WorldWideScience

Sample records for radiation micrometer-sized x-ray

  1. Micromanipulation and pick-up system for X-Ray diffraction characterization of micrometer-sized single particles

    International Nuclear Information System (INIS)

    Takeichi, Y; Inami, N; Saito, K; Otori, H; Sagayama, R; Kumai, R; Ono, K; Ueno, T

    2014-01-01

    We describe a micromanipulation and pick-up system for preparing a micrometer-sized single particle for X-ray diffraction characterization. Combining a microgripper based on microelectromechanical systems, piezo-motor-driven linear stages, and a gamepad, the system provides precise and intuitive handling of the object. Single-crystal X-ray diffraction measurements of Sm-Fe-N permanent magnet were performed using this system. We also describe a method to distinguish crystallographically homogeneous particles found in powder-form samples.

  2. Sizes of X-ray radiation coherent domains in thin SmS films and their visualization

    Science.gov (United States)

    Sharenkova, N. V.; Kaminskii, V. V.; Petrov, S. N.

    2011-09-01

    The size of X-ray radiation coherent domains (250 ± 20 Å) is determined in a thin polycrystalline SmS film using X-ray diffraction patterns (θ-2θ scanning, DRON-2 diffractometer, Cu K α radiation) and the Selyakov-Scherrer formula with allowance for the effect of microstrains. An image of this film is taken with a transmission electron microscope, and regions with a characteristic size of 240 Å are clearly visible in it. It is concluded that X-ray radiation coherent domains are visualized.

  3. Application of synchrotron radiation to x-ray fluorescence analysis of trace elements

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.

    1986-08-01

    The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented

  4. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays.

    Science.gov (United States)

    Azman, N Z Noor; Siddiqui, S A; Low, I M

    2013-12-01

    Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2-10 vol% WO3 loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10-40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO3-epoxy composites in the energy range of 10-25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30-40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO3-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25-49 kV) were in the range of 15-25 keV. Similarly, for a radiology unit operating at 40-60 kV, the equivalent energy range was 25-40 keV, and for operating voltages greater than 60 kV (i.e., 70-100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO3 loading resulted in deterioration of flexural strength, modulus and hardness. © 2013.

  5. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuka, Shinji, E-mail: ohsuka@crl.hpk.co.jp [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202 (Japan); Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Nakano, Tomoyasu [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Ray-Focus Co. Ltd., 6009 Shinpara, Hamakita-ku, Hamamatsu-City, 434-0003 (Japan); Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  6. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    Science.gov (United States)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  7. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Noor Azman, N.Z. [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia); School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Siddiqui, S.A. [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia); Low, I.M., E-mail: j.low@curtin.edu.au [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia)

    2013-12-01

    Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2–10 vol% WO{sub 3} loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10–40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO{sub 3}-epoxy composites in the energy range of 10–25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30–40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO{sub 3}-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25–49 kV) were in the range of 15–25 keV. Similarly, for a radiology unit operating at 40–60 kV, the equivalent energy range was 25–40 keV, and for operating voltages greater than 60 kV (i.e., 70–100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO{sub 3} loading resulted in deterioration of flexural strength, modulus and hardness. - Highlights: • Nano-sized WO{sub 3}-epoxy composites have superior x-ray shielding capability. • No size effect in x-ray attenuation was observed at 30–40 keV. • An optimum filler loading for improving the mechanical properties of WO{sub 3}-epoxy composites.

  8. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  9. Quantitative X-ray microtomography with synchrotron radiation

    International Nuclear Information System (INIS)

    Donath, T.

    2007-01-01

    Synchrotron-radiation-based computed microtomography (SR μ CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR μ CT measurements have been further improved by enhancements that were made to the SR μ CT apparatus and to the reconstruction chain. For high-resolution SR μ CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR μ CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  10. Source of X-ray radiation based on back compton scattering

    CERN Document Server

    Bulyak, E V; Karnaukhov, I M; Kononenko, S G; Lapshin, V G; Mytsykov, A O; Telegin, Yu P; Shcherbakov, A A; Zelinsky, Andrey Yurij

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 sup - sup 7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  11. Source of X-ray radiation based on back compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A.Yu

    2000-06-21

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10{sup -7} m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  12. Source of X-ray radiation based on back compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A.; Zelinsky, A.Yu.

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 -7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam

  13. Wavelength dispersive X-ray absorption fine structure imaging by parametric X-ray radiation

    International Nuclear Information System (INIS)

    Inagaki, Manabu; Sakai, Takeshi; Sato, Isamu; Hayakawa, Yasushi; Nogami, Kyoko; Tanaka, Toshinari; Hayakawa, Ken; Nakao, Keisuke

    2008-01-01

    The parametric X-ray radiation (PXR) generator system at Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University is a monochromatic and coherent X-ray source with horizontal wavelength dispersion. The energy definition of the X-rays, which depends on the horizontal size of the incident electron beam on the generator target crystal, has been investigated experimentally by measuring the X-ray absorption near edge structure (XANES) spectra on Cu and CuO associated with conventional X-ray absorption imaging technique. The result demonstrated the controllability of the spectrum resolution of XANES by adjusting of the horizontal electron beam size on the target crystal. The XANES spectra were obtained with energy resolution of several eV at the narrowest case, which is in qualitative agreement with the energy definition of the PXR X-rays evaluated from geometrical consideration. The result also suggested that the wavelength dispersive X-ray absorption fine structure measurement associated with imaging technique is one of the promising applications of PXR. (author)

  14. Refractive optics to compensate x-ray mirror shape-errors

    Science.gov (United States)

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian

    2017-08-01

    Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.

  15. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses

    International Nuclear Information System (INIS)

    Huda, Walter; Lieberman, Kristin A.; Chang, Jack; Roskopf, Marsha L.

    2004-01-01

    We investigated how patient age, size and composition, together with the choice of x-ray technique factors, affect radiation doses in head computed tomography (CT) examinations. Head size dimensions, cross-sectional areas, and mean Hounsfield unit (HU) values were obtained from head CT images of 127 patients. For radiation dosimetry purposes patients were modeled as uniform cylinders of water. Dose computations were performed for 18x7 mm sections, scanned at a constant 340 mAs, for x-ray tube voltages ranging from 80 to 140 kV. Values of mean section dose, energy imparted, and effective dose were computed for patients ranging from the newborn to adults. There was a rapid growth of head size over the first two years, followed by a more modest increase of head size until the age of 18 or so. Newborns have a mean HU value of about 50 that monotonically increases with age over the first two decades of life. Average adult A-P and lateral dimensions were 186±8 mm and 147±8 mm, respectively, with an average HU value of 209±40. An infant head was found to be equivalent to a water cylinder with a radius of ∼60 mm, whereas an adult head had an equivalent radius 50% greater. Adult males head dimensions are about 5% larger than for females, and their average x-ray attenuation is ∼20 HU greater. For adult examinations performed at 120 kV, typical values were 32 mGy for the mean section dose, 105 mJ for the total energy imparted, and 0.64 mSv for the effective dose. Increasing the x-ray tube voltage from 80 to 140 kV increases patient doses by about a factor of 5. For the same technique factors, mean section doses in infants are 35% higher than in adults. Energy imparted for adults is 50% higher than for infants, but infant effective doses are four times higher than for adults. CT doses need to take into account patient age, head size, and composition as well as the selected x-ray technique factors

  16. X ray reflection masks: Manufacturing, characterization and first tests

    Science.gov (United States)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  17. Radiation safety in X-ray facilities

    International Nuclear Information System (INIS)

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2

  18. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  19. Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order Harmonic Generation

    CERN Document Server

    Jaeglé, Pierre

    2006-01-01

    Extreme ultraviolet radiation, also referred to as soft X-rays or XUV, offers very special optical properties. The X-UV refractive index of matter is such that normal reflection cannot take place on polished surfaces whereas beam transmission through one micrometer of almost all materials reduces to zero. Therefore, it has long been a difficult task to imagine and to implement devices designed for complex optics experiments in this wavelength range. Thanks to new sources of coherent radiation - XUV-lasers and High Order Harmonics - the use of XUV radiation, for interferometry, holography, diffractive optics, non-linear radiation-matter interaction, time-resolved study of fast and ultrafast phenomena and many other applications, including medical sciences, is ubiquitous.

  20. Radiation-driven winds in x-ray binaries

    International Nuclear Information System (INIS)

    Friend, D.B.; Castor, J.I.

    1982-01-01

    We discuss the properties of a radiation-driven stellar wind in an X-ray binary system. The Castor, Abbott, Klein line-driven wind model is used, but the effects of the compact companion (gravity and continuum radiation pressure) and the centrifugal force due to orbital motion are included. These forces destroy the spherical symmetry of the wind and can make the mass loss and accretion strong functions of the size of the primary relative to its critical potential lobe. We in most systems the wind alone could power the X-ray emission. It also appears that, in the evolution of these systems, there would be a continuous transition from wind accretion to critical potential lobe overflow. The model is also used to make a prediction about the nature of a suspected binary system which is not known to be an X-ray emitter

  1. Field size and centring for conventional X-ray equipment

    International Nuclear Information System (INIS)

    Klimpel, H.; Kreienfeld, H.; Overbeck, R.

    1989-01-01

    Since 1973, all X-ray equipment for medical applications in the Federal Republic of Germany has had to be examined according to the requirements of the German ''Rontgenverordnung'' before it is used on patients and after each essential modification of design or construction. These examinations are carried out by inspectors appointed by the authorities, e.g. TUV. The field size adjustment and the centring of the radiation beam in relation to the image reception area is checked, along with other tests. To increase quality assurance in X-ray diagnosis, since the mid-1980s X-ray equipment has also been subject to in-service inspections to an increasing extent. (author)

  2. Copper-micrometer-sized diamond nanostructured composites

    International Nuclear Information System (INIS)

    Nunes, D; Livramento, V; Fernandes, H; Silva, C; Carvalho, P A; Shohoji, N; Correia, J B

    2011-01-01

    Reinforcement of a copper matrix with diamond enables tailoring the properties demanded for thermal management applications at high temperature, such as the ones required for heat sink materials in low activated nuclear fusion reactors. For an optimum compromise between thermal conductivity and mechanical properties, a novel approach based on multiscale diamond dispersions is proposed: a Cu-nanodiamond composite produced by milling is used as a nanostructured matrix for further dispersion of micrometer-sized diamond (μDiamond). A series of Cu-nanodiamond mixtures have been milled to establish a suitable nanodiamond fraction. A refined matrix with homogeneously dispersed nanoparticles was obtained with 4 at.% μDiamond for posterior mixture with microdiamond and subsequent consolidation. Preliminary consolidation by hot extrusion of a mixture of pure copper and μDiamond has been carried out to define optimal processing parameters. The materials produced were characterized by x-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.

  3. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuepeng; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the “virtual” X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  4. Management of diagnostic x-ray radiation in developing countries

    International Nuclear Information System (INIS)

    Date, T.

    2000-01-01

    The purpose of this study is to provide a simple, inexpensive, and effective method to prevent the scattering of x-ray radiation by using a lead apron in the x-ray rooms of developing countries. In developed countries, the scattering of x-ray radiation among patients and radiographers in diagnostic x-ray rooms has been minimized by various methods. However, in some developing countries, scattered x-ray radiation has not yet been adequately contained. The policy of As Law As Reasonably Achievable (ALARA) requires that patients who are waiting for their examinations must be protected from scattered x-ray radiation. However, from the author's experience, protection from scattered x-ray radiation in x-ray rooms is often insufficient in developing countries. In addition, major public hospitals in big cities are overwhelmed with patients because radiology resources in developing countries are concentrated in the big cities. Moreover, the situation is made worse by short working hours in public hospitals. Hours from 10 a.m. to 3 p.m. are typical. Because of the circumstances, radiographers, who are in a rush to finish all of the examinations within their normal working hours, sometimes allow patients to enter the x-ray rooms while they are waiting for their examinations. Chest and abdominal x-rays are the most common kinds of diagnostic x-ray examination in developing countries. Thus, in this study, anthropomorphic chest and abdominal phantoms were x-rayed for measuring the scattered x-ray radiation with and without protection using a 0.25mmPb lead apron at specific points from the anthropomorphic phantoms in the x-ray room. The lead apron was hung on a mobile apron-hanger and placed next to the anthropomorphic phantom. The scattered radiation dosimetry for chest x-rays proves that this simple method reduces scattered x-ray radiation to 15% at one-meter point and to almost 0% at the two-meter point from the anthropomorphic phantom in the x-ray room. Lead aprons are

  5. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  6. Tomographic image reconstruction using x-ray phase information

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  7. The application of synchrotron radiation to X-ray lithography

    International Nuclear Information System (INIS)

    Spiller, E.; Eastman, D.E.; Feder, R.; Grobman, W.D.; Gudat, W.; Topalian, J.

    1976-06-01

    Synchrotron radiation from the German electron synchrotron DESY in Hamburg has been used for X-ray lithograpgy. Replications of different master patterns (for magnetic bubble devices, fresnel zone plates, etc.) were made using various wavelengths and exposures. High quality lines down to 500 A wide have been reproduced using very soft X-rays. The sensitivities of X-ray resists have been evaluated over a wide range of exposures. Various critical factors (heating, radiation damage, etc.) involved with X-ray lithography using synchrotron radiation have been studied. General considerations of storage ring sources designed as radiation sources for X-ray lithography are discussed, together with a comparison with X-ray tube sources. The general conclusion is that X-ray lithography using synchrotron radiation offers considerable promise as a process for forming high quality sub-micron images with exposure times as short as a few seconds. (orig.) [de

  8. X-ray mosaic nanotomography of large microorganisms.

    Science.gov (United States)

    Mokso, R; Quaroni, L; Marone, F; Irvine, S; Vila-Comamala, J; Blanke, A; Stampanoni, M

    2012-02-01

    Full-field X-ray microscopy is a valuable tool for 3D observation of biological systems. In the soft X-ray domain organelles can be visualized in individual cells while hard X-ray microscopes excel in imaging of larger complex biological tissue. The field of view of these instruments is typically 10(3) times the spatial resolution. We exploit the assets of the hard X-ray sub-micrometer imaging and extend the standard approach by widening the effective field of view to match the size of the sample. We show that global tomography of biological systems exceeding several times the field of view is feasible also at the nanoscale with moderate radiation dose. We address the performance issues and limitations of the TOMCAT full-field microscope and more generally for Zernike phase contrast imaging. Two biologically relevant systems were investigated. The first being the largest known bacteria (Thiomargarita namibiensis), the second is a small myriapod species (Pauropoda sp.). Both examples illustrate the capacity of the unique, structured condenser based broad-band full-field microscope to access the 3D structural details of biological systems at the nanoscale while avoiding complicated sample preparation, or even keeping the sample environment close to the natural state. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Synchrotron radiation calibration for soft X-ray detector

    International Nuclear Information System (INIS)

    Ning, Jiamin; Guo, Cun; Xu, Rongkun; Jiang, Shilun; Xu, Zeping; Chen, Jinchuan; Xia, Guangxin; Xue, Feibiao; Qin, Yi

    2009-04-01

    The calibration experiments were carried out to X-ray film, scintillator and transmission grating by employing the soft X-ray station at 3W1B beam-line in Beijing synchrotron Radiation Facility. The experiments presented the black intensity curve and energy response curve of soft X-ray film. And the experimental results can be used in diagnosis of X-ray radiation characterization of Z-pinch, such as in the measurement of soft X-ray Power Meter, grating spectrometer, pinhole camera and one-dimension imaging system which can ensure precision of Z-pinch results. (authors)

  10. Development of Object Simulator for Radiation Field of Dental X-Rays

    International Nuclear Information System (INIS)

    Silva, L F; Ferreira, F C L; Sousa, F F; Cardoso, L X; Vasconcelos, E D S; Brasil, L M

    2013-01-01

    In dentistry radiography is of fundamental importance to the dentist can make an accurate diagnosis. For this it is necessary to pay attention to the radiological protection of both the professional and the patient and control image quality for an accurate diagnosis. In this work, quality control tests were performed on X-ray machines in private dental intraoral in the municipality of Marabá, where they measured the diameters of the radiation field to see if these machines are in accordance with the recommendations, thus preventing the patient is exposed to a radiation field higher than necessary. We will study the results of each X-ray machine evaluated. For this we created a phantom to assess the size of the radiation field of X-ray dental, where we measure the radiation field of each device to see if they are in accordance with the recommendations of the ordinance No. 453/98 – MS

  11. Experimental investigations of the dosimetric features of x-ray radiation used in x-ray diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Prostyakova, M A

    1975-10-01

    For radiation hygiene estimates of the extent of the irradiation of various organs and tissues in roentgenological investigations, the quality and quantity of the primary radiation beam and its behaviour in the irradiated medium are assessed. It is shown that the effective energy of x-rays generated at 50-100 kV and with different radiation field dimensions at different depths in a tissue-equivalent irradiated medium is more or less constant, varying within the range 25 to 32 keV. The constancy of effective x-ray energies in a tissue-equivalent medium enables one to use, for different x-ray tube regimes, constant values of the roentgen-rad conversion factor for soft tissue and bone tissue. The investigations confirm the desirability of using high voltages across the x-ray tube in practical x-ray work.

  12. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  13. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  14. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    International Nuclear Information System (INIS)

    Jacob, J; Ong, M; Wargo, P

    2005-01-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  15. X-Ray and Gamma-Ray Radiation Detector

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed is a semiconductor radiation detector for detecting X-ray and / or gamma-ray radiation. The detector comprises a converter element for converting incident X-ray and gamma-ray photons into electron-hole pairs, at least one cathode, a plurality of detector electrodes arranged with a pitch...... (P) along a first axis, a plurality of drift electrodes, a readout circuitry being configured to read out signals from the plurality of detector electrodes and a processing unit connected to the readout circuitry and being configured to detect an event in the converter element. The readout circuitry...... is further configured to read out signals from the plurality of drift electrodes, and the processing unit is further configured to estimate a location of the event along the first axis by processing signals obtained from both the detector electrodes and the drift electrodes, the location of the event along...

  16. New target for high-intensity laser-matter interaction: Gravitational flow of micrometer-sized powders

    International Nuclear Information System (INIS)

    Servol, M.; Quere, F.; Bougeard, M.; Monot, P.; Martin, Ph.; Faenov, A.Ya; Pikuz, T.A.; Audebert, P.; Francucci, M.; Petrocelli, G.

    2005-01-01

    The design of efficient targets for high-intensity laser-matter interaction is essential to fully exploit the advantages of laser-induced photons or particles sources. We present an advantageous kind of target, consisting in a free gravitational flow of micrometer-sized powder, and describe its main technical characteristics. We demonstrate a laser-induced keV x-ray source using this target, and show that the photon flux obtained for the Kα line of Si by irradiating different silica powders is comparable to the one obtained with a bulk silica target

  17. Preliminary study of determination of UO2 grain size using X-ray diffraction method

    International Nuclear Information System (INIS)

    Mulyana, T.; Sambodo, G. D.; Juanda, D.; Fatchatul, B.

    1998-01-01

    The determination of UO 2 grain size has accomplished using x-ray diffraction method. The UO 2 powder is obtained from sol-gel process. A copper target as radiation source in the x-ray diffractometer was used in this experiment with CμKα characteristic wavelength 1.54433 Angstrom. The result indicate that the UO 2 mean grain size on presintered (temperature 800 o C) has the value 456.8500 Angstrom and the UO 2 mean grain size on sintered (temperature 1700 o C) has value 651.4934 Angstrom

  18. An x-ray microprobe using focussing optics with a synchrotron radiation source

    International Nuclear Information System (INIS)

    Thompson, A.C.; Underwood, J.H.; Wu, Y.; Giauque, R.D.

    1989-01-01

    An x-ray microprobe can be used to produce maps of the concentration of elements in a sample. Synchrotron radiation provides x-ray beams with enough intensity and collimation to make possible elemental images with femtogram sensitivity. The use of focussing x-ray mirrors made from synthetic multilayers with a synchrotron x-ray beam allows beam spot sizes of less than 10 μm /times/ 10 μm to be produced. Since minimal sample preparation is required and a vacuum environment is not necessary, there will be a wide variety of applications for such microprobes. 8 refs., 6 figs

  19. Measurement of spherical compound refractive X-ray lens at ANKA synchrotron radiation source

    International Nuclear Information System (INIS)

    Dudchik, Yu.I.; Simon, R.; Baumbach, T.

    2007-01-01

    Parameters of compound refractive X-ray lens were measured at ANKA synchrotron radiation source. The lens consists of 224 spherical concave epoxy microlenses formed inside glass capillary. The curvature radius of individual microlens is equal to 100 microns. Measured were: X-ray focal spot, lens focal length and gain in intensity. The energy of X-ray beam was equal to 12 keV and 14 keV. It is shown that when X-ray lens is used, the gain in intensity of the X-ray beam in some cases may exceed value of 100. Tested lens is suitable to focus X-rays into, at least, 2-microns in size spot. (authors)

  20. Radiation chemistry of polymeric X-ray resists; Zur Strahlenchemie polymerer Roentgenresists

    Energy Technology Data Exchange (ETDEWEB)

    Wollersheim, O.

    1995-03-01

    In this study, the radiation chemical reactions in poly(methyl-methacrylate) (PMMA) and homo- and copolymers of lactide and glycollide during X-ray exposure with synchrotron radiation from the Bonn ELSA electron storage ring are quantitatively analyzed. In situ studies of the irradiated PMMA and lactide/glycollide polymers with mass spectroscopy, infrared spectroscopy and ESR spectroscopy combined with ex situ methods as size exclusion chromatography and titration lead to a complete and quantitative understanding of the radiation chemical reactions in both polymer classes. The implications for the application of the polymers in the X-ray deep etch lithography, which is the appropriate process for the production of microsystem components, are discussed. (orig.)

  1. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man [Jeonbuk Technopark, Iksan (Korea, Republic of); Park, Mi-Ran; Cho, Seung-Ryong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chon, Kwon-Su [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-12-15

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  2. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    International Nuclear Information System (INIS)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won; Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man; Park, Mi-Ran; Cho, Seung-Ryong; Chon, Kwon-Su

    2014-01-01

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics

  3. Measuring scatter radiation in diagnostic x rays for radiation protection purposes

    International Nuclear Information System (INIS)

    Panayiotakis, George; Vlachos, Ioannis; Delis, Harry; Tsantilas, Xenophon; Kalyvas, Nektarios; Kandarakis, Ioannis

    2015-01-01

    During the last decades, radiation protection and dosimetry in medical X-ray imaging practice has been extensively studied. The purpose of this study was to measure secondary radiation in a conventional radiographic room, in terms of ambient dose rate equivalent H*(10) and its dependence on the radiographic exposure parameters such as X-ray tube voltage, tube current and distance. With some exceptions, the results indicated that the scattered radiation was uniform in the space around the water cylindrical phantom. The results also showed that the tube voltage and filtration affect the dose rate due to the scatter radiation. Finally, the scattered X-ray energy distribution was experimentally calculated. (authors)

  4. Evaluation of radiation protection in x rays room design in diagnostic radiography department in Omdurman locality

    International Nuclear Information System (INIS)

    Adam, Ahmed yusif Abdelrahman

    2013-03-01

    The purpose of this study is conducted in order to evaluate the application of radiation protection in x-ray rooms design in diagnosis radiology department, evaluate personal monitoring devices, to assess primary scatter and leakage radiation dose, to assess monitoring devices if available, in period from March 2013 to August 2013. The design data included room size, control room size, manufacture of equipment, room surrounding areas, workload of all equipment rooms, type of x-ray equipment, radiation worker's in all hospital, number of patient in each shift, structural material and shielding, K vp and m As used in x-ray room department during examination testing. The results of this study show that there is x-ray room design, the design of x-ray equipment is accepted according to the radiation safety institute team of quality control. Also the study shows that the radiation protection devices are available and in a good condition and enough in number. The study shows that there are not personal monitoring devices and services. the radiological technologist are well trained. Also the study investigation the radiation protection in x-ray room in diagnostic department in Omdurman locality. Finally the study shows that there is compact able to ICRP recommended and National quality control in Sudan Atomic Energy Council exception, Alwedad, Abusied and Blue Nile there are have not control room concludes that there is only in relationship hospital have a window without shield.(Author)

  5. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging

    International Nuclear Information System (INIS)

    Dong Xue; Niu Tianye; Jia Xun; Zhu Lei

    2012-01-01

    Purpose: X-ray cone-beam CT (CBCT) is being increasingly used for various clinical applications, while its performance is still hindered by image artifacts. This work investigates a new source of reconstruction error, which is often overlooked in the current CBCT imaging. The authors find that the x-ray flat field intensity (I 0 ) varies significantly as the illumination volume size changes at different collimator settings. A wrong I 0 value leads to inaccurate CT numbers of reconstructed images as well as wrong scatter measurements in the CBCT research. Methods: The authors argue that the finite size of x-ray focal spot together with the detector glare effect cause the I 0 variation at different illumination sizes. Although the focal spot of commercial x-ray tubes typically has a nominal size of less than 1 mm, the off-focal-spot radiation covers an area of several millimeters on the tungsten target. Due to the large magnification factor from the field collimator to the detector, the penumbra effects of the collimator blades result in different I 0 values for different illumination field sizes. Detector glare further increases the variation, since one pencil beam of incident x-ray is scattered into an area of several centimeters on the detector. In this paper, the authors study these two effects by measuring the focal spot distribution with a pinhole assembly and the detector point spread function (PSF) with an edge-spread function method. The authors then derive a formula to estimate the I 0 value for different illumination field sizes, using the measured focal spot distribution and the detector PSF. Phantom studies are carried out to investigate the accuracy of scatter measurements and CT images with and without considering the I 0 variation effects. Results: On our tabletop system with a Varian Paxscan 4030CB flat-panel detector and a Varian RAD-94 x-ray tube as used on a clinical CBCT system, the focal spot distribution has a measured full

  6. Dense X-pinch plasmas for x-ray microlithography

    International Nuclear Information System (INIS)

    Kalantar, D.H.; Hammer, D.A.; Qi, N.; Mittal, K.C.

    1990-01-01

    The authors report experimental results from a study of the radiation emission from aluminum and magnesium x-pinch experiments. The single cross x-pinch, driven by the 0.5 TW, 40ns pulse width Lion accelerator, consists of 2-8 fine wires stretched between the output electrodes of Lion so as to touch at a single point. The wires were twisted up to 360 degrees at the crossing point. The number and size of Al and Mg wires were varied in order to optimize the K-shell line radiation. Diagnostics used for the experiments included pinhole photography, streak imaging, filtered photoconducting diodes and x-ray crystal spectroscopy. The source size and distribution are determined through x-ray pinhole photographs. The radiation energy spectrum is determined by x-ray spectroscopy and attenuation through filters. Energy intensities were obtained from the filtered photoconducting diodes

  7. Six dimensional X-ray Tensor Tomography with a compact laboratory setup

    Science.gov (United States)

    Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.

    2016-09-01

    Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.

  8. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  9. Vertical beam size measurement in the CESR-TA e{sup +}e{sup −} storage ring using x-rays from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M.P.; Fontes, E. [Cornell University, Ithaca, NY 14853 (United States); Heltsley, B.K., E-mail: bkh2@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Hopkins, W.; Lyndaker, A.; Peterson, D.P.; Rider, N.T.; Rubin, D.L.; Savino, J.; Seeley, R.; Shanks, J. [Cornell University, Ithaca, NY 14853 (United States); Flanagan, J.W. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2014-06-01

    We describe the construction and operation of an X-ray beam size monitor (xBSM), a device measuring e{sup +} and e{sup −} beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of 10–100μm on a turn-by-turn, bunch-by-bunch basis at e{sup ±} beam energies of ∼2GeV. At such beam energies the xBSM images X-rays of ϵ≈1–10keV (λ≈0.1–1nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50μm pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1 mA (2.5×10{sup 9} particles) per bunch and inter-bunch spacing of as little as 4 ns. At E{sub b}=2.1GeV, systematic precision of ∼1μm is achieved for a beam size of ∼12μm; this is expected to scale as ∝1/σ{sub b} and ∝1/E{sub b}. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and X-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.

  10. Radiation risks for patients having X rays

    International Nuclear Information System (INIS)

    Hale, J.; Thomas, J.W.

    1985-01-01

    In addition to radiation from naturally occurring radioactive materials and cosmic rays, individuals in developed countries receive radiation doses to bone marrow and gonads from the medical diagnostic use of X rays. A brief discussion of radiation epidemiology shows that deleterious effects are low even when doses are high. The concept of acceptable risk is introduced to help evaluate the small, but still existent, risks of radiation dose. Examples of bone marrow and gonadal doses for representative X-ray examinations are presented along with the current best estimates, per unit of X-ray dose, of the induction of leukemia or of genetic harm. The risk to the patient from an examination can then be compared with the normal risk of mortality from leukemia or of the occurrence of genetic defects. The risk increase is found to be very low. The risks to unborn children from radiographic examinations are also discussed. The benefit to the patient from information obtained from the examination must be balanced against the small risks

  11. Radiation processing with high-energy X-rays

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Stichelbaut, Frederic

    2009-01-01

    The physical, chemical or biological characteristics of selected commercial products and materials can be improved by radiation processing. The ionizing energy can be provided by accelerated electrons with energies between 75 keV and 10 MeV, gamma rays from cobalt-60 with average energies of 1.25 MeV or X-rays with maximum energies up to 7.5 MeV. Electron beams are preferred for thin products, which are processed at high speeds. Gamma rays are used for products that are too thick for treatment with electron beams. High-energy X-rays can also be used for these purposes because their penetration in solid materials is similar to or even slightly greater than that of gamma rays. Previously, the use of X-rays had been inhibited by their slower processing rates and higher costs when compared with gamma rays. Since then, the price of cobalt-60 sources has been increased and the radiation intensity from high-energy, high-power X-ray generators has also increased. For facilities requiring at least 2 MCi of cobalt-60, the capital and operating costs of X-ray facilities with equivalent processing rates can be less than that of gamma-ray irradiators. Several high-energy electron beam facilities have been equipped with removable X-ray targets so that irradiation processes can be done with either type of ionizing energy. A new facility is now being built which will be used exclusively in the X-ray mode to sterilize medical products. Operation of this facility will show that high-energy, high-power X-ray generators are practical alternatives to large gamma-ray sources. (author)

  12. Radiation doses for X-ray diagnosis teeth in dental medicine

    International Nuclear Information System (INIS)

    Direkov, Lyubomir

    2009-01-01

    X-rays are the first ionizing radiation, which are applied in medicine for diagnostic radiology and X-ray therapy. While in the beginning they are mainly used for X-ray photos of the chest /lungs and in severe fractures of the limbs, then in recent years they are widely applied in diagnostics of teeth in dental medicine. Considering that caries is a widespread disease, both in children and adults, and it requires repeated x-ray photographs of the damaged teeth for the individual, the total radiation doses, which reflect on people from the X-rays are at high values. In order to reduce external exposure to other organs /mainly thyroid gland/ by X-ray pictures of teeth, it should be used with special lead aprons with large coefficient of reduction. Keywords: doses of radiation, X-ray machines, dental, x-ray pictures of teeth, protection sources

  13. Small-Size High-Current Generators for X-Ray Backlighting

    Science.gov (United States)

    Chaikovsky, S. A.; Artyomov, A. P.; Zharova, N. V.; Zhigalin, A. S.; Lavrinovich, I. V.; Oreshkin, V. I.; Ratakhin, N. A.; Rousskikh, A. G.; Fedunin, A. V.; Fedushchak, V. F.; Erfort, A. A.

    2017-12-01

    The paper deals with the soft X-ray backlighting based on the X-pinch as a powerful tool for physical studies of fast processes. Proposed are the unique small-size pulsed power generators operating as a low-inductance capacitor bank. These pulse generators provide the X-pinch-based soft X-ray source (hν = 1-10 keV) of micron size at 2-3 ns pulse duration. The small size and weight of pulse generators allow them to be transported to any laboratory for conducting X-ray backlighting of test objects with micron space resolution and nanosecond exposure time. These generators also allow creating synchronized multi-frame radiographic complexes with frame delay variation in a broad range.

  14. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  15. Synthesis of nanoparticles through x-ray radiolysis using synchrotron radiation

    Science.gov (United States)

    Yamaguchi, A.; Okada, I.; Fukuoka, T.; Ishihara, M.; Sakurai, I.; Utsumi, Y.

    2016-09-01

    The synthesis and deposition of nanoparticles consisting of Cu and Au in a CuSO4 solution with some kinds of alcohol and electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The functional group of alcohol plays an important in nucleation, growth and aggregation process of copper and cupric oxide particles. We found that the laboratory X-ray source also enables us to synthesize the NPs from the metallic solution. As increasing X-ray exposure time, the full length at half width of particle size distribution is broader and higher-order nanostructure containing NPs clusters is formed. The surface-enhanced Raman scattering (SERS) of 4, 4'-bipyridine (4bpy) in aqueous solution was measured using higher-order nanostructure immobilized on silicon substrates under systematically-varied X-ray exposure. This demonstration provide a clue to develop a three-dimensional printing and sensor for environmental analyses and molecular detection through simple SERS measurements.

  16. Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites

    International Nuclear Information System (INIS)

    Noor Azman, N.Z.; Siddiqui, S.A.; Hart, R.; Low, I.M.

    2013-01-01

    The effect of particle size, filler loadings and x-ray tube voltage on the x-ray transmission in WO 3 -epoxy composites has been investigated using the mammography unit and a general radiography unit. Results indicate that nano-sized WO 3 has a better ability to attenuate the x-ray beam generated by lower tube voltages (25–35 kV) when compared to micro-sized WO 3 of the same filler loading. However, the effect of particle size on x-ray transmission was negligible at the higher x-ray tube voltages (40–120 kV). - Highlights: ► Investigated the effect of particle size of WO 3 on the x-ray attenuation ability. ► Nano-sized WO 3 has a better ability to attenuate lower x-ray energies (22–49 kV p ). ► Particle size has negligible effect at the higher x-ray energy range (40–120 kV p ).

  17. X-ray and nuclear radiation facilities: personnel safety features

    International Nuclear Information System (INIS)

    Mason, W.J.; Pipes, E.W.; Rucker, T.R.; Smith, D.N.; West, C.M.

    1976-10-01

    The Oak Ridge Y-12 Plant is a research and production installation. The nature and versatility of this work require the use of a large number and variety of x-ray and radiographic sources for nondestructive testing and material analyses. Presently, there are over 80 x-ray generators in the plant, which range in size from small, portable units which operate at a less than 50 kilovolts potential and 0.1 milliampere current to an electron linear accelerator which operates at 12-million electron volts and produces a radiation beam of such intensity that it could deliver a lethal dose to man in a fraction of a minute. There are also almost 50 gamma and neutron sources in use in the plant. These units range in size from a few millicuries to several hundred curies. Although the radiation safety at each of these facilities was considered adequate, the administrative and maintenance procedures became unduly complicated. Accordingly, engineering standards and uniform operating procedures were considered necessary to alleviate these complications and, in so doing, provide an improved measure of radiation safety. Development and implementation of these standards are described and the general philosophy and approach to these standards are outlined. Use of a matrix (type of installation versus radiation safety feature) to facilitate equipment classification and personnel safety feature requirements is presented. Included is a set of the standards showing formats, matrices, etc., and the detailed standards for each safety feature

  18. X-ray diffraction on nanoparticles chromium and nickel oxides obtained by gelatin using synchrotron radiation

    International Nuclear Information System (INIS)

    Menezes, Alan Silva de; Medeiros, Angela Maria de Lemos; Miranda, Marcus Aurelio Ribeiro; Almeida, Juliana Marcela Abraao; Remedios, Claudio Marcio Rocha; Silva, Lindomar R.D. da; Gouveia, S.T.; Sasaki, Jose Marcos; Jardim, P.M.

    2003-01-01

    Full text: Cr 2 O 3 nanoparticles has many applications like green pigments, wear resistance, and coating materials for thermal protection. Several methods to produce chromium oxide nanoparticles have already been studied, gas condensation, laser induced pyrolysis, microwave plasma, sol-gel and gamma radiation methods. Many applications for this kind of material can be provide concerning the particle size. For instance, particle size approximately of 200 nm are preferable as pigment due to its opacity and below 50 nm can be used as transparent pigment. In this work we have demonstrated that chromium and nickel oxide nanoparticles can be prepared by gelatin method. X-Ray diffraction (XRD) show that mean particle size for chromium oxide of 15-150 nm and nickel oxide of 90 nm were obtained for several temperature of sintering. The X-Ray powder diffraction pattern were performed using Synchrotron Radiation X-Ray source at XRD1 beamline in National Laboratory of Light Synchrotron (LNLS). (author)

  19. Leakage and scattered radiation from hand-held dental x-ray unit

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    2007-01-01

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR ΙΙΙ was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR ΙΙΙ was exposed with portable X-ray unit 6.39 μGy, and the mean dose with fixed X-ray unit 3.03 μGy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 μGy and with fixed X-ray unit the mean dose was 0.68 μGy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography

  20. Leakage and scattered radiation from hand-held dental x-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-06-15

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR {iota}{iota}{iota} was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR {iota}{iota}{iota} was exposed with portable X-ray unit 6.39 {mu}Gy, and the mean dose with fixed X-ray unit 3.03 {mu}Gy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 {mu}Gy and with fixed X-ray unit the mean dose was 0.68 {mu}Gy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography.

  1. Observation of parametric X-ray radiation by an imaging plate

    International Nuclear Information System (INIS)

    Takabayashi, Y.; Shchagin, A.V.

    2012-01-01

    We have demonstrated experimentally the application of an imaging plate for registering the angular distribution of parametric X-ray radiation. The imaging plate was used as a two-dimensional position-sensitive X-ray detector. High-quality images of the fine structure in the angular distributions of the yield around the reflection of the parametric X-ray radiation produced in a silicon crystal by a 255-MeV electron beam from a linear accelerator have been observed in the Laue geometry. A fairly good agreement between results of measurements and calculations by the kinematic theory of parametric X-ray radiation is shown. Applications of the imaging plates for the observation of the angular distribution of X-rays produced by accelerated particles in a crystal are also discussed.

  2. THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Michael T.; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Becker, Peter A. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Gottlieb, Amy M.; Marcu-Cheatham, Diana M.; Pottschmidt, Katja [Department of Physics and Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Fürst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hemphill, Paul B. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Schwarm, Fritz-Walter; Wilms, Jörn [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr, 7, D-96049 Bamberg (Germany)

    2016-11-10

    We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.

  3. Low-energy x-ray dosimetry studies (7 to 17.5 keV) with synchroton radiation

    International Nuclear Information System (INIS)

    Ipe, N.E.; Bellamy, H.; Flood, J.R.

    1995-06-01

    Unique properties of synchrotron radiation (SR), such as its high intensity, brightness, polarization, and broad spectral distribution (extending from x-ray to infra-red wavelengths) make it an attractive light source for numerous experiments. As SR facilities are rapidly being built all over the world, they introduce the need for low-energy x-ray dosemeters because of the potential radiation exposure to experimenters. However, they also provide a unique opportunity for low-energy x-ray dosimetry studies because of the availability of monochromatic x-ray beams. Results of such studies performed at the Stanford Synchrotron Radiation Laboratory are described. Lithium fluoride TLDs (TLD-100) of varying thicknesses (0.015 to 0.08 cm) were exposed free in air to monochromatic x-rays (7 to 17.5 keV). These exposures were monitored with ionization chambers. The response (nC/Gy) was found to increase with increasing TLD thickness and with increasing beam energy. A steeper increase in response with increasing energy was observed with the thicker TLDs. The responses at 7 and 17.5 keV were within a factor of 2.3 and 5.2 for the 0.015 and 0.08 cm-thick TLDs, respectively. The effects of narrow (beam size smaller than the dosemeter) and broad (beam size larger than the dosemeter) beams on the response of the TLDs are also reported

  4. Use of a synchrotron radiation x-ray microprobe for elemental analysis at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1980-01-01

    The National Synchrotron Light Source (NSLS) is a facility consisting of a 700 MeV and a 2.5 GeV electron storage ring and dedicated to providing synchrotron radiation in the energy range from the vacuum ultraviolet to high energy x rays. Some of the properties of synchrotron radiation that contribute to its usefulness for x-ray fluorescence are: a continuous, tunable energy spectrum, strong collimation in the horizontal plane, high polarization in the storage ring plane, and relatively low energy deposition. The highest priority is for the development of an x-ray microprobe beam line capable of trace analysis in the parts per million range with spatial resolution as low as one micrometer. An eventual capability for bulk sample analysis is also planned with sensitivities in the more favorable cases beings low as 50 parts per billion in dry biological tissue. The microprobe technique has application to a variety of fields including the geological, medical, materials and environmental sciences. Examples of investigations include multielemental trace analysis across grain boundaries for the study of diffusion and cooling processes in geological and materials sciences samples; in leukocytes and other types of individual cells for studying the relationship between trace element concentrations and disease or nutrition; and in individual particles in air pollution samples

  5. Time Resolved X-Ray Spot Size Diagnostic

    CERN Document Server

    Richardson, Roger; Falabella, Steven; Guethlein, Gary; Raymond, Brett; Weir, John

    2005-01-01

    A diagnostic was developed for the determination of temporal history of an X-ray spot. A pair of thin (0.5 mm) slits image the x-ray spot to a fast scintillator which is coupled to a fast detector, thus sampling a slice of the X-Ray spot. Two other scintillator/detectors are used to determine the position of the spot and total forward dose. The slit signal is normalized to the dose and the resulting signal is analyzed to get the spot size. The position information is used to compensate for small changes due to spot motion and misalignment. The time resolution of the diagnostic is about 1 ns and measures spots from 0.5 mm to over 3 mm. The theory and equations used to calculate spot size and position are presented, as well as data. The calculations assume a symmetric, Gaussian spot. The spot data is generated by the ETA II accelerator, a 2kA, 5.5 MeV, 60ns electron beam focused on a Tantalum target. The spot generated is typically about 1 mm FWHM. Comparisons are made to an X-ray pinhole camera which images th...

