses is rather difficult and time consuming. Especially in radiation oncology, handling voluminous datasets from various information systems and different documentation styles efficiently is crucial for patient care and research. With the example of patients with pancreatic cancer treated with radio-chemotherapy, we performed a therapy evaluation by using analysis tools connected with a documentation system. A total number of 783 patients have been documented into a professional, web-based documentation system. Information about radiation therapy, diagnostic images and dose distributions have been imported. For patients with disease progression after neoadjuvant chemoradiation, we designed and established an analysis workflow. After automatic registration of the radiation plans with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose-volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence. All results are stored in the database and included in statistical calculations. The main goal of using an automatic evaluation system is to reduce time and effort conducting clinical analyses, especially with large patient groups. We showed a first approach and use of some existing tools, however manual interaction is still necessary. Further steps need to be taken to enhance automation. Already, it has become apparent that the benefits of digital data management and analysis lie in the central storage of data and reusability of the results. Therefore, we intend to adapt the evaluation system to other types of tumors in radiation oncology.

  20. A clinical intranet model for radiation oncology

    International Nuclear Information System (INIS)

    Brooks, Ken; Fox, Tim; Davis, Larry

    1997-01-01

    Purpose: A new paradigm in computing is being formulated from advances in client-server technology. This new way of accessing data in a network is referred to variously as Web-based computing, Internet computing, or Intranet computing. The difference between an internet and intranet being that the former is for global access and the later is only for intra-departmental access. Our purpose with this work is to develop a clinically useful radiation oncology intranet for accessing physically disparate data sources. Materials and Methods: We have developed an intranet client-server system using Windows-NT Server 4.0 running Internet Information Server (IIS) on the back-end and client PCs using a typical World Wide Web (WWW) browser. The clients also take advantage of the Microsoft Open Database Connectivity (ODBC) standard for accessing commercial database systems. The various data sources used include: a traditional Radiation Oncology Information (ROIS) System (VARiS 1.3 tm ); a 3-D treatment planning system (CAD Plan tm ); a beam scanning system (Wellhoffer tm ); as well as an electronic portal imaging device (PortalVision tm ) and a CT-Simulator providing digitally reconstructed radiographs (DRRs) (Picker AcQsim tm ). We were able to leverage previously developed Microsoft Visual C++ applications without major re-writing of source code for this. Results: With the data sources and development materials used, we were able to develop a series of WWW-based clinical tool kits. The tool kits were designed to provide profession-specific clinical information. The physician's tool kit provides a treatment schedule for daily patients along with a dose summary from VARiS and the ability to review portal images and prescription images from the EPID and Picker. The physicists tool kit compares dose summaries from VARiS with an independent check against RTP beam data and serves as a quick 'chart-checker'. Finally, an administrator tool kit provides a summary of periodic charging

  1. The employment status of 1995 graduates from radiation oncology training programs in the United States.

    Science.gov (United States)

    Flynn, D F; Kresl, J J; Sheldon, J M

    1999-03-15

    To quantify the employment status of 1995 graduates of radiation oncology training programs in the United States. All senior residents (149) and fellows (36) who completed training in 1995 were mailed an employment survey questionnaire by the Association of Residents in Radiation Oncology (ARRO). Telephone follow-up of nonrespondents achieved a 100% response rate. Twenty graduates who chose to continue training and five who returned to their home countries were removed from the study. Of the 160 who attempted to enter the U.S. workforce, 106 were men and 54 were women. Initial job status and job status at 6-8 months following graduation were determined. Unemployment was 6.9% at graduation and 4.4% at 6-8 months. Underemployment (part-time employment) was 10.6% at graduation and 11.9% at 6-8 months postgraduation. Of those working part-time 6-8 months after graduation, 63% (12 of 19) did so involuntarily after unsuccessfully seeking full-time employment. For the 20 graduates who chose to continue training with fellowships, seven (35%) did so solely to avoid unemployment, four (20%) were partially influenced by the job market, and nine (45%) were not influenced by the job market. Adverse employment search outcome was defined as being either unemployed as a radiation oncologist or involuntarily working part-time. Excluding those who chose to work part-time, a total of 19 (11.9%) graduates at 6-8 months following graduation, compared to 22 (13.8%) at graduation, were either unemployed or involuntarily working part-time. In terms of gender, this represented 18.5% (10 of 54) of females and 8.6% (9 of 105) of males. In terms of geographic restrictions in the job search, 56% of males and 70% of females with an adverse employment outcome limited their job search to certain parts of the country. This compares to 62% of all graduates in this study with geographic restrictions in their job search. In terms of perceptions of the workforce and employment opportunities, 95% of

  2. Standards and general criteria for the planning and certification of need of megavoltage radiation oncology units in health care facilities

    International Nuclear Information System (INIS)

    1977-01-01

    Minimum standards and guidelines to be applied by State agencies and New Jersey health systems agencies in the examination of certificate-of-need applications and in the development of planning activities for radiation oncology units in health care facilities are presented. Radiation oncology is a medical discipline devoted to education and research in the use of ionizing radiation for the treatment of neoplastic disease. The proper application of radiation can be directed at either curative or palliative intent. It is an important and effective technique for the management of cancer. Radiotherapy equipment in clinical use is divided into four main categories: superficial, orthovoltage, megavoltage, and treatment planning facilities. Particular attention is given to megavoltage equipment which emits or generates rays over 1,000 kilovolts. These high energy rays effect better penetration of human tissue and are skin-sparing in nature, thus allowing for better tumor-to- skin dose ratios. The regionalization of megavoltage therapy services is discussed. Data on hospital megavoltage facilities in New Jersey for 1974, 1975, and 1976 are provided. The standards and guidelines pertain to utilization, personnel, and general criteria. A form for use by megavoltage radiation therapy units is appended

  3. Metals as radio-enhancers in oncology: The industry perspective

    Energy Technology Data Exchange (ETDEWEB)

    Pottier, Agnés, E-mail: agnes.pottier@nanobiotix.com; Borghi, Elsa; Levy, Laurent

    2015-12-18

    Radio-enhancers, metal-based nanosized agents, could play a key role in oncology. They may unlock the potential of radiotherapy by enhancing the radiation dose deposit within tumors when the ionizing radiation source is ‘on’, while exhibiting chemically inert behavior in cellular and subcellular systems when the radiation beam is ‘off’. Important decision points support the development of these new type of therapeutic agents originated from nanotechnology. Here, we discuss from an industry perspective, the interest of developing radio-enhancer agents to improve tumor control, the relevance of nanotechnology to achieve adequate therapeutic attributes, and present some considerations for their development in oncology. - Highlights: • Oncology is a field of high unmet medical need. • Despites of its widespread usage, radiation therapy presents a narrow therapeutic window. • High density material at the nanoscale may enhance radiation dose deposit from cancer cells. • Metal-based nanosized radio-enhancers could unlock the potential of radiotherapy.

  4. DEGRO 2001. 17. annual congress of the German Radiation Oncology Society. Abstracts; DEGRO 2011. 17. Jahreskongress der Deutschen Gesellschaft fuer Radioonkologie. Kurzfassungen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-06-15

    The volume includes lectures and posters on the following topics: protons and heavy ions - first treatment results; complementary medicine; lung carcinomas; radio-oncology management and centers; benign diseases; IMRT, IGRT. what will be routine? palliative radiotherapy - the role of radio-oncologists; biology and clinics of head-neck-ear tumors; free issues; radiation physics - dosimetric indicators in therapy planning; reduction of treatment regimes - risk or chances in radiotherapy? pancreas carcinomas; prostate carcinomas; individualization in radio-oncology; experimental radiotherapy - new molecular targets; pitfalls of oncological imaging and therapy planning; from cells to patients - the successful history of the ERGF receptor.

  5. Profile of European radiotherapy departments contributing to the EORTC Radiation Oncology Group (ROG) in the 21st century

    NARCIS (Netherlands)

    Budiharto, Tom; Musat, Elena; Poortmans, Philip; Hurkmans, Coen; Monti, Angelo; Bar-Deroma, Raquel; Bernstein, Zvi; van Tienhoven, Geertjan; Collette, Laurence; Duclos, Frédéric; Davis, Bernard; Aird, Edwin

    2008-01-01

    Since 1982, the Radiation Oncology Group of the EORTC (EORTC ROG) has pursued an extensive Quality Assurance (QA) program involving all centres actively participating in its clinical research. The first step is the evaluation of the structure and of the human, technical and organisational resources

  6. Is there a role for radiation therapists within veterinary oncology?

    International Nuclear Information System (INIS)

    Surjan, Yolanda; Warren-Forward, Helen; Milross, Christopher

    2011-01-01

    Role expansion recognises enlargement of existing scope of practice within radiation therapy (RT). Over the past decade, there has been increasing involvement and movement towards advanced practice in the form of role extension in specialised areas of practice including brachytherapy, image fusion and quality assurance. It is also recognised that radiation therapy expert practitioners exist in the areas of imaging immobilisation, treatment, education and research. The acquisition of additional skills has hastened the need for autonomy within the RT profession and with this comes the responsibility to share our knowledge and specialist abilities with the wider community. Radiation therapy is a highly specialised profession working to treat a commonly encountered ailment like cancer and we should ask ourselves what other community members could benefit from our knowledge and skills. Cancer is not limited to the human population but affects animals as readily and severely. Particular types of cancers have been identified as being comparable with that of humans; one such tumour is squamous cell carcinoma (SCC). Squamous cell carcinoma is the most commonly found tumour of the eye and adnexa in horses. Comparatively, SCC in humans is the most common cancer in Australia. Whilst human treatment is well established with surgery and radiation therapy offering comparable control rates, the treatment within Australia's Veterinary Oncology field is currently at a standstill. It is reported, however, that the use of interstitial brachytherapy has been shown to be highly effective and thoroughly practiced and established within the United States of America (USA). This paper reviews current literature in readiness for the potential for radiation therapy cross-over into the veterinary sphere with regard to the implementation of treatment and radiation safety protocols for the use of interstitial brachytherapy in horses.

  7. Is there a role for radiation therapists within veterinary oncology?

    Energy Technology Data Exchange (ETDEWEB)

    Surjan, Yolanda, E-mail: Yolanda.Surjan@newcastle.edu.au [Medical Radiation Science (MRS), School of Health Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Warren-Forward, Helen [Medical Radiation Science (MRS), School of Health Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Milross, Christopher [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, Sydney (Australia)

    2011-08-15

    Role expansion recognises enlargement of existing scope of practice within radiation therapy (RT). Over the past decade, there has been increasing involvement and movement towards advanced practice in the form of role extension in specialised areas of practice including brachytherapy, image fusion and quality assurance. It is also recognised that radiation therapy expert practitioners exist in the areas of imaging immobilisation, treatment, education and research. The acquisition of additional skills has hastened the need for autonomy within the RT profession and with this comes the responsibility to share our knowledge and specialist abilities with the wider community. Radiation therapy is a highly specialised profession working to treat a commonly encountered ailment like cancer and we should ask ourselves what other community members could benefit from our knowledge and skills. Cancer is not limited to the human population but affects animals as readily and severely. Particular types of cancers have been identified as being comparable with that of humans; one such tumour is squamous cell carcinoma (SCC). Squamous cell carcinoma is the most commonly found tumour of the eye and adnexa in horses. Comparatively, SCC in humans is the most common cancer in Australia. Whilst human treatment is well established with surgery and radiation therapy offering comparable control rates, the treatment within Australia's Veterinary Oncology field is currently at a standstill. It is reported, however, that the use of interstitial brachytherapy has been shown to be highly effective and thoroughly practiced and established within the United States of America (USA). This paper reviews current literature in readiness for the potential for radiation therapy cross-over into the veterinary sphere with regard to the implementation of treatment and radiation safety protocols for the use of interstitial brachytherapy in horses.

  8. Using Baldrige Performance Excellence Program Approaches in the Pursuit of Radiation Oncology Quality Care, Patient Satisfaction, and Workforce Commitment

    Energy Technology Data Exchange (ETDEWEB)

    Sternick, Edward S., E-mail: esternick@lifespan.org [Department of Radiation Oncology, Rhode Island Hospital/Brown Alpert Medical School, Providence, RI (United States)

    2011-06-20

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance US business competitiveness and economic growth. Administered by the National Institute of Standards and Technology, the Act created the Baldrige National Quality Program, recently renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well-suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact-based, knowledge-driven system for improving quality of care, increasing patient satisfaction, enhancing leadership effectiveness, building employee engagement, and boosting organizational innovation. This methodology also provides a valuable framework for benchmarking an individual radiation oncology practice's operations and results against guidelines defined by accreditation and professional organizations and regulatory agencies.

  9. Using Baldrige Performance Excellence Program Approaches in the Pursuit of Radiation Oncology Quality Care, Patient Satisfaction, and Workforce Commitment

    International Nuclear Information System (INIS)

    Sternick, Edward S.

    2011-01-01

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance US business competitiveness and economic growth. Administered by the National Institute of Standards and Technology, the Act created the Baldrige National Quality Program, recently renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well-suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact-based, knowledge-driven system for improving quality of care, increasing patient satisfaction, enhancing leadership effectiveness, building employee engagement, and boosting organizational innovation. This methodology also provides a valuable framework for benchmarking an individual radiation oncology practice's operations and results against guidelines defined by accreditation and professional organizations and regulatory agencies.

  10. Using baldrige performance excellence program approaches in the pursuit of radiation oncology quality care, patient satisfaction, and workforce commitment.

    Science.gov (United States)

    Sternick, Edward S

    2011-01-01

    The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance US business competitiveness and economic growth. Administered by the National Institute of Standards and Technology, the Act created the Baldrige National Quality Program, recently renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well-suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact-based, knowledge-driven system for improving quality of care, increasing patient satisfaction, enhancing leadership effectiveness, building employee engagement, and boosting organizational innovation. This methodology also provides a valuable framework for benchmarking an individual radiation oncology practice's operations and results against guidelines defined by accreditation and professional organizations and regulatory agencies.

  11. A newly introduced comprehensive consultation fee in the national health insurance system in Japan: a promotive effect of multidisciplinary medical care in the field of radiation oncology--results from a questionnaire survey.

    Science.gov (United States)

    Igaki, Hiroshi; Onishi, Hiroshi; Nakagawa, Keiichi; Dokiya, Takushi; Nemoto, Kenji; Shigematsu, Naoyuki; Nishimura, Yasumasa; Hiraoka, Masahiro

    2013-12-01

    The consultation fee for outpatient radiotherapy was newly introduced in the national health insurance system in Japan in April 2012. We conducted a survey on the use of this consultation fee and its effect on clinical practices. The health insurance committee of the Japanese Society of Therapeutic Radiology and Oncology conducted a questionnaire survey. The questionnaire form was mailed to 160 councilors of the Society, the target questionees. A total of 94 answers (58% of the target questionees) sent back were used for analyses. The analyses revealed that 75% of the hospitals charged most of the patients who receive radiotherapy in an outpatient setting a consultation fee. The introduction of the consultation fee led to some changes in radiation oncology clinics, as evidenced by the response of 'more careful observations by medical staff' in 37% of questionees and a 12% increase in the number of full-time radiation oncology nurses. It was also shown that the vast majority (92%) of radiation oncologists expected a positive influence of the consultation fee on radiation oncology clinics in Japan. Our questionnaire survey revealed the present status of the use of a newly introduced consultation fee for outpatient radiotherapy, and the results suggested its possible effect on promoting a multidisciplinary medical care system in radiation oncology departments in Japan.

  12. WE-G-9A-01: Radiation Oncology Outcomes Informatics

    International Nuclear Information System (INIS)

    Mayo, C; Miller, R; Sloan, J; Wu, Q; Howell, R

    2014-01-01

    The construction of databases and support software to enable routine and systematic aggregation, analysis and reporting of patient outcomes data is emerging as an important area. “How have results for our patients been affected by the improvements we have made in our practice and in the technologies we use?” To answer this type of fundamental question about the overall pattern of efficacy observed, it is necessary to systematically gather and analyze data on all patients treated within a clinic. Clinical trials answer, in great depth and detail, questions about outcomes for the subsets of patients enrolled in a given trial. However, routine aggregation and analysis of key treatment parameter data and outcomes information for all patients is necessary to recognize emergent patterns that would be of interest from a public health or practice perspective and could better inform design of clinical trials or the evolution of best practice principals. To address these questions, Radiation Oncology outcomes databases need to be constructed to enable combination essential data from a broad group of data types including: diagnosis and staging, dose volume histogram metrics, patient reported outcomes, toxicity metrics, performance status, treatment plan parameters, demographics, DICOM data and demographics. Developing viable solutions to automate aggregation and analysis of this data requires multidisciplinary efforts to define nomenclatures, modify clinical processes and develop software and database tools requires detailed understanding of both clinical and technical issues. This session will cover the developing area of Radiation Oncology Outcomes Informatics. Learning Objectives: Audience will be able to speak to the technical requirements (software, database, web services) which must be considered in designing an outcomes database. Audience will be able to understand the content and the role of patient reported outcomes as compared to traditional toxicity measures

  13. WE-G-9A-01: Radiation Oncology Outcomes Informatics

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, C; Miller, R; Sloan, J [Mayo Clinic, Rochester, MN (United States); Wu, Q [Duke University Medical Center, Durham, NC (United States); Howell, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    The construction of databases and support software to enable routine and systematic aggregation, analysis and reporting of patient outcomes data is emerging as an important area. “How have results for our patients been affected by the improvements we have made in our practice and in the technologies we use?” To answer this type of fundamental question about the overall pattern of efficacy observed, it is necessary to systematically gather and analyze data on all patients treated within a clinic. Clinical trials answer, in great depth and detail, questions about outcomes for the subsets of patients enrolled in a given trial. However, routine aggregation and analysis of key treatment parameter data and outcomes information for all patients is necessary to recognize emergent patterns that would be of interest from a public health or practice perspective and could better inform design of clinical trials or the evolution of best practice principals. To address these questions, Radiation Oncology outcomes databases need to be constructed to enable combination essential data from a broad group of data types including: diagnosis and staging, dose volume histogram metrics, patient reported outcomes, toxicity metrics, performance status, treatment plan parameters, demographics, DICOM data and demographics. Developing viable solutions to automate aggregation and analysis of this data requires multidisciplinary efforts to define nomenclatures, modify clinical processes and develop software and database tools requires detailed understanding of both clinical and technical issues. This session will cover the developing area of Radiation Oncology Outcomes Informatics. Learning Objectives: Audience will be able to speak to the technical requirements (software, database, web services) which must be considered in designing an outcomes database. Audience will be able to understand the content and the role of patient reported outcomes as compared to traditional toxicity measures

  14. Posttreatment follow-up of radiation oncology patients in a managed care environment

    International Nuclear Information System (INIS)

    Steinberg, Michael L.; Rose, Christopher M.

    1996-01-01

    Purpose: Health care delivery in the United States is in the midst of a structural revolution called managed care. Demands for cost control within the managed care environment force radiation oncologists to defend the need and obligation to follow their patients. Methods and Materials: We have analyzed this follow-up requirement from six potential justifications: patient care, medical-legal, quality assurance, outcome measurement, cost, and improvement of care. Results: Practical recommendations for discussing the need for follow-up with the medical directors and primary care physicians of managed care entities are given. Follow-up without valid documentation of benefit is hard to justify in this era of managed care. Conclusions: Collaborative follow-up between the referring physician, the treating radiation oncologist, and the other oncologic specialists will allow for outcome measurement and improvement in practice without driving up cost or exposing the patient to undue risk.

  15. TU-A-210-02: HIFU: Why Should a Radiation Oncology Physicist Pay Attention?

    International Nuclear Information System (INIS)

    Schlesinger, D.