  6. Angle dependent focal spot size of a conical X-ray target

    International Nuclear Information System (INIS)

    Saeed Raza, Hamid; Jin Kim, Hyun; Nam Kim, Hyun; Oh Cho, Sung

    2015-01-01

    Misaligned phantoms may severely affect the focal spot calculations. A method is proposed to determine the geometry of the X-ray target and the position of the image radiograph around the X-ray target to get a relatively smaller focal spot size. Results reveal that the focal spot size is not always isotropic around the target but it decreases as the point of observation shifts radially away from the center line of the conical X-ray target. This research will help in producing high quality X-ray images in multi-directions by properly aligning the phantoms and the radiograph tallies. - Highlights: • Misaligned phantoms may severely affect the focal spot calculations. • The aim of this research is to analyze systematically the angle dependent behavior of the focal spot size around a conical shaped X-ray target. • A general purpose Monte Carlo (MCNP5) computer code is used to achieve a relatively small focal spot size. • Angular distribution of the X-ray focal spot size mainly depends on the angular orientation of the phantom and its aligned FIR tally. • This research will help in producing high quality X-ray images in multi-directions

  7. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    CERN Document Server

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  8. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  9. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    International Nuclear Information System (INIS)

    Jones, Keith W.

    1999-01-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  10. A model of parametric X-ray radiation for application to diagnostic radiology

    International Nuclear Information System (INIS)

    Di Domenico, G.; Cardarelli, P.; Gambaccini, M.; Marziani, M.; Taibi, A.; Comandini, A.

    2011-01-01

    Parametric X-ray Radiation (PXR) is well known as an intense, tunable and quasi-monochromatic X-ray source. From the very first work of Ter-Mikaelian, who proposed the interaction phenomenon for Parametric X-rays many theoretical and experimental studies have investigated the characteristics of such a novel X-ray source. Within the framework of classical electrodynamics, we have thoroughly studied the physical implications of electrons moving through a medium at relativistic speed and then developed an analytical model of X-ray diffraction based on the PXR phenomenon. The model has been used to obtain information on the characteristics of PXR diffracted beam in terms of X-ray intensity, energy spectrum and angular distribution. Several crystals have been studied both in Bragg and Laue geometry and their relative yield has been compared. Preliminary results on the diagnostic potential of PXR have shown that, at a distance from the crystal which produces a size of the X-ray field useful for an imaging application, the photon yield of PXR is higher than that produced by a conventional X-ray tube, provided that a similar electron current is available.

  11. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    Science.gov (United States)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  12. Quantitative trace element analysis of individual fly ash particles by means of X-ray microfluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Vincze, L.; Somogyi, A.; Osan, J.; Vekemans, B.; Torok, S.; Janssens, K.; Adams, F. [Universitaire of Instelling Antwerp, Wilrijk (Belgium). Dept. of Chemistry

    2002-07-01

    A new quantification procedure was developed for the evaluation of X-ray microfluorescence (XRF) data sets obtained from individual particles, based on iterative Monte Carlo (MC) simulation. Combined with the high sensitivity of synchrotron radiation-induced XRF spectroscopy, the method was used to obtain quantitative information down to trace-level concentrations from micrometer-sized particulate matter. The detailed XRF simulation model was validated by comparison of calculated and experimental XRF spectra obtained for glass microsphere standards, resulting in uncertainties in the range of 3-10% for the calculated elemental sensitivities. The simulation model was applied for the quantitative analysis of X-ray tube and synchrotron radiation-induced scanning micro-XRF spectra of individual coal and wood fly ash particles originating from different Hungarian power plants. By measuring the same particles by both methods the major, minor, and trace element compositions of the particles were determined. The uncertainty of the MC based quantitative analysis scheme is estimated to be in the range of 5-30%.

  13. The X-ray transition radiation; Le rayonnement de transition X

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Ch

    2000-07-01

    The interest of producing high-energy radiation using a small-size electron accelerator is growing since many years. It appeared that such accelerators should drive x-ray sources to produce a high flux of radiation. The range of photon-energy available when using electron linacs, for example, is between a few tens of eV and the maximum electron kinetic energy. The transition radiation, which is produced when a charged particle crosses the interface between two media of different permittivities, is a very promising way due to its high production rate. We present here a study of this physical process involving moderate-energy relativistic electrons (20 MeV). We recall the main characteristics of the radiation when the interface is crossed at normal incidence and derive the analytical production yields when the interaction takes place at grazing incidence. The results for both geometries are compared. Finally, the scale laws allowing the optimization of the spectral source brilliance are presented. (author)

  14. Diamond detectors for synchrotron radiation X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    De Sio, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy)], E-mail: desio@arcetri.astro.it; Pace, E. [Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy); INFN, Sezione di Firenze, v. G. Sansone 1, Sesto Fiorentino, Firenze (Italy); Cinque, G.; Marcelli, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Achard, J.; Tallaire, A. [LIMHP-CNRS, University of Paris XIII, 99 Avenue JB Clement, 93430 Villetaneuse (France)

    2007-07-15

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices.

  15. Diamond detectors for synchrotron radiation X-ray applications

    International Nuclear Information System (INIS)

    De Sio, A.; Pace, E.; Cinque, G.; Marcelli, A.; Achard, J.; Tallaire, A.

    2007-01-01

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices

  16. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    Science.gov (United States)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  17. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    International Nuclear Information System (INIS)

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 μm that leads to a transversal coherence length of 20 μm at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy

  18. Prophylactic radiation protection in X-ray diagnostics

    International Nuclear Information System (INIS)

    Vogel, H.; Loehr, H.

    1982-01-01

    X-ray diagnosis can lead to stochastic ratidation damage such as uncreased incidence of malignant growths resp. leucemia and malformations in the child and grandchild generations as a consequence of radiation-induced mutations. Non-stocharadiation damage such as burns and lense opacification, which are in each instance clearly attributable to radiation, occur today only on account of incorrect handling of the examination method and technical defects. Normally, the risk to both patient and diagnostician is low and acceptable. Yed if adequate awareness of radiation hazards is missing - which includes full control over the X-ray appliance and knowledge of possible technical defects, the legal maximum doses may be surpassed and avoidable damage caused. (orig.) [de

  19. Additional radiation dose to population due to X-ray diagnostic procedures

    International Nuclear Information System (INIS)

    Chougule, A.

    2006-01-01

    Full text of publication follows: Discovery of X rays has revolutionised the medical diagnosis but the fact that the diagnostic radiological procedures contribute about 80 to 90 % of the radiation dose to population as compared to other man made radiation sources cannot be ignored especially when X ray diagnostic facilities are being made available to larger section of the society. The estimated frequency of radiological procedures in India is 12,000 procedures/ year/100,000 population, though it is quite less as compared to developed countries, its increasing day by day. As part of the project, a radiation protection survey of X ray installations and patient radiation dose measurement during various radiological procedures was undertaken. 193 X ray installations were surveyed and the radiation doses received by the patient during various radiological procedure was measured. For measurement of radiation doses, CaSO 4 : Dy thermoluminescence (T.L.) discs of size 13.3 mm diameter and 0.8 mm thickness were used. Pre annealed T.L. discs were fixed by adhesive tape on the patient skin at the center of entrance beam before the exposure. After exposure the T.L. discs were estimated f or entrance skin dose during that particular projection/ examination. 10,000 measurements at different centers during various radiological procedures were done. It was found that chest radiography accounts for 37 % of all radiological procedures and further it was observed that 70 % of the chest X rays were normal with out any pathology indicating scope for curtailing the unwarranted radiological procedures. The special investigations like barium swallow, barium meal and fallow through accounts for about 1.5 % of the total radiological procedures. The entrance skin dose [E.S.D.] during chest radiography was 0.3 + 0.1 mGy where as during K.U.B. and cervical spine radiography it was 6.2 + 1.1 mGy and 5.1 + 0.9 mGy respectively. The details of frequency of various radiological procedures and the

  20. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...... many complementary advantages. A brief review is presented of the history of magnetic X-ray scattering as well as recent results obtained in studies of the rare-earth magnet holmium with emphasis on instrumentational aspects. In particular, the development of a simple polarization analyzer...... to distinguish charge and magnetic scattering is described....

  1. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    International Nuclear Information System (INIS)

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    The software suite SITENNO is developed for processing diffraction data collected in coherent X-ray diffraction imaging experiments of non-crystalline particles using an X-ray free-electron laser. Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles

  2. Performances of synchrotron radiation microbeam focused by monolithic half focusing polycapillary X-ray lens

    International Nuclear Information System (INIS)

    Sun Tianxi; Liu Zhiguo; He Bo; Wei Shiqiang; Xie Yaning; Liu Tao; Hu Tiandou; Ding Xunliang

    2007-01-01

    A monolithic half focusing polycapillary X-ray lens (MHFPXRL) composed of 289,000 capillaries is used to produce a synchrotron radiation microbeam. The energy dependence of the output focal distance, focal spot size, transmission efficiency, vertical beam position, and gain in flux density of this microbeam is studied in detail. There is a slight change in the output focal distance of the MHFPXRL when the X-ray energies change

  3. Ordinance on the Protection against X-Radiation Hazards (X-Ray Ordinance)

    International Nuclear Information System (INIS)

    1987-01-01

    The ordinance refers to X-ray equipment and to stray radiation sources which generate X-radiation of at least 5 keV by means of accelerated electrons, and for this purpose apply an acceleration energy not exceeding 3 MeV. The ordinance does not apply to stray radiation sources which are used for the generation of ionizing particle radiation and thus are subject to the provisions of the Radiation Protection Ordinance. (orig./PW) [de

  4. Thumba X-ray plant: Are radiation fears justified

    International Nuclear Information System (INIS)

    Madhvanath, U.

    1978-01-01

    Technical facts about the X-ray unit located at Vikram Sarabhai Space Centre, Thumba (India) are set down to explain that it is not posing any radiation hazard as reported in a newspaper and thus radiation fears are not justifiable. It is stated that, after thorough checking, X-ray installations in this space centre cause negligible exposure even to workers who handle these units, and others practically do not get any exposure at all. (B.G.W.)

  5. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    Science.gov (United States)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  6. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    Science.gov (United States)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  7. Scheme for generating and transporting THz radiation to the X-ray experimental hall at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Decking, Winfried; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2011-12-15

    The design of a THz edge radiation source for the European XFEL is presented.We consider generation of THz radiation from the spent electron beam downstream of the SASE2 undulator in the electron beam dump area. In this way, the THz output must propagate at least for 250 meters through the photon beam tunnel to the experimental hall to reach the SASE2 X-ray hutches. We propose to use an open beam waveguide such as an iris guide as transmission line. In order to efficiently couple radiation into the iris transmission line, generation of the THz radiation pulse can be performed directly within the iris guide. The line transporting the THz radiation to the SASE2 X-ray hutches introduces a path delay of about 20 m. Since THz pump/X-ray probe experiments should be enabled, we propose to exploit the European XFEL baseline multi-bunch mode of operation, with 222 ns electron bunch separation, in order to cope with the delay between THz and X-ray pulses. We present start-to-end simulations for 1 nC bunch operation-parameters, optimized for THz pump/X-ray probe experiments.Detailed characterization of the THz and SASE X-ray radiation pulses is performed. Highly focused THz beams will approach the high field limit of 1 V/atomic size. (orig.)

  8. Costs of radiation protection in X-ray diagnosis

    International Nuclear Information System (INIS)

    Prahl, M.

    1987-01-01

    The study described investigates into the costs arising from physical protection measures against radiation, in particular from dosimetric determinations carried out in humans according to section 40 of the X-Ray Ordinance, from special structural requirements of examination rooms and higher purchase prices for X-ray units offering built-in protective devices (hardware-related radiation protection). The conventional fluoroscope is chosen as an example of how this is achieved today. At first, a survey is given of X-ray installations in North Rhine-Westphalia, the technical details of which are described. This provides approximative information on the extent of dosimetric calculations in humans, the necessary expenditure on shieldings and the costs involved in additional hardware-related measures. (orig./DG) [de

  9. Radiation safety in X-ray diagnostic installations

    International Nuclear Information System (INIS)

    Das, K.R.; Ambiger, T.Y.; Viswanathan, P.S.

    1977-01-01

    Safety measures to be strictly adhered to in handling X-ray equipment and exposing patients to X-radiation are described in detail. Hazards resulting from ignorance and careless handling are mentioned. Methods of shielding are indicated. (A.K.)

  10. Biological effects of radiation and dosimetry in X-ray diagnostics of children

    International Nuclear Information System (INIS)

    Milkovic, Durdica; Beck, Natko; Kovac, Kornelija; Garaj-Vrhovac, Vera; Gajski, Goran

    2008-01-01

    The chest radiograms represent the basic radiological examinations of thorax. The basis for radiation protection especially in pediatrics is the exact determination of doses. The risk estimation of genome damages can be received in human peripheral blood lymphocytes using alkaline version of Comet Assay. The aim of this work was assessment and quantification of the level of DNA damage in peripheral blood lymphocytes of children during airways X-ray examinations of chest and to compare data to the dose of exposure. Doses were determined using thermoluminescence (TL) dosimetry and radiophotoluminescent (RPL) glass dosimetry system. Twenty children with pulmonary diseases, ages between 5 and 14 years were assessed. Dose measurements were conducted for poster-anterior (PA) projection on the forehead, thyroid gland, gonads, chest and back. We used a 150 kV Shimadzu CH-200 M X-ray unit. Peripheral blood samples were taken from children after and prior to X-ray exposure and were examined with the alkaline Comet Assay. Comet Assay is one of the standard techniques for assessing genome damage with variety applications in genotoxicity testing as well as fundamental research in DNA damage and repair. As a measure of DNA damage tail length was used, calculated from the centre of the head and presented in micrometers (μm). Mean value of group after irradiation was 14.04 ± 1.74 as opposed to mean value of group before irradiation that was 13.15 ± 1.33. Differences between mean tail lengths were statistically significant (P<0.05, ANOVA). In addition, correlation was found between doses in primary beam (measured on the back) and the ratio of tail length (DNA damage) before and after irradiation. Doses measured with TL and RPL dosimeters showed satisfactory agreement and both dosimetry methods are suitable for dosimetric measurements in X-ray diagnostics. (author)

  11. Calibration of diagnostic x-ray machines using radiation exposure and radiographic parameters

    International Nuclear Information System (INIS)

    Agba, E.H.; Uloko, P. I.; Tyovenda, A. A.

    2011-01-01

    Calibration of diagnostic x-ray machines using radiation exposure and radiographic parameters of the x-ray machines has been carried out. Three phase diagnostic x-ray machines situated at Federal Medical Centre, Makurdi, General Hospital, Otukpo and Christian Hospital, Mkar were used for the calibration work. The radiation meter was used to measure x-ray radiation exposure. The result of this work demonstrates mR/mAs=C(KV p ) that there exist a power law relation of the form between the radiation exposure and the radiographic parameters of diagnostic x-ray machines, which can be used to estimate patient exposure during routine x-ray diagnostic examinations for wide range of operating parameters. The values of the power exponent n, constant c and total filtrations of the diagnostic x-ray machines have been estimated. These values for the diagnostic x-ray machines at the Federal Medical Centre, Makurdi are: 2.14, 0.88 and 2.77 respectively, for the one at the General Hospital, Otukpo are: 2.07, 0.76 and 2.68 respectively and that of the Christian Hospital, Mkar are: 2.01,0.69 and 2.61 respectively.

  12. X-radiation damage of hydrated lecithin membranes detected by real-time X-ray diffraction using wiggler-enhanced synchrotron radiation as the ionizing radiation source

    International Nuclear Information System (INIS)

    Caffrey, M.; Cornell Univ., Ithaca, NY

    1984-01-01

    Radiation damage of hydrated lecithin membranes brought about by exposure to wiggler-derived synchrotron radiation at 8.3 keV (1.5 A) is reported. Considerable damage was observed with exposures under 1 h at an incident flux density of 3 x 10 10 photons s -1 mm -2 , corresponding to a cumulative radiation dose of <= 10 MRad. Damage was so dramatic as to be initially observed while making real-time X-ray diffraction measurements on the sample. The damaging effects of 8.3 keV X-rays on dispersions of dipalmitoyllecithin and lecithin derived from hen egg yolk are as follows: (1) marked changes were noted in the X-ray diffraction behaviour, indicating disruption of membrane stacking. (2) Chemical breakdown of lecithin was observed. (3) The X-ray beam visibly damaged the sample and changed the appearance of the lipid dispersion, when viewed under the light microscope. Considering the importance of X-ray diffraction as a structural probe and the anticipated use of synchrotron radiation in studies involving membranes, the problem of radiation damage must be duly recognized. Furthermore, since dipalmitoyllecithin, the major lipid used in the present study, is a relatively stable compound, it is not unreasonable to expect that X-ray damage may be a problem with other less stable biological and non-biological materials. These results serve to emphasize that whenever a high intensity X-ray source is used, radiation damage can be a problem and that the sensitivity of the sample must always be evaluated under the conditions of measurement. (orig.)

  13. Nanofocusing refractive X-ray lenses

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Pit

    2010-02-05

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  14. Nanofocusing refractive X-ray lenses

    International Nuclear Information System (INIS)

    Boye, Pit

    2010-01-01

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  15. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Univ. (Finland)

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose

  16. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    International Nuclear Information System (INIS)

    Kettunen, A.

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose to a

  17. Device for monitoring X-ray radiation and method of using same

    International Nuclear Information System (INIS)

    Schaffer, D. L.

    1985-01-01

    Each of a plurality of thermoluminescent detectors (TLD's) is secured to one of a plurality of slides, which are removably mounted in a like plurality of pockets formed in a generally wallet-sized carrier to open on one edge thereof. One additional TLD is secured in a recess in one corner of the carrier to be exposed to all X-ray radiation which falls upon the carrier. Each slide is releasably secured in its associated pocket by means which prevents accidental removal of the side from the pocket. Whenever the owner of the carrier is subjected to an X-ray examination, he or she removes from the carrier one of the slides having thereon an unused TLD, and by a means of adhesive on the back of the slide adheres the associated TLD directly in the path of the X-ray radiation to which the patient is subjected during the examination. After the examination the slide is returned to its pocket in the carrier. Periodically the used TLD elements, as well as the non-removable TLD element, can be processed in a conventional manner to determine the total amount of radiation recorded by the respective elements. In one embodiment the removable slides are housed in lead-lined pockets and beneath a lead-lined, hinged cover member

  18. Nanofocusing parabolic refractive x-ray lenses

    International Nuclear Information System (INIS)

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Frehse, F.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A.S.; Snigirev, A.; Snigireva, I.; Schug, C.; Schroeder, W.H.

    2003-01-01

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100 nm range even at a short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 380 nm by 210 nm at 25 keV in a distance of 42 m from the synchrotron radiation source. Using diamond as the lens material, microbeams with a lateral size down to 20 nm and below are conceivable in the energy range from 10 to 100 keV

  19. Wearable device for monitoring momentary presence of intense x-ray and/or ultra-violet radiations

    International Nuclear Information System (INIS)

    Shriner, W.

    1981-01-01

    A credit-card-size clear-plastic-encased device can be worn or carried by a person to warn him of the momentary presence of dangerous intensities of ultra-violet and/or x-ray radiations. A base lamina (e.g. of cardboard) is coated with a material (e.g. zinc-cadmium sulfide or lead-barium sulfate) which fluoresces under such radiations. Numerals, letters, words or symbols are printed over the fluorescent coat with a material inhibitory to said radiations so that a warning message in dark print will appear on a light background when dangerous intensities of said radiations are present. An x-ray-warning area is covered with an ultra-violet absorbing screen so that said area will glow only under x-rays (Which rays will also activate the remaining ultra-violet-responsive area). The colors of the laminas and the coats are so selected that the messages are not visible when dangerous radiations are not present. If desired, only the message can be printed with fluorescent material so as to glow on a darker background. Optionally, step-layer attenuation devices can be added to indicate degrees of radiation; and reflecting surfaces can underlie the fluorescent coat to increase efficiency and/or sensitively

  20. Radiation protection in dental X-ray surgeries--still rooms for improvement.

    Science.gov (United States)

    Hart, G; Dugdale, M

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  1. X-ray scattering from thin organic films and multilayer

    International Nuclear Information System (INIS)

    Pietsch, U.; Barberka, T. A.; Geue, Th.; Stoemmer, R.

    1997-01-01

    The real structure of LB-multilayers prepared with fatty-acid salts is dominated by finite-sized scattering aggregates. Their different length scales become visible using AFM. It shows that not the whole substrate is wetted by the film. The molecular order is restricted into domains. These micrometer domains are not homogeneous. They contain mesoscopic subdomains of different heights which vary in steps of double layers. Finally high-resolution AFM-maps display a nearly hexagonal arrangement of molecules within subgrains with a diameter of several 10 nm. This domain structure has to be taken into account when interpreting X-ray diffraction data. The size of the crystalline aggregates is obtained by means of X-ray grazing incidence diffraction. On the mesoscopic scale the domain size is determined by X-ray diffuse scattering experiments. Because Sinha's model fails for the present kind of multilayers, they used another approach for data analysis. The lateral correlation length caused by height fluctuations is estimated without knowledge of a definite correlation function. Additionally the mosaicity of the domain orientation can be taken into account

  2. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Science.gov (United States)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  3. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fragos, Tassos [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland)

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  4. X-ray Synchrotron Radiation in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  5. Radiation safety and quality control assurance in X-ray diagnostics 1998

    International Nuclear Information System (INIS)

    Servomaa, A.

    1998-03-01

    The report is based on a seminar course of lectures 'Radiation safety and quality assurance in X-ray diagnostics 1998' organized by the Radiation and Nuclear Safety Authority (STUK) in Finland. The lectures included actual information on X-ray examinations: methods of quality assurance, methods of measuring and calculating patient doses, examination frequencies, patient doses, occupational doses, and radiation risks. Paediatric X-ray examinations and interventional procedures were the most specific topics. The new Council Directive 97/43/Euratom on medical exposure, and the European Guidelines on quality criteria for diagnostic radiographic images, were discussed in several lectures. Lectures on general radiation threats and preparedness, examples of radiation accidents, and emergency preparedness in hospitals were also included. (editor)

  6. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy and...

  7. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    International Nuclear Information System (INIS)

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-01-01

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering

  8. Study of hard braking x-ray radiation on the radiation-beam complex ''TEMP''

    International Nuclear Information System (INIS)

    Batrakov, A.B.; Glushko, E.G.; Egorov, A.M.; Zinchenko, A.A.; Litvinenko, V.V.; Lonin, Yu.F.; Ponomarev, A.G.; Rybka, A.V.; Fedotov, S.I.; Uvarov, V.T.

    2015-01-01

    A calculation over of basic parameters of the hard brake x-rayed radiation for the microsecond accelerating of relativistic electronic beam T EMP . Optimization of converters is conducted for these aims. Maximal doses are experimentally got brake x-rayed radiation on beam-radiation complex T EMP . The diagrams of orientation of the brake x-rayed radiation are taken off depending on energies of bunches and forms of electrodes.

  9. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  10. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  11. Soft X-ray microscopy and lithography with synchrotron radiation

    International Nuclear Information System (INIS)

    Gudat, W.

    1977-12-01

    Considerable progress in the technique microscopy with soft X-ray radiation has been achieved in particular through the application of synchrotron radiation. Various methods which are currently being studied theoretically or already being used practically will be described briefly. Attention is focussed on the method of contact microscopy. Various biological specimens have been investigated by this method with a resolution as good as 100 A. X-ray lithography which in the technical procedure is very similar to contact microscopy gives promise for the fabrication of high quality submicron structures in electronic device production. Important factors limiting the resolution and determining the performance of contact microscopy and X-ray lithography will be discussed. (orig.) [de

  12. Promoting radiation protection and safety for X-ray inspection systems

    International Nuclear Information System (INIS)

    Maharaj, Harri P.

    2008-01-01

    This paper aims to present a regulatory perspective on radiation protection and safety relevant to facilities utilizing baggage X-ray inspection systems. Over the past several years there has been rapid growth in the acquisition and utilization of X-ray tube based inspection systems for security screening purposes worldwide. In addition to ensuring compliance with prescribed standards applicable to such X-ray systems, facilities subject to federal jurisdiction in Canada are required to comply with established codes of practice, which, not only are in accordance with occupational health and safety legislation but also are consistent with international guidance. Overall, these measures are aimed at reducing radiation risks and adverse health effects. Data, acquired in the past several years in a number of facilities through various instruments, namely, monitoring and surveillance, radiation safety audits, onsite evaluations, device registration processes and information developed, were considered in conjunction with detrimental traits. Changes are necessary to reduce radiation and safety risks from both an ALARA point of view and an accountability perspective. Establishing, developing, implementing and following a radiation protection program is warranted and advocated. Minimally, such a program shall be managed by a radiation safety officer. It shall promote and sustain a radiation safety culture in the workplace; shall ensure properly qualified individuals operate and service the X-ray systems in accordance with established and authorized procedures; and shall incorporate data recording and life cycle management principles. Such a program should be the norm for a facility that utilizes baggage X-ray inspection systems for security purposes, and it shall be subject to continuous regulatory oversight. (author)

  13. X-ray analysis of a single aerosol particle with combination of scanning electron microscope and synchrotron radiation X-ray microscope

    International Nuclear Information System (INIS)

    Toyoda, Masatoshi; Kaibuchi, Kazuki; Nagasono, Mitsuru; Terada, Yasuko; Tanabe, Teruo; Hayakawa, Shinjiro; Kawai, Jun

    2004-01-01

    We developed a microscope by a combination of synchrotron radiation X-ray fluorescence (SR-XRF) microscope and scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDX). SR-XRF is appropriate to detect trace and micro amount of elements and sensitive to heavy elements in an analyte but it cannot observe the real time image. SEM-EDX can observe the secondary electron image of a single particle in real time and is appropriate to detect lighter elements. This combination microscope can ensure the identification of the XRF spectrum to the SEM image without transferring the sample. For aerosol analysis, it is important to analyze each particle. The present method makes feasible to analyze not only the average elemental composition as the total particles but also elemental composition of each particle, which is dependent on the particle shape and size. The microscope was applied to an individual aerosol particle study. The X-ray spectra were different among the particles, but also different between SR-XRF and SEM-EDX for the same particle, due to the difference in fluorescence yields between X-ray excitation and electron excitation

  14. X-ray beam size measurements on the Advanced Test Accelerator

    International Nuclear Information System (INIS)

    Struve, K.W.; Chambers, F.W.; Lauer, E.J.; Slaughter, D.R.

    1986-01-01

    The electron beam size has been determined on the Advanced Test Accelerator (ATA) by intercepting the beam with a target and measuring the resulting x-ray intensity as a function of time as the target is moved through the beam. Several types of targets have been used. One is a tantalum rod which extends completely across the drift chamber. Another is a tungsten powder filled carbon crucible. Both of these probes are moved from shot to shot so that the x-ray signal intensity varies with probe position. A third is a larger tantalum disk which is inserted on beam axis to allow determining beam size on a one shot basis. The x-ray signals are detected with an MCP photomultiplier tube located at 90 0 to the beamline. It is sufficiently shielded to reject background x-rays and neutrons. The signals were digitized, recorded and later unfolded to produce plots of x-ray intensity versus probe position for several times during the pulse. The presumption that the x-ray intensity is proportional to beam current density is checked computationally. Details of the probe construction and PMT shielding, as well as sample measurements are given

  15. Radiation and their deleterious effects: special respect to X-ray

    International Nuclear Information System (INIS)

    Purohit, R.K.; Joshi, Pankaj Kumar; Basu, Arindam; Chakarwati, Aruna; Agarwal, Manisha

    2012-01-01

    Radiation have been influencing the living and non living systems on earth, since their evolution from simple, humble beginnings to diversely complex system of the present day biological world. Most of the radiations have been the basis for conduction and completion of vital life processes like photosynthesis which form the base and initiation point of flow of energy within the biological world. However there are some radiation called as ionizing radiation with energy content of more then 124 eV, which have the capacity to cause deleterious effects in livings system ranging from simple unicellular organisms to the large and complex animals and plants. The discovery of X-ray by William Conrad Roentgen in 1898 provided the originating point for radiation biology as a well defined discipline. Together with the discovery of X-ray radioactivity and new radioactive elements the biological effects of ionizing radiation began to be studied immediately after the discovery of X-ray. By the year 1896 press reports regarding the skin injuries involved skin erythemas and ulceration in persons who experienced the frequent and prolonged action of X-ray had appeared. By 1959, 359 radiologists were known to have died of X-ray induced cancer of skin or of leukemia. The deleterious effects of radiation on a large scale became evident when a large number of deaths, approximately 10,300 had occurred when USA dropped atom bomb on the Japanese towns of Hiroshima and Nagasaki, leaving about 80,000 persons injured. The effects of these two explosions are still evident in generation of today and also these twin incidents evoked awareness among the researchers to investigate the nature and effects of radiation which they cause in living beings. (author)

  16. Application of synchrotron radiation to X-ray interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M [King' s Coll., London (UK). Wheatstone Physics Lab.

    1980-05-01

    X-ray interferometry has been attempted with synchrotron radiation at Hamburg and at Orsay. Experiments will start this year at the Storage Ring Source at Daresbury. This review covers work which has already been completed and outlines the likely trends in phase sensitive X-ray polarimetry, high resolution spectroscopy (including real and imaginary-part EXAFS) and novel experiments with many-beam-case interferometers.

  17. New amorphous-silicon image sensor for x-ray diagnostic medical imaging applications

    Science.gov (United States)

    Weisfield, Richard L.; Hartney, Mark A.; Street, Robert A.; Apte, Raj B.

    1998-07-01

    This paper introduces new high-resolution amorphous Silicon (a-Si) image sensors specifically configured for demonstrating film-quality medical x-ray imaging capabilities. The devices utilizes an x-ray phosphor screen coupled to an array of a-Si photodiodes for detecting visible light, and a-Si thin-film transistors (TFTs) for connecting the photodiodes to external readout electronics. We have developed imagers based on a pixel size of 127 micrometer X 127 micrometer with an approximately page-size imaging area of 244 mm X 195 mm, and array size of 1,536 data lines by 1,920 gate lines, for a total of 2.95 million pixels. More recently, we have developed a much larger imager based on the same pixel pattern, which covers an area of approximately 406 mm X 293 mm, with 2,304 data lines by 3,200 gate lines, for a total of nearly 7.4 million pixels. This is very likely to be the largest image sensor array and highest pixel count detector fabricated on a single substrate. Both imagers connect to a standard PC and are capable of taking an image in a few seconds. Through design rule optimization we have achieved a light sensitive area of 57% and optimized quantum efficiency for x-ray phosphor output in the green part of the spectrum, yielding an average quantum efficiency between 500 and 600 nm of approximately 70%. At the same time, we have managed to reduce extraneous leakage currents on these devices to a few fA per pixel, which allows for very high dynamic range to be achieved. We have characterized leakage currents as a function of photodiode bias, time and temperature to demonstrate high stability over these large sized arrays. At the electronics level, we have adopted a new generation of low noise, charge- sensitive amplifiers coupled to 12-bit A/D converters. Considerable attention was given to reducing electronic noise in order to demonstrate a large dynamic range (over 4,000:1) for medical imaging applications. Through a combination of low data lines capacitance

  18. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  19. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  20. Mapping of trace elements with photon microprobes: x-ray fluorescence with focussed synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Jones, K.W.; Gordon, B.M.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.

    1985-04-01

    High energy electron synchrotron storage rings provide copious quantities of polarized photons that make possible the mapping of many trace elements with sensitivities at the parts per billion (ppB) level with spatial resolutions in the micrometer range. The brightness of the x-ray ring of the National Synchrotron Light Source (NSLS), presently being commissioned, will be five orders of magnitude larger than that of the bremsstrahlung spectrum of state-of-the-art rotating anode tubes. We will discuss mapping trace elements with a photon microprobe presently being constructed for use at the NSLS. This microprobe will have micrometer spatial resolution

  1. X-ray spectrometry with synchrotron radiation; Roentgenspektrometrie mit Synchrotronstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Matthias [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' Roentgen- und IR-Spektrometrie' ; Gerlach, Martin; Holfelder, Ina; Hoenicke, Philipp; Lubeck, Janin; Nutsch, Andreas; Pollakowski, Beatrix; Streeck, Cornelia; Unterumsberger, Rainer; Weser, Jan; Beckhoff, Burkhard

    2014-12-15

    The X-ray spectrometry of the PTB at the BESSY II storage ring with radiation in the range from 78 eV to 10.5 keV is described. After a description of the instrumentation development reference-sample free X-ray fluorescence analysis, the determination of fundamental atomic parameters, X-ray fluorescence analysis under glance-angle incidence, highly-resolving absorption spectrometry, and emission spectrometry are considered. Finally liquid cells and in-situ measurement techniques are described. (HSI)

  2. Stabilization of synchrotron radiation x-ray beam by MOSTAB

    CERN Document Server

    Kudo, T P; Tanida, H; Furukawa, Y; Hirono, T; Ishikawa, T; Nishino, Y

    2003-01-01

    Monochromator stabilization (MOSTAB) is a feedback control system to stabilize an x-ray beam of synchrotron radiation. It applies a feedback voltage to a piezo electric transducer attached to a double-crystal monochromator. We developed MOSTAB modules and examined their performances using SPring-8 beamlines. The x-ray beam position stabilization using MOSTAB was realized simultaneously with the x-ray beam intensity stabilization. As an example of its application, we performed EXAFS measurement with MOSTAB. (author)

  3. The reduction methods of operator's radiation dose for portable dental X-ray machines.

    Science.gov (United States)

    Cho, Jeong-Yeon; Han, Won-Jeong

    2012-08-01

    This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion) were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp.) at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter shield. The operator's radiation dose at the hand level was measured with and without lead gloves and with long and short cones. The backscatter shield reduced operator's radiation dose at the hand level of X-ray tubehead to 23 - 32%, the lead gloves to 26 - 31%, and long cone to 48 - 52%. And the backscatter shield reduced operator's radiation dose at the operator's chest and waist levels to 0.1 - 37%. When portable dental X-ray systems are used, it is recommended to select X-ray machine attached with a backscatter shield and a long cone and to wear the lead gloves.

  4. Characteristic 8 keV X rays possess radiobiological properties of higher-LET radiation.

    Science.gov (United States)

    Shridhar, Ravi; Estabrook, William; Yudelev, Mark; Rakowski, Joseph; Burmeister, Jay; Wilson, George D; Joiner, Michael C

    2010-03-01

    Electronic brachytherapy systems are being developed that can deliver X rays of varying energy depending on the material of a secondary target. A copper target produces characteristic 8 keV X rays. Our aim was to determine whether 8 keV X rays might deliver greater biological effectiveness than megavoltage photons. Cells of the U251 human glioma cell line were used to compare the biological effects of 8 keV X rays and (60)Co gamma rays in terms of relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and DNA damage. The RBE at 50% and 10% survival was 2.6 and 1.9, respectively. At 50% survival, the OER for cells treated with 8 keV X rays was 1.6 compared with 3.0 for (60)Co gamma rays. The numbers of H2AX foci per Gy after treatment with 8 keV X rays and (60)Co gamma rays were similar; however, the size of the foci generated at 8 keV was significantly larger, possibly indicating more complex DNA damage. The mean area of H2AX foci generated by 8 keV X rays was 0.785 microm(2) (95% CI: 0.756-0.814) compared with 0.491 microm(2) (95% CI: 0.462-0.520) for (60)Co gamma rays (P X rays produce two to three times the biological effectiveness of megavoltage photons, with a radiobiological profile similar to higher-LET radiations.

  5. Statistical and coherence properties of radiation from X-ray free electron lasers

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2009-12-01

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  6. Statistical and coherence properties of radiation from X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2009-12-15

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  7. Current state of radiation protection in x-ray diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Orito, T; Koshida, K; Maekawa, R; Sanada, S; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine

    1979-09-01

    The therapeutic roentgenologic technician's concern for and providing of protection from radiation while patients underwent x-ray examination in 1973 was reported. An investigation was carried out to determine the degree of changes 5 years later. Questionnaires were distributed to 200 subjects. These subjects were selected, according to duoble sampling process, from a membership list of the Japan Society of Radiologic Technologists. Answers were obtained from 135 (67.5%). The results showed that the size of the field was restricted in 60.7% of the patients, the germinal glands were protected in 64.4% of the patients, the apparatuses were checked regularly in 9.6% of the institutions, and protectors were put on 62.5% of the attendants (mothers, etc.) when children underwent x-ray examination. Also, all of the apparatuses were set up in on section in 61.6% of the institutions and the films were monitored in 57.0% of departments.

  8. Current state of radiation protection in x-ray diagnosis

    International Nuclear Information System (INIS)

    Orito, Takeo; Koshida, Kichiro; Maekawa, Ryuichi; Sanada, Shigeru; Hiraki, Tatsunosuke

    1979-01-01

    The therapeutic roentgenologic technician's concern for and providing of protection from radiation while patients underwent x-ray examination in 1973 was reported. An investigation was carried out to determine the degree of changes 5 years later. Questionnaires were distributed to 200 subjects. These subjects were selected, according to duoble sampling process, from a membership list of the Japan Society of Radiologic Technologists. Answers were obtained from 135 (67.5%). The results showed that the size of the field was restricted in 60.7% of the patients, the germinal glands were protected in 64.4% of the patients, the apparatuses were checked regularly in 9.6% of the institutions, and protectors were put on 62.5% of the attendants (mothers, etc.) when children underwent x-ray examination. Also, all of the apparatuses were set up in on section in 61.6% of the institutions and the films were monitored in 57.0% of departments. (Nishio, M.)

  9. Influence of annealing on X-ray radiation sensing properties of TiO2 thin film

    Science.gov (United States)

    Sarma, M. P.; Kalita, J. M.; Wary, G.

    2018-03-01

    A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural analyses showed that the microstrain and dislocation density decreased whereas the average crystallite size increased with annealing. The band gap of the films also decreased from 3.26 eV to 3.10 eV after annealing. The I-V characteristics record under the dark condition and under the X-ray irradiation showed that the conductivity increased with annealing. The influence of annealing on the detection sensitivity was negligible if the bias voltage applied across the films was low (within 0.2 V‒1.0 V). At higher bias voltage (>1.0 V), the contribution of electrons excited by X-ray became less significant which affected the detection sensitivity.

  10. Nanofocusing Parabolic Refractive X-Ray Lenses

    International Nuclear Information System (INIS)

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A. S.; Snigirev, A.; Snigireva, I.

    2004-01-01

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100nm range even at short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 330nm by 110nm at 25keV in a distance of 41.8m from the synchrotron radiation source. First microdiffraction and fluorescence microtomography experiments were carried out with these lenses. Using diamond as lens material, microbeams with lateral size down to 20nm and below are conceivable in the energy range from 10 to 100keV

  11. Plasma x-ray radiation source.

    Science.gov (United States)

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  12. Comparative study of radiation dose between digital panoramic X-ray unit and general panoramic X-ray unit

    International Nuclear Information System (INIS)

    Li Qingshan; Duan Tao; Wang Xiaoyun; Zhao Li; Dong Jian; Wei Lei

    2010-01-01

    Objective: To compare the actual dose of patients who receive the same medical practice by either digital panoramic X-ray unit and general panoramic X-ray unit and give evidence for better selection of oral X-ray examination method. Methods: Round sheet lithium fluoride (LiF) thermoluminescent dosimeters (TLD) were used. The experiment was divided into natural background contrast group, general panoramic X-ray children group, general panoramic X-ray adults group, digital panoramic X-ray children group and digital panoramic X-ray adults group. The dosimeter of natural background radiation was placed at the office of the doctor, the dosimeters of general panoramic X-ray children group and general panoramic X-ray adults group were irradiated by different conditions according to the clinical application of panoramic X-ray to children and adults, the dosimeters of digital panoramic X-ray children group and digital panoramic X-ray adults group were irradiated by different conditions according to the clinical application of digital panoramic X-ray to children and adults. The thermoluminescent dosimeter was used to count and calculate the exposure doses in various groups. Results: The dose of children exposed in general panoramic X-ray unit was 1.28 times of that in digital panoramic X-ray unit, there was significant difference (t=6.904, P<0.01). The dose of adults exposed in general panoramic X-ray unit was 1.55 times of that in the digital panoramic X-ray unit, there also was significant difference (t=-11.514. P< 0.01). Conclusion: The digital panoramic X-ray unit can reduce the dose of patients, so the digital panoramic X-ray unit should be used as far as possible. (authors)

  13. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1985-01-01

    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  14. Low energy X-ray radiation impact on coated Si constructions

    International Nuclear Information System (INIS)

    Adliene, D.; Cibulskaite, I.; Meskinis, S.