    2015-01-01

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis in 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with

  16. TU-A-210-02: HIFU: Why Should a Radiation Oncology Physicist Pay Attention?

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, D. [University of Virginia Health Systems (United States)

    2015-06-15

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis in 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation with

  17. Using Baldrige Performance Excellence Program Approaches in the Pursuit of Radiation Oncology Quality Care, Patient Satisfaction and Workforce Commitment

    Directory of Open Access Journals (Sweden)

    Edward eSternick

    2011-06-01

    Full Text Available The Malcolm Baldrige National Quality Improvement Act was signed into law in 1987 to advance U.S. business competitiveness and economic growth. Administered by the National Institute of Standards and Technology (NIST, the Act created the Baldrige National Quality Program, recently renamed the Baldrige Performance Excellence Program. The comprehensive analytical approaches referred to as the Baldrige Healthcare Criteria, are very well-suited for the evaluation and sustainable improvement of radiation oncology management and operations. A multidisciplinary self-assessment approach is used for radiotherapy program evaluation and development in order to generate a fact-based, knowledge-driven system for improving quality of care, increasing patient satisfaction, enhancing leadership effectiveness, building employee engagement and boosting organizational innovation. This methodology also provides a valuable framework for benchmarking an individual radiation oncology practice’s operations and results against guidelines defined by accreditation and professional organizations and regulatory agencies.

  18. The development of a provincial radiation oncology service: the first year report and its implications for future developments

    International Nuclear Information System (INIS)

    Byram, D.; Joseph, D.; Bulmer, M.

    1996-01-01

    This study compares the actual first year's workload of a new radiation oncology department with that predicted, and assesses the impact of the differences, and their implications for future similar developments. The treatment records and diaries for the Geelong Hospital Radiation Oncology Department were reviewed after the first 12 months of operation. Statistics relating to the number of patients seen, number treated, diagnosis, etc., were evaluated and compared to the original estimates based upon population statistics and likely referral rates. Nine hundred and seven new patients were seen in this period, and from them 718 courses of treatment were initiated. One hundred and eighty-nine cases (20% of referrals) were seen but not treated. A further 102 treatment courses (14% of total) were initiated upon patients who had previously been irradiated. Forty-six per cent of patients were managed by 10 fractions or fewer, and a further 23% by 25 or more fractions. Eighty per cent of patients were managed by one or two fields. Electrons were used in only 14% of cases. Further calculations suggested a further possible 441 cases of referral could be expected, based upon current population statistics. Referral rates for radiation oncology are highly dependent on a number of factors. As a result, estimates of referrals and hence the size of a department required for a given population vary widely. In considering the development of units outside of major cities it is suggested that referrals are likely to be on the high side of estimates and a minimum two-machine unit is essential to cover the given workload. 5 refs., 6 tabs

  19. Clinical Training of Medical Physicists Specializing in Radiation Oncology

    International Nuclear Information System (INIS)

    2009-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for radiation therapy. There is a general and growing awareness that radiation medicine is increasingly dependant on well trained medical physicists that are based in the clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognised by the members of the Regional Cooperative Agreement (RCA) for research, development and training related to nuclear sciences for Asia and the Pacific. Consequently a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in radiation therapy was started in 2005 with the appointment of a core drafting committee of regional and international experts. Since 2005 the IAEA has convened two additional consultant group meetings including additional experts to prepare the present publication. The publication drew heavily, particularly in the initial stages, from the experience and documents of the Clinical Training Programme for Radiation Oncology Medical Physicists as developed by the Australasian College of Physical Scientists and Engineers in Medicine. Their

  20. Current status of the infrastructure and characteristics of radiation oncology in Korea

    International Nuclear Information System (INIS)

    Huh, Seung Jae

    2007-01-01

    An analysis of radiotherapy infrastructure in Korea was performed in 2006 to collect data on treatment devices, the work force and new patients for future development plans. The survey included radiotherapy centers, their major equipment and personnel. The centers were categorized into four levels: level 0 (stand-alone teletherapy units); level 1 (teletherapy, brachytherapy, treatment planning system, and at least the part-time service of a medical physicist); level 2 (level 1 plus individual customized radiotherapy block and full-time medical physicist); and level 3 [level 2 plus intensity-modulated radiation therapy (IMRT), intra-operative radiation therapy or stereotactic radiotherapy]. A total of 61 facilities delivered radiation therapy with 104 megavoltage devices, which included 96 linear accelerators, two cobalt 60 units, three Tomotherapy, two CyberKnife units and one proton accelerator. There were 28789 new radiotherapy patients in 2004. Personnel included 132 radiation oncologists, 50 radiation oncology residents, 64 physicists, 130 nurses and 369 radiation therapy technologists. Thirty-two percent (20 facilities) used a CT-simulator, 66% (40) used a positron emission tomography (PET) or PET-CT scanner, and 35% (22) had the capacity to implement IMRT. Centers were also divided into four levels: 41% were included in level 3, 31% in level 2, 25% in level 1 and 3% in level 0. There is a shortage of human resources. The distribution of megavoltage units per million inhabitants over the country was inadequate; geographic disparities were noted. Furthermore, the necessity of quality assurance for recent high-technology radiation therapy is increasing. (author)

  1. A newly introduced comprehensive consultation fee in the national health insurance system in Japan. A promotive effect of multidisciplinary medical care in the field of radiation oncology. Results from a questionnaire survey

    International Nuclear Information System (INIS)

    Igaki, Hiroshi; Nakagawa, Keiichi; Onishi, Hiroshi

    2013-01-01

    The consultation fee for outpatient radiotherapy was newly introduced in the national health insurance system in Japan in April 2012. We conducted a survey on the use of this consultation fee and its effect on clinical practices. The health insurance committee of the Japanese Society of Therapeutic Radiology and Oncology conducted a questionnaire survey. The questionnaire form was mailed to 160 councilors of the Society, the target questionees. A total of 94 answers (58% of the target questionees) sent back were used for analyses. The analyses revealed that 75% of the hospitals charged most of the patients who receive radiotherapy in an outpatient setting a consultation fee. The introduction of the consultation fee led to some changes in radiation oncology clinics, as evidenced by the response of 'more careful observations by medical staff' in 37% of questionees and a 12% increase in the number of full-time radiation oncology nurses. It was also shown that the vast majority (92%) of radiation oncologists expected a positive influence of the consultation fee on radiation oncology clinics in Japan. Our questionnaire survey revealed the present status of the use of a newly introduced consultation fee for outpatient radiotherapy, and the results suggested its possible effect on promoting a multidisciplinary medical care system in radiation oncology departments in Japan. (author)

  2. Evaluation of near-miss and adverse events in radiation oncology using a comprehensive causal factor taxonomy.

    Science.gov (United States)

    Spraker, Matthew B; Fain, Robert; Gopan, Olga; Zeng, Jing; Nyflot, Matthew; Jordan, Loucille; Kane, Gabrielle; Ford, Eric

    Incident learning systems (ILSs) are a popular strategy for improving safety in radiation oncology (RO) clinics, but few reports focus on the causes of errors in RO. The goal of this study was to test a causal factor taxonomy developed in 2012 by the American Association of Physicists in Medicine and adopted for use in the RO: Incident Learning System (RO-ILS). Three hundred event reports were randomly selected from an institutional ILS database and Safety in Radiation Oncology (SAFRON), an international ILS. The reports were split into 3 groups of 100 events each: low-risk institutional, high-risk institutional, and SAFRON. Three raters retrospectively analyzed each event for contributing factors using the American Association of Physicists in Medicine taxonomy. No events were described by a single causal factor (median, 7). The causal factor taxonomy was found to be applicable for all events, but 4 causal factors were not described in the taxonomy: linear accelerator failure (n = 3), hardware/equipment failure (n = 2), failure to follow through with a quality improvement intervention (n = 1), and workflow documentation was misleading (n = 1). The most common causal factor categories contributing to events were similar in all event types. The most common specific causal factor to contribute to events was a "slip causing physical error." Poor human factors engineering was the only causal factor found to contribute more frequently to high-risk institutional versus low-risk institutional events. The taxonomy in the study was found to be applicable for all events and may be useful in root cause analyses and future studies. Communication and human behaviors were the most common errors affecting all types of events. Poor human factors engineering was found to specifically contribute to high-risk more than low-risk institutional events, and may represent a strategy for reducing errors in all types of events. Copyright © 2017 American Society for Radiation Oncology

  3. Evidence for radiations of cheilanthoid ferns in the Greater Cape Floristic Region

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Rohwer, Jens G.; Russell, Stephen J.

    2011-01-01

    The Greater Cape Floristic Region (GCFR) of southern Africa is characterised by large, endemic radiations of flowering plants, the so-called ‘Cape Clades’, but it is unknown whether such radiations are also found in non-angiosperms. We hypothesise that GCFR-endemic lineages exist in the xeric...

  4. Facing the Guilt and Commemorating the Victims: German Radiology and Radiation Oncology During National Socialism.

    Science.gov (United States)

    Eckert, Franziska; Weindling, Paul; Ley, Astrid; Lang, Hans-Joachim; Lang, Sascha; Moser, Gabriele

    2018-04-01

    Whereas the scientific community is aware of atrocities committed by medical doctors like Mengele, the specifics of radiology and radiation oncology during National Socialism remain largely unknown. Starting in 2010, the German Radiology Association and the German Association of Radiation Oncology coordinated a national project looking into original archival material. A national committee convened in 2013 to discuss the project's findings, which were also the subject of a symposium at the University of Tuebingen in 2016 on radiology under National Socialism. The project identified approximately 160 radiologists who were victimized because of their Jewish descent, among them Gustav Bucky (known for the Bucky factor in x-ray diagnostics). Radiologists throughout Germany took part in forced sterilizations. The "Schutzstaffel," commonly known as SS, had a special radiology unit that was established for tuberculosis screening. Radiation was also used for sterilization experiments in the Auschwitz concentration camp with subsequent surgical procedures to enable histological analysis of the irradiated tissue. Reflection on medicine during the Holocaust will be strengthened by specific facts related to the respective medical field. Radiologists were involved in atrocious medical experiments as well as in supporting Nazi policies in Germany. These facts provoke ethical considerations about marginalized patient groups and doctor-patient communication. They also raise questions about "evidence-based" medicine as sole justification for medical procedures. In summary, historical studies will be able to help in the professional identity formation of radiologists gaining awareness to ethical issues of today. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Attracting Future Radiation Oncologists: An Analysis of the National Resident Matching Program Data Trends From 2004 to 2015.

    Science.gov (United States)

    Ahmed, Awad A; Holliday, Emma B; Deville, Curtiland; Jagsi, Reshma; Haffty, Bruce G; Wilson, Lynn D

    2015-12-01

    A significant physician shortage has been projected to occur by 2025, and demand for oncologists is expected to outpace supply to an even greater degree. In response to this, many have called to increase the number of radiation oncology residency positions. The purpose of this study is to evaluate National Resident Matching Program (NRMP) data for the number of residency positions between 2004 and 2015 as well as the number and caliber of applicants for those positions and to compare radiation oncology to all residency specialties. NRMP data for all specialties participating in the match, including radiation oncology, were assessed over time examining the number of programs participating in the match, the number of positions offered, and the ratio of applicants to positions in the match from 2004 to 2015. From 2004 to 2015, the number of total programs participating in the match has increased by 26.7%, compared to the increase of 28.6% in the number of radiation oncology programs from during the same time period. The total number of positions offered in the match increased by 53.4%, whereas radiation oncology positions increased by 56.3%, during the same time period. The ratio of applicants (defined as those selecting a specialty as their first or only choice) to positions for all specialties has fluctuated over this time period and has gone from 1.21 to 1.15, whereas radiation oncology experienced a decrease from 1.45 to 1.14. NRMP data suggest that senior medical student applications to radiation oncology are decreasing compared to those of other specialties. If we hope to continue to attract the best and brightest to enter our field, we must continue to support early exposure to radiation oncology, positive educational experiences, and dedicated mentorship to interested medical students. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Attracting Future Radiation Oncologists: An Analysis of the National Resident Matching Program Data Trends From 2004 to 2015

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Awad A., E-mail: Awad.ahmed@jhsmiami.org [Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Holliday, Emma B. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Deville, Curtiland [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Haffty, Bruce G. [Department of Radiation Oncology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey (United States); Wilson, Lynn D. [Department of Therapeutic Radiology, Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut (United States)

    2015-12-01

    Purpose: A significant physician shortage has been projected to occur by 2025, and demand for oncologists is expected to outpace supply to an even greater degree. In response to this, many have called to increase the number of radiation oncology residency positions. The purpose of this study is to evaluate National Resident Matching Program (NRMP) data for the number of residency positions between 2004 and 2015 as well as the number and caliber of applicants for those positions and to compare radiation oncology to all residency specialties. Methods: NRMP data for all specialties participating in the match, including radiation oncology, were assessed over time examining the number of programs participating in the match, the number of positions offered, and the ratio of applicants to positions in the match from 2004 to 2015. Results: From 2004 to 2015, the number of total programs participating in the match has increased by 26.7%, compared to the increase of 28.6% in the number of radiation oncology programs from during the same time period. The total number of positions offered in the match increased by 53.4%, whereas radiation oncology positions increased by 56.3%, during the same time period. The ratio of applicants (defined as those selecting a specialty as their first or only choice) to positions for all specialties has fluctuated over this time period and has gone from 1.21 to 1.15, whereas radiation oncology experienced a decrease from 1.45 to 1.14. Conclusions: NRMP data suggest that senior medical student applications to radiation oncology are decreasing compared to those of other specialties. If we hope to continue to attract the best and brightest to enter our field, we must continue to support early exposure to radiation oncology, positive educational experiences, and dedicated mentorship to interested medical students.

  7. Topics in clinical oncology. 15

    International Nuclear Information System (INIS)

    Cepcek, P.

    1987-12-01

    The monograph comprising primarily papers on topical subjects of oncology and cancer research, contains also a selection of papers presented at the 2. Congress of the Czechoslovak Society of Nuclear Medicine and Radiation Hygiene. Seven papers were selected on behalf of their subject related to clinical oncology. All of them were iputted in INIS; five of them deal with the scintiscanning of the skeleton of cancer patients, one with radioimmunodetection of tumors, and one with radionuclide lymphography. (A.K.)

  8. External review systems for radiation oncology facilities - clinical audit versus other review systems

    International Nuclear Information System (INIS)

    Bogusz-Czerniewicz, M.

    2009-01-01

    Background: Between 1996 and 1999 project team of ExPeRT, catalogued four external review systems of health care facilities in the European Union and countries associated with EU. Aim: The aim of this paper is a/ to identify and compare currently existing external review systems for radiation oncology facilities and b/ to distinguish main differences between clinical audit and other external evaluation models and c/ to identify where those models are currently used in European Union member states. Materials and Methods: Based on the literature review and the survey conducted between January and April 2007 among representatives of 67 national societies (for diagnostic radiology, radiotherapy and nuclear medicine) in European Union member states, the analysis of existing external review systems in radiation oncology was performed. Relevant information about purpose, scope and methodology of evaluation process for those systems were surveyed. Results: The response to the questionnaire was 72%. Only a few countries did not supply any reply in spite of repeated enquiries to several recipients. Six main categories of systems aiming at measuring the quality of service management and delivery were identified: professional peer review -based schemes, hospital accreditation, accreditation in terms of ISO standards, award seeking, certification by International Standards Organization, and clinical audit. Conclusions: Though the methodology and terminology of the five main external review systems differ, a constant movement towards collaboration and convergence of those models has been observed. Due to the social, political, and economical aspects of each European country, the different audit systems have been implemented either on voluntary or mandatory basis. (author)

  9. Current status and trend of the publication to the SCI and SCIE journals in the field of radiation oncology in Korea for 30 years

    International Nuclear Information System (INIS)

    Park, Won; Huh, Seung Jae

    2012-01-01

    We collected the data of Science Citation Index (SCI) and SCI Expended (SCIE) papers written by the members of the Korean Society of Radiation Oncology (KOSRO) to analyze the current status and the future trend. We searched the database of SCIE for the period from 1981 to 2011 at the Web of Knowledge site. Articles, reviews or proceedings written by KOSRO members as the fi rst or corresponding authors were included. Search terms were the following combination of subject headings: therapeutical, oncology, Korea. For National Cancer Center, combined search terms such as natural cancer, Korea and the names of faculties were applied. The total number of SCIE papers was 547. Numbers of the published papers in 1995, 2000, 2005, and 2010, were increased continuously, which was 2, 14, 40, and 83, respectively. The average impact factor was 2.9. The papers were published at the 134 different journals. The proportion of 'International Journal of Radiation Oncology Biology Physics' was 23.4% of all the papers. The number and proportions of papers by subject categories were 87 (15.9%) in biology, 73 (13.3%) in physics and 387 (70.6%) in clinics. The papers of the top five institutions, based on the number of published papers, occupied 66.3%. The number of SCIE papers is increasing rapidly in the field of radiation oncology in Korea. To improve the quality of papers, multi-institutional retrospective or prospective randomized studies should be done for the common cancers in Korea.

  10. Do Case Rates Affect Physicians' Clinical Practice in Radiation Oncology?: An Observational Study

    Science.gov (United States)

    Loy, Bryan A.; Shkedy, Clive I.; Powell, Adam C.; Happe, Laura E.; Royalty, Julie A.; Miao, Michael T.; Smith, Gary L.; Long, James W.; Gupta, Amit K.

    2016-01-01

    Case rate payments combined with utilization monitoring may have the potential to improve the quality of care by reducing over and under-treatment. Thus, a national managed care organization introduced case rate payments at one multi-site radiation oncology provider while maintaining only fee-for-service payments at others. This study examined whether the introduction of the payment method had an effect on radiation fractions administered when compared to clinical guidelines. The number of fractions of radiation therapy delivered to patients with bone metastases, breast, lung, prostate, and skin cancer was assessed for concordance with clinical guidelines. The proportion of guideline-based care ascertained from the payer's claims database was compared before (2011) and after (2013) the payment method introduction using relative risks (RR). After the introduction of case rates, there were no significant changes in guideline-based care in breast, lung, and skin cancer; however, patients with bone metastases and prostate cancer were significantly more likely to have received guideline-based care (RR = 2.0 and 1.1, respectively, ppayment model and assess implications in other populations. PMID:26870963

  11. Radiation oncology: what can we achieve by optimized dose delivery?

    International Nuclear Information System (INIS)

    Lawrence, T.

    2003-01-01

    Spectacular technical advances have marked the last twenty years in radiation oncology. This revolution began with CT-based planning which was followed by 3D conformal therapy. The latter approach produced two important capabilities. The most obvious was that tumors could be viewed in their true location with respect to normal tissues and treated with beams that were not in the axial plane. A second equally important advance was the development of 3D planning tools such as dose volume histograms. These tools permitted quantitative comparison of treatment plans and have supported the development of models relating normal tissue irradiation to the risk of complication. The '3D hypothesis' - that 3D treatment planning would permit higher doses of radiation to be safely delivered-has been proven. Dose escalation studies have been successfully conducted in the lung (= 100 Gy), liver (= 90 Gy), brain (= 90 Gy), and prostate (= 78 Gy). Prospective phase II and phase III trials suggest improved outcome using these higher doses for tumors in the liver and prostate compared to doses considered acceptable in the 2D era. The next technical revolution is underway, with advances in '4D' radiotherapy (accounting fully for organ motion) and in intensity-modulated radiation therapy (IMRT) to further improve the conformality and accuracy of treatment. Proton therapy will improve dose distributions still further. These improved dose distributions can be combined with more accurate tumor delineation provided by functional imaging to offer the potential for additional dose escalation without toxicity and for improved tumor control. These developments permit us to ask if we are approaching the limits of dose optimization and how (if?) research in radiation delivery should proceed

  12. The employment status of 1995 graduates from radiation oncology training programs in the United States

    International Nuclear Information System (INIS)

    Flynn, Daniel F.; Kresl, John J.; Sheldon, John M.

    1999-01-01

    Purpose: To quantify the employment status of 1995 graduates of radiation oncology training programs in the United States. Methods and Materials: All senior residents (149) and fellows (36) who completed training in 1995 were mailed an employment survey questionnaire by the Association of Residents in Radiation Oncology (ARRO). Telephone follow-up of nonrespondents achieved a 100% response rate. Twenty graduates who chose to continue training and five who returned to their home countries were removed from the study. Of the 160 who attempted to enter the U.S. workforce, 106 were men and 54 were women. Initial job status and job status at 6-8 months following graduation were determined. Results: Unemployment was 6.9% at graduation and 4.4% at 6-8 months. Underemployment (part-time employment) was 10.6% at graduation and 11.9% at 6-8 months postgraduation. Of those working part-time 6-8 months after graduation, 63% (12 of 19) did so involuntarily after unsuccessfully seeking full-time employment. For the 20 graduates who chose to continue training with fellowships, seven (35%) did so solely to avoid unemployment, four (20%) were partially influenced by the job market, and nine (45%) were not influenced by the job market. Adverse employment search outcome was defined as being either unemployed as a radiation oncologist or involuntarily working part-time. Excluding those who chose to work part-time, a total of 19 (11.9%) graduates at 6-8 months following graduation, compared to 22 (13.8%) at graduation, were either unemployed or involuntarily working part-time. In terms of gender, this represented 18.5% (10 of 54) of females and 8.6% (9 of 105) of males. In terms of geographic restrictions in the job search, 56% of males and 70% of females with an adverse employment outcome limited their job search to certain parts of the country. This compares to 62% of all graduates in this study with geographic restrictions in their job search. In terms of perceptions of the

  13. Distance learning in the Applied Sciences of Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Michael B., E-mail: Michael.Barton@swsahs.nsw.gov.a [CCORE and the South Western Clinical School, Liverpool Hospital, University of NSW (Australia); Thode, Richard J [CCORE and the South Western Clinical School, Liverpool Hospital, University of NSW (Australia)

    2010-04-15

    Background: The major impediment to the expansion of oncology services is a shortage of personnel. Purpose: To develop a distance learning course for radiation oncology trainees. Materials: Under the sponsorship of the Asia Pacific Regional Cooperative Agreement administered by the International Atomic Energy Agency (IAEA), a CD ROM-based Applied Sciences of Oncology (ASOC) distance learning course of 71 modules was created. The course covers communications, critical appraisal, functional anatomy, molecular biology, pathology. The materials include interactive text and illustrations that require students to answer questions before they can progress. The course aims to supplement existing oncology curricula and does not provide a qualification. It aims to assist students in acquiring their own profession's qualification. The course was piloted in seven countries in Asia, Africa and Latin America during 2004. After feedback from the pilot course, a further nine modules were added to cover imaging physics (three modules), informed consent, burnout and coping with death and dying, Economic analysis and cancer care, Nutrition, cachexia and fatigue, radiation-induced second cancers and mathematical tools and background for radiation oncology. The course was widely distributed and can be downloaded from (http://www.iaea.org/Publications/Training/Aso/register.html). ASOC has been downloaded over 1100 times in the first year after it was posted. There is a huge demand for educational materials but the interactive approach is labour-intensive and expensive to compile. The course must be maintained to remain relevant.

  14. Distance learning in the Applied Sciences of Oncology

    International Nuclear Information System (INIS)

    Barton, Michael B.; Thode, Richard J.

    2010-01-01

    Background: The major impediment to the expansion of oncology services is a shortage of personnel. Purpose: To develop a distance learning course for radiation oncology trainees. Materials: Under the sponsorship of the Asia Pacific Regional Cooperative Agreement administered by the International Atomic Energy Agency (IAEA), a CD ROM-based Applied Sciences of Oncology (ASOC) distance learning course of 71 modules was created. The course covers communications, critical appraisal, functional anatomy, molecular biology, pathology. The materials include interactive text and illustrations that require students to answer questions before they can progress. The course aims to supplement existing oncology curricula and does not provide a qualification. It aims to assist students in acquiring their own profession's qualification. The course was piloted in seven countries in Asia, Africa and Latin America during 2004. After feedback from the pilot course, a further nine modules were added to cover imaging physics (three modules), informed consent, burnout and coping with death and dying, Economic analysis and cancer care, Nutrition, cachexia and fatigue, radiation-induced second cancers and mathematical tools and background for radiation oncology. The course was widely distributed and can be downloaded from (http://www.iaea.org/Publications/Training/Aso/register.html). ASOC has been downloaded over 1100 times in the first year after it was posted. There is a huge demand for educational materials but the interactive approach is labour-intensive and expensive to compile. The course must be maintained to remain relevant.

  15. Image Guided Radiation Therapy (IGRT) Practice Patterns and IGRT's Impact on Workflow and Treatment Planning: Results From a National Survey of American Society for Radiation Oncology Members

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, Nima, E-mail: nabaviza@ohsu.edu [Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon (United States); Elliott, David A. [Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon (United States); Chen, Yiyi [Division of Biostatistics, Department of Public Health and Preventative Medicine, Oregon Health & Science University, Portland, Oregon (United States); Kusano, Aaron S. [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Mitin, Timur; Thomas, Charles R.; Holland, John M. [Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon (United States)

    2016-03-15

    Purpose: To survey image guided radiation therapy (IGRT) practice patterns, as well as IGRT's impact on clinical workflow and planning treatment volumes (PTVs). Methods and Materials: A sample of 5979 treatment site–specific surveys was e-mailed to the membership of the American Society for Radiation Oncology (ASTRO), with questions pertaining to IGRT modality/frequency, PTV expansions, method of image verification, and perceived utility/value of IGRT. On-line image verification was defined as images obtained and reviewed by the physician before treatment. Off-line image verification was defined as images obtained before treatment and then reviewed by the physician before the next treatment. Results: Of 601 evaluable responses, 95% reported IGRT capabilities other than portal imaging. The majority (92%) used volumetric imaging (cone-beam CT [CBCT] or megavoltage CT), with volumetric imaging being the most commonly used modality for all sites except breast. The majority of respondents obtained daily CBCTs for head and neck intensity modulated radiation therapy (IMRT), lung 3-dimensional conformal radiation therapy or IMRT, anus or pelvis IMRT, prostate IMRT, and prostatic fossa IMRT. For all sites, on-line image verification was most frequently performed during the first few fractions only. No association was seen between IGRT frequency or CBCT utilization and clinical treatment volume to PTV expansions. Of the 208 academic radiation oncologists who reported working with residents, only 41% reported trainee involvement in IGRT verification processes. Conclusion: Consensus guidelines, further evidence-based approaches for PTV margin selection, and greater resident involvement are needed for standardized use of IGRT practices.

  16. ASTRO's 2007 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Klein, Eric E.; Gerbi, Bruce J.; Price, Robert A.; Balter, James M.; Paliwal, Bhudatt; Hughes, Lesley; Huang, Eugene

    2007-01-01

    In 2004, American Society for Therapeutic Radiology and Oncology (ASTRO) published a curriculum for physics education. The document described a 54-hour course. In 2006, the committee reconvened to update the curriculum. The committee is composed of physicists and physicians from various residency program teaching institutions. Simultaneously, members have associations with American Association of Physicists in Medicine, ASTRO, Association of Residents in Radiation Oncology, American Board of Radiology, and American College of Radiology. Representatives from the latter two organizations are key to provide feedback between the examining organizations and ASTRO. Subjects are based on Accreditation Council for Graduate Medical Education requirements (particles and hyperthermia), whereas the majority of subjects and appropriated hours/subject were developed by consensus. The new curriculum is 55 hours, containing new subjects, redistribution of subjects with updates, and reorganization of core topics. For each subject, learning objectives are provided, and for each lecture hour, a detailed outline of material to be covered is provided. Some changes include a decrease in basic radiologic physics, addition of informatics as a subject, increase in intensity-modulated radiotherapy, and migration of some brachytherapy hours to radiopharmaceuticals. The new curriculum was approved by the ASTRO board in late 2006. It is hoped that physicists will adopt the curriculum for structuring their didactic teaching program, and simultaneously, American Board of Radiology, for its written examination. American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee added suggested references, a glossary, and a condensed version of lectures for a Postgraduate Year 2 resident physics orientation. To ensure continued commitment to a current and relevant curriculum, subject matter will be updated again in 2 years

  17. Diversity based on race, ethnicity, and sex, of the US radiation oncology physician workforce.

    Science.gov (United States)

    Chapman, Christina H; Hwang, Wei-Ting; Deville, Curtiland

    2013-03-15

    To assess the current diversity of the US radiation oncology (RO) physician workforce by race, ethnicity, and sex. Publicly available American Medical Association, American Association of Medical Colleges, and US census registries were used to assess differences by race, ethnicity, and sex for 2010 among RO practicing physicians, academic faculty, residents, and residency applicants. RO resident diversity was compared to medical school graduates and medical oncology (MO) fellows. Significant differences in diversity of RO residents by race, ethnicity, and sex were evaluated between 2003 and 2010 academic years. Females and traditionally underrepresented minorities in medicine (URM), blacks, Hispanics, American Indians, Alaska Natives, Native Hawaiian, and Pacific Islanders are underrepresented as RO residents (33.3% and 6.9%, respectively), faculty (23.8%, 8.1%), and practicing physicians (25.5%, 7.2%) levels compared with the US population (50.8%, 30.0%; Pworkforce. Given existing cancer disparities, further research and efforts are needed to ensure that the field is equipped to meet the needs of an increasingly diverse society. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Lessons Learnt from Past Incidents and Accidents in Radiation Oncology.

    Science.gov (United States)

    Knöös, T

    2017-09-01

    The purpose of this report is to review and compile what have been and can be learnt from incidents and accidents in radiation oncology, especially in external beam and brachytherapy. Some major accidents from the last 20 years will be discussed. The relationship between major events and minor or so-called near misses is mentioned, leading to the next topic of exploring the knowledge hidden among them. The main lessons learnt from the discussion here and elsewhere are that a well-functioning and safe radiotherapy department should help staff to work with awareness and alertness and that documentation and procedures should be in place and known by everyone. It also requires that trained and educated staff with the required competences are in place and, finally, functions and responsibilities are defined and well known. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    International Nuclear Information System (INIS)

    Moore, Kevin L.; Moiseenko, Vitali; Kagadis, George C.; McNutt, Todd R.; Mutic, Sasa

    2014-01-01

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy

  20. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States); Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); McNutt, Todd R. [Department of Radiation Oncology and Molecular Radiation Science, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Mutic, Sasa [Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri 63110 (United States)

    2014-01-15

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  1. Vision 20/20: Automation and advanced computing in clinical radiation oncology.

    Science.gov (United States)

    Moore, Kevin L; Kagadis, George C; McNutt, Todd R; Moiseenko, Vitali; Mutic, Sasa

    2014-01-01

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  2. Applicant Interview Experiences and Postinterview Communication of the 2016 Radiation Oncology Match Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Berriochoa, Camille; Ward, Matthew C.; Weller, Michael A. [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States); Holliday, Emma [Department of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas (United States); Kusano, Aaron [Department of Radiation Oncology, Anchorage and Valley Radiation Therapy Center, Anchorage, Alaska (United States); Thomas, Charles R. [Department of Radiation Oncology, Oregon Health & Science University, Portland, Oregon (United States); Tendulkar, Rahul D., E-mail: tendulr@ccf.org [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio (United States)

    2016-11-01

    Purpose: To characterize applicant interview experiences at radiation oncology residency programs during the 2016 match cycle and to assess applicant opinions regarding postinterview communication (PIC) after recent attention to gamesmanship noted in prior match cycles. Methods and Materials: An anonymous, institutional review board–approved, 29-question survey was deployed following the rank order list deadline to all 2016 radiation oncology residency applicants applying to a single institution. Results: Complete surveys were returned by 118 of 210 applicants, for a 56% response rate. Regarding possible match violation questions, 84% of respondents were asked at least once about where else they were interviewing (occurred at a median of 20% of program interviews); 51% were asked about marital status (6% of interviews); and 22% were asked about plans to have children (1% of interviews). Eighty-three percent of applicants wrote thank-you notes, with 55% reporting fear of being viewed unfavorably if such notes were not communicated. Sixty percent of applicants informed a program that they had ranked a program highly; 53% felt this PIC strategy would improve their standing on the rank order list, yet 46% reported feeling distressed by this obligation. A majority of applicants stated that they would feel relieved if programs explicitly discouraged PIC (89%) and that it would be preferable if programs prohibited applicants from notifying the program of their rank position (66%). Conclusions: Potential match violations occur at a high rate but are experienced at a minority of interviews. Postinterview communication occurs frequently, with applicants reporting resultant distress. Respondents stated that active discouragement of both thank-you notes/e-mails and applicants' notification to programs of their ranking would be preferred.

  3. Applicant Interview Experiences and Postinterview Communication of the 2016 Radiation Oncology Match Cycle

    International Nuclear Information System (INIS)

    Berriochoa, Camille; Ward, Matthew C.; Weller, Michael A.; Holliday, Emma; Kusano, Aaron; Thomas, Charles R.; Tendulkar, Rahul D.

    2016-01-01

    Purpose: To characterize applicant interview experiences at radiation oncology residency programs during the 2016 match cycle and to assess applicant opinions regarding postinterview communication (PIC) after recent attention to gamesmanship noted in prior match cycles. Methods and Materials: An anonymous, institutional review board–approved, 29-question survey was deployed following the rank order list deadline to all 2016 radiation oncology residency applicants applying to a single institution. Results: Complete surveys were returned by 118 of 210 applicants, for a 56% response rate. Regarding possible match violation questions, 84% of respondents were asked at least once about where else they were interviewing (occurred at a median of 20% of program interviews); 51% were asked about marital status (6% of interviews); and 22% were asked about plans to have children (1% of interviews). Eighty-three percent of applicants wrote thank-you notes, with 55% reporting fear of being viewed unfavorably if such notes were not communicated. Sixty percent of applicants informed a program that they had ranked a program highly; 53% felt this PIC strategy would improve their standing on the rank order list, yet 46% reported feeling distressed by this obligation. A majority of applicants stated that they would feel relieved if programs explicitly discouraged PIC (89%) and that it would be preferable if programs prohibited applicants from notifying the program of their rank position (66%). Conclusions: Potential match violations occur at a high rate but are experienced at a minority of interviews. Postinterview communication occurs frequently, with applicants reporting resultant distress. Respondents stated that active discouragement of both thank-you notes/e-mails and applicants' notification to programs of their ranking would be preferred.

  4. Pretreatment quality of life predicts for locoregional control in head and neck cancer patients : A radiation therapy oncology group analysis

    NARCIS (Netherlands)

    Siddiqui, Farzan; Pajak, Thomas F.; Watkins-Bruner, Deborah; Konski, Andre A.; Coyne, James C.; Gwede, Clement K.; Garden, Adam S.; Spencer, Sharon A.; Jones, Christopher; Movsas, Benjamin

    2008-01-01

    Purpose: To analyze the prospectively collected health-related quality-of-life (HRQOL) data from patients enrolled in two Radiation Therapy Oncology Group randomized Phase III head and neck cancer trials (90-03 and 91-11) to assess their value as an independent prognostic factor for locoregional

  5. Anesthesia Practice in Pediatric Radiation Oncology: Mayo Clinic Arizona's Experience 2014-2016.

    Science.gov (United States)

    Khurmi, Narjeet; Patel, Perene; Koushik, Sarang; Daniels, Thomas; Kraus, Molly

    2018-02-01

    Understanding the goals of targeted radiation therapy in pediatrics is critical to developing high quality and safe anesthetic plans in this patient population. An ideal anesthetic plan includes allaying anxiety and achieving optimal immobilization, while ensuring rapid and efficient recovery. We conducted a retrospective chart review of children receiving anesthesia for radiation oncology procedures from 1/1/2014 to 7/31/2016. No anesthetics were excluded from the analysis. The electronic anesthesia records were analyzed for perianesthetic complications along with efficiency data. To compare our results to past and current data, we identified relevant medical literature covering a period from 1984-2017. A total of 997 anesthetic procedures were delivered in 58 unique patients. The vast majority of anesthetics were single-agent anesthesia with propofol. The average duration of radiation treatment was 13.24 min. The average duration of anesthesia was 37.81 min, and the average duration to meet discharge criteria in the recovery room was 29.50 min. There were seven instances of perianesthetic complications (0.7%) and no complications noted for the 80 CT simulations. Two of the seven complications occurred in patients receiving total body irradiation. The 5-year survival rate for pediatric cancers has improved greatly in part due to more effective and targeted radiation therapy. Providing an anesthetic with minimal complications is critical for successful daily radiation treatment. The results of our data analysis corroborate other contemporary studies showing minimal risk to patients undergoing radiation therapy under general anesthesia with propofol. Our data reveal that single-agent anesthesia with propofol administered by a dedicated anesthesia team is safe and efficient and should be considered for patients requiring multiple radiation treatments under anesthesia.

  6. Implanted Cardiac Defibrillator Care in Radiation Oncology Patient Population

    International Nuclear Information System (INIS)

    Gelblum, Daphna Y.; Amols, Howard

    2009-01-01

    Purpose: To review the experience of a large cancer center with radiotherapy (RT) patients bearing implantable cardiac defibrillators (ICDs) to propose some preliminary care guidelines as we learn more about the devices and their interaction with the therapeutic radiation environment. Methods and Materials: We collected data on patients with implanted ICDs treated with RT during a 2.5-year period at any of the five Memorial Sloan-Kettering clinical campuses. Information regarding the model, location, and dose detected from the device, as well as the treatment fields, fraction size, and treatment energy was collected. During this time, a new management policy for these patients had been implemented requiring treatment with low-energy beams (6 MV) and close surveillance of the patients in partnership with their electrophysiologist, as they received RT. Results: During the study period, 33 patients were treated with an ICD in place. One patient experienced a default of the device to its initial factory setting that was detected by the patient hearing an auditory signal from the device. This patient had initially been treated with a 15-MV beam. After this episode, his treatment was replanned to be completed with 6-MV photons, and he experienced no further events. Conclusion: Patients with ICDs and other implanted computer-controlled devices will be encountered more frequently in the RT department, and proper management is important. We present a policy for the safe treatment of these patients in the radiation oncology environment.

  7. Modern Radiation Therapy for Nodal Non-Hodgkin Lymphoma—Target Definition and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    DEFF Research Database (Denmark)

    Illidge, Tim; Specht, Lena; Yahalom, Joachim

    2014-01-01

    Radiation therapy (RT) is the most effective single modality for local control of non-Hodgkin lymphoma (NHL) and is an important component of therapy for many patients. Many of the historic concepts of dose and volume have recently been challenged by the advent of modern imaging and RT planning...... tools. The International Lymphoma Radiation Oncology Group (ILROG) has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the ILROG steering committee on the use of RT in NHL in the modern era. The roles...... of reduced volume and reduced doses are addressed, integrating modern imaging with 3-dimensional planning and advanced techniques of RT delivery. In the modern era, in which combined-modality treatment with systemic therapy is appropriate, the previously applied extended-field and involved-field RT...

  8. Oncological emergencies for the internist

    Directory of Open Access Journals (Sweden)

    Umesh Das

    2015-01-01

    Full Text Available An oncologic emergency is defined as any acute, potentially life-threatening event, either directly or indirectly related to a patient′s cancer (ca or its treatment. It requires rapid intervention to avoid death or severe permanent damage. Most oncologic emergencies can be classified as metabolic, hematologic, structural, or side effects from chemotherapy agents. Tumor lysis syndrome is a metabolic emergency that presents as severe electrolyte abnormalities. The condition is treated with aggressive hydration, allopurinol or urate oxidase to lower uric acid levels. Hypercalcemia of malignancy is treated with aggressive rehydration, furosemide, and intravenous (IV bisphosphonates. Syndrome of inappropriate antidiuretic hormone should be suspected if a patient with ca presents with normovolemic hyponatremia. This metabolic condition usually is treated with fluid restriction and furosemide. Febrile neutropenia is a hematologic emergency that usually requires inpatient therapy with broad-spectrum antibiotics, although outpatient therapy may be appropriate for low-risk patients. Hyperviscosity syndrome usually is associated with Waldenstrφm′s macroglobulinemia, which is treated with plasmapheresis and chemotherapy. Structural oncologic emergencies are caused by direct compression of surrounding structures or by metastatic disease. Superior vena cava syndrome is the most common structural oncological emergency. Treatment options include chemotherapy, radiation, and IV stenting. Epidural spinal cord compression can be treated with dexamethasone, radiation, or surgery. Malignant pericardial effusion, which often is undiagnosed in ca patients, can be treated with pericardiocentesis or a pericardial window procedure.