    2010-01-01

    Low energy X-ray radiation impact on the coated Si structures is discussed in this paper. Experimental sandwich structures consisting of amorphous hydrogenated a:C-H or SiO x -containing DLC films were synthesized on Si wafers using direct ion deposition method and exposed to low energy (medical diagnostic range) X-ray photons. Irradiation of samples was performed continuously or in sequences and protective characteristics of the irradiated DLC films were investigated. Experimental data were used as the input data for Monte Carlo modelling of X-ray scattering effects in the coated silicon constructions, which affect significantly the 'signal to noise ratio' in DLC-coated Si structures proposed for their application in medical radiation detectors. Modelling results obtained in the case of DLC coatings were compared to the results of calculations performed for other commonly used combinations coating-detector material. The evaluation method of coated structures for their possible application in medical radiation detector constructions has been proposed in this paper. It is based on the best achieved compatibility between the appropriate mechanical characteristics, coating's resistance against the radiation damage and the lowest estimated scattering to total dose ratio in the coated radiation sensitive volume.

  15. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  16. X-ray radiation effects in multilayer epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, Jeremy; Tinkey, Holly; Hankinson, John; Heer, Walt A. de; Conrad, Edward H. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Arora, Rajan; Kenyon, Eleazar; Chakraborty, Partha S.; Cressler, John D. [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Berger, Claire [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS-Institut Neel, BP 166, 38042 Grenoble Cedex 9 (France)

    2011-12-05

    We characterize multilayer graphene grown on C-face SiC before and after exposure to a total ionizing dose of 12 Mrad(SiO{sub 2}) using a 10 keV x-ray source. While we observe the partial peeling of the top graphene layers and the appearance of a modest Raman D-peak, we find that the electrical characteristics (mobility, sheet resistivity, free carrier concentration) of the material are mostly unaffected by radiation exposure. Combined with x-ray photoelectron spectroscopy data showing numerous carbon-oxygen bonds after irradiation, we conclude that the primary damage mechanism is through surface etching from reactive oxygen species created by the x-rays.

  17. Infrared Radiography: Modeling X-ray Imaging without Harmful Radiation

    Science.gov (United States)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the…

  18. Quasimonochromatic x-ray source using photoabsorption-edge transition radiation

    International Nuclear Information System (INIS)

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Harris, J.L.; Maruyama, X.K.; Bergstrom, J.C.; Caplan, H.S.; Silzer, R.M.; Skopik, D.M.

    1991-01-01

    By designing transition radiators to emit x rays at the foil material's K-, L-, or M-shell photoabsorption edge, the x-ray spectrum is narrowed. The source is quasimonochromatic, directional, and intense and uses an electron beam whose energy is considerably lower than that needed for synchrotron sources. Depending upon the selection of foil material, the radiation can be produced wherever there is a photoabsorption edge. In this paper we report the results of the measurement of the x-ray spectrum from a transition radiator composed of 10 foils of 2-μm titanium and exposed to low-current, 90.2-MeV electrons. The measured band of emission was from 3.2 to 5 keV. In addition, a measurment was performed of the total power from a transition radiator composed of 18 foils of 2.0-μm copper exposed to a high-average-current electron beam of 40 μA and at energies of 135, 172, and 200 MeV. The maximum measured power was 4.0 mW. The calculated band of emission was from 4 to 9 keV

  19. Observation of parametric X-ray radiation in an anomalous diffraction region

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, V.I., E-mail: vial@x4u.lebedev.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Eliseyev, A.N., E-mail: elisseev@pluton.lpi.troitsk.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Irribarra, E., E-mail: esteban.irribarra@epn.edu.ec [Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito (Ecuador); Kishin, I.A., E-mail: ivan.kishin@mail.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Kubankin, A.S., E-mail: kubankin@bsu.edu.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Nazhmudinov, R.M., E-mail: fizeg@bk.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation)

    2016-08-19

    A new possibility to expand the energy region of diffraction processes based on the interaction of relativistic charged particles with crystalline structures is presented. Diffracted photons related to parametric X-ray radiation produced by relativistic electrons are detected below the low energy threshold for the X-ray diffraction mechanism in crystalline structures for the first time. The measurements were performed during the interaction of 7 MeV electrons with a textured polycrystalline tungsten foil and a highly oriented pyrolytic graphite crystal. The experiment results are in good agreement with a developed model based on the PXR kinematical theory. The developed experimental approach can be applied to separate the contributions of real and virtual photons to the total diffracted radiation generated during the interaction of relativistic charged particles with crystalline targets. - Highlights: • Parametric X-ray radiation below the low energy threshold for diffraction of free X-rays. • Experimental separation of the contributions from different radiation mechanisms. • PXR from relativistic electrons in mosaic crystals and textured polycrystlas.

  20. Synchrotron radiation sources and condensers for projection x-ray lithography

    International Nuclear Information System (INIS)

    Murphy, J.B.; MacDowell, A.A.; White, D.L.; Wood, O.R. II

    1992-01-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130 Angstrom photons for production line projection x-ray lithography is possible

  1. Multiple X-ray tomography using transmitted, scattered and fluorescent radiation

    International Nuclear Information System (INIS)

    Cesareo, R.; Brunetti, A.; Golosio, B.; Lopes, R.T.; Barroso, R.C.; Donativi, M.; Castellano, A.; Quarta, S.

    2003-01-01

    A multiple CT-scanner is described, which contemporaneously uses transmitted, scattered and fluorescent X-rays for Imaging. The scanner is characterized by a small size X-ray tube and by four detectors: a ''pencil'' X-ray NaI(Tl) for transmitted tomography, a larger size NaI(Tl) for 90 C o Compton tomography, a thermoelectrically cooled Si-PIN or CdZnTe for fluorescent imaging and a CdZnTe for Rayleigh (or diffraction) tomography. Examples of applications are shown

  2. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  3. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts.

    Science.gov (United States)

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R; Medlin, Donald; Zheng, Leon; Wilson, R Kevin; Rusin, Matthew; Takacs, Endre; Dean, Delphine

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial "pause" in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature.

  4. Nanodiamond targets for accelerator X-ray experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lobko, A., E-mail: lobko@inp.bsu.by [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Golubeva, E. [Belarusian State University, 4 Nezavisimosti Prosp., Minsk 220030 (Belarus); Kuzhir, P.; Maksimenko, S. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Ryazan State RadioEngineering University, 59/1 Gagarina Street, Ryazan 390005 (Russian Federation); Paddubskaya, A. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus); Shenderova, O. [International Technology Center, 8100 Brownleigh Dr., S. 120, Raleigh, NC 27617 (United States); Uglov, V. [Belarusian State University, 4 Nezavisimosti Prosp., Minsk 220030 (Belarus); Valynets, N. [Research Institute for Nuclear Problems, 11 Bobrujskaya Str., Minsk 220030 (Belarus)

    2015-07-15

    Results of fabrication of a nanodiamond target for accelerator X-ray experiments are reported. Nanodiamond film with dimensions 5 × 7 mm and thickness of 500 nm has been made of the high pressure high temperature nanodiamonds using a filtration method. The average crystallite size of primary nanodiamond particles varies around 100 nm. Source nanodiamonds and fabricated nanodiamond film were characterized using Raman spectroscopy, electron microscopy, and X-ray diffractometry. Preliminary results show that targets made of nanodiamonds are perspective in generating crystal-assisted radiation by the relativistic charged particles, such as parametric X-rays, diffracted transition radiation, diffracted Bremsstrahlung, etc.

  5. Nanodiamond targets for accelerator X-ray experiments

    International Nuclear Information System (INIS)

    Lobko, A.; Golubeva, E.; Kuzhir, P.; Maksimenko, S.; Paddubskaya, A.; Shenderova, O.; Uglov, V.; Valynets, N.

    2015-01-01

    Results of fabrication of a nanodiamond target for accelerator X-ray experiments are reported. Nanodiamond film with dimensions 5 × 7 mm and thickness of 500 nm has been made of the high pressure high temperature nanodiamonds using a filtration method. The average crystallite size of primary nanodiamond particles varies around 100 nm. Source nanodiamonds and fabricated nanodiamond film were characterized using Raman spectroscopy, electron microscopy, and X-ray diffractometry. Preliminary results show that targets made of nanodiamonds are perspective in generating crystal-assisted radiation by the relativistic charged particles, such as parametric X-rays, diffracted transition radiation, diffracted Bremsstrahlung, etc

  6. Dose enhancement effects of X ray radiation in bipolar transistors

    International Nuclear Information System (INIS)

    Chen Panxun

    1997-01-01

    The author has presented behaviour degradation and dose enhancement effects of bipolar transistors in X ray irradiation environment. The relative dose enhancement factors of X ray radiation were measured in bipolar transistors by the experiment methods. The mechanism of bipolar device dose enhancement was investigated

  7. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    KAUST Repository

    Chae, Sejung R.

    2013-05-22

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction. © 2013 The Author(s).

  8. Illumination system for X-ray lithography

    International Nuclear Information System (INIS)

    Buckley, W.D.

    1989-01-01

    An X-ray lithography system is described, comprising: a point source of X-Ray radiation; a wafer plane disposed in spaced relation to the point source of X-Ray radiation; a mask disposed between the point source of X-Ray radiation and the wafer plane whereby X-Ray radiation from the point source of X-ray radiation passes through the mask to the water plane; and X-Ray absorbent means mounted between the point source of X-Ray radiation and the wafer plane, the X-Ray absorbent means being of quadratically absorption from maximum absorption at the center to minimum absorption at the edge so as to have a radial absorption gradient profile to compensate for radial flux variation of the X-Ray radiation

  9. Generation of linearly polarized resonant transition radiation X-ray beam

    International Nuclear Information System (INIS)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu

    2000-01-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-μm thick Kapton foil stack. (author)

  10. Generation of linearly polarized resonant transition radiation X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2000-03-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-{mu}m thick Kapton foil stack. (author)

  11. Study on radiation-induced defects in germanium monocrystals by the X-ray diffusive scattering method

    International Nuclear Information System (INIS)

    Malinenko, I.A.; Perelygina, E.A.; Chudinova, S.A.; Shivrin, O.N.

    1979-01-01

    The method of X-ray diffusion scattering was used to study the defective structure of germanium monocrystals exposed to 750 keV proton irradiation with 3.8x10 16 -4.6x10 17 cm -2 doses and subjected to the subsequent annealing at temperatures up to 450 deg C. Detected in the crystals were the complex radiation induced structure characterized with oriented vacancy complexes and results from the both effects: irradiation and annealing. Radiation defect sizes in the section (hhO) have been determined. With increasing the annealing temperature the structure reconstruction resulting in the complex dissociation is observed

  12. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  13. X-ray image processing software for computing object size and object location coordinates from acquired optical and x-ray images

    International Nuclear Information System (INIS)

    Tiwari, Akash; Tiwari, Shyam Sunder; Tiwari, Railesha; Panday, Lokesh; Panday, Jeet; Suri, Nitin

    2004-01-01

    X-ray and Visible image data processing software has been developed in Visual Basic for real time online and offline image information processing for NDT and Medical Applications. Software computes two dimension image size parameters from its sharp boundary lines by raster scanning the image contrast data. Code accepts bit map image data and hunts for multiple tumors of different sizes that may be present in the image definition and then computes size of each tumor and locates its approximate center for registering its location coordinates. Presence of foreign metal and glass balls industrial product such as chocolate and other food items imaged out using x-ray imaging technique are detected by the software and their size and position co-ordinates are computed by the software. Paper discusses ways and means to compute size and coordinated of air bubble like objects present in the x-ray and optical images and their multiple existences in image of interest. (author)

  14. Soft X-ray radiation power characteristics of tungsten wire arrays on Yang accelerator

    International Nuclear Information System (INIS)

    Zhang Siqun; Ouyang Kai; Huang Xianbin; Dan Jiakun; Zhou Rongguo; Yang Liang

    2013-01-01

    A series of experiments were carried out to research the X-ray radiation characteristics of tungsten wire arrays on Yang accelerator. In those experiments, we charged the Marx generator of 60 kV, and the load current of 0.85-1.00 MA, the rise time of 75-90 ns (10%-90%). A soft X-ray scintillator powermeter which responded flatly to 50-1800 eV X-rays was used to measure the power of soft X-ray emitted from implosion plasma. In this paper, we present the measuring results of time-resolved soft X-ray radiation power, and discuss the radiation characteristics of implosion plasma by analyzing the correlations of soft X-ray radiant power and the diameter, length, wire number of the tungsten wire arrays. The optimizing wire array configuration parameters on Yang are as follows: 8 mm array diameter, 15 mm wire length, and 24 wire number. We also present the radiant power difference in radial and axial directions of the wire arrays. (authors)

  15. Development of a multi-lane X-ray mirror providing variable beam sizes

    Energy Technology Data Exchange (ETDEWEB)

    Laundy, D., E-mail: david.laundy@diamond.ac.uk; Sawhney, K.; Nistea, I.; Alcock, S. G.; Pape, I.; Sutter, J.; Alianelli, L.; Evans, G. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-05-15

    Grazing incidence mirrors are used on most X-ray synchrotron beamlines to focus, collimate or suppress harmonics. Increasingly beamline users are demanding variable beam shapes and sizes at the sample position. We have now developed a new concept to rapidly vary the beam size and shape of a focused X-ray beam. The surface of an elliptically figured mirror is divided into a number of laterally separated lanes, each of which is given an additional longitudinal height profile calculated to shape the X-ray beam to a top-hat profile in the focal plane. We have now fabricated two prototype mirrors and present the results of metrology tests and measurements made with one of the mirrors focusing the X-rays on a synchrotron beamline. We envisage that such mirrors could be widely applied to rapid beam-size switching on many synchrotron beamlines.

  16. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  17. Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-11

    The confocal energy dispersive micro-X-ray diffraction (EDMXRD) based on polycapillary X-ray optics was used to determine the grain size of polycrystalline materials. The grain size of a metallographic specimen of nickel base alloy was measured by using the confocal EDMXRD. The experimental results demonstrated that the confocal EDMXRD had potential applications in measuring large grain size.

  18. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  19. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  20. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  1. X-ray Micro-Tomography of Ablative Heat Shield Materials

    Science.gov (United States)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  2. A history of radiation shielding of x-ray therapy rooms

    International Nuclear Information System (INIS)

    McGinley, P.H.; Miner, M.S.

    1996-01-01

    In this report the history of shielding for radiation treatment rooms is traced from the time of the discovery of x rays to the present. During the early part of the twentieth century the hazards from ionizing radiation were recognized and the use of lead and other materials became common place for shielding against x rays. Techniques for the calculation of the shield thickness needed for x ray protection were developed in the 1920's, and shielding materials were characterized in terms of the half value layer or simple exponential factors. At the same time, better knowledge of the interaction between radiation and matter was acquired. With the development of high energy medical accelerators after 1940, new and more complex shielding problems had to be addressed. Recently, shielding requirements have become more stringent as standards for exposure of personnel and the general public have been reduced. The art of shielding of radiation treatment facilities is still being developed, and the need for a revision of the reports on shielding of medical accelerators from the National Council on Radiation Protection and Measurements is emphasized in this article. (author). 61 Refs., 3 Tabs

  3. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    Science.gov (United States)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  4. Characteristics of x-ray radiation from a gas-puff z-pinch plasma

    International Nuclear Information System (INIS)

    Akiyama, N.; Takasugi, K.

    2002-01-01

    Characteristics of x-ray radiation from Ar gas-puff z-pinch plasma have been investigated by changing delay time of discharge from gas puffing. Intense cloud structure of x-ray image was observed at small delay time region, but the total x-ray signal was not so intense. The x-ray signal increased with increasing the delay time, and hot spots of x-ray image also became intense. Electron temperature was evaluated from x-ray spectroscopic data, and no significant difference in temperature was observed. (author)

  5. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  6. Summary of: radiation protection in dental X-ray surgeries--still rooms for improvement.

    Science.gov (United States)

    Walker, Anne

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  7. Uses of synchrotron radiation

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    X-ray fluorescence has long been used as a technique for elemental analysis. X-ray fluorescence techniques have a number of features that make them attractive for application to biomedical samples. In the past few years synchrotron radiation x-ray sources have been developed and, because of their properties, their use can improve the sensitivity for trace element analysis by two to three orders of magnitude. Also, synchrotron radiation will make possible an x-ray microprobe with resolution in the micrometer range. The National Synchrotron Light Source (NSLS), a dedicated synchrotron radiation source recently built at Brookhaven National Laboratory, will have a facility for trace element analysis by x-ray fluorescence and will be available to all interested users

  8. Radiation protection requirements for dental X-ray diagnostic facilities

    International Nuclear Information System (INIS)

    Taschner, P.; Koenig, W.; Andreas, M.; Trinius, W.

    1976-01-01

    On the basis of radiation protection regulations the planning of dental X-ray facilities is discussed considering organizational, technical and structural measures suitable for fulfilling protection requirements. Finally, instructions are given aimed at reducing radiation doses to personnel and patients. (author)

  9. Radiation protection requirements for dental X-ray diagnostic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Taschner, P; Koenig, W [Staatliches Amt fuer Atomsicherheit und Strahlenschutz, Berlin (German Democratic Republic); Andreas, M [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Fachrichtung Stomatologie; Trinius, W [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Radiologische Klinik

    1976-03-01

    On the basis of radiation protection regulations the planning of dental X-ray facilities is discussed considering organizational, technical and structural measures suitable for fulfilling protection requirements. Finally, instructions are given aimed at reducing radiation doses to personnel and patients.

  10. The IHS diagnostic X-ray equipment radiation protection program

    International Nuclear Information System (INIS)

    Knapp, A.; Byrns, G.; Suleiman, O.

    1994-01-01

    The Indian Health Service (IHS) operates or contracts with Tribal groups to operate 50 hospitals and approximately 165 primary ambulatory care centers. These facilities contain approximately 275 medical and 800 dental diagnostic x-ray machines. IHS environmental health personnel in collaboration with the Food and Drug Administration's (FDA) Center for Devices and Radiological Health (CDRH) developed a diagnostic x-ray protection program including standard survey procedures and menu-driven calculations software. Important features of the program include the evaluation of equipment performance collection of average patient entrance skin exposure (ESE) measurements for selected procedures, and quality assurance. The ESE data, collected using the National Evaluation of X-ray Trends (NEXT) protocol, will be presented. The IHS Diagnostic X-ray Radiation Protection Program is dynamic and is adapting to changes in technology and workload

  11. Anomalous x-ray radiation of beam plasma

    International Nuclear Information System (INIS)

    Dimitrov, S.K.; Zavyalov, M.A.; Mikhin, S.G.; Tarasenkov, V.A.; Telkovskij, V.G.; Khrabrov, V.A.

    1985-01-01

    The properties of non-equilibrium stationary plasma under the conditions of the planned plasma-chemical reactors based on beam-plasma discharge were investigated. The x-ray spectrum of the beam-plasma was measured and anomalous spectral properties were analyzed. Starting with some critical pressure the anomalous radiation was added to the classical bremsstrahlung spectrum. The occurrence of anomalous radiation can be used to diagnose the condition of beam transportation in such systems. (D.Gy.)

  12. On the theory of X-ray pulsar radiation

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1981-01-01

    The origin of hard X-ray spectrum (continuum and cyclotron lines) of pulsars in binary systems is discussed. A model of the polar region of a neutron star consisting of a hot spot in a dense plasma atmosphere with a quasi-homogeneous magnetic field and an extended accreting column in an inhomogeneous dipolar field is investigated. In the hot spot bremsstrahlung and Thomson scattering form continuum radiation, while bremsstrahlung and cyclotron scattering produce the absorption cyclotron lines. By the observed continuum intensity one can estimate the maximum distances to pulsars. Cyclotron scattering in gyro-resonant layers localized in the accreting column leads to a general attenuation of the radiation of a hot spot, but is unable to ensure the formation of cyclotron lines. For strong accretion the hot spot radiation becomes insignificant, the lines disappear and the pulsating component of an X-ray pulsar is produced by the accreting column bremsstrahlung transformed by Thomson scattering. (orig.)

  13. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  14. X-ray diffraction microtomography using synchrotron radiation

    CERN Document Server

    Barroso, R C; Jesus, E F O; Oliveira, L F

    2001-01-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtai...

  15. Photoacoustical and pyroelectric dosimetry of X-ray radiation in diagnostic region

    International Nuclear Information System (INIS)

    Carvalho, A.A. de.

    1987-01-01

    Three new types of radiation dosimeters, designed to measure X rays in its diagnostic region are described: the pulsed photoacoustical radiation dosimeter, the pyroelectric radiation dosimeter and the pulsed pyroelectric radiation dosimeter. The photoacoustical radiation dosimeter with the scope of to compare its carachteristics with the carachteristics of the new developed dosimeters is also studied. A methodology for calibration of a photoacoustical dosimeter which doesn't require the calibration of its response in a known field of ionizing radiation is proposed. A theoretical model to explain the results produced by the pulsed pyroelectric radiation dosimeter is presented. The obtained results show that the developed dosimeters are of calorimetric type, being linear its response with the X ray energy fluence rate. (author) [pt

  16. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  17. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  18. Silicon detectors for x and gamma-ray with high radiation resistance

    International Nuclear Information System (INIS)

    Cimpoca, Valerica; Popescu, Ion V.; Ruscu, Radu

    2001-01-01

    Silicon detectors are widely used in X and gamma-ray spectroscopy for direct detection or coupled with scintillators in high energy nuclear physics (modern collider experiments are representative), medicine and industrial applications. In X and gamma dosimetry, a low detection limit (under 6 KeV) with silicon detectors becomes available. Work at the room temperature is now possible due to the silicon processing evolution, which assures low reverse current and high life time of carriers. For several years, modern semiconductor detectors have been the primary choice for the measurement of nuclear radiation in various scientific fields. Nowadays the recently developed high resolution silicon detectors found their way in medical applications. As a consequence many efforts have been devoted to the development of high sensitivity and radiation hardened X and gamma-ray detectors for the energy range of 5 - 150 keV. The paper presents some results concerning the technology and behaviour of X and Gamma ray silicon detectors used in physics research, industrial and medical radiography. The electrical characteristics of these detectors, their modification after exposure to radiation and the results of spectroscopic X and Gamma-ray measurements are discussed. The results indicated that the proposed detectors enables the development of reliable silicon detectors to be used in controlling the low and high radiation levels encountered in a lot of application

  19. X-ray stress measurement by use of synchrotron radiation source

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Matsui, Hisaaki; Moro-oka, Toshimasa; Hasegawa, Ken-ichi; Nakajima, Tetsuo.

    1986-01-01

    In the field of X-ray stress measurement of polycrystalline materials, a diffraction plane at higher Bragg angle has to be selected in order to obtain the precise value of stress. However, the stress measurement on an optional (hkl) plane desired is not always possible because the X-ray beam exited from a metal target has a dispersive wave length. Recently, we have been able to use the synchrotron radiation source (SR) as an excellent X-ray source. In Japan, the facility of synchrotron radiation (Photon Factory, PF) was constructed in the National Laboratory for High Energy Physics (KEK) at Tsukuba academic city. The use of this SR enables the stress measurements on many (hkl) planes with high accuracy in the higher Bragg angle region by providing an X-ray beam having an optional wave length. We have started the X-ray stress analysis by use of the synchrotron radiation source. This paper reports the system of measurement and some results of preliminaly experiments. Since a monochromatic X-ray beam is required for the stress measurement, we used a beam line which consists of a double crystal monochrometer and a focusing mirror. X-rays between 4 KeV (λ = 0.31 nm) and 10 KeV (λ = 0.12 nm) are available with this optical system. We adopted a constant Bragg angle of 2θ = 154 deg for all the diffraction planes. A PSPC having a carbon fiber anode is made and used as a detector with the use of a fast digital signal processor. We could observe the diffraction profiles from (200), (211), (220), (310) and (321) crystal plane of alpha iron, respectively, and the residual stresses in these planes except the (200) plane were measured with high accuracy in a short time. Such feature especially suits the stress analysis of the material which has preferred orientation or stress gradient. (author)

  20. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    Science.gov (United States)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  1. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing, 100875 (China)], E-mail: chenglin@bnu.edu.cn; Ding Xunliang; Liu Zhiguo; Pan Qiuli; Chu Xuelian [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing, 100875 (China)

    2007-08-15

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  2. X-ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    International Nuclear Information System (INIS)

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.

    2010-01-01

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the γ-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N H ) and radio (N HI ) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  3. The feasibility of 10 keV X-ray as radiation source in total dose response radiation test

    International Nuclear Information System (INIS)

    Li Ruoyu; Li Bin; Luo Hongwei; Shi Qian

    2005-01-01

    The standard radiation source utilized in traditional total dose response radiation test is 60 Co, which is environment-threatening. X-rays, as a new radiation source, has the advantages such as safety, precise control of dose rate, strong intensity, possibility of wafer-level test or even on-line test, which greatly reduce cost for package, test and transportation. This paper discussed the feasibility of X-rays replacing 60 Co as the radiation source, based on the radiation mechanism and the effects of radiation on gate oxide. (authors)

  4. Effects of radiation pressure on the equipotential surfaces in X-ray binaries

    Science.gov (United States)

    Kondo, Y.; Mccluskey, G. E., Jr.; Gulden, S. L.

    1976-01-01

    Equipotential surfaces incorporating the effect of radiation pressure were computed for the X-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling X-ray binaries are discussed.

  5. Effects of radiation pressure on the equipotential surfaces in x-ray binaries

    International Nuclear Information System (INIS)

    Kondo, Y.; McCluskey, G.E. Jr.; Gulden, S.L.

    1976-01-01

    Equipotential surfaces incorporating the effect of radiation pressure were computed for the x-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling x-ray binaries are discussed

  6. X-ray detector for a panoramic X-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, D; Ensslin, F H

    1976-01-15

    The discovery deals with an X-ray detector suitable for the controlling of panoramic X-ray systems. It consists of a fluorescent image screen and a semiconductor photo cell. The output signal of the detector is proportional to the intensity of the X-radiation and the response time is large enough to follow the change of amplitude of the contours of the modulated X radiation. The detector with band-pass filter regulates, via a control system, the moving rate of the X-ray source and of the film opposite it in dependence of the intensity, so that a uniform exposure is ensured.

  7. Graphene-Based Flexible Micrometer-Sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.; Qaisi, Ramy M.; Hussain, Muhammad Mustafa

    2013-01-01

    Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids

  8. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  9. Radiation-shielded double crystal X-ray monochromator for JET

    International Nuclear Information System (INIS)

    Barnsley, R.; Morsi, H.W.; Rupprecht, G.; Kaellne, E.

    1989-01-01

    A double crystal X-ray monochromator for absolute wavelength and intensity measurements with very effective shielding of its detector against neutrons and hard X-rays was brought into operation at JET. Fast wavelength scans were taken of impurity line radiation in the wavelength region from about 0.1 nm to 2.3 nm, and monochromatic as well as spectral line scans, for different operational modes of JET. (author) 5 refs., 4 figs

  10. Propagation of synchrotron radiation through nanocapillary structures

    International Nuclear Information System (INIS)

    Bjeoumikhov, A.; Bjeoumikhova, S.; Riesemeier, H.; Radtke, M.; Wedell, R.

    2007-01-01

    The propagation of synchrotron radiation through nanocapillary structures with channel sizes of 200 nm and periods in the micrometer size has been studied experimentally. It was shown that the propagation through individual capillary channels has a mode formation character. Furthermore it was shown that during the propagation through capillary channels the coherence of synchrotron radiation is partially conserved. Interference of beams propagating through different capillary channels is observed which leads to a periodically modulated distribution of the radiation intensity in a plane far from the exit of the structure. These investigations are of high relevance for the understanding of X-ray transmission through nanocapillaries and the appearance of wave properties at this size scale

  11. In vivo quantification of plant starch reserves at micrometer resolution using X-ray microCT imaging and machine learning.

    Science.gov (United States)

    Earles, J Mason; Knipfer, Thorsten; Tixier, Aude; Orozco, Jessica; Reyes, Clarissa; Zwieniecki, Maciej A; Brodersen, Craig R; McElrone, Andrew J

    2018-03-08

    Starch is the primary energy storage molecule used by most terrestrial plants to fuel respiration and growth during periods of limited to no photosynthesis, and its depletion can drive plant mortality. Destructive techniques at coarse spatial scales exist to quantify starch, but these techniques face methodological challenges that can lead to uncertainty about the lability of tissue-specific starch pools and their role in plant survival. Here, we demonstrate how X-ray microcomputed tomography (microCT) and a machine learning algorithm can be coupled to quantify plant starch content in vivo, repeatedly and nondestructively over time in grapevine stems (Vitis spp.). Starch content estimated for xylem axial and ray parenchyma cells from microCT images was correlated strongly with enzymatically measured bulk-tissue starch concentration on the same stems. After validating our machine learning algorithm, we then characterized the spatial distribution of starch concentration in living stems at micrometer resolution, and identified starch depletion in live plants under experimental conditions designed to halt photosynthesis and starch production, initiating the drawdown of stored starch pools. Using X-ray microCT technology for in vivo starch monitoring should enable novel research directed at resolving the spatial and temporal patterns of starch accumulation and depletion in woody plant species. No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  12. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    Science.gov (United States)

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (3D images of cryo-preserved cells. The relatively low X-ray energy (3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Techunique to depress seeds formation in small sized watermelon [Citrullus lanatus] by using pollen irradiated with soft X-rays

    International Nuclear Information System (INIS)

    Tajiri, K.; Ishida, T.

    2005-01-01

    Pollen irradiated soft X-rays is effective to depress seed formation in fruits of watermelon. In this investigation, it's effect are disucussed on some varieties of small sized water melon on semi-focing and retarding culture. Results are followed; The radiation of soft X-rays to pollen gave less seeds formation in fruits of wide varieties on both cropping season. The fruit setting was normal on the case of using irradiated pollen, and the growth and quality of fruits were equal or better than that of triploid variety of watermelon. The size of emty seeds remained in fruit was big in the variety whitch had originally big size seeds. On variety comparison under two cropping season. 'hitorijime' , 'summerkids' and ' himekannsen' showed excellent quality and less-formation of residual seeds in their fruits. To determine optimum level of soft X-rays irradiation, three levels of irradiation intensity were te sted. Irradiation intensity to pollen did not affect to the furit setting and the growth of fruit. B ut sugarcontent in fruit was generally higher than that of no-treatment. The effect of radiation int ensity to formation of seeds was different on cropping season. The optimum intensity was 1600Gy on r etarding culture. On semi-forcing culture, depressive effect on seeds formation by soft X-rays irrad iation was incresed as the increment of irradiation intensity between 0 to 800Gy, but irradiation av obe 1600Gy gave opposite result. Then optimum irradiation level is 800-1200Gy

  14. Fine features of parametric X-ray radiation by relativistic electrons and ions

    Directory of Open Access Journals (Sweden)

    K.B. Korotchenko

    2017-11-01

    Full Text Available In present work within the frame of dynamic theory for parametric X-ray radiation in two-beam approximation we have presented detailed studies on parametric radiation emitted by relativistic both electrons and ions at channeling in crystals that is highly requested at planned experiments. The analysis done has shown that the intensity of radiation at relativistic electron channeling in Si (110 with respect to the conventional parametric radiation intensity has up to 5% uncertainty, while the error of approximate formulas for calculating parametric X-ray radiation maxima does not exceed 1.2%. We have demonstrated that simple expressions for the Fourier components of Si crystal susceptibility χ0 and χgσ could be reduced, as well as the temperature dependence for radiation maxima in Si crystal (diffraction plane (110 within Debye model. Moreover, for any types of channeled ions it is shown that the parametric X-ray radiation intensity is proportional to z2−b(Z,z/z with the function b(Z,z depending on the screening parameter and the ion charge number z=Z−Ze.

  15. Dense plasma focus PACO as a hard X-ray emitter: a study on the radiation source

    OpenAIRE

    Supán, L.; Guichón, S.; Milanese, Maria Magdalena; Niedbalski, Jorge Julio; Moroso, Roberto Luis; Acuña, H.; Malamud, Florencia

    2016-01-01

    The radiation in the X-ray range detected outside the vacuum chamber of the dense plasma focus (DPF) PACO, are produced on the anode zone. The zone of emission is studied in a shot-to-shot analysis, using pure deuterium as filling gas. We present a diagnostic method to determine the place and size of the hard X-ray source by image analysis of high density radiography plates. Fil: Supán, L.. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Insti...

  16. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    International Nuclear Information System (INIS)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.; Bohr, J.; Grier, B.H.

    1985-01-01

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies

  17. X-ray microscopy using collimated and focussed synchrotron radiation

    International Nuclear Information System (INIS)

    Jones, K.W.; Kwiatek, W.M.; Gordon, B.M.

    1987-01-01

    X-ray microscopy is a field that has developed rapidly in recent years. Two different approaches have been used. Zone plates have been employed to produce focused beams with sizes as low as 0.07 μm for x-ray energies below 1 keV. Images of biological materials and elemental maps for major and minor low Z have been produced using above and below absorption edge differences. At higher energies collimators and focusing mirrors have been used to make small diameter beams for excitation of characteristic K- or L-x rays of all elements in the periodic table. The practicality of a single instrument combining all the features of these two approaches is unclear. The use of high-energy x rays for x-ray microscopy has intrinsic value for characterization of thick samples and determination of trace amounts of most elements. A summary of work done on the X-26 beam line at the National Synchrotron Light Source (NSLS) with collimated and focused x rays with energies above 4 keV is given here. 6 refs., 5 figs., 1 tab

  18. Modern X-ray difraction. X-ray diffractometry for material scientists, physicists, and chemicists

    International Nuclear Information System (INIS)

    Spiess, L.; Schwarzer, R.; Behnken, H.; Teichert, G.

    2005-01-01

    The book yields a comprehensive survey over the applications of X-ray diffraction in fields like material techniques, metallurgy, electrotechniques, machine engineering, as well as micro- and nanotechniques. The necessary fundamental knowledge on X-ray diffraction are mediated foundedly and illustratively. Thereby new techniques and evaluation procedures are presented as well as well known methods. The content: Production and properties of X radiation, diffraction of X radiation, hardware for X-ray diffraction, methods of X-ray diffraction, lattice-constant determination, phase analysis, X-ray profile analysis, crystal structure analysis, X-ray radiographic stress analysis, X-ray radiographic texture analysis, crystal orientation determination, pecularities at thin films, small angle scattering

  19. X-ray diagnostics - benefits and risks

    International Nuclear Information System (INIS)

    Bartholomaeus, Melanie

    2016-01-01

    The brochure on benefits and risks of X-ray diagnostics discusses the following issues: X radiation - a pioneering discovery and medical sensation, fundamentals of X radiation, frequency of X-ray examinations in Germany in relation to CT imaging, radiation doses resulting from X-ray diagnostics, benefits of X-ray diagnostics - indication and examples, risks - measures for radiation exposure reductions, avoidance of unnecessary examinations.

  20. Investigation on diagnostic techniques of X-ray radiation characteristic from slit target

    International Nuclear Information System (INIS)

    Cheng Jinxiu; Miao Wenyong; Sun Kexu; Wang Hongbin; Cao Leifeng; Yang Jiamin; Chen Zhenglin

    2001-01-01

    On the Xingguang-II facility, X-ray transport process in a cavity target was simulated in a long cylindrical cavity with slits. High temporally and spatially resolved Microchannel Plate (MCP) gated X-ray picosecond frame camera and soft X-ray steak camera were used to investigate the temporal and spatial distribution of the soft X-ray emitted from the cavity wall through the slit. X-ray transport velocity, X-ray emission time and amount of intensity decay was obtained. X-ray CCD pinhole transmission grating spectrometer was used to investigate the spectrum change of the emitted X-ray versus its location. The change characteristic of the spectrum of X-ray absorbed and emitted again and again in transport was obtained. X-ray diodes and Dante spectrometer were used to measure X-ray flux and radiation temperature in the slit, the source and the transport end, respectively. The typical results in the experiment were given. A brief and essential analysis and discussion were made

  1. X-ray spectral determination by detection of radiation scattered at different angles

    International Nuclear Information System (INIS)

    Barrea, Raul; Mainardi, R.T.

    1987-01-01

    A precise knowledge of the spectral content of an X-ray beam is of fundamental importance in areas such as X-ray fluorescence analysis by absolute methods, radiodiagnosis, radiotherapy, computed tomography, etc. A simple practical method was developed to determine X-ray spectra emitted by X-ray tubes. It is based on the scattering of the beam on a solid target and detection of this radiation at different angles. This methodology can easily be adapted to the successive attenuation of the beam procedure. Numerical parameter values of a proposed analytical function for the energy spectrum are found measuring the radiation intensity with a suitable detector (ionization chamber or plastic scintillation detector) and equating it with the convolution integral of the proposed spectrum with the incoherent scattering function. This procedure of spectra determination is enclosed in the same group of those generically referred as successive modifications of the irradiation set up used in absolute methods of X-ray fluorescence analysis. (Author) [es

  2. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  3. X-ray phase contrast imaging at MAMI

    International Nuclear Information System (INIS)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-01-01

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation σ h =(8.6±0.1) μm in the horizontal and σ v =(7.5±0.1) μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σ v =(0.50±0.05) μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 μm 2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σ f =(1.2±0.4) μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σ v =(1.2±0.3)μm and a

  4. X-ray phase contrast imaging at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany)

    2006-05-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in the horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be {sigma}{sub f}=(1.2{+-}0.4) {mu}m, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size

  5. Ordinance on protection from the harmful effects of X-radiation (X-ray Ordinance). As of January 8, 1987. 3. ed.

    International Nuclear Information System (INIS)

    Hinrichs, O.

    1992-01-01

    The German X-ray Ordinance (Roentgenverordnung) contains the main protective provisions applying to the field of X-ray equipment and sources of unwanted X radiation. It thus forms a complement to the German Radiation Protection Ordinance (Strahlenschutzverordnung). The X-ray Ordinance is based, as is the Radiation Protection Ordinance, on the German Nuclear Energy Act (Atomgesetz). It transposes the same Euratom Directives into national law, through which above all the limit values are defined. The current state of the X-ray Ordinance is that of the text promulgated on 8.01.1987 with the subsequent amendments, the last of which was adopted on 19.12.1990. The brochure also reproduces the Official Memorandum to the X-ray Ordinance, as this gives important indications for the legal construction of the Ordinance. (orig./HSCH) [de

  6. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  7. Patient size and x-ray technique factors in head computed tomography examinations. II. Image quality

    International Nuclear Information System (INIS)

    Huda, Walter; Lieberman, Kristin A.; Chang, Jack; Roskopf, Marsha L.

    2004-01-01

    We investigated how patient head characteristics, as well as the choice of x-ray technique factors, affect lesion contrast and noise values in computed tomography (CT) images. Head sizes and mean Hounsfield unit (HU) values were obtained from head CT images for five classes of patients ranging from the newborn to adults. X-ray spectra with tube voltages ranging from 80 to 140 kV were used to compute the average photon energy, and energy fluence, transmitted through the heads of patients of varying size. Image contrast, and the corresponding contrast to noise ratios (CNRs), were determined for lesions of fat, muscle, and iodine relative to a uniform water background. Maintaining a constant image CNR for each lesion, the patient energy imparted was also computed to identify the x-ray tube voltage that minimized the radiation dose. For adults, increasing the tube voltage from 80 to 140 kV changed the iodine HU from 2.62x10 5 to 1.27x10 5 , the fat HU from -138 to -108, and the muscle HU from 37.1 to 33.0. Increasing the x-ray tube voltage from 80 to 140 kV increased the percentage energy fluence transmission by up to a factor of 2. For a fixed x-ray tube voltage, the percentage transmitted energy fluence in adults was more than a factor of 4 lower than for newborns. For adults, increasing the x-ray tube voltage from 80 to 140 kV improved the CNR for muscle lesions by 130%, for fat lesions by a factor of 2, and for iodine lesions by 25%. As the size of the patient increased from newborn to adults, lesion CNR was reduced by about a factor of 2. The mAs value can be reduced by 80% when scanning newborns while maintaining the same lesion CNR as for adults. Maintaining the CNR of an iodine lesion at a constant level, use of 140 kV increases the energy imparted to an adult patient by nearly a factor of 3.5 in comparison to 80 kV. For fat and muscle lesions, raising the x-ray tube voltage from 80 to 140 kV at a constant CNR increased the patient dose by 37% and 7

  8. Development of real-time x-ray microtomography system

    International Nuclear Information System (INIS)

    Takano, H; Morikawa, M; Konishi, S; Azuma, H; Shimomura, S; Tsusaka, Y; Kagoshima, Y; Nakano, S; Kosaka, N; Yamamoto, K

    2013-01-01

    We have developed a four-dimensional (4D) x-ray microcomputed tomography (CT) system that can obtain time-lapse CT volumes in real time. The system consists of a high-speed sample rotation system and a high-frame-rate x-ray imager, which are installed at a synchrotron radiation x-ray beamline. As a result of system optimization and introduction of a 'zoom resolution' procedure, a real-time 4D CT movie with a frame rate of 30 was obtained with a voxel size of 2.5 μm using 10 keV x-rays

  9. Assessment of pediatrics radiation dose from routine x-ray ...

    African Journals Online (AJOL)

    Background: Given the fact that children are more sensitive to ionizing radiation than adults,with an increased risk of developing radiation-induced cancer,special care should be taken when they undergo X-ray examinations. The main aim of the current study was to determine Entrance Surface Dose (ESD) to pediatric ...