  9. Database supported electronic retrospective analyses in radiation oncology. Establishing a workflow using the example of pancreatic cancer

    International Nuclear Information System (INIS)

    Kessel, K.A.; Habermehl, D.; Bougatf, N.; Debus, J.; Combs, S.E.; Jaeger, A.; Floca, R.O.; Zhang, L.; Bendl, R.

    2012-01-01

    Purpose: Especially in the field of radiation oncology, handling a large variety of voluminous datasets from various information systems in different documentation styles efficiently is crucial for patient care and research. To date, conducting retrospective clinical analyses is rather difficult and time consuming. With the example of patients with pancreatic cancer treated with radio-chemotherapy, we performed a therapy evaluation by using an analysis system connected with a documentation system. Materials and methods: A total number of 783 patients have been documented into a professional, database-based documentation system. Information about radiation therapy, diagnostic images and dose distributions have been imported into the web-based system. Results: For 36 patients with disease progression after neoadjuvant chemoradiation, we designed and established an analysis workflow. After an automatic registration of the radiation plans with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence. All results are saved in the database and included in statistical calculations. Conclusion: The main goal of using an automatic analysis tool is to reduce time and effort conducting clinical analyses, especially with large patient groups. We showed a first approach and use of some existing tools, however manual interaction is still necessary. Further steps need to be taken to enhance automation. Already, it has become apparent that the benefits of digital data management and analysis lie in the central storage of data and reusability of the results. Therefore, we intend to adapt the analysis system to other types of tumors in radiation oncology. (orig.)

  10. Personalized Radiation Oncology: Epidermal Growth Factor Receptor and Other Receptor Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Higgins, Geoff S; Krause, Mechthild; McKenna, W Gillies; Baumann, Michael

    Molecular biomarkers are currently evaluated in preclinical and clinical studies in order to establish predictors for treatment decisions in radiation oncology. The receptor tyrosine kinases (RTK) are described in the following text. Among them, the most data are available for the epidermal growth factor receptor (EGFR) that plays a major role for prognosis of patients after radiotherapy, but seems also to be involved in mechanisms of radioresistance, specifically in repopulation of tumour cells between radiotherapy fractions. Monoclonal antibodies against the EGFR improve locoregional tumour control and survival when applied during radiotherapy, however, the effects are heterogeneous and biomarkers for patient selection are warranted. Also other RTK´s such as c-Met and IGF-1R seem to play important roles in tumour radioresistance. Beside the potential to select patients for molecular targeting approaches combined with radiotherapy, studies are also needed to evluate radiotherapy adaptation approaches for selected patients, i.e. adaptation of radiation dose, or, more sophisticated, of target volumes.

  11. Time management in radiation oncology. Development and evaluation of a modular system based on the example of rectal cancer treatment. The DEGRO-QUIRO trial

    Energy Technology Data Exchange (ETDEWEB)

    Fietkau, R. [Erlangen Univ. Hospital, Erlangen (Germany). Dept. of Radiation Oncology; Budach, W. [Univ. of Duesseldorf (Germany). Dept. of Radiation Oncology; Zamboglou, N. [Klinikum Offenbach GmbH, Offenbach (Germany). Dept. of Radiotherapy; Thiel, H.J. [Sozialstiftung Bamberg (Germany). Dept. of Radiation Oncology; Sack, H. [German Association for Radiooncology, Berlin (Germany); Popp, W. [Prime Networks AG, Basel (Switzerland)

    2012-01-15

    The goal was to develop and evaluate a modular system for measurement of the work times required by the various professional groups involved in radiation oncology before, during, and after serial radiation treatment (long-term irradiation with 25-28 fractions of 1.8 Gy) based on the example of rectal cancer treatment. Materials and methods A panel of experts divided the work associated with providing radiation oncology treatment into modules (from the preparation of radiotherapy, RT planning and administration to the final examination and follow-up). The time required for completion of each module was measured by independent observers at four centers (Rostock, Bamberg, Duesseldorf, and Offenbach, Germany). Results A total of 1,769 data sets were collected from 63 patients with 10-489 data sets per module. Some modules (informed consent procedure, routine treatments, CT planning) exhibited little deviation between centers, whereas others (especially medical and physical irradiation planning) exhibited a wide range of variation (e.g., 1 h 49 min to 6 h 56 min for physical irradiation planning). The mean work time per patient was 12 h 11 min for technicians, 2 h 59 min for physicists, and 7 h 6 min for physicians. Conclusion The modular system of time measurement proved to be reliable and produced comparable data at the different centers. Therefore, the German Society of Radiation Oncology (DEGRO) decided that it can be extended to other types of cancer (head and neck, prostate, and breast cancer) with appropriate modifications. (orig.)

  12. MO-DE-304-01: The Abt Study of Medical Physicist Work Values for Radiation Oncology Physics Services: Round IV

    International Nuclear Information System (INIS)

    Mills, M.

    2015-01-01

    The Abt study of medical physicist work values for radiation oncology physics services, Round IV is completed. It supersedes the Abt III study of 2008. The 2015 Abt study measured qualified medical physicist (QMP) work associated with routine radiation oncology procedures as well as some special procedures. As before, a work model was created to allow the medical physicist to defend QMP work based on both routine and special procedures service mix. The work model can be used to develop a cost justification report for setting charges for radiation oncology physics services. The Abt study Round IV was designed to empower the medical physicist to negotiate a service or employment contract with providers based on measured national QMP workforce and staffing data. For a variety of reasons, the diagnostic imaging contingent of AAPM has had a more difficult time trying estimate workforce requirements than their therapy counterparts. Over the past several years, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) has collected survey data from AAPM members, but the data have been very difficult to interpret. The DWWSS has reached out to include more AAPM volunteers to create a more full and accurate representation of actual clinical practice models on the subcommittee. Though much work remains, through hours of discussion and brainstorming, the DWWSS has somewhat of a clear path forward. This talk will provide attendees with an update on the efforts of the subcommittee. Learning Objectives: Understand the new information documented in the Abt studies. Understand how to use the Abt studies to justify medical physicist staffing. Learn relevant historical information on imaging physicist workforce. Understand the process of the DWWSS in 2014. Understand the intended path forward for the DWWSS

  13. MO-DE-304-01: The Abt Study of Medical Physicist Work Values for Radiation Oncology Physics Services: Round IV

    Energy Technology Data Exchange (ETDEWEB)

    Mills, M. [James Graham Brown Cancer Center (United States)

    2015-06-15

    The Abt study of medical physicist work values for radiation oncology physics services, Round IV is completed. It supersedes the Abt III study of 2008. The 2015 Abt study measured qualified medical physicist (QMP) work associated with routine radiation oncology procedures as well as some special procedures. As before, a work model was created to allow the medical physicist to defend QMP work based on both routine and special procedures service mix. The work model can be used to develop a cost justification report for setting charges for radiation oncology physics services. The Abt study Round IV was designed to empower the medical physicist to negotiate a service or employment contract with providers based on measured national QMP workforce and staffing data. For a variety of reasons, the diagnostic imaging contingent of AAPM has had a more difficult time trying estimate workforce requirements than their therapy counterparts. Over the past several years, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) has collected survey data from AAPM members, but the data have been very difficult to interpret. The DWWSS has reached out to include more AAPM volunteers to create a more full and accurate representation of actual clinical practice models on the subcommittee. Though much work remains, through hours of discussion and brainstorming, the DWWSS has somewhat of a clear path forward. This talk will provide attendees with an update on the efforts of the subcommittee. Learning Objectives: Understand the new information documented in the Abt studies. Understand how to use the Abt studies to justify medical physicist staffing. Learn relevant historical information on imaging physicist workforce. Understand the process of the DWWSS in 2014. Understand the intended path forward for the DWWSS.

  14. Radiotherapy procedures quality control program: Guidelines established by the Spanish Society of Radiotherapy and Oncology

    International Nuclear Information System (INIS)

    Palacios, A.; Pardo, J.; Valls, A.; Petschen, I.; Castell, A.; Villar, A.; Pedro Olive, B.A.; Munoz, V.; Fernandez, J.; Rodriguez, R.; Oton, C.

    2001-01-01

    The main purpose of the Royal Decree 1566/1998 of July 17 th , is to establish the quality criteria in radiation therapy in order to assure the optimisation of both radiation oncology treatments and radiation protection of the patients. According to this decree, the implementation of a quality control program in the radiation oncology departments is imperative. This program must be in writing and always available for supervision of health authorities. When necessary, modifications to improve non-optimal procedures or equipment will be made. The Spanish Society of Radiotherapy and Oncology, in order to co-operate and facilitate to all its members, set up a task force focussing on elaborating a set of guidelines that every single Radiation Oncology Department could use to develop its own quality control program. No agreements regarding equipment quality control were made by the Commission, in spite they are a part of the quality control program in radiotherapy, because it is considered that they correspond to members of other scientific societies. (author)

  15. Approval procedures for clinical trials in the field of radiation oncology; Genehmigungsverfahren klinischer Studien im Bereich der Radioonkologie

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Monique; Buettner, Daniel [Deutsches Konsortium fuer Translationale Krebsforschung (DKTK), Dresden (Germany); Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Medizinische Fakultaet und Universitaetsklinikum Carl Gustav Carus, Technische Universitaet Dresden, Klinik fuer Strahlentherapie und Radioonkologie und OncoRay - Nationales Zentrum fuer Strahlenforschung in der Onkologie, Dresden (Germany); Habeck, Matthias; Habeck, Uta; Brix, Gunnar [Bundesamt fuer Strahlenschutz (BfS), Fachbereich Strahlenschutz und Gesundheit, Neuherberg (Germany); Krause, Mechthild; Baumann, Michael [Deutsches Konsortium fuer Translationale Krebsforschung (DKTK), Dresden (Germany); Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Medizinische Fakultaet und Universitaetsklinikum Carl Gustav Carus, Technische Universitaet Dresden, Klinik fuer Strahlentherapie und Radioonkologie und OncoRay - Nationales Zentrum fuer Strahlenforschung in der Onkologie, Dresden (Germany); Helmholtz-Zentrum Dresden - Rossendorf, Institut fuer Radioonkologie und OncoRay - Nationales Zentrum fuer Strahlenforschung in der Onkologie, Dresden (Germany); Willich, Normann [Universitaetsklinikum Muenster, Klinik fuer Strahlentherapie - Radioonkologie, Muenster (Germany); Wenz, Frederik [Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim, Universitaet Heidelberg, Klinik fuer Strahlentherapie und Radioonkologie, Mannheim (Germany); Schmidberger, Heinz [Universitaetsmedizin Mainz, Klinik fuer Radioonkologie und Strahlentherapie, Mainz (Germany); Debus, Juergen [Universitaetsklinikum Heidelberg, Klinik fuer Radioonkologie und Strahlentherapie, Heidelberg (Germany); Noelling, Torsten

    2015-12-15

    Application of ionizing radiation for the purpose of medical research in Germany needs to be approved by the national authority for radiation protection (Bundesamt fuer Strahlenschutz, BfS). For studies in the field of radiation oncology, differentiation between use of radiation for ''medical care (Heilkunde)'' versus ''medical research'' frequently leads to contradictions. The aim of this article is to provide principle investigators, individuals, and institutions involved in the process, as well as institutional review or ethics committees, with the necessary information for this assessment. Information on the legal frame and the approval procedures are also provided. A workshop was co-organized by the German Society for Radiation Oncology (DEGRO), the Working Party for Radiation Oncology (ARO) of the German Cancer Society (DKG), the German Society for Medical Physics (DGMP), and the German Cancer Consortium (DKTK) in October 2013. This paper summarizes the results of the workshop and the follow-up discussions between the organizers and the BfS. Differentiating between ''Heilkunde'' which does not need to be approved by the BfS and ''medical research'' is whether the specific application of radiation (beam quality, dose, schedule, target volume, etc.) is a clinically established and recognized procedure. This must be answered by the qualified physician(s) (''fachkundiger Arzt'' according to German radiation protection law) in charge of the study and the treatments of the patients within the study, taking into consideration of the best available evidence from clinical studies, guidelines and consensus papers. Among the important parameters for assessment are indication, total dose, and fractionation. Radiation treatments applied outside clinical trials do not require approval by the BfS, even if they are applied within a randomized or nonrandomized clinical trial

  16. Academic Career Selection and Retention in Radiation Oncology: The Joint Center for Radiation Therapy Experience

    International Nuclear Information System (INIS)

    Balboni, Tracy A.; Chen, M.-H.; Harris, Jay R.; Recht, Abram; Stevenson, Mary Ann; D'Amico, Anthony V.

    2007-01-01

    Purpose: The United States healthcare system has witnessed declining reimbursement and increasing documentation requirements for longer than 10 years. These have decreased the time available to academic faculty for teaching and mentorship. The impact of these changes on the career choices of residents is unknown. The purpose of this report was to determine whether changes have occurred during the past decade in the proportion of radiation oncology trainees from a single institution entering and staying in academic medicine. Methods and Materials: We performed a review of the resident employment experience of Harvard Joint Center for Radiation Therapy residents graduating during 13 recent consecutive years (n = 48 residents). The outcomes analyzed were the initial selection of an academic vs. nonacademic career and career changes during the first 3 years after graduation. Results: Of the 48 residents, 65% pursued an academic career immediately after graduation, and 44% remained in academics at the last follow-up, after a median of 6 years. A later graduation year was associated with a decrease in the proportion of graduates immediately entering academic medicine (odds ratio, 0.78; 95% confidence interval, 0.65-0.94). However, the retention rate at 3 years of those who did immediately enter academics increased with a later graduation year (p = 0.03). Conclusion: During a period marked by notable changes in the academic healthcare environment, the proportion of graduating Harvard Joint Center for Radiation Therapy residents pursuing academic careers has been declining; however, despite this decline, the retention rates in academia have increased

  17. Results of the 2012-2013 Association of Residents in Radiation Oncology (ARRO) Job Search and Career Planning Survey of Graduating Residents in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Malcolm D., E-mail: mdm9007@nyp.org [Department of Radiation Oncology, New York Methodist Hospital, Brooklyn, New York (United States); Kharofa, Jordan [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Zeidan, Youssef H. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Tung, Kaity [Department of Radiation Oncology, New York Methodist Hospital, Brooklyn, New York (United States); Gondi, Vinai [Department of Radiation Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, Wisconsin (United States); Department of Radiation Oncology, Central Dupage Hospital Cancer Center, Warrenville, Illinois (United States); Golden, Daniel W. [Department of Radiation Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois (United States)

    2014-01-01

    Purpose/Objective(s): To determine the timeline used by postgraduate year (PGY)-5 radiation oncology residents during the job application process and the factors most important to them when deciding on a first job. Methods and Materials: In 2012 and 2013, the Association of Residents in Radiation Oncology conducted a nationwide electronic survey of PGY-5 radiation oncology residents in the United States during the final 2 months of their training. Descriptive statistics are reported. In addition, subgroup analysis was performed. Results: Surveys were completed by 180 of 314 residents contacted. The median time to start networking for the purpose of employment was January PGY-4; to start contacting practices, complete and upload a curriculum vitae to a job search website, and use the American Society of Radiation Oncology Career Center was June PGY-4; to obtain letters of recommendation was July PGY-5; to start interviewing was August PGY-5; to finish interviewing was December PGY-5; and to accept a contract was January PGY-5. Those applying for a community position began interviewing at an earlier average time than did those applying for an academic position (P=.04). The most important factors to residents when they evaluated job offers included (in order from most to least important) a collegial environment, geographic location, emphasis on best patient care, quality of support staff and facility, and multidisciplinary approach to patient care. Factors that were rated significantly different between subgroups based on the type of position applied for included adequate mentoring, dedicated research time, access to clinical trials, amount of time it takes to become a partner, geographic location, size of group, starting salary, and amount of vacation and days off. Conclusions: The residents' perspective on the job application process over 2 years is documented to provide a resource for current and future residents and employers to use.

  18. Results of the 2012-2013 Association of Residents in Radiation Oncology (ARRO) job search and career planning survey of graduating residents in the United States.

    Science.gov (United States)

    Mattes, Malcolm D; Kharofa, Jordan; Zeidan, Youssef H; Tung, Kaity; Gondi, Vinai; Golden, Daniel W

    2014-01-01

    To determine the timeline used by postgraduate year (PGY)-5 radiation oncology residents during the job application process and the factors most important to them when deciding on a first job. In 2012 and 2013, the Association of Residents in Radiation Oncology conducted a nationwide electronic survey of PGY-5 radiation oncology residents in the United States during the final 2 months of their training. Descriptive statistics are reported. In addition, subgroup analysis was performed. Surveys were completed by 180 of 314 residents contacted. The median time to start networking for the purpose of employment was January PGY-4; to start contacting practices, complete and upload a curriculum vitae to a job search website, and use the American Society of Radiation Oncology Career Center was June PGY-4; to obtain letters of recommendation was July PGY-5; to start interviewing was August PGY-5; to finish interviewing was December PGY-5; and to accept a contract was January PGY-5. Those applying for a community position began interviewing at an earlier average time than did those applying for an academic position (P=.04). The most important factors to residents when they evaluated job offers included (in order from most to least important) a collegial environment, geographic location, emphasis on best patient care, quality of support staff and facility, and multidisciplinary approach to patient care. Factors that were rated significantly different between subgroups based on the type of position applied for included adequate mentoring, dedicated research time, access to clinical trials, amount of time it takes to become a partner, geographic location, size of group, starting salary, and amount of vacation and days off. The residents' perspective on the job application process over 2 years is documented to provide a resource for current and future residents and employers to use. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Results of the 2012-2013 Association of Residents in Radiation Oncology (ARRO) Job Search and Career Planning Survey of Graduating Residents in the United States

    International Nuclear Information System (INIS)

    Mattes, Malcolm D.; Kharofa, Jordan; Zeidan, Youssef H.; Tung, Kaity; Gondi, Vinai; Golden, Daniel W.

    2014-01-01

    Purpose/Objective(s): To determine the timeline used by postgraduate year (PGY)-5 radiation oncology residents during the job application process and the factors most important to them when deciding on a first job. Methods and Materials: In 2012 and 2013, the Association of Residents in Radiation Oncology conducted a nationwide electronic survey of PGY-5 radiation oncology residents in the United States during the final 2 months of their training. Descriptive statistics are reported. In addition, subgroup analysis was performed. Results: Surveys were completed by 180 of 314 residents contacted. The median time to start networking for the purpose of employment was January PGY-4; to start contacting practices, complete and upload a curriculum vitae to a job search website, and use the American Society of Radiation Oncology Career Center was June PGY-4; to obtain letters of recommendation was July PGY-5; to start interviewing was August PGY-5; to finish interviewing was December PGY-5; and to accept a contract was January PGY-5. Those applying for a community position began interviewing at an earlier average time than did those applying for an academic position (P=.04). The most important factors to residents when they evaluated job offers included (in order from most to least important) a collegial environment, geographic location, emphasis on best patient care, quality of support staff and facility, and multidisciplinary approach to patient care. Factors that were rated significantly different between subgroups based on the type of position applied for included adequate mentoring, dedicated research time, access to clinical trials, amount of time it takes to become a partner, geographic location, size of group, starting salary, and amount of vacation and days off. Conclusions: The residents' perspective on the job application process over 2 years is documented to provide a resource for current and future residents and employers to use

  20. Construction of the radiation oncology teaching files system for charged particle radiotherapy.

    Science.gov (United States)

    Masami, Mukai; Yutaka, Ando; Yasuo, Okuda; Naoto, Takahashi; Yoshihisa, Yoda; Hiroshi, Tsuji; Tadashi, Kamada

    2013-01-01

    Our hospital started the charged particle therapy since 1996. New institutions for charged particle therapy are planned in the world. Our hospital are accepting many visitors from those newly planned medical institutions and having many opportunities to provide with the training to them. Based upon our experiences, we have developed the radiation oncology teaching files system for charged particle therapy. We adopted the PowerPoint of Microsoft as a basic framework of our teaching files system. By using our export function of the viewer any physician can create teaching files easily and effectively. Now our teaching file system has 33 cases for clinical and physics contents. We expect that we can improve the safety and accuracy of charged particle therapy by using our teaching files system substantially.

  1. Picture archiving and communications systems in radiation oncology (PACSRO): tools for a physician-based digital image review system

    International Nuclear Information System (INIS)

    McGee, K.P.; Das, I.J.; Fein, D.A.; Martin, E.E.; Schultheiss, T.E.; Hanks, G.E.

    1995-01-01

    Digital imaging is becoming more and more important in the diagnosis, staging, and treatment of patients in radiation oncology. In order to facilitate the most efficient interface of this technology to physicians and other users of this information, a medical image display system (MID) has been developed at the Fox Chase Cancer Center (FCCC). The system runs on 20 personal computers situated in physicians offices as well as a modified system located in the radiation oncology conference room. Access to CT, MRI, and EPID information is achieved through an Ethernet connection to the hospital picture archiving and communications system (PACS). Over a 1-year period a total of 503 patients and 3845 images have been stored on the system. Physician approval using the MID system (without conventional films) was performed on 106 patients. Of these, 22%, 16%, 11%, 10%, and 9% consisted of breast, prostate, pelvic, lung, and head and neck patients, respectively. Digital images sent from a variety of image sources to the MID system take up to 15 s to process and format while image access and display can take 2-5 s, dependent upon image size and speed of the host computer

  2. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (Spanish Edition); Programa de estudios y capacitacion del OIEA para la formacion de radiooncologos. Aprobado por la Sociedad Americana de Radioterapia y Oncologia (ASTRO) y la Sociedad Europea de Radioterapia y Oncologia (ESTRO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-15

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  3. A survey of techniques to reduce and manage external beam radiation-induced xerostomia in British oncology and radiotherapy departments

    International Nuclear Information System (INIS)

    Macknelly, Andrew; Day, Jane

    2009-01-01

    ? - A feasibility study for locally advanced head and neck cancer patients treated with intensity-modulated radiotherapy. Clinical Oncology 2006;18(6):497-504, Braam P, Terhaard C, Roesnink J, Cornelis P, Raaijmakers C. Intensity-modulated radiotherapy significantly reduces xerostomia compared with conventional radiotherapy. International Journal of Radiation Oncology, Biology and Physics 2006, Wendt TG, Abbasi-Senger N, Salz H, Pinquart I, Koscelny S, Przetak S, et al. 3D-conformal-intensity modulated radiotherapy with compensators for head and neck cancer: clinical results of normal tissue sparing. Radiation Oncology 2006;1:18. Available from: (http://www.ro-journal.com/content/1/1/18) [accessed on 21.11.06].]. This, in turn, offers increased normal tissue sparing than conventional radiotherapy [Ng M, Porceddu S, Milner A, Corry J, Hornby C, Hope G, et al. Parotid-sparing radiotherapy: does it really reduce xerostomia? Clinical Oncology 2005;17(8):610-7.]. The survey indicated that all three techniques, however, are still in use in oncology and radiotherapy departments, and several departments stated that financial considerations were hindering their move toward providing IMRT.

  4. The role of radiation therapy in pediatric oncology as assessed by cooperative clinical trials

    International Nuclear Information System (INIS)

    D'Angio, G.J.

    1985-01-01

    Major advances have been made in pediatric oncology, and many are due to the advent of the cooperative clinical trial. This important research tool was originally developed for the testing of various therapeutic strategies for the management of children with acute leukemia. Such trials were eminently successful, as the consistently better long-term survival rates for children with this hitherto uniformly lethal disease can attest. The method soon found favor for the investigation of patients with so-called solid tumors. These trails were originally concerned with the elucidation of the value of various chemotherapeutic agents. Radiation therapists soon became involved, however, and this discipline became more heavily represented in study design and data analyses. Much radiation therapy information has been gained, some through prospective, randomized clinical investigations and some through retrospective reviews of roentgen therapy as it was employed in protocols accenting other aspects of care. Voluminous, important radiation therapy data have been deduced through the latter retrospective kinds of analyses, but this review will be confined largely to the published results of prospective, randomized cooperative clinical trials where radiation therapy was a governing variable. Certain investigations of historical interest will also be cited together with other results that established important principles even though not so rigorous in design

  5. Time management in radiation oncology: development and evaluation of a modular system based on the example of rectal cancer treatment. The DEGRO-QUIRO trial.

    Science.gov (United States)

    Fietkau, R; Budach, W; Zamboglou, N; Thiel, H-J; Sack, H; Popp, W

    2012-01-01

    The goal was to develop and evaluate a modular system for measurement of the work times required by the various professional groups involved in radiation oncology before, during, and after serial radiation treatment (long-term irradiation with 25-28 fractions of 1.8 Gy) based on the example of rectal cancer treatment. A panel of experts divided the work associated with providing radiation oncology treatment into modules (from the preparation of radiotherapy, RT planning and administration to the final examination and follow-up). The time required for completion of each module was measured by independent observers at four centers (Rostock, Bamberg, Düsseldorf, and Offenbach, Germany). A total of 1,769 data sets were collected from 63 patients with 10-489 data sets per module. Some modules (informed consent procedure, routine treatments, CT planning) exhibited little deviation between centers, whereas others (especially medical and physical irradiation planning) exhibited a wide range of variation (e.g., 1 h 49 min to 6 h 56 min for physical irradiation planning). The mean work time per patient was 12 h 11 min for technicians, 2 h 59 min for physicists, and 7 h 6 min for physicians. The modular system of time measurement proved to be reliable and produced comparable data at the different centers. Therefore, the German Society of Radiation Oncology (DEGRO) decided that it can be extended to other types of cancer (head and neck, prostate, and breast cancer) with appropriate modifications.

  6. Delayed Workforce Entry and High Emigration Rates for Recent Canadian Radiation Oncology Graduates.

    Science.gov (United States)

    Loewen, Shaun K; Halperin, Ross; Lefresne, Shilo; Trotter, Theresa; Stuckless, Teri; Brundage, Michael

    2015-10-01

    To determine the employment status and location of recent Canadian radiation oncology (RO) graduates and to identify current workforce entry trends. A fill-in-the-blank spreadsheet was distributed to all RO program directors in December 2013 and June 2014, requesting the employment status and location of their graduates over the last 3 years. Visa trainee graduates were excluded. Response rate from program directors was 100% for both survey administrations. Of 101 graduates identified, 99 (98%) had known employment status and location. In the December survey, 5 2013 graduates (16%), 17 2012 graduates (59%), and 18 2011 graduates (75%) had permanent staff employment. Six months later, 5 2014 graduates (29%), 15 2013 graduates (48%), 24 2012 graduates (83%), and 21 2011 graduates (88%) had secured staff positions. Fellowships and temporary locums were common for those without staff employment. The proportion of graduates with staff positions abroad increased from 22% to 26% 6 months later. Workforce entry for most RO graduates was delayed but showed steady improvement with longer time after graduation. High emigration rates for jobs abroad signify domestic employment challenges for newly certified, Canadian-trained radiation oncologists. Coordination on a national level is required to address and regulate radiation oncologist supply and demand disequilibrium in Canada. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Radiation Therapy for Primary Cutaneous Anaplastic Large Cell Lymphoma: An International Lymphoma Radiation Oncology Group Multi-institutional Experience

    Energy Technology Data Exchange (ETDEWEB)

    Million, Lynn, E-mail: lmillion@stanford.edu [Stanford Cancer Institute, Stanford, California (United States); Yi, Esther J.; Wu, Frank; Von Eyben, Rie [Stanford Cancer Institute, Stanford, California (United States); Campbell, Belinda A. [Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Dabaja, Bouthaina [The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tsang, Richard W. [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Ng, Andrea [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Wilson, Lynn D. [Department of Therapeutic Radiology/Radiation Oncology, Yale School of Medicine, Yale Cancer Center, New Haven, Connecticut (United States); Ricardi, Umberto [Department of Oncology, University of Turin, Turin (Italy); Kirova, Youlia [Institut Curie, Paris (France); Hoppe, Richard T. [Stanford Cancer Institute, Stanford, California (United States)

    2016-08-01

    Purpose: To collect response rates of primary cutaneous anaplastic large cell lymphoma, a rare cutaneous T-cell lymphoma, to radiation therapy (RT), and to determine potential prognostic factors predictive of outcome. Methods and Materials: The study was a retrospective analysis of patients with primary cutaneous anaplastic large cell lymphoma who received RT as primary therapy or after surgical excision. Data collected include initial stage of disease, RT modality (electron/photon), total dose, fractionation, response to treatment, and local recurrence. Radiation therapy was delivered at 8 participating International Lymphoma Radiation Oncology Group institutions worldwide. Results: Fifty-six patients met the eligibility criteria, and 63 tumors were treated: head and neck (27%), trunk (14%), upper extremities (27%), and lower extremities (32%). Median tumor size was 2.25 cm (range, 0.6-12 cm). T classification included T1, 40 patients (71%); T2, 12 patients (21%); and T3, 4 patients (7%). The median radiation dose was 35 Gy (range, 6-45 Gy). Complete clinical response (CCR) was achieved in 60 of 63 tumors (95%) and partial response in 3 tumors (5%). After CCR, 1 tumor recurred locally (1.7%) after 36 Gy and 7 months after RT. This was the only patient to die of disease. Conclusions: Primary cutaneous anaplastic large cell lymphoma is a rare, indolent cutaneous lymphoma with a low death rate. This analysis, which was restricted to patients selected for treatment with radiation, indicates that achieving CCR was independent of radiation dose. Because there were too few failures (<2%) for statistical analysis on dose response, 30 Gy seems to be adequate for local control, and even lower doses may suffice.

  8. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu [Washington University School of Medicine, St Louis, MO (United States); Barthold, H. Joseph [Commonwealth Hematology and Oncology, Weymouth, MA (United States); Beth Israel Deaconess Medical Center, Boston, MA (Israel); O' Meara, Elizabeth [Radiation Therapy Oncology Group, Philadelphia, PA (United States); Bosch, Walter R. [Washington University School of Medicine, St Louis, MO (United States); El Naqa, Issam [Department of Radiation Oncology, McGill University Health Center, Montreal, Quebec (Canada); Al-Lozi, Rawan [Washington University School of Medicine, St Louis, MO (United States); Rosenthal, Seth A. [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); Lawton, Colleen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Sandler, Howard [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Zietman, Anthony [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Myerson, Robert [Washington University School of Medicine, St Louis, MO (United States); Dawson, Laura A. [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Willett, Christopher [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Kachnic, Lisa A. [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA (United States); Jhingran, Anuja [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Portelance, Lorraine [University of Miami, Miami, FL (United States); Ryu, Janice [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  9. Clinical Training of Medical Physicists Specializing in Radiation Oncology (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for radiation therapy. There is a general and growing awareness that radiation medicine is increasingly dependant on well trained medical physicists that are based in the clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognised by the members of the Regional Cooperative Agreement (RCA) for research, development and training related to nuclear sciences for Asia and the Pacific. Consequently a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in radiation therapy was started in 2005 with the appointment of a core drafting committee of regional and international experts. Since 2005 the IAEA has convened two additional consultant group meetings including additional experts to prepare the present publication. The publication drew heavily, particularly in the initial stages, from the experience and documents of the Clinical Training Programme for Radiation Oncology Medical Physicists as developed by the Australasian College of Physical Scientists and Engineers in Medicine. Their

  10. Clinical Training of Medical Physicists Specializing in Radiation Oncology (Spanish Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for radiation therapy. There is a general and growing awareness that radiation medicine is increasingly dependant on well trained medical physicists that are based in the clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognised by the members of the Regional Cooperative Agreement (RCA) for research, development and training related to nuclear sciences for Asia and the Pacific. Consequently a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in radiation therapy was started in 2005 with the appointment of a core drafting committee of regional and international experts. Since 2005 the IAEA has convened two additional consultant group meetings including additional experts to prepare the present publication. The publication drew heavily, particularly in the initial stages, from the experience and documents of the Clinical Training Programme for Radiation Oncology Medical Physicists as developed by the Australasian College of Physical Scientists and Engineers in Medicine. Their

  11. A Nationwide Medical Student Assessment of Oncology Education.

    Science.gov (United States)

    Mattes, Malcolm D; Patel, Krishnan R; Burt, Lindsay M; Hirsch, Ariel E

    2016-12-01

    Cancer is the second leading cause of death in the USA, but there is minimal data on how oncology is taught to medical students. The purpose of this study is to characterize oncology education at US medical schools. An electronic survey was sent between December 2014 and February 2015 to a convenience sample of medical students who either attended the American Society for Radiation Oncology annual meeting or serve as delegates to the American Association of Medical Colleges. Information on various aspects of oncology instruction at participants' medical schools was collected. Seventy-six responses from students in 28 states were received. Among the six most common causes of death in the USA, cancer reportedly received the fourth most curricular time. During the first, second, and third years of medical school, participants most commonly reported 6-10, 16-20, and 6-10 h of oncology teaching, respectively. Participants were less confident in their understanding of cancer treatment than workup/diagnosis or basic science/natural history of cancer (p oncology-oriented clerkship. During each mandatory rotation, Oncology education is often underemphasized and fragmented with wide variability in content and structure between medical schools, suggesting a need for reform.

  12. Recent developments of dual-energy CT in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Simons, David; Schlemmer, Heinz-Peter [Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Kachelriess, Marc [Department of Medical Physics in Radiology, Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-04-15

    Dual-energy computed tomography (DECT) can amply contribute to support oncological imaging: the DECT technique offers promising clinical applications in oncological imaging for tumour detection and characterisation while concurrently reducing the radiation dose. Fast image acquisition at two different X-ray energies enables the determination of tissue- or material-specific features, the calculation of virtual unenhanced images and the quantification of contrast medium uptake; thus, tissue can be characterised and subsequently monitored for any changes during treatment. DECT is already widely used, but its potential in the context of oncological imaging has not been fully exploited yet. The technology is the subject of ongoing innovation and increasingly with respect to its clinical potential, particularly in oncology. This review highlights recent state-of-the-art DECT techniques with a strong emphasis on ongoing DECT developments relevant to oncologic imaging, and then focuses on clinical DECT applications, especially its prospective uses in areas of oncological imaging. circle Dual-energy CT (DECT) offers fast, robust, quantitative and functional whole-body imaging. (orig.)

  13. Adverse Events Involving Radiation Oncology Medical Devices: Comprehensive Analysis of US Food and Drug Administration Data, 1991 to 2015

    International Nuclear Information System (INIS)

    Connor, Michael J.; Marshall, Deborah C.; Moiseenko, Vitali; Moore, Kevin; Cervino, Laura; Atwood, Todd; Sanghvi, Parag; Mundt, Arno J.; Pawlicki, Todd; Recht, Abram; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose: Radiation oncology relies on rapidly evolving technology and highly complex processes. The US Food and Drug Administration collects reports of adverse events related to medical devices. We sought to characterize all events involving radiation oncology devices (RODs) from the US Food and Drug Administration's postmarket surveillance Manufacturer and User Facility Device Experience (MAUDE) database, comparing these with non–radiation oncology devices. Methods and Materials: MAUDE data on RODs from 1991 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems) and 5 device problem categories (software, mechanical, electrical, user error, and dose delivery impact). Outcomes included whether the device was evaluated by the manufacturer, adverse event type, remedial action, problem code, device age, and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by the Pearson χ"2 test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 4234 ROD and 4,985,698 other device adverse event reports. Adverse event reports increased over time, and events involving RODs peaked in 2011. Most ROD reports involved external beam therapy (50.8%), followed by brachytherapy (24.9%) and treatment planning systems (21.6%). The top problem types were software (30.4%), mechanical (20.9%), and user error (20.4%). RODs differed significantly from other devices in each outcome (P<.001). RODs were more likely to be evaluated by the manufacturer after an event (46.9% vs 33.0%) but less likely to be recalled (10.5% vs 37.9%) (P<.001). Device age and time since 510(k) approval were shorter among RODs (P<.001). Conclusions: Compared with other devices, RODs may experience adverse events sooner after manufacture and market approval. Close postmarket surveillance, improved

  14. Adverse Events Involving Radiation Oncology Medical Devices: Comprehensive Analysis of US Food and Drug Administration Data, 1991 to 2015

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Michael J. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Department of Radiation Oncology, University of California Irvine School of Medicine, Irvine, California (United States); Marshall, Deborah C.; Moiseenko, Vitali; Moore, Kevin; Cervino, Laura; Atwood, Todd; Sanghvi, Parag; Mundt, Arno J.; Pawlicki, Todd [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2017-01-01

    Purpose: Radiation oncology relies on rapidly evolving technology and highly complex processes. The US Food and Drug Administration collects reports of adverse events related to medical devices. We sought to characterize all events involving radiation oncology devices (RODs) from the US Food and Drug Administration's postmarket surveillance Manufacturer and User Facility Device Experience (MAUDE) database, comparing these with non–radiation oncology devices. Methods and Materials: MAUDE data on RODs from 1991 to 2015 were sorted into 4 product categories (external beam, brachytherapy, planning systems, and simulation systems) and 5 device problem categories (software, mechanical, electrical, user error, and dose delivery impact). Outcomes included whether the device was evaluated by the manufacturer, adverse event type, remedial action, problem code, device age, and time since 510(k) approval. Descriptive statistics were performed with linear regression of time-series data. Results for RODs were compared with those for other devices by the Pearson χ{sup 2} test for categorical data and 2-sample Kolmogorov-Smirnov test for distributions. Results: There were 4234 ROD and 4,985,698 other device adverse event reports. Adverse event reports increased over time, and events involving RODs peaked in 2011. Most ROD reports involved external beam therapy (50.8%), followed by brachytherapy (24.9%) and treatment planning systems (21.6%). The top problem types were software (30.4%), mechanical (20.9%), and user error (20.4%). RODs differed significantly from other devices in each outcome (P<.001). RODs were more likely to be evaluated by the manufacturer after an event (46.9% vs 33.0%) but less likely to be recalled (10.5% vs 37.9%) (P<.001). Device age and time since 510(k) approval were shorter among RODs (P<.001). Conclusions: Compared with other devices, RODs may experience adverse events sooner after manufacture and market approval. Close postmarket surveillance

  15. Complementary and alternative medicine in radiation oncology. Survey of patients' attitudes

    International Nuclear Information System (INIS)

    Lettner, Sabrina; Kessel, Kerstin A.; Combs, Stephanie E.

    2017-01-01

    Complementary and alternative medicine (CAM) are gaining in importance, but objective data are mostly missing. However, in previous trials, methods such as acupuncture showed significant advantages compared to standard therapies. Thus, the aim was to evaluate most frequently used methods, their significance and the general acceptance amongst cancer patients undergoing radiotherapy (RT). A questionnaire of 18 questions based on the categorical classification released by the National Centre for Complementary and Integrative Health was developed. From April to September 2015, all patients undergoing RT at the Department of Radiation Oncology, Technical University of Munich, completed the survey. Changes in attitude towards CAM were evaluated using the questionnaire after RT during the first follow-up visit (n = 31). Of 634 patients, 333 answered the questionnaire (52.5%). Of all participants, 26.4% used CAM parallel to RT. Before RT, a total of 39.3% had already used complementary medicine. The most frequently applied methods during therapy were vitamins/minerals, food supplements, physiotherapy/manual medicine, and homeopathy. The majority (71.5%) did not use any complementary treatment, mostly stating that CAM was not offered to them (73.5%). The most common reasons for use were to improve the immune system (48%), to reduce side effects (43.8%), and to not miss an opportunity (37.8%). Treatment integrated into the individual therapy concept, e.g. regular acupuncture, would be used by 63.7% of RT patients. In comparison to other studies, usage of CAM parallel to RT in our department is considered to be low. Acceptance amongst patients is present, as treatment integrated into the individual oncology therapy would be used by about two-third of patients. (orig.) [de

  16. Complementary and alternative medicine in radiation oncology : Survey of patients' attitudes.

    Science.gov (United States)

    Lettner, Sabrina; Kessel, Kerstin A; Combs, Stephanie E

    2017-05-01

    Complementary and alternative medicine (CAM) are gaining in importance, but objective data are mostly missing. However, in previous trials, methods such as acupuncture showed significant advantages compared to standard therapies. Thus, the aim was to evaluate most frequently used methods, their significance and the general acceptance amongst cancer patients undergoing radiotherapy (RT). A questionnaire of 18 questions based on the categorical classification released by the National Centre for Complementary and Integrative Health was developed. From April to September 2015, all patients undergoing RT at the Department of Radiation Oncology, Technical University of Munich, completed the survey. Changes in attitude towards CAM were evaluated using the questionnaire after RT during the first follow-up visit (n = 31). Of 634 patients, 333 answered the questionnaire (52.5%). Of all participants, 26.4% used CAM parallel to RT. Before RT, a total of 39.3% had already used complementary medicine. The most frequently applied methods during therapy were vitamins/minerals, food supplements, physiotherapy/manual medicine, and homeopathy. The majority (71.5%) did not use any complementary treatment, mostly stating that CAM was not offered to them (73.5%). The most common reasons for use were to improve the immune system (48%), to reduce side effects (43.8%), and to not miss an opportunity (37.8%). Treatment integrated into the individual therapy concept, e.g. regular acupuncture, would be used by 63.7% of RT patients. In comparison to other studies, usage of CAM parallel to RT in our department is considered to be low. Acceptance amongst patients is present, as treatment integrated into the individual oncology therapy would be used by about two-third of patients.