  10. Characteristics of X ray calibration fields for performance test of radiation measuring instruments

    International Nuclear Information System (INIS)

    Shimizu, Shigeru; Takahashi, Fumiaki; Sawahata, Tadahiro; Tohnami, Kohichi; Kikuchi, Hiroshi; Murayama, Takashi

    1999-02-01

    Performance test and calibration of the radiation measuring instruments for low energy photons are made using the X ray calibration fields which are monochromatically characterized by filtration of continuous X ray spectrum. The X ray calibration field needs to be characterized by some quality conditions such as quality index and homogeneity coefficient. The present report describes quality conditions, spectrum and some characteristics of X ray irradiation fields in the Facility of Radiation Standard of the Japan Atomic Energy Research Institute (FRS-JAERI). Fifty nine X ray qualities with the quality index of 0.6, 0.7, 0.8 and 0.9 were set for the tube voltages between 10 kV and 350 kV. Estimation of X ray spectrum measured with a Ge detector was made in terms of exposure, ambient dose equivalent and fluence for all the obtained qualities. Practical irradiation field was determined as the dose distribution uniformity is within ±3%. The obtained results improve the quality of X ray calibration fields and calibration accuracy. (author)

  11. Practical X-ray diagnostics orthopedics and trauma surgery. Indication, adjustment technique and radiation protection

    International Nuclear Information System (INIS)

    Flechtenmacher, Johannes; Sabo, Desiderius

    2014-01-01

    The book on X-ray diagnostics in orthopedics and trauma surgery includes the following chapters: 1. Introduction: radiation protection, equipment technology radiological diagnostics of skeleton carcinomas, specific aspects of trauma surgery, special aspects of skeleton radiology for children. 2. X-ray diagnostics of different anatomical regions: ankle joint, knee, hips and pelvis, hand and wrist joint, elbow, shoulder, spinal cord. 3. Appendix: radiation protection according to the X-ray regulations.

  12. Development of a hardened X-ray imager for the Megajoule Laser radiative environment

    International Nuclear Information System (INIS)

    Rousseau, A.

    2014-01-01

    Thermonuclear fusion experiments are led on Megajoule class laser facility by imploding a capsule filled with Deuterium and Tritium. In this context, it is necessary to diagnose the core size and the shape of the compressed target in order to provide valuable information and identify reasons for failure. State of the art X-ray imaging diagnostics cannot realize measurements without being perturbed by the nuclear background. The diagnostic that has been designed in this thesis combine high spatial resolution X-ray imaging at high energy and radiation tolerance to nuclear background. We have first guaranteed, theoretically and experimentally, survivability of X ray multilayer coating to energetic neutrons irradiation. Consequently, we have design the X-ray imaging system in order to achieve 5 μm resolution in a spectral range up to 95 keV. The X-ray image has then been converted into visible light in order to be easily transferred through a hardened optical relay to a protected area where the optical analyser is set. This analyser, combining light amplifier and pixelised detector, has also been studied and a novel method has been developed to reduce nuclear related transient perturbations on the device. This by parts design associated with Monte-Carlo Simulation (GEANT4) and experimental campaign on FCI facility (OMEGA) led to a coherent diagnostic architecture which will sustain high level of nuclear perturbation. (author) [fr

  13. [Particle size determination by radioisotope x-ray absorptiometry with sedimentation method].

    Science.gov (United States)

    Matsui, Y; Furuta, T; Miyagawa, S

    1976-09-01

    The possibility of radioisotope X-ray absorptiometry to determine the particle size of powder in conjunction with sedimentation was investigated. The experimental accuracy was primarily determined by Cow and X-ray intensity. where Co'=weight concentration of the particle in the suspension w'=(micron/rho)l/(mu/rho)s-rhol/rhos rho; density micron/rho; mass absorption coefficient, suffix l and s indicate dispersion and particle, respectively. The radiosiotopes, Fe-55, Pu-238 and Cd-109 have high w-values over the wide range of the atomic number. However, a source of high micron value such as Fe-55 is not suitable because the optimal X-ray transmission length, Lopt is decided by the expression, micronlLopt approximately 2/(1+C'ow') by using Cd-109 AgKX-ray source, the weight size distribution of particles from the heavy elements such as PbO2 to light elements such as Al2O3 or flyash was determined.

  14. Characterization of radiation qualities used in diagnostic X-ray

    International Nuclear Information System (INIS)

    Bero, M.; Zahili, M.; Al Ahmad, M.

    2013-12-01

    This study aims to adjust the radiation beams emitted from X-ray tubes installed at the National Radiation Metrology Laboratory in the field of diagnostic radiology (radiology and mammography) according to the IAEA protocol code number TRS 457, the second goal of this study is to establish various radiation qualities used fordiagnostic radiology applications: RQR, RQA and RQT and the radiation qualities related to mammography applications: RQA-M and RQR-M (author).

  15. X-ray phase contrast imaging at MAMI

    Science.gov (United States)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-05-01

    Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical

  16. A new miniature microchannel plate X-ray detector for synchrotron radiation

    International Nuclear Information System (INIS)

    Rosemeier, R.G.; Green, R.E. Jr.

    1982-01-01

    A state-of-the-art microchannel plate detector has been developed which allows real time X-ray imaging of X-ray diffraction as well as radiographic phenomenon. Advantages of the device include a 50 mm X-ray input, length less than 4'', and a weight of less than 1 lb. Since the use of synchrotron radiation is greatly facilitated by the capability of remote viewing of X-ray diffraction or radiographic images in real time, a prototype electro-optical system has been designed which couples the X-ray microchannel plate detector with a solid state television camera. Advantages of the miniature, lightweight, X-ray synchrotron camera include a large 50 mm X-ray input window, an output signal that is available in both analog format for display on a television monitor and in digital format for computer processing, and a completely modular design which allows all the components to be exchanged for other components optimally suited for the desired applications. (orig.)

  17. Intensity of diffracted X-rays from biomolecules with radiation damage caused by strong X-ray pulses

    International Nuclear Information System (INIS)

    Kai, Takeshi; Tokuhisa, Atsushi; Moribayashi, Kengo; Fukuda, Yuji; Kono, Hidetoshi; Go, Nobuhiro

    2014-01-01

    In order to realize the coherent X-ray diffractive imaging of single biomolecules, the diffraction intensities, per effective pixel of a single biomolecule with radiation damage, caused by irradiation using a strong coherent X-ray pulse, were examined. A parameter survey was carried out for various experimental conditions, using a developed simulation program that considers the effect of electric field ionization, which was slightly reported on in previous studies. The two simple relationships among the parameters were identified as follows: (1) the diffraction intensity of a biomolecule slightly increases with the incident X-ray energy; and that (2) the diffraction intensity is approximately proportional to the target radius, when the radius is longer than 400 Å, since the upper limit of the incident intensity for damage to the biomolecules marginally changes with respect to the target radius. (author)

  18. PATIENT RADIATION DOSE FROM CHEST X-RAY EXAMINATIONS IN THE WEST BANK-PALESTINE.

    Science.gov (United States)

    Lahham, Adnan; Issa, Ahlam; ALMasri, Hussein

    2018-02-01

    Radiation doses to patients resulting from chest X-ray examinations were evaluated in four medical centers in the West Bank and East Jerusalem-Palestine. Absorbed organ and effective doses were calculated for a total of 428 adult male and female patients by using commercially available Monte Carlo based softwares; CALDOSE-X5 and PCXMC-2.0, and hermaphrodite mathematical adult phantoms. Patients were selected randomly from medical records in the time period from November 2014 to February 2015. A database of surveyed patients and exposure factors has been established and includes: patient's height, weight, age, gender, X-ray tube voltage, electric current (mAs), examination projection (anterior posterior (AP), posterior anterior (PA), lateral), X-ray tube filtration thickness in each X-ray equipment, anode angle, focus to skin distance and X-ray beam size. The average absorbed doses in the whole body from different projections were: 0.06, 0.07 and 0.11 mGy from AP, PA and lateral projections, respectively. The average effective dose for all surveyed patients was 0.14 mSv for all chest X-ray examinations and projections in the four investigated medical centers. The effect of projection geometry was also investigated. The average effective doses for AP, PA and lateral projections were 0.14, 0.07 and 0.22 mSv, respectively. The collective effective dose estimated for the exposed population was ~60 man-mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Radiobiology of ultrasoft X-rays

    International Nuclear Information System (INIS)

    Raju, M.R.; Carpenter, S.; Chmielewski, J.; Schillaci, M.; Wilder, M.

    1985-01-01

    The goal of this program is to elucidate the principal physical, chemical, and biological mechanisms of radiation action in cells. The basic experiments for this program involve selected low- and high-energy x-ray sources and include studies of cell killing, both with and without modifiers (for example, hypoxia), determination of cellular age response, and measurement of induced DNA strand breaks, mutations, and chromosome aberrations. The theoretical effort involves Monte Carlo-based radiation track simulation codes to generate energy-deposition events and to follow the subsequent diffusion of chemical species. By combining the experimental and theoretical results, the authors plan to test assumptions used in existing models and to determine important parameters that should be included in any model. Ultrasoft x-rays (less than a few kiloelectron volts) provide a unique tool for studying induced biological lesions because x-rays produce photoelectrons with ranges much shorter than cellular dimensions but equivalent to the size of DNA strands and metaphase chromosomes

  20. The dress and the cloud. Stories about X-rays, radioactivity and radiation protection

    International Nuclear Information System (INIS)

    Lochard, Jacques; Repussard, Jacques; Tabare, Mireille

    2013-01-01

    This bibliographical note presents a book in which the authors recall the history of X-rays, of radioactivity and of radiation protection. It describes the almost simultaneous discovery of X-rays and radioactivity, the concern created by the Hiroshima and Nagasaki bombings, the importance given back to civil society by the Chernobyl and Fukushima accidents. They comment the various applications of X-rays and radioactivity in the fields of research, medicine, energy, weapons. They describe the progressive development of radiation protection in a context of large political, economic and social evolutions during the past century

  1. X-ray and γ-radiation personnel monitoring by means of ionization chambers

    International Nuclear Information System (INIS)

    Gavrilovskij, L.P.; Nikitin, V.I.

    1981-01-01

    Several sets of condensator ionization chambers for measuring a dose of short-wave X-ray and gamma radiations within the limits of 0.005-50 R is described in short. In particular the following sets for personnel monitoring are described: the KID-2 set intended for determining an exposure dose of roentgen and gamma radiations of 150 keV - 2 MeV energy within the limits of 0.005-1R; the DK-02 set providing the measurement of personnel exposure doses of X-ray and gamma radiations within the limits of 0.02-200 mR in the energy range of 100 keV-2 MeV; the DP-22 V, DP-24 sets providing the measurement of an exposure dose of X-ray and gamma radiations within the limits of 1-50 R at a power of 0.5-200 R/h in the energy range of 0.1-2 MeV. An order of work with the sets is described [ru

  2. X-rays utilization

    International Nuclear Information System (INIS)

    Rebigan, F.

    1979-03-01

    The modality of X-ray utilization in different activities and economy is given. One presents firstly quantities and units used in radiation dosimetry and other fields. One gives the generation of X-rays, their properties as well as the elements of radiation protection. The utilization characteristics of these radiations in different fields are finally given. (author)

  3. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, G; Cibik, L; Mueller, P; Krumrey, M [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin (Germany); Haas, S; Hoell, A, E-mail: gudrun.gleber@ptb.d [Helmholtz-Zentrum-Berlin fuer Materialien und Energie (HZB), Albert-Einstein-Strasse 15, 12489 Berlin (Germany)

    2010-10-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below {+-} 0.3 %. The determined number-weighted mean diameters of (109.0 {+-} 0.7) nm and (188.0 {+-} 1.3) nm, respectively, are close to the nominal values.

  4. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    Science.gov (United States)

    Gleber, G.; Cibik, L.; Haas, S.; Hoell, A.; Müller, P.; Krumrey, M.

    2010-10-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below ± 0.3 %. The determined number-weighted mean diameters of (109.0 ± 0.7) nm and (188.0 ± 1.3) nm, respectively, are close to the nominal values.

  5. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    International Nuclear Information System (INIS)

    Gleber, G; Cibik, L; Mueller, P; Krumrey, M; Haas, S; Hoell, A

    2010-01-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below ± 0.3 %. The determined number-weighted mean diameters of (109.0 ± 0.7) nm and (188.0 ± 1.3) nm, respectively, are close to the nominal values.

  6. X-ray and radium gamma radiation injuries

    International Nuclear Information System (INIS)

    Fokkema, R.E.

    1993-05-01

    During the period 1896-1939 a number of maxima could be distinguished in the incidence of X-ray and radium gamma ray injuries in patients. An explanation for these fluctuations is investigated in this study. The first distinguishable maximum in the number of reported cases of X-ray injuries can be found in the period 1896-1897 and mainly concerns skin lesions, caused by the lack of shielding and ignorance of the effects. In the period 1904-1905 there was once again an apparent prevalence of radiation injuries to patients. After 1905 the incidence of radiation injuries decreased due to a wider use of dosimetric methods. The third phase of increased injuries may be subdivided into three components. In diagnostic roentgenology from 1896 to 1926 a number of causes of roentgen burns persisted: multiple or long exposures, the use of a short focus-skin-distance and a lack of suitable dosimetric methods. The reduction of complications after 1923 can be attributed to several factors: systematic training of physics who wished to become roentgenologists, greater care of doctors, the use of an alternative method of radiotherapy according to Coutard's method, the introduction of dosimetry with ionization chambers (after 1924), the consensus reached over the roentgen as a unit of applied dosage (in 1928), and the introduction of absorption curves for radiation quality (in 1933). Around 1920 a high complication rate arose as a result of exposure to radiation emitted by radium. In 1922 the first reliable radium dosimetry method came available. This applied to external radium therapy by regular shaped applicators. After 1938 reliable dosimetry was achieved in the field of interstitial radium therapy (brachytherapy). Injuries from radium therapy, however, persisted till about 1940, caused not only by the delayed availability of radium dosimetry, but also to the use of radium therapy by poorly trained radium therapists. 28 figs., 5 tabs

  7. Design of a radiation hard silicon pixel sensor for X-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Schwandt, Joern

    2014-06-15

    At DESY Hamburg the European X-ray Free-Electron Laser (EuXFEL) is presently under construction. The EuXFEL has unique properties with respect to X-ray energy, instantaneous intensity, pulse length, coherence and number of pulses/sec. These properties of the EuXFEL pose very demanding requirements for imaging detectors. One of the detector systems which is currently under development to meet these challenges is the Adaptive Gain Integrating Pixel Detector, AGIPD. It is a hybrid pixel-detector system with 1024 x 1024 p{sup +} pixels of dimensions 200 μm x 200 μm, made of 16 p{sup +}nn{sup +}- silicon sensors, each with 10.52 cm x 2.56 cm sensitive area and 500 μm thickness. The particular requirements for the AGIPD are a separation between noise and single photons down to energies of 5 keV, more than 10{sup 4} photons per pixel for a pulse duration of less than 100 fs, negligible pile-up at the EuXFEL repetition rate of 4.5 MHz, operation for X-ray doses up to 1 GGy, good efficiency for X-rays with energies between 5 and 20 keV, and minimal inactive regions at the edges. The main challenge in the sensor design is the required radiation tolerance and high operational voltage, which is required to reduce the so-called plasma effect. This requires a specially optimized sensor. The X-ray radiation damage results in a build-up of oxide charges and interface traps which lead to a reduction of the breakdown voltage, increased leakage current, increased interpixel capacitances and charge losses. Extensive TCAD simulations have been performed to understand the impact of X-ray radiation damage on the detector performance and optimize the sensor design. To take radiation damage into account in the simulation, radiation damage parameters have been determined on MOS capacitors and gate-controlled diodes as function of dose. The optimized sensor design was fabricated by SINTEF. Irradiation tests on test structures and sensors show that the sensor design is radiation hard and

  8. X-ray area monitor

    International Nuclear Information System (INIS)

    Nintrakit, N.

    1983-01-01

    The X-ray area monitor is a nuclear electronic device that is essential in radiation protection in high radiation laboratories, e.g. in medical diagnosis using X-rays and in industrial X-radiography. Accidentally the level of X-radiator may arise above the safe permissible level and in such a case the alarm system of the area monitor will work and disconnect the ac power supply form the X-ray unit. Principally the device is a radiation counter using G.M.tube as radiation detector with high voltage supply variable form 200 to 2,000 volts. The maximum count rate of the scaler is 1.5 MHz and the total count is displayed on 4 digit LED's. A time base is used to control the counting time, the frequency multiplier, radiation safety limit, comparator and the radiation hazard warning signal. The reliability of the instrument is further enhanced through the addition of the random correction circuit, and it is applicable both in X- and γ -radiation

  9. Extended X-ray absorption fine structure and X-ray diffraction studies on supported Ni catalysts

    International Nuclear Information System (INIS)

    Aldea, N.; Marginean, P.; Yaning, Xie; Tiandou, Hu; Tao, Liu; Wu, Zhongua; ZhenYa, Dai

    1999-01-01

    In the first part of this paper, we present a study based on EXAFS spectroscopy. This method can yield structural information about the local environment around a specific atomic constituent in the amorphous materials, the location and chemical state of any catalytic atom on any support or point defect structures, in alloys and composites. EXAFS is a specific technique of the scattering of X-ray on materials. The present study is aimed toward elucidation of the local structure of Ni atoms and their interaction with oxide support. The second goal of the paper consists in X-ray diffraction on the same samples. X-ray diffraction method that is capable to determine average particle size, microstrains, probability of faults as well as particle size distribution function of supported Ni catalysts is presented. The method is based on the Fourier analysis of a single X-Ray diffraction profile. The results obtained on supported nickel catalysts, which are used in H/D isotopic exchange reactions are reported. The global structure is obtained with a new fitting method based on the Generalised Fermi Function facilities for approximation and Fourier transform of the experimental X-Ray line profiles. Both types of measurements were performed on Beijing Synchrotron Radiation Facilities (BSRF). (authors)

  10. Imaging of exploding wire plasmas by high-luminosity monochromatic X-ray backlighting using an X-pinch radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, S A; Shelkovenko, T A; Romanova, V M [Russian Academy of Sciences, Moscow (Russian Federation). P.N. Lebedev Physical Inst.; Hammer, D A [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies; Faenov, A Ya; Pikuz, T A [VNIIFTRI, Mendeleevo (Russian Federation). Multicharged Ions Spectral Data Center

    1997-12-31

    A new diagnostic method for dense plasmas, monochromatic x-ray backlighting, is described. In this method, shadow images of a bright, dense plasma can be obtained with high spatial resolution using monochromatic radiation from a separate plasma, permitting a major reduction in the required backlighting source power. The object plasma is imaged utilizing spherically bent mica crystals as the x-ray optical elements. Images of test objects obtained using x-ray radiation having different photon energies are presented. Shadow images of exploding Al wire plasmas in the ls{sup 2}-1s3p line radiation of He-like Al XII are also shown. Spatial resolution as fine as 4 {mu}m is demonstrated. The scheme described is useful for backlighting extended high density plasmas, and could be a less costly alternative to using X-ray lasers for such purposes. (author). 7 figs., 10 refs.

  11. Radiation effects for high-energy protons and X-ray in integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M.A.G.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Medina, N.H.; Added, N.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cirne, K.H. [Empresa Brasileira de Aeronautica S.A. (EMBRAER), Sao Jose dos Campos, SP (Brazil)

    2012-07-01

    Full text: Electronic circuits are strongly influenced by ionizing radiation. The necessity to develop integrated circuits (IC's) featuring radiation hardness is largely growing to meet the stringent environment in space electronics [1]. This work aims to development a test platform to qualify electronic devices under the influence of high radiation dose, for aerospace applications. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them heavy ions, alpha particles, protons, gamma and X-rays. Radiation effects on the ICs are usually divided into three categories: Total Ionizing Dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; Single Events Effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits and Displacement Damage (DD) which can change the arrangement of the atoms in the lattice [2]. In this study we are investigating the radiation effects in rectangular-gate and circular-gate MOSFETs, manufactured with standard CMOS fabrication process, using particle beams produced in electrostatic tandem accelerators and X-rays. Initial tests for TID effects were performed using the 1.7 MV 5SDH tandem Pelletron accelerator of the Instituto de Fisica da USP with a proton beam of 2.6 MeV. The devices were exposed to different doses, varying the beam current, and irradiation time with the accumulated dose reaching up to Grad. To study the effect of X-rays on the electronic devices, an XRD-7000 (Shimadzu) X-ray setup was used as a primary X-ray source. The devices were irradiated with a total dose from krad to Grad using different dose rates. The results indicate that changes of the I-V characteristic curve are strongly dependents on the geometry of the devices. [1] Duzellier, S., Aerospace Science and Technology 9, p. 93

  12. X-ray radiation and development inhibition of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    International Nuclear Information System (INIS)

    Kim, Junheon; Jung, Soon-Oh; Jang, Sin Ae; Kim, Jeongmin; Park, Chung Gyoo

    2015-01-01

    Effect of X-ray radiation on the development inhibition was evaluated for all stages of the life cycle of Helicoverpa armigera to determine a radiation dose for potential quarantine treatment against the insect. ED 99 values for inhibition of hatching, pupation, and adult emergence from irradiated eggs were 413, 210, and 154 Gy, respectively. ED 99 values for inhibition of pupation and adult emergence from irradiated larvae were 221 and 167 Gy, respectively. Pupa was the most tolerant to X-ray radiation. ED 99 value for inhibition of adult emergence from irradiated pupae was as high as 2310 Gy, whereas that for inhibition of F 1 egg hatching was only 66 Gy. ED 99 value for inhibition of hatching of F 1 eggs which were laid by irradiated adults was estimated to 194 Gy. X-ray irradiation against H. armigera is recommended as an alternative method to methyl bromide fumigation for phytosanitary treatments during quarantine. X-ray radiation dose of 200 Gy is proposed as a potential quarantine treatment dose for H. armigera eggs and larvae. - Highlights: • X-ray irradiation induced abnormal development of Helicoverpa armigera. • ED 99 value for inhibition of pupation and adult emergence of irradiated egg was estimated at 210 and 154 Gy, respectively. • ED 99 value for inhibition of pupation and adult emergence of irradiated larva was estimated at 221 and 167 Gy, respectively

  13. Radiation exposure of holding personnel involved in veterinary X-ray diagnosis

    International Nuclear Information System (INIS)

    Rothe, W.

    1977-01-01

    An account is given of radiation protection in the context of X-ray examination of small and big animals on the premises of seven reviewed veterinary centres. Also reported are the dosimetric results obtained from holding personnel involved in X-ray diagnosis of 319 big and 4,047 small animals. Infringement of valid regulations was quite often observed, in that animals are held in position in an inadequate way and by unauthorised persons. The measured results, however, have shown that the radiation exposure of vocationally exposed persons can be kept far below the maximum permissible equivalent doses, provided that all applicable rules of radiation protection are observed by those on duty. (author)

  14. Legal directives in the X-ray regulation for the field of X-ray diagnostics

    International Nuclear Information System (INIS)

    Huhn, Walter

    2012-01-01

    The operation of each X-ray device is subject to the requirements of the X-ray regulations (RoeV); for different operational modes or applications like curative diagnostics, X-ray serial examinations, X-ray radiotherapy and teleradiology different directives exist and have to be respected. The report discusses the issues licensing and notification procedures, radiation protection representative, requirements for the commissioning (teleradiology, serial X.ray examinations), technical qualification and radiation protection knowledge of physicians, technical qualification of the assistant personnel.

  15. Optimization of X-ray Absorbers for TES Microcalorimeters

    Science.gov (United States)

    Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis

    2004-01-01

    We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.

  16. X-ray filter for chest X-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    A description is given of an X-ray filter comprised of a sheet of radiation absorbing material with an opening corresponding to the spine and central portion of the heart. The upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter. This filter will permit an acceptable density level of x-ray exposure for the lungs while allowing a higher level of x-ray exposure for the mediastinum areas of the body. (author)

  17. Time-resolved X-ray studies using third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Mills, D.M.

    1991-10-01

    The third generation, high-brilliance, hard x-ray, synchrotron radiation (SR) sources currently under construction (ESRF at Grenoble, France; APS at Argonne, Illinois; and SPring-8 at Harima, Japan) will usher in a new era of x-ray experimentation for both physical and biological sciences. One of the most exciting areas of experimentation will be the extension of x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high brilliance, and variable spectral bandwidth of these sources make them ideal for x-ray time-resolved studies. The temporal properties (bunch length, interpulse period, etc.) of these new sources will be summarized. Finally, the scientific potential and the technological challenges of time-resolved x-ray scattering from these new sources will be described. 13 refs., 4 figs

  18. Measurement of X-ray mass attenuation coefficient of nickel around the K-edge using synchrotron radiation based X-ray absorption study

    International Nuclear Information System (INIS)

    Roy, Bunty Rani; Rajput, Parasmani; Jha, S.N.; Nageswara Rao, A.S.

    2015-01-01

    The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2–8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge. - Highlights: • Mass attenuation coefficient measurements of nickel using synchrotron radiation. • The measurements were taken exactly near the Ni K-edge at an energy step of 1 eV. • A maximum deviation is found near the K-edge

  19. Radiation exposure and image quality in x-Ray diagnostic radiology physical principles and clinical applications

    CERN Document Server

    Aichinger, Horst; Joite-Barfuß, Sigrid; Säbel, Manfred

    2012-01-01

    The largest contribution to radiation exposure to the population as a whole arises from diagnostic X-rays. Protecting the patient from radiation is a major aim of modern health policy, and an understanding of the relationship between radiation dose and image quality is of pivotal importance in optimising medical diagnostic radiology. In this volume the data provided for exploring these concerns are partly based on X-ray spectra, measured on diagnostic X-ray tube assemblies, and are supplemented by the results of measurements on phantoms and simulation calculations.

  20. X-ray radiation damage of organic semiconductor thin films during grazing incidence diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Neuhold, A., E-mail: alfred.neuhold@tugraz.at [Institute of Solid State Physics, Graz University of Technology, Graz (Austria); Novak, J.; Flesch, H.-G.; Moser, A.; Djuric, T. [Institute of Solid State Physics, Graz University of Technology, Graz (Austria); Grodd, L.; Grigorian, S.; Pietsch, U. [Institute of Physics, University Siegen (Germany); Resel, R. [Institute of Solid State Physics, Graz University of Technology, Graz (Austria)

    2012-08-01

    Since modern synchrotrons with highly intense X-ray beams are in use to investigate organic materials, the stability of soft matter materials during beam exposure is a crucial issue. Grazing incidence X-ray diffraction and specular X-ray reflectivity measurements were performed on thin films of organic semiconducting materials, like poly(3-hexylthiophene) (P3HT), sexithiophene and pentacene. These films were irradiated with an average flux density between 10{sup 15} and 10{sup 16} photons/(s mm{sup 2}) and evidenced a different stability in synchrotron X-ray radiation. The semi-crystalline P3HT showed a clear intensity decrease of the 1 0 0 Bragg peak and 0 2 0 Bragg peak compared to the rather stable diffraction features of the molecular crystals sexithiophene and pentacene. The difference in synchrotron X-ray radiation stability is explained by the interaction of the X-ray beam with the individual chemical components in the molecules as well as by the different crystallinities of the materials. Furthermore, the semi-crystalline P3HT film exhibited an increase of film thickness after irradiation and the surface roughness slightly decreased. To summarize, this study shows a strong influence of synchrotron X-ray radiation to specific organic thin films like e.g. P3HT, while others like pentacene and sexithiophene are observed as quite stable.

  1. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    Science.gov (United States)

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  2. Radiation hygiene supervision of X-ray units in veterinary establishments of the South Bohemian Region

    International Nuclear Information System (INIS)

    Truelle, M.A.

    1976-01-01

    The number of X-ray examinations increased after 1971 with the launching of the nation-wide screening of breeding boars and sows for rhinitis. For this purpose the Regional Hygiene Officer permitted the use of CHIRAX X-ray apparatus in field-work. Blood sampling and medical check-ups are carried out of all workers by the Department of Occupational Diseases of the Regional Health Centre in Ceske Budejovice. All X-ray operators are equipped with film dosemeters. Hygienic inspection is regularly carried out by the Department of Radiation Hygiene of the Regional Hygiene Centre in Ceske Budejovice. The screenings are carried out in the pigsty or in the preparation room. The X-ray operators operate behind a Pb shield. The animal is tied up and the plate is inserted into its oral cavity. The auxiliary staff keeps as far away as possible from the X-ray apparatus. At a distance of 6 m from the X-ray apparatus the radiation intensity of 3 mR/h was measured. The harmful radiation dose is far below permissible values (5 rem/year). (O.Y.)

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  4. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  5. X-ray filter for chest x-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    Filter for use in medical x-ray apparatus to permit higher intensity x-ray exposure in the heart and mediastinum area while maintaining a normal level of x-ray exposure in other areas of the body, particlarly in the lung area. The filter comprises a sheet of radiation absorbing material having an opening therein, said opening corresponding to the spine and central portion of the heart. Accordingly, the upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter

  6. Information from the National Institute of Radiation Protection about radiation doses and radiation risks at x-ray screening

    International Nuclear Information System (INIS)

    1975-05-01

    This report gives a specification of data concerning radiation doses and risks at x-ray investigations of lungs. The dose estimations are principally based on measurements performed in 1974 by the National Institute of Radiation Protection. The radiation doses at x-ray screening are of that magnitude that the risk for acute radiation injuries is non-existent. At these low doses it has not either been able to prove that the radiation gives long-range effects as changes in the genes or cancer of late appearance. At considerable higher doses, more than tens of thousands of millirads, a risk of cancer appearance at a small part of all irradiated persons has been proved, based on the assumption that the cancer risk is proportional to the radiation dose. Cancer can thus occure at low radiation doses too. Because of the mass radiography in Sweden 1974 about twenty cases of cancer may appear in the future. (M.S.)

  7. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  8. Photographic recording material for X-ray and γ-radiation

    International Nuclear Information System (INIS)

    Elsner, G.; Legler, R.

    1976-01-01

    It is proposed to increase the sensitivity of photographic recording material to X-ray- and γ-radiation by adding 2-naphthol in a concentration of 0.1 to 10 g per mol silver halogenides as a fluorescent material. (ORU/AK) [de

  9. X-ray phase contrast imaging at the Mainz Microtron MAMI

    International Nuclear Information System (INIS)

    Ghazaly, M. el

    2005-10-01

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. In a first series of experiments a polychromatic transition radiation X-ray source with typical photon energies in the range of 8-30 keV and a spot size of standard deviation σ h =(8.6±0.1) μm in horizontal and σ v =(7.5±0.1) μm in vertical direction was used to record refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 μm. As detectors X-ray films were used. The source-to-detector distance amounted to 13 m. The edge enhancement contrast C ref = (I max -I min )/(I max +I min ) was investigated as a function of the distance between the object and the X-ray film which was varied between 0.5 and 5.5 m. In a second series of experiments holograms of strings were taken with a beam spot size σ v =(0.50±0.05) μm and a monochromatic X-ray beam of 6 keV energy. The good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 μm 2 provides a highly efficient on-line detector. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. In a third series of experiments it was demonstrated that X-ray films are very useful detectors for the micro-focused and monochromized transition radiation X-ray source at MAMI. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the X-ray film Structurix D3 (Agfa) the standard deviation of the resolution was measured to be σ f =(1.1±0.4) μm, which is about a factor of 6 better as for

  10. X-ray diffraction characteristics of curved monochromators for sychrotron radiation

    International Nuclear Information System (INIS)

    Boeuf, A.; Rustichelli, F.; Mazkedian, S.; Puliti, P.; Melone, S.

    1978-01-01

    A theoretical study is presented concerning the diffraction characteristics of curved monochromators for X-ray synchrotron radiation used at the laboratories of Hamburg, Orsay and Stanford. The investigation was performed by extending to the X-ray case a simple model recently developed and fruitfully employed to describe the neutron diffraction properties of curved monochromators. Several diffraction patterns were obtained corresponding to different monochromator materials (Ge, Si) used by the different laboratories, for different reflecting planes (111), (220), asymmetry angles, X-ray wave-lengths (Mo Kα, Cu Kα, Cr Kα) and curvature radii. The results are discussed in physical terms and their implications on the design of curved monochromators for synchrotron radiation are presented. In particular, the study shows that all the monochromators used in the different laboratories should behave practically as perfect crystals and therefore should have a very low integrated reflectivity corresponding to an optimized wavelength passband Δlambda/lambda approximately 10 -4 . The gain that can be obtained by increasing the curvature, by introducing a gradient in the lattice spacing or by any other kind of imperfection is quite limited and much lower than the desirable value. The adopted model can help in obtaining a possible moderate gain in intensity by also taking into consideration other parameters, such as crystal material, reflecting plane, asymmetry of the reflection and X-ray wavelength. (Auth.)

  11. A submicron synchrotron X-ray beam generated by capillary optics

    International Nuclear Information System (INIS)

    Engstroem, P.; Larsson, S.; Rindby, A.; Buttkewitz, A.; Garbe, S.; Gaul, G.; Knoechel, A.; Lechtenberg, F.; Deutsches Elektronen-Synchrotron

    1991-01-01

    A novel capillary optics technique for focusing synchrotron X-ray beams has been applied in an experiment performed at the DORIS storage ring at HASYLAB. This new technqiue, which utilizes the total reflection properties of X-rays inside small capillaries, has recently been applied to generate microbeams of X-rays, with a beam size down to about 10 μm using conventional X-ray tubes. The result from our recent experiment shows that capillary optics can also be used to generate a submicron beam of X-rays from a synchrotron light source. A description of the capillary unit, and the alignment procedure is given. The influence of the thermal load on the device caused by the intense flux of synchrotron radiation will be discussed. Future perspectives of the capillary techniques as applied to synchrotron radiation will be discussed. (orig.)

  12. Size effect in X-ray and electron diffraction patterns from hydroxyapatite particles

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Buffat, P.-A.

    2001-01-01

    High-resolution transmission electron microscopy (HRTEM), electron microdiffraction, and X-ray diffraction were used to study hydroxyapatite specimens with particle sizes from a few nanometers to several hundreds of nanometers. Diffuse scattering (without clear reflections in transmission diffraction patterns) or strongly broadened peaks in X-ray diffraction patterns are characteristic for agglomerated hydroxyapatite nanocrystals. However, HRTEM and microdiffraction showed that this cannot be considered as an indication of the amorphous state of the matter but rather as the demonstration of size effect and the morphological and structural features of hydroxyapatite nanocrystals

  13. Parametric X-rays and diffracted transition radiation in perfect and mosaic crystals

    International Nuclear Information System (INIS)

    Artru, X.; Rullhusen, P.

    1998-01-01

    The amplitude of X-ray emission by relativistic electrons in a single crystal, calculated in the kinematical approach, is decomposed unambiguously in Diffracted Transition Radiation (DTR) and Parametric X-rays (PXR). DTR becomes significant for γ > or similar to ω P ,γ being the Lorentz factor and ω P the plasma frequency. It is more collimated than PXR and, above threshold, its flux increases logarithmically with γ. However, it saturates with thickness at the Bragg primary extinction length l e . This saturation is accounted for only in the dynamical approach, the formulas of which are compared to the kinematical ones. The respective contributions of DTR and PXR are calculated for a simple model of mosaic crystal, taking into account saturation of DTR with thickness. The PXR flux is basically the same as in a perfect crystal. If the size of the domains is larger than l e , the DTR flux is multiplied by the number of domains crossed by the electron. For domains smaller than l e and γ > or similar to ω P , the DTR and PXR fluxes are of the same order of magnitude, up to logarithmic factors. In any case, mosaicity increases the total yield of X-ray photons. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. X-ray sources

    International Nuclear Information System (INIS)

    Bonse, U.

    1979-11-01

    The author describes several possibilities for the production of X-radiation. Especially he discusses the use of bremsstrahlung at electron impact on solid targets and the synchrotron radiation. He presents some equations for the calculation of X-ray intensities. Especially the X-radiation from the DORIS storage ring is discussed. (HSI)

  15. The MCNP simulation of the X-ray leakage of X-ray security inspection equipment

    International Nuclear Information System (INIS)

    Wang Kai; Liu Bin; Hu Wenchao; Zhao Wei

    2011-01-01

    Objective: To simulate the radiation leakage of the X-ray security inspection equipment used in the subways stations. Methods: We use the MCNP4C code to simulate the X-ray leakage of the equipment during the working process. Result: the biggest amount of radiation received by the body is 8.26 μSv/a, however, if the Lead screens of the X-ray security equipment is intact, the amount of radiation received by the body is only 0.0727 μSv/a. The final. Conclusions: When the baggage get in /out the X-ray security inspection equipment, the gas in Lead screens was made, and then the amount of radiation received by human body increased; The amount of radiation received by the body is close to but still below 10 μSv/a which is the exemption criteria set by the 'safety of radiation sources of ionizing radiation protection and basic standards'(GB18871-2002). (authors)

  16. X-ray tube monitor apparatus

    International Nuclear Information System (INIS)

    Holland, W.P.; Pellergrino, A.

    1981-01-01

    An x-ray tube with a rotating anode target is provided with a detector of x-rays located outside a port of a housing of the tube and positioned at or near a tangent line to the radiating surface for observing variations in the radiation intensity due to rotation of the target, the variations being pronounced due to the heel effect of the radiation pattern. The x-ray detector can employ a scintillation material and be coupled by a light guide to a photodetector which is removed from the path of the radiation and detects scintillations of the x-ray detector. Alternatively, the photodetector and light pipe may be replaced by a detector of germanium, silicon or an ion chamber which converts x-ray photons directly to an electric current. An electronic unit determines the speed of rotation from the electric signal and can also, by fourier transform and signature analysis techniques, monitor the state of the radiating surface. (author)

  17. X-ray radiation detectors of 'scintillator-photoreceiving device type' for industrial digital radiography with improved spatial resolution

    International Nuclear Information System (INIS)

    Ryzhykov, V.D.; Lysetska, O.K.; Opolonin, O.D.; Kozin, D.N.

    2003-01-01

    Main types of photo receivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of 'scintillator-photoreceiving device' (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm

  18. A synchrotron-based X-ray exposure station for radiation biology experiments

    International Nuclear Information System (INIS)

    Thompson, A.C.; Blakely, E.A.; Bjornstad, K.A.; Chang, P.Y.; Rosen, C.J.; Schwarz, R.I.

    2007-01-01

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 μm). A series of experiments have been done with a four-well slide where a stripe (100 μm widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments

  19. A synchrotron-based X-ray exposure station for radiation biology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.C. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)], E-mail: acthompson@lbl.gov; Blakely, E.A.; Bjornstad, K.A. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); Chang, P.Y. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); SRI International, Menlo Park, CA (United States); Rosen, C.J.; Schwarz, R.I. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)

    2007-11-11

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 {mu}m). A series of experiments have been done with a four-well slide where a stripe (100 {mu}m widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments.

  20. Radiation Dose Measurements in Routine X Ray Examinations

    International Nuclear Information System (INIS)

    Osman, H.; Sulieman, A.; Suliman, I.I.; Sam, A.K.

    2011-01-01

    The aim of current study was to evaluate patients radiation dose in routine X-ray examinations in Omdurman teaching hospital Sudan.110 patients was examined (134) radiographs in two X-ray rooms. Entrance surface doses (ESDs) were calculated from patient exposure parameters using DosCal software. The mean ESD for the chest, AP abdomen, AP pelvis, thoracic spine AP, lateral lumber spine, anteroposterior lumber spine, lower limb and for the upper limb were; 231±44 Gy,453± 29 Gy, 567±22 Gy, 311±33 Gy,716±39 Gy, 611±55 Gy,311±23 Gy, and 158±57 Gy, respectively. Data shows asymmetry in distribution. The results of were comparable with previous study in Sudan.

  1. Design of x-ray diagnostic beam line for a synchrotron radiation source and measurement results

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Akash Deep, E-mail: akash-deep@rrcat.gov.in; Karnewar, A.K.; Ojha, A.; Shrivastava, B.B.; Holikatti, A.C.; Puntambekar, T.A.; Navathe, C.P.

    2014-08-01

    Indus-2 is a 2.5 GeV synchrotron radiation source (SRS) operational at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We have designed, developed and commissioned x-ray diagnostic beam line (X-DBL) at the Indus-2. It is based on pinhole array imaging (8–18 keV). We have derived new equations for online measurements of source position and emission angle with pinhole array optics. Measured values are compared with the measurements at an independent x-ray beam position monitor (staggered pair blade monitor) installed in the X-DBL. The measured values are close to the theoretical expected values within ±12 µm (or ±1.5 μrad) for sufficiently wide range of the beam movements. So, beside the beam size and the beam emittance, online information for the vertical position and angle is also used in the orbit steering. In this paper, the various design considerations of the X-DBL and online measurement results are presented.

  2. X-rays and extreme ultraviolet radiation principles and applications

    CERN Document Server

    Attwood, David

    2016-01-01

    With this fully updated second edition, readers will gain a detailed understanding of the physics and applications of modern X-ray and EUV radiation sources. Taking into account the most recent improvements in capabilities, coverage is expanded to include new chapters on free electron lasers (FELs), laser high harmonic generation (HHG), X-ray and EUV optics, and nanoscale imaging; a completely revised chapter on spatial and temporal coherence; and extensive discussion of the generation and applications of femtosecond and attosecond techniques. Readers will be guided step by step through the mathematics of each topic, with over 300 figures, 50 reference tables and 600 equations enabling easy understanding of key concepts. Homework problems, a solutions manual for instructors, and links to YouTube lectures accompany the book online. This is the 'go-to' guide for graduate students, researchers and industry practitioners interested in X-ray and EUV interaction with matter.

  3. Comptonization of low-frequency radiation in accretion disks Angular distribution and polarization of hard X-ray radiation

    International Nuclear Information System (INIS)

    Suniaev, R.A.; Titarchuk, L.G.

    1984-01-01

    Analytical consideration is given to the comptonization of photons and its effects on the radiation emitted from accretion disks of compact X-ray sources, such as black holes and neutron stars. Attention is given to the photon distribution during escape from the disk, the angular distribution of hard radiation from the disk, the polarization of hard radiation and the electron temperature distribution over the optical depth. It is shown that the hard radiation spectrum is independent of the low-frequency photon source distribution. The angular distribution and polarization of the outgoing X-rays are a function of the optical depth. A Thomson approximation is used to estimate the angular distribution of the hard radiation and the polarization over the disk. The polarization results are compared with OSO-8 satellite data for Cyg X-1 and show good agreement at several energy levels. 17 references

  4. Absolute differential yield of parametric x-ray radiation

    International Nuclear Information System (INIS)

    Shchagin, A.V.; Pristupa, V.I.; Khizhnyak, N.A.

    1993-01-01

    The results of measurements of absolute differential yield of parametric X-ray radiation (PXR) in thin single crystal are presented for the first time. It has been established that the experimental results are in good agreement with theoretical calculations according with kinematical theory. The influence of density effect on PXR properties is discussed. (author). 19 refs., 7 figs

  5. Radiation dosimetry of computed tomography x-ray scanners

    International Nuclear Information System (INIS)

    Poletti, J.L.; Williamson, B.D.P.; Le Heron, J.C.

    1983-01-01

    This report describes the development and application of the methods employed in National Radiation Laboratory (NRL) surveys of computed tomography x-ray scanners (CT scanners). It includes descriptions of the phantoms and equipment used, discussion of the various dose parameters measured, the principles of the various dosimetry systems employed and some indication of the doses to occupationally exposed personnel

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  8. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    International Nuclear Information System (INIS)

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-01-01

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F 3-9 keV , is below and above a critical flux, F X, crit , which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F 3-9 keV ≳ F X, crit have a steeper radio-X-ray correlation (F X ∝F R b and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F 3-9 keV either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. ...

  11. A set-up of micro-X-ray fluorescence system based on polycapillary X-ray optics and applications for archaeology

    International Nuclear Information System (INIS)

    Cheng Lin; Pan Qiuli; Ding Xunliang; Liu Zhiguo

    2008-01-01

    The paper concerns in the structures, performances and characteristics and applications for archaeology of a new micro-X-ray fluorescence system based on rotating anode X-ray generator and polycapillary X-ray optics. The polycapillary X-ray optics used here can focus the primary X-ray beam down to some tens of micrometers in diameters that allows for non-destructive and local analysis of sub-mm samples with minor/ trace level sensitivity. In order to prove the potentials of this instrument used in archaeology, a piece of Chinese ancient blue and white porcelain produced in Ming Dynasty was analyzed. The results show that intensities of Mn-Kα, Co-Kα are variable in agree with the thick of blue glaze. The correlation analysis indicates the Mn and Co have the best correlations. So, the concentrations or ratios of Mn and Co are crucial to determine the provenance and identify from a fake one of Chinese ancient blue and white porcelain. (authors)

  12. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, C.; Pourshahab, B.; Rasouli, H. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Hosseini Pooya, S. M.; Orouji, T. [Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  13. Investigations of the effects of UV and X-ray radiation and the repair of radiation damage in the ciliate Stylonychia mytilus

    International Nuclear Information System (INIS)

    Dittmann, F.N.

    1978-01-01

    Using the example of Stylomychia mytilus, the effects of UV-radiation and ionizing X-ray radiation are compared. The effects on cell division and on the repair of radiation damage in DNA are compared. Sensitivity to UV radiation differs between the stages of the cell cycle while the effects of X-ray radiation are independent of phase. There is no difference in repair processes. (AJ) 891 AJ/AJ 892 MKO [de

  14. Radiative defluorination of poly (vinylidene fluoride) under soft X-ray radiation

    International Nuclear Information System (INIS)

    Chebotaryov, S.S.; Baitinger, E.M.; Volegov, A.A.; Margamov, I.G.; Gribov, I.V.; Moskvina, N.A.; Kuznetsov, V.L.; Evsyukov, S.E.; Pesin, L.A.

    2006-01-01

    The rates of poly (vinylidene fluoride) (PVDF) degradation under synchrotron (SR) and conventional X-ray radiation have been measured and compared. NEXAFS spectra of fluorine show significant changes in their shape and intensity with elevation of radiation dose (or duration of SR exposure). Non-monochromatic AlK α radiation and the flow of secondary electrons accompanying it also cause surface degradation of PVDF. XPS allows one to measure relative content of fluorine by three ways: via relative intensities of F2s/C1s, F1s/C1s, spectra and using the features arising due to of C1s peaks in CF 2 and CF groups

  15. Coherent hard x-ray focusing optics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W.B.; Viccaro, P.J.; Chrzas, J.; Lai, B.

    1991-01-01

    Coherent hard x-ray beams with a flux exceeding 10{sup 9} photons/second with a bandwidth of 0.1% will be provided by the undulator at the third generation synchrotron radiation sources such as APS, ESRF, and Spring-8. The availability of such high flux coherent x-ray beams offers excellent opportunities for extending the coherence-based techniques developed in the visible and soft x-ray part of the electromagnetic spectrum to the hard x-rays. These x-ray techniques (e.g., diffraction limited microfocusing, holography, interferometry, phase contrast imaging and signal enhancement), may offer substantial advantages over non-coherence-based x-ray techniques currently used. For example, the signal enhancement technique may be used to enhance an anomalous x-ray or magnetic x-ray scattering signal by several orders of magnitude. Coherent x-rays can be focused to a very small (diffraction-limited) spot size, thus allowing high spatial resolution microprobes to be constructed. The paper will discuss the feasibility of the extension of some coherence-based techniques to the hard x-ray range and the significant progress that has been made in the development of diffraction-limited focusing optics. Specific experimental results for a transmission Fresnel phase zone plate that can focus 8.2 keV x-rays to a spot size of about 2 microns will be briefly discussed. The comparison of measured focusing efficiency of the zone plate with that calculated will be made. Some specific applications of zone plates as coherent x-ray optics will be discussed. 17 refs., 4 figs.

  16. Radiation safety and quality control assurance in X-ray diagnostics 1998; Saeteilyturvallisuus ja laadunvarmistus roentgendiagnostiikassa 1998

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A [ed.

    1998-03-01

    The report is based on a seminar course of lectures `Radiation safety and quality assurance in X-ray diagnostics 1998` organized by the Radiation and Nuclear Safety Authority (STUK) in Finland. The lectures included actual information on X-ray examinations: methods of quality assurance, methods of measuring and calculating patient doses, examination frequencies, patient doses, occupational doses, and radiation risks. Paediatric X-ray examinations and interventional procedures were the most specific topics. The new Council Directive 97/43/Euratom on medical exposure, and the European Guidelines on quality criteria for diagnostic radiographic images, were discussed in several lectures. Lectures on general radiation threats and preparedness, examples of radiation accidents, and emergency preparedness in hospitals were also included. (editor)

  17. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-01

    Highlights: ► It is feasible to use recycled CRT glass in mortar as shield against X-ray radiation. ► Shielding properties of CRT mortar is strongly depended on CRT content. ► Linear attenuation coefficient was reduced by 142% upon 100% CRT glass in mortar. ► Effect of mortar thickness and irradiation energies on shielding was investigated. - Abstract: Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm 3 can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement–sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy.

  18. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    International Nuclear Information System (INIS)

    Zou, Shiyang; Song, Peng; Pei, Wenbing; Guo, Liang

    2013-01-01

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses

  19. Spectral analysis of paramagnetic centers induced in human tooth enamel by x-rays and gamma radiation

    Science.gov (United States)

    Kirillov, V. A.; Kuchuro, I. I.

    2010-03-01

    Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.

  20. X pinch a point x-ray source

    International Nuclear Information System (INIS)

    Garg, A.B.; Rout, R.K.; Shyam, A.; Srinivasan, M.

    1993-01-01

    X ray emission from an X pinch, a point x-ray source has been studied using a pin-hole camera by a 30 kV, 7.2 μ F capacitor bank. The wires of different material like W, Mo, Cu, S.S.(stainless steel) and Ti were used. Molybdenum pinch gives the most intense x-rays and stainless steel gives the minimum intensity x-rays for same bank energy (∼ 3.2 kJ). Point x-ray source of size (≤ 0.5 mm) was observed using pin hole camera. The size of the source is limited by the size of the pin hole camera. The peak current in the load is approximately 150 kA. The point x-ray source could be useful in many fields like micro lithography, medicine and to study the basic physics of high Z plasmas. (author). 4 refs., 3 figs

  1. The radiation protection optimisation in contrast X-ray diagnostic techniques

    International Nuclear Information System (INIS)

    Markovic, S.; Pavlovic, R.

    1995-01-01

    In the class of artificial sources, X-ray diagnostic techniques irradiate global population with more than 90 % share in total dose. At the same time this is the only area with high possibilities in collective dose reduction without important investments. Exposure of the medical team is mainly related to unnecessary irradiation. Eliminating this unnecessary irradiation quality of diagnostic information remains undisturbed. From the radiation protection point of view the most critical X-ray diagnostic method is angiography. This paper presents the radiation protection optimisation calculation of the protective lead thickness using the Cost - Benefit analysis technique. The obtained numerical results are based on calculated collective dose, the estimated prices of the lead and lead glass thickness and the adopted price for monetary value of the collective dose unit α. (author) 3 figs., 10 refs

  2. The radiation protection optimisation in contrast X-ray diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, S; Pavlovic, R [Inst. of Nuclear Science Vinca, Belgrade (Yugoslavia). Radiation and Environmental Protection Lab.; Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    In the class of artificial sources, X-ray diagnostic techniques irradiate global population with more than 90 % share in total dose. At the same time this is the only area with high possibilities in collective dose reduction without important investments. Exposure of the medical team is mainly related to unnecessary irradiation. Eliminating this unnecessary irradiation quality of diagnostic information remains undisturbed. From the radiation protection point of view the most critical X-ray diagnostic method is angiography. This paper presents the radiation protection optimisation calculation of the protective lead thickness using the Cost - Benefit analysis technique. The obtained numerical results are based on calculated collective dose, the estimated prices of the lead and lead glass thickness and the adopted price for monetary value of the collective dose unit {alpha}. (author) 3 figs., 10 refs.

  3. X-ray ‘ghost images’ could cut radiation doses

    Science.gov (United States)

    Chen, Sophia

    2018-03-01

    On its own, a single-pixel camera captures pictures that are pretty dull: squares that are completely black, completely white, or some shade of gray in between. All it does, after all, is detect brightness. Yet by connecting a single-pixel camera to a patterned light source, a team of physicists in China has made detailed x-ray images using a statistical technique called ghost imaging, first pioneered 20 years ago in infrared and visible light. Researchers in the field say future versions of this system could take clear x-ray photographs with cheap cameras—no need for lenses and multipixel detectors—and less cancer-causing radiation than conventional techniques.

  4. Short review on contemporary state of X-ray transition radiation theory

    International Nuclear Information System (INIS)

    Garibyan, G.M.

    1977-01-01

    The main properties of the X-ray transition radiation and the prehistory of the development of this phenomenon are given. The radiation produced when a charged particle passes through a regular and irregular stack of plates, the influence of the multiple scattering on the radiation as well as the microscopic theory of this phenomenon are considered

  5. Center for X-Ray Optics, 1986

    International Nuclear Information System (INIS)

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers

  6. X-ray diagnostics for TFTR

    International Nuclear Information System (INIS)

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment

  7. Dentistry 4. X-ray diagnostics

    International Nuclear Information System (INIS)

    2014-01-01

    DIN pocketbook 267/4 gives an overview of the normative requirements of the new X-Ray and Radiation Protection Ordinance, which has been in effect since 1 November 2011. This DIN pocketbook is intended for anyone charged with professional responsibility for the use of ionizing radiation in dentistry, operators and users of x-ray devices, radiation protection officers, accredited experts, manufacturers as well as for anyone with an interest in radiation protection or optimal radiological diagnostics. It contains standards relating to the following areas: acceptance and constancy testing; devices for evaluating findings (monitors, film viewing devices), films, printers; archiving, designating, labelling. Adherence to the standards makes it possible to avoid distractive artefacts in x-ray images and optimise the quality of x-ray diagnostics in dentistry.

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of Bone X-ray (Radiography)? ...

  9. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure

    Science.gov (United States)

    Stanton, Ian N.; Belley, Matthew D.; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G.; Yoshizumi, Terry T.; Therien, Michael J.

    2014-04-01

    Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3 Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3 Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3 Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 +/- 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device recorded

  10. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  11. Effective high voltage at X-ray tube in hard X-ray chest imaging

    International Nuclear Information System (INIS)

    Klein, J.

    1987-01-01

    The FRG standard TGL 36 661 (March 1980) for synoptical chest pictures of large size in adults specifies the 120 kV voltage at the X-ray tube together with maximal, 100% use of the capacity of the tube (hard picture, short exposure time). By means of circular recording and by measuring the high voltage at the X-ray tube it was quantitatively shown that the effective voltage during exposure is (according to the exposure time and the attenuation phase of the generator) always lower than the set-up voltage of 120 kV. This phenomenon is the more marked the shorter the actual exposure time in comparison with the attenuation phase of the generator. The typical characteristic of a hard X-ray chest picture is thus not given only by the setting-up of voltage. The impact of the reduction in voltage is thus quantitatively shown also from the aspect of the radiation burden for the patient. (author). 7 figs., 8 refs

  12. Radiation hormesis of radish using an X-ray photography device

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Atsushi [Asahikawa Kousei Hospital, Hokkaido (Japan)

    2000-07-01

    Radiation hormesis was studied at an X-ray photography room. Seed of radish (Kaiwaredaikon) was irradiated by X-ray, from 10 to 3000 mGy. Since the growth of plant was the highest around 500 mGy, 100 seeds were irradiated at a dose of 500 mGy. Fifty seeds were selected and the growth rate was measured after 1 and 2 weeks. After 2 weeks, the growth of the seeds irradiated (129{+-}5 mm) was found to be higher than those without irradiation (115{+-}5 mm). (author)

  13. X-ray phase contrast imaging at the Mainz Microtron MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Ghazaly, M. el

    2005-10-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. In a first series of experiments a polychromatic transition radiation X-ray source with typical photon energies in the range of 8-30 keV and a spot size of standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in vertical direction was used to record refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m. As detectors X-ray films were used. The source-to-detector distance amounted to 13 m. The edge enhancement contrast C{sub ref} = (I{sub max}-I{sub min})/(I{sub max}+I{sub min}) was investigated as a function of the distance between the object and the X-ray film which was varied between 0.5 and 5.5 m. In a second series of experiments holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m and a monochromatic X-ray beam of 6 keV energy. The good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. In a third series of experiments it was demonstrated that X-ray films are very useful detectors for the micro-focused and monochromized transition radiation X-ray source at MAMI. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the X-ray film Structurix D3 (Agfa) the standard deviation of the resolution was measured

  14. X-ray - skeleton

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this ... Degenerative bone conditions Osteomyelitis Risks There is low radiation exposure. X-rays machines are set to provide the smallest ...

  15. Extremity x-ray

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003461.htm Extremity x-ray To use the sharing features on this page, ... in the body Risks There is low-level radiation exposure. X-rays are monitored and regulated to provide the ...

  16. Characterization of Local Strain around Through-Silicon Via Interconnects by Using X-ray Microdiffraction

    Science.gov (United States)

    Nakatsuka, Osamu; Kitada, Hideki; Kim, Youngsuk; Mizushima, Yoriko; Nakamura, Tomoji; Ohba, Takayuki; Zaima, Shigeaki

    2011-05-01

    We have demonstrated the characterization of the local strain structure in thinned Si layers for wafer-on-a-wafer (WOW) applications by using X-ray microdiffraction with a synchrotron radiation source. The microdiffraction reveals the fluctuation of strains in the thin Si layer around through-silicon via (TSV) interconnects with a sub-micrometer scale. We can separately estimated the in-plane and out-of-plane strain structures in the Si layer, and found that the anisotropic strain is induced in the Si layer between the TSV interconnects.

  17. Study on quantities of radiation protection in medical X-rays radiation field with polyhedron phantom

    International Nuclear Information System (INIS)

    Yuan Shuyu; Dai Guangfu; Zhang Liangan

    1997-01-01

    The author have studied tissue-equivalent material with the elemental composition recommended by report No.44 of ICRU. Three different calibration phantoms in shape have been prepared with the tissue-equivalent material in order to study the influence of the angular dependence factor R(d,α) in the radiation field of X-rays on the calibration of individual dose equivalent Hp(d). The requirement of mono-genous radiation field to calibrate several dosimeters on one phantom at the same time can be met by application of dodecahedron phantom, which is difficult on ICRU sphere. Angular dependence factor R(d,α) of 0 degree∼90 degree and conversion coefficients between individual dose equivalent Hp(0.07, α) and the exposure of radiation of different energies and different angles have been established by taking advantage of the dodecahedron. Besides, the authors have studied the variation relation between the individual dose equivalent Hp (10,α) and Hp(0.07,α) in the medical X-rays radiation field

  18. X-ray emission characteristics of foam target plasmas

    International Nuclear Information System (INIS)

    Fronya, A.A.; Borisenko, N.G.; Chernodub, M.L.; Merkuliev, Yu.A.; Osipov, M.V.; Puzyrev, V.N.; Sahakyan, A.T.; Starodub, A.N.; Vasin, B.L.; Yakushev, O.F.

    2010-01-01

    Complete text of publication follows. Experimental results of laser radiation interaction with a foam targets are presented. The spatial, temporal and energy characteristics of x-ray plasma radiation have been investigated. The pinhole-camera and Schwarzschild objective have been used for the plasma image formation in different spectral ranges. The plasma image is registered by the Schwarzschild objective in a narrow spectral range 180 - 200 A. Spectral characteristics of x-ray radiation registered by pinhole-camera have been defined by means outer filters. The use of the filters with different transmission curves allowed one the determine the localization of x-ray radiation with fixed wavelength. Spatial resolution accounts 16 μm in the pinhole-camera diagnostic channel and 2.5 μm in the Schwarzschild objective diagnostic channel. The plasma images in the intrinsic x-ray radiation show that the emission area in the transverse direction with respect to the direction of the propagating heating radiation exceeds the focal spot size. This fact indicates that the target heating in the transverse direction is due to internal energy of the created plasma. The average value of plasma electron temperature is ∼ 0.4 - 1.4 keV. Acknowledgements. The work is partly supported by the Russian Foundation for Basic Researches, grant no. 10-02-00113 and by Federal Target Program 'Research and scientific-pedagogical cadres of Innovative Russia' (grant 2009-1.1-122-052-025).

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... X-rays are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small ...

  20. Computed tomography for light materials using a monochromatic X-ray beam produced by parametric X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Y., E-mail: yahayak@lebra.nihon-u.ac.jp [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Hayakawa, K.; Inagaki, M. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Kaneda, T. [Nihon University School of Dentistry at Matsudo, Sakaecho-Nishi 2-870-1, Matsudo 271-8587 (Japan); Nakao, K.; Nogami, K. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Sakae, T. [Nihon University School of Dentistry at Matsudo, Sakaecho-Nishi 2-870-1, Matsudo 271-8587 (Japan); Sakai, T.; Sato, I. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Takahashi, Y. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-8501 (Japan); Tanaka, T. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan)

    2013-08-15

    Computed tomography (CT) for light materials such as soft biological tissues was performed using a monochromatic X-ray beam provided by a parametric X-ray radiation (PXR) source at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. Using a high-efficiency flat panel detector (FPD), each projection image for CT was taken with exposure times of 5 or 10 s, and 60–360 projection images in each run were obtained with total measurement time of 5 min to 1 h. CT images were obtained from the projection images using the conventional calculation method. The typical tomograms obtained had sharp outlines, which are likely attributable to the propagation-based phase contrast.

  1. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  2. Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators

    International Nuclear Information System (INIS)

    Smith, Graham W.; Gallegos, Roque Rosauro; Hohlfelder, Robert James; Beutler, David Eric; Dudley, John; Seymour, Calvin L.G.; Bell, John D.

    2004-01-01

    Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  3. Measurements of Bremsstrahlung radiation and X-ray heat load to cryostat on SECRAL

    International Nuclear Information System (INIS)

    Zhao, H.Y.; Cao, Y.; Lu, W.; Zhang, W.H.; Zhao, H.W.; Zhang, X.Z.; Zhu, Y.H.; Li, X.X.; Xie, D.Z.

    2012-01-01

    The measurement of Bremsstrahlung radiation from ECR (Electron Cyclotron Resonance) plasma can yield certain information about the ECR heating process and the plasma confinement, and more important it can give a plausible estimate of the X-ray heat load to the cryostat of a superconducting ECR source. To better understand the additional heat load to the cryostat due to Bremsstrahlung radiation, the axial Bremsstrahlung measurements have been conducted on SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) with different source parameters. In addition, the heat load induced by intense X-ray or even γ-ray was estimated in terms of liquid helium consumption. The relationship between these two parameters is presented here. Thick-target Bremsstrahlung, induced by the collision of hot electrons with the wall or the source electrode, is much more intensive compared with the radiation produced in the plasma and, consequently, much more difficult to shield off. In this paper the presence of the thick-target Bremsstrahlung is correlated with the magnetic confinement configuration, specifically, the ratio of B(last) to B(ext). And possible solutions to reduce the X-ray heat load induced by Bremsstrahlung radiation are proposed and discussed. It appears that by choosing an appropriate ratio of B(last) to B(ext) the thick-target Bremsstrahlung radiation can be avoided effectively. The paper is followed by the associated poster

  4. Characterisation and application of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Graetz, M.

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm 2 onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained

  5. Characterisation and application of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, M

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm{sup 2} onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained 120 refs, figs, tabs

  6. A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Lipp, J; Mir, J A; Simmons, J E; Spill, E J; Stephenson, R; Dobson, B R; Farrow, R C; Helsby, W I; Mutikainen, R; Suni, I

    2002-01-01

    The Gas Microstrip Detector has counting rate capabilities several orders of magnitude higher than conventional wire proportional counters while providing the same (or better) energy resolution for X-rays. In addition the geometric flexibility provided by the lithographic process combined with the self-supporting properties of the substrate offers many exciting possibilities for X-ray detectors, particularly for the demanding experiments carried out on Synchrotron Radiation Sources. Using experience obtained in designing detectors for Particle Physics we have developed a detector for Wide Angle X-ray Scattering studies. The detector has a fan geometry which makes possible a gas detector with high detection efficiency, sub-millimetre spatial resolution and good energy resolution over a wide range of X-ray energy. The detector is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  7. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  8. Radiation exposure to chest X-rays in the neonatal nursery

    International Nuclear Information System (INIS)

    Takeuchi, Toshio; Itabashi, Kazuo; Kawaguchi, Shigeru; Suzuka, Takahisa; Okuyama, Kazuo

    1989-01-01

    To measure how much very low birth-weight infants are exposed to chest X-rays during nursery, skin doses were calculated using phantoms under the same condition as that used in chest X-rays. Skin doses obtained were multiplied by the number of X-rays performed in 86 very low birth-weight infants (mean birth weight+-SD, 1163.0+-232.8 g; mean gestational age+-SD, 29.3+-3.0 week). Exposure doses per film ranged from 4.9 to 14.4 mR, with a mean dose of 6.1+-2.0 mR. Exposure doses per neonate ranged from 6.3 to 794.3 mR, with a mean dose of 170.4+-151.5 mR. The number of films per neonate ranged from one to 107, with a mean of 28.0+-24.9. Eighty-seven percent of X-rays were performed when the body weight was 1,500 g or less. Fourteen patients received 300 mR or more that may be the potential dose of radiation effects. (Namekawa, K)

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording ...

  10. Spectral structure of a polycapillary lens shaped X-ray beam

    Science.gov (United States)

    Gogolev, A. S.; Filatov, N. A.; Uglov, S. R.; Hampai, D.; Dabagov, S. B.

    2018-04-01

    Polycapillary X-ray optics is widely used in X-ray analysis techniques to create a small secondary source, for instance, or to deliver X-rays to the point of interest with minimum intensity losses [1]. The main characteristics of the analytical devices on its base are the size and divergence of the focused or translated beam. In this work, we used the photon-counting pixel detector ModuPIX to study the parameters for polycapillary focused X-ray tube radiation as well as the energy and spatial dependences of radiation at the focus. We have characterized the high-speed spectral camera ModuPIX, which is a single Timepix device with a fast parallel readout allowing up to 850 frames per second with 256 × 256 pixels and a 55 μm pitch defined by the frame frequency. By means of the silicon monochromator the energy response function is measured in clustering mode by the energy scan over total X-ray tube spectrum.

  11. Construction of x-ray Kβ filters to monochromatize the radiation of a conventional x-ray tube

    International Nuclear Information System (INIS)

    Moreira, M.V.B.; Oliveira, A.G.

    1987-01-01

    The construction of Zr and Nb Kβ filters to produce monochromatic radiation of a conventional X-ray Mo-tube (λK a = 0.7107 A) is described. Disks of NB and Zr, 6.4 mm in diameter and 0.03 to 0.06 mm thick, were prepared. The filters performance was tested by means of NaCl powder difraction patterns. (author) [pt

  12. Paediatric x-ray radiation dose reduction and image quality analysis.

    Science.gov (United States)

    Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H

    2013-09-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.

  13. Paediatric x-ray radiation dose reduction and image quality analysis

    International Nuclear Information System (INIS)

    Martin, L; Ruddlesden, R; Mistry, T; Starritt, H; Makepeace, C; Robinson, L

    2013-01-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%–55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children. (paper)

  14. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  15. A Performance Evaluation of Diagnostic X-ray Unit Depends on the Hospitals Size

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Hun [Kaya University, Gimhae (Korea, Republic of); Im, In Chul [Gwangju Health College University, Gwangju (Korea, Republic of); Dong, Kyung Rae [Chosun University, Gwangju (Korea, Republic of); Kang, Se Sik [College of Health Science, Catholic University of Pusan, Busan (Korea, Republic of)

    2009-03-15

    The purpose of this study is to measure the tube voltage, the tube current/volume, exposure time and exposure dose of diagnostic X-ray unit in each doctor offices, hospitals and general hospitals for evaluating the performance of such device, to learn the method and technology of its measurement and to suggest its importance. Research subjects were total 30 X-ray units and divided into groups of 10 X-ray units each. The tube voltage, the tube current/volume, exposure time and exposure dose were measured using percentage average error, and then reproducibility of exposure dose was measured through calculating coefficient of variation. The results are like followings; The tube voltage correctness examination showed that incongruent devices among total 30 X-ray units were 5 devices (16.7%). The tube current correctness examination showed that incongruent X-ray units were 3 devices (10.0%). The tube current volume correctness examination showed that incongruent X-ray units were 4 devices (13.3%). Finally, according to exposure time correctness examination, incongruent X-ray units were 5 devices (16.7%) and according to reproducibility examination of exposure dose, incongruent X-ray units were 7 devices (23.3%). Above results showed serious problem in performance management based on management regulation of diagnostic X-ray unit; it means that regular checkout and safety management are required, and as doing so, patients will be able to receive good quality of medical service by the reduction of radiation exposure time, image quality administration, unnecessary retake and etc. Therefore, this study suggests that the performance of diagnostic X-ray units should be checked regularly

  16. A Performance Evaluation of Diagnostic X-ray Unit Depends on the Hospitals Size

    International Nuclear Information System (INIS)

    Park, Ju Hun; Im, In Chul; Dong, Kyung Rae; Kang, Se Sik

    2009-01-01

    The purpose of this study is to measure the tube voltage, the tube current/volume, exposure time and exposure dose of diagnostic X-ray unit in each doctor offices, hospitals and general hospitals for evaluating the performance of such device, to learn the method and technology of its measurement and to suggest its importance. Research subjects were total 30 X-ray units and divided into groups of 10 X-ray units each. The tube voltage, the tube current/volume, exposure time and exposure dose were measured using percentage average error, and then reproducibility of exposure dose was measured through calculating coefficient of variation. The results are like followings; The tube voltage correctness examination showed that incongruent devices among total 30 X-ray units were 5 devices (16.7%). The tube current correctness examination showed that incongruent X-ray units were 3 devices (10.0%). The tube current volume correctness examination showed that incongruent X-ray units were 4 devices (13.3%). Finally, according to exposure time correctness examination, incongruent X-ray units were 5 devices (16.7%) and according to reproducibility examination of exposure dose, incongruent X-ray units were 7 devices (23.3%). Above results showed serious problem in performance management based on management regulation of diagnostic X-ray unit; it means that regular checkout and safety management are required, and as doing so, patients will be able to receive good quality of medical service by the reduction of radiation exposure time, image quality administration, unnecessary retake and etc. Therefore, this study suggests that the performance of diagnostic X-ray units should be checked regularly

  17. Development of a guinea pig cutaneous radiation injury model using low penetrating X-rays.

    Science.gov (United States)

    Rodgers, Kathleen E; Tan, Alick; Kim, Lila; Espinoza, Theresa; Meeks, Christopher; Johnston, William; Maulhardt, Holly; Donald, Melissa; Hill, Colin; diZerega, Gere S

    2016-08-01

    A guinea pig skin model was developed to determine the dose-dependent response to soft X-ray radiation into the dermis. X-ray exposure (50 kVp) was defined to a 4.0 × 4.0 cm area on the lateral surface of a guinea pig using lead shielding. Guinea pigs were exposed to a single fraction of X-ray irradiation ranging from 25-79 Gy via an XRAD320ix Biological Irradiator with the collimator removed. Gross skin changes were measured using clinical assessments defined by the Kumar scale. Skin contracture was assessed, as well as histological evaluations. Loss of dermal integrity was shown after a single dose of soft X-ray radiation at or above 32 Gy with the central 2.0 × 2.0 cm of the exposed site being the most affected. Hallmarks of the skin injury included moist desquamation, ulceration and wound contracture, as well as alterations in epithelium, dermis, muscle and adipose. Changes in the skin were time- and radiation dose-dependent. Full-thickness injury occurred without animal mortality or gross changes in the underlying organs. The guinea pig is an appropriate small animal model for the short-term screening of countermeasures for cutaneous radiation injury (CRI).

  18. X-rays and photocarcinogenesis in hairless mice.

    Science.gov (United States)

    Lerche, Catharina M; Philipsen, Peter A; Wulf, Hans Christian

    2013-08-01

    It is well known that excessive X-ray radiation can cause non-melanoma skin cancers. With the increased incidence of sun-related skin cancer there is a need to investigate the combination of sunlight and X-rays. Immunocompetent C3.Cg/TifBomTac mice (n = 298) were divided into 12 groups. Mice were irradiated with 12, 29 or 50 kV X-rays. The mice received a total dose of 45 Gy. They were irradiated with 3 SED simulated solar radiation (SSR) either before or after irradiation with X-rays. The groups irradiated with X-rays alone, 0, 3, 9 and 10 mice (0, 12, 29 and 50 kV, respectively) developed squamous cell carcinoma. In the groups irradiated with SSR after X-rays the development of tumours was significantly faster in the 50 kV group than in the corresponding control group (175 vs. 194 days, p X-ray radiation the development of tumours was significantly faster in the 29 and the 50 kV groups than in the corresponding control group (175 vs. 202 days, p X-ray radiation alone is a weak carcinogen in hairless mice. There is an added carcinogenic effect if X-ray radiation is given on prior sun-exposed skin or if the skin is sun-exposed after X-rays. We still believe that X-ray radiation is a safe and effective therapy for various dermatological diseases but caution should be observed if a patient has severely sun-damaged skin or has a high-risk sun behaviour.

  19. Radiation safety and quality in diagnostic x-ray imaging 2001

    International Nuclear Information System (INIS)

    Servomaa, A.; Parviainen, T.

    2001-05-01

    The obligations of the medical exposure directive (97/43/Euratom) for hospitals dominate the current activities in radiation protection in medical radiology. The directive gives special emphasis to radiation exposure of children, to examinations with high radiation doses and to radiation exposure in health screening programmes. The most important examinations with high doses are radiological interventions, where even acute skin effects are possible, and the computed tomography where the number of CT examinations makes only about 5% from the total number of x-ray examinations but the collective effective dose about 40% from the combined collective effective dose of all x-ray examinations. In the research projects financed by the European Commission, radiation exposures to paediatric patients have been measured in radiography, fluoroscopy and CT, and various dose assessment methods have been compared to develop a method for national follow-up of patients' radiation dose. The newest research project is focused on dosimetry and quality assurance in interventional radiology and digital imaging. Other actual topics are the development of radiation protection regulations and quality systems, education and training programmes, and clinical audits. This report deals with new radiation protection guides and recommendations and the education and training of radiological staff in radiation protection. One important topic is the development of national follow-up method of radiation exposure to patients and comparison of various dose assessment methods. Quality assurance in health care and in paediatric radiology, and the acceptance test and quality assurance measurements of radiological equipment are also described. (orig.)

  20. Compositional Determination of Shale with Simultaneous Neutron and X-ray Tomography

    Science.gov (United States)

    LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2017-12-01

    Understanding the distribution of organic material, mineral inclusions, and porosity are critical to properly model the flow of fluids through rock formations in applications ranging from hydraulic fracturing and gas extraction, CO2 sequestration, geothermal power, and aquifer management. Typically, this information is obtained on the pore scale using destructive techniques such as focused ion beam scanning electron microscopy. Neutrons and X-rays provide non-destructive, complementary probes to gain three-dimensional distributions of porosity, minerals, and organic content along with fluid interactions in fractures and pore networks on the core scale. By capturing both neutron and X-ray tomography simultaneously it is possible to capture slowly dynamic or stochastic processes with both imaging modes. To facilitate this, NIST offers a system for simultaneous neutron and X-ray tomography at the Center for Neutron Research. This instrument provides neutron and X-ray beams capable of penetrating through pressure vessels to image the specimen inside at relevant geological conditions at resolutions ranging from 15 micrometers to 100 micrometers. This talk will discuss current efforts at identifying mineral and organic content and fracture and wettability in shales relevant to gas extraction.

  1. Calculation of characteristics of X-ray devices

    Directory of Open Access Journals (Sweden)

    Orobinskyi A. N.

    2015-12-01

    Full Text Available Actuality of this work is related to human radiation safety during tuning and regulation of X-ray devices in the process of their development and production. The more precise the calculations for the device are, the less time is required for its tuning and regulation, and thus people are less exposed to radiation. When developing an X-ray device, it is necessary to choose an X-ray tube and filters taking into account the application domain of the device. In order to do this, one should know anode voltage, X-ray tube anode current, material and thickness of filters, i.e. to calculate these characteristics at the set quality of X-ray radiation. The known published studies do not give any solution to this problem. The scientific novelty of this work is that it establishes the interdependence between main characteristics of the X-ray device: the function of the device defines the quality of X-ray radiation (mean photon energy and air kerma power; mean photon energy depends on the X-ray anode tube voltage and spectral resolution; air kerma power depends on anode tube voltage, current of X-ray tube anode, spectral resolution, thicknesses of the filters and their materials; spectral resolution depends on thicknesses of filters and their materials; thickness of filters depends on the material of the filter (the linear coefficient of weakening of X-ray radiation. Knowledge of interdependence of basic characteristics of the X-ray devices allowes developing simple algorithm for their calculation at the values of homogeneity coefficient from 0,8 to 1, which makes it possible to choose an X-ray tube and filters with the purpose of obtaining X-ray radiation of the set quality.

  2. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    Science.gov (United States)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  3. Radiation Detection and Dual-Energy X-Ray Imaging for Port Security

    Energy Technology Data Exchange (ETDEWEB)

    Pashby, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    Millions of cargo containers are transported across the United States border annually and are inspected for illicit radioactive material and contraband using a combination of passive radiation portal monitors (RPM) and high energy X-ray non-intrusive inspection (NII) systems. As detection performance is expected to vary with the material composition of cargo, characterizing the types of material present in cargo is important to national security. This work analyzes the passive radiation and dual energy radiography signatures from on RPM and two NII system, respectively. First, the cargos were analyzed to determine their ability to attenuate emissions from an embedded radioactive source. Secondly, dual-energy X-ray discrimination was used to determine the material composition and density of the cargos.

  4. Patient size and x-ray transmission in body CT.

    Science.gov (United States)

    Ogden, Kent; Huda, Walter; Scalzetti, Ernest M; Roskopf, Marsha L

    2004-04-01

    Physical characteristics were obtained for 196 patients undergoing chest and abdomen computed tomography (CT) examinations. Computed tomography sections for these patients having no evident pathology were analyzed to determine patient dimensions (AP and lateral), together with the average attenuation coefficient. Patient weights ranged from approximately 3 kg to about 120 kg. For chest CT, the mean Hounsfield unit (HU) fell from about -120 HU for newborns to about -300 HU for adults. For abdominal CT, the mean HU for children and normal-sized adults was about 20 HU, but decreased to below -50 HU for adults weighing more than 100 kg. The effective photon energy and percent energy fluence transmitted through a given patient size and composition was calculated for representative x-ray spectra at 80, 100, 120, and 140 kV tube potentials. A 70-kg adult scanned at 120 kVp transmits 2.6% of the energy fluence for chest and 0.7% for abdomen CT examinations. Reducing the patient size to 10 kg increases transmission by an order of magnitude. For 70 kg patients, effective energies in body CT range from approximately 50 keV at 80 kVp to approximately 67 keV at 140 kVp; increasing patient size from 10 to 120 kg resulted in an increase in effective photon energy of approximately 4 keV. The x-ray transmission data and effective photon energy data can be used to determine CT image noise and image contrast, respectively, and information on patient size and composition can be used to determine patient doses.

  5. Optimization of a collimator size for the pin-hole camera of X-rays, and proposal of a method to correct degradations of efficiencies in neighboring parts of the image

    International Nuclear Information System (INIS)

    Hayashi, Hiroaki; Nishihara, Sadamitsu; Taniuchi, Shou; Kamiya, Naotaka

    2012-01-01

    A visual image of the scattered X-ray distributions gives us useful information for beginners to study radiation physics. A pin-hole camera for X-rays can be made by use of simple materials as well as a two-dimensional X-ray detector (imaging plate: IP). In contrast with a pin-hole camera for the visible radiations, a pin-hole camera for X-rays uses a collimator, having a sufficient thickness to reduce X-rays. This design causes the following problem: in the case in which the X-rays are incident to the collimator from the diagonal direction, the some X-rays are absorbed by the wall of the collimator. Namely, the images in the surrounding part of the IP are underrepresented. The aim of this study is to suggest a correction method of the underrepresentation. We used a pin-hole camera (320 mm(long)×270 mm(wide)×300 mm(depth)) by means of the clinically applied IP (10×12 inch). In order to determine proper conditions for a size of collimators (pin-hole), experiments using medical X-ray equipments were carried out. The efficiencies and resolutions were experimentally determined for the collimator sizes of 2 to 8 mm φ . Then, images of scattered X-ray distributions were measured by the irradiation of a head phantom, and considerations were taken for a practical use of the pin-hole camera. Moreover, an exponential absorption of X-rays in the phantom was visualized by our camera in order to indicate a potential of quantitative analysis based on the image of scattered X-ray distributions. (author)

  6. Patients Radiation Load Caused by Digitalised X-Ray Equipment

    International Nuclear Information System (INIS)

    Nikodemova, D.; Prikazska, M.; Horvathova, M.