  17. Results of the 2003 Association of Residents in Radiation Oncology (ARRO) surveys of residents and chief residents in the United States

    International Nuclear Information System (INIS)

    Jagsi, Reshma; Buck, David A.; Singh, Anurag K.; Engleman, Mark; Thakkar, Vipul; Frank, Steven J.; Flynn, Daniel

    2005-01-01

    Purpose: To document demographic characteristics of current residents, career motivations and aspirations, and training program policies and resources. Methods: In 2003, the Association of Residents in Radiation Oncology (ARRO) conducted two nationwide surveys: one of all U.S. radiation oncology residents and one of chief residents. Results: The Chief Residents' Survey was completed by representatives from all 77 programs (response rate, 100%). The Residents' Survey was returned by 229 respondents (response rate, 44%). In each, 32% of respondents were female. The most popular career after residency was private practice (46%), followed by permanent academic practice (28%). Changes that would entice those choosing private practice to consider an academic career included more research experience as a resident (76%), higher likelihood of tenure (69%), lesser time commitment (66%), and higher salary (54%). Although the majority of respondents were satisfied with educational experience overall, a number of programs were reported to provide fewer resources than required. Conclusions: Median program resources and numbers of outliers are documented to allow residents and program directors to assess the relative adequacy of experience in their own programs. Policy-making bodies and individual programs should consider these results when developing interventions to improve educational experiences of residents and to increase retention of radiation oncologists in academic practice

  18. Comparison of occupational radiation dose exposures in nuclear medicine and PET

    International Nuclear Information System (INIS)

    White, S.A.; Binns, D.S.; Johnston, V.K.; Fawcett, M.F.; Greer, B.; Hicks, R.J.

    1999-01-01

    Full text: With the increasing use of high-dose 64 Ga, 201 TI and 18 F-fluorodeoxyglucose (FDG) PET for scanning in oncology in our centre, a radiation dose survey was performed to determine the impact on staff exposure in a multi-modality department. This study was set up in part to counter 'radio-phobia' (the fear of working with radioactive patients) in allied health professionals. The patients were measured using a hand-held radiation monitor at various distances and times which replicate typical patient contact scenarios in the Diagnostic Imaging Department. An average exposure rate per hour was calculated and thus the relative radiation hazard was determined for staff who will interact with the patient outside of the hot laboratory. We present our findings from the survey and the implications these have on staff radiation exposure. In conclusion, these data suggest that emerging oncologic techniques such as PET, high-dose 67 Ga and high-dose 201 Tl do not represent a significantly greater occupational radiation hazard than conventional nuclear medicine procedures

  19. Head-and-Neck Target Delineation Among Radiation Oncology Residents After a Teaching Intervention: A Prospective, Blinded Pilot Study

    International Nuclear Information System (INIS)

    Bekelman, Justin E.; Wolden, Suzanne; Lee, Nancy

    2009-01-01

    Purpose: We conducted this study to determine the feasibility of incorporating a teaching intervention on target delineation into the educational curriculum of a radiation oncology residency program and to assess the short-term effects on resident skills. Methods and Materials: The study schema consisted of a baseline evaluation, the teaching intervention, and a follow-up evaluation. At the baseline evaluation, the participants contoured three clinical tumor volumes (CTVs) (70 Gy, 59.4 Gy, and 54 Gy) on six contrast-enhanced axial computed tomography images of a de-identified patient with Stage T2N2bM0 squamous cell carcinoma of the right base of the tongue. The participants attended a series of head-and-neck oncology and anatomy seminars. The teaching intervention consisted of a didactic lecture and an interactive hands-on practical session designed to improve the knowledge and skills for target delineation in the head and neck. At the follow-up evaluation, the residents again contoured the CTVs. Results: Of the 14 eligible residents, 11 (79%) actually participated in the study. For all participants, but especially for those who had not had previous experience with head-and-neck target delineation, the teaching intervention was associated with improvement in the delineation of the node-negative neck (CTV 54 Gy contour). Regardless of clinical experience, participants had difficulty determining what should be included in the CTV 59.4 Gy contour to ensure adequate coverage of potential microscopic disease. Conclusion: Incorporating a teaching intervention into the education curriculum of a radiation oncology residency program is feasible and was associated with short-term improvements in target delineation skills. Subsequent interventions will require content refinement, additional validation, longer term follow-up, and multi-institutional collaboration

  20. Radiosurgery scope of practice in Canada: A report of the Canadian association of radiation oncology (CARO) radiosurgery advisory committee

    International Nuclear Information System (INIS)

    Roberge, David; Menard, Cynthia; Bauman, Glenn; Chan, Alex; Mulroy, Liam; Sahgal, Arjun; Malone, Shawn; McKenzie, Michael; Schroeder, Garry; Fortin, Marie-Andree; Ebacher, Annie; Milosevic, Michael

    2010-01-01

    Radiosurgery has a long history in Canada. Since the treatment of the first patient at the McGill University Health Center in 1985, radiosurgery programs have been developed from coast to coast. These have included multidisciplinary teams of radiation oncologists, neurosurgeons, medical physicists, radiation technologists and other health professionals. In 2008, the CARO Board of Directors requested that a working group be formed to define the role of the radiation oncologist in the practice of radiosurgery. Taking into account evolving technology, changing clinical practice and current scope of practice literature, the working group made recommendations as to the role of the radiation oncologists. These recommendations were endorsed by the Canadian Association of Radiation Oncology board of directors in September 2009 and are present herein. It is recognized that patients benefit from a team approach to their care but it is recommended that qualified radiation oncologists be involved in radiosurgery delivery from patient consultation to follow-up. In addition, radiation oncologists should continue to be involved in the administrative aspects of radiosurgery programs, from equipment selection to ongoing quality assurance/quality improvement.

  1. Contrast Media Use in Radiation Oncology: A Prospective, Controlled Educational Intervention Study with Retrospective Analysis of Patient Outcomes

    Science.gov (United States)

    Barker, Christopher A.; Mutter, Robert W.; Shapiro, Lauren Q.; Zhang, Zhigang; Wolden, Suzanne L.; Yahalom, Joachim

    2016-01-01

    Purpose Intravenous contrast media (ICM) administration is recommended as part of radiation therapy (RT) simulation in a variety of clinical scenarios, but can cause adverse events. We sought to assess radiation oncology resident knowledge about ICM, and to determine if an educational intervention (EI) could improve this level of knowledge. In conjunction, we retrospectively analyzed risk factors and adverse events related to ICM use before and after the EI to determine whether any improvements in patient outcomes could be realized. Methods Over 2 years, 21 residents in radiation oncology at Memorial Sloan-Kettering Cancer Center (MSKCC) participated in a pretest-EI-posttest study based on the ACR’s Manual on Contrast Media. Medical and RT records were reviewed, and ICM use, risk factors and adverse events were recorded. Results There was no significant difference in resident understanding of ICM use in residents of different years of training (p=0.85). Understanding of ICM use increased in residents that attended the EI (p<0.05), but this was not sustained 1 year after the EI (p=0.48). Of the 6852 RT simulations that were performed at MSKCC, 1350 (19.7%) involved ICM. Mild adverse events occurred in a few patients (<5%) simulated with ICM, but there was no difference in the number of risk factors or adverse events before and after the EI. Conclusions The EI effectively improved short-term understanding of ICM use. However, the effect was not sustained. The frequency of adverse events related to ICM use was small and not significantly impacted by the EI. PMID:21129689

  2. Quantification of the impact of multifaceted initiatives intended to improve operational efficiency and the safety culture: a case study from an academic medical center radiation oncology department.

    Science.gov (United States)

    Chera, Bhishamjit S; Mazur, Lukasz; Jackson, Marianne; Taylor, Kinely; Mosaly, Prithima; Chang, Sha; Deschesne, Kathy; LaChapelle, Dana; Hoyle, Lesley; Saponaro, Patricia; Rockwell, John; Adams, Robert; Marks, Lawrence B

    2014-01-01

    We have systematically been incorporating several operational efficiency and safety initiatives into our academic radiation oncology clinic. We herein quantify the impact of these initiatives on prospectively collected, clinically meaningful, metrics. The data from 5 quality improvement initiatives, each focused on a specific safety/process concern in our clinic, are presented. Data was collected prospectively: operational metrics recorded before and after implementation of the initiative were compared using statistical analysis. Results from the Agency for Health Care Research and Quality (AHRQ) patient safety culture surveys administered during and after many of these initiatives were similarly compared. (1) Workload levels for nurses assisting with brachytherapy were high (National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores >55-60, suggesting, "overwork"). Changes in work flow and procedure room layout reduced workload to more acceptable levels (NASA-TLX 50% to <10%; P < .01). To assess the overall changes in "patient safety culture," we conducted a pre- and postanalysis using the AHRQ survey. Improvements in all measured dimensions were noted. Quality improvement initiatives can be successfully implemented in an academic radiation oncology department to yield measurable improvements in operations resulting in improvement in patient safety culture. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  3. Patient-Physician Communication About Complementary and Alternative Medicine in a Radiation Oncology Setting

    International Nuclear Information System (INIS)

    Ge Jin; Fishman, Jessica; Vapiwala, Neha; Li, Susan Q.; Desai, Krupali; Xie, Sharon X.; Mao, Jun J.

    2013-01-01

    Purpose: Despite the extensive use of complementary and alternative medicine (CAM) among cancer patients, patient-physician communication regarding CAM therapies remains limited. This study quantified the extent of patient-physician communication about CAM and identified factors associated with its discussion in radiation therapy (RT) settings. Methods and Materials: We conducted a cross-sectional survey of 305 RT patients at an urban academic cancer center. Patients with different cancer types were recruited in their last week of RT. Participants self-reported their demographic characteristics, health status, CAM use, patient-physician communication regarding CAM, and rationale for/against discussing CAM therapies with physicians. Multivariate logistic regression was used to identify relationships between demographic/clinical variables and patients’ discussion of CAM with radiation oncologists. Results: Among the 305 participants, 133 (43.6%) reported using CAM, and only 37 (12.1%) reported discussing CAM therapies with their radiation oncologists. In multivariate analyses, female patients (adjusted odds ratio [AOR] 0.45, 95% confidence interval [CI] 0.21-0.98) and patients with full-time employment (AOR 0.32, 95% CI 0.12-0.81) were less likely to discuss CAM with their radiation oncologists. CAM users (AOR 4.28, 95% CI 1.93-9.53) were more likely to discuss CAM with their radiation oncologists than were non-CAM users. Conclusions: Despite the common use of CAM among oncology patients, discussions regarding these treatments occur rarely in the RT setting, particularly among female and full-time employed patients. Clinicians and patients should incorporate discussions of CAM to guide its appropriate use and to maximize possible benefit while minimizing potential harm.

  4. Fifteen-minute music intervention reduces pre-radiotherapy anxiety in oncology patients.

    Science.gov (United States)

    Chen, Lee-Chen; Wang, Tze-Fang; Shih, Yi-Nuo; Wu, Le-Jung

    2013-08-01

    Oncology patients may respond to radiation treatment with anxiety expressed as stress, fear, depression, and frustration. This study aimed to investigate effects of music intervention on reducing pre-radiotherapy anxiety in oncology patients. Quasi-experimental study with purposeful sampling was conducted in the Department of Radiation Oncology, at Far Eastern Memorial Hospital, Taipei, Taiwan. Subjects were assigned into a music group (n = 100) receiving 15 min of music therapy prior to radiation and a control group (n = 100) receiving 15 min rest prior to radiation. Both groups were evaluated for pre- and post-test anxiety using the State-Trait Anxiety Inventory. Physiological indicators of anxiety were measured pre- and post-test. Baseline State/Trait scores and vital signs were comparable between groups (P > 0.05). Mean change in pre- and post-test State/Trait scores showed significant decreases from baseline to post-test in both groups (all P music therapy and control groups in mean change of State anxiety scores (mean decreases 7.19 and 1.04, respectively; P music and control groups (-5.69 ± 0.41 mmHg vs. -0.67 ± 1.29 mmHg, respectively; P = 0.009). Music therapy decreased State anxiety levels, Trait anxiety levels and systolic blood pressure in oncology patients who received the intervention prior to radiotherapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Quality Control Quantification (QCQ): A Tool to Measure the Value of Quality Control Checks in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric C., E-mail: eford@uw.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Terezakis, Stephanie; Souranis, Annette; Harris, Kendra [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Gay, Hiram; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States)

    2012-11-01

    Purpose: To quantify the error-detection effectiveness of commonly used quality control (QC) measures. Methods: We analyzed incidents from 2007-2010 logged into a voluntary in-house, electronic incident learning systems at 2 academic radiation oncology clinics. None of the incidents resulted in patient harm. Each incident was graded for potential severity using the French Nuclear Safety Authority scoring scale; high potential severity incidents (score >3) were considered, along with a subset of 30 randomly chosen low severity incidents. Each report was evaluated to identify which of 15 common QC checks could have detected it. The effectiveness was calculated, defined as the percentage of incidents that each QC measure could detect, both for individual QC checks and for combinations of checks. Results: In total, 4407 incidents were reported, 292 of which had high-potential severity. High- and low-severity incidents were detectable by 4.0 {+-} 2.3 (mean {+-} SD) and 2.6 {+-} 1.4 QC checks, respectively (P<.001). All individual checks were less than 50% sensitive with the exception of pretreatment plan review by a physicist (63%). An effectiveness of 97% was achieved with 7 checks used in combination and was not further improved with more checks. The combination of checks with the highest effectiveness includes physics plan review, physician plan review, Electronic Portal Imaging Device-based in vivo portal dosimetry, radiation therapist timeout, weekly physics chart check, the use of checklists, port films, and source-to-skin distance checks. Some commonly used QC checks such as pretreatment intensity modulated radiation therapy QA do not substantially add to the ability to detect errors in these data. Conclusions: The effectiveness of QC measures in radiation oncology depends sensitively on which checks are used and in which combinations. A small percentage of errors cannot be detected by any of the standard formal QC checks currently in broad use, suggesting that

  6. Quality Control Quantification (QCQ): A Tool to Measure the Value of Quality Control Checks in Radiation Oncology

    International Nuclear Information System (INIS)

    Ford, Eric C.; Terezakis, Stephanie; Souranis, Annette; Harris, Kendra; Gay, Hiram; Mutic, Sasa

    2012-01-01

    Purpose: To quantify the error-detection effectiveness of commonly used quality control (QC) measures. Methods: We analyzed incidents from 2007-2010 logged into a voluntary in-house, electronic incident learning systems at 2 academic radiation oncology clinics. None of the incidents resulted in patient harm. Each incident was graded for potential severity using the French Nuclear Safety Authority scoring scale; high potential severity incidents (score >3) were considered, along with a subset of 30 randomly chosen low severity incidents. Each report was evaluated to identify which of 15 common QC checks could have detected it. The effectiveness was calculated, defined as the percentage of incidents that each QC measure could detect, both for individual QC checks and for combinations of checks. Results: In total, 4407 incidents were reported, 292 of which had high-potential severity. High- and low-severity incidents were detectable by 4.0 ± 2.3 (mean ± SD) and 2.6 ± 1.4 QC checks, respectively (P<.001). All individual checks were less than 50% sensitive with the exception of pretreatment plan review by a physicist (63%). An effectiveness of 97% was achieved with 7 checks used in combination and was not further improved with more checks. The combination of checks with the highest effectiveness includes physics plan review, physician plan review, Electronic Portal Imaging Device-based in vivo portal dosimetry, radiation therapist timeout, weekly physics chart check, the use of checklists, port films, and source-to-skin distance checks. Some commonly used QC checks such as pretreatment intensity modulated radiation therapy QA do not substantially add to the ability to detect errors in these data. Conclusions: The effectiveness of QC measures in radiation oncology depends sensitively on which checks are used and in which combinations. A small percentage of errors cannot be detected by any of the standard formal QC checks currently in broad use, suggesting that further

  7. Quality control quantification (QCQ): a tool to measure the value of quality control checks in radiation oncology.

    Science.gov (United States)

    Ford, Eric C; Terezakis, Stephanie; Souranis, Annette; Harris, Kendra; Gay, Hiram; Mutic, Sasa

    2012-11-01

    To quantify the error-detection effectiveness of commonly used quality control (QC) measures. We analyzed incidents from 2007-2010 logged into a voluntary in-house, electronic incident learning systems at 2 academic radiation oncology clinics. None of the incidents resulted in patient harm. Each incident was graded for potential severity using the French Nuclear Safety Authority scoring scale; high potential severity incidents (score >3) were considered, along with a subset of 30 randomly chosen low severity incidents. Each report was evaluated to identify which of 15 common QC checks could have detected it. The effectiveness was calculated, defined as the percentage of incidents that each QC measure could detect, both for individual QC checks and for combinations of checks. In total, 4407 incidents were reported, 292 of which had high-potential severity. High- and low-severity incidents were detectable by 4.0 ± 2.3 (mean ± SD) and 2.6 ± 1.4 QC checks, respectively (P<.001). All individual checks were less than 50% sensitive with the exception of pretreatment plan review by a physicist (63%). An effectiveness of 97% was achieved with 7 checks used in combination and was not further improved with more checks. The combination of checks with the highest effectiveness includes physics plan review, physician plan review, Electronic Portal Imaging Device-based in vivo portal dosimetry, radiation therapist timeout, weekly physics chart check, the use of checklists, port films, and source-to-skin distance checks. Some commonly used QC checks such as pretreatment intensity modulated radiation therapy QA do not substantially add to the ability to detect errors in these data. The effectiveness of QC measures in radiation oncology depends sensitively on which checks are used and in which combinations. A small percentage of errors cannot be detected by any of the standard formal QC checks currently in broad use, suggesting that further improvements are needed. These data

  8. Comprehensive audits of radiotherapy practices: A tool for quality improvement: Quality Assurance Team for Radiation Oncology (QUATRO)

    International Nuclear Information System (INIS)

    2007-10-01

    into account, as well as the suggestions of the participants of the IAEA workshop Quality Assurance Team for Radiation Oncology (QUATRO), held in Vienna in May 2005. The QUATRO procedures have been endorsed by the European Federation of Organisations for Medical Physics, the European Society for Therapeutic Radiology and Oncology, and the International Organization for Medical Physics

  9. Comprehensive audits of radiotherapy practices: A tool for quality improvement: Quality Assurance Team for Radiation Oncology (QUATRO)

    International Nuclear Information System (INIS)

    2008-08-01

    into account, as well as the suggestions of the participants of the IAEA workshop Quality Assurance Team for Radiation Oncology (QUATRO), held in Vienna in May 2005. The QUATRO procedures have been endorsed by the European Federation of Organisations for Medical Physics, the European Society for Therapeutic Radiology and Oncology, and the International Organization for Medical Physics

  10. Evaluating the Impact of a Canadian National Anatomy and Radiology Contouring Boot Camp for Radiation Oncology Residents

    Energy Technology Data Exchange (ETDEWEB)

    Jaswal, Jasbir [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); D' Souza, Leah; Johnson, Marjorie [Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Canada); Tay, KengYeow [Department of Diagnostic Radiology, London Health Sciences, London, Ontario (Canada); Fung, Kevin; Nichols, Anthony [Department of Otolaryngology, Head & Neck Surgery, Victoria Hospital, London, Ontario (Canada); Landis, Mark [Department of Diagnostic Radiology, London Health Sciences, London, Ontario (Canada); Leung, Eric [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); Kassam, Zahra [Department of Diagnostic Radiology, St. Joseph' s Health Care London, London, Ontario (Canada); Willmore, Katherine [Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Canada); D' Souza, David; Sexton, Tracy [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); Palma, David A., E-mail: david.palma@lhsc.on.ca [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada)

    2015-03-15

    Background: Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course (“boot camp”) designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. Methods: The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Results: Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P<.001). Across all contoured structures, there was a 0.20 median improvement in students' average Dice score (P<.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp

  11. Evaluating the Impact of a Canadian National Anatomy and Radiology Contouring Boot Camp for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Jaswal, Jasbir; D'Souza, Leah; Johnson, Marjorie; Tay, KengYeow; Fung, Kevin; Nichols, Anthony; Landis, Mark; Leung, Eric; Kassam, Zahra; Willmore, Katherine; D'Souza, David; Sexton, Tracy; Palma, David A.