    2001-01-01

    Full text: The radiation load of population all over the world from medical examinations clearly demonstrate the importance of implementation of quality assurance and quality control programmes into the activities of radiological departments. The basic aim of quality assurance programme is to ensure that the radiation dose is kept as low as reasonably practicable consistent with adequate image quality. As many other fields, the rapid development of techniques brought change-over from the conventional analogue technique to the digital technique. In this connection conventional X-ray film is being abandoned and images are being viewed on either laser film or monitor. The main advantages of using digital equipment lay in improved image quality and diagnostic accuracy through digital image processing, reduction in patient exposure, cost reduction by reduction film usage, more efficient storage and retrieval of radiographic images through picture archiving. Several studies that have been conducted for comparison of various diagnostic examinations performed on digital and analogue X-ray equipment have shown that in barium meal examinations, there is potential for dose saving in the digital image intensifier technique. The aim of this study was to compare measured values of dose-area product for colon investigations using different X-ray equipment types, on digital and one analogue. Our material consisted of 60 randomly selected patients, 24 of them were examined with digital equipment and 36 patients with the analogue equipment. (author)

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  8. Circular polarization control for the European XFEL in the soft X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-06-15

    The possibility of producing X-ray radiation with high degree of circular polarization is an important asset at XFEL facilities. Polarization control is most important in the soft X-ray region.However, the baseline of the European XFEL, including the soft X-ray SASE3 line, foresees planar undulators only, yielding linearly-polarized radiation. It is clear that the lowest-risk strategy for implementing polarization control at SASE3 involves adding an APPLE II-type undulator at the end of the planar undulator, in order to exploit the micro bunching from the baseline FEL. Detailed experience is available in synchrotron radiation laboratories concerning the manufacturing of 5 m-long APPLE II undulators. However, the choice of a short helical radiator leads to the problem of background suppression. The driving idea of our proposal is that the background radiation can be suppressed by spatial filtering. This operation can be performed by inserting slits behind the APPLE II radiator, where the linearly-polarized radiation spot size is about 30 times larger than the radiation spot size from the helical radiator. The last 7 cells of the SASE3 undulator are left with an open gap in order to provide a total 42 m drift section for electron beam and radiation. Due to the presence of the drift the linearly-polarized radiation spot size increases, and the linearly polarized background radiation can be suppressed by the slits. At the same time, the microbunch structure is easily preserved, so that intense (100 GW) coherent radiation is emitted in the helical radiator. We propose a filtering setup consisting of a pair of water cooled slits for X-ray beam filtering and of a 5 m-long magnetic chicane, which creates an offset for slit installation immediately behind the helical radiator. Electrons and X-rays are separated before the slits by the magnetic chicane, so that the electron beam can pass by the filtering setup without perturbations. Based on start-to-end simulations we

  9. Circular polarization control for the European XFEL in the soft X-ray regime

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-06-01

    The possibility of producing X-ray radiation with high degree of circular polarization is an important asset at XFEL facilities. Polarization control is most important in the soft X-ray region.However, the baseline of the European XFEL, including the soft X-ray SASE3 line, foresees planar undulators only, yielding linearly-polarized radiation. It is clear that the lowest-risk strategy for implementing polarization control at SASE3 involves adding an APPLE II-type undulator at the end of the planar undulator, in order to exploit the micro bunching from the baseline FEL. Detailed experience is available in synchrotron radiation laboratories concerning the manufacturing of 5 m-long APPLE II undulators. However, the choice of a short helical radiator leads to the problem of background suppression. The driving idea of our proposal is that the background radiation can be suppressed by spatial filtering. This operation can be performed by inserting slits behind the APPLE II radiator, where the linearly-polarized radiation spot size is about 30 times larger than the radiation spot size from the helical radiator. The last 7 cells of the SASE3 undulator are left with an open gap in order to provide a total 42 m drift section for electron beam and radiation. Due to the presence of the drift the linearly-polarized radiation spot size increases, and the linearly polarized background radiation can be suppressed by the slits. At the same time, the microbunch structure is easily preserved, so that intense (100 GW) coherent radiation is emitted in the helical radiator. We propose a filtering setup consisting of a pair of water cooled slits for X-ray beam filtering and of a 5 m-long magnetic chicane, which creates an offset for slit installation immediately behind the helical radiator. Electrons and X-rays are separated before the slits by the magnetic chicane, so that the electron beam can pass by the filtering setup without perturbations. Based on start-to-end simulations we

  10. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  11. A preliminary study of synchrotron light sources for x-ray lithography

    International Nuclear Information System (INIS)

    Hoffmann, C.R.; Bigham, C.B.; Ebrahim, N.A.; Sawicki, J.A.; Taylor, T.

    1989-02-01

    A preliminary study of synchrotron light sources has been made, primarily oriented toward x-ray lithography. X-ray lithography is being pursued vigorously in several countries, with a goal of manufacturing high-density computer chips (0.25 μm feature sizes), and may attain commercial success in the next decade. Many other applications of soft x-rays appear worthy of investigation as well. The study group visited synchrotron radiation facilities and had discussions with members of the synchrotron radiation community, particularly Canadians. It concluded that accelerator technology for a conventional synchrotron light source appropriate for x-ray lithography is well established and is consistent with skills and experience at Chalk River Nuclear Laboratories. Compact superconducting systems are being developed also. Their technical requirements overlap with capabilities at Chalk River. (32 refs)

  12. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

    2010-01-10

    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  13. Inversion domain boundaries in GaN studied by X-ray microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Criado, Gema; Tucoulou, Remi; Cloetens, Peter; Sans, Juan Angel; Susini, Jean [European Synchrotron Radiation Facility, Experiments Division, Grenoble (France); Somogyi, Andrea [Experiments Division, Synchrotron SOLEIL, Gif-sur-Yvette (France); Alen, Benito [Microelectronics Institute Madrid, CNM-CSIC, Madrid (Spain); Miskys, Claudio [Walter Schottky Institute, Technical University Munich, Garching (Germany)

    2010-02-15

    In this study, we report on the application of synchrotron spectro-microscopic techniques to the examination of inversion domain boundaries formed intentionally in a GaN-based lateral polarity heterostructure. Using X-ray sub-microbeams, no evidence of field-driven electrodiffusion effects has been observed on spatially separated inversion domain boundaries. In addition, XANES data around the Ga K-edge strongly supported hexagonal Ga site configurations, suggesting high local order reconstruction. Based on inner-shell excited luminescence on the micrometer scale, the uniform spectral distribution of the radiative centers was discussed. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. X-ray Ordinance

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1983-01-01

    This commentary, presented as volume 2 of the Deutsches Strahlenschutzrecht (German legislation on radiation protection) deals with the legal provisions of the ordinance on the protection against harmful effects of X-radiation (X-ray Ordinance - RoeV), of March 1, 1973 (announced in BGBl.I, page 173), as amended by the ordinance on the protection against harmful effects of ionizing radiation, of October 13, 1976 (announced in BGBl. I, page 2905). Thus volume 2 completes the task started with volume 1, namely to present a comprehensive view and account of the body of laws governing radiation protection, a task which was thought useful as developments in the FRG led to regulations being split up into the X-ray Ordinance, and the Radiation Protection Ordinance. In order to present a well-balanced commentary on the X-ray Ordinance, it was necessary to discuss the provisions both from the legal and the medical point of view. This edition takes into account the Fourth Public Notice of the BMA (Fed. Min. of Labour and Social Affairs) concerning the implementation of the X-ray Ordinance of January 4, 1982, as well as court decisions and literature published in this field, until September 1982. In addition, the judgment of the Federal Constitutional Court, dated October 19, 1982, concerning the voidness of the law on government liability, and two decisions by the Federal High Court, dated November 23, 1982, concerning the right to have insight into medical reports - of great significance in practice - have been considered. This commentary therefore is up to date with current developments. (orig.) [de

  15. Determination of global and local residual stresses in SOFC by X-ray diffraction

    International Nuclear Information System (INIS)

    Villanova, Julie; Sicardy, Olivier; Fortunier, Roland; Micha, Jean-Sebastien; Bleuet, Pierre

    2010-01-01

    Solid Oxide Fuel Cell (SOFC) is a high-performance electrochemical device for energy conversion. A single cell is composed of five layers made of different ceramic materials: anode support, anode functional layer, electrolyte, cathode functional layer and cathode. The mechanical integrity of the cell is a major issue during its lifetime, especially for the electrolyte layer. Damage of the cells is mainly due to the high operating temperature, the 'redox' behaviour of the anode and the brittleness of the involved materials. Since residual stresses are known to play a significant role in the damage evolution, it is important to determine them. For this purpose, residual stresses in an anode-supported planar SOFC were measured by X-ray diffraction. Firstly, macroscopic stresses in each phase of each layer were studied using the sin 2 ψ method on a laboratory X-ray goniometer at room temperature. This technique enables the calculation of residual stress of the material from the measurement of the crystal lattice deformation. The electrolyte has been found under bi-axial compressive stress of -920 MPa. Secondly, X-ray measurements controlling depth penetration were made in the electrolyte using grazing incidence method. The results show that the stress is not homogenous in the layer. The first five micrometers of the electrolyte have been found less constrained (-750 MPa) than the complete layer, suggesting a gradient of deformation in the electrolyte from the interface with the Anode Functional Layer to the free surface. Finally, local stress measurements were made on the electrolyte layer by X-ray synchrotron radiation that allows high accuracy measurement on the (sub-) micrometer scale. Polychromatic and monochromatic beams are used to determine the complete strain tensor from grain to grain in the electrolyte. First results confirm the macroscopic stress trend of the electrolyte. These X-ray techniques at different scales will contribute to a better understanding

  16. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.

    2005-01-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence (μ-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 μm and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 μm diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  17. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail: perez@lnls.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  18. Crystal glass used for X ray and gamma radiation shielding - Part two

    International Nuclear Information System (INIS)

    Antonio Filho, Joao

    2007-01-01

    Crystal glass has been widely used as shielding material in gamma radiation sources as well as x-ray generating equipment to replace the plumbiferous glass, in order to minimize exposure to individuals. However, properties of the radiation attenuation of crystal glass commercially available in Brazil, for the different types of energy are not known. For this reason, this work was carried out aiming to determine the radiation attenuation, transmission curves and Half Value Layer. In this work, ten plates of crystal glass, with dimensions of 20 cm x 20 cm and range of thicknesses from 0.5 to 2.0 cm, were used. The plates were X-ray irradiated with potential constants of 60, 80, 110, 150 kV and gamma radiation of 60 Co. Analysis in the properties of the 60 Co radiation attenuation of barite plaster and barite concrete commercially available in Brazil were also carried out. The curves of attenuation and of transmission were obtained for crystal glass, barite plaster and barite concrete (mGy/mA.min) at 1 meter as a function of thickness. The thickness equivalent of a half value layer and deci value layer of crystal glass for all types of radiation and energies studied was also determined. (author)

  19. Clinical application of radiation dosimetry on X-ray radiotherapy

    International Nuclear Information System (INIS)

    Mizutani, Takeo

    1995-01-01

    In the case of radiotherapy, it is important to give proper dose for a tumor, to be treated with the objective of therapy, and to evaluate the dose, considering dose for other organs at risk to a sufficient extent. To provide an exposure dose at the target volume of tumor parts, it should be required to get a good understanding of the correct dosimetric method and also to apply this to clinical application in practice. All over the country, so as not to produce any difference in the given dose, 'A practical code for the dosimetry of high energy X-rays in radiotherapy' was issued by the Japanese Associations of radiological physicists in 1972. In 1986, it was revised. At about 85% of therapeutic facilities in the country, radiation engineers perform dose measurements and controls. Therefore, I have explained the process of measurement and dose calculation, with the main objective directed at the engineers in charge of the radiotherapy so as to easily radiation dosimetry of X-ray with dosemeters and phantom used at each facility according to the 'practical code'. (author)

  20. A new cone-beam X-ray CT system with a reduced size planar detector

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Zhang Li; Xing Yuxiang; Kang Kejun

    2006-01-01

    In a traditional cone-beam CT system, the cost of product and computation is very high. The authors propose a transversely truncated cone-beam X-ray CT system with a reduced size detector positioned off-center, in which X-ray beams only cover half of the object. The reduced detector size cuts the cost and the X-ray dose of the CT system. The existing CT reconstruction algorithms are not directly applicable in this new CT system. Hence, the authors develop a BPF-type direct backprojection algorithm. Different from the traditional rebinding methods, our algorithm directly backprojects the pretreated projection data without rebinding. This makes the algorithm compact and computationally more efficient. Finally, some numerical simulations and practical experiments are done to validate the proposed algorithm. (authors)

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  2. Degradation of 4-Chloro phenol by gamma radiation of 137Cs and X-rays

    International Nuclear Information System (INIS)

    Gonzalez J, J. C.; Jimenez B, J.; Cejudo A, J.

    2010-01-01

    This paper presents results of radiolytic degradation of 4-chloro phenol in the presence of TiO 2 , Al 2 O 3 and SiO 2 , using different radiation sources than 60 Co, which is so common in this type of experiment. The radiation sources used were X-rays with energy of 100 keV and radiation from 137 Cs (662 keV). After irradiation with a dose of 50 c Gy X-ray and TiO 2 obtained a degradation of about 5%, no degradation was obtained with 137 Cs source and other oxides. This may be due to the fact that X-rays have a linear energy transfer greater value, and in the case of TiO 2 present a crystalline structure, whereas the other two oxides are amorphous. Both characteristics result in better formation of a reactive species that allows the degradation of the compound. (Author)

  3. X-ray holography. Atoms in three dimensions

    International Nuclear Information System (INIS)

    Tegze, M.

    2005-01-01

    The principles of atomic resolution X-ray holography was elaborated in 1991. X-ray photons scatter thousand times less on atoms than electrons of the same wavelength. As a result, both free path and penetration depth are higher which giver information about the bulk material. X-ray holography is realized by irradiating the single crystal sample with radiation from external X-ray source. The incident radiation is ionizing the atoms of the sample to emit fluorescent radiation. The angle dependence of the fluorescent radiation results an image containing the hologram. The hologram itself is extremely small compared to the background that needs 10 10 capturing photons to recover image. Using Thomas Gog's method and synchrotron radiation the X-ray holography becomes more usable, but the method still needs refining both experimentally and theoretically. (TRA)

  4. Method for reducing x-ray background signals from insertion device x-ray beam position monitors

    Directory of Open Access Journals (Sweden)

    Glenn Decker

    1999-11-01

    Full Text Available A method is described that provides a solution to the long-standing problem of stray radiation-induced signals on photoemission-based x-ray beam position monitors (BPMs located on insertion device x-ray beam lines. The method involves the introduction of a chicane into the accelerator lattice that directs unwanted x radiation away from the photosensitive x-ray BPM blades. This technique has been implemented at the Advanced Photon Source, and experimental confirmation of the technique is provided.

  5. Shielding effect of clinical x-ray protector and lead glass against annihilation radiation and gamma rays of 99mTc

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Takahashi, Masaaki; Kitabayashi, Keitarou; Koshida, Kichiro; Matsubara, Kousuke; Noto, Kimiya; Nakagawa, Hiroto; Kawabata, Chikako

    2004-01-01

    Various pharmaceutical companies in Japan are making radioactive drugs available for positron emission tomography (PET) in hospitals without a cyclotron. With the distribution of these drugs to hospitals, medical check-ups and examinations using PET are expected to increase. However, the safety guidelines for radiation in the new deployment of PET have not been adequately improved. Therefore, we measured the shielding effect of a clinical X-ray protector and lead glass against annihilation radiation and gamma rays of 99m Tc. We then calculated the shielding effect of a 0.25 mm lead protector, 1 mm lead, and lead glass using the EGS4 (Electron Gamma Shower Version 4) code. The shielding effects of 22-mm lead glass against annihilation radiation and gamma rays of 99m Tc were approximately 31.5% and 93.3%, respectively. The clinical X-ray protector against annihilation radiation approximately doubled the skin-absorbed dose. (author)

  6. [Shielding effect of clinical X-ray protector and lead glass against annihilation radiation and gamma rays of 99mTc].

    Science.gov (United States)

    Fukuda, Atsushi; Koshida, Kichiro; Yamaguchi, Ichiro; Takahashi, Masaaki; Kitabayashi, Keitarou; Matsubara, Kousuke; Noto, Kimiya; Kawabata, Chikako; Nakagawa, Hiroto

    2004-12-01

    Various pharmaceutical companies in Japan are making radioactive drugs available for positron emission tomography (PET) in hospitals without a cyclotron. With the distribution of these drugs to hospitals, medical check-ups and examinations using PET are expected to increase. However, the safety guidelines for radiation in the new deployment of PET have not been adequately improved. Therefore, we measured the shielding effect of a clinical X-ray protector and lead glass against annihilation radiation and gamma rays of (99m)Tc. We then calculated the shielding effect of a 0.25 mm lead protector, 1 mm lead, and lead glass using the EGS4 (Electron Gamma Shower Version 4) code. The shielding effects of 22-mm lead glass against annihilation radiation and gamma rays of (99m)Tc were approximately 31.5% and 93.3%, respectively. The clinical X-ray protector against annihilation radiation approximately doubled the skin-absorbed dose.

  7. Energy weighted x-ray dark-field imaging.

    Science.gov (United States)

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  8. Methods for studying the focal spot size and resolution of diagnostic X-ray tubes

    International Nuclear Information System (INIS)

    Fairbanks, R.; Doust, C.

    1979-01-01

    Attention is given to techniques appropriate for use in the clinical situation. The focal spot size is critical to geometric unsharpness and hence the quality of the finished radiograph, but pinhole imaging of the focal spot is extremely difficult in clinical practice. The resolution of an X-ray tube, although a function of focal spot size, is of more importance in radiography. A comparison is made of various resolution grids suitable for quality control use in X-ray departments. (U.K.)

  9. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  10. Crystal glass and barite used for x ray and gamma radiation shielding

    International Nuclear Information System (INIS)

    Antonio Filho, Joao

    2008-01-01

    Full text: Crystal glass, barite plaster and barite concrete has been widely used as shielding material in gamma radiation sources as well as x-ray generating equipment to replace the plumbiferous glass and in the wall covering, in order to minimize exposure to individuals. However, properties of the radiation attenuation of crystal glass commercially available in Brazil, for the different types of energy are not known. For this reason, this work was carried out aiming to determine the radiation attenuation, transmission curves and Half Value Layer. In this work, ten plates of crystal glass, with dimensions of 20 cm x 20 cm and range of thicknesses from 0.5 to 2.0 cm, and ten plates of barite plaster and five plates of barite concrete, with dimensions of 20 x 20 cm 2 and range of thicknesses from 1,0 to 5,0 cm, were used. The plates were X-ray irradiated with potential constants of 60, 80, 110, 150 kV and gamma radiation of 60 Co. Analysis in the properties of the 60 Co radiation attenuation of barite plaster and barite concrete commercially available in Brazil were also carried out. The curves of attenuation and of transmission were obtained for crystal glass, barite plaster and barite concrete (mGy/m A.min) at 1 meter as a function of thickness. The thickness equivalent of a half value layer and deci value layer of crystal glass for all types of radiation and energies studied was also determined. Although their use permits the dimensioning of the armor covering for external x-radiation whit precision and safety without elevating the cost of protection. (author)

  11. Application of X-rays and Synchrotron X Rays to Residual Stress Evaluation Near Surfaces

    International Nuclear Information System (INIS)

    Pyzalla, Anke

    1999-01-01

    A nondestructive residual stress analysis can be performed using diffraction methods. The easiest accessible radiation is characteristic X radiation that has a penetration depth of ∼10 microm suitable for the determination of the residual stresses in near-surface layers. Special techniques have been developed, e.g., with respect to in situ analyses of the stress state in oxide layers and the residual stress analysis in coarse grained zones of steel welds or annealed Ni-base alloys. Depending on the size of the gauge volume, neutron diffraction can provide information at depths of tens of millimetres of steel and many tens of millimetres of Al. An alternative to the use of the characteristic synchrotron radiation is the use of a high-energy polychromatic beam in an energy dispersive arrangement, which gives access to higher penetration depths at still gauge volumes as small as 100 microm x 100 microm x 1 mm in steel rods of 15-mm diameter. The combination of neutrons with conventional X rays and monochromatic and polychromatic synchrotron radiation allows for a comprehensive investigation of the phase composition, the texture, and the residual stresses

  12. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VI. EROSION OF LARGE AGGREGATES AS A SOURCE OF MICROMETER-SIZED PARTICLES

    International Nuclear Information System (INIS)

    Schraepler, Rainer; Blum, Juergen

    2011-01-01

    Observed protoplanetary disks consist of a large amount of micrometer-sized particles. Dullemond and Dominik pointed out for the first time the difficulty in explaining the strong mid-infrared excess of classical T Tauri stars without any dust-retention mechanisms. Because high relative velocities in between micrometer-sized and macroscopic particles exist in protoplanetary disks, we present experimental results on the erosion of macroscopic agglomerates consisting of micrometer-sized spherical particles via the impact of micrometer-sized particles. We find that after an initial phase, in which an impacting particle erodes up to 10 particles of an agglomerate, the impacting particles compress the agglomerate's surface, which partly passivates the agglomerates against erosion. Due to this effect, the erosion halts for impact velocities up to ∼30 m s -1 within our error bars. For higher velocities, the erosion is reduced by an order of magnitude. This outcome is explained and confirmed by a numerical model. In a next step, we build an analytical disk model and implement the experimentally found erosive effect. The model shows that erosion is a strong source of micrometer-sized particles in a protoplanetary disk. Finally, we use the stationary solution of this model to explain the amount of micrometer-sized particles in the observational infrared data of Furlan et al.

  13. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding

    Science.gov (United States)

    Hashemi, Seyyed Alireza; Mousavi, Seyyed Mojtaba; Faghihi, Reza; Arjmand, Mohammad; Sina, Sedigheh; Amani, Ali Mohammad

    2018-05-01

    In this study, employing modified Hummers method coupled with a multi-stage manufacturing procedure, graphene oxide (GO) decorated with Pb3O4 (GO-Pb3O4) at different weight ratios was synthesized. Thereupon, via the vacuum shock technique, composites holding GO-Pb3O4 at different filler loadings (5 and 10 wt%) and thicknesses (4 and 6 mm) were fabricated. Successful decoration of GO with Pb3O4 was confirmed via FTIR analysis. Moreover, particle size distribution of the produced fillers was examined using particle size analyzer. X-ray attenuation examination revealed that reinforcement of epoxy-based composites with GO-Pb3O4 led to a significant improvement in the overall attenuation rate of X-ray beam. For instance, composites containing 10 wt% GO-Pb3O4 with 6 mm thickness showed 4.06, 4.83 and 3.91 mm equivalent aluminum thickness at 40, 60 and 80 kVp energies, denoting 124.3, 124.6 and 103.6% improvement in the X-ray attenuation rate compared to a sample holding neat epoxy resin, respectively. Simulation results revealed that the effect of GO-Pb3O4 loading on the X-ray shielding performance undermined with increase in the voltage of the applied X-ray beam.

  14. Radiation exposure with the NOMAD portable X-ray system.

    Science.gov (United States)

    Goren, A D; Bonvento, M; Biernacki, J; Colosi, D C

    2008-02-01

    A new hand-held battery-operated portable X-ray system was tested for possible leakage radiation through the existing heavy metal compounds surrounding the X-ray tube, backscatter radiation through the lead-filled acrylic shield attached at the end of the exit tube and patient exposure. Dose measurements were conducted using a DXTRR phantom and a water phantom. All measurements were recorded using calibrated thermoluminescent dosimetry (TLD), calibrated Unfors Model 583L dosemeter, and a calibrated Radcal MDH model 1015 dosemeter. The settings for all exposure were 60 kVp, 2.3 mA and 0.25 s using Kodak Insight (Class F) film. All backscatter measurements, in front of the shield, behind the shield, at the finger of the operator, the operator's chest, eyes and gonads were significantly below the maximum permissible radiation leakage as per the United States Food and Drug Administration regulations (100 mR h(-1)). Our measurements indicate that the exposure would be well within the occupational maximum permissible dose for an occupationally exposed person. Film dose was consistent with the manufacturer's recommendations. As a result of our measurements, the State of New York Bureau of Environmental Radiation Protection granted us a variance to use the NOMAD on a case-by-case basis. Our data have shown that the NOMAD presents risks that are no greater than with standard dental radiographic units to the patient or operator and the measured doses are well below recommended levels.

  15. Development of an X-ray fluorescence holographic measurement system for protein crystals

    International Nuclear Information System (INIS)

    Sato-Tomita, Ayana; Shibayama, Naoya; Okabe, Takahiro; Happo, Naohisa; Kimura, Koji; Matsushita, Tomohiro; Park, Sam-Yong; Sasaki, Yuji C.; Hayashi, Kouichi

    2016-01-01

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α_2β_2 tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm"3) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  16. Characteristics of charge coupled devices over X-ray spectral band

    Energy Technology Data Exchange (ETDEWEB)

    Mishenskij, V O; Volkov, G S; Zajtsev, V I; Zazhivikhin, V V [Troitsk Institute for Thermonuclear and Innovation Investigations (Russian Federation)

    1997-12-31

    The results of theoretical and experimental investigation of the sensitivity and spatial resolution of charge coupled devices (CCD) influenced by X-ray quanta are reported. Both a calculation model of the interaction process between the X-ray radiation and the CCD-structure and experimental results of investigation of the CCD characteristics are presented. The theoretical model of interaction between X-ray radiation and CCD is suggested. In accordance with the model, the calculations of CCD sensitivity and spatial resolution, depending on the X-ray energy, are performed. The results of comparison of the calculated and experimental data obtained for linear CCD (LCCD) are presented. The CCD has a maximum sensitivity of approx. (1-2.5) . 10{sup 7} V.cm{sup 2}/J for quanta of energies of 0.5-8 keV. The CCD spatial resolution varies from 15-20 {mu}m (CCD gate size) for quanta of energies less then 4 keV and deteriorates up to 150 {mu}m for harder radiation (20-50 keV). CCD usage as space-resolving detectors for high-power installation diagnostics is presented. Other fields of CCD application for X-ray detection are discussed. Advantages of CCD in comparison with the traditional X-ray films is discussed from this point of view. (author). 4 figs., 3 refs.

  17. Radiation protection and safety guide no. GRPB-G-5: safe use of x-rays

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1998-01-01

    If properly utilized, the use of x-rays can be instrumental in the improvement of the health and welfare of the public. This regulatory guide was developed to assist and encourage registrants in the safe and constructive use of x-rays and to prohibit and prevent exposure to ionizing radiation in amounts which are or may be detrimental to health. The present guide applies to the use of x-rays for diagnostic, therapeutic, and non medical purposes

  18. X-ray diffraction microstructural analysis of bimodal size distribution MgO nano powder

    International Nuclear Information System (INIS)

    Suminar Pratapa; Budi Hartono

    2009-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500 degree Celsius and 1200 degree Celsius for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then blended in air to give the presumably bimodal-size- distribution MgO nano powder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (R) of 20(1) nm and 160(1) nm for the 500 degree Celsius and 1200 degree Celsius data respectively with the nano metric powder displays narrower crystallite size distribution character, indicated by lognormal dispersion parameter of 0.21 as compared to 0.01 for the sub-nano metric powder. The mixture exhibits relatively more asymmetric peak broadening. Analysing the x-ray diffraction data for the latter specimen using single phase approach give unrealistic results. Introducing two phase models for the double-phase mixture to accommodate the bimodal-size-distribution characteristics give R = 100(6) and σ = 0.62 for the nano metric phase and R = 170(5) and σ= 0.12 for the σ sub-nano metric phase. (author)

  19. Collective radiation dose from diagnostic x-ray examination in nine ...

    African Journals Online (AJOL)

    Background: Medical x-ray exposures have the largest man made source of population exposure to ionizing radiation in different countries. Recent developments in medical imaging have led to rapid increases in a number of high dose xray examinations performed with significant consequences for individual patient doses ...

  20. Requirements for industrial x-ray equipment

    International Nuclear Information System (INIS)

    1987-01-01

    This safety code is concerned with the protection of all individuals who may be exposed to radiation emitted by X-ray equipment operating at energies up to 1 MeV as used in industrial radiography. This code presents basic radiation safety information for the protection of personnel operating and servicing X-ray equipment and other workers and the general public in the vicinity of areas where X-ray equipment is in operation. It specifies general safety features of design, construction and functioning of X-ray equipment and facilities; describes the responsibilities of the user, operator and maintenance personnel; contains recommendations to ensure that the X-ray equipment is used and maintained in accordance with the ALARA principle; and describes a program of personnel monitoring and radiation safety surveys. ( 6 refs., 5 tabs., 4 figs.)

  1. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure†

    Science.gov (United States)

    Stanton, Ian N.; Belley, Matthew D.; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G.; Yoshizumi, Terry T.

    2015-01-01

    Eu- and Li-doped yttrium oxide nanocrystals [Y2−xO3; Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2−xO3; Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40–220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2−xO3; Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 ± 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605–617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radio transparent

  2. Porous micrometer-sized MnO cubes as anode of lithium ion battery

    International Nuclear Information System (INIS)

    Fan, Xiaoyong; Li, Siheng; Lu, Li

    2016-01-01

    In this study, porous micrometer-sized MnO cubes have been designed and synthesized by hydrothermal treatment followed by high temperature annealing. The pore size is controlled by changing annealing temperature in order to achieve good electrochemical performance. The cube edge length is about 10 μm and the pore size changes from mesoporous to macroporous. The presence of pores in the MnO cubes is able to accommodate the volumetric changes during electrochemical cycling, and enables electrolyte easy penetration so that to improve the electrochemical performance. The porous micrometer-sized MnO cubes prepared by hydrothermal treatment at 100 °C followed by annealing at 700 °C delivers the best long-term and rate cyclability owing to its stable porous structure serving as lithium ion rapid transfer channels and enough pore volume to accommodate volumetric changes during electrochemical cycling. The reversible capacity in the first cycle is 615.9 mAh g"−"1at 0.2 A g"−"1, slightly decreases to 404.6 mAh g"−"1 at 1.0 A g"−"1in the 6"t"h cycle and remains at 425.5 mAh g"−"1 at 1.0 A g"−"1 even after 495 cycles. The same porous micrometer-sized MnO cube electrode delivers high rate reversible specific capacities of 201.8 and 50.4 mAh g"−"1 at 5.0 and 10.0 A g"−"1 respectively.

  3. Using refractive optics to broaden the focus of an X-ray mirror.

    Science.gov (United States)

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal

    2017-07-01

    X-ray mirrors are widely used at synchrotron radiation sources for focusing X-rays into focal spots of size less than 1 µm. The ability of the beamline optics to change the size of this spot over a range up to tens of micrometres can be an advantage for many experiments such as X-ray microprobe and X-ray diffraction from micrometre-scale crystals. It is a requirement that the beam size change should be reproducible and it is often essential that the change should be rapid, for example taking less than 1 s, in order to allow high data collection rates at modern X-ray sources. In order to provide a controlled broadening of the focused spot of an X-ray mirror, a series of refractive optical elements have been fabricated and installed immediately before the mirror. By translation, a new refractive element is moved into the X-ray beam allowing a variation in the size of the focal spot in the focusing direction. Measurements using a set of prefabricated refractive structures with a test mirror showed that the focused beam size could be varied from less than 1 µm to over 10 µm for X-rays in the energy range 10-20 keV. As the optics is in-line with the X-ray beam, there is no effect on the centroid position of the focus. Accurate positioning of the refractive optics ensures reproducibility in the focused beam profile and no additional re-alignment of the optics is required.

  4. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. X-rays revolutionized the world

    International Nuclear Information System (INIS)

    Holmberg, P.

    1995-01-01

    This year marks the 100th anniversary of Professor Wilhelm Conrad Roentgen's accidental discovery of x-radiation. On 8 November 1895, Roentgen was conducting laboratory tests at the University of Wuertsburg in order to study cathode rays in a gasdischarge tube. He noticed that a fluorescence paper that happened to be near the tube began to glow even though the radiation should not have penetrated the shield of the gas-discharge tube. Less than two months later Roentgen reported the discovery of a new type of penetrating radiation, which he called x-rays. The discovery became an immediate worldwide sensation, and doctors realised that they could now see inside the human body without surgery. In Finland, the first x-ray equipment was acquired as early as 1900. The following year, Roentgen was awarded the Nobel prize in physics for his work. The health risks of x-radiation were noticed early on, but their severity was not always understood. The new x-ray examination methods were difficult to control and the exposure times then were quite long. It was therefore not uncommon that radiation damage eventually led to skin cancer and haematological diseases. (orig.) (7 figs.)

  6. Synthesis and characterization of micrometer Cu/PVP architectures

    International Nuclear Information System (INIS)

    Luo, Huajuan; Zhao, Yanbao; Sun, Lei

    2011-01-01

    Graphical abstract: A simple method for the synthesis of novel micrometer flower-like Cu/PVP architectures was introduced. Highlights: → Micrometer flower-like copper/polyvinylpyrrolidone architectures were obtained by a simple chemical route. → The amount of N 2 H 4 ·H 2 O, the reaction temperature, the molar ratio of CuCl 2 to PVP and different molecular weights of PVP play an important role in the controlling the morphology of the Cu/PVP architectures. → A possible mechanism of the formation of Cu/PVP architectures was discussed. -- Abstract: Micrometer-sized flower-like Cu/polyvinylpyrrolidone (PVP) architectures are synthesized by the reduction of copper (II) salt with hydrazine hydrate in aqueous solution in the presence of PVP capping agent. The resulting Cu/PVP architectures are investigated by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The Cu/PVP flowers have uniform morphologies with an average diameter of 10 μm, made of several intercrossing plates. The formation of Cu/PVP flowers is a new kinetic control process, and the factors such as the amount of N 2 H 4 ·H 2 O, reaction temperature, molar ratio of CuCl 2 to PVP and molecular weight of PVP have significant effect on the morphology of Cu/PVP architectures. A possible mechanism of the formation of micrometer Cu/PVP architectures was discussed.

  7. Compact X-ray sources: X-rays from self-reflection

    Science.gov (United States)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  8. X-ray examinations pose little risk

    International Nuclear Information System (INIS)

    Servomaa, A.; Komppa, T.

    1997-01-01

    X-ray examinations account for about 15 per cent of Finns' radiation exposure and for roughly one out of a hundred deaths from cancer. The risk is small when compared to other risks in life and to the health benefits obtained from the examinations. About 4.1 million x-ray examinations were conducted in Finland in 1995, i.e. an average of 0.8 examinations per inhabitant. The mean effective dose was about 0.67 mSv per examination and about 0.54 mSv per inhabitant. Natural background radiation causes an annual radiation dose of approximately 3 mSv per person. Examinations of bones and soft tissues accounted for the highest number of x-ray images, roughly 2.1 million, of which half were examinations of the extremities. Some 1.3 million x-ray images were taken of the pulmonary organs, most of them being examinations of the lungs. Computed tomography and examinations of the gastrointestinal tract accounted for about 130,000 images each. To assess the radiation risk involved in x-ray examinations, we need knowledge or an estimate of the radiation doses of organs sensitive to radiation. Efficient calculation methods are available for this purpose. (orig.)

  9. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Honda, Chika; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2002-01-01

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  10. Protective Effects of Polysaccharides from Soybean Meal Against X-ray Radiation Induced Damage in Mouse Spleen Lymphocytes

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2011-11-01

    Full Text Available The aim of this study was to investigate radioprotective effect of the polysaccharides from soybean meal (SMP against X-ray radiation-induced damage in mouse spleen lymphocytes. MTT and comet assay were performed to evaluate SMP’s ability to prevent cell death and DNA damage induced by radiation. The results show that, X-ray radiation (30 KV, 10 mA, 8 min (4 Gy can significantly increase cell death and DNA fragmentation of mouse spleen lymphocytes. Pretreatment with SMP for 2 h before radiation could increase cell viability, moreover, the SMP can reduce X-ray radiation-induced DNA damage. The percentage of tail DNA and the tail moment of the SMP groups were significantly lower than those of the radiation alone group (p < 0.05. These results suggest SMP may be a good candidate as a radioprotective agent.

  11. Effect of field size on the reaction of pig skin to single doses of X rays

    Energy Technology Data Exchange (ETDEWEB)

    Hopewell, J W; Young, C M.A. [Churchill Hospital, Oxford (UK)

    1982-05-01

    The importance of the size of the treatment area for the response of the skin to radiation has been studied in the pig. The responses of skin areas of 16 cm/sup 2/ (4 x 4 cm) and 64cm/sup 2/ (16 x 4 cm) were compared after single doses of X rays. In the initial 3-9-week period after irradiation the severity of the erythema reaction, which is associated with epidermal cell death, was not influenced by the area of skin irradiated. For the later dermal response (10-16 weeks) a similar result was obtained. The dose required to produce dermal necrosis in 50% of the fields treated (ED/sub 50/) was approximately 2070 cGy for both field sizes. Additional studies have shown that the ED/sub 50/ for dermal necrosis was not influenced by the age of animals at the time of irradiation. This was despite considerable differences in the vascular density and blood flow in pig skin with increasing age. The apparent contradiction between the results of this experimental study in the pig, which shows no effect of field size, and currently accepted clinical practice is discussed.

  12. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zeniya, T.; Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T

    2001-07-21

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  13. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Science.gov (United States)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  14. Upsurge of X-ray astronomy 230-

    International Nuclear Information System (INIS)

    Hudec, D.R.

    1978-01-01

    Instruments are described used for X-ray astronomy, namely X-ray detectors and X-ray telescopes. Unlike telescopes, the detectors do not comprise X-ray optics. A survey is given of the results obtained in solar and stellar X-ray astronomy and hypotheses are submitted on the origin of X radiation in the interstellar space. (J.B.)

  15. Radiation hormesis using an x-ray radiography device. The fourth report. Radiation hormesis of salad rocket

    International Nuclear Information System (INIS)

    Sakuma, Atsushi; Nakayama, Miho

    2006-01-01

    Radiation hormesis was studied for salad rocket plant (Eruca vesicaria sp.sativa), using different energies of X-ray (100 kV and 10 MV). To get the optimum dose for plant to provide the highest growth, the dose for the seeds was changed from 0 to 3000 mGy using 100 kV of X-ray. The highest growth of the plant was found for the dose of 600 mGy. When the seeds were irradiated to 600 mGy with 100 kV and 10 MV X-rays, in both cases, the growth of the irradiated seeds was higher than those without irradiation, where P-values were 0.0112 and 0.0214, respectively. In the case of 600 mGy irradiation, there was not any significant change in the plant growth between the seeds irradiated with 10 MV and 100 kV X-ray (P=0.862). (author)

  16. The Role of Human Factor in Radiation Protection of Children During Chest X Ray Examination

    International Nuclear Information System (INIS)

    Beck, N.; Knezevic, Z.; Miljanic, S.; Ranogajec-Komor, M.; Milkovic, Dj.

    2011-01-01

    Radiation protection depends on many factors. Our study deals with the human factor, the radiology technicians' routine work. If all technical malfunctions are excluded they are responsible for the patient dose. Depending on their education and experience, technicians perform X ray examinations with various end results: image quality, entrance surface dose, patient interaction etc. In hospital setting we have consecutively chosen the study group of 20 children that had a clinical indication for a chest X ray examination (standard PA radiogram), for each of three technicians working at the radiology ward. A Shimadzu X ray machine was used in all cases. 60 children were from 6 to 12 years old and all parents were informed about the aim and the experimental details of the study. All of them gave their informed consent. Radiophotoluminescent (RPL) and thermoluminescent (TLD) dosimeters were applied at the entrance of the beam in the center of the X ray field to measure the entrance surface dose (ESD). Three differently experienced technicians were unaware of the objective of the study. Parameters that were noted were the kV, mAs and the size of the radiation field. The results show a good correlation in ESD between two technicians. Doses were significantly higher for the third one. After the results were known, protocols were designed and after educational interference, we continued to measure ESD again on a group of 40 children. The doses were reduced and there was a good correlation between all three technicians. With this work we want to clarify and show the importance of continuous education and good teamwork for dose reduction. In a sequel study, with the same three technicians, we hope to have results that would show a better dose reduction. (author)

  17. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M.P. [Cornell University, Ithaca, NY 14853 (United States); Flanagan, J.W. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Department of Accelerator Science, Graduate University for Advanced Studies (SOKENDAI), Tsukuba (Japan); Fontes, E. [Cornell University, Ithaca, NY 14853 (United States); Heltsley, B.K., E-mail: bkh2@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Lyndaker, A.; Peterson, D.P.; Rider, N.T.; Rubin, D.L.; Seeley, R.; Shanks, J. [Cornell University, Ithaca, NY 14853 (United States)

    2014-12-11

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e{sup +} and e{sup −} beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10–100μm on a turn-by-turn, bunch-by-bunch basis at e{sup ±} beam energies of ∼2–5GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances. - Highlights: • We characterize optical element performance of an e{sup ±} x-ray beam size monitor. • We standardize beam size resolving power measurements to reference conditions. • Standardized resolving power measurements compare favorably to model predictions. • Key model features include simulation of photon-counting statistics and image fitting. • Results validate a coded aperture design optimized for the x-ray spectrum encountered.

  18. X-ray refractometer

    International Nuclear Information System (INIS)

    Tur'yanskij, A.G.; Pirshin, I.V.

    2001-01-01

    Paper introduces a new circuit of X-ray refractometer to study angular and spectral features of refracted radiation within hard X-ray range. Refractometer incorporates two goniometers, two crystal-analyzers and three radiation detectors. The maximum distance between radiation source focal point and a receiving slit of the second goniometer is equal to 1.4 m. For the first time one obtained refraction patterns of fine-film specimens including C/Si stressed structure. Paper describes a new technique of refractometry via specimen oscillation at fixed position of a detecting device. Paper presents the measurement results of oscillation refraction patterns for specimens of melted quartz and ZnSe single crystal [ru

  19. Clinical step onward with X-ray dark-field imaging and perspective view of medical applications of synchrotron radiation in Japan

    International Nuclear Information System (INIS)

    Ando, M.; Hashimoto, E.; Hashizume, H.; Hyodo, K.; Inoue, H.; Kunisada, T.; Maksimenko, A.; Mori, K.; Rubenstein, E.; Roberson, J.; Shimao, D.; Sugiyama, H.; Takeda, K.; Toyofuku, F.; Ueno, E.; Umetani, K.; Wada, H.; Pattanasiriwisawa, W.