    2015-01-01

    Background: Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course (“boot camp”) designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. Methods: The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Results: Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P<.001). Across all contoured structures, there was a 0.20 median improvement in students' average Dice score (P<.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp

  12. Clinical Predictors of Survival for Patients with Stage IV Cancer Referred to Radiation Oncology.

    Directory of Open Access Journals (Sweden)

    Johnny Kao

    Full Text Available There is an urgent need for a robust, clinically useful predictive model for survival in a heterogeneous group of patients with metastatic cancer referred to radiation oncology.From May 2012 to August 2013, 143 consecutive patients with stage IV cancer were prospectively evaluated by a single radiation oncologist. We retrospectively analyzed the effect of 29 patient, laboratory and tumor-related prognostic factors on overall survival using univariate analysis. Variables that were statistically significant on univariate analysis were entered into a multivariable Cox regression to identify independent predictors of overall survival.The median overall survival was 5.5 months. Four prognostic factors significantly predicted survival on multivariable analysis including ECOG performance status (0-1 vs. 2 vs. 3-4, number of active tumors (1 to 5 vs. ≥ 6, albumin levels (≥ 3.4 vs. 2.4 to 3.3 vs. 31.4 months for very low risk patients compared to 14.5 months for low risk, 4.1 months for intermediate risk and 1.2 months for high risk (p < 0.001.These data suggest that a model that considers performance status, extent of disease, primary tumor site and serum albumin represents a simple model to accurately predict survival for patients with stage IV cancer who are potential candidates for radiation therapy.

  13. Developments in urologic oncology 'OncoForum': The best of 2014.

    Science.gov (United States)

    Gómez-Veiga, F; Alcaraz-Asensio, A; Burgos-Revilla, J; Cózar-Olmo, J

    2015-06-01

    To review the latest evidence on the oncologic urology of prostate, renal and bladder tumors, analyzing their impact on daily clinical practice and the future medium to long-term regimens. We review the abstracts on prostate, renal and bladder cancer presented at the 2014 congresses (European Association of Urology, American Urological Association, American Society of Clinical Oncology and American Society for Radiation Oncology) that received the best evaluations by the OncoForum committee. The committee considered the following messages important: cytoreductive nephrectomy followed by treatment with a tyrosine-kinase inhibitor can significantly increase the overall survival of patients with metastatic renal cancer; for advanced bladder cancer, early adjuvant chemotherapy after cystectomy is preferable because it significantly increases progression-free survival; and several studies have shown that multiparametric magnetic resonance imaging and fusion imaging improve the diagnosis of prostate cancer and provide greater possibilities for placing patients in the appropriate risk group in order to offer them the best treatment possible. The results of the PREVAIL study have demonstrated the efficacy of enzalutamide on the overall survival of men with castration-resistant prostate cancer and metastases, with no prior chemotherapy. The study also demonstrated the drug's favorable safety profile. Progress is continuing in renal and bladder cancer, improving the approach and clinical results with current therapeutic options. There is constant progress in castration-resistant prostate cancer; in 2014, prechemotherapy treatments were consolidated. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Extreme value paradigm for the effect of size of target volume on end results in radiation oncology

    International Nuclear Information System (INIS)

    Herbert, D.E.

    1983-01-01

    In clinical radiation oncology, it is commonly reported that complications of normal tissue occur more readily at larger field sizes for a given dose and recurrence of disease is observed more frequently from the larger tumors for a given dose. Cognate phenomena have long been observed in the study of the strength of materials. That is, the larger specimens will fracture under less applied stress, breakdown under less applied voltage, corrode in a shorter time, etc. The statistical theory of extreme values has provided both a rational explanation and a technique for exploitation of these ''size effects'' on the likelihood of specimen failure. This theory describes the relation which exists between the parameters (in particular, the location parameter) of the frequency distributions of the extreme values [smallest x(1) and largest x(n)] in a sample from a population of observations xi and the sample size n. It is shown in the present paper that the clinical failure phenomena are not inconsistent with the statistical theory of extreme values. The paper presents heuristic comparisons of the predictions of this theory with the received clinical observations of the effect of the size of the volume of irradiated tissues on the likelihood of occurrence of the misadventures of clinical radiation oncology: recurrence of disease and complication of normal tissue. The concordance of observations and predictions is acceptable. The quality and quantity of the currently available data have precluded the construction of any apodictic representations

  15. Cancer pain management by radiotherapists: a survey of radiation therapy oncology group physicians

    International Nuclear Information System (INIS)

    Cleeland, Charles S.; Janjan, Nora A.; Scott, Charles B.; Seiferheld, Wendy F.; Curran, Walter J.

    2000-01-01

    Purpose: Radiation Therapy Oncology Group (RTOG) physicians were surveyed to determine their approach to and attitudes toward cancer pain management. Methods and Materials: Physicians completed a questionnaire assessing their estimates of the magnitude of pain as a specific problem for cancer patients, their perceptions of the adequacy of pain management, and their report of how they manage pain in their own practice setting. Results: Eighty-three percent believed the majority of cancer patients with pain were undermedicated. Forty percent reported that pain relief in their own practice setting was poor or fair. Assessing a case scenario, 23% would wait until the patient's prognosis was 6 months or less before starting maximal analgesia. Adjuvants and prophylactic side effect management were underutilized in the treatment plan. Barriers to pain management included poor pain assessment (77%), patient reluctance to report pain (60%), patient reluctance to take analgesics (72%), and staff reluctance to prescribe opioids (41%). Conclusions: Physicians' perceptions of barriers to cancer pain management remain quite stable over time, and physicians continue to report inadequate pain treatment education. Future educational efforts should target radiation oncologists as an important resource for the treatment of cancer pain

  16. Oncology Advanced Practitioners Bring Advanced Community Oncology Care.

    Science.gov (United States)

    Vogel, Wendy H

    2016-01-01

    Oncology care is becoming increasingly complex. The interprofessional team concept of care is necessary to meet projected oncology professional shortages, as well as to provide superior oncology care. The oncology advanced practitioner (AP) is a licensed health care professional who has completed advanced training in nursing or pharmacy or has completed training as a physician assistant. Oncology APs increase practice productivity and efficiency. Proven to be cost effective, APs may perform varied roles in an oncology practice. Integrating an AP into an oncology practice requires forethought given to the type of collaborative model desired, role expectations, scheduling, training, and mentoring.

  17. Application of organ tolerance dose-constraints in clinical studies in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Wolfgang [Medical University/AKH Vienna, Dept. of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Comprehensive Cancer Center, Vienna (Austria); Technical University Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden (Germany); Task Group ' ' Tolerance Doses' ' of the German Society for Radiation Oncology (DEGRO), Berlin (Germany); Herrmann, Thomas [Task Group ' ' Tolerance Doses' ' of the German Society for Radiation Oncology (DEGRO), Berlin (Germany); Baumann, Michael [Technical University Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden (Germany); Task Group ' ' Tolerance Doses' ' of the German Society for Radiation Oncology (DEGRO), Berlin (Germany)

    2014-07-15

    In modern radiation oncology, tolerance dose-constraints for organs at risk (OAR) must be considered for treatment planning, but particularly in order to design clinical studies. Tolerance dose tables, however, only address one aspect of the therapeutic ratio of any clinical study, i.e., the limitation of adverse events, but not the desired potential improvement in the tumor effect of a novel treatment strategy. A sensible application of ''tolerance doses'' in a clinical situation requires consideration of various critical aspects addressed here: definition of tolerance dose, specification of an endpoint/symptom, consideration of radiation quality and irradiation protocol, exposed volume and dose distribution, and patient-related factors of radiosensitivity. The currently most comprehensive estimates of OAR radiation tolerance are in the QUANTEC compilations (2010). However, these tolerance dose values must only be regarded as a rough orientation and cannot answer the relevant question for the patients, i.e., if the study can achieve a therapeutic advantage; this can obviously be answered only by the final scientific analysis of the study results. Despite all limitations, the design of clinical studies should currently refer to the QUANTEC values for appreciation of the risk of complications, if needed supplemented by one's own data or further information from the literature. The implementation of a consensus on the safety interests of the patients and on an application and approval process committed to progress in medicine, with transparent quality-assuring requirements with regard to the structural safeguarding of the study activities, plays a central role in clinical research in radiation oncology. (orig.) [German] In der modernen Radioonkologie muessen Toleranzdosisgrenzen fuer die Risikoorgane (''organs at risk'', OAR) zur Behandlungsplanung, besonders aber zur Gestaltung klinischer Studien, herangezogen werden

  18. Evaluation of indoor air quality in a department of radiation oncology located underground

    International Nuclear Information System (INIS)

    Kim, Won Taek; Kwon, Byung Hyun; Kang, Dong Mug; Ki, Yong Kan; Kim, Dong Won; Shin, Yong Chul

    2005-01-01

    Indoor air quality (IAQ) in the radiation treatment center which is generally located underground is important to the health of hospital workers and patients treated over a long period of time. This study was conducted to measure and analyze the factors related to IAQ and subjective symptoms of sick building syndrome, and to establish the causes influencing IAQ and find a solution to the problems. Self administrated questionnaire was conducted to check the workers' symptoms and understanding of the work environment. Based on a preliminary investigation, the factors related to IAQ such as temperature, humidity, fine particulate, carbon dioxide, carbon monoxide, formaldehyde, total volatile organic compounds (TVOC), and radon gas were selected and measured for a certain period of time in specific sites where hospital workers stay long in a day. And we also evaluated the surrounding environment and the efficiency of the ventilating system simultaneously, and measured the same factors at the first floor (outdoor) to compare with outdoor air quality. All collected data were assessed by the recommended standard for IAQ of the domestic and international environmental organizations. Hospital workers were discontented with foul odors, humidity and particulate. They complained symptoms related to musculo-skeletal system, neurologic system, and mucosal-irritation. Most of the factors were not greater than the recommended standard, but the level of TVOC was third or fourth times as much as the measuring level of some offices in the United States. The frequency and the amount of the ventilating system were adequate, however, the problem arising in the position of outdoor-air inlets and indoor-air outlets involved a risk of the indraft of contaminated air. A careful attention was a requirement in handling and keeping chemical substances including a developing solution which has a risk of TVOC emissions, and repositioning the ventilating system was needed to solve the

  19. Supply and Demand for Radiation Oncology in the United States: Updated Projections for 2015 to 2025

    International Nuclear Information System (INIS)

    Pan, Hubert Y.; Haffty, Bruce G.; Falit, Benjamin P.; Buchholz, Thomas A.; Wilson, Lynn D.; Hahn, Stephen M.; Smith, Benjamin D.

    2016-01-01

    Purpose: Prior studies have forecasted demand for radiation therapy to grow 10 times faster than the supply between 2010 and 2020. We updated these projections for 2015 to 2025 to determine whether this imbalance persists and to assess the accuracy of prior projections. Methods and Materials: The demand for radiation therapy between 2015 and 2025 was estimated by combining current radiation utilization rates determined by the Surveillance, Epidemiology, and End Results data with population projections provided by the US Census Bureau. The supply of radiation oncologists was forecast by using workforce demographics and full-time equivalent (FTE) status provided by the American Society for Radiation Oncology (ASTRO), current resident class sizes, and expected survival per life tables from the US Centers for Disease Control. Results: Between 2015 and 2025, the annual total number of patients receiving radiation therapy during their initial treatment course is expected to increase by 19%, from 490,000 to 580,000. Assuming a graduating resident class size of 200, the number of FTE physicians is expected to increase by 27%, from 3903 to 4965. In comparison with prior projections, the new projected demand for radiation therapy in 2020 dropped by 24,000 cases (a 4% relative decline). This decrease is attributable to an overall reduction in the use of radiation to treat cancer, from 28% of all newly diagnosed cancers in the prior projections down to 26% for the new projections. By contrast, the new projected supply of radiation oncologists in 2020 increased by 275 FTEs in comparison with the prior projection for 2020 (a 7% relative increase), attributable to rising residency class sizes. Conclusion: The supply of radiation oncologists is expected to grow more quickly than the demand for radiation therapy from 2015 to 2025. Further research is needed to determine whether this is an appropriate correction or will result in excess capacity.

  20. Supply and Demand for Radiation Oncology in the United States: Updated Projections for 2015 to 2025

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hubert Y. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Haffty, Bruce G. [Department of Radiation Oncology, Robert Wood Johnson Medical School – University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey (United States); Falit, Benjamin P. [Radiation Oncology Associates, Lowell, Massachusetts (United States); Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wilson, Lynn D. [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States); Hahn, Stephen M. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: bsmith3@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-11-01

    Purpose: Prior studies have forecasted demand for radiation therapy to grow 10 times faster than the supply between 2010 and 2020. We updated these projections for 2015 to 2025 to determine whether this imbalance persists and to assess the accuracy of prior projections. Methods and Materials: The demand for radiation therapy between 2015 and 2025 was estimated by combining current radiation utilization rates determined by the Surveillance, Epidemiology, and End Results data with population projections provided by the US Census Bureau. The supply of radiation oncologists was forecast by using workforce demographics and full-time equivalent (FTE) status provided by the American Society for Radiation Oncology (ASTRO), current resident class sizes, and expected survival per life tables from the US Centers for Disease Control. Results: Between 2015 and 2025, the annual total number of patients receiving radiation therapy during their initial treatment course is expected to increase by 19%, from 490,000 to 580,000. Assuming a graduating resident class size of 200, the number of FTE physicians is expected to increase by 27%, from 3903 to 4965. In comparison with prior projections, the new projected demand for radiation therapy in 2020 dropped by 24,000 cases (a 4% relative decline). This decrease is attributable to an overall reduction in the use of radiation to treat cancer, from 28% of all newly diagnosed cancers in the prior projections down to 26% for the new projections. By contrast, the new projected supply of radiation oncologists in 2020 increased by 275 FTEs in comparison with the prior projection for 2020 (a 7% relative increase), attributable to rising residency class sizes. Conclusion: The supply of radiation oncologists is expected to grow more quickly than the demand for radiation therapy from 2015 to 2025. Further research is needed to determine whether this is an appropriate correction or will result in excess capacity.

  1. Assessment of new radiation oncology technology and treatments in radiation oncology the ANROTAT project and collection of IMRT specific data

    International Nuclear Information System (INIS)

    Haworth, A.; Corry, J.; Kron, T.; Duchesne, G.; Ng, M.; Burmeister, B.

    2010-01-01

    Full text: Medical physicists (MP) are familiar with assessing new radiation oncology technology and treatments ( ROT A T) for their own departments but are not usually involved in providing advice to government for funding these technologies. This paper describes the role of the MP within the Commonwealth Government Department of Health and Aging initiative to develop a generic framework for assessment of ROTAT and the collection of data to support Med care Benefits Scheme (MBS) funding of IMRT. The clinical trials group TROG is developing a generic framework for the assessment of NROTAT. This will be tested and data collected to support applications for MBS funding of IMRT and IGRT. The tumour sites of nasopharynx, post-prostatectomy and anal canal have been selected to represent sites that are commonly, occasionally and rarely treated with IMRT respectively. Site selection for data collection will represent a broad range of clinical practices. Data quality is assured through TROG QA procedures and will include dosimetry audits. The final report will assess the clinical efficacy, cost effectiveness and safety of IMRT compared to 3DCRT. Existing clinical trial protocols form the basis for data collection and surrogate endpoints are being developed. Key publications have been identified that correlate specific dose-volume histogram parameters with clinical end-points, recognising limitations of these data in the 1MRT setting. Engagement of MPs within this project will help ensure collection of high quality data that ultimately aims to secure appropriate funding to ensure our patients receive best clinical care. (author)

  2. [Quality assurance in head and neck medical oncology].

    Science.gov (United States)

    Digue, Laurence; Pedeboscq, Stéphane

    2014-05-01

    In medical oncology, how can we be sure that the right drug is being administered to the right patient at the right time? The implementation of quality assurance criteria is important in medical oncology, in order to ensure that the patient receives the best treatment safely. There is very little literature about quality assurance in medical oncology, as opposed to radiotherapy or cancer surgery. Quality assurance must cover the entire patient care process, from the diagnosis, to the therapeutic decision and drug distribution, including its selection, its preparation and its delivery to the patient (administration and dosage), and finally the potential side effects and their management. The dose-intensity respect is crucial, and its reduction can negatively affect overall survival rates, as shown in breast and testis cancers for example. In head and neck medical oncology, it is essential to respect the few well-standardized recommendations and the dose-intensity, in a population with numerous comorbidities. We will first review quality assurance criteria for the general medical oncology organization and then focus on head and neck medical oncology. We will then describe administration specificities of head and neck treatments (chemoradiation, radiation plus cetuximab, postoperative chemoradiation, induction and palliative chemotherapy) as well as their follow-up. Lastly, we will offer some recommendations to improve quality assurance in head and neck medical oncology.

  3. [Burnout effect on academic progress of Oncology medical residents].

    Science.gov (United States)

    González-Ávila, Gabriel; Bello-Villalobos, Herlinda

    2014-01-01

    In the formative period of the courses taken in medical specializations, new and greater responsibilities are accepted by physicians in personal and academic spheres. The interaction of several factors that encompass the practice of these physicians could surpass their capacity to cope, causing on these professionals a high level of stress and professional exhaustion, which will affect their academic development. The objective of this research was to establish if the occupational stress of these medical residents affects their academic progress. We administered the Spanish version of the Maslach Burnout Inventory (MBI) to 52 residents of three specializations in Oncology (Medical Oncology, Surgical Oncology, and Radio-Oncology). These residents accepted voluntarily at the same time of their third cognitive exam. The prevalence of burnout syndrome was 13.5 %, with a high frequency among medical residents of first degree. Medical Oncology residents showed a higher emotional exhaustion and lower personal fulfillment. Considering the three specializations, the academic progress was higher in the third year, with a significant difference to Surgical Oncology and Medical Oncology (p = 0.026 and 0.015, respectively). No significant difference was found between burnout syndrome, academic progress and sociodemographic characteristics. The presence of burnout syndrome does not affect the academic progress of Oncology medical residents.

  4. Comprehensive molecular tumor profiling in radiation oncology: How it could be used for precision medicine.

    Science.gov (United States)

    Eke, Iris; Makinde, Adeola Y; Aryankalayil, Molykutty J; Ahmed, Mansoor M; Coleman, C Norman

    2016-11-01

    New technologies enabling the analysis of various molecules, including DNA, RNA, proteins and small metabolites, can aid in understanding the complex molecular processes in cancer cells. In particular, for the use of novel targeted therapeutics, elucidation of the mechanisms leading to cell death or survival is crucial to eliminate tumor resistance and optimize therapeutic efficacy. While some techniques, such as genomic analysis for identifying specific gene mutations or epigenetic testing of promoter methylation, are already in clinical use, other "omics-based" assays are still evolving. Here, we provide an overview of the current status of molecular profiling methods, including promising research strategies, as well as possible challenges, and their emerging role in radiation oncology. Published by Elsevier Ireland Ltd.

  5. Sociodemographic analysis of patients in radiation therapy oncology group clinical trials

    International Nuclear Information System (INIS)

    Chamberlain, Robert M.; Winter, Kathryn A.; Vijayakumar, Srinivasan; Porter, Arthur T.; Roach, M.; Streeter, Oscar; Cox, James D.; Bondy, Melissa L.

    1998-01-01

    Purpose: To assess the degree to which the sociodemographic characteristics of patients enrolled in Radiation Therapy Oncology Group (RTOG) clinical trails are representative of the general population. Methods and Materials: Sociodemographic data were collected on 4016 patients entered in 33 open RTOG studies between July 1991 and June 1994. The data analyzed included educational attainment, age, gender, and race. For comparison, we obtained similar data from the U.S. Department of Census. We also compared our RTOG data with Surveillance Epidemiology and End Results (SEER) data for patients who received radiation therapy, to determine how RTOG patients compared with cancer patients in general, and with patients with cancers at sites typically treated with radiotherapy. Results: Overall, the sociodemographic characteristics of patients entered in RTOG trials were similar to those of the Census data. We found that, in every age group of African-American men and at nearly every level of educational attainment, the proportion of RTOG trial participants mirrored the proportion in the census data. Significant differences were noted only in the youngest category of African-American men, where the RTOG accrues more in the lower educational categories and fewer with college experience. For African-American women, we found a similar pattern in every age group and at each level of educational attainment. As with men, RTOG trials accrued a considerably larger proportion of younger, less educated African-American women than the census reported. Using SEER for comparison, the RTOG enrolled proportionately more African-American men to trials all cancer sites combined, and for prostate and head and neck cancer. In head and neck trials, the RTOG enrolled nearly twice as many African-American men than would be predicted by SEER data. In lung cancer trials, RTOG underrepresented African-American men significantly; however, there was no difference for brain cancer trials. There were

  6. Comparison of a Commonwealth-initiated regional radiation oncology facility in Toowoomba with a Queensland Health facility

    International Nuclear Information System (INIS)

    Poulsen, M.; Ramsay, R.; Gogna, K.; Middleton, M.; Martin, J.; Khoo, E.; Wong, W.; McQuitty, S.; Walpole, E.; Fairweather, R.

    2010-01-01

    The aim was to compare a private Commonwealth-initiated regional radiation oncology facility in Toowoomba with a Queensland Health facility (QHF) in Brisbane. The comparison concentrated on staffing, case mix and operational budgets, but was not able to look at changes in access to services. Data were collected from the two facilities from January 2008 to June 2008 inclusive. A number of factors were compared, including case mix, staffing levels, delay times for treatment, research, training and treatment costs. The case mix between the two areas was similar with curative treatments making up just over half the work load in both centres and two-thirds the work being made up of cancers of breast and prostate. Staffing levels were leaner in Toowoomba, especially in the areas of nursing, administration and trial coordinators. Research activity was slightly higher in Toowoomba. The average medicare cost per treatment course was similar in both centres ($5000 per course). Total costs of an average treatment including patient, State and Commonwealth costs, showed a 30% difference in costing favouring Toowoomba. This regional radiation oncology centre has provided state-of-the-art cancer care that is close to home for patients living in the Darling Downs region. Both public and private patients have been treated with modest costs to the patient and significant savings to QH. The case mix is similar to the QHF, and there has been significant activity in clinical research. A paperless working environment is one factor that has allowed staffing levels to be reduced. Ongoing support from Governments are required if private facilities are to participate in important ongoing staff training.

  7. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    International Nuclear Information System (INIS)

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-01

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  8. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, Eric S., E-mail: epaulson@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Erickson, Beth; Schultz, Chris; Allen Li, X. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States)

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  9. Delayed Workforce Entry and High Emigration Rates for Recent Canadian Radiation Oncology Graduates

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Shaun K., E-mail: shaun.loewen@cancercare.mb.ca [CancerCare Manitoba, Winnipeg, MB (Canada); Halperin, Ross; Lefresne, Shilo [BC Cancer Agency, Vancouver, BC (Canada); Trotter, Theresa [Tom Baker Cancer Centre, Calgary, AB (Canada); Stuckless, Teri [Dr H. Bliss Murphy Cancer Centre, St. John' s, NL (Canada); Brundage, Michael [Cancer Centre of Southeastern Ontario, Kingston, ON (Canada)

    2015-10-01

    Purpose: To determine the employment status and location of recent Canadian radiation oncology (RO) graduates and to identify current workforce entry trends. Methods and Materials: A fill-in-the-blank spreadsheet was distributed to all RO program directors in December 2013 and June 2014, requesting the employment status and location of their graduates over the last 3 years. Visa trainee graduates were excluded. Results: Response rate from program directors was 100% for both survey administrations. Of 101 graduates identified, 99 (98%) had known employment status and location. In the December survey, 5 2013 graduates (16%), 17 2012 graduates (59%), and 18 2011 graduates (75%) had permanent staff employment. Six months later, 5 2014 graduates (29%), 15 2013 graduates (48%), 24 2012 graduates (83%), and 21 2011 graduates (88%) had secured staff positions. Fellowships and temporary locums were common for those without staff employment. The proportion of graduates with staff positions abroad increased from 22% to 26% 6 months later. Conclusions: Workforce entry for most RO graduates was delayed but showed steady improvement with longer time after graduation. High emigration rates for jobs abroad signify domestic employment challenges for newly certified, Canadian-trained radiation oncologists. Coordination on a national level is required to address and regulate radiation oncologist supply and demand disequilibrium in Canada.

  10. Delayed Workforce Entry and High Emigration Rates for Recent Canadian Radiation Oncology Graduates

    International Nuclear Information System (INIS)

    Loewen, Shaun K.; Halperin, Ross; Lefresne, Shilo; Trotter, Theresa; Stuckless, Teri; Brundage, Michael

    2015-01-01

    Purpose: To determine the employment status and location of recent Canadian radiation oncology (RO) graduates and to identify current workforce entry trends. Methods and Materials: A fill-in-the-blank spreadsheet was distributed to all RO program directors in December 2013 and June 2014, requesting the employment status and location of their graduates over the last 3 years. Visa trainee graduates were excluded. Results: Response rate from program directors was 100% for both survey administrations. Of 101 graduates identified, 99 (98%) had known employment status and location. In the December survey, 5 2013 graduates (16%), 17 2012 graduates (59%), and 18 2011 graduates (75%) had permanent staff employment. Six months later, 5 2014 graduates (29%), 15 2013 graduates (48%), 24 2012 graduates (83%), and 21 2011 graduates (88%) had secured staff positions. Fellowships and temporary locums were common for those without staff employment. The proportion of graduates with staff positions abroad increased from 22% to 26% 6 months later. Conclusions: Workforce entry for most RO graduates was delayed but showed steady improvement with longer time after graduation. High emigration rates for jobs abroad signify domestic employment challenges for newly certified, Canadian-trained radiation oncologists. Coordination on a national level is required to address and regulate radiation oncologist supply and demand disequilibrium in Canada

  11. The situation of radiation oncology patients' relatives. A stocktaking

    International Nuclear Information System (INIS)

    Momm, Felix; Lingg, Sabine; Adebahr, Sonja; Grosu, Anca-Ligia; Xander, Carola; Becker, Gerhild

    2010-01-01

    Background and Purpose: Recent studies have shown a very high importance of relatives in decisions about medical interventions. Therefore, the situation of this group was investigated in the sense of a stocktaking by interviewing the closest relatives of radiotherapy patients. Interviewed Persons and Methods: In a defined span of time (6 weeks), a total of 470 relatives (evaluable: n = 287, 61%) of radiotherapy patients were interviewed by a newly developed questionnaire about their contentment with their inclusion in the therapy course. Further, they gave information about specific needs of relatives as well as proposals for direct improvements in the context of a radiation therapy. Results: In total, the relatives were satisfied with their inclusion in the radiotherapy course and with the patient care. As an example, more than 95% of the relatives agreed with the statement ''Here in the hospital my ill relative is cared for well.'' Nevertheless, direct possibilities for improvements were found in the interdisciplinary information about oncologic topics and in the organization of the therapy course. Conclusion: In the stocktaking the situation of radiotherapy patients' relatives was generally satisfactory. Further improvements for the future can be expected mainly from interdisciplinary cancer centers having the best suppositions to care for the relatives, if necessary. Structures known from palliative care can be used as a model. (orig.)

  12. TU-D-201-04: Veracity of Data Elements in Radiation Oncology Incident Learning Systems

    International Nuclear Information System (INIS)

    Kapur, A; Evans, S; Brown, D; Ezzell, G; Hoopes, D; Dieterich, S; Kapetanovic, K; Tomlinson, C

    2016-01-01

    Purpose: Incident learning systems encompass volumes, varieties, values, and velocities of underlying data elements consistent with the V’s of big data. Veracity, the 5th V however exists only if there is high inter-rater reliability (IRR) within the data elements. The purpose of this work was to assess IRR in the nationally deployed RO-ILS: Radiation Oncology-Incident Learning System (R) sponsored by the American Society for Radiation Oncology (ASTRO) and the American Association of Physicists in Medicine (AAPM). Methods: Ten incident reports covering a wide range of scenarios were created in standardized narrative and video formats and disseminated to 67 volunteers of multiple disciplines from 26 institutions along with two published narratives from the International Commission of Radiological Protection to assess IRR on a nationally representative level. The volunteers were instructed to independently enter the associated data elements in a test version of RO-ILS over a 3-week period. All responses were aggregated into a spreadsheet to assess IRR using free-marginal kappa metrics. Results: 48 volunteers from 21 institutions completed all reports in the study period. The average kappa score for all raters across all critical data elements was 0.659 [range 0.326–1.000]. Statistically significant differences (p <0.05) were noted between reporters of different disciplines and raters with varying levels of experience. Kappa scores were high for event classification (0.781) and contributory factors (0.777) and low for likelihood-of-harm (0.326). IRR was highest among AAPM-ASTRO members (0.672) and lowest among trainees (0.463). Conclusion: A moderate-to-substantial level of IRR in RO-ILS was noted in this study. Although the number of events reviewed in this study was small, opportunities for improving the taxonomy for the lower scoring data elements as well as specific educational targets for training were identified by assessing data veracity quantitatively

  13. TU-D-201-04: Veracity of Data Elements in Radiation Oncology Incident Learning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, A [Northwell Health System, New Hyde Park, NY (United States); Evans, S [Yale University New Haven, CT (United States); Brown, D [University of California, San Diego, La Jolla, CA (United States); Ezzell, G [Mayo Clinic Arizona, Phoenix, AZ (United States); Hoopes, D [The University of California San Diego, San Diego, CA (United States); Dieterich, S [UC Davis Medical Center, Sacramento, CA (United States); Kapetanovic, K; Tomlinson, C [American Society for Radiation Oncology, Fairfax, VA (United States)

    2016-06-15

    Purpose: Incident learning systems encompass volumes, varieties, values, and velocities of underlying data elements consistent with the V’s of big data. Veracity, the 5th V however exists only if there is high inter-rater reliability (IRR) within the data elements. The purpose of this work was to assess IRR in the nationally deployed RO-ILS: Radiation Oncology-Incident Learning System (R) sponsored by the American Society for Radiation Oncology (ASTRO) and the American Association of Physicists in Medicine (AAPM). Methods: Ten incident reports covering a wide range of scenarios were created in standardized narrative and video formats and disseminated to 67 volunteers of multiple disciplines from 26 institutions along with two published narratives from the International Commission of Radiological Protection to assess IRR on a nationally representative level. The volunteers were instructed to independently enter the associated data elements in a test version of RO-ILS over a 3-week period. All responses were aggregated into a spreadsheet to assess IRR using free-marginal kappa metrics. Results: 48 volunteers from 21 institutions completed all reports in the study period. The average kappa score for all raters across all critical data elements was 0.659 [range 0.326–1.000]. Statistically significant differences (p <0.05) were noted between reporters of different disciplines and raters with varying levels of experience. Kappa scores were high for event classification (0.781) and contributory factors (0.777) and low for likelihood-of-harm (0.326). IRR was highest among AAPM-ASTRO members (0.672) and lowest among trainees (0.463). Conclusion: A moderate-to-substantial level of IRR in RO-ILS was noted in this study. Although the number of events reviewed in this study was small, opportunities for improving the taxonomy for the lower scoring data elements as well as specific educational targets for training were identified by assessing data veracity quantitatively

  14. SU-E-T-222: How to Define and Manage Quality Metrics in Radiation Oncology.

    Science.gov (United States)

    Harrison, A; Cooper, K; DeGregorio, N; Doyle, L; Yu, Y

    2012-06-01

    Since the 2001 IOM Report Crossing the Quality Chasm: A New Health System for the 21st Century, the need to provide quality metrics in health care has increased. Quality metrics have yet to be defined for the field of radiation oncology. This study represents one institutes initial efforts defining and measuring quality metrics using our electronic medical record and verify system(EMR) as a primary data collection tool. This effort began by selecting meaningful quality metrics rooted in the IOM definition of quality (safe, timely, efficient, effective, equitable and patient-centered care) that were also measurable targets based on current data input and workflow. Elekta MOSAIQ 2.30.04D1 was used to generate reports on the number of Special Physics Consults(SPC) charged as a surrogate for treatment complexity, daily patient time in department(DTP) as a measure of efficiency and timeliness, and time from CT-simulation to first LINAC appointment(STL). The number of IMRT QAs delivered in the department was also analyzed to assess complexity. Although initial MOSAIQ reports were easily generated, the data needed to be assessed and adjusted for outliers. Patients with delays outside of radiation oncology such as chemotherapy or surgery were excluded from STL data. We found an average STL of six days for all CT-simulated patients and an average DTP of 52 minutes total time, with 23 minutes in the LINAC vault. Annually, 7.3% of all patient require additional physics support indicated by SPC. Utilizing our EMR, an entire year's worth of useful data characterizing our clinical experience was analyzed in less than one day. Having baseline quality metrics is necessary to improve patient care. Future plans include dissecting this data into more specific categories such as IMRT DTP, workflow timing following CT-simulation, beam-on hours, chart review outcomes, and dosimetric quality indicators. © 2012 American Association of Physicists in Medicine.

  15. Australian and New Zealand Faculty of Radiation Oncology Genito-Urinary Group: 2011 consensus guidelines for curative radiotherapy for urothelial carcinoma of the bladder

    International Nuclear Information System (INIS)

    Hindson, Benjamin R.; Turner, Sandra L.; Millar, Jeremy L.

    2012-01-01

    Curative radiotherapy, with or without concurrent chemotherapy, is recognized as a standard treatment option for muscle-invasive bladder cancer. It is commonly used for two distinct groups of patients: either for those medically unfit for surgery, or as part of a 'bladder preserving' management plan incorporating the possibility of salvage cystectomy. However, in both situations, the approach to radiotherapy varies widely around the world. The Australian and New Zealand Faculty of Radiation Oncology Genito-Urinary Group recognised a need to develop consistent, evidence-based guidelines for patient selection and radiotherapy technique in the delivery of curative radiotherapy. Following a workshop convened in May 2009, a working party collated opinions and conducted a wide literature appraisal linking each recommendation with the best available evidence. This process was subject to ongoing re-presentation to the Faculty of Radiation Oncology Genito-Urinary Group members prior to final endorsement. These Guidelines include patient selection, radiation target delineation, dose and fractionation schedules, normal tissue constraints and investigational techniques. Particular emphasis is given to the rationale for the target volumes described. These Guidelines provide a consensus-based framework for the delivery of curative radiotherapy for muscle-invasive bladder cancer. Widespread input from radiation oncologists treating bladder cancer ensures that these techniques are feasible in practice. We recommend these Guidelines be adopted widely in order to encourage a uniformly high standard of radiotherapy in this setting, and to allow for better comparison of outcomes.

  16. Cancer Patients and Oncology Nursing: Perspectives of Oncology ...

    African Journals Online (AJOL)

    Background and Aim: Burnout and exhaustion is a frequent problem in oncology nursing. The aim of this study is to evaluate the aspects of oncology nurses about their profession in order to enhance the standards of oncology nursing. Materials and Methods: This survey was conducted with 70 oncology nurses working at ...

  17. Monitoring cancer stem cells: insights into clinical oncology

    Directory of Open Access Journals (Sweden)

    Lin SC

    2016-02-01

    Full Text Available ShuChen Lin,1,* YingChun Xu,2,* ZhiHua Gan,1 Kun Han,1 HaiYan Hu,3 Yang Yao,3 MingZhu Huang,4 DaLiu Min1 1Department of Oncology, Shanghai Sixth People’s Hospital East Campus, Shanghai Jiao Tong University, 2Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, 3Department of Oncology, The Sixth People’s Hospital, Shanghai Jiao Tong University, 4Department of Medical Oncology, Cancer Hospital of Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Cancer stem cells (CSCs are a small, characteristically distinctive subset of tumor cells responsible for tumor initiation and progression. Several treatment modalities, such as surgery, glycolytic inhibition, driving CSC proliferation, immunotherapy, and hypofractionated radiotherapy, may have the potential to eradicate CSCs. We propose that monitoring CSCs is important in clinical oncology as CSC populations may reflect true treatment response and assist with managing treatment strategies, such as defining optimal chemotherapy cycles, permitting pretreatment cancer surveillance, conducting a comprehensive treatment plan, modifying radiation treatment, and deploying rechallenge chemotherapy. Then, we describe methods for monitoring CSCs. Keywords: cancer stem cells, glycolytic inhibition, watchful waiting, rechallenge, immunotherapy

  18. Management of radiation oncology patients with implanted cardiac pacemakers or implant able cardioverter defibrilators; Tratamiento de pacientes en radioterapia con marcapasos o desfibriladores automaticos implantables

    Energy Technology Data Exchange (ETDEWEB)

    Martin Martin, G.

    2012-07-01

    The increase in life expectancy along with the technological development in the last decades has resulted in an increase in the number of patients requiring pacemaker implants or implantable cardioverter defibrillators worldwide. An increase in the number of patients with implanted cardiac devices in radiotherapy is also expected due to the risk factors in common between heart disease and cancer. In 1994 the American Association of Physicists in Medicine (AAPM) released a report about the management of radiation oncology patients with implanted cardiac pacemakers. The addition of new technologies, both in radiotherapy units and in the manufacturing process of heart devices, has shown the need for an updated protocol for the management of these patients. In this work, the most important articles published after the report of the AAPM have been compiled, in order to analyze the effects not previously studied such as dose rate, scattered radiation, electromagnetic interference or random failures produced by neutrons and protons. Additionally, the latest recommendations given by the manufacturers have been analyzed and, finally, some indications are given as an updated guide for the management of radiation oncology patients with pacemakers or cardioverter defibrillators implanted. (Author)

  19. 22. Annual meeting of the German Radiation Oncology Society. Abstracts; 22. Jahrestagung der Deutschen Gesellschaft fuer Radioonkologie. Abstractband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    The volume on the 22th annual meeting of the German Radiation Oncology Society includes abstracts on the following issues: Brain/ central nervous system, biology, oligo-metastases, head and neck tumors, mammary carcinoma, physics, innovations, life quality, high individual doses, lung tumors, colorectal tumors, clinical studies, young DEGRO, translational research, prostate, brachytherapy. The poster abstracts cover the following issues: prostate, mammary glands, lungs, head and neck, colorectum, brain - central nervous system, innovations concerning percutaneous and interventional radiotherapy, radiotherapy with high single doses, radioimmunotherapy, knowledge-based radiotherapy, life quality, demand planning.

  20. Pet in Clinical oncology

    International Nuclear Information System (INIS)

    Hunsche, A.; Grossman, G.; Santana, M.; Santana, C.; Halkar, R.; Garcia, E.

    2003-01-01

    The utility of the PET (positron emission tomography in clinical oncology has been recognized for more than two decades, locating it as a sensible technique for the diagnosis and the prognosis stratification of the oncology patients. The sensitivity and specificity of the PET in comparation to other image studies have demonstrated to be greater. For some years, there was a restriction of PET because of the high cost of the equipment and the cyclotrons. Nevertheless, the relation of cost/benefits is considered as a priority as this technique offers important clinical information. In this article the results observed when using it in diverse types of cancer, as well as the effectiveness shown in the pre-operating evaluation, the evaluation of residual disease, diagnosis of recurrences, pursuit and prognosis stratification of the patients with cancer. (The author)