    2005-01-01

    This paper reports, the application of synchrotron radiation to basic medicine at SPring-8 involving instrumentation and medical application of imaging and scattering. Emphasis should be laid on X-ray dark-field imaging (DFI) whose goal is clinical diagnosis of organs that have been invisible by ordinary techniques. Development of this technique is under way both at SPring-8 and KEK. The X-ray optics of DFI comprises a Bragg asymmetric monochro-collimator and a Laue case analyzer with a diffraction index of 440 using the X-ray energy of 35keV (λ=0.0354nm) in a parallel position. This analyzer that can provide with 80mmx80mm view size has 2.15mm thickness. At present the spatial resolution is around 5-10μm. Visibility of some organs such as soft bone tissue at excised human femoral head and breast cancer tissue is under test. This preliminary test shows that the DFI seems feasible in clinical diagnosis. Furthermore, a perspective view of application of synchrotron radiation to clinical medicine in Japan will be given

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... up in shades of gray and air appears black. Until recently, x-ray images were maintained on ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  2. A fax-machine amorphous silicon sensor for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [Association EURATOM/CIEMAT, Madrid (Spain); Barcala, J.M. [Association EURATOM/CIEMAT, Madrid (Spain); Chvatchkine, V. [Association EURATOM/CIEMAT, Madrid (Spain); Ioudine, I. [Association EURATOM/CIEMAT, Madrid (Spain); Molinero, A. [Association EURATOM/CIEMAT, Madrid (Spain); Navarrete, J.J. [Association EURATOM/CIEMAT, Madrid (Spain); Yuste, C. [Association EURATOM/CIEMAT, Madrid (Spain)

    1996-10-01

    Amorphous silicon detectors have been used, basically, as solar cells for energetics applications. As light detectors, linear sensors are used in fax and photocopier machines because they can be built with a large size, low price and have a high radiation hardness. Due to these performances, amorphous silicon detectors have been used as radiation detectors, and, presently, some groups are developing matrix amorphous silicon detectors with built-in electronics for medical X-ray applications. Our group has been working on the design and development of an X-ray image system based on a commercial fax linear amorphous silicon detector. The sensor scans the selected area and detects light produced by the X-ray in a scintillator placed on the sensor. Image-processing software produces a final image with better resolution and definition. (orig.).

  3. Synchrotron radiation X-ray tomographic microscopy (SRXTM) of brachiopod shell interiors for taxonomy: Preliminary report

    OpenAIRE

    Motchurova-Dekova Neda; Harper David A.T.

    2010-01-01

    Synchrotron radiation X-ray tomographic microscopy (SRXTM) is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrot...

  4. Three-Dimensional X-Ray Diffraction Technique for Metals Science

    DEFF Research Database (Denmark)

    Zhang, Yubin; Fan, Guohua

    2017-01-01

    The three-dimensional X-ray diffraction (3DXRD) is a new, advanced technique for materials characterization. This technique utilizes high-energy synchrotron X-rays to characterize the 3D crystallographic structure and strain/stress state of bulk materials. As the measurement is non......-destructive, the microstructural evolution as a function of time can be followed, i.e. it allows 4D (x, y, z characterizations, t). The high brilliance of synchrotron X-rays ensures that diffraction signals from volumes of micrometer scale can be quickly detected and distinguished from the background noise, i.e. its spatial...... implemented in several large synchrotron facilities, e.g. the Advanced Photon Source (APS) in USA and the Spring-8 in Japan. Another family of 3DXRD technique that utilizes white beam synchrotron X-rays has also been developed in parallel in cooperation between Oak Ridge National Laboratory and APS...

  5. R and D toward a compact high-brilliance X-ray source based on channeling radiation

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P.; Brau, C. A.; Gabella, W. E.; Choi, B. K.; Jarvis, J. D.; Lewellen, J. W.; Mendenhall, M. H.; Mihalcea, D. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States) and Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235 (United States) and Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Physics Department and Combat Systems, Naval Postgraduate School, Monterey, CA 93943 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States)

    2012-12-21

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B{approx} 10{sup 12} photons.(mm-mrd){sup -2}. (0.1% BW){sup -1}.s{sup -1} is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  6. R and D Toward a Compact High-Brilliance X-Ray Source Based on Channeling Radiation

    International Nuclear Information System (INIS)

    Piot, P.; Brau, C.A.; Gabella, W.E.; Choi, B.K.; Jarvis, J.D.; Mendenhall, M.H.; Lewellen, J.W.; Mihalcea, D.

    2012-01-01

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B ∼ 10 12 photons.(mm-mrd) -2 .(0.1% BW) -1 .s -1 is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  7. Sixa-silicon x-ray array

    International Nuclear Information System (INIS)

    Taylor, I.

    1995-01-01

    Full text: The Spectrum-X-Gamma (SRG) satellite is scheduled for launch in 1995-96. Mission objectives include broad and narrow band imaging spectroscopy over a wide range of energies from the EUV through hard X-rays with an emphasis on studying galactic and extragalactic X-ray sources. Timing and moderate resolution spectroscopy can be performed with the solid state spectrometer SIXA (Silicon X-Ray Array), placed on the focal plane of the SODART telescope with total effective area of 1150 cm 2 at 6 keV (for f = 8 in telescope). The detector consists of 19 circular Si(Li) pixels, each with an active diameter of 9.2 min and thickness of 3 min. A radiative cooler will be used to bring the detector to the proper operating temperature (120-130 K). The energy range 0.5-20 keV is divided into 1024 channels of 20 eV size. Photons can be recorded with 30 μs time resolution and 160-200 eV (1-7 keV) energy resolution. Potential observing programmes (for e.g. time-resolved Iron Kα line spectroscopy) include stellar coronae, cataclysmic variables and X-ray binaries; accretion discs and coronae of neutron stars and black hole candidates; supernova remnants, active galactic nuclei and clusters of galaxies. (author)

  8. Influence of multiple scattering of a relativistic electron in a periodic layered medium on coherent X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blazhevich, S. V.; Kos’kova, T. V.; Noskov, A. V., E-mail: noskovbupk@mail.ru [Belgorod State National Research University (Russian Federation)

    2016-01-15

    A dynamic theory of coherent X-ray radiation generated in a periodic layered medium by a relativistic electron multiply scattered by target atoms has been developed. The expressions describing the spectral–angular characteristics of parametric X-ray radiation and diffracted transition radiation are derived. Numerical calculations based on the derived expressions have been performed.

  9. A deep view in cultural heritage - confocal micro X-ray spectroscopy for depth resolved elemental analysis

    International Nuclear Information System (INIS)

    Kanngiesser, B.; Malzer, W.; Mantouvalou, I.; Sokaras, D.; Karydas, A.G.

    2012-01-01

    Quantitative X-ray fluorescence (XRF) and particle induced X-ray emission (PIXE) techniques have been developed mostly for the elemental analysis of homogeneous bulk or very simple layered materials. Further on, the microprobe version of both techniques is applied for 2D elemental mapping of surface heterogeneities. At typical XRF/PIXE fixed geometries and exciting energies (15-25 keV and 2-3 MeV, respectively), the analytical signal (characteristic X-ray radiation) emanates from a variable but rather extended depth within the analyzed material, according to the exciting probe energy, set-up geometry, specimen matrix composition and analyte. Consequently, the in-depth resolution offered by XRF and PIXE techniques is rather limited for the characterization of materials with micrometer-scale stratigraphy or 3D heterogeneous structures. This difficulty has been over-passed to some extent in the case of an X-ray or charged particle microprobe by creating the so-called confocal geometry. The field of view of the X-ray spectrometer is spatially restricted by a polycapillary X-ray lens within a sensitive microvolume formed by the two inter-sectioned focal regions. The precise scanning of the analyzed specimen through the confocal microvolume results in depth-sensitive measurements, whereas the additional 2D scanning microprobe possibilities render to element-specific 3D spatial resolution (3D micro-XRF and 3D micro-PIXE). These developments have contributed since 2003 to a variety of fields of applications in environmental, material and life sciences. In contrast to other elemental imaging methods, no size restriction of the objects investigated and the non-destructive character of analysis have been found indispensable for cultural heritage (CH) related applications. The review presents a summary of the experimental set-up developments at synchrotron radiation beamlines, particle accelerators and desktop spectrometers that have driven methodological developments and

  10. X-ray diagnostics - benefits and risks; Roentgendiagnostik - Nutzen und Risiken

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2016-10-15

    The brochure on benefits and risks of X-ray diagnostics discusses the following issues: X radiation - a pioneering discovery and medical sensation, fundamentals of X radiation, frequency of X-ray examinations in Germany in relation to CT imaging, radiation doses resulting from X-ray diagnostics, benefits of X-ray diagnostics - indication and examples, risks - measures for radiation exposure reductions, avoidance of unnecessary examinations.

  11. Relationship between images of risk and anxiety toward radiation. Comparison of radiation from chest X-rays and nuclear power plants

    International Nuclear Information System (INIS)

    Matsui, Yuko

    2003-01-01

    In order to clarify the components of people's images of radiation risk and the determinants for the degree of anxiety about radiation exposure, an investigation was conducted. Two kinds of radiation, from nuclear power plants and during a chest X-ray, which are relatively familiar to people, were focused on. As a result, only a 'dread' factor was common to both radiation types of. Although the degree of anxiety toward both types of radiation showed a positive correlation with the 'dread' image, the anxiety toward X-ray radiation showed a negative correlation with the 'feeling of conquest'. Anxiety toward radiation from nuclear power plants had a negative correlation with 'control by experts'. These results suggest that the words radiation from nuclear power plants' evoke an image of a situation with high radiation exposure, which is beyond the experts' control abilities. (author)

  12. Physiologically gated microbeam radiation using a field emission x-ray source array

    Energy Technology Data Exchange (ETDEWEB)

    Chtcheprov, Pavel, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Biomedical Engineering, University of North Carolina, 152 MacNider Hall, Campus Box 7575, Chapel Hill, North Carolina 27599 (United States); Burk, Laurel; Inscoe, Christina; Ger, Rachel; Hadsell, Michael; Lu, Jianping [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 (United States); Yuan, Hong [Department of Radiology, University of North Carolina, 2006 Old Clinic, CB #7510, Chapel Hill, North Carolina 27599 (United States); Zhang, Lei [Department of Applied Physical Sciences, University of North Carolina, Chapman Hall, CB#3216, Chapel Hill, North Carolina 27599 (United States); Chang, Sha [Department of Radiation Oncology, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States); Zhou, Otto, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States)

    2014-08-15

    Purpose: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. Methods: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 μm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic{sup ©} films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only

  13. Infrared spectroscopic ellipsometry of micrometer-sized SiO2 line gratings

    Science.gov (United States)

    Walder, Cordula; Zellmeier, Matthias; Rappich, Jörg; Ketelsen, Helge; Hinrichs, Karsten

    2017-09-01

    For the design and process control of periodic nano-structured surfaces spectroscopic ellipsometry is already established in the UV-VIS spectral regime. The objective of this work is to show the feasibility of spectroscopic ellipsometry in the infrared, exemplarily, on micrometer-sized SiO2 line gratings grown on silicon wafers. The grating period ranges from 10 to about 34 μm. The IR-ellipsometric spectra of the gratings exhibit complex changes with structure variations. Especially in the spectral range of the oxide stretching modes, the presence of a Rayleigh singularity can lead to pronounced changes of the spectrum with the sample geometry. The IR-ellipsometric spectra of the gratings are well reproducible by calculations with the RCWA method (Rigorous Coupled Wave Analysis). Therefore, infrared spectroscopic ellipsometry allows the quantitative characterization and process control of micrometer-sized structures.

  14. Automated x-ray television complex for inspecting standard-size dynamic objects

    International Nuclear Information System (INIS)

    Gusev, E.A.; Luk'yanenko, E.A.; Chelnokov, V.B.; Kuleshov, V.K.; Alkhimov, Yu.V.

    1993-01-01

    An automated x-ray television complex based on a matrix gas-discharge converter having a large area (2.1 x 1.0 m) for inspecting standard-size freight and containers and for diagnosing industrial articles is presented. The pulsed operating mode of the complex with a 512K digital television storage makes it possible to inspect dynamic objects with a minimum dose load (20--100 μR). 6 refs., 5 figs

  15. Synchrotron radiation X-ray microfluorescence techniques

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  16. Analysis of the variation of the attenuation curve in function of the radiation field size for k Vp X-ray beams using the MCNP-5C code

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R., E-mail: marco@cetea.com.b, E-mail: marfernandes@fmb.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Fac. de Medicina; Ribeiro, Victor A.B. [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Viana, Rodrigo S.S.; Coelho, Talita S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The paper illustrates the use of the Monte Carlo method, MCNP-5C code, to analyze the attenuation curve behavior of the 50 kVp radiation beam from superficial radiotherapy equipment as Dermopan2 model. The simulations seek to verify the MCNP-5C code performance to study the variation of the attenuation curve - percentage depth dose (PDD) curve - in function of the radiation field dimension used at radiotherapy of skin tumors with 50 kVp X-ray beams. The PDD curve was calculated for six different radiation field sizes with circular geometry of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 cm in diameter. The radiation source was modeled considering a tungsten target with inclination 30 deg, focal point of 6.5 mm in diameter and energy beam of 50 kVp; the X-ray spectrum was calculated with the MCNP-5C code adopting total filtration (beryllium window of 1 mm and aluminum additional filter of 1 mm). The PDD showed decreasing behavior with the attenuation depth similar what is presented on the literature. There was not significant variation at the PDD values for the radiation field between 1.0 and 4.0 cm in diameter. The differences increased for fields of 5.0 and 6.0 cm and at attenuation depth higher than 1.0 cm. When it is compared the PDD values for fields of 3.0 and 6.0 cm in diameter, it verifies the greater difference (12.6 %) at depth of 5.7 cm, proving the scattered radiation effect. The MCNP-5C code showed as an appropriate procedure to analyze the attenuation curves of the superficial radiotherapy beams. (author)

  17. Radiation Protection Control Area Around Baggage Control X-ray Units

    International Nuclear Information System (INIS)

    Prlic, I.; Radalj, Z.; Milkovic-Kraus, S.; Cerovac, Z.

    2003-01-01

    The importance of prompt occupational dose reporting rises when dose is received within a short-time interval or when the radiation source suffers any technical failures. Radiation exposure is to be recognized as a private/or group hazard of each person alone. Actual radiation quality of the source is to be taken into account. To optimize the radiological radiation protection Quality Control measurements of the source are done. We have developed digital dosemeters of type ALARA OD2 for external dosimetry to be used for establishing the real pattern of occupational dose delivered to the workers or/and as the (Ort) professional environmental measuring station. We are using dosemeter to define the control areas and areas of concern - point (Ort) around the source. This upgrade to legal obligatory external (film badge) dosimetry will help us to ease defining the professional stuff and working places which are actually exposed to ionising radiation of concern and for which it is necessary to provide legally required, or even additional, occupational health care programme. This means the analysis of exposure situations for specific jobs near the X-ray equipment used for baggage control in the context of carrying out a detailed study for the optimisation of radiation protection. PC data readout from device forms a real time exposure dose rate pattern that proves that any worker or other employee working nearby the baggage X-ray unit is not obliged to undergo any legal occupational monitoring (dosimetry or health) hence the total dose per year will not exceed 1 mSv under the worst working conditions. (author)

  18. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  19. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  20. Hematological findings in male x-ray technicians

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    In view of the known health hazards of x-ray radiation, this study focuses on the basic hematological parameters: red blood cells (RBCs), white blood cells (WBCs) and platelets count in x-ray technicians. The aim was to identify the affect of x-ray radiation on blood cell counts in x-ray technicians. The present study was conducted in the Department of Physiology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia during the year 2002. In this study, a group of 40 apparently healthy male x-ray technicians with age ranging from 25-50-years were recruited. They were matched with another group of 40 apparently healthy control subjects in terms of age, sex and ethnic origin. Both groups met with exclusion criteria as per standard. Red blood cells, WBC and platelets count were performed by using a blood cell auto analyser. The mean value of platelet count was significantly decreased (p<0.01) in x-ray technicians when compared to controls. However, no significant difference was observed in RBC and WBC count between the groups. Radiation causes decreased platelet count. Further, studies are needed to study the long-term effects of x-ray radiation on blood cell count in x-ray technicians. (author)

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and easiest ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... lowest radiation dose possible while producing the best images for ... organizations continually review and update the technique standards used ...

  3. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    Science.gov (United States)

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  4. Fluorescent scanning x-ray tomography with synchrotron radiation

    Science.gov (United States)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  5. Solar X-ray bursts

    International Nuclear Information System (INIS)

    Urnov, A.M.

    1980-01-01

    In the popular form the consideration is given to the modern state tasks and results of X-ray spectrometry of solar bursts. The operation of X-ray spectroheliograph is described. Results of spectral and polarization measurings of X-ray radiation of one powerful solar burst are presented. The conclusion has been drawn that in the process of burst development three characteristic stages may be distingwished: 1) the initial phase; just in this period processes which lead to observed consequences-electromagnetic and corpuscular radiation are born; 2) the impulse phase, or the phase of maximum, is characterised by sharp increase of radiation flux. During this phase the main energy content emanates and some volumes of plasma warm up to high temperatures; 3) the phase of burst damping, during which plasma cools and reverts to the initial condition

  6. Photoneutron intensity variation with field size around radiotherapy linear accelerator 18-MeV X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, H.; Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: mibrahim@kfupm.edu.sa; Maalej, N. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2008-08-15

    In X-ray radiotherapy accelerators, neutrons are produced mainly by ({gamma},n) reaction when high energy X-rays interact with high Z materials of the linear accelerator head. These materials include the lead (Pb) used as shielding in the collimator, tungsten (W) target used for the production of X-rays and iron (Fe) in the accelerator head. These unwanted neutrons contaminate the therapeutic beam and contribute to the patient dose during the treatment of a cancer patient. Knowing the neutron distribution around the radiotherapy accelerator is therefore desired. CR-39 nuclear track detectors (NTDs) were used to study the variation of fast and thermal neutron relative intensities around an 18 MeV linear accelerator X-ray beam with the field sizes of 0, 10x10, 20x20, 30x30 and 40x40cm{sup 2}. For fast neutron detection, bare NTDs were used. For thermal neutron detection, NTDs were covered with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters. The NTDs were placed at different locations in the direction perpendicular to the treatment couch (transversal) and in the direction parallel to the treatment couch (longitudinal) with respect to the isocenter of the accelerator. The fast neutron relative intensity is symmetrical about the beam axis and exhibits an exponential-like drop with distance from the isocenter of the accelerator for all the field sizes. At the primary beam (isocenter), the relative fast neutron intensity is highest for 40x40cm{sup 2} field size and decreases linearly with the decrease in the field size. However, fast neutron intensities do not change significantly with beam size for the measurements outside the primary beam. The fast neutron intensity in the longitudinal direction outside the primary beam decreases linearly with the field size. The thermal neutron intensity, at any location, was found to be almost independent of the field size.

  7. Superluminescence of cadmium sulfide crystals under pulse X-ray radiation

    International Nuclear Information System (INIS)

    Pavlovskaya, N.G.; Tarasov, M.D.; Balakin, V.A.; Varava, V.P.; Lobov, S.I.; Surskij, O.K.; Tsukerman, V.A.

    1977-01-01

    Studies were made to elucidate luminescence properties of CdS crystal radiated by short pulses of braking x-ray radiation. Such a radiation causes the appearance of superluminescence. The radiation was carried out at 295 and 170 K, the radiation dose being changed from 3600 to 1600 r/pulse. At the temperature of 295 K light luminescence was registered at the wave length of 528 nm and half-width of 15 nm. While the temperature lowers, the radiation shifts to the range of shorter wave lengths, and a decrease of the spectrum half-width is observed. With the increase of radiation dose the decrease of radiation spectrum half-width is observed. Approximate calculations show that to achieve the spectrum narrowing to 1 nm at room temperature it is necessary to increase radiation dose per pulse 5-6 times

  8. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    Science.gov (United States)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  9. Extending the methodology of X-ray crystallography to allow X-ray microscopy without X-ray optics

    International Nuclear Information System (INIS)

    Miao Jianwei; Kirz, Janos; Sayre, David; Charalambous, Pambos

    2000-01-01

    We demonstrate that the soft X-ray diffraction pattern from a micron-size noncrystalline specimen can be recorded and inverted to form a high-resolution image. The phase problem is overcome by oversampling the diffraction pattern. The image is obtained using an iterative algorithm. The technique provides a method for X-ray microscopy requiring no high-resolution X-ray optical elements or detectors. In the present work, a resolution of approximately 60 nm was obtained, but we believe that considerably higher resolution can be achieved

  10. Application of ferrofluid density separation to particles in the micrometer-size range

    International Nuclear Information System (INIS)

    Strebin, R.S. Jr.; Johnson, J.W.; Robertson, D.M.

    1976-02-01

    A device designed and described by AVCO* as a ''Ferrofluid Density Separator''/sup (1)/ develops an apparent fluid density from nominally 2 to 20 g/cm 3 dependent on the magnitude of an imposed magnetic field gradient. The ferrofluid retains other normal properties of a liquid. One of these devices and a concentration series of ferrofluids were obtained in order to determine the practicality of separating groups of micrometer-size particles into density fractions. Such separations would be of enormous value in the study of various particle burdens because particles of interest are almost always diluted with overwhelming amounts of other particles. The results of a study of separations of micrometer-size particles with the ferrofluid density separator are presented

  11. Sources of linear polarized x-rays

    International Nuclear Information System (INIS)

    Aiginger, H.; Wobrauschek, P.

    1989-01-01

    Linear polarized X-rays are used in X-ray fluorescence analysis to decrease the background caused by scattered photons. Various experiments, calculations and constructions have demonstrated the possibility to produce polarized radiation in an analytical laboratory with an X-ray tube and polarizer-analyzer facilities as auxiliary equipment. The results obtained with Bragg-polarizers of flat and curved focussing geometry and of Barkla-polarizers are presented. The advantages and disadvantages of the method are discussed and compared with the respective quality of synchrotron radiation. Polarization by scattering reduces the intensity of the primary radiation. Recently much effort is devoted to the construction of integrated high power X-ray tube polarizer-analyzer arrangements. The detailed design, geometry and performance of such a facility is described. (author)

  12. Evaluation of radiation protection in conventional x-ray departments in diagnostic radiography (Kartoum City)

    International Nuclear Information System (INIS)

    Elhussien, Nuha Yousif Osman

    2016-08-01

    This study was conducted in a number of governmental and private hospitals in the city of Khartoum in order to evalute radiation protection in conventional X-ray departments. The number of governmental hospitals was and 4 private 69% and 31&, respectivly, and the number of X-rays rooms that have been evaluted was 19, 15 gvernmental and private by rate of 79% and 21% respectively. And found that many of the hospitals fullfilled the requirements of radiation protection, also we have been observed that all radiology rooms are built well, but their control rooms was mostly not fulfilled the requirements of radiation protection due to either were not build inclimed to reflect the scattered radiation due to either they were not build inclimed to reflect the scattered radiation from the patient or their size was small that not enable workers to exerciese their work safely, as well as some height less than recommended by the competent authorities. Also found that most hospitals have lead aprons axcept three, but some they are old that means do not protect against radiation due they were broke or not put it in the that means do not protect against radiation due they were broke or not put it in the right way. Even the good ares not used by most of the technician and co-patients. All the hoapitals have not the following radiation tools (thyroid collar, lead glasses, lead gloves. TLDs, and gonad shields). The scattered radiation (leakage) was evaluted in the control room, the door of the control room, the dark room, behind chest stand, staff office, and the waiting area. We found that the higher readings in the door of the control rooms (<10 μSv/hr) in the five control rooms from 19, also the readings exceeded the limits in three hospitals in control rooms 13 rooms. And also the readings exceeded the limits in two hospitals in the staff office, and the waiting area. (Author)

  13. Teratogenic effects of x-rays

    International Nuclear Information System (INIS)

    Faisal, Arif

    1981-01-01

    The application of x-rays in the medical field has positive and negative effects. The effects of x-ray radiation to the intrauterine embryo and foetus depend on the period of gestation. In the first trimester the embryo may be resorbed and aborted and may also be born with serious defects. In the late trimester radiation may cause less serious defects and it may disturb the function of organs. Many defects involve nerve tissues and are associated with symptoms of mental retardation. To prevent radiation exposure to embryo and foetus, it is necessary to observe the ''ten-day rule'', when x-ray examination is performed. The threshold doses for embryo and foetus are still unknown. (author)

  14. Effect of infrared and X-ray radiation on thymus cells and the rate of growth of Ehrlich carcinoma.

    Science.gov (United States)

    Dyukina, A R; Zaichkina, S I; Rozanova, O M; Aptikaeva, G F; Romanchenko, S P; Sorokina, S S

    2012-09-01

    We studied the effect of infrared light with a wavelength of 850 nm and modulated frequency of 101 Hz and X-ray radiation on the induction of cross-adaptive and radiation responses in the thymus and on the rate of tumor growth in mice in vivo. Preliminary exposure to infrared and X-ray radiation was shown to result in recovery in thymus weight after irradiation in a dose of 1.5 Gy and also inhibited the growth rate of Ehrlich carcinoma. These data attest to common mechanisms of the adaptive response induced by infrared and X-ray radiation in mice. Infrared light can be used as an adaptogen to adapt the animals to adverse factors.

  15. Three-Dimensional X-Ray Diffraction Technique for Metals Science

    DEFF Research Database (Denmark)

    Zhang, Yubin; Fan, Guohua

    2017-01-01

    resolution can be micrometer scale and the measurement can be conducted within a reasonable time frame (a few hours). The 3DXRD microscope has originally been developed in cooperation between former Risø National Laboratory and the European Synchrotron Radiation Facility. Currently, this technique has been...... implemented in several large synchrotron facilities, e.g. the Advanced Photon Source (APS) in USA and the Spring-8 in Japan. Another family of 3DXRD technique that utilizes white beam synchrotron X-rays has also been developed in parallel in cooperation between Oak Ridge National Laboratory and APS...... analysis during tensile deformation, recrystallization growth kinetics, recrystallization nucleation, growth of individual recrystallized grain, grain growth after recrystallization, and local residual strain/stress analysis. The recent development of the 3DXRD technique and its potential use for materials...

  16. Spatial correlation analysis of seismic noise for STAR X-ray infrastructure design

    Science.gov (United States)

    D'Alessandro, Antonino; Agostino, Raffaele; Festa, Lorenzo; Gervasi, Anna; Guerra, Ignazio; Palmer, Dennis T.; Serafini, Luca

    2014-05-01

    The Italian PON MaTeRiA project is focused on the creation of a research infrastructure open to users based on an innovative and evolutionary X-ray source. This source, named STAR (Southern Europe TBS for Applied Research), exploits the Thomson backscattering process of a laser radiation by fast-electron beams (Thomson Back Scattering - TBS). Its main performances are: X-ray photon flux 109-1010 ph/s, Angular divergence variable between 2 and 10 mrad, X-ray energy continuously variable between 8 keV and 150 keV, Bandwidth ΔE/E variable between 1 and 10%, ps time resolved structure. In order to achieve this performances, bunches of electrons produced by a photo-injector are accelerated to relativistic velocities by a linear accelerator section. The electron beam, few hundreds of micrometer wide, is driven by magnetic fields to the interaction point along a 15 m transport line where it is focused in a 10 micrometer-wide area. In the same area, the laser beam is focused after being transported along a 12 m structure. Ground vibrations could greatly affect the collision probability and thus the emittance by deviating the paths of the beams during their travel in the STAR source. Therefore, the study program to measure ground vibrations in the STAR site can be used for site characterization in relation to accelerator design. The environmental and facility noise may affect the X-ray operation especially if the predominant wavelengths in the microtremor wavefield are much smaller than the size of the linear accelerator. For wavelength much greater, all the accelerator parts move in phase, and therefore also large displacements cannot generate any significant effect. On the other hand, for wavelengths equal or less than half the accelerator size several parts could move in phase opposition and therefore small displacements could affect its proper functioning. Thereafter, it is important to characterize the microtremor wavefield in both frequencies and wavelengths domains

  17. Development of an X-ray fluorescence holographic measurement system for protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sato-Tomita, Ayana, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp; Shibayama, Naoya, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp; Okabe, Takahiro [Division of Biophysics, Department of Physiology, Jichi Medical University, Yakushiji, Shimotsuke 329-0498 (Japan); Happo, Naohisa [Department of Computer and Network Engineering, Graduate School of Information Sciences, Hiroshima City University, Asa-Minami-Ku, Hiroshima 731-3194 (Japan); Kimura, Koji [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan); Matsushita, Tomohiro [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198 (Japan); Park, Sam-Yong [Drug Design Laboratory, Department of Medical Life Science, Yokohama City University, Suehiro, Tsurumi, Yokohama 230-0045 (Japan); Sasaki, Yuji C. [Department of Advanced Material Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwanoha, Kashiwa 277-8561 (Japan); Hayashi, Kouichi, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan); Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan)

    2016-06-15

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α{sub 2}β{sub 2} tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm{sup 3}) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  18. X-raying with low dose irradiation

    International Nuclear Information System (INIS)

    Malevich, E.E.; Kisel, E.M.; Shpita, I.D.; Lazovsky, A.S.

    2001-01-01

    With the purpose of the improvement of diagnostics quality and reduction of beam load on a patient in modern x-ray devices pulse x-raying is applied. It is based on the using of radiation pulses with various frequencies of intervals between them instead of continuous radiation. At pulse x-raying with the net control the principle of filling of an interval is used, when the information about the image, received with the last pulse, get into memory and is displayed before occurrence of other pulse. It creates impression of the continuous image even at low frequency of pulses. Due to the unique concept of the simultaneous (double) control, all of 3 parameters, which define the quality of the image (pressure(voltage), force of a current and length of a pulse), are adjusted automatically at each pulse, thus optimum adaptation to varied thickness of object during dynamic researches occurs. At x-raying pulse the presence of a free interval from x-ray radiation between two pulses results in the decrease of a radiation dose. Pulsing occurs some times per one second with equal intervals between pulses. Thus, the degree of decrease irradiation dose depends on duration of a pause between pulses. On the screen the image of last pulse before occurrence of the following is kept and repeats. The principle of x-raying pulse was realized in system Grid Controlled Fluoroscopy by the firm 'Philips Medi zin Systeme'. In the x-ray tube of this system inclusion and de energizing of radiation occurs directly on a source. Electron cloud is broken off by the special grid, which is located between the cathode and the anode and operates as a barrier. Thus the tube continues to be energized. In usual devices for pulses formation is used generator pulsation system, which at increase and attenuation of a x-ray pulse results in occurrence of the increasing and fading radiation which are not participating in the formation of the image, but creating beam load on the patient and the personnel. Thus

  19. A study on enforcement effects of radiation safety control regulations for diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Sung, Mo IL; Park, Myeong Hwan; Kwon, Duk Moon; Lee, Joon IL

    1999-01-01

    The purposes of this study are to analyze the realities after enforcements of safety control regulations for diagnostic X-ray equipment and to suggest means for an improvement of low radiation safety control. A questionnaire survey for medical radiologic technologists was carried out to determine enforcement effects of the safety control regulations. The results of analysis from the survey are as follows. That is, most of he respondents realized the importance of the radiation safety control system, but about a half of them revealed that regulations were not well observed in accordance with their purposes. Only 43.9 percent of the respondents took an active part in quality control of radiation. And responsibility, sex, age, and knowledge for safety control were important indicators for observations of the regulations. Training for the safety control regulations are needed to ensure safety control and proper usage of diagnostic X-ray equipment. And management of organizations using diagnostic X-ray equipment have to understand and stress the importance of radiation safety control system. (author)

  20. Semi-empirical procedures for correcting detector size effect on clinical MV x-ray beam profiles

    International Nuclear Information System (INIS)

    Sahoo, Narayan; Kazi, Abdul M.; Hoffman, Mark

    2008-01-01

    The measured radiation beam profiles need to be corrected for the detector size effect to derive the real profiles. This paper describes two new semi-empirical procedures to determine the real profiles of high-energy x-ray beams by removing the detector size effect from the measured profiles. Measured profiles are corrected by shifting the position of each measurement point by a specific amount determined from available theoretical and experimental knowledge in the literature. The authors developed two procedures to determine the amount of shift. In the first procedure, which employs the published analytical deconvolution procedure of other investigators, the shift is determined from the comparison of the analytical fit of the measured profile and the corresponding analytical real profile derived from the deconvolution of the fitted measured profile and the Gaussian detector response function. In the second procedure, the amount of shift at any measurement point is considered to be proportional to the value of an analytical function related to the second derivative of the real profile at that point. The constant of proportionality and a parameter in the function are obtained from the values of the shifts at the 90%, 80%, 20%, and 10% dose levels, which are experimentally known from the published results of other investigators to be approximately equal to half of the radius of the detector. These procedures were tested by correcting the profiles of 6 and 18 MV x-ray beams measured by three different ionization chambers and a stereotactic field diode detector with 2.75, 2, 1, and 0.3 mm radii of their respective active cylindrical volumes. The corrected profiles measured by different detectors are found to be in close agreement. The detector size corrected penumbra widths also agree with the expected values based on the results of an earlier investigation. Thus, the authors concluded that the proposed procedures are accurate and can be used to derive the real

  1. The dose received by patients during dental X-ray examination and the technical condition of radiological equipment.

    Science.gov (United States)

    Bekas, Marcin; Pachocki, Krzysztof A

    2013-01-01

    Implementation of X-ray dental examination is associated with the patients exposure to ionizing radation. The size of the exposure depends on the type of medical procedure, the technical condition of the X-ray unit and selected exposure conditions. The aim of this study was to determine the dose received by patients during dental X-ray examination and the assessment of the technical condition of medical equipment, The study included a total number of 79 dental X-ray units located in the region of Mazovia. The test methods for the assessment of the technical condition of dental X-ray units and measurement of radiation dose received by patients were based on the procedures elaborated in the Department of Radiation Hygiene and Radiobiology in the National Institute of Public Health - National Institute of Hygiene (Warszawa, Poland) accredited for the certification of compliance with PN-EN 17025. The research found that 69.6% fully meets the criteria set out in the Polish legislation regarding the safe use of ionizing radiation in medicine, while 30.4% did not meet some of them. A tenfold difference in the size of the dose received by patients during dental X-ray examinations was discovered. For example, during a radiography of the canine teeth of a child, the recorded entrance surface dose (ESD) ranged from 72.8 to 2430 microGy with the average value of 689.1 microGy. Cases where the dose reference level defined in Polish legislation of 5 mGy was exceeded were also found. CONCKUSIONS: It is essential to constantly monitor the situation regarding the technical condition of X-ray units which affects the size of the population's exposure to ionizing radiation as well as raising dentists' awareness about the effects of X-rays on the human body.

  2. X ray Production. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4.

  3. Microfocus X-ray sources for 3D microtomography

    International Nuclear Information System (INIS)

    Flynn, M.J.; Hames, S.M.; Reimann, D.A.; Wilderman, S.J.

    1994-01-01

    An analytic model for the performance of cone beam microtomography is described. The maximum power of a microfocus X-ray source is assumed to be approximately proportional to the focal spot size. Radiation flux penetrating the specimen is predicted by a semi-empirical relation which is valid for X-ray energies less than 20 keV. Good signal to noise ratio is predicted for bone specimens of 0.1 to 10 mm when scanned at the optimal energy. A flux of about 1x10 10 photons/mm 2 /s is identified for 0.2 mm specimens. Cone beam volumetric microtomography is found to compare favorably with synchrotron based methods. ((orig.))

  4. Basic studies in X-ray radiography and imaging techniques

    International Nuclear Information System (INIS)

    Vaidya, Paresh R.

    2000-01-01

    The aim of this research was to study the basic characteristics related to a new branch of radiography viz. the micro-focal radiography. The most important among them was to find methods of measurement of focal spot size of these X-ray sources. It is important to accomplish this because the design of such units is specifically meant to produce very fine source size. To this end. first the process of radiography test was introduced. Among other things. various properties of an image and image forming systems (like PSF, LSF, MTF etc.) were introduced and explained. Methods used for microfocus measurement of focal spot size in conventional units were reviewed. It was shown how they are not suitable for microfocal tubes. Next the microfocus X-ray unit meant for the study was installed and commissioned. Features which are different from conventional X-ray units were observed more carefully. Data was collected and analyzed for various aspects. Procedure for focussing the electron beam while getting the feed back about beam diameter from the oscilloscope was established by experiments. In addition, influence of change in tube voltage and tube current on the focal spot size was studied. Relationship between tube current and target current vis-a-vis focus size was established. Radiation zone was determined. Focal spot size was qualitatively compared with that of a conventional X-ray unit by taking radiographs of different wire meshes at different magnifications by both the units

  5. Supervision of professional personnel exposed to ionizing radiation (X-rays)

    International Nuclear Information System (INIS)

    Chalabreysse, J.

    1964-10-01

    After a short introduction giving the physical characteristics and the possible interactions of X-rays, this report considers in more detail the basis of the dosimetry and the units used. Taking into account the dangers of irradiation and the professional norms applicable, the report reviews the physical methods (collective and individual dosimetry) and the biological method (based on the systematic supervision of the hemogram) which are used to ensure that these professional norms an respected. As an example the influence is studied of repeated doses of X-rays on the hemogram of X-ray operators when the individual radiation levels are known through dosimetric films. Two processes are used: one considers the mean values (irradiation and average hemogram for each person), the other requires the use of an electronic computer and uses each haematological variable as a function of the monthly or cumulative doses; it gives correlation coefficients for the different variables. In conclusion, the results obtained are compared to those conventionally accepted, and the validity of the hemogram is estimated as a criterion for the supervision. (author) [fr

  6. Simulation of transmitted X-rays in a polycapillary X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shiqi [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Liu, Zhiguo, E-mail: liuzhiguo512@126.com [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi; Wang, Kai; Yi, Longtao; Yang, Kui; Chen, Man; Wang, Jinbang [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-09-21

    The geometrical description of capillary systems adjusted for the controlled guiding of X-rays and the basic theory of the transmission of X-rays are presented. A method of numerical calculation, based on Ray-Tracing theory, is developed to simulate the transmission efficiency of an X-ray parallel lens and the shape and size of the light spot gain from it. The simulation results for two half-lenses are in good agreement with the experimental results.

  7. Arrangement for X-ray shield

    International Nuclear Information System (INIS)

    1980-01-01

    X-ray screen unit consisting of a light transmissive carrier onto which scintillation material is deposited, which is able to generate light under the influence of incident X-ray irradiation, characterised in that the X-ray screen comprises a number of sectors, wherein the surface with respect to the incident X-radiation is maintained at an acute angle. (G.C.)

  8. Miniature x-ray point source for alignment and calibration of x-ray optics

    International Nuclear Information System (INIS)

    Price, R.H.; Boyle, M.J.; Glaros, S.S.

    1977-01-01

    A miniature x-ray point source of high brightness similar to that of Rovinsky, et al. is described. One version of the x-ray source is used to align the x-ray optics on the Argus and Shiva laser systems. A second version is used to determine the spatial and spectral transmission functions of the x-ray optics. The spatial and spectral characteristics of the x-ray emission from the x-ray point source are described. The physical constraints including size, intensity and thermal limitations, and useful lifetime are discussed. The alignment and calibration techniques for various x-ray optics and detector combinations are described

  9. Beryllium window flange for synchrotron radiation X-ray beamline fabricated by hot isostatic press method

    International Nuclear Information System (INIS)

    Asaoka, Seiji; Maezawa, Hideki; Nishida, Kiyotoshi; Sakamoto, Naoki.

    1995-01-01

    The synchrotron radiation experimental facilities in National Laboratory for High Energy Physics are the experimental facilities for joint utilization, that possess the positron storage ring of 2.5 GeV exclusively used for synchrotron radiation. Synchrotron radiation is led through a mainstay beam channel to the laboratory, and in the beam line of X-ray, it is used for experiment through the taking-out window made of beryllium. At this time, the function of the taking-out window is to shut off between the ultrahigh vacuum in the mainstay beam channel and the atmosphere, and to cut the low energy component of synchrotron radiation spectra. The experiment using X-ray is carried out mostly in the atmosphere. The design of the efficient cooling water channel which is compatible with the flange construction is important under the high thermal load of synchrotron radiation. The beryllium window flange for synchrotron radiation X-ray was made by HIP method, and the ultrahigh vacuum test, the high pressure water flow test and the actual machine test were carried out by heat cycle. The properties required for the window material, the requirement of the construction, the new development of HIP method, and the experiments for evaluating the manufactured beryllium window are described. (K.I.)

  10. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    International Nuclear Information System (INIS)

    Chandler, Gordon Andrew; McDaniel, Dillon Heirman; Jorgenson, Roy E.; Warne, Larry Kevin; Dropinski, Steven Clark; Hanson, Donald L.; Johnson, William Arthur; York, Mathew William; Lewis, D.F.; Korde, R.; Haslett, C.L.; Wall, D.L.; Ruggles, Laurence E.; Ramirez, L.E.; Stygar, William A.; Porter, John Larry Jr.; McKenney, John Lee; Bryce, Edwin Anthony; Cuneo, Michael Edward; Torres, Jose A.; Mills, Jerry Alan; Leeper, Ramon Joe; McGurn, John Stephen; Fehl, David Lee; Spielman, R. B.; Pyle, John H.; Mazarakis, Michael Gerrassimos; Ives III, Harry Crockett; Seamen, Johann F.; Simpson, Walter W.

    2006-01-01

    We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-(micro)m-diameter pinholes in a 50-(micro)m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented

  11. X-ray image intensifier photography

    International Nuclear Information System (INIS)

    Richter, K.; Angerstein, W.; Steinhardt, L.

    1980-01-01

    The present treatise on X-ray image intensifier photography starts with introductory remarks on the history of X-ray imaging and image intensifiers. In the physical-technological part especially the quality of image and the methods of its measurement are discussed in detail. The relevant equipment such as image intensifier cameras, X-ray television, video recorder and devices of display and evaluation of images are presented as well as problems of radiation doses and radiation protection. Based on 25,000 examinations of the digestive, the biliary and the urinary tract, resp., as well as of the blood vessels the applicability of the X-ray image intensifier photography and its diagnostic value are demonstrated in the medical part of the book

  12. Improvement way for mobile X-ray examinations by rule revision about safety management of diagnosis radiation occurrence system

    International Nuclear Information System (INIS)

    Choi, Jun Gu; Kim, Gyeong Su; Kim, Byeong Gi; Ahn, Nam Jun; Kim, Hyeong Sun; Kim, Sang Geon; Lim, Si Eun

    2007-01-01

    A safety management rule of the diagnosis radiation system which opened a court 2006 February 10th was promulgated for safety of the radiation worker, patients and patients' family members. The purpose of this study is to minimize injury by radiation that can happen to patients and people around a sick ward when managing mobile X-ray system. This study analyzed sickroom environment of mobile X-ray examination and the statistical data of the Konkuk medical Information System (KIS) and the Picture Archiving Communication System (PACS). This study also investigated patient conditions, infection, relation information and related data, when the sickroom mobile X-ray examination is used. Through data analysis, many problems were expected such as restriction of space side, manpower and expense of business side, satisfaction degree decline of patient and protector of operation side. Therefore, we tried to restrict examination of multi bed sickroom, and to use treatment room in each ward to solve problem mentioned. As a result, the whole sickroom mobile X-ray examination rate decreased to near 50%, and mobile X-ray examination rate for inpatients decreased to more than 85%. This study shows that several attempts we did should be helpful for manpower, patients satisfaction and expenses. Also, they should protect patients in sickroom from unnecessary radiation exposure and could minimize inconvenience of patients and their family members from x-ray examination

  13. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    Energy Technology Data Exchange (ETDEWEB)

    West, Brent F. [Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD (United States); Wolfram, Kenneth D. [Naval Research Laboratory (retired), Washington, DC (United States); Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA USA (United States)

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  14. Non-destructive analysis of micro texture and grain boundary character from X-ray diffraction contrast tomography

    DEFF Research Database (Denmark)

    King, A.; Herbig, M.; Ludwig, W.

    2010-01-01

    Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting new possibilities for mapping 3D grain shapes and crystallographic orientations in different classes of polycrystalline materials. X-ray diffraction contrast tomography (DCT) is a monochromatic beam...... imaging technique combining the principles of X-ray micro-tomography and three-dimensional X-ray diffraction microscopy (3DXRD). DCT provides simultaneous access to 3D grain shape, crystallographic orientation and attenuation coefficient distribution at the micrometer length scale. The microtexture...

  15. Radiation exposure to the patient during X-ray fluoroscopy and radiography

    International Nuclear Information System (INIS)

    Dimov, A.; Vassileva, J.

    2006-01-01

    Full text: The aim of this study is to assess the patient doses received during conventional and digital X-ray radiography, conventional fluoroscopy of the lungs, and one of the highest dose X-ray procedures - contrast examination of the large intestine (Barium enema examination). The measured quantity is Kerma area product (KAP), registered with a clinical dosimeter DRK-1 (Doza, Russia). A total number of 89 patients are included in the study. The Organ doses and Effective doses were assessed using Monte Carlo calculation code (PCXMC 1.4 (Finland). The measurements took place at the following X-ray units: a CGR (Koch and Sterzel) with two working posts - for radiography and fluoroscopy, a Philips Telediagnost (for barium enema) and an Oldelft N800HF Digidelca (for digital radiography of the chest). The typical KAP per procedure at digital radiography, conventional X-ray radiography and fluoroscopy and Barium enema examination are: 17; 95; 928 and 3630 cGy.cm 2 respectively; the average effective doses are: 0.022; 0.053; 0.728 and 8.0 mSv respectively. Doses to the lungs at digital radiography, conventional radiography and fluoroscopy are: 0.066; 0.136 and 2.412 mSv respectively and the dose to the upper and lower large intestine are: 11.7 and 8.6 mSv respectively. Conclusion: The approach used is applicable for assessment of radiation exposure to the patient during X-ray radiography and fluoroscopy. It needs registration of KAP meter readings when this device is installed on the stationary X-ray units

  16. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Science.gov (United States)

    Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.

    2018-03-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.

  17. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  18. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    International Nuclear Information System (INIS)

    Heintz, Desiree Ellen

    2012-07-01

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  19. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Desiree Ellen

    2012-07-15

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  20. Degradation of 4-Chloro phenol by gamma radiation of {sup 137}Cs and X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez J, J. C. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Jimenez B, J.; Cejudo A, J., E-mail: jaime.jimenez@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    This paper presents results of radiolytic degradation of 4-chloro phenol in the presence of TiO{sub 2}, Al{sub 2}O{sub 3} and SiO{sub 2}, using different radiation sources than {sup 60}Co, which is so common in this type of experiment. The radiation sources used were X-rays with energy of 100 keV and radiation from {sup 137}Cs (662 keV). After irradiation with a dose of 50 c Gy X-ray and TiO{sub 2} obtained a degradation of about 5%, no degradation was obtained with {sup 137}Cs source and other oxides. This may be due to the fact that X-rays have a linear energy transfer greater value, and in the case of TiO{sub 2} present a crystalline structure, whereas the other two oxides are amorphous. Both characteristics result in better formation of a reactive species that allows the degradation of the compound. (Author)

  1. X-ray optics, a vital aspect of work with synchrotron radiation

    International Nuclear Information System (INIS)

    Bilderback, D.H.

    1986-01-01

    The kind of optical components that have been developed over the centuries to make use of visible light won't work for x-rays. New ways must be found to manipulate the much shorter-wavelength x-ray beams to produce effects similar to those achieved with such familiar devices as mirrors, lenses, prisms, and gratings. This is the province of the field of x-ray optics. One challenge is to design optical elements that can focus, disperse, or reflect beams in the x-ray region of the electromagnetic spectrum, where wavelengths are about a thousand times shorter than those in the region of visible light. A second problem is encountered in using the intense, high-energy x-radiation from a synchrotron: how to make the desired beam accessible to a user who is conducting an experiment in a shielded enclosure many meters away from the synchrotron storage ring. Depending on the application, one might want to pick out a single wavelength from the broad spectrum available from the synchrotron, or isolate a narrow band of wavelengths. Then the beam must be collimated. When samples to be exposed are of millimeter dimension or smaller, it may be desirable to increase the intensity by focusing the x-ray beam horizontally and vertically. All these manipulations are analogous to those done with visible light, but the shape and form of the optical components can be quite different

  2. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  3. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    International Nuclear Information System (INIS)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-01-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location (∼1.7 m from the target) would be ∼1.4e9/cm 2 . Previous measurements suggest the onset of significant background at a neutron fluence of ∼ 1e8/cm 2 . The radiation damage and operational upsets which starts at ∼1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor ∼50

  4. Center for X-ray Optics, 1988

    International Nuclear Information System (INIS)

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source

  5. [Standards and guidelines of radiation protection and safety in dental X-ray examinations].

    Science.gov (United States)

    Guo, X L; Li, G; Cheng, Y; Yu, Q; Wang, H; Zhang, Z Y

    2017-12-09

    With the rapid development of imaging technology, the application of dental imaging in diagnosis, treatment planning, intraoperative surgical navigation, monitoring of treatment or lesion development and assessment of treatment outcomes is playing an essential role in oral healthcare. The increased total number of dental X-ray examinations is accompanied by a relatively significant increase in collective dose to patients as well as to dental healthcare workers, which is harmful to human bodies to a certain degree. Some radiation protection standards and guidelines in dental radiology have been published in European countries, US, Canada and Australia, etc. Adherence to these standards and guidelines helps to achieve images with diagnostic quality and avoid unnecessary and repeated exposures. However, no radiation protection standard or guideline with regard to dental X-ray examinations has been put in force so far in mainland China. Therefore, a literature review on available radiation protection standards and guidelines was conducted to provide reference to the development of radiation protection standards or guidelines in mainland China.

  6. Observations of several disruptions in PLT using soft and ultra-soft x-ray radiation

    International Nuclear Information System (INIS)

    Eames, D.R.; von Goeler, S.; Sauthoff, N.R.; Stodiek, W.

    1979-03-01

    The evolution of ultra-soft x-ray radiation (USX, hν approx. > 100 eV) is compared to that of the soft x-ray radiation (SX, hν approx. > 1000 eV) during several disruptions in PLT. Spatial resolution is obtained in both cases by arrays of silicon surface barrier detectors viewing along different chords. During some disruptions the USX behaves quite differently from the SX, and a classification is made based on the USX behavior. Different interpretations of the data are discussed, along with the possibility that these measurements may distinguish between the roles of temperature and impurity density changes during disruptions

  7. Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia

    Directory of Open Access Journals (Sweden)

    A. Massling

    2007-06-01

    Full Text Available Hygroscopic properties of aerosol particles in the sub-micrometer and one-micrometer size ranges were measured during the ACE-Asia study (Aerosol Characterization Experiment-Asia in spring 2001. The measurements took place off the coasts of Japan, Korea, and China. All instruments contributing to this study were deployed in a container on the forward deck of the NOAA Research Vessel Ronald H. Brown. Air masses with primarily marine influence and air masses from the Asian continent affected by both anthropogenic sources and by the transport of desert dust aerosol were encountered during the cruise.

    Results showed very different hygroscopic behavior in the sub-micrometer size range compared to the one-micrometer size range. In general, for all continentally influenced air masses, the one-micrometer particle population was characterized by two different particle groups – a nearly hydrophobic fraction with growth factors around 1.0 representative of dust particles and a sea salt fraction with hygroscopic growth factors around 2.0. The number fraction of dust particles was generally about 60% independent of long-range air mass origin.

    For sub-micrometer particles, a dominant, more hygroscopic particle fraction with growth factors between 1.5 and 1.9 (depending on dry particle size consistent with ammonium sulfate or non-neutralized sulfates as major component was always found. In marine air masses and for larger sizes within the sub-micrometer range (Dp=250 and 350 nm, a sea salt fraction with growth factors between 2.0 and 2.1 was also observed. For all other air masses, the more hygroscopic particle fraction in the sub-micrometer size range was mostly accompanied by a less hygroscopic particle fraction with growth factors between 1.20 and 1.55 depending on both the continental sources and the dry particle size. Number fractions of this particle group varied between 4 and 39% depending on dry particle size and air mass

  8. X-ray and. gamma. -ray sources: a comparison of their characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Freund, A K [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1979-11-01

    A comparison of the various source characteristics, in particular the available fluxes of radiation in the X-ray/..gamma..-ray region from (1) high power rotary anode X-ray generators, (2) radioactive ..gamma..-ray sources and (3) high energy electron storage rings is presented. Some of the specific characteristics and possible applications of synchrotron radiation as a source are discussed in detail, together with problems associated with the monochromatization of the continuous radiation in the X-ray/..gamma..-ray region. The new high energy machines PEP at Stanford, the 8 GeV storage ring CESR at Cornell and the PETRA storage ring in Hamburg, which will soon come into operation provide a spectrum of high intensity radiation reaching well above h..gamma..sub(photon)=100 keV. The possibilities of using ondulators (wigglers), and laser-electron scattering for constructing high repetition rate tunable ..gamma..-ray sources are also discussed. Finally the potentials of using the powerful spontaneous emission of ..gamma..-quanta by relativistic channeled particles are mentioned.

  9. X-ray determination of crystallite size and effect of lattice strain on ...

    Indian Academy of Sciences (India)

    X-ray diffraction; lattice strain; crystallite size; Debye–Waller factor; vacancy formation energy. 1. Introduction ... In the present investigation, results of a system- atic study of .... that while milling is enough to create strains, it affects the particle ...

  10. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Vives, Ana Elisa Sirito de; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario

    2005-01-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of ∼ 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  11. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Silva, Richard Maximiliano da Cunha [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil)]. E-mail: maxcunha@cena.usp.br; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mail: jeangm@esalq.usp.br; mtomazel@esalq.usp.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Barroso, Regina Cely [Universidade do Estado, Rio de Janeiro, RJ (Brazil)]. E-mail: cely@uerj.br

    2005-07-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of {approx} 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  12. X-ray and gamma ray waveguide, cavity and method

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Willard, H.R.

    1978-01-01

    An x-ray and gamma ray waveguide, cavity, and method for directing electromagnetic radiation of the x-ray, gamma ray, and extreme ultraviolet wavelengths are described. A hollow fiber is used as the waveguide and is manufactured from a material having an index of refraction less than unity for these wavelengths. The internal diameter of the hollow fiber waveguide and the radius of curvature for the waveguide are selectively predetermined in light of the wavelength of the transmitted radiation to minimize losses. The electromagnetic radiation is obtained from any suitable source ad upon introduction into the waveguide is transmitted along a curvilinear path. The waveguide may be formed as a closed loop to create a cavity or may be used to direct the electromagnetic radiation to a utilization site

  13. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B., E-mail: fournier2@llnl.gov; Brown, C. G.; Yeoman, M. F.; Compton, S.; Holdener, F. R.; Kemp, G. E.; Blue, B. E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Fisher, J. H.; Newlander, C. D.; Gilliam, R. P.; Froula, N. [Fifth Gait Technologies, Inc., 14040 Camden Circle, Huntsville, Alabama 35803 (United States); Seiler, S. W.; Davis, J. F.; Lerch, MAJ. A. [Defense Threat Reduction Agency, 8725 John J. Kingman Road, Fort Belvoir, Virginia 22060-6201 (United States); Hinshelwood, D. [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States); Lilly, M. [Dynasen, Inc., 20 Arnold Pl., Goleta, California 93117 (United States)

    2016-11-15

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed.

  14. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rosado, P.H.G.; Cunha, P.G. [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  15. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    International Nuclear Information System (INIS)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da; Rosado, P.H.G.; Cunha, P.G.

    2017-01-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  16. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs

  17. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography (CMT). The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits (MDLs) obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source (APS)

  18. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  19. Dose inspection and risk assessment on radiation safety for the use of non-medical X-ray machines in Taiwan

    Science.gov (United States)

    Hsu, Fang-Yuh; Hsu, Shih-Ming; Chao, Jiunn-Hsing

    2017-11-01

    The subject of this study is the on-site visits and inspections of facilities commissioned by the Atomic Energy Council (AEC) in Taiwan. This research was conducted to evaluate the possible dose and dose rate of cabinet-type X-ray equipment with nominal voltages of 30-150 kV and open-beam (portable or handheld) equipment, taking both normal operation and possibly abnormal operation conditions into account. Doses and dose rates were measured using a plastic scintillation survey meter and an electronic personal dosimeter. In total, 401 X-ray machines were inspected, including 139 units with nominal voltages of 30-50 kV X-ray equipment, 140 units with nominal voltages of 50-150 kV, and 122 open-beam (portable or handheld) X-ray equipment. The investigated doses for radiation workers and non-radiation workers operating cabinet-type X-ray equipment under normal safety conditions were all at the background dose level. Several investigated dose rates at the position of 10 cm away from the surface of open-beam (portable or handheld) X-ray equipment were very high, such X-ray machines are used by aeronautical police for the detection of suspected explosives, radiation workers are far away (at least 10 m away) from the X-ray machine during its operation. The doses per operation in X-ray equipment with a 30-50 kV nominal voltage were less than 1 mSv in all cases of abnormal use. Some doses were higher than 1 mSv per operation for X-ray equipment of 50-150 kV nominal voltage X-ray. The maximum dose rates at the beam exit have a very wide range, mostly less than 100 μSv/s and the largest value is about 3.92 mSv/s for open-beam (portable or handheld) X-ray devices. The risk induced by operating X-ray devices with nominal voltages of 30-50 kV is extremely low. The 11.5 mSv dose due to one operation at nominal voltage of 50-150 kV X-ray device is equivalent to the exposure of taking 575 chest X-rays. In the abnormal use of open-beam (portable or handheld) X-ray equipment, the

  20. Radiation-hygienic assessment of theroid exposure in children resulted from X-ray examination of chest organs

    International Nuclear Information System (INIS)

    Kostenetskij, M.I.

    1983-01-01

    Radiation doses for thyroid in children in the case of X-ray examination of chest organs with the aim of optimization of investigation regimes are studied. Dosimetric measurements are performed in aqueous plexiglass phantoms imitating children of different age. It is shown that the maximum radiation dose for thyroid is registered in breast-fed children and constitutes, about 50% of the annual radiation background; in the older age it constiturotes 8-10% of the natural annual radiation backgund. The increase of intensity at the X-ray tube with the simultaneous decrease of explosure in the case of constant filtration of radiation gives the increase of radiation dose of thyroid in breast-fed children are inconsiderable; in older children, approximately in 1.7 times

  1. X-ray astronomy

    International Nuclear Information System (INIS)

    Narayanan, M.S.

    1976-01-01

    The deployment of detectors outside the deleterious effects of the atmosphere by sending them in space vehicles, has been explained. This has thrown open the entire spectrum of the electromagnetic and particle radiation to direct observations, thus enlarging the vistas of the field of astronomy and astrophysics. The discovery of strong emitters of X-rays such as SCO X-1, NorX-2, transient sources such as Cen X-2, Cen X-4, Cen X-1, Supernova remnants Tan X-1, etc., are reported. The background of the X-ray spectrum as measured during two rocket flights over Thumba, India is presented. (K.B.)

  2. Characteristics of soft X-ray lens

    International Nuclear Information System (INIS)

    Qin Yi

    2007-12-01

    A soft X-lens was devised with waveguide X-ray optics of total external reflection (TER). The lens consists of a stack of 1 387 TER waveguides with inner diameter of 0.45 mm and outer diameter of 0.60 mm. With the help of plasma sources of soft X-ray radiation, high density of pure soft X-ray radiation (without plasma expansion fragments) with broad-band spectral range can be obtained at the focus of the lens. As laser-plasma is considered, the radiation density of 1.3 x 10 5 W/cm 2 is obtained, the transmission coefficient is 18.6%, the ratio of the density at the focus with and without the lens is 1000 and the radiation capture is 28.9 degree. The density of 0.5 TW/cm 2 can be obtained as far as Qiang-Guang I facility is considered. (authors)

  3. Micrometer-sized Isolated Patterns of Conductive ZnO derived by Micromoulding

    NARCIS (Netherlands)

    Göbel, Ole F.; ten Elshof, Johan E.; Blank, David A.H.

    2009-01-01

    We succeeded in the fabrication of large-area patterns with micrometer-sized, isolated features of a simple oxide by a technically simple patterning method. By micromoulding a polymeric precursor solution for ZnO with an elastomeric (PDMS) mould, and a subsequent heat treatment, patterned ZnO films

  4. A soft X-ray source based on a low divergence, high repetition rate ultraviolet laser

    Science.gov (United States)

    Crawford, E. A.; Hoffman, A. L.; Milroy, R. D.; Quimby, D. C.; Albrecht, G. F.

    The CORK code is utilized to evaluate the applicability of low divergence ultraviolet lasers for efficient production of soft X-rays. The use of the axial hydrodynamic code wih one ozone radial expansion to estimate radial motion and laser energy is examined. The calculation of ionization levels of the plasma and radiation rates by employing the atomic physics and radiation model included in the CORK code is described. Computations using the hydrodynamic code to determine the effect of laser intensity, spot size, and wavelength on plasma electron temperature are provided. The X-ray conversion efficiencies of the lasers are analyzed. It is observed that for a 1 GW laser power the X-ray conversion efficiency is a function of spot size, only weakly dependent on pulse length for time scales exceeding 100 psec, and better conversion efficiencies are obtained at shorter wavelengths. It is concluded that these small lasers focused to 30 micron spot sizes and 10 to the 14th W/sq cm intensities are useful sources of 1-2 keV radiation.

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  6. X-ray dosimetry of TlGaSe2 single crystals

    International Nuclear Information System (INIS)

    Kerimova, E.M.; Mustafaeva, S.N.; Mamedbeili, S.D.; Jabarov, J.N.; Iskenderova, P.M.; Kazimov, S.B.

    2002-01-01

    TlGaSe 2 compound belongs to group of layered semiconductors of A 3 B 3 C 2 6 -type. Photoelectric and optical properties of TlGaSe 2 single crystals were investigated in detail. Influence of gamma-, electron and neutron radiation on photoelectric properties of TlGaSe 2 single crystals is investigated too. The present work deals with experimental results relative to X-ray dosimetric characteristics of TlGaSe 2 crystals at 300 K. X-ray conductivity and X-ray dosimetric characteristic measurements are carried out in low load resistance regime. The source of X-ray radiation is the installation of X-ray diffraction analysis (URS-55a) with the BCV-2(Cu). Intensity of X-ray radiation (E) is regulated by measurement with current variation in tube at each given value of X-ray radiation dose E (R/min) are measured by crystal dosimeter DRGZ-02. X-ray conductivity coefficients K σ characterising X-ray sensitivity of investigated crystals are determined as the relative change of conductivity under X-ray radiation a per dose. There have been determined values of characteristic coefficients of TlGaSe 2 single crystal X-ray conductivity at different values of accelerating voltage (V a ) on the tube and corresponding doses of X-ray radiation. Analysis of obtained data showed that X-ray conductivity coefficients K σ in studied crystals are regularly decreased (from 0.276 to 0.033) as with the rise of dose (E=0.75-78.0 R/min) as with the increase of values of V a on X-ray tube (V a =254-50 keV). One of the possible reasons of observed regularities is that X-ray conductivity in investigated crystals, especially at comparatively low V a is due predominantly to radiation of thin layer of crystal. In this case with the rise of radiation intensity there have been started to prevail the mechanism of surface quadratic recombination which leads to observed decrease of X-ray conductivity. With the rise of accelerating potential 'effective hardness' is increased, as a result of which there

  7. Soft X-ray radiation parameters of nested tungsten wire array

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Xu Zeping; Li Zhenghong; Yang Jianlun

    2011-01-01

    Implosions with nested tungsten wire array were performed at the Angara-5-1 facility in Russian Research Centre. The experimental results of nested tungsten wire array are compared with those of single array. Radiation parameters of nested array are discussed based on four different dynamic models. When the implosions of outer and inner wire arrays are synchronized,the relatively uniform distribution of inner layer plasma will improve the uniformity of outer layer plasma. As compared with single array, nested array has an increase of 32% in X-ray radiation power. (authors)

  8. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  9. X-ray image coding

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation

  10. Stellar winds in binary X-ray systems

    Science.gov (United States)

    Macgregor, K. B.; Vitello, P. A. J.

    1982-01-01

    It is thought that accretion from a strong stellar wind by a compact object may be responsible for the X-ray emission from binary systems containing a massive early-type primary. To investigate the effect of X-ray heating and ionization on the mass transfer process in systems of this type, an idealized model is constructed for the flow of a radiation-driven wind in the presence of an X-ray source of specified luminosity, L sub x. It is noted that for low values of L sub x, X-ray photoionization gives rise to additional ions having spectral lines with wavelengths situated near the peak of the primary continuum flux distribution. As a consequence, the radiation force acting on the gas increases in relation to its value in the absence of X-rays, and the wind is accelerated to higher velocities. As L sub x is increased, the degree of ionization of the wind increases, and the magnitude of the radiation force is diminished in comparison with the case in which L sub x = 0. This reduction leads at first to a decrease in the wind velocity and ultimately (for L sub x sufficiently large) to the termination of radiatively driven mass loss.

  11. Sub-100 nm hard X-ray microbeam generation with Fresnel zone plate optics

    CERN Document Server

    Takano, H; Takeuchi, A

    2003-01-01

    A hard X-ray focusing test of a Fresnel zone plate has been performed with a synchrotron radiation source at the undulator beamline 20XU of SPring-8. Fresnel zone plate with a radius of 150 mu m, and an outermost zone width of 100 nm was used for the X-ray focusing device. The 248-m-long beamline provides fully coherent illumination for the focusing device. The focused beam evaluated by the knife-edge-scan method and scanning microscope test using test charts. Nearly diffraction- limited focusing with a size of 120 nm was achieved for the first-order diffraction at 10 keV X-ray. Evaluation for the third order diffraction was also performed at 8 keV X-ray, and a focal size of 50 m has been obtained. (author)

  12. X-ray methods for the chemical characterization of atmospheric aerosols

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction

  13. X-ray beam-position feedback system with easy-to-use beam-position monitor.

    Science.gov (United States)

    Park, Jae Yeon; Kim, Yesul; Lee, Sangsul; Lim, Jun

    2018-05-01

    X-ray beam-position stability is indispensable in cutting-edge experiments using synchrotron radiation. Here, for the first time, a beam-position feedback system is presented that utilizes an easy-to-use X-ray beam-position monitor incorporating a diamond-fluorescence screen. The acceptable range of the monitor is above 500 µm and the feedback system maintains the beam position within 3 µm. In addition to being inexpensive, the system has two key advantages: it works without a scale factor for position calibration, and it has no dependence on X-ray energy, X-ray intensity, beam size or beam shape.

  14. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Göries, D., E-mail: dennis.goeries@desy.de; Roedig, P.; Stübe, N.; Meyer, J.; Warmer, M.; Weckert, E.; Meents, A., E-mail: alke.meents@desy.de [DESY Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Dicke, B.; Naumova, M.; Rübhausen, M. [Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761 Hamburg (Germany); Galler, A.; Gawelda, W.; Geßler, P.; Sotoudi Namin, H.; Beckmann, A. [European XFEL, Albert-Einstein Ring 19, 22761 Hamburg (Germany); Britz, A.; Bressler, C. [European XFEL, Albert-Einstein Ring 19, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Schlie, M. [Institut für Experimentalphysik, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-05-15

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy){sub 3}. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).

  15. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers

  16. Apparatus and method X-ray image processing

    International Nuclear Information System (INIS)

    1984-01-01

    The invention relates to a method for X-ray image processing. The radiation passed through the object is transformed into an electric image signal from which the logarithmic value is determined and displayed by a display device. Its main objective is to provide a method and apparatus that renders X-ray images or X-ray subtraction images with strong reduction of stray radiation. (Auth.)

  17. X-ray lenses with large aperture

    International Nuclear Information System (INIS)

    Simon, Markus

    2010-01-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 μm at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 μm to 31 μm, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling accuracy

  18. THE RADIATIVE X-RAY AND GAMMA-RAY EFFICIENCIES OF ROTATION-POWERED PULSARS

    International Nuclear Information System (INIS)

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-01-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev and Pavlov, and we complement this with an analysis of the γ-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and γ-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient γ-ray emitters. We divided the X-ray sample in a young (τ c 4 yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and γ-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L X ∝ P-dot 3 /P 6 . For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency η≡L X / E-dot rot ∼8x10 -5 . For the γ-ray luminosity we confirm that L γ ∝ √E-dot rot . We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  19. Radiation exposure of the UK population from medical and dental x-ray examinations

    International Nuclear Information System (INIS)

    Hart, D.; Wall, B.F.

    2002-03-01

    Knowledge of recent trends in the radiation doses from x-ray examinations and their distribution for the UK population provides useful guidance on where best to concentrate efforts on patient dose reduction in order to optimise the protection of the population in a cost-effective manner. In this report, the results of a recent survey of the frequency of medical and dental x-ray examinations in the UK and contemporary data on the radiation doses typically received by patients, are used to assess trends in the extent and the pattern of the population exposure. Individual patient doses, expressed in terms of the effective dose, range from a few microsieverts for simple radiographic examinations of the teeth, limbs or chest to tens of millisieverts for prolonged fluoroscopic procedures or some computed tomography (CT) examinations. A total of about 41.5 million medical and dental x-ray examinations are now conducted each year in the UK (0.70 examination per head of population) resulting in an annual per caput effective dose of 330 μSv. This is not significantly different from the previous rough estimate of 350 μSv for 1991. However, over the last ten years CT has more than doubled its contribution and is now responsible for 40% of the total dose to the population from medical x-rays. In contrast, the contribution from conventional radiographic and fluoroscopic examinations has nearly halved to about 44%. Interventional and angiographic procedures together contribute the remaining 16%. The annual per caput dose of 330 μSv is low in comparison with other countries having similarly developed systems of health care. This is due to both a lower frequency of x-ray examinations per head of population and generally lower doses in the UK than in other developed countries. However, the much increased contributions of CT, angiography and interventional procedures to the UK population dose indicate an urgent need to develop radiation protection and optimisation activities for

  20. Air kerma national standard of Russian Federation for x-ray and gamma radiation. Activity SSDL/VNIIM in medical radiation dosimetry field

    International Nuclear Information System (INIS)

    Kharitonov, I.A.; Villevalde, N.D.; Oborin, A.V.; Fominykh, V.I.

    2002-01-01

    Primary standard of unities air kerma and air kerma rate X-ray and gamma radiation, placed at VNIIM, consists of: plate-parallel free-air ionization chamber IK 10-60 for low-energy X-ray in the generating potential range from 10 to 50 kV; plate-parallel free-air ionization chamber IK 50-400 for medium-energy X-ray in the generating potential range from 50 to 300 kV; cavity cylindrical graphite chambers C1 and C30 with volumes 1 cm 3 and 30 cm 3 for reproduction and transmission the dimensions gamma radiation unities using Cs-137 and Co-60 sources. The next irradiation facilities are used at VNIIM: in low-energy X-ray range: a constant-potential high-voltage generator and a tungsten-anode Xray tube with inherent filtration of around 1 mm Be; in medium-energy X-ray range: set on the basis of an industrial X-ray apparatus Isovolt-400 and a tungsten-anode X-ray tube with inherent filtration of around 3,5 mm Al; in gamma radiations field: units with a radioactive sources Cs-137 with activity 140 and 1200 GBq and Co-60 with activity 120 GBq and irradiation set with a source from Co-60 (activity 3200 GBq). The last one belongs to Central Research Institute for Radiology and Roentgenology (CNIRRI). For measuring currents and charges of standard chambers we use electrometers such as Keithley of model 6517A and B7-45 manufactured by 'Belvar' (Republic Belarus). The reference radiation qualities L, N, H series according to ISO 4037 and the radiation qualities RQR, RQA and RQF according to IEC 61267 for calibration and verification of the therapeutic, diagnostic measurement means are realized in the low-energy and medium-energy X-ray standards. The VNIIM air kerma primary standard of has been participated in the international comparisons: key comparison BIPM.R1(I)-K1 for gamma radiation of Co-60 in 1997; supplementary comparisons BIPM.R1(I)-S10 for gamma radiation of Cs-137 in 1997; key comparison BIPM.R1(I)-K2 for low-energy X-ray range in 1998; key comparison BIPM.R1(I)-K3

  1. Origin of the cosmic x-ray background

    International Nuclear Information System (INIS)

    Margon, B.

    1983-01-01

    Since 1962, it has been known that every part of the sky emits a uniform glow of x-rays. After two decades of intense study the origin of this diffuse x-ray background is still a subject of controversy. The near perfect isotropy of the x-ray background is clearly a vital clue to its origin. A second clue to the origin of the x-ray background arises from the fact that it is x-radiation tha is generated, rather than some longer wavelength radiation. Two hypotheses of the origin of this x-ray background are discussed. One hypothesis is that the x-ray background can be attributed to bremsstrahlung from a hot intergalactic medium. The second hypothesis is that the x-ray background originates from a large number of quasars. Because there is no estimate independent of the intensity of the x-ray background of how much hot intergalactic medium exists (if any), there is a real possibility that both sources contribute to the observed x-rays. (SC)

  2. Evaluation of the effects of high energy X-ray radiation in materials used in dental restorations

    International Nuclear Information System (INIS)

    Maio, Mireia Florencio; Santos, Adimir dos; Fernandes, Marco Antonio Rodrigues

    2011-01-01

    This work studied the behavior of the physical features and chemical composition of materials used in dental restorations (titanium, amalgam, composite resin and glass ionomer cement) which were submitted to x-ray radiation of 6.0 Mega-Volt (MV) of energy produced in a linear accelerator that is used in radiotherapy of head and neck tumors 1 2. The samples were analyzed using a x-ray fluorescence technique by comparing the chemical composition before and after irradiation. In order to check the residual radiation in the samples, measurements of the sample dosimetry were performed with Geiger-Mueller radiation detectors and an ionization chamber. The samples were also analyzed by gamma-ray spectrometry using a hyper-pure Germanium (HPGe) detector. From these tests, we aimed to verify small changes in the composition of the test bodies due to the radiation. (author)

  3. Evaluation of the effects of high energy X-ray radiation in materials used in dental restorations

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Mireia Florencio; Santos, Adimir dos, E-mail: mfmaio@ipen.br, E-mail: asantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fernandes, Marco Antonio Rodrigues, E-mail: marfernandes@fmb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Departamento de Radioterapia

    2011-07-01

    This work studied the behavior of the physical features and chemical composition of materials used in dental restorations (titanium, amalgam, composite resin and glass ionomer cement) which were submitted to x-ray radiation of 6.0 Mega-Volt (MV) of energy produced in a linear accelerator that is used in radiotherapy of head and neck tumors 1 2. The samples were analyzed using a x-ray fluorescence technique by comparing the chemical composition before and after irradiation. In order to check the residual radiation in the samples, measurements of the sample dosimetry were performed with Geiger-Mueller radiation detectors and an ionization chamber. The samples were also analyzed by gamma-ray spectrometry using a hyper-pure Germanium (HPGe) detector. From these tests, we aimed to verify small changes in the composition of the test bodies due to the radiation. (author)

  4. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3]2+, with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  5. Synchrotron radiation and free-electron lasers principles of coherent X-ray generation

    CERN Document Server

    Kim, Kwang-Je; Lindberg, Ryan

    2017-01-01

    Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comp...

  6. Hohlraums energy balance and x-ray drive

    International Nuclear Information System (INIS)

    Kilkenny, J.D.

    1994-01-01

    For many years there has been an active ICF program in the US concentrating on x-ray drive. X-ray drive is produced by focusing laser beams into a high Z hohlraum. Conceptually, the radiation field comes close to thermodynamic equilibrium, that is it becomes isotropic and Planckian. These properties lead to the benefits of x-ray drive--it is relatively easy to obtain drive symmetry on a capsule with no small scalelengths drive perturbations. Other advantages of x-ray drive is the higher mass ablation rate, leading to lower growth rates for hydrodynamic instabilities. X-ray drive has disadvantages, principally the loss of energy to the walls of the hohlraum. This report is divided into the following sections: (1) review of blackbody radiation; (2) laser absorption and conversion to x-rays; (3) x-ray absorption coefficient in matter and Rosseland mean free path; (4) Marshak waves in high Z material; (5) x-ray albedo; and (6) power balance and hohlraum temperature

  7. Comparison of different methods for determining the size of a focal spot of microfocus X-ray tubes

    International Nuclear Information System (INIS)

    Salamon, M.; Hanke, R.; Krueger, P.; Sukowski, F.; Uhlmann, N.; Voland, V.

    2008-01-01

    The EN 12543-5 describes a method for determining the focal spot size of microfocus X-ray tubes up to a minimum spot size of 5 μm. The wide application of X-ray tubes with even smaller focal spot sizes in computed tomography and radioscopy applications requires the evaluation of existing methods for focal spot sizes below 5 μm. In addition, new methods and conditions for determining submicron focal spot sizes have to be developed. For the evaluation and extension of the present methods to smaller focal spot sizes, different procedures in comparison with the existing EN 12543-5 were analyzed and applied, and the results are presented

  8. The radiation effects of aspergillus oryzae spores with soft x-rays near the K shell absorption edges of C, N, O elements from synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Liang; Jiang Shiping; Wan Libiao; Ma Xiaodong; Li Meifang

    2007-01-01

    The dose deposition of different parts of Aspergillus oryzae spores were analyzed with soft X-ray energies near the K-shell absorption edges of C, N, O elements (4.4nm, 3.2nm and 2.3nm), respectively. At the same time, the spores were irradiated with the three wavelengths of soft X-rays on the soft X-ray microscopy from synchrotron radiation at NSRL, and the survivals were compared. The theoretical analyses showed that the deposition doses of different parts of the spore were varying with X-ray energies because of the effects of C, N, O K-shell absorption edges and elemental contents of the different parts of spore. The experimental studies proved three wavelengths of soft X-rays all had high killing abilities. Among these, 2.3nm wavelength X-rays had higher radiation damage to spore than that of 3.2nm, 4.4nm. (authors)

  9. Multiple wavelength X-ray monochromators

    International Nuclear Information System (INIS)

    Steinmeyer, P.A.

    1992-01-01

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs

  10. X-ray electromagnetic application technology

    International Nuclear Information System (INIS)

    2011-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)

  11. Computerized x-ray radiographic system for fuel pellet measurements

    International Nuclear Information System (INIS)

    Green, D.R.; Karnesky, R.A.; Bromley, C.

    1977-01-01

    The development and operation of a computerized system for determination of fuel pellet diameters from x-ray radiography is described. Actual fuel pellet diameter measurements made with the system are compared to micrometer measurements on the same pellets, and statistically evaluated. The advantages and limitations of the system are discussed, and recommendations are made for further development

  12. Relationship between radiation dose and changes of blood cells in medical diagnostic X-ray workers in China

    International Nuclear Information System (INIS)

    Zhao Wenzheng

    1984-01-01

    The hematological changes of 2867 cases of medical X-ray workers and 1152 cases of non-X-ray medical workers were compared. It was shown that the total number of leukocytes, the numbers of neutrophils, lymphocytes and platelets were significantly lower in X-ray workers than those in controls. However, the percentages of monocytes, eosinophils, basophils and the concentration of hemoglobin were higher in the irradiated group. the difference between the two groups was statistically significant. The degree of changes in the number of blood cells was dose-dependent. A negative correlation could be found between the changes of leukocyte and neutrophil counts and cumulative dose (<250 mGy), annual dose (<15 mGy/a) and length of service of the X-ray workers; and a positive correlation existed between the percentages of basophils, eosinophils and monocytes, and the radiation dose. The abnormality rate of blood picture in the irradiated group was higher than that in the control group. Most X-ray workers with abnormal blood picture were distributed in low-dose group. The data also showed that radiation effect on male X-ray workers was greater than that on female workers. (Author)

  13. Influence of beam divergence on form-factor in X-ray diffraction radiation

    International Nuclear Information System (INIS)

    Sergeeva, D.Yu.; Tishchenko, A.A.; Strikhanov, M.N.

    2015-01-01

    Diffraction radiation from divergent beam is considered in terms of radiation in UV and X-ray range. Scedastic form of Gaussian distribution of the particle in the bunch, i.e. Gaussian distribution with changing dispersion has been used, which is more adequate for description of divergent beams than often used Gaussian distribution with constant dispersion. Both coherent and incoherent form-factors are taken into account. The conical diffraction effect in diffraction radiation is proved to make essential contribution in spectral-angular characteristics of radiation from a divergent beam

  14. Ultimate capabilities of soft x-ray optics

    International Nuclear Information System (INIS)

    Vinogradov, A.V.; Zorev, N.N.; Kozhevnikov, I.V.

    1988-01-01

    Nonimaging soft X-ray optics is examined. The ultimate capabilities of a number of X-ray optical components designed for concentration and collimation of radiation from point sources are determined. The applications of X-ray optics are discussed together with the properties of materials in the X-ray range

  15. X-ray tomographic and laminographic microscopy (XTM, XLM) using synchrotron radiation

    International Nuclear Information System (INIS)

    Wyss, P.; Obrist, A.; Hofmann, J.; Luethi, T.; Sennhauser, U.; Thurner, P.; Stampanoni, M.; Abela, R.; Patterson, B.; Mueller, R.

    2003-01-01

    Inner structures of composite materials, components or tissues have to be characterised with micrometer and even submicrometer resolution. It is often highly desirable that specimens stay unchanged after a first characterization to allow meaningful subsequent tests. This justifies major efforts for an ongoing improvement of nondestructive radiographical and tomographical methods for morphological characterization. Radiography and tomography as well as laminography can fulfill these requirements. X-ray sources and detectors have been improved. This applies for synchrotron-beamline systems as well as for tube based systems. A novel detector concept has been implemented in the XTM station at the SLS of the PSI in Villigen, Switzerland. This microtomography station at the SLS has started its operation in spring 2002. A selection of results related to industrial and scientific applications is presented in this contribution. Special emphasis will be given to first results of tomography with limited numbers of projections which is comparable to laminography. This method allows to characterise e.g. ribbons of tissue under load

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in ...

  17. Irradiated ISM : Discriminating between cosmic rays and X-rays

    NARCIS (Netherlands)

    Meijerink, R.; Spaans, M.; Israel, F. P.

    2006-01-01

    The interstellar medium ( ISM) at the centers of active galaxies is exposed to a combination of cosmic-ray, far-ultraviolet (FUV), and X-ray radiation. We apply photodissociation region (PDR) models to this ISM with both "normal" and highly elevated (5 x 10(-15) s(-1)) cosmic- ray (CR) rates and

  18. X ray emission: a tool and a probe for laser - clusters interaction

    International Nuclear Information System (INIS)

    Prigent, Ch.

    2004-12-01

    In intense laser-cluster interaction, the experimental results show a strong energetic coupling between radiation and matter. We have measured absolute X-ray yields and charge state distributions under well control conditions as a function of physical parameters governing the interaction; namely laser intensity, pulse duration, wavelength or polarization state of the laser light, the size and the species of the clusters (Ar, Kr, Xe). We have highlighted, for the first time, an intensity threshold in the X-ray production very low (∼ 2.10 14 W/cm 2 for a pulse duration of 300 fs) which can results from an effect of the dynamical polarisation of clusters in an intense electric field. A weak dependence with the wavelength (400 nm / 800 nm) on the absolute X-ray yields has been found. Moreover, we have observed a saturation of the X-ray emission probability below a critical cluster size. (author)

  19. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    International Nuclear Information System (INIS)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong; He, You; Zhou, Guangzhao; Xiao, Tiqiao; Huang, Qingjie

    2016-01-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  20. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Science.gov (United States)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.